UC Santa Cruz

UC Santa Cruz Previously Published Works

Title
Adding adaptive flow control to Swift/RAID

Permalink
https://escholarship.org/uc/item/2p70c9ht|

Authors

Fullmer, CL
Long, DDE
Cabrera, L-F

Publication Date
1995

DOI
10.1109/pccc.1995.472478

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2p70c9ht
https://escholarship.org
http://www.cdlib.org/

Adding Adaptive Flow Control to Swift/RAID

Chane L. Fullmer, Darrell D. E. Long?
Computer and Information Sciences
University of California, Santa Cruz

Luis-Felipe Cabrera
Computer Science Department
IBM Almaden Research Center

January 12, 1995

Abstract

We discuss an adaptive flow control mechanism for the
Swift/RAID distributed file system. Our goal is to achieve near-
optimal performance on heterogeneous networks where available
load capacity varies due to other network traffic. The original
Swift/RAID prototype used synchronous communication, achiev-
ing throughput considerably less than available network capacity.
We designed and implemented an adaptive flow control mecha-
nism that provides greatly improved performance.

Our design uses a simple automatic repeat request (ARQ) go
back N protocol coupled with the congestion avoidance and con-
trol mechanism developed for the Transmission Control Protocol
(TCP). The Swift/RAID implementation contains a transfer plan ex-
ecutor to isolate all of the communications code from the rest of
Swift. The adaptive flow control design was implemented entirely
in this module.

Results from experimental data show the adaptive design
achieving an increase in throughput for reads from 671 KB/s for
the original synchronous implementation to 927 KB/s (a 38% in-
crease) for the adaptive prototype, and an increase from 375 KB/s
to 559 KB/s (a 49% increase) in write throughput.

1 Introduction

Multimedia and scientific visualization require huge files
containing images or digitized sounds. Current systems can
only offer a fraction of the data rates required by these ap-
plications. The Swift distributed file system architecture [4]
was introduced to address this problem. Here we consider
the problem of using the system in an efficient manner to
maximize network throughput.

Due to network flow problems, synchronous operation
of Swift/RAID was thought to be necessary. However, this
resulted in diminished throughput due to the large waiting
times. To achieve a higher throughput an adaptive flow
control scheme has been designed and implemented. The
design is based on an ARQ go back N protocol and includes
the adaptive congestion avoidance and control techniques
used for the Transmission Control Protocol (TCP) [7]. This
design has allowed asynchronous operation of the prototype

tSupported in part by the Office of Naval Research under Grant N00014-

92-]-1807 and by the National Science Foundation under Grant NSF CCR~
9111220.

0-7803-2492-7/95 $4.00 © 1995 IEEE

with an increase in throughput from 671 KB/s to 927 KB/s
over the synchronous operation for RAID level 4 reads and
from 380 KB/s to 482 KB/s for writes, and RAID level 5
shows an increase in throughput from 729 KB/s to 896 KB/s
for reads and from 375 KB/s to 559 KB/s for writes. Our
design has also attained an increase of 28% over the reported
throughput of the original non-redundant Swift prototype
[4, 9] (about 700 KB/s versus 927 KB/s for the new design)
for read operations (both RAID levels 4 and 5), and has
achieved one half of the write throughput for RAID level 4
(about 900 KB/s versus 482 KB/s for the new design) and
60% of the throughput for RAID level 5 write operations
(about 900 KB/s versus 559 KB/s).

2 Swift Distributed File System Architecture

Our goal is to study how the Swift [4, 3] architecture can
make the most effective use of available network capacity.
Swiftis designed to support high data rates in a general pur-
pose distributed system. It is built on the notion of striping
data over multiple storage agents and driving them in paral-
lel. It assumes that data objects are produced and consumed
by clients and that the objects are managed by the several
components of Swift. In particular, the distribution agents,
storage mediators, and storage agents are involved in planning
and actual data transfer operations between the client and
an array of disks, which are the principal storage media. We
refer the reader to [4, 3] for details of the functionality of
these components of Swift.

The communications protocols used in the original Swift
system operated in a synchronous manner. Packets were
transmitted one at a time and the sender waited until an
acknowledgment was received from the destination before
new packets were sent. This type of operationamounts toan
automatic repeat request (ARQ) Stop-and-Wait protocol [1].
The protocol is simple and error free, but does not achieve
as high a throughput as is possible with other protocols such
as ARQ Go back N [1].

The Swift/RAID prototype was developed to add redun-
dancy to the original Swift system [9]. The prototype uses a
transfer plan executor to execute a transfer plan set (one trans-
fer plan set is generated per user request). Execution begins
when the client transfer plan executor has sent the transfer

plan to each server. Each transfer plan executor then steps
through the transfer plan in parallel, executing the individ-
ual instructions. The instruction op-codes available allow
all of the basic file operations and parity calculations. Also
included are synchronization primitives to provide synchro-
nization between the client and servers. The prototype im-
plements the RAID-0 (no parity), RAID-4 (fixed parity node)
and RAID-5 (distributed parity node) configurations.

The prototype handles errors in two ways — time-out, or
restart. If a node is waiting for an instruction from its peer
and the instruction is not received from the network within
a fixed time, the waiting node issues a restart instruction to
its peer. Or, if a node receives an instruction out of sequence
a restart is also generated to re-synchronize the instruction
plans. In either case, we assume a packet has been lost on
the network, very likely due to congestion.

3 Improving Network Throughput

Our goal is to maximize the network throughput be-
tween a client making requests to the file system and the
servers in the file system, and additionally, that of maintain-
ing good utilization in a heterogeneous environment. To
maximize the performance of the Swift/RAID prototype,
the following three issues need to be addressed: satura-
tion of client/server network buffers; expense of time-outs;
and the variability and unpredictability of available network
load capacity.

Burst mode operation can easily flood the network and
overwhelm the Sun implementation of the User Data-
gram Protocol (UDP). The Swift/RAID prototype transac-
tion driver, using a burst mode of operation, can push data to
the UDP layer too quickly, causing data to be dropped and
throughput to approach zero.

An examination of the Sun operating system kernel
source code showed that packets are likely to be lost while
waiting for transmission in the Ethernet queue. This queue
is the final location for a datagram before being placed onto
the physical network. The queue size is limited to 50 Eth-
ernet packets.* When the queue exceeds the maximum
allowed, it randomly removes packets from the queue and
drops them without notifying any other part of the system.
There is no obvious way to determine when this happens
and it makes timely congestion detection extremely diffi-
cult. Consider that an 8 KB datagram packet is fragmented
into five full Ethernet packets and one partial packet. When
the client makes a write request to a three node system of
over three packets per node in one pass, the client kernel
Ethernet queue is immediately inundated with 54 packets
to deliver. The kernel simply starts dropping the packets
and throughput is seriously diminished.

*Increasing the kernel buffers is a temporary fix - it just masks the
underlying problem.

291

3.1 Flow Control Mechanisms

The underlying system can be thought of as a group of
buffers interconnected by a fixed capacity pipe. The servers
each have a pair of buffers for the client: one for input and
one for output. The client has one pair of buffers for each
server that connect to another pair of buffers for the network.
Each of these buffers have finite capacities in addition to the
fixed capacity of the pipe. When any of these capacities
are exceeded packets will be dropped. These buffers can
also be thought of as windows providing an upper bound on
the amount of data a transmitter can expect to send before
receiving an acknowledgment from the destination for more
data.

Because of the buffering needs of the Swift/RAID sys-
tem, it lends itself to a class of flow control mechanisms
known as window flow control. The communications prim-
itives available to us at the client/server session level, the
specific class of end-to-end windowing (also know as entry-to-
exit flow control [6]) make it well suited for our prototype.
In this scheme, the sender has knowledge of the destina-
tion’s buffer capacity and only sends packets out in batches
of sizes less up to the available buffer capacity. The desti-
nation sends permits (acknowledgments) of the packets re-
ceived. Upon receiving the permit from the destination the
sender continues by sending another batch of packets. This
method is efficient, and can approach optimal performance
of a given system [8]. A disadvantage of this scheme is that
of choosing a window size. The choice of a window size
is a trade-off: small window sizes limit the congestion and
tend to avoid large delays, and large window sizes allow
full-speed transmission and maximum throughput under
lightly loaded conditions. One solution to the dynamic win-
dow adjustment was suggested by the congestion avoidance
and control mechanisms in 4.3 BSD Reno TCP [7].

4 Implementation of the Adaptive Prototype

Our design addresses network buffer saturation, avoid-
ing time-outs and adjusting to variable network capacity.
We chose an ARQ Go Back N protocol [1] as our main mech-
anism. To handle the avoidance of time-outs and variable
network capacity, we have added congestion avoidance sim-
ilar to that used for TCP [7].

The Swift/RAID architecture implementation is modular,
withaall of the communications code placed in one highly co-
hesive module, the transaction driver module. All modifica-
tions to accomplish the flow-control/congestion avoidance
were applied to this module: all versions of the prototype
remained operational. The original implementation of the
RAID-0, RAID-4 and RAID-5 systems were used, the only
difference being increased throughput.

The transaction driver implementation uses two main
data structures to control its operations. These contain the
set of instructions for the current plan being executed. The
client and each server keep them until the successful com-

pletion of each plan. They also contain information about
the individual communicating entities on both sides: the
client has one structure for each server it is using, and each
server has a structure for each client it is serving.

The data structures were modified to store window
and congestion information for each communications link.
Counters in each structure reflect the last packet each server
has acknowledged, and the last packet acknowledged by
the client to the particular server. At any time if the dif-
ference between the counters is greater than the allowable
window size, further transmissions are delayed until addi-
tional acknowledgments are received that reflect available
buffer space at the receiver.

A few simple lines of code were added to the instruc-
tion transmission routine to do the difference calculation
and comparison with the available window size. The code
transmits a small burst of packets equal to the available win-
dow size. The same code was added to a similar section of
the instruction execution routine and is executed after the
system receives a new packet.

A fast retransmit mechanism was added through a sep-
arate routine in the transaction driver module. We use a
similar technique to that found in TCP for approximating
the variance and determining the new round trip time value.
The calculated round trip time is used by the respective
sender in a session waiting on an acknowledgment from its
peer for the last packet sent. If the sender does not receive an
acknowledgment within the round trip time, packets are re-
sent from the last acknowledged packet through the current
available window.

We deviate significantly from the actual implementation
of the algorithms in TCP. First, we do not allow our con-
gestion avoidance algorithm to probe past the known win-
dow size. Our Swift/RAID system has one link between the
transmitter and destination nodes (and there are no interme-
diate links or gateways to buffer packets while in transit).
Probing past the window size would only cause packets to be
lost and throughput to drop accordingly. Second, the Reno
TCP implementation waits for either a time-out or three du-
plicate acknowledgments from the destination to react to
the apparently lost packet and trigger the retransmission of
the packet. We use the restart mechanism in the transaction
driver to send a restart packet for time-outs or receipt of an
out-of-order (dropped) packet condition, and we trigger re-
transmission on the first receipt of this packet. Finally, in
calculating the round trip times we use a much finer gran-
ularity of timer than the actual TCP implementation. The
4.3 BSD Reno TCP uses a coarse grained timer of around
500ms. Our implementation reads the system clock as each
packet is sent from the transaction driver, and again when
each acknowledgment is received, using the difference as
our measured round trip time. We then use a round trip
time estimator to compute our retransmit timer. This gives
us a more accurate time-out calculation for retransmissions.

292

5 Results

Experiments were performed for all available versions of
the system, including RAID-0, RAID-4 and RAID-5. Read
and write throughput was measured for file transfers up
to one megabyte and compared with the original non-
redundant prototype as well as the Swift/RAID prototype.
The throughput measurements performed to evaluate the
prototype were essentially the same as those reported in [9].
In fact, the identical test programs and RAID-4 and RAID-5
modules were used.

5.1 Methodology

The block size was changed from 8192 bytes (in the
Swift/RAID prototype) to 7340 bytes to avoid fragmenta-
tion of the Ethernet packets. Because we were interested
in network performance, the files were preallocated on the
servers so that file creation was not reflected in the results.
The individual experiments were repeated 50 times each and
averaged to obtain the results reported here.

The Swift/RAID architecture uses a 60 byte header on the
datagram in addition to the data block being transferred.
Therefore a data block size of 7340 bytes was used, which
when added to the 60 byte header gives a 7400 byte datagram
that fragments into exactly five 1480 byte Ethernet packets
with no internal fragmentation. This maximizes use of the
network resource and increases throughput slightly over the
original 8192 byte block size used in previous experiments.

To establish credibility of the data and the data gath-
ering techniques a typical experimental run was analyzed
to determine the standard deviation and confidence inter-
vals. The experiment was run for each block size using the
Swift/RAID adaptive prototype running on a three node
RAID-5 system. The 90% confidence intervals ranged from
+0.4% to £8.11%, with a mean interval of +1.91% for reads
and +3.17% for writes. All of the numbers for the adaptive
Swift/RAID prototype in this report are mean values with
similar confidence intervals. Figure 1 shows the through-
put for both reads and writes with error bars for the 90%
confidence intervals.

The testing platform was a heterogeneous local area net-
work consisting of Sun SparcStations, including a Sparc-
Station 2, a SparcStation IPX, a SparcStation IPC and three
SparcStation SLCs. The interconnection medium was a 10
Mb/s Ethernet. The SparcStation 2 was used as the client
in all of the measurements that follow. The balance of the
machines were used as the Swift/RAID servers, with the
SparcStation IPX and SparcStation IPC always included, and
one or more of the SparcStation SLCs added in as necessary
for the experiment. The client machine was also the NFS file
server and gateway for the subnet described. This accen-
tuated the inabilities of the workstation to handle the loads
presented, but the workstation was used for historical rea-
sons (comparison with previous results). In addition, the
network was an active network heavily used by researchers
and with a fluctuating load. These activities and fluctua-

RAID-5 SWIFT - Comparieon of Window Size of 2 showing 90% Conlidence intervale
T T T T

il ot
3node wilhe H—

‘t|i.|‘.l'|ln'

L3I i3]

080 -

080 -

{{
b

LA
‘_l

Y IR
ol i ! syt b

¥

3
|3
?ii

Average Megebytes per second acheived

020 |

0.00 1 L A i A It
000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Fila size read in 7340 Byte biocka

Figure 1: Swift/RAID-5 prototype performance with 90%
confidence intervals shown.

tions are reflected in the data collected and appear in the
graphs as small bumps and occasionally more severe dips.
To capture this activity and loading in a more direct manner
we used a Network General Distributed Sniffer System to
monitor network utilization.

5.2 Performance Evaluation

The throughput obtained for reads for the RAID-0 pro-
totype using the Stop and Wait protocol ranged from 651 to
758 KB/s. Results for the ARQ Go Back N protocol with
a window size of one are very similar to those of the Stop
and Wait, as expected (Stop and Wait is the same as ARQ
Go Back 1). When the window is increased to two, reads
improve slightly to 689 — 830 KB/s. As the window size
is increased up to five, the read operations level off to 910
KB/s. Results for the RAID-4 and RAID-5 prototypes are
similar and push the throughput on the network to 927 KB/s
and 896 KB/s, respectively. (Figures 2, 3 and 4 show read
and write throughput of a typical file transfer (40 blocks —
293.6 KB) for window sizes from one to five.)

For the RAID-0 prototype it can be seen that the addition
of the adaptive ARQ Go Back N control improved read op-
erations by as much as 40% for a two node system. The im-
provement is less dramatic for larger configurations. How-
ever, it should be noted that in all cases the read operation
is brought up to about 900 KB/s, which is very close to
the usable bandwidth of the network [2], making further
improvements difficult. RAID-4 read operations show an
improvement of 35% over the Stop and Wait protocol (from
671 KB/s to 927 KB/s) and RAID-5 improved up to 23%
(from 729 KB/s to 896 KB/s).

Write operations for the RAID-0 Stop and Wait prototype
ranged from 616 to 766 KB/s. For our new prototype writes
achieved throughputs from 768 to 800 KB/s. Write opera-
tions continue at about 800 KB/ s, except for the case of four
nodes. Here the client is sending based on a window size
of at least three Swift data unit packets to four servers at
once. One Swift data unit is 7400 bytes with header, which

293

is five Ethernet packets on our network configuration. This,
times three for the window, times four for the servers equals
60 Ethernet packets. Write throughput starts to drop off as
the number of blocks transmitted by the client reaches, or
exceeds, the capacity of the kernel buffers. The Sun im-
plementation of UDP randomly discards packets from its
kernel network buffers when it receives more packets than
it can handle, and our kernel network buffers were set at
50 packets (the original configuration from Sun). When the
client sends the 60 packets to be transmitted, the kernel is
throwing some of them away causing the throughput to
drop accordingly. These can be seen in Figure 2.

RAID-4 write operations did not improve over the Stop
and Wait prototype except for the case where the window
size is equal to two. In this case the adaptive prototype
maintains a throughput of 482 KB/s compared to the 400
KB/s attained by the Stop and Wait prototype — an improve-
ment of 20%. Write operations for the RAID-4 redundant
systems suffer from some inherent problems. Parity block
traffic, the extra traffic for small writes and the CPU over-
head used for parity calculations all adversely impact the
RAID-4 system. Parity block traffic is not serious for sys-
tems with many nodes to stripe across, but for systems with
small numbers of nodes (like ours) it is a major contribut-
ing factor in limiting throughput. The impact of the small
write traffic decreases as the number of blocks requested in-
creases, but is a major contributor to poor performance for
small block requests. Parity calculations have been shown
to be a factor in limiting the ability of the workstations used
to achieve better performance. Experiments have found the
cost of parity to be 200KB/s in the Swift/RAID Stop and Wait
prototype using a SparcStation 2 [9]. Additionally, the bot-
tleneck created by the use of a single parity node becomes
as issue for large writes, and tends to keep RAID-4 perfor-
mance below others, such as RAID-5. Also, as node and
window sizes increase, we run into the same buffer limita-
tions as we did with RAID-0.

Results for RAID-5 operation show up to a 49% increase
in write operation throughput (from 375 KB/s to 559 KB/s).
RAID-5 write operations do best at the window sizes of two
and three, and diminish above that, especially for the larger
server populations. (Again, the Sun operating system kernel
buffers are being exhausted and packets are being randomly
dropped from the queue, causing retransmissions and lower
throughput.)

RAID-5 writes don’t do as well in all cases, but in general
do as well as the Stop and Wait prototype, or better. As for
RAID-4, RAID-5 has some similar inherent problems. The
parity block traffic, small write traffic and CPU costs for the
parity calculations all take their tolls on RAID-5 systems.
The parity block traffic is the over-riding factor in limiting
throughput for small numbers of nodes.

Results from the use of the network analyzer were in-
teresting in that they show both read and write operations
utilize the network close to maximum capacity. Why thendo
writes seem to perform so poorly in our experiments? The
low performance of the writes is directly attributable to the

RAID-0 SWIFT: Comperison of a 40 Block Read by Window Sze
T

|

080
060 -

0.40

Average Throughput Acheived for System — MB/s

020

000

Average Throughput Acheived for System - MB/a

i
100 200 3.00 400

Window Size

500

RAID-0 SWIFT: Comparison of a 40 Block Write by Window Size
T T T

120} ==
3 node wrkes —+—
4 node wikes -2
100 |-
e | B —
e - | ~
............ —_—
o V
o i S .]
........... S
040
020
000 : |
100 200 300 0 500
Window Size

Figure 2: RAID-0 adaptive prototype performance.

RAID-4 SWIFY: Comparison of a 40 Block Read by Window Size
T T T

080 F -

0.40

- 3nods reads e~
H 4 nods reads —+—
S node reads -6
100 - SR
—
/-.' """" - - —t
e cca

080 // \

Average Throughput Acheived for System -- M&/e

020

Average Throughput Acheivad for System — M&/e

3
Window Size

RAID-4 SWIFT: Comparison of a 40 Block Write by Window Size
T T T

= 77 3node writes -+~
4 node wriles -+~
5 node wiites -B--

080

080

040

020

0.00

Figure 3: RAID-4 adaptive prototype performance.

cost of redundancy ~ the parity block that must be updated
for each write operation. For a full stripe write n — 1 blocks
are written to data nodes, and one parity block is written.
The penalty here is that 1/n of the network traffic is being
spent to preserve redundancy. When n is large this cost is
small. However in our prototype system n is small (i.e., 3,4
and 5 nodes were used) and therefore the cost is high. In
addition, small writes impact writes that are not full stripes,
and cost at least an extra two blocks (reading the old data
block, and the old parity block) of traffic plus the rewriting
of the parity block. For a three node system the stripe is two
blocks in size, and small writes impact 50% of the block sizes
used in our experiments. Similarly, in a four node system
small writes impact 33% of the block sizes. As the number
of blocks written becomes large the system writes to mostly
full stripes, with one small write at the end if the total size
does not fall on a full stripe boundary. This lessens the over-
all affect of the small writes so the throughput of the system
is controlled by the costs of the single parity block traffic.

294

5.3 Degraded Mode
RAID-4 and RAID-5

Performance Evaluation:

For these experiments the Swift/RAID adaptive proto-
type was operated with a window size of two. An operating
node was terminated before each experiment was started.
The RAID-4 system was tested both with the terminated
node as the parity node or as one of the data nodes. RAID-5
was tested with a random node failure. Figure 5 shows the
results on both RAID-4 and RAID-5 for our prototype in
degraded mode operation.

In degraded mode operation, RAID-4 and RAID-5 sys-
tems must reconstruct data on the failed node from the re-
maining nodes in the system. RAID-4 has two cases to con-
sider: the case of a failed datanode, and the case of the parity
node. It can be seen that with a failed data node the read
operation throughput drops from 927 KB/s to 760 KB/s, or
18%. For write operations the throughput increases by 26%
from 482 KB/s to 608 KB/s. For the case where a RAID-4
parity node fails the read operations are unaffected, while
write operations improve the same percentage over normal
operation as for a data node failure. The improvement in
the write performance is due to a significant decrease in

RAID-5 SWIFT: Comparieon of a 40 Block Read by Window Size
T T T

040

Average Throughput Acheived for System —~ MB/s
o
2

LY) —

Average Throughpur Acheived for System — MB/s

FNID-5 SWIFT: Comparieon of & 40 Block Wrile by Window Size
T

020

0.00

000

3
Window Size

Figure 4: RAID-5 adaptive prototype performance.

network traffic due to lost redundancy. When a data node
has failed, only the parity block is written; the write to the
failed node is deferred until the failed node is reconstructed.
When the parity node has failed, only the data blocks are
written, and parity calculation and write are deferred until
reconstruction.

For RAID-5 systems there is only one degraded mode
since the parity information is distributed evenly across all
nodes. Read operations show a decrease in throughput from
896 KB/s to 768 KB/s (a loss of 17%). Write operations
improved from 559 KB/s to 714 KB/s, an increase of 27%.
Writes improve for the same reasons as in RAID-4, and since
RAID-5 nodes contain both data and parity information,
both causes apply to a failed RAID-5 node.

Our results agree with other research that has shown the
throughput for writes in systems of fewer than four nodes
actually increase during degraded mode for both RAID-4
and RAID-5 systems [10]. These results show a decrease
in total load due to writes for RAID-5 systems where the
number of disks is less than eight, and average load decrease
for fewer than four disks. It can similarly be shown for
RAID-4 systems with a decrease in total load for less than
eight disks, and a decrease in average load for less than five
disks in the system.

6 Conclusions

An adaptive Flow Control Mechanism has been added
to the prototype for the Swift/RAID distributed file sys-
tem prototype. This mechanism has allowed the prototype
to achieve a greater than 25% increase for read operation
throughput, and up to a 50% increase for write operations
over the previous Swift/RAID prototype. The adaptive
RAID-4 and RAID-5 prototypes are both able to achieve
read throughputs in excess of 900 KB/s.

Bertsekas and Gallager [1] have discussed that one of the
limitations of end-to-end window flow control is the trade-
off of choosing a window size ~ small window sizes keep
packets in the subnet low and congestion to a minimum,

295

but large windows allow higher rates of transmission and
maximum throughput during light traffic conditions. They
have also suggested that the value should be between n and
3n, where n is the path length between the nodes. Our
results agree and have shown that a window size of two
(on our local network with a path length of one) provided
the maximal throughput for write operations — on the order
of a 50% increase over the Stop and Wait protocol. Other
window sizes of 1, 3, 4, 5 showed little, or no improvement
for writes and in the case for a window size of five the results
tended to be below all others because of the swamping of the
client Ethernet queue. This is also supported by Eldridge [5].
Read operations did better with higher window sizes, but
not significantly better (approximately 5% in most cases).

Most of our improvement in throughput was gained by
the simple “self-clocking” [7] of the data packets with the
acknowledgments sent by the destination as packets were
received. This is because once the packet traffic has sta-
bilized, the acknowledgment packets are being returned at
the rate at which the receiver is pulling packets off of the
network. Likewise, the sender is receiving the acknowledg-
ments at the same rate and putting new packets into the
network. This has the affect that as the receiver is taking one
packet off, the sender is simultaneously putting another one
into the network.

One way to improve small writes is through a server-
server protocol. It can be shown that a small write can be
accomplished with one data packet sent from the client to
the server node for storage, and one interim parity packet
sent directly to the parity node from the server receiving
the new data packet. To take advantage of this technique
a protocol for server to server communication needs to be
designed and implemented. This would allow for the small
write problem to be reduced from four network instruction
transfers, all of which involve the client node, to two disk
operation instruction packets sent over the network, only
one of which would involve the client.

RAID-4 SWIFT - Degrade Mode: Faded Data Node - Window Size of 2 RAID-5 SWIFT - Degrade Mode: One Faled Node - Window Size of 2
T T T T T

T T

120 |- ot . - 120 - - g - Fnode reads <=]

3node wigs ~+— 3node wiis —+—

100 | 100
K 3
2 z
.
H 2
]]
E 0.80 + : . ~§ 080 ¢

; ———— 4
§ / ; ¢ \r//*’_“< ——
i i 1 =
g 080f-- . P R g s osof N - S - H wed 4
E H ; ?K‘ 7 \‘_f_/\ i : ,/
N/ : i

3 040 1/ : H 040 /
- / H /
§ /
§ , !

020 4 ; ;

7 T . 020
¢ i
00 AR o i .
000 500 1000 1500 2000 2500 23000 3500 4000 4500 5000 000 500 1000 1500 2000 2500 3000 300 4000 4500 50.00
Fie size read in 7340 Byle blocks Fie 3ize read in 7340 Byle blocks

Figure 5: Comparison of Swift/RAID prototype read and write performance in degraded mode.

References

[1] D. Bertsekas and R. Gallager, Data Networks, 2nd Edition.
Prentice-Hall,Inc., 1992.

[2] D.R. Boggs,]. C. Mogul, and C. A. Kent, “Measured capacity
ofan ethernet: Myths and reality,” in Proceedings of SSGCOMM
88, pp. 222-234, ACM, 1988.

[3] L.-F.Cabrera and D. D. E. Long, “Swift: a storage architecture
for large objects,” in Digest of papers, 11th IEEE Symposium on
Mass Storage Systems, pp. 123-8, IEEE, 1991.

[4] L-F Cabreraand D.D.E. Long, “Swift: Using distributed disk
striping to provide high 1/O data rates,” Computing Systems,
vol. 4, no. 4, pp. 405-36, 1991.

(5] C.A.Eldridge, “Rate controls in standard transport layer pro-
tocols,” ACM Computer Communication Review, vol. 22, no. 3,
1992.

[6] M. Gerla and L. Kleinrock, “Flow control: A comparative
survey,” IEEE Transactions on Communications, vol. COM-28,
no. 4, pp. 553-574, 1980.

[7] V. Jacobson, “Congestion avoidance and control,” in Proceed-
ings of SIGCOMM 88, ACM, 1988.

[8] D.D. Kouvatsos and A. T. Othman, “Optimal flow control of
end-to-end packet-switched network with random routing,”
IEEE Proceedings, vol. 136 Pt E, no. 2, pp. 90-100, 1989.

[91 D. D. E. Long, B. R. Montague, and L.-F. Cabrera,
“Swift/RAID: A distributed RAID system,” Computing Sys-
tems, vol. 7, no. 3, pp. 333-59, 1994.

[10] S. W. Ng and R. L. Mattson, “Maintaining good performance
in disk arrays during failure via uniform parity group dis-
tribution,” in Proceedings of the 5th International Symposium
on High-Performance Distributed Computing, pp. 260~69, IEEE
Computer Society Press, 1992.

296

