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Abstract

The mechanisms of learning stimulus-stimulus relationships
are a longstanding research subject in psychology and neuro-
science. Although traditional computational models provide
valuable insights into learning processes, they often focus on
the average behavior of a population. Individual learning tra-
jectories, however, exhibit a diverse range of behaviors not
captured by these models. In this paper, we compare sampling-
based process-level models (i.e., particle filters) to representa-
tive associative and causal models (i.e., augmented Rescorla-
Wagner and PowerPC) in their ability to capture individual
learning behavior. We use likelihood-free inference incorpo-
rating machine-learned summary statistics for model estima-
tion. We conduct a simulation study to demonstrate high model
identifiability and test the models on an existing dataset and a
newly conducted experiment which replicates and extends pre-
vious studies. We find that most participants are best explained
by a particle filtering account, but more targeted experimen-
tal designs are required to estimate the best-fitting sub-type of
these particle filter models.
Keywords: causal learning; Bayesian model; conditioning;
process models; associative learning

Introduction
How relationships between stimuli are learned has been stud-
ied extensively since the early days of psychology and neu-
roscience (e.g. Pavlov, 1927). The stimulus-stimulus pair-
ing paradigm, where two stimuli are repeatedly presented
together until an association between the two is learned,
has been used extensively to study learning (Shanks, 1995).
The discovery of several learning phenomena has led to the
development of diverse computational models that can ex-
plain them, which in turn has facilitated the discovery of
new phenomena to challenge them, leading to the develop-
ment of more powerful models. For example, Van Hamme
and Wasserman (1994) augmented the Rescorla-Wagner
model (Rescorla & Wagner, 1972) to account for backward
blocking phenomena.

Another strand of research has studied the learning of these
relationships from an explicitly causal perspective. While
causal relationships may be learned from associative data,
they rely on stronger tacit assumptions, e.g., about interven-
tions. For example, the PowerPC model (Cheng & Novick,
1992) proposes that people learn the strength of a causal re-
lationship as the probability of the potential cause, in the ab-
sence of all other causes, producing the effect (Danks, Grif-
fiths, & Tenenbaum, 2002).

Finally, a recent contribution has been the emergence
of sampling-based process models (Sanborn, Griffiths, &

Navarro, 2010), which explain human variability as arising
from stochastic approximations to optimal solutions, with de-
partures from optimality resulting from limited cognitive re-
sources or computation time (Abbott & Griffiths, 2011; San-
born & Chater, 2016). Although these literatures all study
how people learn associations between stimuli, they have
rarely interacted (but see, e.g, Danks et al., 2002; Danks &
Schwartz, 2005; Beckers, Miller, De Houwer, & Urushihara,
2006; Johnston, Hillman, & Danks, 2021, for exceptions).

One limitation of much of previous research is that, typi-
cally, models have been evaluated on the average behavior of
the studied sample, which unfortunately is not always a good
representation of individual learning behavior. While the av-
erage learning behavior shows smooth (and late) adaptation
to newly observed data, individual learning trajectories sug-
gest distinctly pronounced jumps in beliefs and considerable
variability (Daw & Courville, 2007; Johnston et al., 2021).
The issue of intra- and inter-individual variability extends be-
yond stimulus-stimulus learning, and is in fact ubiquitous in
the study of human behavior (Kanai & Rees, 2011; Rieskamp,
Busemeyer, & Mellers, 2006).

Modeling efforts are also complicated by methodological
issues around model comparison. In particular, algorithmic-
level accounts (Griffiths, Lieder, & Goodman, 2015; Marr,
1982) like sampling-based process models (e.g., Sanborn et
al., 2010) are often impossible to evaluate using traditional
likelihood-based tools, as their likelihood functions tend to
be intractable.1 In addition, we often do not know how to
hand-craft summary statistics of potentially high-dimensional
response data to distinguish between models or learn their pa-
rameter values (Valentin et al., 2024). Today, advancements
in methodology and the availability of compute power make it
possible to analyze more complex and realistic models along-
side more traditional accounts under a common framework of
likelihood-free inference (Lintusaari, Gutmann, Dutta, Kaski,
& Corander, 2017; Cranmer, Brehmer, & Louppe, 2020).

In this paper, we contrast sampling-based process-level
models with representative associative and causal learning
models, focusing on their ability to capture individual learn-
ing behavior. We reanalyze a study asking people to judge the
causal strength of a stimulus at repeated observations (Danks
& Schwartz, 2005), data that we extend with our own con-

1That is, the likelihood function is either unavailable or very
computationally expensive to calculate.
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ceptual replication. We utilize likelihood-free inference for
model evaluation to allow for rigorous empirical validation,
using a simulation study to evaluate model identifiability be-
fore applying the models to the two datasets. Our findings
provide a more detailed view of learning behavior, suggest-
ing that the largest proportion of participants align best with
a particle filtering account. Meanwhile, more targeted empir-
ical work is required to estimate the precise learning mecha-
nisms as described by the particle filter model.

The Tasks
In each task, participants observed a series of cause-effect
pairs and had to estimate how strongly they believed the cause
generated or prevented the effect, considering all the data ob-
served thus far in the series. The true contingencies were ei-
ther non-causal (the presence of the cause does not influence
the probability of the effect), generative or preventative (the
presence of the cause increases or decreases the probability
of the effect, respectively). Crucially, except when contin-
gencies were non-causal, these changed at the midpoint of
the series. Thus there were three types of series: some had
a first-generative-then-preventative cause (Gen/Prev), or vice
versa (Prev/Gen), or were non-causal throughout (NC/NC).

We consider this task an inference problem where partic-
ipants use repeated observations of the presence or absence
of the cause (C or ¬C) and the effect (E or ¬E) to infer
causal strength (CS, ranging from -1 to 1; see Figure 1)2.
Causal strength is positive if the cause is generative, nega-
tive if it is preventative, and zero if it is non-causal. The ef-
fect can also occur in absence of the cause, here formalized
as the influence of background causes (B). The background
strength (BS) ranges from 0 to 1, and represents the proba-
bility of the effect occurring in the absence of the cause (i.e.
BS = p(E|¬C)). Following Danks et al. (2002), we define
the conditional probability P(E|C) using a noisy-OR func-
tion when CS � 0 (i.e. p(E|C) = BS+CS�BS ·CS), which
encodes the assumption that both C and B have independent
opportunities to produce E. For preventative causes, we use
a noisy-AND-NOT function (i.e. p(E|C) = BS� |CS| ·BS),
which encodes the assumption that B can produce E with
probability BS, and independently C may prevent E with
probability |CS|.

Because participants reported CS estimates in a
[�100,100] range (see below), we scale simulated esti-
mates to this range throughout.

Exp. 1: Reanalysis of Danks and Schwartz (2005)
51 participants took part in Danks and Schwartz (2005,
henceforth DS05). In their experiment, participants acted as
doctors researching the relationships between native plants
and skin diseases found on foreign islands. In each block of
trials (each block a different island), participants interviewed
varying numbers of villagers (each villager a trial) who may

2We explicitly consider the task of learning causal strength, but
note that this could be combined with questions about the existence
of causal relationships (Griffiths & Tenenbaum, 2005)

Figure 1: Directed causal graph
showing the (B)ackground, (C)ause
and the (E)ffect, with edges CS
and BS representing the causal and
background strength respectively.

C

B
EBS

CS

or not have been exposed to a plant (C or ¬C) and may or not
have a skin rash (E or ¬E). After each observed case, partici-
pants were asked “How much does the plant cause the rash?”,
and responded using a slider ranging from -100 (the plant “al-
ways prevented” the rash) to +100 (the plant “always caused”
the rash), with 0 indicating no relationship between the two.
The numeric value for the slider was set to 0 after each rating.

Each participant completed six blocks of trials, with fixed
lengths of 8, 80, 8, 32, 16, and 48 trials (presented in this or-
der). The pairing of sequence types (Gen/Prev, Prev/Gen, or
NC/NC) and lengths was random, with the constraint that par-
ticipants saw every type once before any type was repeated.
Contingencies were p(E|C) = .75 and p(E|¬C) = .25 for the
generative case; p(E|C) = .25 and p(E|¬C) = .75 for the pre-
ventative case; and p(E|C)= p(E|¬C)= .5 when non-causal.
p(C) was always .5.

Sequences participants saw were created from 6 pre-
fabricated sequences, two each for generative, preventative
and non-causal contingencies, which were then merged as
appropriate (e.g. a Gen/Prev sequence of length 32 would
be created by merging the first 16 items of the gen1 sequence
with the first 16 items of the prev2 sequence).

Exp. 2: Replication and extension
Participants We recruited 186 participants from Prolific.
Based on pre-registered exclusion criteria, 85 participants
(45.7%) were excluded from analysis: one participant who
messaged to report that they had misunderstood the instruc-
tions, one who clicked an invisible button designed to detect
bots, and 83 who made 3 or more attempts in the comprehen-
sion check following instructions3. The sample after exclu-
sion was N=101 (64 female, 35 male; age M = 36.4, SD =
12.2). Compensation was £5. On average, participants com-
pleted the experiment in 24.7 minutes.

Method We made the following modifications to the DS05
design: First, each block had a fixed length of 40. Second, be-
cause we were interested in within-participant variability for
the same sequence, our participants saw one block of cases
for each sequence type, in a random order, and then a fourth
block which was identical to the first block they had experi-
enced. Third, we varied the cover story participants received,
which was either that of a plant causing a possible rash (as in

3 A more lenient exclusion criterion, allowing up to 4 errors be-
fore exclusion, reduces the exclusion rate to 20.43% and does not
change results: model allocation follows similar proportions to the
main analysis and cover stories also do not influence judgments in
the main task. We show this in the supplemental information (SI),
https://osf.io/tkjmu/
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DS05) or a chemical causing bacterial growth, medicine caus-
ing sleep, or medicine causing seizures, randomly chosen for
each participant.

We also included other related tasks after these four “expe-
riential” blocks. First, participants carried out three “descrip-
tive” blocks, where they were given a tally of all four possible
events and they had to issue a single causal judgment (we do
not discuss this data here). Finally, in three “prior belief”
blocks participants had to give causal strength judgments for
the cover stories they had not been allocated to during the rest
of the experiment, without observing any events. The experi-
ment can be accessed at https://pmcl.netlify.app.

Computational models
Augmented Rescorla-Wagner Model
The Rescorla-Wagner model (RW; Rescorla & Wagner,
1972), one of the earliest computational models of associative
learning, provides a foundational framework for our compar-
ison. The RW model posits that learning is driven by the dis-
crepancy between expected and actual outcomes, known as
the prediction error. However, this model assumes a constant
learning rate and does not account for certain learning effects
like forward/backward blocking or overshadowing.

The Augmented Rescorla-Wagner (ARW; Van Hamme
& Wasserman, 1994) model is an extension of the classic
Rescorla-Wagner model. It was developed to better capture a
range of empirical phenomena observed in associative learn-
ing experiments while maintaining the core principle of the
original model, and thus provides a more refined representa-
tion of learning processes.

In the ARW model, each stimulus is assigned an associa-
tive strength, which represents the learned association be-
tween that stimulus and the outcome. These associative
strengths are updated over time based on the prediction error.
The degree to which the prediction error updates the asso-
ciative strength is governed by learning rate parameters, with
separate learning rates for when the cause is present or absent.
Moreover, the ARW model also incorporates an associative
strength for the background context (‘contextual cue’), which
is always present. This allows the model to account for learn-
ing about the background context separately from the spe-
cific causes. This feature can help capture phenomena such
as context-specific learning, where the learned associations
are tied to the specific context in which learning occurred.

The ARW model is characterized by the following param-
eters: a01 and a00, which are the learning rates of the ob-
served cause when present and absent, respectively; a10, the
learning rate of the always-present background cause; and b,
the salience parameter. In each trial t, the causal strength
estimate ĈS is updated as ˆCSt = a01betCt +a00bet(1�Ct),
and the background strength estimate is updated as ˆBSt =
a10bet , where et is the prediction error, calculated as et =
Et �CSt�1Ct + BSt�1, with Et and Ct taking value 1 when
effect and cause are present, respectively, at time t, and 0 oth-
erwise. In simulations, we draw a01 and a10 from a uniform

prior U [0,1], and a00 from a uniform prior U [�1,1]. We set a
constant value b= .9 as the model is unidentifiable otherwise.
Initial states BS0 and CS0 are set to zero.

PowerPC
The PowerPC model (PPC; Cheng, 1997) builds upon the
RW model by integrating the concept of “causal power”. We
implement the sequential version of this model proposed in
(Danks et al., 2002). This model posits that learners estimate
a strength parameter within a particular causal structure, al-
tering their judgments based on the accumulation of obser-
vational data. The sequential version of the PPC model of-
fers a dynamic perspective, tracking how judgments change
over time as more data is observed. This model takes the
same parameters (drawn from the same prior) as ARW above,
and updates CS and BS the same way. The error et is up-
dated differently, this time as et = C(Et � [BSt�1 +CSt�1 �
BSt�1CSt�1]) + (1�C)(Et � BSt�1) when CSt�1 � 0; et =
C(Et � [BSt�1 � BSt�1CSt�1]) + (1 �C)(Et � BSt�1) other-
wise. Intuitively, this model can be understood as a version
of the ARW model, but with a noisy-OR/AND-NOT func-
tional form. As in the ARW model, initial states BS0 and CS0
are set to zero.

Particle filter
Particle Filters (PF; see Doucet, Freitas, & Gordon, 2001 for
a technical introduction) are Monte Carlo sampling methods,
which are commonly used, e.g., to perform Bayesian infer-
ence on filtering problems, where the objective is to infer la-
tent states from a series of observations. They have also been
suggested as a process model for how people learn stimulus-
stimulus relations (e.g. Abbott & Griffiths, 2011) as well as
perform other tasks such as categorization (Sanborn et al.,
2010).

The PF model maintains a set of particles, each represent-
ing a possible state of the world; that is, a potential set of
causal and background strengths in our context. At each time
step, the particles are updated based on the observed data.
In addition, if some particles hold a relatively unlikely es-
timate, they may be discarded and replaced through a re-
sampling process. This model operates in a sequential and
Bayesian manner, capable of handling non-linear and non-
Gaussian functional forms, making it a powerful tool for cap-
turing individual learning behavior (we provide pseudo-code
for the PF Algorithm in the SI linked in Footnote 3).

Initial beliefs Unlike in ARW and PPC, strength estimates
in the PF are distributed among N particles, with a given
estimate at time t being computed as a weighted average
of the point estimates of each particle. Initially, each par-
ticle has weight 1/N. In our implementation, each parti-
cle’s initial estimate for CS and BS is drawn from a “sparse
and strong” prior (Lu, Yuille, Liljeholm, Cheng, & Holyoak,
2008), which encodes the following assumptions: that if the
cause is generative, then either CS or BS is high, but rarely
both; and that if the cause is preventative, then BS will proba-
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bly be high and CS will either have small influence or strongly
prevent the effect (see Lu et al., 2008, for details).

Dynamic model After each data point, a new set of par-
ticles is proposed following a random walk. In our case,
following Abbott and Griffiths (2011), both CSt and BSt are
drawn from a beta distribution with a free parameter l, with
larger values of l leading to greater similarity between the
particles at time t �1 and time t:

st = sgn(st�1)Beta(l|st�1|+1, l�l|st�1|) (1)

where sgn(·) is the sign function.

Resampling If all initial particles were maintained, only
very few would be good explanations of the data after sev-
eral iterations (with the others having negligible weights). To
avoid this, particles are resampled if the effective sample size
falls under a given threshold q. When this happens a new set
of particles is obtained by sampling from the current set with
replacement, with each particle having probability equal to its
weight. Then, weights are reset.

MCMC-Rejuvenation To restore diversity into the set of
particles, an additional rejuvenation step is carried out when
particles are resampled. The CS and BS estimates are up-
dated by using Markov Chain Monte Carlo (MCMC) with the
joint likelihood of all the data observed thus far as the poste-
rior (Chopin, 2002; Abbott & Griffiths, 2011). In our im-
plementation, we chose Metropolis-Hastings as our MCMC
algorithm, but others have been used to model human per-
formance elsewhere (Castillo, León-Villagrá, Chater, & San-
born, 2024; Zhu, León-Villagrá, Chater, & Sanborn, 2022).

Random Responses
We augment ARW, PPC and PF with a stochastic component:
random responses. For all models, we include an additional
parameter e ⇠ Beta(0.1,1), which encodes the probability of
a response at time t being drawn from a uniform distribution
U [�1,1], rather than ˆCSt being reported. Crucially, both ˆBSt
and ˆCSt are still tracked even if the response is corrupted.
We primarily included this additional step because we found
that ARW and PPC having ˆBS0 = ˆCS0 = 0 meant that it was
difficult for these models to explain potential big departures
from 0 at the first CS judgment.

Model evaluation
Previous accounts of causal learning or associative learning
have focused on tractable models with known likelihoods, or
employed more qualitative ways of model comparison (like
visualization techniques) for more complex models. A quan-
titative comparison involving models with intractable likeli-
hoods, such as PF, requires that we use likelihood-free infer-
ence.

Likelihood-free inference
We adopted a simulation-based perspective called Approx-
imate Bayesian Computation (ABC; Palestro, Sederberg,

Osth, Van Zandt, & Turner, 2018). In ABC, generative mod-
els m are used to sample synthetic data y, given values of
their model parameters qqq and the experimental designs d (i.e.
the sequences participants observed). For each sequence of
judgments we obtained summary statistics S(·) (see below
for which summary statistics were used). For each partici-
pant and sequence, we compared the summary statistics of
the observed data (S(x)) to all of the simulated data (S(y))
from the same sequence, using the Euclidean distance r (af-
ter normalizing the summary statistics). Model simulations
whose summary statistics had a distance to the observed data
higher than a pre-defined tolerance t were discarded. The
posterior probability of a model m is the proportion of simu-
lated data points generated by that model in the region defined
by the tolerance, i.e. the relative frequency of data generated
by m out of all data for which r  t. For convenience, here
we defined pseudo-tolerances t⇤ which establish the propor-
tion of nearest samples kept after discarding for each partici-
pant/sequence pair (Biau, Cérou, & Guyader, 2015).

Summary statistics
A key issue in performing likelihood-free inference is the
choice of summary statistics. These are functions of the data
that capture relevant information about the models m and pa-
rameters qqq. While typically these summary statistics are se-
lected by hand, we aimed to maximize the information about
m and qqq by adding learned summary statistics as well.
Hand-crafted For a given sequence of causes, effects and
judgments a participant or model produced, we calculated:
the first judgment, the judgment before the midpoint of the se-
quence, the judgment after the midpoint, the final judgment,
the minimum, maximum, mean, variance, and autocorrela-
tion at lags one to five. This resulted in a rich set of sum-
mary statistics that capture different aspects of the data. The
choice of these was guided by their potential relevance to m
and qqq, but it is ultimately an empirical question which sum-
mary statistics are most useful for inference.
Learned ABC is typically carried out with only hand-crafted
summary statistics. However, as we could not guarantee
that these were sufficient4, we also obtained learned sum-
mary statistics by using feed-forward neural networks (Chen,
Zhang, Gutmann, Courville, & Zhu, 2021). These networks
were trained on simulated data y sampled from the prior (over
models and their parameters) to predict which generating
model m produced the data. We obtained 6 learned features
this way, which were the values of the last layer of the neu-
ral network prior to the softmax layer. These learned statistics
are complex, being based on the entire sequence of responses,
and so we do not attempt to show them here.

4Summary statistics are considered sufficient for a set of param-
eters qqq if they capture all the information in the data that is relevant
to the estimation of qqq. Formally, a statistic T (y) is sufficient for qqq
if the conditional probability distribution P(y|T (y),qqq) does not de-
pend on qqq. In other words, once the summary statistics are known,
knowing the full data does not provide any additional information
about qqq.
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Figure 2: Prior predictive histograms for hand-crafted summary statistics in a generative-preventative sequence of length 80. Throughout,
the three models here proposed exhibit different behaviours for these measures. Plots for other sequences are available in the SI.

Simulation study
Prior predictive simulations

We generated 104 prior simulations per model per sequence
and evaluated the summary statistics for these, in order to
show the different qualitative patterns the models display. For
succinctness, we plot the results of the hand-crafted summary
statistics of one sequence here (Figure 2), but equivalent plots
for other sequences can be found in the SI (see Footnote 3).

Model identifiability

To ensure that our model evaluation procedure was accurate
and unbiased, we performed 103 cross validation (cv) steps
per model per sequence. In each cv step, one simulated data
point y is removed from the set of simulated data, and treated
as a pseudo-observed data point x⇤. The inference proce-
dure is carried out as normal, which allows us to evaluate
its accuracy. We tested this for a range of pseudo-tolerances
t⇤ 2 {.05, .1, .15, .2, .25}.

We found that, for the tolerance that performed best (the
smallest), accuracy scores were generally very good, with no
model/sequence combination falling below 70.3% accuracy,
and with average accuracy 87.3%. Using mixed-effects lo-
gistic regression, we found that that accuracy increased with
sequence length, and was lower when the true model was PPC
(Figure 3; see SI for model results). When model allocation
erred, ARW was the wrongly selected model 70% of the time
(when the true model was ARW, PPC and PF were selected
55% and 45% of the time respectively). Finally, we tested
whether adding learned summary statistics had improved per-
formance, by comparing these to an additional set of cv re-
sults obtained without the learned summary statistics. The
average accuracy with only hand-crafted summary statistics
was overwhelmingly lower (73.6%, t(87) = 10.96, p < .001,
BF10 > 108). From these results, we decided to carry out
inference with t⇤ = .05 and using hand-crafted and learned

summary statistics. We note that results might be less reli-
able for short sequences.

Results
Experiment 1
We found that 70.6% (n = 36) participants were best-
explained by the PF model, 17.6% (n= 9) by the ARW model
and 11.8% (n = 6) by the PPC model (see Figure 4 for allo-
cation of individual sequences). As expected by our model
identifiability results, the certainty of the prediction increased
with sequence length: the shorter the sequence, the greater the
standard deviation of posterior probabilities given to the three
models (t(251) = 8.03; p < .001; BF10 > 106). For the three
longest sequences, 32 (62.7%) participants were allocated the
same model in all occasions, well above the value expected
by chance (11.1%; Binomial Test p < .001, BF10 > 1014.

Experiment 2
Effects of Cover Story In the “prior belief” block, different
cover stories had different expected causal strengths: In this
block the average judgments were 5.1, 30.4, �12.6, and 15.2
for the bacteria, plant rash, seizure, and sleep contexts respec-
tively, which were credibly different (F(3,244.13) = 26.84,
p < .001, BF10 > 1013). In spite of this, we found no evi-
dence for an effect of cover story on judgments in the main
task (all ps > .05, all BF10 < 1/3). Cover story also did not
influence the hand-crafted summary statistics of a sequence
(all ps � .10, all BF10 < 1/1.5).

Model discrimination We found that 70.3% (n = 71) par-
ticipants were best-explained by the PF model, 21.8% (n =
22) by the ARW model and 7.9% (n = 8) by the PPC model.
These proportions did not depend on cover story (c2(3) =
0.99, p = .80). 35 (34.65%) participants were allocated the
same model in all occasions, well above the value expected
by chance (3.7%; Binomial Test p < .001, BF10 > 1020).
Analyzing only the first and last block, where participants
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Figure 3: Estimated Model recovery accuracy for t⇤ = .05 (dashed
lines) as a function of sequence length and true model, for sequences
used here and in DS05. In the left panel ABC is performed with
hand-crafted summary statistics only, while in the right panel the
whole set is used. Each dot is a sequence, with shape indicating
sequence type. Accuracy increases with sequence length, and PPC
accuracy becomes worse more quickly when the sequence is short.
Note that the y axis starts at .5, and not 0.

had the same sequence, showed that 75 (74.26%) partici-
pants were allocated the same model, again well above the
value expected by chance (33.33%; Binomial Test p < .001,
BF10 > 1013).

Discussion
In the present study, we investigated how people learn the
causal relationships between stimuli, comparing models from
different research traditions that are rarely tested head-to-
head. To do so, we employed a powerful method to evaluate
models that lack tractable likelihood functions: we comple-
mented Approximate Bayesian Computation with summary
statistics learned by a neural network. In addition to provid-
ing tractable approximate likelihoods, this approach greatly
increased predictive accuracy, as shown by our model eval-
uation results. This approach has the additional advantage
of combining summary statistics that can highly discriminate
between models (learned) with more interpretable summary
statistics (hand-crafted). Crucially, our analyses were based
on individual learning trajectories, allowing for insights into
inter- and intra-individual differences. Across two datasets,
we found a particle filtering account offered a better fit to the
data than other models. Responding to a challenge identified
in prior work (Johnston et al., 2021), our model comparisons
inherently penalize model complexity through Bayesian Ock-
ham’s razor.

Our results showcased that individual participants were re-
markably stable in terms of the model that best explained their
judgments across trials, with a considerable proportion of par-
ticipants being best fit by the same model every block. This
stability highlights that our likelihood-free inference meth-
ods, combined with ample data from individual participants,
can distinguish systematic variability from noise. Future
work, covering different tasks and theories, may benefit from
such an approach to more systematically compare models and
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Figure 4: Model allocation results. Each row represents a different
participant and each column a different sequence (in order of pre-
sentation). Note that the 4th block of Exp. 2 was the same sequence
as the 1st block. Note also that results from shorter sequences are
less reliable (Figure 3).

investigate individual differences.

Our study focused only on discriminating which model
best explains a participant’s data. There are psychologically
interpretable parameters in our models and further work is
needed to identify the best-fitting parameters for every per-
son, and the stability of those within a participant. Differ-
ent parameter values can reveal qualitatively different behav-
iors: for example, different learning rates in ARW and PPC
can make these models showcase a primacy or recency bias,
while for the PF changes in the drift rate parameter might
capture greater or lesser “forgetfulness” as well as robust-
ness to environmental change, or the MCMC rejuvenation
could consider the likelihood of fewer data points, consis-
tent with more limited memory capacity. Future work should
examine these subfamilies of models and whether partici-
pants are self-consistent when fit into these subtypes. Future
work may also add optimal models to the model compari-
son: e.g., a model using the maximum a posteriori proba-
bility estimate using Lu et al.’s (2008) strong-and-sparse pri-
ors; may add similar existing datasets to the analysis (e.g.
Danks & Schwartz, 2006). Future research may also general-
ize these process models to how participants learn the struc-
ture of causal graphs (Griffiths & Tenenbaum, 2005; Bramley,
Dayan, Griffiths, & Lagnado, 2017) and the functional form
(Lucas & Griffiths, 2010) that connects causal variables.

In summary, we have used a powerful likelihood-free in-
ference approach to compare models in a robust and system-
atic way that would be intractable using traditional models.
This evaluation reveals that particle filter models account well
for individual-level patterns of belief-updating, and individ-
ual participants are stable in their behavior as captured by our
models. Our framework shows promise for distinguishing
signature patterns in people’s behavior from noise in model
assignment across individuals.
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