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ARTICLE

Uniaxial strain control of spin-polarization in
multicomponent nematic order of BaFe2As2
T. Kissikov1, R. Sarkar2, M. Lawson1, B.T. Bush1, E.I. Timmons3, M.A. Tanatar3, R. Prozorov 3, S.L. Bud’ko3,

P.C. Canfield3, R.M. Fernandes4 & N.J. Curro 1

The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a

complex interplay between spin, lattice, and orbital degrees of freedom. The nematic state

observed in these compounds epitomizes this complexity, by entangling a real-space ani-

sotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice

distortion. A subtle and less-explored facet of the interplay between these degrees of free-

dom arises from the sizable spin-orbit coupling present in these systems, which translates

anisotropies in real space into anisotropies in spin space. We present nuclear magnetic

resonance studies, which reveal that the magnetic fluctuation spectrum in the paramagnetic

phase of BaFe2As2 acquires an anisotropic response in spin-space upon application of a

tetragonal symmetry-breaking strain field. Our results unveil an internal spin structure of the

nematic order parameter, indicating that electronic nematic materials may offer a route to

magneto-mechanical control.
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In the absence of external strain, BaFe2As2 undergoes a weakly
first-order antiferromagnetic phase transition at TN= 135 K,
accompanied by an orthorhombic structural distortion that

breaks the tetragonal symmetry of the unit cell in the para-
magnetic phase1–4. The relatively small orthorhombic lattice
distortion (~0.3%)5–7 is driven by a nematic instability8, whose
electronic origin is manifested by the large in-plane resistivity
anisotropy (~100%)9,10. Despite being nearly simultaneous in
BaFe2As2, the nematic and antiferromagnetic transition tem-
peratures, Ts and TN, split upon doping, giving rise to a regime
with long-range nematic order but no antiferromagnetic order,
since TN < Ts1,11.

The close relationship between nematicity and the magnetic
degrees of freedom can be seen directly from the stripe-like
nature of the antiferromagnetic state, which orders with one of
two possible wave-vectors related by a 90° rotation: Q1= (π, 0)
(corresponding to spins parallel along the y-axis and antiparallel
along x) and Q2= (0, π) (corresponding to spins parallel along x
and antiparallel along y). Below TN nearest neighbor spins are
parallel or antiparallel depending on whether they are connected
by a short or long bond, however, in the nematic phase above TN
but below Ts the magnetic fluctuations centered around Q1

become weaker or stronger than those centered around Q2,
depending on whether the b-axis is parallel or perpendicular
to Q1, respectively. Mathematically, this allows one to
define the nematic order parameter φ in terms of the (spin
unpolarized) magnetic susceptibility χ(q) according to
φ � χ�1ðQ2Þ � χ�1ðQ1Þ2. Such an interplay between nematic and
spin degrees of freedom has been indeed observed by neutron
scattering6,7,12,13 and nuclear magnetic resonance (NMR)
experiments in twinned and detwinned doped BaFe2As2,
LaFeAsO and NaFe1−xCoxAs crystals14–18.

However, orbital degrees of freedom also participate actively in
the nematic phase. This leads to the well-known effect that tet-
ragonal symmetry-breaking is also manifested by a ferro-orbital
polarization that makes the occupation of the Fe dxz orbitals
different than the occupation of the Fe dyz orbitals19. Spin-orbit
coupling (SOC), which converts anisotropies in real space into
anisotropies in spin space, plays a central role controlling the
interplay between spin and nematic degrees of freedom20. On one
hand, SOC enforces the spins to point along the ordering vector
direction below TN. This effect takes place even at zero applied
strain, and is manifested by the fact that the three diagonal
magnetic susceptibilities, χαα(Q1), where α= x, y, z, are different
already in the paramagnetic tetragonal phase. Indeed, the distinct
behaviors of in-plane and out-of-plane spin fluctuations is well
documented in the literature via polarized neutron scattering
measurements21,22, NMR measurements23–25, and theoretical
considerations26.

The evolution of the spin fluctuation anisotropy under strain
has been less explored, but can shed light on the unique spin-
space structure of the nematic order parameter. This is defined
mathematically by φαβ ¼ χ�1

αα ðQ2Þ � χ�1
ββ ðQ1Þ. Clearly, the

nematic order parameter φ defined above can be understood as
an average over all possible polarizations, φ ¼ 1

9

P
αβ

φαβ. As dis-

cussed in Supplementary Note 1, the space-group symmetry of
the iron pnictides enforces many of these combinations to vanish,
yielding only three non-zero-independent components: φxy, φyx,
and φzz. This important property of spin-nematicity has not been
discussed previously in the literature. Experimentally, probing the
spin structure of the nematicity would require polarized neutron
scattering measurements in detwinned samples above the mag-
netic transition temperature. Polarized experiments inside the
magnetically ordered phase probe a completely different type of

anisotropy, related to long-range magnetic order, and not to the
fluctuation spectrum27–29. Elucidating this hitherto unknown
spin structure of the nematic order parameter is fundamental to
shed light on the intricate interplay between orbital, spin, and
lattice degrees of freedom, which are ultimately responsible for
the superconducting instability of the system.

In this work we perform NMR spin-lattice relaxation mea-
surements to probe the anisotropy of the spin fluctuations under
fixed strain in the paramagnetic phase of BaFe2As2. The role of
the applied uniaxial strain is to provide a small tetragonal
symmetry-breaking field, akin to externally applied magnetic
fields in ferromagnets. In contrast to previous works, here we
probe the magnetic fluctuations anisotropy both in real space and
in spin space—more specifically, we determine each of the
nematic susceptibilities associated with the three nematic com-
ponents φxy, φyx, and φzz. Our main result is that the three
nematic components respond differently to external strain, i.e.,
nematic order induces not only real-space anisotropy, but also
affects the spin-space anisotropy. In particular, we find that the
out-of-plane spin fluctuations centered at Q k â are more
strongly enhanced by the strain, as compared to the spin fluc-
tuations polarized along the longer in-plane axis. This raises the
interesting possibility of reversing the spin polarization of the
system from in-plane to out-of-plane by applying a sufficiently
strong in-plane strain. More broadly, our results thus open a new
avenue toward magneto-mechanical manipulation of strongly
correlated systems that display nematic order.

Results
NMR under uniaxial strain. Key to this study is our ability to
control precisely the uniaxial strain applied in the sample, which
is achieved by integrating a novel piezoelectric strain cell with an
NMR probe. This new device is based upon a design used pre-
viously to investigate the superconducting transition temperature
of Sr2RuO4

30–32, and can achieve both positive and negative
strains with large strain homogeneity. This device differs from the
horseshoe-clamp9 used previously for NMR16, and offers superior
control over the sample alignment and the level of strain applied.
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Fig. 1 Application of uniaxial strain. a Crystal structure of BaFe2As2, with Ba
(green), Fe (blue) and As (magenta) sites shown. Lower panel shows the
Fe–As plane in the tetragonal phase, with arrows indicating the unit cell
axes of the orthorhombic phase ða k ð110Þtet; b k ð1 1

�
1ÞtetÞ. b, c Orientation

of the magnetic field with respect to the coil (H1) and strain axis for H0⊥ c
(b) and H0 ∥ c (c). For positive (tensile) strain H0 is parallel to (b), whereas
for negative (compressive) strain H0 is along (a)
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Single crystals of BaFe2As2 were cut along the tetragonal (110)
direction and mounted in the cryogenic strain cell with field
oriented both parallel and perpendicular to the crystallographic c-
axis, as shown in Fig. 1. The strain cell contains two sets of
piezoelectric stacks, one inner and two outer. Because the sample
is freely suspended between the piezoelectric stacks rather than
glued down over a portion of the stack, the full displacement of
each stack is transferred to the sample. As a result, the device is
able to achieve displacements of ±6 μm at room temperature and
±3 μm at 4 K, corresponding to strains of the order of 10−3 in this

material. A free-standing NMR coil was placed around the sample
prior to securing the ends of the crystal in the strain device with
epoxy. The radiofrequency field H1 is oriented parallel to the
strain axis, which is always perpendicular to the external field, H0.
In our device, strain is always applied along the x-axis defined in
Fig. 1; since the b-axis is defined as the shorter axis, positive (i.e.,
tensile) strain corresponds to x k a and y k b, whereas negative
(i.e., compressive) strain gives y k a and x k b. When the crystal is
strained by applying voltage to the piezoelectric stacks, the
displacement, x, is measured by a capacitive dilatometer, and
strain is calculated as ε= (x− x0) / L0, where L0 is the unstrained
length of the crystal. To account for differential thermal
contraction, the zero-strain displacement, x0, was determined
by the condition that the quadrupolar splitting ναα satisfies the
tetragonal-symmetry relationship |νxx|= |νyy|= |νzz| / 2, as
described in Supplementary Note 2. The linear relationship
between ναα and strain (Supplementary Figure 1) indicates that
both positive and negative strains are achieved, without bowing of
the crystal. The field H0 was oriented either along the z-direction
parallel to the crystalline c-axis, or in the plane of the crystal
along the y-direction, as shown in Fig. 1.

Response of spin susceptibility to strain. The 75As (I= 3/2) spin
lattice relaxation rate divided by temperature, ðT1TÞ�1

μ , for dif-
ferent field orientations μ= z, y is shown in Fig. 2 both as a
function of strain ε and temperature T. It is striking that while
ðT1TÞ�1

z increases by ~30% at 137 K for the largest applied strain
(~0.3%), ðT1TÞ�1

y increases by 500%. In both cases, both positive
and negative strain increase (T1T)−1 in a nonlinear fashion. This
behavior is a manifestation of the spin anisotropy induced by
nematic order, and the enhancement of TN under strain. More
precisely, the spin lattice relaxation rate is primarily dominated
by the fluctuations of the local hyperfine field at the As site, which
in turn is determined by the neighboring iron spins according to:

1
T1T

� �
μ

¼ γ2

2
lim
ω!0

X
q;α;β

FðμÞ
αβ ðqÞ

Imχαβðq;ωÞ
�hω
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Fig. 2 Strain and temperature dependence of the spin-lattice relaxation rate. ðT1TÞ�1
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lines are guides to the eye, and the error bars are determined by propagating the errors in a–d
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Fig. 3 Spin-space structure of the spin-nematic order parameter. Spin
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and the green arrows indicate the direction of the hyperfine field
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where γ is the nuclear gyromagnetic factor, FðμÞ
αβ are the hyperfine

form factors, which depend on the field direction μ (Supple-
mentary Note 3), χαβ(q, ω) is the dynamical magnetic suscept-
ibility, and α,β= {x, y, z}23. Because the system is metallic, spin
fluctuations experience Landau damping, resulting in the low-
energy dynamics χ�1

αβ ðq;ωÞ ¼ χ�1
αβ ðqÞ � i�hω=Γ, where Γ is the

Landau damping, as seen by neutron scattering experiments33.

Consequently, lim
ω!0

Imχαβðq;ωÞ
�hω ¼ 1

Γ χ
2
αβðqÞ, i.e., the spin-lattice

relaxation rate is proportional to the squared susceptibility inte-
grated over the entire Brillouin zone.

Since the magnetically ordered state has wave-vectors Q1= (π,
0) and Q2= (0, π), one expects that the susceptibility is peaked at
these two momenta, as demonstrated in Fig. 3. Indeed, neutron
scattering experiments confirm that the magnetic spectral weight
is strongly peaked at Q1 and Q2

12. A finite nematicity
corresponds to a difference in the relative weights of these peaks,
and the physical meaning of each component of the nematic
order, φαβ, is depicted in Fig. 3; for instance, φxy is a measure of
the asymmetry between spin fluctuations peaked at Q1 and
polarized along the x-axis, and spin fluctuations peaked at Q2 and
polarized along the y-axis. The magnetic fluctuations associated
with each spin polarization pattern generate very different types
of fluctuating local hyperfine fields experienced by the As, which
couples to the four nearest neighbor Fe spins via a transferred
hyperfine interaction (Fig. 3)23.

As an initial step to elucidate the effect of strain on the spin-
fluctuation anisotropy, we consider that the susceptibility is
sharply peaked at these two magnetic ordering vectors. Evalua-
tion of the hyperfine form factors yields the following:

T1Tð Þ�1
x / χ2xx Q1ð Þ þ χ2yy Q2ð Þ þ χ2zz Q2ð Þ

T1Tð Þ�1
y / χ2xx Q1ð Þ þ χ2yy Q2ð Þ þ χ2zz Q1ð Þ
T1Tð Þ�1

z / χ2zz Q1ð Þ þ χ2zz Q2ð Þ
; ð2Þ

where the prefactors are approximately the same in all equations
(see Supplementary Note 3), and proportional to the off-diagonal
hyperfine matrix element F xz coupling in-plane Fe spin
fluctuations to out-of-plane As hyperfine fields (and vice-versa).
The fact that χzz(Qi) contributes to T1 for all directions of the
applied magnetic field is thus consistent with the hyperfine field
analysis depicted in Fig. 3, since out-of-plane spin fluctuations on
the Fe sites produce hyperfine fluctuating fields in the As sites
along both in-plane directions. Similarly, the fact that only
χxx(Q1) and χyy(Q2) contribute to T1 for external fields applied
along the plane is a consequence of the fact that these spin
fluctuations generate hyperfine fields in the As site oriented out of
the plane.

Because by symmetry T1Tð Þ�1
x ðεÞ ¼ T1Tð Þ�1

y ð�εÞ, the NMR
data can be used to extract the strain and temperature
dependence of the three polarized spin-susceptibility combina-
tions χ2zz Q1ð Þ, χ2zz Q2ð Þ, and χ2xx Q1ð Þ þ χ2yy Q2ð Þ, as shown in
Fig. 2e. This analysis provides several interesting insights. First,
focusing on the out-of-plane fluctuations, in-plane strain
enhances spin fluctuations around one of the two ordering
vectors (χzz(Q1) for ε > 0 and χzz(Q2) for ε < 0) at the same time as
it suppresses the fluctuations around the other ordering vector.
Therefore, in-plane strain transfers magnetic spectral weight
between the two dominant out-of-plane spin-fluctuation chan-
nels. This is consistent with neutron scattering experiments in
detwinned pnictides6, which, however, only probed the unpolar-
ized susceptibility. More importantly, this behavior is a direct
manifestation of the response of the nematic order parameter φzz
to strain, since φzz ¼ χ�1

zz ðQ2Þ � χ�1
zz ðQ1Þ.

Turning now to the average in-plane fluctuations
χ2xx Q1ð Þ þ χ2yy Q2ð Þ, we note that, in contrast to the quantity
χzz(Q1)− χzz(Q2), it is an even function of the applied strain. This
behavior can be attributed to the response of the nematic order
parameter φxy ¼ χ�1

xx ðQ2Þ � χ�1
yy ðQ1Þ to strain. Similarly to φzz,

φxy promotes a transfer of magnetic spectral weight, but now
between x-polarized spin fluctuations around Q1 and y-polarized
spin fluctuations around Q2. Since only the combination
χ2xx Q1ð Þ þ χ2yy Q2ð Þ contributes to the spin-lattice relaxation rate,
the total magnetic spectral weight remains the same to linear
order in φxy, since what is suppressed in, say, χyy(Q2) is tranferred
to χxx(Q1). Of course, as strain is enhanced, nonlinear effects
quadratic in φ2

xy take place, in agreement with the behavior
displayed by Fig. 2e. Note that the third nematic order parameter,
φyx ¼ χ�1

yy ðQ2Þ � χ�1
xx ðQ1Þ, does not affect the in-plane fluctua-

tions that contribute the most to the spin-lattice relaxation rate.
This is not unexpected, since the spin fluctuations associated with
χyy(Q1) and χxx(Q2) do not generate hyperfine fields in the As
sites, as shown in Fig. 3.

The most striking feature of Fig. 2e is that the out-of-plane spin
fluctuations seem to have a larger response to in-plane strain than
the in-plane spin fluctuations. This observation suggests that the
nematic susceptibility associated with φzz, χnemzz � ∂φzz=∂ε, is
larger than the nematic susceptibility associated with φxy,
χnemxy � ∂φxy=∂ε, and is manifestation of the fact that nematic
order induces not only real-space anisotropy, but also spin-space
anisotropy. To make this analysis more quantitative, we fit the full
temperature, strain, and field orientation dependence of T1 to a
model that incorporates the fact that the magnetic fluctuations
are not infinitely peaked at the ordering vectors Q1,2, since the
magnetic correlation length is finite above the magnetic
transition. In the tetragonal phase, there are three different
magnetic correlation lengths, ξx, ξy, and ξz, associated, respec-
tively, with the pairs of peaks (χxx(Q1), χyy(Q2)); (χyy(Q1),
χxx(Q2)), and (χzz(Q1), χzz(Q2)). This spin anisotropy is intrinsic
to the tetragonal crystalline symmetry and is enforced by the
spin-orbit coupling even in the absence of nematic order as
shown previously by polarized neutron scattering21,22,27–29.
Nematic order induced by strain breaks the equivalence between
these pairs of peaks, splitting the correlation lengths into
~ξ�2
x ¼ ξ�2

x � φxy ,
~ξ�2
y ¼ ξ�2

y � φyx , and ~ξ�2
z ¼ ξ�2

z � φzz . This
model is similar to the one used previously in ref. 16 and is
described in Supplementary Note 3.

The fits for ðT1TÞ�1
z and ðT1TÞ�1

y in the absence of strain are
shown as solid gray lines in Fig. 2b, d for ξx= ξy. We find ξz / ξx=
0.88, in agreement with the fact that in the absence of strain the
spins point along the plane. Moreover, the temperature
dependence of ξx(T), shown in Fig. 4a, gives values consistent
with those measured by inelastic neutron scattering34. Having
fixed the unstrained parameters, we perform fits in the presence
of strain, shown by the solid lines in Fig. 2a, c. The only
parameters introduced in this case are φxy and φzz. The good
agreement between the fitted and the experimental curves of both
ðT1TÞ�1

z and ðT1TÞ�1
y over a wide temperature-strain regime

demonstrates the suitability of the phenomenological model
employed in our analysis.

The temperature and strain behaviors of the nematic order
parameters φαβ allows us to extract the temperature dependence
of the nematic susceptibilities χnemxy and χnemzz , as shown in Fig. 4b.
The data suggest that χnemzz >χnemxy , particularly close to the
magnetic transition. This quantitative analysis corroborates the
qualitative conclusion above, namely that nematic order induces
anisotropies in spin-space, and that the out-of-plane spin
fluctuations are more strongly enhanced by in-plane strain than
the in-plane spin fluctuations. The in-plane spin fluctuations, are
nevertheless larger, giving rise to in-plane ordering at TN.
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It is interesting to compare χnemxy and χnemzz with the nematic
susceptibility extracted from elastoresistance37 and from electro-
nic Raman spectroscopy experiments35. As shown in Fig. 4b, the
values are consistent, and the NMR-extracted nematic suscept-
ibilities also follow a Curie–Weiss type of behavior36, with a Curie
temperature T0= 116 K comparable to that extracted from the
elastoresistance37. Note, however, that, in contrast to our NMR
analysis, the other probes for the nematic susceptibility are not
sensitive to the spin-space structure of the nematic susceptibility.

Discussion
To the best of our knowledge, our results are the first to reveal the
internal spin structure of the nematic order parameter in iron-
based superconductors. This behavior is a clear manifestation of
the entanglement between spin, orbital, and lattice degrees of
freedom in the normal state of these compounds. Since super-
conductivity emerges from this unique state, the rich interplay
between these different degrees of freedom revealed by our NMR
analysis will certainly affect the properties of the superconducting
state.

The surprising anisotropic response of different nematic
components to in-plane strain reveals that the spin polarization
can be controlled by lattice distortions, similar to a piezomagnetic
effect. In particular, the result χnemzz >χnemxy implies that for suffi-
ciently large strain ε*, the dominant spin polarization will shift
from in-plane to out-of-plane. Recent NMR and neutron studies
in unstrained FeSe have uncovered similar evidence for a large
spin susceptibility along the c-axis in the nematic phase, above
Tc38,39. However, the observation of large c-axis spin fluctuations
in FeSe does not reveal information about the temperature
dependence of the various nematic susceptibility components,
χnemαβ , which necessarily require the application of strain. For
BaFe2As2, the value of ε* can be estimated from the condition that
the out-of-plane magnetic correlation length ~ξ�2

z ¼ ξ�2
z � χnemzz ε

becomes larger than the in-plane magnetic correlation length
~ξx ¼ ξx � χnemxy ε, yielding ε* ≈ 0.4% close to the magnetic

transition temperature, assuming a linear strain response. Such a
strain value, which is just beyond the capability of our specific
piezo device, can reasonably be achieved by similar types of
devices, however. More importantly, this analysis opens a new
avenue to control spin polarization in nematic materials without
using magnetic fields, but instead by using mechanical strain.
Since nematic order has been observed in other correlated
materials such as cuprates and ruthenates, it will be interesting to
investigate whether similar sizable effects are present in these
systems as well.

More broadly, our work demonstrates that precision tunable
strain in combination with NMR provides a novel and important
method to probe spin and charge degrees of freedom. It provides
an intriguing possibility to tune the NMR spin relaxation rate by
changing a voltage bias on the piezoelectric stacks. The subtle
coupling between the lattice and spin polarizations exhibited by
BaFe2As2 offers the potential for controlling magnetic properties
through lattice deformations in next-generation materials.
Another potential application of our technique is the use of
nuclear quadrupolar resonance to image local strains. The large
response of the EFG to strain observed in this study would
translate into high spatial resolution in a linear strain gradient, so
that As NMR may be able to resolve microscopic features such as
grain boundaries or defects.

Methods
Sample mounting. Crystals were grown in self-flux as described in ref. 40 and in
Supplementary Note 5, and cut along the (110)T direction. Sample A had a mass of
2.52 mg and was mounted with the field parallel to the c-axis, and Sample B had a
mass 0.91 mg and was mounted with the field perpendicular to the c-axis (Fig. 1).
The crystals were secured with heat-cured epoxy (UHU Plus 300 epoxy resin).
Strain was applied along the (110)T direction using the CS100 cryogenic uniaxial
strain cell developed by Razorbill Instruments based on a design by Hicks et. al.30,
mounted in a modified probe operating in a Quantum Design PPMS cryostat.

Strain calibration. The displacement, x, was measured by monitoring the capa-
citance of using a precision capacitance bridge with a resolution of 0.1 nm. The
strain was computed as ε= (x− x0) / L0, where L0= 2.052 mm and x0= 49.5 μm
for sample A and L0= 1.494 mm and x0= 51.58 μm for sample B. For sample B,
positive (tensile) strain corresponds to H0jjb̂ and negative (compressive) strain
corresponds to H0jjâ. Because the sample was mounted at room temperature,
thermal contraction creates positive strain even at zero piezo bias at low tem-
peratures, making a precise determination of x0 difficult. For sample A x0 was
determined by the minimum in (T1T)−1 vs. x, and for sample B x0 was determined
by the value νbb(x0)= |νcc| / 2= 1.23 MHz, where ναα is the quadrupolar splitting
for field along the α-direction (see Supplementary Note 2). The maximum/mini-
mum possible applied voltages to the piezoelectric stacks limited the range of
strains that could be applied to between approximately −0.002 to +0.003 in the
perpendicular case, and −0.0015 to +0.002 for the parallel case.

Spin-lattice relaxation measurements. The spin-lattice relaxation rate was
measured using inversion recovery at the central transition in fixed field, and the
data were fit to the expression MðtÞ ¼ M0 1� 2f 9

10 e
�6t=T1 þ 1

10 e
�t=T1

� �� �
. The data

were well-fit to a single T1 value.

Data availability. All data needed to evaluate the conclusions are present in the
paper and/or supplemental materials. Correspondence and requests for materials
should be addressed to N.J.C.
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