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Abstract of the Dissertation

Development of human brain connectivity in health and disease

by

John Benjamin Colby
Doctor of Philosophy in Biomedical Engineering

University of California, Los Angeles, 2012

Professor Elizabeth R. Sowell, Co-chair

Professor Mark S. Cohen, Co-chair

White matter development in the human brain undergoes a uniquely extended developmental tra-

jectory, and the maturation of this complex network of connections is broadly relatable to real-

world measures of cognitive ability. We begin this dissertation with a review of the literature

on structural brain development, in order to provide a useful background layer for our discussion

(Chapter 1). Next, we report a case study investigating white matter abnormalities in the context of

prenatal methamphetamine exposure, and their cognitive correlates (Chapter 2). Then we describe

our successfully-funded NIH grant proposal to 1) develop novel image analysis techniques for in-

vestigating white matter connectivity, and 2) apply them to the study of a) typical frontal lobe white

matter maturation, b) its relation to executive functioning, and c) how these processes are affected

by prenatal alcohol exposure (Chapter 3). The results of this effort are described in Chapter 4,

Chapter 5, and Chapter 6. Finally, we supplement the work on our UCLA cohort with exciting re-

sults from two large, multi-site, collaborative efforts: 1) ADHD–200, an initiative to employ brain

mapping findings in a machine learning environment for the diagnostic classification of individual

subjects with attention deficit hyperactivity disorder (ADHD) (Chapter 7), and 2) PING (the Pedi-

atric Imaging, Neurocognition, and Genetics study), where we are leading an effort to provide the

most comprehensive mapping to-date of typical white matter development (Chapter 8).
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While science deals with fundamental questions about our world and their answers, engineering

addresses practical problems and their solutions. Nowhere is the synergism between these

approaches clearer than as it relates to their application in medicine. By focusing increasing

effort at this junction, we can most effectively translate our research advancements into practical

clinical progress towards the ultimate goal of alleviating human suffering and disease.
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CHAPTER 1

Structural brain development review

1.1 Abstract

This discussion will cover the major features of human structural brain development during the

period from birth through adolescence, as viewed with magnetic resonance imaging (MRI), and

the ways in which these phenomena relate to concurrent cognitive advancements. A special focus

will be put on the prominent sex-specific, regional, and temporal variations that characterize this

dynamic process.

1.2 Introduction

Human brain development is a dynamic process that begins in utero and continues prominently

through childhood, adolescence, and young adulthood. While strongly influenced by genetic fac-

tors, the environment also prominently affects brain maturation by acting on the cellular and macro-

scopic levels. This experiential learning impacts both brain structure and function through forms

of neuronal plasticity that continue throughout our lifetimes. However, despite the fact that in-

vestigating brain development is undoubtedly one of the keys to appreciating how we emerge as

unique human beings and how this process can go awry in disease, our understanding of this im-

portant period has historically been hindered by two main factors. First, there has been a lack of

reliable postmortem data, as thankfully children are generally healthy during development. Second,

technological limitations of past methods like positron emission tomography (PET) and computed

tomography (CT) often imposed some modest risk of harm to the subject (e.g. ionizing radiation),
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which made the study of healthy typically-developing children ethically questionable. The situa-

tion changed dramatically with the dissemination of magnetic resonance imaging (MRI) technology

during the 1980s, which not only offers higher quality images of the brain parenchyma than ultra-

sound, X-Ray, CT, or PET, but also does so in a way that is remarkably safe for the subject.

This discussion will begin with a review of the historical postmortem and histological literature,

and will then move on to the groundbreaking neuroimaging investigations of the 1990s that first

examined brain development with this MRI technology. A collection of more detailed phenomena

will then be examined, which have been uncovered with advanced brain mapping techniques, and

have come together as a set of classic features that characterize typical brain development. Finally,

we will conclude with a discussion of the cutting-edge efforts being made to integrate these diverse

observations within a more generalized “multimodal” imaging framework, and to relate them to

advancements in cognitive development. A focus on prominent sex-specific, regional, and temporal

variations will be continually threaded throughout this discussion.

1.3 Postmortem studies and histology

1.3.1 Comparison to MRI

Although datasets were sparse, postmortem and histological studies were able to provide key in-

sight into normal brain structure and development, as well as pathology, decades before the intro-

duction of neuroimaging methods like PET and MRI. Further, the rich literature that developed

from this early effort has provided a strong foundation of data against which newer imaging modal-

ities can be validated. Compared to a modern imaging method like MRI, there are several distinct

advantages and disadvantages of these postmortem studies. Not only are datasets relatively small

in postmortem samples, as mentioned above, but longitudinal studies — valued for their statisti-

cal power to detect changes over time within individuals among the highly variable population —

are impossible to conduct. Conversely, because postmortem methods can directly visualize the

brain tissue, spatial resolution far exceeds even the best neuroimaging protocol, and there is less
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validation needed to ensure that the raw signal being measured faithfully represents the underly-

ing neuronal architecture. Artifacts, though, are an important concern for either method. While

postmortem methods may introduce artifacts due to cell death, fixation/staining procedures, and

morphological changes due to osmotic pressure and mechanical damage, MRI data suffer artifacts

from other sources like magnetic susceptibility effects (signal loss in regions near large caverns of

air), local image distortions caused by magnetic field inhomogeneities, and partial volume effects

that occur when different structures fall within the same voxel. Many of these issues present less of

a problem for the interpretation of larger data sets obtained with MRI, relative to postmortem data,

as effects of artifacts generally become small as the number of samples becomes large. However,

it should still be remembered that MRI only offers a wide-angle indirect view of tissue, which can-

not reach down to the cellular level, and must be observed through the complex lens of magnetic

resonance.

1.3.2 Synaptogenesis and pruning

By the time an infant is born, the human brain already contains on the order of 100 billion neurons

(Kandel et al., 2000). The period of rapid overall brain growth that began in utero continues after

birth through the first years of life. Surprisingly, however, postmortem studies during the early

part of the 20th century showed that total brain volume and weight actually plateau early and reach

approximately 90% of their adult values by age 5 (Dekaban, 1978; Riddle et al., 2010; Vignaud,

1966).

Even during this early period of pronounced overall growth, brain development is characterized

as a dynamic process with both progressive and regressive changes that are influenced by complex

genetic influences as well as experience-dependent plasticity due to environmental influences. As

the infant brain grows in size, it also grows in complexity. Neurons undergo dendritic branch-

ing, forming an arbor of neural connections through synaptogenesis, and then ultimately refine this

global brain network though the processes of myelination and synaptic pruning. Much of our under-

standing of the complex balance between synaptogenesis and synaptic pruning has evolved from
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the seminal histological work performed by Huttenlocher and colleagues, who mapped synaptic

density in different areas of the brain throughout childhood. Overall synaptic density is compa-

rable to the adult level at birth. It then rises even further through the first year of life to its peak

at 12–18 months, and then decreases during late childhood and young adulthood towards a stable

adult plateau of 1 billion synapses/mm3 (Huttenlocher, 1979). This has helped to form the theory

that the flexible groundwork laid through an initial overabundance of connections gives way to a

reduced—butmore targeted and efficient— network through experience-dependent synaptic prun-

ing. Interesting regional variations were also observed during these studies, with primary visual

and auditory cortex reaching their peak synaptic densities earlier than prefrontal cortex (Hutten-

locher, 1979; Huttenlocher and Dabholkar, 1997; Huttenlocher et al., 1982). The extended period

of synapse elimination also has regional variations, with pruning ending by age 12 in the auditory

cortex but continuing through mid-adolescence in the prefrontal cortex. This temporal pattern par-

allels concurrent gains in the cognitive domains that are thought to relate to these regions (Luna

et al., 2004; Spear, 2000).

1.3.3 Myelination

Myelination of axonal projections by oligodendroglia is also a prominent component of early brain

development. This process begins in utero, continues rapidly through the first 5 years of life, and

remarkably extends— although at a slower rate— through young adulthood. Intracortical histolog-

ical preparations by Kaes in 1907 were some of the first to demonstrate this prolonged trajectory of

myelination, and also its striking regional variability in timing (Kaes, 1907; Kemper, 1994). These

slides not only demonstrated earlier trajectories in some areas (posterior temporal, pre-central, and

post-central cortex) than others (superior parietal, anterior temporal, anterior frontal cortex), but

also showed that regions with a more protracted developmental trajectory have more pronounced

changes during older age. This has helped to form the “first-in-last-out” theory of aging (Davis

et al., 2009), which suggests that higher-order cognitive manifestations (e.g. problem solving and

logical reasoning) — some of the last to develop (Luna et al., 2004) — are some of the first to de-
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generate in old age. Furthermore, the visible spread of myelin outwards into the cortex results in an

apparent cortical thinning, which suggests that normal developmental decreases in cortical thick-

ness (discussed later) may be due, in part, to this progressive increase in myelin, and not simply to

regressive changes like synaptic pruning and cell loss.

These initial observations in intracortical tissue were extended to the white matter in pioneering

work performed byYakovlev and Lecours in the 1960s. They demonstrated that white matter myeli-

nation begins in utero during the second trimester of pregnancy, and continues throughout young

adulthood (Yakovlev and Lecours, 1967). Additionally, they extended the earlier observations of

regional variations in the timing of myelination, and described a general posterior-to-anterior trend

in the timing of white matter myelination during development that has also been replicated in other

samples (Kinney 1988). Later independent research targeting the hippocampal formation has also

noted striking increases in myelination, with a 95% increase observed in the extent of myelina-

tion relative to brain weight during the first two decades of life. Surprisingly, the authors noted

that expanding myelination continued even through the fourth to sixth decades of life (Benes et

al., 1994). Taken together, these observations suggest that structural white matter development, in

the form of advancing myelination, proceeds in tune with overall cognitive development — with

areas involved in lower-order sensory and motor function myelinating earlier than areas involved

with higher-order executive function. This correlated timing implies there may be some relation-

ship between advancing brain function and increased myelination; however, postmortem studies

are limited from investigating this directly.

1.3.4 Sex differences

A pronounced sexual dimorphism in overall brain size emerges during the first 5 years of human

brain development, with males having brains that are, on average, approximately 10% larger than

females at their adult plateau (Dekaban, 1978). This simple and widely reproducible observation

has served as a catalyst for continued interest in the study of sex-specific differences during brain

development in order to 1) map other detailed components of brain development that may also
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show sex-specific differences, 2) determine if there are any cognitive correlates with these find-

ings (Kimura, 1996), 3) establish what — if not total volume of brain matter — are the driving

structural contributors to individual cognitive differences in areas like language skills and overall

intelligence, and, perhaps most importantly, 4) better understand and clinically address the range

of neuropsychiatric disorders that tend to emerge during adolescence with prominent sex-specific

affinities (Marsh et al., 2008). Interestingly, while some of this sex-specific variance in brain size

can be attributed to height, which is consistent with broader trends across different mammalian

species, there remains a significant sex-specific effect on brain size even when differences in body

size are taken into account (Peters et al., 1998). Although the brains of adult males tend to be larger

than adult females, this increase is actually smaller than what would be predicted based on dif-

ferences in adult height alone. Histological findings indicating a 15% higher neuronal density in

males than females are consistent with this (Rabinowicz et al., 2002), although conflicting reports

from other studies prohibit firm conclusions on this point (Haug, 1987; Pakkenberg and Gunder-

sen, 1997). A consideration of the fact that females actually tend to be taller than males during late

childhood, perhaps due to faster pubertal maturation in girls, further weakens the idea of such a

simple allometric relationship when age-matched males and females are compared (Giedd et al.,

2006). These discrepancies highlight the diversity that exists among the postmortem literature on

the topic of sex differences in brain development, which is also likely to be influenced by a variety

of confounds (including cohort effects and observational bias) that have made interpretation chal-

lenging (Peters et al., 1998). Additionally, these reports are limited to either simple global measures

like total brain volume or weight, or very local measures like neuronal density, and generally do not

account for regional variations in measures like cortical thickness and folding complexity (Luders

et al., 2004; Sowell et al., 2007).

1.3.5 Summary

The central theme that emerges from this early postmortem work is that brain development from

birth through adolescence is a uniquely dynamic process, encompassing both progressive and re-
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gressive events, with varying magnitudes and timing across different regions of the brain. In par-

ticular, the concurrent decrease in synaptic density and increase in white matter myelination is

consistent with the principle of selective specialization, which has been postulated to be the driv-

ing force behind the creation of cognitive networks and thought to form the foundation for higher

cognitive processes (Fuster, 2002; Post and Weiss, 1997; Tsujimoto, 2008). The initial overabun-

dance of neurons and synapses during infancy is thought to provide a flexible substrate through

which activity-dependent plasticity can fine-tune neural network activity, via processes like synap-

tic pruning, which continue robustly through adolescence and in some form throughout life.

1.4 In vivo volume analyses

With the development of MRI, not only were clinicians provided with a superior technology for

the diagnosis of brain injury and disease (Barkovich, 2006; Panigrahy and Blüml, 2009; Prager and

Roychowdhury, 2007), but researchers were also provided with an unparalleled technology for the

study of typical brain development in vivo. This, together with the expansion of computing technol-

ogy during the 1980s, led to the first wave of structural neuroimaging studies aimed at extending

previous postmortem results. Much of this early work utilized volumetric parcellation methods,

whereby brain images are segmented according to different anatomical landmarks, and the vol-

umes and tissue content (gray matter, white matter, cerebrospinal fluid) of these different regions

are computed and compared between subject groups or throughout development. This parcellation

step has been performed with a variety of methods, including the use of stereotactic coordinates

(Jernigan et al., 1991; Reiss et al., 1996), manually drawn regions of interest (ROIs) (Giedd et al.,

1996c; Sowell et al., 2002b), and automated protocols (Giedd et al., 1999a, 1996a).

1.4.1 Gray matter decreases in development

Given the previous postmortem observations of regional and temporal variations in synaptic density

andmyelination throughout the brain, the gray and white matter volume estimates extracted through
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these volumetric parcellation methods would be expected to show similar age-related developmen-

tal trajectories and regional differences. This was first demonstrated by Jernigan and Tallal, who

observed that a group of children aged 8-10 had significantly more cortical gray matter than a group

of young adults, as well as a higher gray matter to white matter ratio (Jernigan and Tallal, 1990).

A subsequent study extended these findings to confirm that the group differences were due to con-

tinuous age-related decreases in gray matter volume with time — independent of brain size — and

localized these effects to superior frontal and parietal cortices (Jernigan et al., 1991). These studies

marked the first in vivo morphological evidence in support of the earlier postmortem histological

work by Huttenlocher and colleagues. While not a direct measure of synaptic density, the volumet-

ric MRI finding of decreased gray matter volume is consistent with the regressive synaptic pruning

changes previously described, and aligns with the theory that evolutionarily complex regions like

the frontal lobe show more protracted timing in their development than evolutionarily simpler re-

gions like primary motor/visual cortex. Even this early on, Jernigan and colleagues were also aware

of the possible relationship between their in vivo MRI findings and the postmortem white matter

myelination studies of Yakovlev and Lecours, and suggested that an “apparent” cortical thinning

could be due, in part, to progressing myelination. Thus, a component of these observed changes

might not be a gray matter loss, per se, but a transition of unmyelinated “gray” matter into white

matter, which, on MRI, would appear as a gray matter volume “loss” during the childhood and

adolescent years.

1.4.2 Regional and temporal dynamics

Since these initial observations of childhood and adolescent gray matter volume loss, other inves-

tigations have confirmed the general trend (Caviness et al., 1996; Giedd et al., 1999a; Ostby et al.,

2009; Pfefferbaum et al., 1994; Reiss et al., 1996; Sowell et al., 2002b; Wilke et al., 2007) and

extended these observations in several important ways. In a large cross-sectional sample of 161

subjects aged 3 months to 70 years, Pfefferbaum and others were able to demonstrate the early

rise and plateau in total brain volume by approximately age 5, as well as the late childhood and
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adolescent decline in cortical gray matter volume. The extended age range of the sample allowed

them to characterize the trajectory of the gray matter volume decline as curvilinear, which sug-

gested an overall ∩ shaped curve consisting of early childhood gray matter increases followed by a

relatively early peak, and then late childhood and adolescent reductions (Pfefferbaum et al., 1994).

This general time course of cortical development is a feature that has gone on to become one of the

hallmarks of structural brain development (Courchesne et al., 2000; Paus et al., 2001; Sowell et al.,

2003).

Other studies have investigated the relative volume changes (controlling for global increases

in total brain volume) more closely in broader age samples and in specific cortical and subcortical

structures. In doing so, this work has demonstrated further heterogeneity in maturational timing

and trajectory complexity across the brain. Importantly, the relative gray matter volume reduction

during adolescence was confirmed to be most concentrated in the frontal and parietal lobes (Sowell

et al., 2002b). Meanwhile, subcortical gray matter structures like the basal ganglia also gener-

ally showed a relative volume reduction, although with a simpler linear trajectory than the cortex

over the age range of late childhood to young adulthood (Ostby et al., 2009; Sowell et al., 2002b).

Tazrouchi et al. recently applied some of the modern spatial normalization methods to align each

individual’s structural MRI brain data to a group average of all individuals studied, and conducted

an analysis in the vein of these classical volumetric studies by examining volume change over time

in over 100 regions throughout the cortex. Using an exponential nonlinear function to model the

upstroke portion of the developmental curve, they were able to estimate the age at which these

different gray matter regions reached full development. In doing so, they provided a compelling

demonstration of the previously theorized maturational sequence, with primary somatosensory and

visual cortices maturing the earliest, and then posterior-to-anterior and inferior-to-superior trends

in the developmental timing of the remaining temporal, parietal, and frontal lobes (Tzarouchi et al.,

2009).
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1.4.3 White matter increases in development

Interestingly, while gray matter volume was observed to peak early, researchers began to consis-

tently observe that white matter volume continues to steadily increase roughly linearly from birth

through adolescence and young adulthood (Caviness et al., 1996; Paus et al., 2001; Pfefferbaum et

al., 1994; Sowell et al., 2002b; Wilke et al., 2007). The timing of these changes shows a posterior-

to-anterior gradient, which generally parallels the overlying gray matter, and has led to continued

investigation into the interaction between these processes (Barkovich et al., 1988). The white matter

volume increase is consistent with the widespread reports of relative gray matter reductions during

later childhood and adolescence, as a protracted increase in underlying white matter volume (due

in part to increased oligodendroglial wrapping of axonal fibers) will increase total brain volume,

and therefore decrease the relative gray matter volumes of specific structures compared to this total.

The midsagittal corpus callosum was one of the first white matter areas to be examined in more de-

tail, with volumetric analyses showing robust increases in total area throughout adolescence (Bellis

et al., 2001; Giedd et al., 1999b) and a surprising anterior-to-posterior trend in the timing of the

growth curve when the corpus callosum was subdivided into seven distinct segments (Giedd et al.,

1996a). This protracted nature of white matter development is a thread that we will see repeated in

the following sections as imaging modalities and analysis techniques have advanced (Giedd et al.,

1999a; Lebel et al., 2008b; Sowell et al., 2003), and one that has gained increasing interest as more

attention is being focused on the network properties of the brain as potential important mediators

for the late cognitive development seen in domains like risk/reward processing, cognitive control,

and working memory (Spear, 2000).

1.4.4 Sex differences

Sex-specific differences in brain structure were also extended with these structural imaging tech-

niques. Total brain volume was confirmed to be approximately 10% larger in males than females at

the plateau of overall brain volume that is reached during childhood (Caviness et al., 1996; Courch-
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esne et al., 2000; Durston et al., 2001; Gur et al., 2002; Lenroot and Giedd, 2010), and the signif-

icant sex-specific effect remains even when height and weight are covaried (Giedd et al., 1996b).

However, more detailed regional volumetric observations of different cortical regions have been

inconsistent — with varying reports of increased or decreased volumes in males and females that

are further complicated by whether or not absolute or relative changes (to total brain volume dif-

ferences) were reported (Sowell et al., 2007).

Despite this variation, strong evidence suggests that there may be sexual dimorphism in the tim-

ing of the developmental trajectory in the cortex, such that males and females have similar overall

trajectories of regional brain maturation (both with a ∩ shaped curve), but differing gender effects

with time because of a difference in the timing of this trajectory (Giedd et al., 1999a). Specifically,

there appears to be approximately a 1–2 year phase difference between girls and boys, with peaks in

gray matter occurring earlier in girls than boys, and regional variations in both phase and the actual

differences between the sexes (Lenroot et al., 2007). Because this is a temporally dynamic period

of development (and not a static one, for example, like comparing fully-mature adults), assessing

sex differences during childhood and adolescence has become a more complicated problem, which

requires the dissociation of phase differences (particularly those caused by differences in age of

pubertal onset) from sex differences in the maturational trajectories. An additional challenge is

identifying those differences that persist into adulthood and actually have functional relevance.

Observations of sex differences in subcortical regions have also been somewhat more repro-

ducible. In particular, over the course of development, the amygdala seems to increase in volume

more in males, and the hippocampus more in females (Giedd et al., 1997, 1996b,c; Wilke et al.,

2007). This is in line with animal studies that have shown high densities of steroid hormone re-

ceptors in the medial temporal lobe (Sarkey et al., 2008), and also that sex steroids exert trophic

effects on these structures (Cooke, 2006; Galea et al., 2006; Zhang et al., 2008). In one recent

study specifically targeted to investigate the degree to which the rise of gonadal hormones during

puberty contributes to the emergence of these sex-specific differences, we examined subcortical

volume measures among a group of 80 adolescent boys and girls matched on sexual maturity within
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a relatively narrow age range (Bramen et al., 2011). This focused analysis revealed an interaction

between sex and the effect of puberty in predicting amygdala and hippocampal volumes: While

females actually had larger left amygdala and right hippocampal volumes than boys during early

puberty (relative to total brain size), by late puberty the amygdala volume had increased in males

but stayed relatively stable in females. In the right hippocampus, the effect of puberty was also

to increase the volume in males, but surprisingly to decrease the volume in females. This reiter-

ates the importance of considering the timing in the interpretation of developmental phenomena

like sexual dimorphisms. Furthermore, these results suggest that the sex-specific differences in

amygdala volume previously observed across a broader age sample (Giedd et al., 1996c) are likely

due in large part to the effects of puberty, but that the previous observation of relatively larger

hippocampal volumes in females may be due to nonpubertal influences, as the direct contribution

of puberty demonstrated in our recent observations would be to blunt this effect. These findings

are particularly important in the context of adolescent brain development, as maturation of these

processing centers, and their connections to areas like the prefrontal cortex, may contribute to the

dramatic changes seen in social and emotional domains during this period of development (Dahl,

2004; Steinberg, 2005). The caudate nucleus has also been shown to be relatively larger, controlling

for total brain volume, in females across several distinct samples (Giedd et al., 1997, 1996b; Sowell

et al., 2002b; Wilke et al., 2007). Put another way, the caudate is spared the reduction in volume

that is typically shown by other structures in female brains. This observation of sexual dimorphism

in the basal ganglia is also important, as it may relate to the emergence of similar sex differences

in the incidence of several neuropsychiatric disorders (e.g. attention deficit hyperactivity disorder

(ADHD), Tourette’s syndrome) that are thought to involve these structures (Marsh et al., 2008).
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1.5 Brain mapping approaches

1.5.1 Advantages

The early volumetric MRI imaging observations by Jernigan and others helped lay the foundation

for the next wave of neuroimaging studies designed to further characterize the anatomical changes

that occur during normal development. While the volumetric protocols were able to validate much

of the classical postmortem literature, as well as provide further evidence for gray matter loss,

white matter gain, and regional/temporal dynamics, they are unable to precisely localize where

these maturational changes are taking place within the relatively large regions of interest (ROIs)

studied. Instead, these methods collapse entire regions of the brain down into one or several sum-

mary descriptive statistics that may not be characteristic of all functional and structural brain circuits

within these large lobar regions. In contrast, newer methods like voxel based morphometry (VBM)

and cortical thickness analysis are distinct in that they allow for statistical analysis at many points

throughout the entire brain volume or at many points across the entire cortical surface, and the cre-

ation of whole-brain “maps” to visual these data. These enhanced analysis modalities, together with

the traditional methods discussed above, have contributed greatly to our understanding of normal

brain development and provide an important context for the further study of neurodevelopmental

and psychiatric disease (Eliez and Reiss, 2000; Marsh et al., 2008).

1.5.2 Voxel-based strategies

In voxel-based morphometry (VBM), the local fractional gray matter volume is analyzed in the

neighborhood around each voxel in the brain to generate whole-brain maps of gray matter “den-

sity” or “concentration” (Ashburner and Friston, 2000). Spatial normalization algorithms are ap-

plied to align the brains of individual subjects so that each voxel then can be compared throughout

development or between groups. Consistent with the previous volumetric studies and postmortem

examples, whole-brain mapping strategies utilizing VBM show decreasing gray matter density dur-

ing later development. In line with the coarse frontal and parietal lobar localizations of the earlier
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volumetric reports, the regions showing the most protracted changes in these new analyses include

clusters in the dorsal frontal and parietal cortices during the transition from childhood to adoles-

cence (Sowell et al., 1999a), as well as a distinct grouping of dorsal, medial, and orbital frontal

cortical areas during the later transition from adolescence into young adulthood (See Figure 1.1)

(Sowell et al., 1999b). The relative specificity of these later changes to the frontal lobes is consistent

with the similarly protracted time course of cognitive development in executive function domains,

which are also typically thought to involve these frontal regions (Casey et al., 2005; Luna et al.,

2004, 2010; Spear, 2000).

This notion of gray matter density was extended to allow for analysis on the cortical surface

through the method of cortical pattern matching, where sulcal landmarks are manually identified

and used to drive accurate nonlinear spatial normalization into a common template, while helping

to account for regional, gender, and individual variability (Ashburner et al., 2003; Luders et al.,

2004). Using this technique, protracted post-adolescent gray matter density decreases were again

demonstrated in dorsal frontal cortex (Gogtay et al., 2004; Sowell et al., 2001b), and, for the first

time, shown to correlate significantly with underlying relative brain growth in these regions (Sow-

ell et al., 2001b). This suggests the combined influences of both regressive processes like synaptic

pruning, as well as progressive processes like myelination, are acting in these areas. Using sim-

ilar gray matter density measurement techniques, and a powerful longitudinal design that tracked

individuals prospectively for 8–10 years, Gogtay et al. provided further evidence that lower-order

somatosensory and visual areas develop earlier than the higher-order association cortices that inte-

grate these processes, and also that phylogenetically older areas develop earlier than younger areas

(Gogtay et al., 2004). Surprisingly, however, gray matter density increases were actually observed

in bilateral perisylvian regions during the transition from adolescence to adulthood, and shown

to correlate with both lateralized differences in sylvian fissure morphology and concomitant lo-

cal brain growth (Sowell et al., 2002a; Sowell et al., 2001b). This suggests a particularly extended

developmental trajectory in these gray matter regions beyond that in the dorsal frontal lobe, and per-

haps implies a unique position for these canonical language areas in the developmental landscape
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— with the typical inverse correlation between density and volume (decreasing density, increasing

volume) reversed to give a direct relationship (increasing density, increasing volume) in these areas

during this age range (Sowell et al., 2003). Taken together, these findings again highlight both the

regional as well as temporal complexities to the normal developmental sequence of brain structure.

1.5.3 Cortical thickness

The investigation of apparent cortical gray matter decreases during development reached full stride

with the development of MRI cortical thickness measurement techniques. These automated al-

gorithms extract mesh models of the white-matter/gray-matter boundary surface and the pial (i.e.

cortical) surface, and then directly calculate the cortical thickness at many points throughout the

cortical sheet (See Figure 1.2) (Fischl and Dale, 2000). Unlike the rather abstract interpretation of

fractional gray matter “density” estimates, cortical thickness estimates are in physical units of mil-

limeters and validate exceptionally well against the historical postmortem cortical thickness maps

— with average measurements in children ranging from 1.5mm in occipital cortex to 5.5mm in

dorsomedial frontal cortex (See Figure 1.2) (Sowell et al., 2004a; Von Economo, 1929).

In addition to their strong agreement with postmortem data in terms of absolute thickness es-

timates, reports using this method are also in line with the mounting evidence from postmortem,

volumetric, and VBM density measurements, which supports the picture that gray matter thickness

peaks early and then declines due to a combination of progressive events like enhanced myelin pen-

etration into the cortical neuropil, and regressive events like continued synaptic pruning (O’Donnell

et al., 2005; Shaw et al., 2008; Sowell et al., 2004a; Tamnes et al., 2010). In a longitudinal study of

45 typically-developing children aged 5–11 years, who were scanned 2 years apart, these techniques

were able to demonstrate gray matter thinning of 0.15–0.30mm/year coupled to relative brain vol-

ume increases in right frontal and bilateral parieto-occipital regions (See Figure 1.3). This study

was also able to reproduce the surprising earlier findings of gray matter increases in bilateral peri-

sylvian language areas (Wernike’s area), and extended these observations to the left inferior frontal

gyrus — another language area (Broca’s area) (Sowell et al., 2004a). Cortical thickening was esti-

15



Figure 1.1: Gray matter density maturation. Voxel-based morphometry (VBM) measurements of
fractional gray matter density/concentration show typical decreases during development. Colored vol-
umes within a transparent cortical surface rendering represent the extent of significant decreases in
gray matter density during the transition from childhood to adolescence (top panel) and adolescence to
adulthood (bottom panel). Color-coding indicates which changes occurred in the frontal lobe (purple),
parietal lobe (red), occipital lobe (yellow), temporal lobe (blue), and subcortical regions (green) (Sowell
et al., 1999a,b).
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mated to be at a rate of 0.10–0.15mm/year in these areas. This unique pattern of cortical thickening

in the canonical language regions could be related to parallel gains in language processing made

during this period of development. In another large longitudinal study of 375 children and young

adults, changes in cortical thickness were modeled with a low-order polynomial basis set in order

to investigate regional differences in the complexity of the developmental trajectory (Shaw et al.,

2008). Patterns of varying complexity were found to parallel the established histological maps of

cytoarchitectonic complexity, and agree with the previous literature (Gogtay et al., 2004; Sowell

et al., 2004a) — with simpler laminar areas like the limbic cortex having simpler trajectories, and

more complex laminar areas like association cortex having more complex trajectories. Although

cortical thinning during adolescence reflects developmental processes like myelination and synap-

tic pruning, it is important to note that cortical thinning also continues in some form throughout

the rest of the lifespan (Sowell et al., 2003). This likely belies a shift in etiology to degenerative

changes associated with aging (Sowell et al., 2004b), and recent work has sought to delineate this

inflection point more precisely. By analyzing local gray and white matter signal intensities in the

context of cortical thinning, the timing of the developmental peak was found to range from 8 to

30 years of age in different regions of the cortex, with the regional pattern following the general

posterior-to-anterior gradient discussed before (Westlye et al., 2010).

1.5.4 White matter

Even before the widespread adoption of diffusion imaging, which will be discussed in the next sec-

tion, researchers were able to adapt traditional anatomical MRI analysis techniques to study white

matter development (Wozniak and Lim, 2006). Magnetization transfer ratio (MTR) imaging is sen-

sitive to the “bound” protons found on the phospholipids of myelin (Wolff and Balaban, 1989), and

reflects the increasing myelination during early development (Engelbrecht et al., 1998) as well as

the posterior-to-anterior trend in the timing of this process (Buchem et al., 2001). T2 relaxometry,

which estimates the fraction of water in the brain that is associated with the phospholipid bilayer

of myelin (MacKay et al., 1994), has also been used to demonstrate the caudal-to-rostral wave of
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Figure 1.2: Cortical thickness analysis. Panels A-C show a single representative slice for one subject:
(A) Raw T1-weighted anatomical MRI scan. (B) Gray/white matter tissue segmentation. (C) Gray
matter thickness image, with thickness (mm) coded by color (warmer colors overlie the areas with the
thickest cortex). (D) shows an in vivo average cortical thickness map generated by performing this
analysis on a cross-sectional sample of 45 subjects. The brain surface rendering is color-coded according
to the underlying cortical thickness (mm) and the color bar at right. The regional variations in cortical
thickness can be compared to an adapted version of the classical Von Economo postmortem cortical
thickness map (E), which has been color-coded in a similar manner over the original stippling pattern to
highlight the similarity between the two maps (Sowell et al., 2004a; Von Economo, 1929).
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Figure 1.3: Gray matter thickness maturation. Statistical maps showing the significance of cortical
thickness change in a longitudinal sample of 45 children scanned twice between the ages of 5 and 11.
Areas showing significant thickness decrease (TD) are displayed in red, and areas showing significant
thickness increase (TI) are displayed in white (See color bar and significance thresholds at right). Non-
significant areas are coded by their t-statistic according to the left rainbow color bar. Arrows highlight
the relative specificity of thickness increases during this age range to canonical language areas in the
left inferior frontal gyrus (Broca’s area) and perisylvian region (Wernike’s area) (Sowell et al., 2004a).

myelination (Lancaster et al., 2003). In an application of the VBM technology to the white mat-

ter, Paus and colleagues were able to powerfully interrogate the rather general “global white mat-

ter increases” observation previously described to obtain a much richer localization of the precise

anatomical regions involved. In an 88 subject sample of children aged 4–17 years, they observed a

prominent increase in white matter density in the internal capsule bilaterally, as well as the left arcu-

ate fasciculus, suggesting continued maturation of corticospinal and frontotemporal fibers through

this age range (Paus et al., 1999). This work agrees with the postmortem data from Yakovlev and

Lecours, and demonstrates the unique progressive changes that are occurring in the white matter

while the cortex has shifted to undergo predominantly regressive events. Confirming the surprising

corpus callosum results of the classical volumetric study by Giedd et al. that was discussed ear-

lier, Thompson and colleagues applied a continuum mechanics approach to obtain maps of local

tissue deformation in the corpus callosum during development. Their longitudinal design studied 6

children aged 3–11 with a follow-up interval of up to 4 years, and again demonstrated an anterior-

to-posterior wave in the timing of maximal local growth (See Figure 1.4) (Thompson et al., 2000).
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This contrasts with the general posterior-to-anterior trend that has been observed in gray matter

cortical regions, and suggests a unique pattern of development in this region of interhemispheric

fiber connectivity.

1.5.5 Sex differences

Continuing the trend from volumetric results, VBM gray matter density and cortical thickness ob-

servations of sex-specific effects during development have also been variable (Wilke et al., 2007).

However, this topic remains a critical issue, as sex-specific differences in brain development are

likely to contribute to the sexually dimorphic susceptibilities to a variety of psychiatric disorders—

like schizophrenia and major depression — that emerge during adolescence (Durston et al., 2001;

Lenroot and Giedd, 2010). Returning to the issue of gender differences in development, Sowell

et al. analyzed cortical thickness and local brain size (taken as the distance from the center of

the brain) in a large sample of 176 healthy subjects aged 7–87 years (Sowell et al., 2007). In line

with previous studies, male brains were larger than females at all locations. Strikingly, however,

absolute cortical thickness was greater in females in right inferior parietal and posterior temporal

regions even without accounting for the smaller overall size of female brains. This finding was

not significantly modulated by age, and was demonstrated even more robustly across broad right

temporal and parietal regions when an age- and brain volume-matched subset of 18 males and 18

females was evaluated (See Figure 1.5). These findings suggest that there are both regionally- and

sex-specific differences in cortical thickness that appear relatively early in childhood, and support

earlier reports of selective relative increases in gray matter volumes in females (Allen et al., 2003;

Goldstein et al., 2001; Gur et al., 2002; Im et al., 2006; Nopoulos et al., 2000; Sowell et al., 2002b).

Although the corpus callosum is also a frequent target for brain mapping research into sex-specific

effects on brain development, no consensus has been reached and the topic remains frequently de-

bated (Giedd et al., 2006).

Because of the overall smaller brain volume in females, it has also been proposed that there may

be evolutionary pressure to develop other compensatory mechanisms. Through sulcal delineation
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Figure 1.4: Corpus callosum maturation. Maps of the local volume changes in the corpus callosum
are shown for six individuals aged 3–15 years, who were scanned twice longitudinally with an interval
of up to four years. Maturation includes outward tissue expansion (warmer colors), with a dynamic wave
in timing such that more frontal regions show prominent change early, and more posterior regions show
prominent change later (Thompson et al., 2000).
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Figure 1.5: Sex-specific differences in cortical thickness. (A) Sex differences in cortical thickness
(mm) among an age- and brain volume-matched sample of 18 males and 18 females. Warmer colors
(<0 on the color bar at right) are regions where females have thicker cortex, and cooler colors (>0 on
the color bar at right) are regions where females have thinner cortex, relative to males. (B) Statistical
maps showing the significance of these sex differences. Areas where the cortex is significantly thicker
in females are shown in red, and include right inferior parietal and posterior temporal, and left posterior
temporal and ventral frontal regions. Areas where the cortex is significantly thinner in females are
shown in white, and are limited to small regions in the right temporal pole and orbitofrontal cortex. The
correlation coefficient is mapped for nonsignificant regions according to the color bar at right (Sowell
et al., 2007).
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and cortical pattern matching techniques, it has been shown that females tend to develop a greater

degree of cortical “complexity” by young adulthood (Luders et al., 2004). This suggests that there

is more cortical surface per unit volume in females, and may be one mechanism through which

female brains have become optimized for their smaller size.

An increasing focus is also being shifted away from sex-specific differences, per se, to the known

differences in pubertal timing and sex steroid levels that are likely to be major contributors to ob-

served sex-specific effects and their frequently observed modulation by age (Giedd et al., 2006;

Lenroot et al., 2007). The emerging picture suggests that puberty and sex steroids do indeed have

organizing effects on brain development (Bramen et al., 2011; Neufang et al., 2009; Peper et al.,

2009a;Witte et al., 2010). One recent study of 107 9-year-old monozygotic and dizygotic twin pairs

noted strong overall heritability in regional brain volumes, but also demonstrated decreased frontal

and parietal gray matter density among the subgroup of individuals who had begun to develop sec-

ondary sexual characteristics of puberty (Peper et al., 2009b). Further investigation among the same

cohort revealed that the serum level of luteinizing hormone, one of the first indicators of puberty,

is associated with both increased overall white matter volume and increased white matter density

in the cingulum, middle temporal gyrus and splenium of the corpus callosum (Peper et al., 2008).

The splenium observation is particularly intriguing, as this is the same region shown to have max-

imal growth over the 9–13 age range in a different study (Thompson et al., 2000). These results —

observed between otherwise very well-matched groups— suggest that the onset of puberty and sex

steroid levels may directly contribute to the decreases in gray matter and increases in white matter

that are prominent features of normal brain development during late childhood and adolescence.

1.5.6 Summary

Taken together, these structural imaging studies represent a powerful evolution in our understanding

of brain development during childhood and adolescence. The overall picture remains one of early

overall brain growth, followed by a transition around age 5 to gray matter decreases coupled to

persistent white matter increases. These processes continue through adolescence, but relatively
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balance each other in magnitude. Thus, while overall net brain volume changes relatively little past

the age of 5, adolescence remains a period of dynamic change beneath the pial surface.

1.6 Diffusion MRI

One of the remarkable discoveries to emerge from these developmental neuroimaging studies is

the continued expansion of white matter volume well into adulthood (Giedd et al., 1999a; Sowell

et al., 2003). This robust and protracted increase has rewritten the age range associated with brain

development (Pujol et al., 1993), and has driven an increasing focus on the white matter and its

network connectivity as a possible mediator for the late cognitive gains seen in executive function

domains during typical development (Liston et al., 2006), as well as a possible mechanism for

neuropathology (Le Bihan, 2003) and training-induced increases in performance (Bengtsson et al.,

2005; Carreiras et al., 2009).

1.6.1 Diffusion Tensor Imaging (DTI) theory

Simultaneously with this growing interest in studying the white matter, as it relates to connectivity

between still-maturing brain regions and cognitive function, diffusion imaging was maturing as

an MRI variation specifically tuned to examine the white matter (Basser et al., 1994; Bihan et

al., 1986; Pierpaoli et al., 1996). Since the diffusion properties of water within neural tissue are

affected by the geometry of the neuronal microenvironment, it is intuitive that diffusion imaging

can provide a sensitive lens through which the microstructural properties of the white matter can

be investigated. Specifically, differences in microstructural properties like fiber coherence, axon

packing, and myelination have all been shown to manifest as changes in the diffusion MRI signal

(Beaulieu, 2002). By viewing this diffusion landscape within the brain frommultiple angles, a more

complete “tensor” model of diffusion can be generated for each voxel (Basser et al., 1994). This can

be thought of geometrically as a diffusion ellipsoid, with diffusion components in the radial (RD,

radial diffusivity) and axial (AD, axial diffusivity) directions (See Figure 1.6). The size of this
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Figure 1.6: Diffusion Tensor Imaging (DTI) metrics. DTI metrics include fractional anisotropy (FA),
which is a unitless measure of the directionality of diffusion, and mean diffusivity (MD), which is the
overall magnitude of diffusion. The center panel shows a cross section of the DTI ellipsoid model of
diffusion, which is assumed to be oriented along the fiber axis (shown here as a cylinder). Individual
diffusion components along the axial (AD) and radial (RD) directions contribute to the FA and MD val-
ues at each point in the brain. Panels A-D show different changes in the individual diffusion parameters,
and their varying effects on FA and MD. Note that changes in different diffusion components (AD or
RD) can lead to the same effect on one diffusion metric, but have opposite effects on the other. Panel
D represents the prevailing regime during development, where decreasing RD — due, in part, to ad-
vancing myelination — leads to increasing FA (a more pointed ellipsoid) and decreasing MD (a smaller
ellipsoid).

ellipsoid corresponds to the overall mean diffusivity (MD). The shape of the ellipsoid corresponds

to the directionality of diffusion, and is termed fractional anisotropy (FA). It can vary from 0, for

perfectly isotropic diffusion, to 1, for perfectly anisotropic diffusion (e.g. the ventricles have low FA,

while the corpus callosum has high FA). Because it has been shown to be sensitive to myelination,

this FA metric has received considerable attention as a way to track the developmental maturation

within the white matter and investigate disease. See Le Bihan (2003) for an excellent review.

1.6.2 Diffusion parameters in development

Using this unique framework, there has been a surge in research aimed at more deeply charac-

terizing the normal developmental processes in these important regions of connectivity that were

previously obscured by low contrast within the white matter on traditional T1-weighted anatomical
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MRI. Similar to the general description in the overlying gray matter, the developmental trajectory

within the white matter is both a nonlinear function of time, and has prominent regional variations

(Lebel et al., 2008b; Mukherjee et al., 2001; Snook et al., 2005). From birth, there is a rapid rise

in diffusion directionality (FA; see Figure 1.7), coupled to a decrease in overall diffusivity (MD)

(Bava et al., 2010; Engelbrecht et al., 2002; Hüppi et al., 1998; Löbel et al., 2009; Morriss et al.,

1999; Mukherjee et al., 2001; Neil et al., 1998; Schmithorst and Yuan, 2010; Schneider et al.,

2004). In an interesting contrast to this general pattern within the white matter, gray matter cor-

tical regions actually have been observed to have decreasing FA in a sample of preterm infants

(McKinstry et al., 2002). This could reflect the fact that changes in FA are not highly specific for

myelination, and may also occur in response to cortical maturational processes like synaptogen-

esis. Further, these observations may be related to the perinatal period of selective vulnerability

in neural tissue, which has been demonstrated in animal studies and confirmed in humans through

MRI (Miller and Ferriero, 2009). The white matter pattern of increasing FA and decreasing overall

diffusion, although not universally reported in later development (Schneiderman et al., 2007), gen-

erally continues in a decelerating fashion throughout childhood, adolescence, and in some areas,

into adulthood (Bonekamp et al., 2007; Klingberg et al., 1999; Schmithorst et al., 2002; Zhang et

al., 2007). There is a relatively stable plateau of these parameters during adulthood, and then even-

tual declines later in life (Davis et al., 2009; Salat et al., 2005). Accordingly, the developmental

rising portion of this arc has been modeled as a linear (Snook et al., 2005), polynomial (Hsu et al.,

2010), or exponential function (Lebel et al., 2008b; Mukherjee et al., 2001; Schneider et al., 2004).

The earliest reports utilized an ROI approach to look at diffusion properties averaged across spe-

cific anatomical locations, and were able to reproduce the “increasing FA, decreasing MD” pattern

across a broad variety of regions within the brain and during different periods of development. In

one example, Suzuki and colleagues examined ROIs placed bilaterally in the frontal and parietal

white matter of 16 children and young adults. They observed increased FA and decreased overall

diffusivity with age, but went on to make the important determination that the etiology of these

changes in FA and MD was a primary decrease in both radial (RD) and axial (AD) diffusion com-
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ponents, with a larger decrease along the radial direction (Suzuki et al., 2003). This explains the

overall decreased diffusivity that was observed (both components decreased), but also the increased

diffusion directionality (one component decreased more than the other). The dominance of changes

in radial diffusivity (RD) during development is an important phenomenon that has been broadly

replicated (Giorgio et al., 2008; Lebel et al., 2008b; Löbel et al., 2009; Qiu et al., 2008), although

not universally (Ashtari et al., 2007; Giorgio et al., 2010), and is thought to relate to the primary

role that extended myelination plays during this age range (Song et al., 2002).

Paralleling the advancements made in the analysis of the cortex, methods have quickly adapted

to include whole-brain mapping techniques that are able to examine the brain in a spatially contin-

uous manner and better localize developmental changes. In general, these later efforts using VBM

and similar techniques have both confirmed and extended the earlier ROI findings of broadly in-

creasing FA and decreasing MD (Snook et al., 2007). Tract-based spatial statistics (TBSS) is an

evolution of these methods that is tailored specifically to the analysis of DTI data, and has been

used successfully to demonstrate age-related changes in diffusion imaging parameters (Bava et al.,

2010; Burzynska et al., 2010; Giorgio et al., 2010, 2008). By projecting the imaging data onto a

tract “skeleton” consisting of the cores of the white matter tracts, TBSS avoids some of the align-

ment problems that arise when the high contrast FA maps are compared using traditional voxel-

by-voxel techniques (Smith et al., 2006b, 2007). In a sample of 75 children through young adults

that were analyzed using this approach, widespread FA increases and diffusivity decreases were

again demonstrated spanning the frontal, temporal, and parietal lobes, and the cerebellum (Qiu et

al., 2008). Recognizing the need to synthesize these reports into a normative reference standard

against which to judge clinical abnormalities, effort has also been directed towards generating de-

velopmental brain atlases that integrate this diverse set of information (Hermoye et al., 2006; Löbel

et al., 2009; Mori et al., 2008; Verhoeven et al., 2010).
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1.6.3 Fiber tractography

By making the assumption that the direction of the diffusion ellipsoid (i.e. the direction of principle

diffusion) is pointing in the same direction as the neuronal fiber axis, streamlines can be generated

passing from voxel to voxel along the path of principle diffusion. In this manner, the DTI technology

has been extended to allow for in vivo fiber tractography (Behrens et al., 2003; Catani et al., 2002;

Conturo et al., 1999; Mori et al., 1999). This allows for individualized measurements to be made

that are tailored to each subject’s anatomy, which circumvents many of the problems associated with

attempting to register a diverse set of brains to a single template. Although these algorithms have

generally validated well against postmortem dissections for manymajor white matter tracts, specific

limitations related to issues like partial volume averaging and complex fiber geometries must be

considered (Pierpaoli et al., 1996). Using this technology, together with standardized protocols

for delineating the major white matter tracts of interest (Wakana et al., 2007), researchers have

mapped the development of white matter fiber connectivity from before birth (Huang, 2010; Huang

et al., 2009; Huang et al., 2006), through childhood, adolescence, and adulthood (Behrens et al.,

2003; Liu et al., 2010; Wakana et al., 2004), and even through evolution (Rilling et al., 2008). Like

other developmental neuroimaging efforts, these data provide important insight into human brain

development in their own right, and additionally serve as important normative markers against

which pathology can be judged (Adams et al., 2010; Lebel et al., 2008a; Thomas et al., 2009). In

a seminal report on the typical developmental trajectories within 10 major white matter tracts in a

large sample of 202 subjects aged 5 to 30 years, Lebel et al. observed continually increasing FA

in all regions (generally approximated well by an exponential funtion), but regional variations in

timing such that the time to reach 90% of the adult plateau varied from approximately 7 years old in

the inferior longitudinal fasciculus to beyond 25 years old in the cingulum and uncinate fasciculus

(See Figure 1.7) (Lebel et al., 2008b). Overall, they note that frontotemporal connections were the

slowest to develop. In a representative example of the degree of intersubject diversity that exists

even within tracts, DTI tractography has been used to demonstrate lateralization of different white

matter tracts (Bonekamp et al., 2007). In one particular study, left lateralization was shown for the
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arcuate fasciculus (temporoparietal part of the superior longitudinal fasciculus), with higher FA

and more streamlines in the left hemisphere (Lebel and Beaulieu, 2009). These findings are in line

with previous observations of left-lateralization of perisylvian regions (Geschwind and Levitsky,

1968; Pujol et al., 2002), and are thought to relate to the left hemisphere language dominance that

exists in the majority of the population. Interestingly, this same pattern has been demonstrated even

in neonates, suggesting that the structural basis of left hemisphere language dominance is present

long before the development of speech (Liu et al., 2010). Previous morphometric findings of local

volume increases within the corpus callosum (Giedd et al., 1996a; Thompson et al., 2000) have

also been explored with tractography. In a large sample of 315 subjects aged 5–59 years, Lebel

and others demonstrated the typical trajectory of increasing FA and decreasing MD in the fiber

tracts leading from all midsagittal sections of the corpus callosum (Lebel et al., 2010). They also

observed an “outer-to-inner” trend in the timing of these maturational arcs, which contrasts with the

anterior-to-posterior volumetric trend observed on T1-weighted MRI (Thompson et al., 2000) and

highlights the additional insight that can be uncovered when the full extent of a tract is considered.

1.6.4 Sex differences

Diffusion imaging also reveals sex-specific structural differences within the white matter (Lenroot

and Giedd, 2010; Schmithorst et al., 2008). In one tractography study of 114 children, adolescents,

and young adults, Asato et al. found generally decreasing radial diffusivity (RD), and protracted

maturation past adolescence, in projection and association fibers that included connections between

the prefrontal cortex and the striatum. Furthermore, they observed that white matter microstruc-

tural maturation proceeded in parallel with pubertal changes, with females having overall earlier

maturation of white matter tracts than males (Asato et al., 2010). This suggests that there may be

hormonal influences on white matter maturation, and that by considering these aspects, one may

obtain a more appropriate estimate of developmental progress than by only considering chrono-

logical age. This notion is supported by concurrent findings with structural MRI that demonstrate

white matter volume increases during adolescence, especially in boys, are affected by testosterone
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Figure 1.7: White matter maturation. Diffusion tensor imaging (DTI) tractography was used to iden-
tify 10 major white matter tracts in 202 individuals aged 5–30 years (center panels show the extracted
tracts for a representative subject). Broad age-related increases in fractional anisotropy (FA), a DTI
index of white matter maturation that is sensitive to myelination, were observed across all tracts. Mat-
urational trajectories generally followed an exponential rise, with regional variations in mean FA as
well as developmental timing. The surrounding scatterplots demonstrate these relationships, and are
color-coded according to the tracts in the center panels (Lebel et al., 2008b).
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levels and androgen receptor genes (Paus et al., 2010; Perrin et al., 2008).

1.6.5 Summary

Taken together, diffusion imaging studies generally show increasing diffusion directionality (FA)

and decreasing overall diffusion (MD) during development. These changes are predominantly due

to decreasing diffusivity in the radial direction (RD) from the fiber axis, which suggests a primary

role for myelination in this process. These changes progress rapidly from birth, through childhood,

and eventually level off to a relatively stable adult plateau. Paralleling what has been observed in

the cortex and through volumetric observations, there are regional variations in the timing of this

developmental trajectory that follow a roughly posterior-to-anterior trend. Sexual dimorphism is

also present, with females exhibiting earlier white matter maturation than males — a trend that

mimics their differences in pubertal timing.

1.7 Connecting different techniques

1.7.1 Multimodal imaging

Although the development of cortical gray matter and the development of white matter microstruc-

ture have been investigated independently, one needs to consider their dynamics jointly in order

to determine what relationships exist between them. This challenge returns to one of the original

questions that stemmed from the postmortem histological findings — that is, “To what degree do

myelination and synaptic pruning (and other cellular processes) contribute to the decreasing gray

matter and increasing white matter that is found during brain development?” While these phenom-

ena are undoubtedly linked, it remains unclear which is dominant and exactly how they interact.

The maturation of DTI and structural MRI analysis techniques has now made it possible to inves-

tigate these questions using in vivo imaging data; however, in the end it will likely be necessary to

complete the circle and validate these observations back in histological preparations.
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In a study focusing on adolescence, Giorgio et al. began by using the TBSS method, discussed

above, to demonstrate broad increases in FA that were driven predominantly by decreases in ra-

dial diffusivity (RD). They then made an important and innovative step by incorporating both DTI

tractography and gray matter VBM to show that the putative fibers leading from the white mat-

ter regions with the strongest developmental effects connect with regions showing significantly

decreased gray matter density in the cortex. Further, they observed that the gray matter density de-

creases were significantly correlated with the FA increases in the connected white matter (Giorgio

et al., 2008). By following the structural connectivity present in the actual data, and using these

patterns to guide their comparisons, this protocol links the concurrent phenomena of white matter

FA increases and gray matter density decreases more convincingly than was possible with previous

qualitative visual inspections. Tamnes et al. investigated this same general question in a differ-

ent manner by integrating cortical thickness, volumetric, and DTI measurements derived from a

single sample of 168 participants aged 8–30 years (See Figure 1.8) (Tamnes et al., 2010). As ex-

pected, they were able to demonstrate a combination of the phenomena seen in earlier individual

studies, including broad cortical thickness decreases, white matter volume increases, FA increases

(predominantly decreases in radial diffusion), and MD decreases. Most importantly, however, they

were able to go on to demonstrate that, of the three measures, cortical thickness had the strongest

relationship with age. Further, although the DTI and volume measures explained some of the vari-

ance in cortical thickness and each other, none of the measures were redundant. This implies that

each may be sensitive to different microstructural processes, and that all are useful indicators of

brain development and microstructural integrity (Fjell et al., 2008). This reiterates the likely mixed

regime of both synaptic pruning within the cortex, and advancing myelination at the gray-white

cortical interface, which is contributing to brain morphological changes seen during adolescence.

In another example, Choi et al. examined a completely different topic — general intelligence —

but were able to gain similar benefits by integrating multiple imaging modalities. They observed

that intelligence was generally related to cortical thickness and functional MRI (fMRI) blood flow

response during a reasoning task. Because both sets of scans were performed on the same sample
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Figure 1.8: Multimodal Imaging: Volumes, cortical thickness, and DTI. Concurrent volumetric,
cortical thickness, and diffusion tensor imaging (DTI) analyses were performed in the same sample of
168 participants aged 8–30. The percent changes in cortical thickness, white matter volume, fractional
anisotropy (FA), mean diffusivity (MD), axial diffusion component (DA), and radial diffusion compo-
nent (DR) are mapped by region and color-coded according to the color bar at right. Medial structures
and corpus callosum are masked out (Tamnes et al., 2010).

of subjects, however, the authors were able to go a step further— beyond this simple generalization

— to observe that the crystallized component of intelligence was more strongly related to cortical

thickness, while the fluid component of intelligence was more strongly related to functional blood

flow response (Choi et al., 2008).

1.7.2 Brain–behavior relationships

While important neuroanatomical insight can be gleaned from these structural brain mapping ob-

servations, perhaps the most significant outgrowth of this research has been an expanded under-

standing of the cognitive and behavioral changes that accompany this underlying maturation of

brain structure. There has been a long tradition of investigation into the cognitive correlates of

brain structure, but unfortunately many of the early findings—which commonly focused on differ-

ences between ethnic or social groups— are unreliable because of data collection and analysis bias
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(Gould, 1978; Gould, 1981). With the advent of MRI, however, volumetric measurements of total

brain size have shown a modest but reproducible correlation with general intelligence that emerges

over the course of development (Peters et al., 1998; Reiss et al., 1996; Willerman et al., 1991; Wi-

telson et al., 2006). However, the correlational nature of these findings does not at all suggest that

groups with different brain sizes, like males and females, will have different intelligence. Indeed,

independent of the possible relationships with neuroanatomy, it remains exceptionally controver-

sial whether there is even any overall gender effect on intelligence (Blinkhorn, 2005; Hedges and

Nowell, 1995; Irwing and Lynn, 2006; Jorm et al., 2004; Lynn and Irwing, 2004; Neisser et al.,

1996), and if so, whether the small effect magnitudes that have been reported are relevant given

the possible biases that may have contributed. An important additional phenomenon to consider is

that both brain structure and intelligence are highly heritable (Shaw, 2007; Thompson et al., 2001).

Both are further impacted by environmental influences in a process that begins in utero, continues

throughout life, and contributes to individual variations in structural brain development and cogni-

tive function that exist even among monozygotic twins. Although not exclusive, the orchestration

of structural brain development by these genetic and environmental factors is one way in which

they can converge to influence cognitive development (Toga and Thompson, 2005).

Since there is evidence that brain development takes place through selective elimination and

connectivity optimization, with prominent regional and temporal variability, it is not surprising

that a global measure like total brain volume may not be the optimal choice for investigating the

structural basis of cognitive development. Fortunately, the brain mapping strategies, discussed

above, have had more success examining brain-region-specific relationships between structure and

function. This work has supported many of the classical structure-function relationships discovered

through lesion studies — for example, that the prefrontal cortex is related to cognitive control

(Damasio et al., 1994) — and also has extended these findings by 1) providing more detail, 2)

including more normative subjects without pathology, and 3) allowing for broader investigation

in the pediatric population. In this way, these modern neuroanatomical imaging studies, together

with complementary results from functional neuroimaging (fMRI) methods that can measure task-
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dependent blood flow response within the brain (Casey et al., 1995; Luna et al., 2010), have formed

a powerful framework to investigate how brain development relates to cognitive function during

childhood and adolescence. In this vein, continued investigation into the structural basis of general

intelligence has revealed age-variable relationships between IQ and regional brain structure. In

line with the total brain volume results, a correlation between IQ and gray matter volume develops

by adulthood (Wilke et al., 2003). However, regional relationships between IQ and gray matter

structural measures appear earlier, and have been reported to include the anterior cingulate during

childhood (Wilke et al., 2003), the orbitofrontal cortex during adolescence (Frangou et al., 2004),

and the frontal lobe — particularly the prefrontal cortex — by adulthood (Haier et al., 2004; Reiss

et al., 1996; Thompson et al., 2001). Interestingly, these regional relationships between gray matter

development and IQ appear to be modulated by sex, although the specific regions reported to be

most associated with IQ for each sex have been variable (Haier et al., 2005; Narr et al., 2007). In one

important study, which investigated the relationship between cortical thickness maturation and IQ

in a large longitudinal sample of 307 children and adolescents, IQ was observed to correlate most

closely not with cortical thickness, per se, but rather with the shape of the developmental trajectory

in cortical thickness change (See Figure 1.9) (Shaw et al., 2006a). The subjects that had the highest

IQs tended to have themost dynamic cortical maturation, withmore rapid cortical thickening during

early childhood, and more rapid cortical thinning during late childhood and adolescence. However,

in terms of absolute thickness, the superior intelligence group actually had thinner cortex at the start

of the age range studied (approximately age 7), peaked later, and then had relatively equal thickness

to the others by the end of the age range (approximately age 19). This observation highlights the

notion that, like the pattern of structural maturation itself, the relationships between brain structure

and cognitive ability are complicated by their dependency on age during the course of development.

While the specific pattern and methodologies of these studies have varied widely, the common

pattern that has emerged is a relationship between frontal lobe structural brain development and

general intellectual ability.

Other studies have investigated more specific cognitive functions and their relation to gray mat-
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Figure 1.9: Trajectory of cortical thickness change vs. IQ. Higher IQ was associated with a more
dynamic trajectory (more rapid thickening and thinning) in cortical thickness maturation among a sam-
ple of 307 children and adolescents scanned longitudinally. The center panel shows regions where there
was a significant interaction between IQ group (superior, high, or average) and a cubic age3 term in the
regression analysis, which implies a varying trajectory shape in these regions. These individual trajec-
tories are plotted in panels a–d, and are color-coded according to intelligence group. Arrows indicate
the age at peak cortical thickness for each trajectory (Shaw et al., 2006a).
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ter structure. In the same longitudinal sample of 45 typically-developing children that was described

previously, we observed inverse correlations between performance on the vocabulary subtest of the

Weschler Intelligence Scale for Children (Wechsler, 2003) — a test of general verbal intellectual

functioning — and gray matter thickness in left dorsolateral frontal and lateral parietal regions

(See Figure 1.10) (Sowell et al., 2004a). This is consistent with the language dominance of the left

hemisphere, and suggests a possible relationship between these concurrent structural and cogni-

tive developmental processes. While originally interpreted as possibly relating to developmental

cortical thinning, the results of the Shaw et al. (2006a) study suggest that the individuals with the

greatest verbal intellectual function here may still have been on the upstroke of their developmen-

tal arc in our much younger sample (age 5–11 years), and simply had thinner cortex at the time

sampled. This nuance is also reflected in another study, which had an older sample (age 6–18

years) during the later period of development where increased cortical thickness is associated with

higher IQ (Karama et al., 2009). Further studies, again in the young sample of 5–11-year-olds, have

investigated even more targeted cognitive subtests, including phonological processing, and motor

speed and dexterity (Lu et al., 2007). Structural development in the inferior frontal gyrus (a phy-

logenetically more complex area that matures slower and is still on the upward stroke of cortical

thickening) was expected to relate to advances in phonological processing, which has been shown

to involve this area on functional imaging studies (Bookheimer, 2002), but not to relate to advances

in motor processing. Conversely, structural development in the hand motor region (a phylogeneti-

cally simpler area that matures earlier and is already experiencing cortical thinning) was expected

to relate to advances in motor processing but not phonological processing. This predicted double

dissociation was demonstrated as expected, which not only illustrates a specific alignment between

language development and structural development in the inferior frontal gyrus, but also reiterates

the regionally specific definition of “structural development” during childhood — with some cor-

tical regions thinning, but some relatively specific language areas still exhibiting thickening. A

similar analysis has also revealed relationships between cortical thinning and both delayed verbal

recall functioning and visuospatial memory ability, which is again consistent with the functional
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Figure 1.10: Cortical thickness vs. language functioning. Statistical maps showing the significance of
the relationship between changes in cortical thickness and changes in vocabulary scores in a longitudinal
sample of 45 children scanned twice between the ages of 5 and 11. Areas with a significant negative
relationship (cortical thinning was associated with improved language performance) are color-coded
according to their P value, with the significance thresholds shown in the color bar at right. No positive
correlations were observed (Sowell et al., 2004a).

neuroimaging literature that suggests the dorsolateral prefrontal cortex is involved with memory

recall (Casey et al., 1995; Sowell et al., 2001a). The relationship between cognitive development

and structural brain development is further supported by intervention/training studies, which sug-

gest that even relatively short periods of cognitive or motor training can be associated with at least

short term morphological changes in brain structure (Draganski et al., 2004).

Diffusion imaging indicators of white matter development also relate to cognitive function.

In a sample of 23 children and adolescents, there was a significant direct relationship between

diffusion characteristics (FA) and working memory ability in inferior frontal and temporo-occipital

regions, and the genu of the corpus callosum (Nagy et al., 2004). This relationship existed above

and beyond the correlation of each individual measure with age, which suggests that the maturation

of the white matter in specific areas — as indexed by FA — may play a role in the development

of (or simply reflect the development of) specific cognitive domains. In a similar design, others

have shown correlations between Chinese reading score and FA in the anterior limb of the left

internal capsule, and English reading score and FA in the corona radiata (Qiu et al., 2008). In the
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arcuate fasciculus lateralization tractography study discussed earlier, greater leftward lateralization

was associated with better performance on cognitive tests of receptive vocabulary and phonological

processing (Lebel and Beaulieu, 2009). These studies suggest that diffusion imaging is not only a

useful technique for tracking normal anatomical maturation within the white matter, but also that

regional DTI metrics can provide reflections of cognitive development in specific domains.

1.8 Conclusions and future directions

Our understanding of human brain development has accelerated over the last 20 years through the

use of MRI and in vivo human brain mapping. Postmortem and histological studies have demon-

strated that brain maturation, on the cellular level, encompasses both progressive and regressive

events. These include synaptic pruning and protracted myelination, which continue to shape the

underlying neural microstructure and regional brain morphology long after overall brain volume

begins to plateau around age 5. Brain development, in general, can be characterized as both non-

linear with respect to time, and also variable with respect to region. The hallmark of structural

brain development during childhood is a striking change in the relative proportions of gray and

white matter — with a peak and then decline in gray matter volume and cortical thickness, but a

relatively sustained increase in white matter beyond adolescence. Across these different regions,

there is a general posterior-to-anterior and inferior-to-superior trend in the timing of maturation,

such that primary somatosensory and phylogenetically older areas of the brain tend to mature ear-

lier than higher-order association cortices— particularly areas in the frontal lobe. Within the white

matter, diffusion imaging indicators show decreasing diffusivity (MD) and increasing direction-

ality (FA), which suggests that myelination continues through young adulthood and perhaps even

beyond. Performance across a variety of cognitive domains has also been shown to relate to these

structural changes, with the specificity of these relationships generally in line with classic functional

neuroanatomical localizations.

Although the complexity of the regional and temporal patterns of structural brain development
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makes investigating and interpreting these brain-behavior relationships challenging, future work

should continue to focus on the possible functional manifestations of structural brain development.

Particularly, by integrating different structural and functional imaging modalities with thorough

cognitive assessments, we can investigate the ways in which these processes interact with each

other within a more inclusive framework that more realistically encompasses the full developmen-

tal landscape. With the increasingly broad array of radiological features of development that have

been characterized, there is additionally a growing need to reintegrate a firm neurobiological under-

standing of the cellular mechanisms that facilitate these changes. Finally, effort should continue to

be directed towards uncovering the ways in which this basic neuroscientific knowledge concerning

human brain development can be translated into a better context for the understanding and clinical

treatment of neurodevelopmental disorders.
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CHAPTER 2

Prenatal methamphetamine exposure

2.1 Abstract

Little is known about the effects of prenatal methamphetamine exposure on white matter mi-

crostructure, and the impact of concomitant alcohol exposure. Diffusion tensor imaging and neu-

rocognitive testing were performed on 21 children with prenatal methamphetamine exposure (age

9.8 ± 1.8 years; 17 also exposed to alcohol), 19 children with prenatal alcohol but not metham-

phetamine exposure (age 10.8 ± 23 years), and 27 typically-developing children (age 10.3 ± 3.3

years). Whole-brain maps of fractional anisotropy (FA) were evaluated using tract-based spa-

tial statistics. Relative to unexposed controls, children with prenatal methamphetamine exposure

demonstrated higher FA mainly in left-sided regions, including the left anterior corona radiata

(LCR) and corticospinal tract (𝑃 < 0.05, corrected). Relative to the alcohol-exposed group, chil-

dren with prenatal methamphetamine exposure showed higher FA in frontotemporal regions —

particularly the right external capsule (𝑃 < 0.05, corrected). Post-hoc analyses of these FA dif-

ferences showed their etiology to be more about lower radial diffusivity (RD) than higher axial

diffusivity (AD). We failed to find any group-performance interaction (on tests of executive func-

tioning and visuomotor integration) in predicting FA; however, FA in the right external capsule

was significantly associated with performance on a test of visuomotor integration across groups

(𝑃 < 0.05). This report demonstrates unique diffusion abnormalities in children with prenatal

methamphetamine/polydrug exposure that are distinct from those associated with alcohol exposure

alone, and illustrates that these abnormalities in brain microstructure are persistent into childhood

and adolescence — long after the teratogenic polydrug exposure in utero.
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2.2 Introduction

Methamphetamine (MA) abuse is a significant medical and social problem worldwide — with

broadening use and manufacture in developing regions of Southeast Asia and Oceania (McKetin

et al., 2008), and continued prevalence in established centers like Japan, Taiwan, Hawaii, and the

southwest mainlandUnited States (Maxwell and Rutkowski, 2008; SAMHSA 2008).Whilemetham-

phetamine use in adults has been clearly linked to broad negative effects on the central nervous sys-

tem, as well as negative social outcomes and effects on other organ systems (McCann et al., 1998;

Thompson et al., 2004), surprisingly little is known about the effects of prenatal exposure to MA

on the developing brain (Thompson et al., 2009) (See Roussotte et al. (2010), for a review of the

available evidence). Recently, a large prospective study has demonstrated fetal growth restriction

in the context of prenatal MA exposure, and has expanded observations of poorer neurobehavioral

outcomes to include depressed arousal and movement scores, and higher stress in newborn infants

(age 2.0 ± 1.6 days) (Lagasse et al., 2011; Nguyen et al., 2010; Smith et al., 2008, 2006a). The

first neuroimaging protocol that specifically addressed prenatal exposure to MA utilized [¹H]proton

magnetic resonance spectroscopy (MRS) to demonstrate findings suggestive of metabolic abnor-

malities in the striata of exposed children (age 8.1±0.8 years) (Smith et al., 2001). This was followed

by a volumetric analysis using magnetic resonance imaging (MRI) that showed smaller subcortical

volumes in the basal ganglia and hippocampi of affected children, and correlations between brain

volumes and poorer performance on attention and verbal memory tests (age 6.9±3.5 years) (Chang

et al., 2004). Recent functionalMRI (fMRI) evidence in children exposed tomethamphetamine pre-

natally also suggests abnormal patterns of brain activation, including more diffuse brain activation

during a verbal working memory task (age 9.5 ± 1.9 years) (Lu et al., 2009), as well as lower fron-

tostriatal activation during a visual working memory task (age 9.2 ± 1.8 years) (Roussotte et al.,

2011). The only published reports of white matter abnormalities include a region-of-interest dif-
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fusion imaging study, which examined 3 and 4-year-old MA-exposed children, and showed lower

diffusion in frontal and parietal areas, and a trend towards greater diffusion fractional anisotropy

(FA) in the left frontal white matter of the exposed group (Cloak et al., 2009). In an overlapping

sample, ¹H-MRS also demonstrated higher metabolite concentrations (total creatinine, N-acetyl

compounds, glutamate/glutamine) in frontal white matter (Chang et al., 2009). Taken together, the

disturbances in infant behavior and brain imaging data in children suggest that prenatal MA expo-

sure negatively impacts brain development. However, conclusions about the specific effects of MA

are limited, given that polydrug exposure is common in this population.

Concurrent prenatal alcohol exposure is particularly concerning because it is a known teratogen

(Jones et al., 1973), and has been shown to induce lasting clinical deficits (Spohr et al., 2007).

Furthermore, observations have shown that nearly half of thewomenwho useMAduring pregnancy

also drink alcohol (Smith et al., 2006a). Neuroimaging findings in children with heavy prenatal

alcohol exposure include global, regional, and subcortical volumetric abnormalities, as well as

cortical thickness and fMRI abnormalities (Coles and Li, 2011; Lebel et al., 2011). Most relevant

to our present report, a variety of whitematter abnormalities have also been reported among children

with heavy prenatal alcohol exposure, including, most prominently, gross deformities of the corpus

callosum (Sowell et al., 2010; Wozniak and Muetzel, 2011).

Here we studied the effects of prenatal methamphetamine exposure on white matter microstruc-

ture using whole-brain diffusion tensor imaging (DTI). By measuring the diffusion properties of

water inside the brain, which are affected by constraints placed by the neuronal microenvironment,

DTI is able to provide an indirect noninvasive characterization of white matter microarchitecture in

vivo. Given the known impact of MA exposure on striatal structures in adult abusers, and limited

evidence in children, we expected abnormalities in regions of white matter tracts that connect stri-

atal with cortical structures. Given reports of deficits in executive measures of attention, deficits in

visual motor integration (Chang et al., 2004), and findings of higher diffusion anisotropy in frontal

white matter in children with prenatal MA exposure (Cloak et al., 2009), we expected a similar

pattern in our older sample of children on tests of executive function (Trails B), visuomotor inte-
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gration (VMI), and whole-brain FA maps. In spite of these hypothesized group differences, within

groups we still expected regionally-specific relationships between FA and performance, such that

higher FA (indicative of white matter fiber organization) in the frontal lobe would be associated

with better performance (more efficient processing) on a test of executive function (Trails B), but

not on a test of visuomotor integration (VMI), and, conversely, that higher FA in the parietal lobe

would be associated with better performance on the VMI test, but not the Trails B test.

2.3 Methods

2.3.1 Participants

Participants were classified into three groups according to exposure status: 1) Methamphetamine-

exposed subjects (MA, 𝑛 = 21), 2) alcohol-exposed subjects (ALC, 𝑛 = 19), and 3) typically-

developing controls (CON, 𝑛 = 27). Subjects were included in the MA group if they had exposure

to methamphetamine based on parent/guardian report, or maternal or infant medical records. In line

with previous literature on fetal alcohol spectrum disorders (FASDs) that recognizes the impact of

frequent drinking, as well as less frequent but heavier drinking, participants were included in the

ALC group if they had exposure to ≥4 drinks on any occasion or were exposed to ≥14 drinks in any

week during the pregnancy (a “drink” is defined as a 12 oz. beer, 4 oz. glass of wine, or cocktail

with 1 shot of liquor), and had no methamphetamine exposure (Hoyme et al., 2005). Phone screen-

ing exclusion criteria for all groups included: 1) age younger than 5 years (we were most interested

in the long-lasting effects of MA, and, additionally, available staff were only trained on this age

range for neuropsychological testing); 2) IQ less than 70; 3) head injury with loss of consciousness

over 20 minutes (although no milder head injuries were reported on a follow-up parent self-report

questionnaire either); 4) physical (e.g. hemiparesis) or psychiatric illness, or developmental dis-

ability (e.g. autism) expected to prevent completion of the scanning or neuropsychological testing

sessions; 5) other potential known causes of mental deficiency (e.g. chromosomal disorders); and

6) presence of implanted metal in the body. ALC subjects were largely recruited from a university-
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associated social skills training group for children with FASDs. Subjects in the MA group were

recruited from three sources: 1) Children of mothers who were in an MA rehabilitation program,

2) the same social skills group described above for the FASD subjects (after it was discovered

that some of the mothers also had abused MA during pregnancy), and 3) self-referral in response to

advertisements and word-of-mouth. CON subjects were recruited from the same Los Angeles com-

munities as the exposed groups, and effort was made to recruit from similar socioeconomic status

(SES) strata (e.g. advertisements targeted to zip codes with similar SES as our exposed subjects).

Details of diagnostic procedures for fetal alcohol spectrum disorders used to classify ALC and MA

subjects are described in another report (O’Connor et al., 2006). Briefly, an experienced clinician

examined alcohol-exposed children using the Diagnostic Guide for Fetal Alcohol Syndrome (FAS)

and Related Conditions (Astley, 2004). This system uses a 4-digit diagnostic code reflecting the

magnitude of expression of four key diagnostic features of FAS: 1) growth deficiency; 2) the FAS

facial phenotype, including short palpebral fissures, flat philtrum, and thin upper lip; 3) central ner-

vous system dysfunction; and 4) gestational alcohol exposure. Using these criteria, children with

alcohol exposure (with or without concomitant MA exposure) were diagnosed with fetal alcohol

syndrome (FAS), partial FAS, sentinel features, or alcohol-related neurodevelopmental disorder

(ARND) (Figure 2.1). Following a complete description of the study protocol, parent/guardian

consent and participant assent were obtained in accordance with procedures approved by the Insti-

tutional Review Board at UCLA.

2.3.2 Neuropsychological testing

Subjects underwent a broad neuropsychological testing battery administered by trained fulltime

staff that were blinded to subject exposure status. Included among the tests were measures of

general intelligence (prorated full-scale IQ) (Wechsler, 2003), visuomotor integration (VMI), and

executive control (Trail Making Test). The VMI test instructs subjects to draw a series of geometric

figures that are presented visually, and thus, performance reflects intact visual sensory input, motor

output, and their integration (Beery, 1997). The Trail Making Test is a popular compound measure
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Figure 2.1: Alcohol exposure clinical severity by group. Exp = Exposed (least severe), ARND
= Alcohol-related neurodevelopmental disorder, Sent = Sentinel (shows mild facial dysmorphology),
PFAS = partial FAS, FAS = Fetal alcohol syndrome (most severe). MA = Methamphetamine-exposed
group, ALC = alcohol-exposed group.

of executive function, and Part B, in which the subject must rapidly connect encircled letters and

numbers that have been irregularly placed on a sheet of paper, has been shown to be particularly

sensitive to cognitive flexibility (Kortte et al., 2002).

2.3.3 DTI acquisition and processing

Diffusion-weighted imaging data were acquired on a 1.5T Siemens Sonata MRI scanner with six

diffusion encoding gradient directions (𝑏 = 1000 s/mm2), and one non-diffusion-weighted volume

(𝑏 = 0), per acquisition sequence. Two to four whole-brain acquisitions were obtained for each

subject (50 axial slices, slice thickness 3mm, field of view 192mm, in-plane matrix 64 × 64, re-

sulting in 3 × 3 × 3mm isotropic voxels). Brain volumes were skull stripped and a 12 parameter

affine registration to the first 𝑏 = 0 volume was applied to correct for eddy current distortions

and minor head motion between the acquisition of consecutive diffusion weighted volumes. The
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entire DTI sequence was rejected if any of the raw scans contained dropped slices (commonly

from ballistic motion during the EPI acquisition of a single volume), but no additional threshold

on motion was employed at this stage. A voxelwise diffusion tensor model was fit to the data,

and scalar invariant maps were generated of fractional anisotropy (FA), mean diffusivity (MD),

axial diffusivity (AD), and radial diffusivity (RD). DTI preprocessing was performed using the

FMRIB Software Library (FSL) 4.1.0 analysis suite (Smith et al., 2004; Woolrich et al., 2009)

(http://www.fmrib.ox.ac.uk/fsl), and this workflow was automated with the LONI Pipeline (Rex

et al., 2003) (http://pipeline.loni.ucla.edu).

Tract-based Spatial Statistics (TBSS) was then used to investigate regional differences in dif-

fusion parameters along the major white matter tracts (Smith et al., 2006b). First, B-spline based

nonlinear registration was performed between all subjects’ FA maps, and the most representative

target subject was chosen by minimizing the overall deformation cost across subjects. This target

subject was registered to the ICBM152 1mm standard template using an affine transformation, and

the remaining subjects were brought through this concatenated spatial normalization process. A

study-specific mean FA image was generated in standard space, and skeletonised into a tract-based

template at an FA threshold of 0.2 (Figure 2.2, green). Each subject’s registered FA map was then

projected onto this skeleton for voxelwise statistical inference.

2.3.4 Statistical analysis

Group differences in demographics and performance were assessed using analysis of variance

(ANOVA), and the Kruskal-Wallis one-way ANOVA for categorical variables. R 2.9.0 (http:

//www.r-project.org) was used for this statistical analysis. Differences in FA were assessed within

FSL, and whole-skeleton statistical parametric maps (SPMs; t-test, two sample, unpaired) were

generated for group differences. Subject age was included as a between-group covariate to model

variance in FA due to known effects of developmental maturation. Also, since age effects are com-

monly gender-specific over this age range— owing to differential timings of puberty and hormonal

influences between males and females — potential age-gender interactive effects were considered
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in our model. Finally, because prenatal alcohol exposure is known to be associated with white

matter abnormalities, an additional whole-brain analysis to explore the most specific effects of

methamphetamine included alcohol exposure clinical severity as a parameterized between-group

covariate. Threshold-free cluster enhancement (TFCE) was used to incorporate neighborhood in-

formation around each voxel and up-weight cluster-like structures in the data (Smith and Nichols,

2009). Nonparametric permutation methods were used to generate empiric P-values, and the empir-

ically determined null distribution of the maximum test statistic across space allowed us to correct

for multiple comparisons by controlling the family-wise error (FWE) rate (Nichols and Holmes,

2002). The Johns Hopkins white matter atlas was used for stereotactic reporting of anatomical lo-

cation information (Mori et al., 2008). Areas showing significant group differences in FAwere used

as region of interest (ROI) masks in post hoc analyses to determine whether the observed changes

in diffusion directionality (FA) were associated with any changes in total diffusion (MD) within

these regions, or the balance of diffusion in the axial (AD) and radial (RD) directions. Mean FA

values were also extracted from these regions for use in brain-behavior analyses. Multiple regres-

sion was used to investigate potential direct effects of behavioral score on FA within these regions,

independent of both age and the group effect that was modeled in the whole-skeleton analysis.

Group-by-score interaction effects were also investigated.

2.4 Results

2.4.1 Demographics

Groups did not differ significantly in age, sex, handedness, parental education, parental IQ, family

income, Trails B performance, or number of scan averages. However, the groups did significantly

differ in IQ score (𝐹2,58 = 14.85, 𝑃 < 0.0001), VMI score (𝐹2,62 = 7.08, 𝑃 < 0.005), birth weight

(𝐹2,56 = 10.74, 𝑃 < 0.0005), adoption rate (𝐻 = 52.1, 𝑃 < 0.0001), and nicotine exposure rate

(𝐻 = 44.3, 𝑃 < 0.0001). Compared to controls, the MA and ALC groups both had lower IQ and

VMI scores, and higher rates of adoption and nicotine exposure. This information is summarized in
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Table 2.1. Nicotine exposure histories were unavailable for 8MA subjects and 10ALC subjects, and

17 of theMA subjects also had prenatal alcohol exposure. Concurrent psychiatric diagnoses present

in the MA and ALC groups included attention deficit hyperactivity disorder (13 MA subjects, 14

ALC subjects), bipolar disorder (4, 3), major depression (2, 1), Asperger syndrome (1, 0), autism

(1, 0), pervasive developmental disorder — not otherwise specified (1, 0), schizophrenia (1, 0), and

obsessive compulsive disorder (0, 1).

2.4.2 White matter microstructure

Group differences in FA that were identified with the TBSS analysis are summarized in Figure 2.2

and Table 2.2. Additionally, while the statistical testing described below was carried out in a vox-

elwise fashion, regional summaries collapsed across rough ROIs are also provided in Figure 3 in

order to visualize the general relationship between diffusion parameters and to check for gross out-

liers. Note: Explicitly modeling age-gender interaction effects or IQ did not change the regional

patterns of group differences for any of the group contrasts studied.

2.4.2.1 MA vs. CON

FA was significantly higher in the MA group than the control group in the genu of the corpus

callosum, left hemisphere internal and external capsules, and corona radiata (𝑃 < 0.05, FWE-

corrected across skeleton) (Figure 2.2A).Within the left anterior corona radiata (LCR), a prominent

region showing group effects in thewhole-brain FA analysis, we observed a lower overall magnitude

of diffusion in the MA group, as measured by MD (𝑃 < 0.05, FWE-corrected across ROI), as well

as lower radial diffusivity (RD; 𝑃 < 0.001). Axial diffusivity (AD) was greater in this area in the

MA group than the control group with marginal significance (𝑃 = 0.05). There were no significant

CON>MA differences in FA. This general pattern of group differences remained when alcohol

exposure clinical severity (Figure 2.1) was included in the model, localizing particularly robustly

to the left corticospinal tract along its entirety (𝑃 < 0.01) (Figure 2.2C).
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Table 2.1: Demographics and performance data by group

 MA (n=21) ALC (n=19) CON (n=27) 
Group Differencese 

Mean SDd Mean SD Mean SD 
Age (years) 9.76 1.84 10.79 2.32 10.30 3.35 - 

Male:Female 13:8 - 11:8 - 11:16 - - 

Birth weight (g) 3290.1 409.4 2592.5 797.7 3355.6 357.5 P < 0.0005 (F = 10.74, df = 2,56) 

CON>ALC: P < 0.05 (t = 3.17, df ≈ 13.1) 

MA>ALC: P < 0.05 (t = 2.82, df ≈ 14.4) 

Handedness (-100 left to 

100 right) 

67.45 29.60 55.56 62.14 64.12 32.88 - 

Prorated full-scale IQ 99.29 12.94 85.11 13.65 109.82 15.88 P < 0.0001 (F = 14.85, df = 2,58) 

CON>MA: P < 0.05 (t = 2.39, df ≈ 40.0) 

CON>ALC: P < 0.0001 (t = 5.29, df ≈ 37.9) 

MA>ALC: P < 0.005 (t = 3.31, df ≈ 35.4) 

Parent education (years) 15.13 2.29 17.00 1.94 16.33 2.87 - 

Parent IQ 108.36 9.09 115.82 7.47 110.69 17.67 - 

Family annual incomea 7.27 2.09 7.19 2.32 6.86 2.75 - 

Parent type 

(Adoptive:Biological) 

18:3 - 18:1 - 0:27 - P < 0.0001 (H = 52.1, df = 2) 

MA>CON: P < 0.0001 (D = 0.86) 

ALC>CON: P < 0.0001 (D = 0.95) 

Nicotine exposure? 

(Yes:No:Unknown) 

12:1:8 - 9:0:10 - 0:27:0 - P < 0.0001 (H = 44.3, df = 2) 

MA>CON: P < 0.0001 (D = 0.92) 

ALC>CON: P < 0.0001 (D = 1) 

Trails B (total time)b 124.79 65.76 143.39 73.81 140.75 114.06 - 

VMI (raw score)c 21.29 3.18 21.26 3.97 24.72 3.61 P < 0.005 (F = 7.08, df = 2,62) 

CON>MA: P < 0.005 (t = 3.43, df ≈ 43.9) 

CON>ALC: P = 0.01 (t = 2.97, df ≈ 36.8) 
aOrdinal scale, 1 = <$5,000, 2 = $5000-9999, 3 = $10,000-19,999, 4 = $20,000-29,999, 5 = $30,000-39,999, 6 = $40,000-49,999, 7 = 
$50,000-74,999, 8 = $75,000-100,000, 9 = >$100,000. bTrails B = Trail Making Test, part B. cVMI = Visuomotor Integration. dSD = 
standard deviation. eANOVA omnibus F-test reported for group differences (Significant pairwise t-tests using the Holm modified 
Bonferroni correction and non-pooled variance are also reported for significant omnibus tests). Kruskal-Wallis ANOVA omnibus H test 
and Kolmogorov–Smirnov (K-S) pairwise D statistics used for categorical variables. df = degrees of freedom. 
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2.4.2.2 ALC vs. CON

Although a general pattern of lower FA was observed, no effect survived correction for multiple

comparisons.

2.4.2.3 MA vs. ALC

In a direct contrast of the MA subjects with the ALC subjects, the MA group showed significantly

higher FA in frontal and temporal areas bilaterally — most prominently in the right external cap-

sule (𝑃 < 0.05, FWE-corrected across skeleton) (Figure 2.2B). This general pattern also remained

during a post-hoc analysis on a small subset of 13 MA and 13 ALC subjects who matched exactly

on alcohol exposure clinical severity. There were no significant ALC > MA voxels.

2.4.3 Brain–behavior relationships

Multiple regression analysis, using performance on a measure of frontal executive functioning

(Trail Making Test, part B, total time), group membership, group-by-score interaction terms, and

age to predict FA in the LCR, failed to reveal any significant interaction between group and Trails B

score in predicting FA in this region (𝐹2,52 = 3.15, 𝑃 = 0.051) or a direct relationship between score

and FA (𝐹1,52 = 3.36, 𝑃 = 0.073). Within the right external capsule (REC) area that distinguished

ALC from MA subjects, multiple regression analysis (using group, group-by-score, and age pre-

dictors) failed to demonstrate any group-by-score interactive effects (𝐹2,58 = 0.93, 𝑃 = 0.40), but

did demonstrate a significant across-group contribution of VMI performance towards predicting

FA (𝐹1,58 = 13.26, 𝑃 < 0.001). The corresponding across-group partial regression coefficient be-

tween FA in the REC and VMI raw score was significantly positive (𝑏 = 2.23 × 10−3, 𝑡60 = 2.08,

𝑃 < 0.05). ROI placement, FA distributions, and partial regression plot are included in Figure

Figure 2.4.
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Table 2.2: Summary of anatomical differences in FA

Contrast 
Cluster 

Index 

Cluster size 

(voxels)a Locationb Hemisphere 
Coordinates 

(mm)c 

P value 

(corrected) 
MA>CON 1 4556 Internal capsule (anterior limb) L -18, -2, 18 0.02 

     - Superior fronto-occipital 

fasciculus 

L -20, 5, 21 0.02 

     - Internal capsule (posterior limb) L -8, -8, 0 0.03 

     - Cingulum L -20, -40, -4 0.03 

     - Cerebral peduncle L -16, -22, -7 0.03 

 2 1395 Anterior corona radiata L -16, 34, 10 0.03 

     - Corpus callosum (genu) -  -16, 31, 13 0.03 

 3 526 Posterior corona radiata L -24, -36, 39 0.04 

       

CON>ALC   None significant    

MA>ALC 1 3744 Inferior longitudinal fasciculus R 37, -17, -9 0.02 

     - External capsule R 33, 5, 4 0.02 

 2 3689 External capsule L -26, 4, 14 0.03 

     - Inferior longitudinal fasciculus L -38, -12, -16 0.03 

 3 1531 Cerebral peduncle L/R 7, -26, -20 0.03 

     - Internal capsule (posterior limb) L -18, -16, 2 0.03 

     - Corticospinal tract R 7, -21, -28 0.04 
aCluster-forming threshold was P < 0.05. Only clusters with greater than 100 voxels are listed. Local peaks in different anatomical 
structures also included (minimum distance between local peaks was set at 5 mm). bTaken from JHU white matter atlas. 
cCoordinates in MNI stereotactic space (x,y,z). 
 

52



R

y = 0 mm- 20

+ 20

- 40

       MAA>CON
(p<0.01, corrected)

       Tract skeleton

C

R

y = 0 mm- 20

+ 20

- 40

       MAA>ALC
(p<0.05, corrected)

       Tract skeleton

B

R

y = 0 mm- 20

+ 20

- 40

       MAA>CON
(p<0.05, corrected)

       Tract skeleton

A

53



Figure 2.2: Group differences in fractional anisotropy (FA). A) MA>CON group contrast. B)
MA>ALC contrast. C) MA>CON contrast with alcohol exposure clinical severity covariate. Note:
Results dilated back into white matter for visualization (red). Areas of greatest significance are dis-
played as bright centers along the skeleton (yellow and aqua). Background image is ICBM152 1mm
standard brain. Slice numbers referenced from y = 0 mm coronal slice in MNI coordinates. MA =
methamphetamine-exposed group, ALC = alcohol-exposed group, CON = typically-developing control
group.
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Figure 2.3: Regional scatterplots of DTI metrics. Fractional anisotropy (FA), mean diffusivity (MD),
radial diffusivity (RD), and axial diffusivity (AD), are plotted versus age. These plots are facetted into
a matrix by brain region, and color is used to encode group membership (Control, ALC, MA). Linear
trendlines are added to all plots for visual reference. Each region of interest was obtained by centering
a 5mm sphere on the respective cluster center from Table 2, and intersecting this with the associated
P<0.05 statistical map from Figure 2. Note: These plots are intended only to give a general regional
view of the raw data, and to allow inspection for gross outliers. All statistical testing was performed on
the original voxelwise maps.
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Figure 2.4: Brain-behavior analysis. A) Right external capsule (REC) region of interest (ROI) ex-
tracted from thresholdedwhole-skeleton statistical map (dilated back into whitematter for visualization).
B) Box and scatter plot displaying the median and quartile distribution of the fractional anisotropy (FA)
values for each group within the ROI. C) Partial regression plot between FA in the REC and visuomotor
integration (VMI) raw score. Both axes are residualized for age and group.
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2.5 Discussion

The MA group, when compared to typically-developing controls, demonstrated higher diffusion

anisotropy (FA) in cerebral white matter. Regions showing significant group differences were

located mainly along midline structures and in the left hemisphere, and included a pronounced

region of the left anterior corona radiata (LCR) (Figure 2.2A). Considering the anatomical con-

nectivity of this tract, this localization is consistent with previous observations of metabolic and

volumetric abnormalities in the striata of children with prenatal MA exposure (Chang et al., 2004;

Smith et al., 2001), and with the long-standing literature documenting striatal damage in adult MA

abusers (McCann et al., 1998). The underlying diffusion pattern accompanying this higher FA —

lower RD, higher AD (but to a lesser degree), and, therefore, lower MD — is consistent with a re-

cently published ROI-based DTI study, and an expanded MRS study in the same population, which

demonstrated lower diffusion and higher metabolites within small ROIs placed bilaterally in the

frontal and parietal lobes of 3 and 4-year-old children with prenatal MA exposure (Chang et al.,

2009; Cloak et al., 2009). Further, the authors reported a trend towards higher FA in a left anterior

white matter ROI, which also agrees with our results presented here. Our data extend these pre-

vious observations into an older age range and with a whole-brain voxelwise analysis, suggesting

that these white matter microstructural differences are not short-lived transient effects, but rather

broader phenomena that persist later into development. Finally, that the pattern of diffusion dif-

ferences between MA and CON groups is distinct from the ALC vs. CON contrast, and robustly

persists (𝑃 < 0.01) even when both age-gender interactive effects, and alcohol exposure clinical

severity are directly modeled across groups (Figure 2.2C), suggests some level of specificity of pre-

natal MA exposure towards targeting left-hemisphere white matter regions that connect frontal to

striatal structures.

The etiology of changes in FA and other diffusion components in specific brain regions cannot

be completely parsed with imaging data (Beaulieu, 2002). Previous reports have loosely associated

increased RD with demyelinating disorders (Song et al., 2002), and increased AD with more direct
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axonal damage and disruption of the neurofibril architecture (Kim et al., 2006). This framework

would suggest that the lower RD we observed may be due to increased myelination of axons within

the frontal white matter of children with prenatal MA exposure, a pattern that mimics what is seen

during typical development (Lebel et al., 2008b), and would suggest that prenatal MA exposure

leads to a pattern of abnormal acceleration in the developmental trajectory of white matter in some

brain regions (Bashat et al., 2007; Cloak et al., 2009). If so, it remains to be seen whether this

phenomenon represents a direct pathological effect of methamphetamine toxicity, or conversely,

a favorable compensatory mechanism in response to insults in other functional systems. Further,

because higher FA is not specific tomoremyelination, higher FA could also represent such scenarios

as pathologic decreases in the branching, fanning, or crossing complexities of the neuronal arbor

that are manifest through partial volume effects and the uni-orientational nature of the tensor model

of diffusion (Silk et al., 2008).

Because our population with prenatal MA exposure also has heavy comorbid exposure to al-

cohol, we included a separate contrast group of subjects who were exposed to alcohol but not

methamphetamine under the rationale that it might serve as a more appropriate real-world control

group and allow for better isolation of the specific effects of MA. For instance, nicotine exposure

rates and concurrent psychiatric diagnoses — especially ADHD (Fryer et al., 2007) — are better

matched between MA and ALC, than between MA and Control groups. In the ALC group, relative

to the CON group, we observed sub-threshold trends towards lower FA in the external capsule and

deep temporal white matter in the right hemisphere. Still, these results are important to discuss

here because they give context to the MA vs. ALC differences: In this direct MA vs. ALC contrast

between exposed groups (Figure 2.2B), the MA group demonstrated significantly higher FA than

the ALC group in several regions. However, this group effect was most prominent in the right

external capsule — a region where the MA group’s FA was similar to controls (Figure 2.4B) —

suggesting that lower FA in the ALC group is driving this region of highest structural resolvability

between the two exposed groups. This is intriguing because many of the MA subjects have also

been exposed to alcohol, and yet they do not show this pattern of lower FA. It might suggest that
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there are interactive effects with methamphetamine or other factors present in the MA group, or

possibly a different pattern of alcohol exposure in the MA group that is beyond what is captured in

the relatively matched clinical severity scores.

In order to investigate the possible clinical significance of these structural differences, we re-

lated differences in FA to performance on relevant neurobehavioral tests. In line with a previous

volumetric study that included cognitive correlates, we failed to demonstrate a significant group

difference in the relationship between Trails B performance and white matter in brain regions that

differentiated groups (Chang et al., 2004). Further, we failed to observe any relationship between

performance on this executive functioning test and FA in the frontal LCR region. When we investi-

gated the relationship between FA in the right external capsule and VMI, we observed a significant

relationship between score and FA, independent of baseline group differences in score, but failed to

find any group-score interactive effects that would suggest this relationship is modified by exposure

status. While this supports a structure-function relationship across groups in this region of cortical

connectivity, the specificity of this relationship is questionable — as similar results may have been

found in the left external capsule or other tracts relevant to visuomotor performance that were not

investigated in this report. However, this result is similar to observations on very low birth weight

(VLBW) infants, which include broadly lower FA among VLBW adolescents, and correlations be-

tween FA and VMI performance in the internal and external capsules (Skranes et al., 2007). This

raises the possibility that there may be interplay between birth weight and alcohol exposure in pre-

dicting FA and visuomotor ability. Although it would need to be addressed in a follow-up study

containing a low-birth-weight control group, if this were the case it would also help to explain how

the MA group has higher FA — since although they share many demographic factors and similar

levels of alcohol exposure, the MA group here does not share the lower birth weights of the ALC

group.

Several important limitations should be considered when interpreting these results. Because of

the clinical population and correlational nature of these findings, influence by confounding variables

is always a possibility. To minimize this risk, however, common demographic predictors were
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matched across groups, the statistical models were covaried for age, and an alcohol-exposed contrast

group was included as a more realistic control group for isolating MA effects. Nevertheless, there

could be effects of other factors that correlate specifically with MA use. For example, while we

expect nicotine exposure to be relatively well matched between the two exposed groups, direct

effects of nicotine could contribute partly to the observed differences between exposed groups and

control subjects (Slotkin, 1998). While this study included alcohol exposure clinical severity as a

covariate — a novel approach designed to give enhanced specificity for detecting MA effects —

likely nonlinearities to this syndrome-FA relationship, as well as potential higher order interaction

effects between alcohol and other compounds, remain as possible sources of error. As is true ofmost

retrospective studies of prenatal exposure, precise exposure histories were generally unavailable

due to the fact that many of the subjects are not with their biological mothers. Standard limitations

of diffusion imaging and the tensor model should also be appreciated. These include artificially

depressed FA estimates in regions of complex fiber geometry and partial volume averaging.

As the field transitions from asking the question, “Are there any unique effects of prenatal

methamphetamine exposure?” towards actually characterizing these effects, a broadened emphasis

is being focused on the integration of observations from different structural, functional, and clin-

ical modalities into a more parsimonious syndromic framework. By identifying a unique pattern

of abnormalities in these individuals, we may become better equipped to provide the most appro-

priate set of behavioral, educational, and occupational interventions to address their specific needs.

Importantly, by providing the first independent confirmation of white matter abnormalities in the

context of prenatal methamphetamine exposure, by extending the only previous observations into

the age range of adolescence and with a whole-brain voxelwise modeling approach, and by evalu-

ating the effects of prenatal MA exposure in the context of an alcohol exposed contrast group, this

study helps to solidify the notion that methamphetamine exposure may lead to unique pathological

effects on white matter within the developing brain.
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CHAPTER 3

National Research Service Award (NRSA) proposal

3.1 Abstract

Fetal alcohol spectrum disorders (FASDs) arise from the teratogenic effects of alcohol exposure, in

utero, and are an important public health concern as they encompass one of the largest preventable

causes of developmental disability. Specifically, deficits in cognitive function are the major con-

tributor to long-lasting morbidity associated with these disorders, and are thought to relate to the

broad spectrum of structural brain abnormalities that have also been observed in individuals with

FASDs. Executive functioning is one cognitive domain that is particularly affected by fetal alcohol

exposure, and includes an important set of cognitive control mechanisms that normally continue

to develop through adolescence and help to modulate many other lower order cognitive and motor

functions. These actions are thought to be meditated by activity in the frontal lobe, and functional

deficits in these areas in children with FASDs may be related to abnormalities in white matter de-

velopment that have also been observed in the context of fetal alcohol exposure. While frontal lobe

white matter maturation also shows a protracted developmental trajectory, and has been related to

advancements in executive functioning in typical development, a possible relationship between ex-

ecutive function deficits and white matter abnormalities in FASDs has not been investigated. This

proposal aims to apply emerging diffusion magnetic resonance imaging (MRI) techniques, which

allow for greater localization and an enhanced focus on developmental timing, to map white mat-

ter structural development and its relationship to executive functioning advancements in a sample

of typically developing controls. These normative data will then be used as a benchmark for an

investigation into the effects of prenatal alcohol exposure on executive function, white matter de-
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velopment, and their relationship. Most importantly, the results of these brain mapping efforts will

be integrated into a broader classification framework to determine if indices of white matter de-

velopment can help predict the level of executive function deficit among individuals with FASDs.

This work may eventually lead to a better characterization of the precise functional deficits that

affect each patient, and facilitate the application of the most appropriate clinical interventions for

each individual at an earlier time point than what is allowed by neuropsychological testing alone.

3.2 Specific aims

The study of human brain development is crucial for a better understanding of the emergence of cog-

nitive function in typically developing individuals, and also for the important normative background

context that it provides for the study of human disease. In particular, executive functions (e.g.work-

ing memory, response inhibition, set shifting) continue to develop well into adolescence, and so

may be related to the development of white matter connectivity, which also exhibits a uniquely ex-

tended developmental trajectory into the more superior and anterior brain regions responsible for

higher order cognitive functions.

Fetal alcohol spectrum disorders (FASDs) arise from the teratogenic effects of alcohol expo-

sure, in utero, and are an important public health concern as they encompass one of the largest

preventable causes of developmental disability. Children with FASDs exhibit both deficits in exec-

utive functioning andwhitematter abnormalities. Therefore, this populationmay provide a valuable

opportunity to increase our understanding of the interaction between executive function develop-

ment and white matter development, and to apply this enhanced knowledge towards developing

improved clinical interventions for this patient group.

We propose to use emerging diffusion imaging MRI techniques to map white matter structural

development in a sample of typically developing controls. We will then build on this foundation by

examining the relationships between measures of executive function and white matter development

among these individuals. These normative data will then be used as a benchmark for an investi-
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gation into the effects of prenatal alcohol exposure on executive function, white matter develop-

ment, and their relationship. Finally, this information will be integrated into a broader classification

framework, incorporating structural imaging and neurobehavioral data, to determine if indices of

white matter development can help to accurately classify FASD subjects from controls, and to help

predict the level of executive function deficit among the FASD group.

Develop techniques for the study of neuroimaging data in developing populations to…

(a) Evaluate broad trends in the timing of developmental changes in neuroimaging metrics.

(b) Measure localized differences in white matter properties along anatomically defined

white matter tracts.

(c) Integrate multimodal imaging (DTI, morphometry, cortical thickness) and behavioral/

demographic data in a classification framework for the prediction of executive function

deficits among FASD subjects.

1. Investigate typical white matter development and its relationship to functional advance-

ments during childhood, adolescence, and young adulthood.

(a) Voxelwise: We expect to demonstrate a maturing pattern of changes in DTI metrics

throughout the brain (increasing fractional anisotropy, FA; decreasing mean diffusivity,

MD; decreasing radial diffusivity, RD). We predict broad gradients in the timing of

developmental changes in these diffusion metrics, with changes occurring earlier in

more posterior/inferior areas, and later in more anterior/superior areas.

(b) Tractography: We expect to demonstrate a maturing pattern of changes in DTI met-

rics in the major white matter tracts in the brain. We expect that mapping white matter

maturation along the tracts will reveal regional variability in the developmental trajec-

tory that characterizes the relationship between diffusion imaging metrics and age (i.e.

varying age at plateau).
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(c) Brain/behavior: We expect more efficient processing (i.e. higher performance) on

measures of executive functioning to be related to more mature DTI indices, indepen-

dent of age. We expect this relationship to be strongest within tracts that connect to the

frontal lobe.

2. Investigate the impact of prenatal exposure to alcohol onmaturational patterns of white

matter development, and its relationship with functional deficits.

(a) Voxelwise: We expect a maturing pattern of changes in DTI metrics throughout the

brain in FASD subjects. However, independent of age, we expect altered white matter

integrity in FASD subjects. We expect altered global gradients in developmental timing

in FASD subjects, relative to patterns in unexposed controls.

(b) Tractography: We expect altered white matter integrity in FASD subjects within ma-

jor white matter tracts. For areas previously identified to show group differences, we

predict that mapping DTI indices along white matter tracts will allow for more precise

localization of the affected regions.

(c) Brain/behavior: Weexpect decreased performancemeasures in FASD subjects. Within

the FASD group, similar to controls, we expect more efficient processing onmeasures of

executive functioning to be related to more mature DTI indices, and expect this relation-

ship to be strongest within tracts in the frontal lobe. While we expect similar patterns of

white matter development, we expect the spatial extent of relationships between white

matter and executive function to be more diffuse in FASD relative to control subjects, as

determined by significant group by score interactions in predicting white matter indices.

(d) Classification: We expect diffusion imaging data to provide useful features for the

classification of FASD subjects from controls, and for the prediction of the level of

executive function deficits among FASD subjects.
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3.3 Investigate typical white matter development and its relationship to

functional advancements during childhood, adolescence, and young adult-

hood. (Specific Aim 1)

3.3.1 Significance

Human brain development is a regionally and temporally dynamic orchestration that begins in utero,

and extends well into adulthood. Although overall brain size changes relatively little past the age

of 5 (Dekaban, 1978), childhood and adolescence remains a time of remarkable and varied brain

maturation beneath the pial surface. Continuing changes include processes that are progressive,

like synaptogenesis and myelination, as well as ones that are regressive, like synaptic pruning and

programmed cell death (Huttenlocher, 1979). Together, these phenomena help shape the maturation

of different cortical and subcortical foci, as well as the white matter network that integrates these

diverse regions.

One of the most important, and surprising, observations to emerge from the early developmen-

tal neuroimaging efforts to map these maturational changes is that, although gray matter volume

(Jernigan et al., 1991; Sowell et al., 2004a), and synaptic density (Huttenlocher, 1979) peak rela-

tively early and then begin to decline during childhood and adolescence, white matter continues a

sustained and linear increase in volume through young adulthood (Giedd et al., 1999a; Sowell et al.,

2003). Corroborating results come from classical histological studies of myelination, which suggest

extended myelination in the white matter well into adulthood (Yakovlev and Lecours, 1967), as well

as advancing myelination outwards towards the cortex (Kemper, 1994). This robust and protracted

maturational pattern has helped to rewrite the age range associated with brain “development”, and

has encouraged an increasing research focus on the white matter and its network connectivity as

a possible mediator of cognitive gains in executive function domains, which are also seen during

later development.

Concurrently with the developing interest in studying white matter connectivity between differ-
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ent brain regions and its relationship with cognitive function, diffusion imaging has developed as an

MRI modality specifically designed to investigate the white matter (Basser et al., 1994; Beaulieu,

2002; Pierpaoli et al., 1996). Using this unique imaging framework, which provides superior over-

all white matter contrast compared to traditional T1-weighted anatomical MRI, there has been a

recent surge in research aimed at mapping the developmental landscape in these important regions

of connectivity. Diffusion tensor imaging (DTI) is the most broadly validated diffusion imaging

variation, and fits well within the time constraints of clinical studies (Le Bihan, 2003). This tensor

model can be thought of geometrically as a diffusion ellipsoid at each voxel, with diffusion compo-

nents in the radial (RD, radial diffusivity) and axial (AD, axial diffusivity) directions (Figure 1.6,

center). The size of this ellipsoid corresponds to the overall mean diffusivity (MD). The shape of

the ellipsoid corresponds to the directionality of diffusion, and is termed fractional anisotropy (FA).

By assuming the direction of maximal diffusion aligns with the underlying neuronal fiber geometry,

these methods have also been extended with tractography procedures, which allow for the in vivo

dissection of groups of tract streamlines that are thought to reflect the underlying white matter tract

geometry. Because it has been shown to be sensitive to myelination, FA has received considerable

attention as a way to track the developmental maturation within the white matter (Schmithorst and

Yuan, 2010), as well as its relationship to cognitive advancements (Bengtsson et al., 2005; Liston

et al., 2006; Scholz et al., 2009) and disease (Casey et al., 2007; Le Bihan, 2003). Similar to ob-

servations in the overlying gray matter, white matter development — as viewed through the lens

of these diffusion imaging metrics — has been shown to be a complex temporally and regionally

dynamic function of age (Lebel et al., 2008b; Mukherjee et al., 2001; Snook et al., 2005). The

extended period of postnatal myelination contributes to decreasing diffusion in the radial direction

(RD) against the myelin insulation, which consequently leads to increasing diffusion directionality

(FA). Thus, the characteristic regime of changes seen in DTI metrics during development is that

in Figure 1.6D. This period of rapid maturation plateaus towards adulthood, which has led to the

preferred use of exponential functions when modeling these changes (Bashat et al., 2005; Lebel

et al., 2008b; Mukherjee et al., 2001).
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However, despite the strong progress that has beenmade towards understanding structural white

matter development and its functional significance in health and disease, there remain several bar-

riers to progress in this field. Two previous limitations that we help to address with this proposal

are: 1) There is commonly a trade-off between the localizability of voxelwise methods, and the

personalization (i.e. avoidance of spatial-normalization confounds) of tractography methods, and

2) The developmental trajectory is a nonlinear process, characterized by a timing parameter of in-

terest, yet standard voxelwise protocols generally rely on simpler linear modeling methods. To

address the first issue, our aims include the use of cutting-edge tractography methods that allow for

the analysis of DTI metrics along anatomically defined white matter tracts. To address the second

issue, our aims maintain a focus on characterizing the timing of the overall nonlinear developmental

trajectory, and how this may relate to functional advancements during typical development, and to

disease in the context of fetal alcohol exposure. This is done through the use of a novel “develop-

mental timing quotient”, which is sensitive to the nonlinear timing of the developmental trajectory

(Aim 1a), and also through the direct modeling of the nonlinear developmental trajectory at many

points along tractography-defined tracts (Aim 1b) and the correlation of this timing with executive

function advancements (Aim 1c). This emphasis on timing is not typically seen in voxelwise meth-

ods, where differential timing is only indirectly inferred from comparisons of binned age groups

or regions of interest (ROIs). Yet structural MRI findings in the cortex support the notion that a

focus on timing may be of critical importance: In a landmark study, Shaw and colleagues demon-

strated that IQ correlates most closely, not with cortical thickness per se, but with the rate of change

in cortical thickness during development (Shaw et al., 2006a). It is possible that a similar higher-

order timing parameter may be an important way to relate white matter development to functional

advancements as well. Therefore, through a combination of improved technical ability and novel

analyses, our aims include the first quantitative and continuous analysis of broad trends in devel-

opmental timing throughout the brain (Aim 1a), as well as the production of the first along-tract

atlases of developmental timing (Aim 1b) and the correlation of this timing with executive function

performance (Aim 1c).
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Executive functions are a class of cognitive control mechanisms that are thought to be driven

by activity in the prefrontal cortex (Fuster, 2000, 2001; Sakai, 2008), and which exert widespread

modulatory effects on other lower-order cognitive and motor processes through the postulated sub-

domains of shifting, updating (e.g. working memory), and inhibition (Miyake et al., 2000; Romine

and Reynolds, 2005). These functions are some of the last cognitive domains to fully develop (Luna

et al., 2004, 2010; Spear, 2000), which correlates temporally with the protracted course of white

matter development. This has prompted the hypothesis that there may be a relationship between

these two phenomena, which indeed has been suggested by a recent normal developmental study

that correlated response inhibition with average DTI metrics in a tract-based frontostriatal ROI

(Casey et al., 2007; Liston et al., 2006), and also by their association in different disease contexts

(Skranes et al., 2009). Here we plan to extend these early findings with a more comprehensive map-

ping of the DTI correlates of executive function (Aim 1c), which will include 1) 10 major white

matter tracts in the brain, 2) A broader set of executive functions, and 3) Along-tract procedures

for greater localization.

3.3.2 Participants

Participants and recruitment strategies are described more fully, as requested, in the “Protection of

Human Subjects” section. Briefly, typically developing participants will include approximately 70

5–30 year old males and females recruited from the Los Angeles community by word of mouth,

and by paper flyer, mail, and internet announcements. Exclusion criteria include items that would

preclude safe participation in the study, or would be expected to confound results.

3.3.3 Behavioral measures of executive function

Our neuropsychological testing battery includes an estimation of full-scale IQ (WISC-IV), as well

as several measures of executive functioning that we intend to correlate with DTI metrics. These

include the Wisconsin Card Sorting Test (WCST), a composite test that requires problem solving
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and cognitive flexibility, the WISC-IV Working Memory score, and the Delis-Kaplan Executive

Function Scale (D-KEFS) battery (Mattson et al., 1999). See Appendix for a full description of

these instruments.

3.3.4 MRI data acquisition/processing

MRI data are being collected on a Siemens Trio 3Tesla scanner at the UCLABrainMapping Center

as part of Dr. Sowell’s ongoing studies of typical development and fetal alcohol exposure. The

parts of our acquisition protocol that are relevant to the present proposal are a sagittally-acquired

T1-weighted anatomical scan (MP-RAGE), as well as a diffusion weighted series (30 diffusion

encoding gradient directions with 𝑏 = 1000 s/mm2, one 𝑏 = 0 volume, 96 × 96 matrix in-plane,

field-of-view 240mm, 55 axial slices of 2.5mm each, resulting in 2.5 × 2.5 × 2.5mm isotropic

voxels with whole brain coverage).

The raw diffusion weighted data for each subject will be preprocessed according to standard pro-

tocols available in FSL (http://www.fmrib.ox.ac.uk/fsl) and TrackVis (http://www.trackvis.

org), and automated within the LONI Pipeline (http://pipeline.loni.ucla.edu). Affine registra-

tion to the 𝑏 = 0 volume will be used to correct for minor head motion and eddy-current distortions.

A six-parameter tensor model of diffusion will then be fit to the raw data to give voxelwise maps of

the 3 principle diffusion directions, as well as the magnitudes of diffusion (i.e. eigenvalues) along

these three axes. AD is the eigenvalue along the principle eigenvector, and RD is the average of

the remaining two eigenvalues. Composite maps will also be generated of FA and MD.

Whole-brain brute-force tractography will be performed using the Fiber Assignment by Con-

tinuous Tracking (FACT) algorithm that was developed at Johns Hopkins University (Mori et al.,

1999) and has been extensively validated in the literature (Johansen-Berg and Rushworth, 2009;

Wakana et al., 2004). This process generates deterministic streamlines by iteratively moving from

voxel to voxel along the direction of maximal diffusion. Constraints on the tractography include:

1) A whole-brain mask, 2) An FA threshold of 0.2, to prevent spurious fibers in areas of high di-

rectional uncertainty, and 3) A turning angle threshold of 35 or 60 degrees, depending on tract, to
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prevent biologically implausible fibers (e.g. loops, U-turns, etc.).

3.3.5 Voxelwise modeling of age-related changes in DTI metrics

First-level voxelwise modeling of developmental changes in FA will be conducted for use with the

novel developmental timing quotient procedure, discussed next. Methods will follow the standard

Tract-based Spatial Statistics (TBSS; part of FSL) pipeline, which attempts to minimize the ef-

fects of misregistration errors by collapsing white matter tracts onto a core “skeleton” (Smith et al.,

2007). Briefly, this process involves nonlinear registration of FA maps to a standard FA template,

and then registration/upsampling into MNI152 standard stereotactic space. The maximal local DTI

metrics are then projected down onto the skeleton for voxelwise statistical analysis. Because non-

linear exponential models do not fit within the general linear model (GLM) framework of FSL,

for this analysis we model the developmental changes of DTI metrics as a low order polynomial

function with age and age2 regressors. Threshold-free cluster enhancement (TFCE) is used to up-

weight cluster-like features in the data, and permutation methods are used to generate voxelwise

significance P-value maps fully corrected for multiple comparisons (Nichols and Holmes, 2002;

Smith and Nichols, 2009).

3.3.6 Developmental timing quotient (Aim 1a)

Human brain development is generally thought to proceed along a caudal-rostral arc, with more

posterior/inferior primary sensory regions developing earlier than more anterior/superior frontal

regions. However, previous observations of patterns in developmental timing of the white matter

and myelination have generally been qualitative in nature — either noted through inspection (Kem-

per, 1994; Yakovlev and Lecours, 1967), or comparisons between binned ROIs (Lebel et al., 2008b;

Schneider et al., 2004) or binned age groups (Nomura et al., 1994; Qiu et al., 2008; Snook et al.,

2005). Here, we aim to demonstrate this most general phenomenon for the first time in a continuous

and quantitative manner across the whole brain.
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To do so, we introduce a novel “developmental timing quotient”, which uses the P-value maps

for the age and age2 regressors from the first-level voxelwise analysis, discussed above. For a given

arbitrary ROI, this metric is equal to the fraction of voxels that have a significant linear (i.e. age)

regression coefficient that additionally have a significant quadratic (i.e. age2) regression coefficient.

Intuitively, this can be thought of as similar to “the fraction of the volume that is still showing any

age-related increase in FA in our age window, which is nearing its developmental plateau in the

neighborhood of our age window.” For areas that are developing earlier, a greater proportion of the

voxels will exhibit this nonlinear component (i.e.will have a significant age2 term) as they near their

developmental plateau, and this timing quotient will be closer to unity. Conversely, areas that are

developing later will have a timing quotient closer to zero, as white matter development continues

beyond the age range studied and fewer voxels exhibit a significant bending towards a plateau. As

such, this metric is expected to be sensitive to the nonlinear developmental timing parameter of

interest, yet fits within the simpler GLM framework of standard voxelwise modeling packages.

Using data from an older set of 6-direction DTI scans, we applied this developmental timing

quotient in a slice-wise manner to investigate whether it could resolve the expected broad global

trends in developmental timing along the inferior-to-superior and posterior-to-anterior axes in the

brain. The preliminary results have been promising (See Chapter 4), as this procedure revealed

the expected changes in developmental timing, and for the first time, allowed us to quantify these

gradients in a continuous manner across the whole brain. This effort has prompted us to extend

these efforts to the 30-direction DTI data that we are presently collecting.

3.3.7 Length-parameterized tractography statistics (Aims 1b, 1c)

Traditional voxelwise brain-mapping strategies have revealed that there is prominent regional vari-

ation in the characteristics of white matter maturation, as well as their relationship with functional

advancements. However, direct voxelwise comparison of diffusion imaging data is challenging

because the high-contrast edges of diffusion imaging volumes (e.g. FA maps) amplify their sus-

ceptibility to small misregistration errors. Further, the anatomical variability of tract position in
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Figure 3.1: Length-parameterized tractography statistics

health, and especially in disease, increases the difficulty of automatically registering functionally

equivalent locations (analogous to the difficulty in registering functionally equivalent cortical areas

together because of sulcal variability). DTI tractography, on the other hand, is able to circumvent

these registration issues by performing individualized tract delineations for each subject, and then

makes statistical comparisons by relying on the assumption that the experimenter is actually able

to extract the same tract for each subject. Unfortunately, despite the eloquence of this technique,

the intricate personalized tract dissections are typically collapsed down in a heavy-handed man-

ner for statistical analyses. This standard processing step ignores the potentially rich anatomical

variation in diffusion imaging metrics along the tracts, and yields only a single mean DTI metric

and variance estimate for each tract and for each subject (See “collapsed estimate” in Figure 3.1F).

Beyond the decreased detail this means for brain mapping studies of typical white matter develop-

ment, it also implies possibly reduced power to detect group differences within patient populations,

as subtle differences may be averaged out across the whole tract, and the variance estimates could

be inflated because the potential along-tract variance is ignored.

Accordingly, there is a small but growing interest in modeling DTI parameters along tracts

(Corouge et al., 2006; Davis et al., 2009; Zhu et al., 2010). To address this issue, we have developed
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a toolbox, written in MATLAB and R, that is able to: 1) Read in dissected tract groups created by

the popular TrackVis deterministic tractography software (Figure 3.1A-C), 2) Re-parameterize the

included streamlines using cubic B-splines, 3) Resample the streamlines along a uniform set of

arc distances from a specified origin, 4) Collapse the raw streamlines from the tract group into an

average tract streamline with cross-sectional average DTI metric and variance estimates at many

points along the tract (Figure 3.1D,F), 5) perform statistical analysis, including the use of non-

linear developmentalmodels, and 6) project the statistical results (parameter estimates and p-values)

back onto a representative subject average tract streamline for visualization (Figure 3.1E) (Colby

et al., 2012). Preliminary results from an analysis of the corticospinal tract in a small sample of

several typically developing individuals demonstrate the feasibility of this approach. Mean DTI

metrics were, indeed, found to have prominent variations along the tract, and, as expected, variance

estimates were reduced in many areas along the tract (Figure 3.1F).

In the full analysis that will be conducted under this proposal, a full-time trained research as-

sistant will follow the deterministic tractography “cookbook” described in Wakana et al. (2007),

to extract ten major white matter tracts in the brain for each participant. We will then generate the

first along-tract atlases of developmental timing (i.e. the time constant characterizing the time-to-

plateau).

3.4 Investigate the impact of prenatal exposure to alcohol on maturational

patterns of white matter development, and its relationship with func-

tional deficits. (Specific Aim 2)

3.4.1 Significance

Although anecdotal reports in the historical record have long implicated in utero alcohol exposure as

a source of congenital disability, the cluster of clinical signs now known as fetal alcohol syndrome

(FAS) was not formally characterized until the landmark observations by Jones and colleagues
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in Seattle in 1973 (Jones et al., 1973). Since that initial description of the four classic general

features of FAS — 1) Confirmed alcohol exposure, 2) Growth deficiency, 3) Facial abnormalities,

and 4) Central nervous system manifestations — fetal alcohol exposure has also been associated

with other physical abnormalities, as well as a variety of subtler manifestations, which has given

rise to the recognition of a more inclusive continuum of fetal alcohol spectrum disorders (FASDs)

(American Academy of Pediatrics, 2000). With the expanding recognition of FASDs over the last

three decades, the extent of their incidence and morbidity has become startlingly clear: It has been

estimated that up to 30% of females in the U.S. who deliver live born infants report alcohol intake

during their pregnancy (Ethen et al., 2009), and the incidence of full FAS has been estimated to

be between 0.5 and 2 cases per 1000 live births (May and Gossage, 2001). With the inclusion

of alcohol-related neurodevelopmental disorder (ARND), an FASD variant that exhibits CNS and

cognitive abnormalities but doesn’t require the facial stigmata or growth deficiency for diagnosis,

this estimate jumps to nearly 1 in every 100 live births (Sampson et al., 1997). This picture becomes

even more concerning in select communities where alcohol abuse is endemic (May et al., 2008).

Further adding to the expected true impact of FASDs is the fact that underreporting is likely to be

significant, due to: 1) Diagnostic difficulty, especially of subtler cases, 2) Likely underreporting

of alcohol intake by mothers, and 3) The most severe manifestations of fetal alcohol exposure —

spontaneous abortion or still birth — not being reported.

While the relative prominence of physical malformations actually improves with age and matu-

ration through puberty, the neurological manifestations are long lasting into adulthood (Streissguth

et al., 1991). Accordingly, a large portion of FASD research has focused on characterizing func-

tional deficits in cognitive, behavioral, and neurological domains, as well as the underlying struc-

tural brain abnormalities that are thought to mediate these effects. Neuropsychological testing has

revealed a broad range of deficits among FASD subjects, including decreases in full-scale IQ and

more specific tests of executive functioning, mathematical ability, motor skills, attention, language,

and learning and memory (Gray et al., 2009; Guerri et al., 2009; Howell et al., 2006; Mattson et

al., 2010). Executive functioning is affected particularly severely, with reported deficits in response
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inhibition, working memory, verbal and nonverbal fluency, planning, attention, cognitive flexibil-

ity, feedback utilization, and sequencing (Mattson et al., 1999; Mattson et al., 2010; Rasmussen,

2005). In fact, executive functioning performance is even worse than what would be predicted

based on decreased IQ alone (Connor et al., 2000), and is likely one of the domains most affected

by fetal alcohol exposure (Mattson et al., 2010). Similarly, in addition to global microcephaly,

widespread localized abnormalities in brain structure have also been reported in FASD subjects us-

ing neuroimaging methods (Norman et al., 2009; Sowell et al., 2008, 2010; Spadoni et al., 2007).

However, of the handful of FASD DTI studies of the white matter, the only clear consensus is on

abnormalities in the corpus callosum (Li et al., 2009; Ma et al., 2005; Wozniak et al., 2006). The

three remaining studies, which also saw differences in the corpus callosum, but additionally looked

elsewhere throughout the brain, are difficult to compare because each used a very different analysis

protocol (voxel-based morphometry, TBSS, deterministic tractography) (Fryer et al., 2009; Lebel

et al., 2008a; Sowell et al., 2008). Here, we aim to extend previous findings by investigating the

effects of fetal alcohol exposure on broad gradients in developmental timing (Aim 2a) and by gener-

ating the first along-tract atlas of white matter abnormalities in FASD subjects (Aim 2b). This will

advance our knowledge of white matter abnormalities in FASDs by: 1) Extending previous trac-

tography results with far-greater along-tract detail, 2) Giving increased power to detect localized

changes within tracts, and 3) Allowing for a link between previous voxelwise and tract-averaged

results and a level of corroboration between the studies that have used each method. We will then

extend this work with a novel investigation into the relationship between white matter abnormali-

ties and executive functioning deficits (Aim 2c). While both have been reported in the context of

FASDs, their relationship has not been investigated. Finally, we will apply the findings from all of

these efforts in Specific Aims 1 and 2 to investigate whether DTI data can help to classify FASD

subjects from controls, and to predict the level of deficits in executive functioning among FASD

subjects (Aim 2d).
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3.4.2 Recruitment of FASD subjects

Recruitment strategies and clinical diagnostic procedures for FASD subjects are described more

fully, as requested, in the “Protection of Human Subjects” section. In addition to the general re-

cruitment strategies described above for all subjects, participants with prenatal exposure to alcohol

were also specifically recruited from a non-clinic-referred university-associated social skills train-

ing group for children with FASDs. Subjects with confirmed alcohol exposure were then evaluated

for an FASD diagnosis by a skilled clinician, according to the Diagnostic Guide for Fetal Alcohol

Syndrome (FAS) and Related Conditions (Astley, 2004). Possible diagnoses include FAS, partial

PAS, sentinel features (if not all of the facial features are present for partial FAS), or alcohol-related

neurodevelopmental disorder (ARND).

3.4.3 Developmental gradients in FASD subjects (Aim 2a)

We plan to extend our novel characterization of global gradients in white matter developmental

timing to subjects with FASD. Based on previous results in the literature, including findings of

decreased FA and less efficient functional MRI activation in FASD subjects, we predict altered

patterns of developmental timing in FASD subjects. This could manifest as a decreased slope or

intercept on the developmental timing quotient vs. slice index plots.

3.4.4 Analysis of DTI metrics along white matter tracts in FASD subjects (Aims 2b, 2c)

The challenges to performing accurate spatial normalization of DTI volumes are compounded in

FASD subjects due to gross cranial malformations like microcephaly. This makes in vivo tractogra-

phy an attractive option for investigating possible abnormalities in white matter maturation in these

individuals, as it will be personalized to each subject’s individual anatomy. Indeed, the only study

that has comprehensively mapped average DTI indices within the major white matter tracts in the

brains of FASD subjects was able to demonstrate differences between FASD subjects and controls

in a variety of tracts — including the corpus callosum, cingulum, and inferior/superior longitudinal
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fasciculi (Lebel et al., 2008a). While these observations helped to extend earlier voxelwise results,

it would be useful to localize precisely where along the white matter tracts the differences occur, as

well as to investigate differences in developmental timing along these tracts — analyses that have

not been previously attempted. By applying the length-parameterized tractography procedure we

discussed previously, we aim to create the first along-tract atlas of white matter abnormalities in

FASD subjects, and the first mapping of their relationship to executive functioning deficits. This

will be done by: 1) Examining group differences at each point along each tract, controlling for

age, 2) Examining differences in developmental timing along each tract, and 3) Relating executive

function scores to DTI metrics along each tract, controlling for age.

Using this procedure, we have conducted a preliminary analysis in a group of 20 participants

(9 with FASDs, and 11 controls). We examined FA along the inferior longitudinal fasciculus (ILF)

and the arcuate fasciculus (AF) bilaterally (L and R), and found preliminary group differences in the

L ILF that were localized primarily to the posterior section of the tract (See Chapter 5, specifically

Figure 6). This finding is in agreement with the results of Lebel et al., but is also a useful illustration

of how this procedure provides additional localization detail and the opportunity to reveal features

in the data that might be obscured if only whole-tract-averaged DTI metrics are evaluated. These

results can then be overlaid on a single subject’s average tract streamline for visualization and for

comparison with other voxelwise maps (See Chapter 5, specifically Figure 7).

3.4.5 Classification of FASD subjects from controls (Aim 2d)

From a public health standpoint, prevention will always play the primary role in the campaign

against the ill effects of fetal alcohol exposure. Nevertheless, postnatal imaging and behavioral

studies can also play an important role in the early diagnosis of FASDs, and, most importantly, in

the identification of the precise functional deficits in neurological, cognitive, and psychobehavioral

domains that affect each individual patient. Specifically, if imaging can provide useful structural

indicators of later functional deficits, then this may at some point aid in the implementation of

personalized interventions at an earlier age than what is allowed by school-age neurobehavioral
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Figure 3.2: Simulated SVM accuracy vs. effect size/extent

testing alone, and may ultimately help mitigate the long-term functional consequences of fetal al-

cohol exposure. Towards this end, there is growing interest in integrating the findings from various

modalities (imaging, clinical findings, neuropsychological testing, demographics) into a common

classification system that can be used as a diagnostic aid or for functional prognostic forecasting.

Using discriminant function analysis, our group recently demonstrated success (72% overall accu-

racy, versus 33% chance) using structural morphological features for the classification of FASD

and methamphetamine-exposed children from controls (Sowell et al., 2010). A complementary ex-

periment, conducted by our colleagues in the Collaborative Initiative on Fetal Alcohol Spectrum

Disorders (CIFASD), of which our lab is also a participating member, focused only on FASD sub-

jects and controls, and used only neurobehavioral data as features. Using an unsupervised latent

profile analysis, they were able to confirm that two classes, indeed, fit the data better than one.

Using the resultant classifier, they were able to attain an overall accuracy of approximately 85%,

versus 50% chance (Mattson et al., 2010). In both studies, the integration of broader features —

beyond only full-scale IQ estimates — was able to improve classification accuracy. Here, we aim

to extend these efforts by: 1) Integrating structural MRI, diffusion MRI, and neurobehavioral fea-

tures, and 2) Incorporating support vector machine (SVM) classification and regression, which is a
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modern nonlinear method that can also incorporate kernel transformations of the raw data. Using

the variance structure extracted from real data, we simulated an artificial dataset to investigate the

relationship between effect sizes/extent and classification accuracies. Reports of group differences

in FA of 0.02–0.03 across three regions in the context of schizophrenia (Phillips et al., 2009), and

0.03–0.05 across five regions in autism (Kumar et al., 2010) correspond to predicted accuracies

of approximately 80–90% (Figure 3.2). This suggests that realistically sized group differences in

DTI metrics can result in high levels of group classification accuracy using SVM. We now plan

to integrate features from real DTI data with structural imaging and behavioral data to see if this

can improve group classification accuracy and/or predict the level of executive function deficits in

FASD subjects.
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CHAPTER 4

Developmental gradients
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A fundamental tenet in the field of developmental neuroscience is that brain maturation generally proceeds
from posterior/inferior to anterior/superior. This pattern is thought to underlie the similar timing of
cognitive development in related domains, with the dorsal frontal cortices–important for decision making
and cognitive control–the last to fully mature. While this caudal to rostral wave of structural development
was first qualitatively described for white matter in classical postmortem studies, and has been discussed
frequently in the developmental neuroimaging literature and in the popular press, it has never been formally
demonstrated continuously and quantitatively across the whole brain with magnetic resonance imaging
(MRI). Here we use diffusion imaging to map developmental changes in the white matter in 32 typically-
developing individuals age 5–28 years. We then employ a novel meta-statistic that is sensitive to the timing
of this developmental trajectory, and use this integrated strategy to both confirm these long-postulated
broad regional gradients in the timing of white matter maturation in vivo, and demonstrate a surprisingly
smooth transition in the timing of white matter maturational peaks along a caudal–rostral arc in this cross-
sectional sample. These results provide further support for the notion of continued plasticity in these regions
well into adulthood, and may provide a new approach for the investigation of neurodevelopmental disorders
that could alter the timing of this typical developmental sequence.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Much of the current understanding of white matter development
has evolved from the seminal work of the pioneering neuroanatomists
who first mapped the regional histology of the brain in postmortem
samples. Influential observations during the 1960s demonstrated that
myelination, while beginning in the second trimester of pregnancy,
continues prominently into adulthood through the second and third
decades of life—and perhaps beyond (Yakovlev and Lecours, 1967).
Moreover, these data extended much earlier observations of regional
variations in myelination (Kemper, 1994) and contributed to the
wider maxim that brain development generally proceeds along a
caudal–rostral arc. Thus, it would appear that myelination within the
white matter proceeds in tune with the development of overlying
gray matter (Giedd et al., 1999; Gogtay et al., 2004; Huttenlocher,
1990) and the overall emergence of brain function (Spear, 2000)—
with more posterior/inferior areas underlying earlier-emerging

sensory functions myelinating earlier, and more anterior/superior
areas mediating later-emerging higher order executive processes
myelinating later.

More recently, MRI has allowed these phenomena to be investi-
gated in vivo. In particular, diffusion tensor imaging (DTI) enables
measurement of the diffusion properties of water within the brain,
which are affected by constraints placed by the neuronal microenvi-
ronment (Le Bihan, 2003; Mori and Zhang, 2006). Fractional
anisotropy (FA), a measure of diffusion directionality summarizing
individual diffusion components along the axial and radial directions
(AD and RD, respectively), has been shown to be sensitive to
myelination, and so has received significant attention as 1) a metric
to track the developmental maturation of white matter (Lebel et al.,
2008), 2) a means of mapping normal white matter connectivity
(Behrens et al., 2003), 3) a possible imaging biomarker in disease
(Sowell et al., 2008; Versace et al., 2008), and 4) a way to investigate
the relationship between white matter structure and cognitive
function (Bengtsson et al., 2005; Scholz et al., 2009; Tuch et al.,
2005). The developmental trajectory of white matter, in general,
has been shown to be a complex temporally and regionally dynamic
function of age (Hsu et al., 2010; Lebel et al., 2008; Mukherjee
et al., 2001). Extended postnatal myelination contributes to a period
of increasing FA through greater insulation of the intracellular

NeuroImage 54 (2011) 25–31

⁎ Corresponding author. Department of Neurology, David Geffen School of Medicine
at UCLA, 710 Westwood Plaza, Mail Code 176919, Los Angeles, CA 90095-7332, USA.
Fax: +1 310 825 6956.

E-mail address: esowell@ucla.edu (E.R. Sowell).

1053-8119/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2010.08.014

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r.com/ locate /yn img

80



environment, a more restricted extracellular milieu, and overall
reduced diffusion. As the period of rapid developmental maturation
plateaus during adulthood, so too does FA. Accordingly, this nonlinear
trajectory has been modeled as an exponential rise (Lebel et al., 2008;
Mukherjee et al., 2001), but has also been approximated through
young adulthood by polynomial models that integrate well with
established whole-brain general linear modeling (GLM) packages
(Hsu et al., 2010) (Fig. 1).

Previous developmental DTI reports that have binned different age
groups (i.e. child, adolescent, adult) have shown that changes in
diffusion parameters are generally concentrated in more posterior
occipital regions during the transition between earlier age groups, and
in more frontal regions later in development (Asato et al., 2010;
Nomura et al., 1994). Similarly, when developmental changes in
diffusion parameters have been analyzed with age as a continuous
variable, frontal regions-of-interest (ROIs) generally show later
timing than other brain regions (Lebel et al., 2008; Mukherjee et al.,
2001; Tamnes et al., 2010). Nevertheless, these previous observations
of patterns in developmental timing have generally been qualitative
in nature—either noted through visual inspection of voxelwise or
surface-based statistical maps, or individual pairwise comparisons
between binned tract or volume ROIs. Despite the nuanced details
about white matter development that have emerged using these
strategies, the simplest classical hypothesis–that maturation proceeds
in a posterior-to-anterior and inferior-to-superior fashion–remains
largely untested in this context.

In the present article, we demonstrate this broad pattern of white
matter maturation, as indexed by FA, in the most general sense in a
continuous and quantitative fashion across the whole brain. To do so,
we introduce a novel “developmental timing quotient” that is
sensitive to the nonlinear timing of white matter development and
fits within a simple GLM framework. While all areas of the brain will
eventually reach some sort of developmental peak or plateau,
perhaps the majority of regions even within our age window, we
reasoned that one could harness the assumed finite power to detect
this plateau–usually a limitation of standard analyses–in a useful
metric that is sensitive to developmental timing. By doing so, we
were able to observe broad gradients in developmental timingwithin
the white matter along posterior-to-anterior and inferior-to-superi-
or axes, and quantify these gradients in a continuous fashion across
the brain.

Materials and methods

Participants

32 healthy participants (age 5–28 years, mean 14.4±7.2 years
(standard deviation, SD), 16 females, 16 males) were recruited in
response to advertisements and word-of-mouth. Exclusion criteria
included: 1) Known exposure to alcohol or drugs of abuse; 2)
age younger than 5 years; 3) IQ less than 70; 4) head injury with loss
of consciousness over 20 minutes; 5) physical (e.g. hemiparesis),
psychiatric illness, or developmental disability (e.g. autism) that would
preclude participation; 6) other potential known causes of mental
deficiency (e.g. chromosomal disorders); 7) significant maternal
illness with increased risk for fetal hypoxia (e.g. sickle cell disease);
and 8) presence of implanted metal in the body. After a thorough
discussion of the study protocol, participant consent (or for ageb18,
parent/guardian consent and participant assent) was obtained in
accordancewith procedures approved by the UCLA Institutional Review
Board.

DTI acquisition and processing

Whole-brain diffusion-weighted imaging data were acquired on a
1.5 Tesla Siemens Sonata MRI scanner. Three sets of whole-brain data
were acquired for each subject, with each set including diffusion
weighted volumes (6 directions, b=1000 s/mm2, 50 axial slices,
3×3×3 mm3 isotropic voxels) and one non-diffusion-weighted
volume (b=0 s/mm2). Brain volumes were skull stripped with the
Brain Extraction Tool (BET) (Smith, 2002) and a 12 parameter affine
registration to the first b=0 volume was applied to correct for minor
head motion and eddy current distortions introduced by the gradient
coils. A diffusion tensor model was fitted to the data in a voxelwise
fashion to generate whole-brain maps of fractional anisotropy (FA;
the directionality of the diffusion). DTI preprocessing was performed
using the FMRIB Software Library (FSL) 4.1.0 analysis suite (http://
www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004; Woolrich et al., 2009),
and automated within the UCLA LONI Pipeline 4.2.1 processing
environment (http://pipeline.loni.ucla.edu) (Rex et al., 2003).

Tract-based Spatial Statistics (TBSS; http://fsl.fmrib.ox.ac.uk/fsl/
tbss) was then used to investigate the regional dynamics of age-
related maturational changes in this white matter parameter (Smith
et al., 2006). First, B-spline based nonlinear registration was
performed between all subjects' FA maps and the FMRIB58 58-subject
average FA template using the FSL Nonlinear Image Registration Tool
(FNIRT). In turn, this FA template was registered to the ICBM152
1 mm standard T1-weighted template using an affine transformation,
and all study subjects were brought through this concatenated spatial
normalization and up-sampling interpolation process into MNI152
standard space. A study-specific mean FA image was generated in
standard space, and skeletonised into a tract-based template at an FA
threshold of 0.2. Each subject's registered FA map was then projected
onto this skeleton for voxelwise statistical inference.

Statistical analysis

White matter maturation was first modeled as a curvilinear
trajectory along this tract-based skeleton template using standard
voxelwise GLM tools. Age-related changes in FA were determined in
FSL by including age and age2 as predictors in a whole-brain
GLM. One-way t-statistic maps (testing for direct and inverse
relationships with the age and age2 terms) where generated for the
strengths of the corresponding regression coefficients, and threshold-
free cluster enhancement (TFCE) was performed to up-weight
cluster-like features in the data by incorporating neighborhood
information around each voxel (Smith and Nichols, 2009). Nonpara-
metric permutation testing was used to empirically determine the
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null distribution of the maximum test statistic across space (i.e. across
the entire TBSS tract skeleton), control the family-wise error (FWE)
rate, and generate empiric p-values fully corrected for multiple
comparisons (Nichols and Holmes, 2002).

A novel, yet simple, “developmental timing quotient” was then
introduced using these whole-skeleton p-value maps of the signif-
icance of the regression coefficients: For a given arbitrary region-of-
interest (in the present case, a single axial or coronal slice through
the tract skeleton) this metric is equal to the fraction of voxels that
have a significant (pb0.05, corrected) linear (i.e. age) regression
coefficient that additionally have a significant quadratic (i.e. age2)
regression coefficient. This quotient was calculated for each axial
slice along the inferior–superior (IS) axis, and each coronal slice
along the posterior–anterior (PA) axis. Using the slice views in Fig. 2a,
b as an example (see also Supplemental Movie online), this would be
the number of red/yellow voxels divided by the number of
underlying blue voxels in each slice. Intuitively, this can be thought
of as similar to “the fraction of the volume that is still showing any
age-related increase in FA in our age window, which is nearing its
developmental plateau in the neighborhood of our age window.” For
areas that are developing earlier, a greater proportion of the voxels
will exhibit this nonlinear component (i.e. will have a significant age2

term) as they near their developmental plateau, and this timing
quotient will be closer to unity. Conversely, areas that are developing
later will have a timing quotient closer to zero, as white matter
development continues beyond the age range studied and fewer
voxels exhibit a significant bending towards a plateau. As such, this
metric is sensitive to the nonlinear timing parameter of interest, and
yet fits easily within a simpler linear modeling framework.
Importantly, this method assumes that, on average, we have less
power to detect nonlinear changes (i.e. a significant age2 term) in
regions that plateau later. We therefore expect fewer significant
voxels for the quadraticmodel term that accounts for this effect in the
regions of the brain that plateau later, and ultimately a lower
developmental timing quotient. The extreme aspects of the tract
skeleton were cropped to only include slices with 100 or more
skeleton voxels, as the timing quotient becomes unstable near the
extreme edges of the brain where the denominator approaches zero.
Finally, weighted least squares linear regression was used to
investigate how the developmental timing quotient is related to
position in the brain along the IS and PA axes, with the number of
voxels in each slice (which is inversely related to the expected
variance in the timing quotient) used as the weighting function.

Results

As predicted, voxelwise modeling along the tract-based skeleton
demonstrated widespread age-related increases in FA in our 32
subject cross-sectional sample (pb0.05, corrected). Further, many of
these regions where the age regressor was significant also demon-
strated a significant negative age2 term (pb0.05), indicating a

quadratic-type nonlinear relationship in these regions over our age
range. No voxels were observedwith a significant inverse relationship
between age and FA or a significant positive age2 term. See slice views
in Fig. 2a, b and also the Supplemental Movie online for a full
collection of these raw first-level statistical maps.

When the individual diffusion components along the axial and
radial directions were analyzed (AD and RD), which together
contribute to the FA measure, widespread significant decreases in
RD were observed with similar regional and inverse temporal
dynamics compared to FA (i.e. a significant negative age term and a
significant positive age2 term were observed; pb0.05, corrected) (see
Fig. 3a, b). No voxels were observedwith significant increases in RD or
changes in AD.

By implementing the developmental timing quotient meta-statistic
in a slice-wise fashion, we were able to collapse whole-brain three-
dimensional statistical maps down into one-dimensional high-level
summary views along the inferior-to-superior (Fig. 4a) and posterior-
to-anterior axes (Fig. 4b). As long-expected, prominent gradients in
the developmental timing of white matter maturation, as measured by
FA, were observed and quantified in both the inferior-to-superior
(R2=0.74, b=−0.00614, t=−18.36, p=1.61e–36, n=121 axial
slices) and posterior-to-anterior directions (R2=0.54, b=−0.00456,
t=−13.35, p=2.69e–27, n=152 coronal slices). Our results show
a dramatic reduction in the volume of voxels that reach their
developmental peak in the most anterior and superior regions of
the brain, compared to the more posterior and inferior regions,
suggesting continued white matter maturation beyond the age range
studied here in dorsal frontal brain regions. This general pattern
remained unchanged during a post hoc analysis that excluded the
cerebellum.

Discussion

The observed trends in the developmental timing quotient across
the brain provide strong support to the long-held hypothesis that
white matter maturation proceeds in an inferior-to-superior and
posterior-to-anterior manner, and provide a straightforward confir-
mation of this fundamental phenomenon in developmental neuro-
science. In particular, the results agree with the classical postmortem
literature (Kemper, 1994; Yakovlev and Lecours, 1967), while also
providing a validation of other neuroimaging studies examining more
nuanced details of brain development (Tzarouchi et al., 2009) or aging
(Davis et al., 2009) in the context of this often-cited global
developmental pattern—one that has not been previously demon-
strated in a continuous and quantitative fashion. Importantly, this
picture suggesting prolonged myelination in frontal regions also is
consistent with the protracted trajectory of cognitive development in
executive functioning domains, which similarly continues through
adolescence and is known to involve processing in the frontal lobe
(Luna et al., 2004, 2010; Romine and Reynolds, 2005). Previous
observations have linked both DTI-measured connectivity (Liston
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Fig. 2. TBSS voxelwise results: Statistical maps of the significance of the age (blue-aqua, pb0.05, corrected) and age2 (red-yellow, pb0.05, corrected) regressors, from the first-level
tract-based spatial statistics (TBSS) analysis of age-related changes in fractional anisotropy (FA), are overlaid on the white matter tract skeleton (green) and the study-specific mean
FA template volume. Axial (a) and coronal (b) slices are displayed in 10 mm increments. The complete collection of slices is available as a Supplemental Movie online.
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et al., 2006; Madsen et al., 2010) and fMRI-measured activation
patterns (Bunge et al., 2002; Casey et al., 1995, 2005; Luna et al., 2001)
with performance on cognitive control tasks across this age range,
strongly implicating these systems as part of the neural basis for real-
world changes seen during adolescence in areas like risk/reward
processing (Chau et al., 2004; Olson et al., 2009; Spear, 2000), and also
as a potential contributing factor to neurodevelopmental disorders
like ADHD (Casey et al., 2007) and neuropsychiatric illnesses that
often begin to emerge during adolescence (Reichenberg et al., 2010;
Versace et al., 2008). The implications of this new approach are
particularly valuable as they relate to the period of adolescent brain
development. Because this technique extracts regional developmental
timing information in a continuousmanner and across an age window,

it may prove useful to investigators as an attractive means of probing
developmental delays and other clinical phenomena that appear
during adolescence. For instance, the slope of the developmental
timing gradient across an entire region and the entire age window
could be compared between groups, as a complementary method to
traditional examination of a series of regions-of-interest between
several binned age groups in a pairwise manner. In particular,
processing speed is an attractive target for further study, as it shares
an intuitive foundation in connectivity, and has been shown to exhibit
some of the strongest advances during adolescence (Anderson et al.,
2001). This may be related, in part, to concomitant prolonged
myelination in the white matter through an advancing structural
network and increasing transmission efficiency. Further, recent

Age

F
A

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

5 10 15 20 25 5 10 15 20 25
Age

D
iff

us
iv

ity 0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

0.00040

0.00045

0.00050

0.00055

0.00060

A
xial

R
adial

Tract

Inferior

Superior

a b

Fig. 3. FA, AD, and RD changes by region: (a) Developmental trajectory curves for FA are shown from a representative “inferior” ROI in the corticospinal tract that was classified as
quadratic (colored red to match the red/yellow quadratic voxels in Fig. 2), and a “superior” ROI in the cingulum that was still increasing linearly (colored blue to match the blue
linear voxels in Fig. 2). (b) The axial diffusivity (AD) and radial diffusivity (RD) components are displayed for the same regions, demonstrating the general pattern that the observed
FA changes are predominantly due to changes in RD. Trendlines are selectively added according towhich terms of themodel (age or age+age2) are significant (pb0.05, corrected) in
the FA, RD, and AD voxelwise analyses.

# of skeleton voxels
Timing quotient
Regression line
95% CI
Age term (p<0.05) 
Age2 term (p<0.05) Coronal slice index (mm)

P

PC AC
0 50 100 150 200

Posterior to anterior gradient

D
ev

el
op

m
en

ta
l t

im
in

g 
qu

ot
ie

nt

0 
 5

00
1,

00
0

1,
50

0
2,

00
0

N
um

be
r 

of
 s

ke
le

to
n 

vo
xe

ls
 in

 s
lic

e

Axial slice index (mm)

I

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inferior to superior gradient

D
ev

el
op

m
en

ta
l t

im
in

g 
qu

ot
ie

nt

0 
 5

00
1,

00
0

1,
50

0
2,

00
0

2,
50

0

N
um

be
r 

of
 s

ke
le

to
n 

vo
xe

ls
 in

 s
lic

e

R2 = 0.74
b = -0.00614

t = -18.36
p = 1.61e-36

n = 121

R2 = 0.54
b = -0.00456

t = -13.35
p = 2.69e-27

n = 152

ba

Later

Earlier

Later

Earlier

S A

Fig. 4. Gradients inwhitematter developmental timing:Whitematter development takes place along inferior-to-superior (a) and posterior-to-anterior (b) gradients. The developmental
timing quotient is plotted against slice index (mm), and the weighted least squares linear regression line (± 95% pointwise confidence interval) is overlaid. The number of white matter
tract voxels in each slice was used as the weighting function, and is plotted on the right y-axis. Slice overlays show representative examples of the statistical maps used to calculate the
timing quotient (blue-aqua, age term (pb0.05); red-yellow, age2 term (pb0.05); green, white matter tract skeleton). I, inferior; S, superior; P, posterior; A, anterior; PC, posterior
commissure; AC, anterior commissure.

28 J.B. Colby et al. / NeuroImage 54 (2011) 25–31

83



evidence demonstrating slower advances in processing speed in
children preceding adult schizophrenia makes the quantified regional
timing of white matter development discussed in this report a
particularly attractive metric that may also be slowed in these
individuals (Reichenberg et al., 2010). These core developmental
gradients could also be investigated more closely as quantifiable
imaging biomarkers in the context of typical development. It is
possible that, like similar unexpected findings in gray matter (Shaw
et al., 2006), a higher-order timing parameter like the one described
may explain individual variance in performance better than the raw
diffusion imaging parameters at any one point in time.

Although not the primary focus of the present investigation, first-
level voxelwise results are in general agreement with the published
literature documenting broadly distributed increases in FA during
development (Figs. 2, 3a) (Lebel et al., 2008; Mukherjee et al., 2001;
Qiu et al., 2008; Snook et al., 2005). Analysis of the underlying axial
and radial diffusion components suggests that decreasing RD is the
dominant contributor to the observed changes in FA (Fig. 3b),
although subthreshold contributions by changes in axial diffusivity
are also likely. A similar pattern of decreasing diffusivity, driven
predominantly by decreasing RD, is reported in the majority of
developmental DTI studies (Schmithorst and Yuan, 2010).

One of the most interesting aspects of the quantified gradients
demonstrated here is the smoothness with which the developmental
timing of white matter maturation changes across the brain—
particularly along the inferior-to-superior axis (Fig. 4a). The similarity
of the developmental timing gradients between the inferior-to-
superior and posterior-to-anterior axes is also compelling. While
not totally unexpected, since the trajectories along the PA and IS axes
will naturally be somewhat correlated because more inferior regions
of the brain also contain more posterior voxels, this coordination is
also consistent with the notion of a continuous caudal–rostral wave in
the timing of white matter maturation. For both trajectories, the
timing quotient begins near 0.8 and then decreases robustly, but
smoothly and with similar slope, to below 0.4. In fact, the only
regional locus that may not warrant inclusion in this continuum
model is the occipital lobe (Fig. 4b), which exhibits an unexpected
drop in the timing quotient. This could be due, in part, to the unstable
nature of the timing quotient as one moves to the extreme edges of
the brain and the number of skeleton voxels approaches zero. To
accommodate this behavior in the statistical analysis, we chose to
apply a weighted least-squares fit to the data, which down-weights
these unstable slices with very few voxels. However, upon closer
inspection, some of these slices through the occipital lobe actually
have enough voxels that we would expect the timing quotient
estimates to be reliable (i.e. they are above the ad hoc 100 voxel
threshold, below which the timing quotient can oscillate unstably).
Accordingly, this area in particular warrants future examination to
determine to what extent this effect is real.

While this is the first time that these broad gradients in
developmental timing have been quantified continuously across the
white matter, these results are in agreement with the strong tradition
of qualitative DTI observations that have previously beenmade on this
topic—particularly concerning the more focused notion that frontal
lobe white matter connectivity tends to have the longest course of
development, relative to other regions (See Schmithorst and Yuan,
2010 for an excellent review of this developmental DTI literature).
When diffusion parameters have been compared between two (or
several) binned age groups, the magnitude of the change in these
metrics between age groups tends to be greater in frontal regions,
especially when using contrasts that span older age ranges—
suggesting that frontal regions are undergoing a larger portion of
their maturation at later ages, as compared to more posterior regions
(Nomura et al., 1994; Qiu et al., 2008; Snook et al., 2005). Similarly,
when the timing parameters of exponential models have been
compared across ages within binned regional ROIs, frontal regions

tend to have a slower rise (i.e. a later time-to-plateau) than more
posterior regions (Lebel et al., 2008; Schneider et al., 2004). Our
results reported here provide further evidence in support of the
presence of a particularly extended developmental trajectory in the
frontal lobe, and additionally help extend this notion to suggest a
relatively smooth gradient transition in timing from more posterior/
inferior regions.

Another key aspect of the present report is the introduction of the
simple developmental timing quotient meta-statistic that was used to
demonstrate these findings. This metric can be readily computed from
the statistical maps generated by standard GLM analyses, and gives
insight into the timing of the developmental trajectory in a given ROI
(in this case, a specific slice). Previously, in order for timing
phenomena to be investigated, a time constant parameter would
need to be modeled directly, which requires a nonlinear model–like
the exponential function described in Fig. 1–to be fitted in a voxelwise
fashion. This comes at a considerable computational cost, and
additionally introduces the practical challenge of being incompatible
with the major voxelwise modeling packages in the neuroimaging
community. These difficulties perhaps explain why the important
fundamental notion of a broad caudal–rostral wave of brain
maturation, which has been qualitatively and anecdotally referenced
quite often, has until now never been directly demonstrated and
quantified with MRI. Importantly, however, one must remain aware
that the design presented here offers an indirect window into the
timing properties of this system. As one consequence, the ability to
demonstrate these timing gradients could be affected, for example, if
the power to detect individual voxelwise relationships in the first-
level GLM analysis was increased to the point that a significant
quadratic age2 term could be demonstrated everywhere in the brain. In
this case, the timing quotient would saturate and the gradients would
be obscured, or perhaps only observable with different first-level
significant thresholds. Likewise, if the age window were altered to be
older, then the number of regions showing any developmental
increases in FA would start to decrease as they complete their plateau.
Therefore it is important that the study sample and significance
thresholds are tuned to the question of interest.

Although it might be assumed that close to all of the voxels in the
brain are exhibiting some form of real neurobiological development
over the age range from childhood to adulthood, we were only able to
demonstrate significant FA-indexed “development” in a subset of
these voxels (those with a significant age term, displayed as the
extent of underlying blue voxels in Fig. 2). There are several
explanations for this, any or all of which could be contributing,
including: (1) The voxels have already “matured” in terms of their
developmental changes in FA, (2) The voxels are maturing slowly
enough that they not only fail to show a significant quadratic age2

term, but additionally fail to show a significant linear age term, (3)
There is finite power to detect developmental changes (e.g. due to
acquisition SNR, intersubject variation, misregistration, etc.), even for
structures that are developing over our age range, (4) Methodological
issues are involved—for instance, those associated with the tensor
model of diffusion like partial volume averaging within voxels that
contain multiple fiber populations, and (5) Although we failed to
demonstrate this anywhere in the brain, some voxels may actually
exhibit decreasing FA during development (Schmithorst et al., 2008).
Other methodological limitations should also be considered when
interpreting these results. Although data interpolation is a standard
component of the TBSS processing pipeline, it can affect the apparent
resolution when visually interpreting the resulting statistical maps. In
the present case, this means that the effective resolution across the
developmental gradients is likely to be much coarser than the 1 mm
thick slices on which the data were processed. Additionally, while
the observed trends in developmental timing quotient are expected
to be relatively robust to intersubject variation in raw diffusion
MRI parameters–as the developmental timing quotient effectively
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averages out some of this variation–it should be noted that this
sample is relatively sparse during the age range of late adolescence.
Increasing the number of subjects studied, especially during this
period, should increase power to detect both voxelwise and timing
quotient changes, and improve confidence in the shape of the
underlying developmental trajectory.

Conclusions

In summary, we have employed a simple quantitative approach
using diffusion imaging data in a developmental sample which (1)
provides confirmation, in a continuous and quantitative manner
across the whole brain, that broad regional gradients are present in
the developmental timing of white matter maturation, (2) introduces
a novel meta-statistic that is sensitive to the developmental timing of
white matter maturation in our study population and fits within the
established GLM framework of whole-brain mapping strategies, and
(3) presents a new opportunity for the investigation of the structural
basis of advances in executive function during adolescence and their
relationship to the emergence of neuropsychiatric disease.

Supplementary data to this article can be found online at doi:
10.1016/j.neuroimage.2010.08.014.
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Diffusion imaging tractography is a valuable tool for neuroscience researchers because it allows the genera-
tion of individualized virtual dissections of major white matter tracts in the human brain. It facilitates
between-subject statistical analyses tailored to the specific anatomy of each participant. There is prominent
variation in diffusion imaging metrics (e.g., fractional anisotropy, FA) within tracts, but most tractography
studies use a “tract-averaged” approach to analysis by averaging the scalar values from the many streamline
vertices in a tract dissection into a single point-spread estimate for each tract. Here we describe a complete
workflow needed to conduct an along-tract analysis of white matter streamline tract groups. This consists of
1) A flexible MATLAB toolkit for generating along-tract data based on B-spline resampling and compilation of
scalar data at different collections of vertices along the curving tract spines, and 2) Statistical analysis and rich
data visualization by leveraging tools available through the R platform for statistical computing. We demon-
strate the effectiveness of such an along-tract approach over the tract-averaged approach in an example anal-
ysis of 10 major white matter tracts in a single subject. We also show that these techniques easily extend to
between-group analyses typically used in neuroscience applications, by conducting an along-tract analysis of
differences in FA between 9 individuals with fetal alcohol spectrum disorders (FASDs) and 11 typically-
developing controls. This analysis reveals localized differences between FASD and control groups that were
not apparent using a tract-averaged method. Finally, to validate our approach and highlight the strength of
this extensible software framework, we implement 2 other methods from the literature and leverage the
existing workflow tools to conduct a comparison study.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Since the late 1990s, diffusion magnetic resonance imaging (MRI)
tractography methods have developed into a powerful set of tech-
niques to investigate white matter connectivity in the human brain
(Basser et al., 2000; Conturo et al., 1999; Jones et al., 1999; Le Bihan,
2003; Mori et al., 1999). By generating virtual dissections of different
white matter tracts for each individual, tractography has proved valu-
able in a variety of applications — including pre- and intra-operative
mapping of fiber tracts (Duncan, 2010; Maruyama et al., 2005;
Prabhu et al., 2011; Young et al., 2010), and connectivity analyses of
anatomical and functional brain networks (Aron et al., 2007;

Behrens et al., 2003; Bullmore and Sporns, 2009; Ramnani et al.,
2004). In addition to providing information about tract geometry,
tractography can provide individualized volumes of interest for the
investigation of white matter microstructural qualities in the context
of development and aging (Asato et al., 2010; Davis et al., 2009;
Eluvathingal et al., 2007; Huang et al., 2006, Lebel et al., 2008b,
2010; Liston et al., 2006; Penke et al., 2010; Sala et al., in press;
Schmithorst and Yuan, 2010; Verhoeven et al., 2010; Voineskos et
al., 2012), numerous diseases (Ashtari et al., 2007; Kumar et al.,
2010; Kunimatsu et al., 2003, Lebel et al., 2008a; Zarei et al., 2009),
and the relation of brain structure to functional, cognitive, and psy-
chiatric differences between individuals (Boorman et al., 2007;
Dougherty et al., 2007; Glenn et al., 2007; Lebel and Beaulieu, 2009;
Luck et al., 2011; Schulte et al., 2010; Tsang et al., 2009). As tract
dissections are personalized to each individual, and do not rely on
any between-subject warping to a common template space, analo-
gous regions can be compared between individuals even when
there are large differences in brain morphology. This is valuable in
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clinical studies, in which patients might have gross structural brain
abnormalities through alterations in neurodevelopment, or in white
matter microstructure as a result of disease.

Direct voxelwise comparison of diffusion imaging data is challenging,
as the high-contrast edges of diffusion imaging volumes (e.g., FA maps)
make them more susceptible to small misregistration errors, as well as
to anatomical variability of tract position in health and disease. Even so,
traditional voxelwise brain mapping is an important complement to
tractography — especially now that analysis methods have advanced
beyond a generic voxel-based statistical approach to include more
optimized strategies tuned specifically for the analysis of white matter
and diffusion imaging data (Smith et al., 2006, 2007). Furthermore, the
inherent voxel-to-voxel independence of voxelwise processing allows
these methods to see beyond the type of small focal disruptions that
could potentially derail the streamline tractography algorithms. In
general, these voxelwise studies have been in broad agreement with
their tract-based counterparts (Schmithorst and Yuan, 2010; Sullivan
and Pfefferbaum, 2006; Wozniak and Lim, 2006). Additionally, they
have demonstrated a remarkable degree of regional heterogeneity –
evenwithin a given tract – in the diffusion imaging indices and observed
relationshipswith other variables (Barnea-Goraly et al., 2010; Bava et al.,
2010; Bengtsson et al., 2005; Hsu et al., 2010; Keller and Just, 2009).

To improve the localizability in deterministic tractography, there
is a growing interest in methods that can provide greater within-
tract detail. While previous work has included efforts to examine
DTI metrics along tract lengths (Corouge et al., 2006; Goodlett et al.,
2008, 2009; Jones et al., 2005; O'Donnell et al., 2009; Zhu et al.,
2010), as well as more generic within-tract methods that can
accommodate variability along even more dimensions within tracts
(Yushkevich et al., 2008; Zhang et al., 2010), it has typically been
focused on individual aspects of the along-tract workflow or specific
customized applications. It remains true that the large majority of

streamline tractography analyses still rely on a simpler tract-
averaged methodology. Therefore, there is a need for a higher-level
integrated along-tract processing workflow — for an intuitive set of
tools that makes it easy for applications researchers to start incorpo-
rating along-tract detail into existing tractography analyses, while
facilitating statistical analysis of these data in a general linear model
(GLM) framework, visualization of raw data and statistical results,
and straightforward customization of all aspects of this process. To
help fill this gap in the methods landscape, in this manuscript we:
1) Describe the rationale for conducting a tractography study with
enhanced within-tract detail, as it relates to common tractography
applications within the neuroimaging community, 2) Lay out a
straightforward workflow for conducting one type of along-tract
analysis, which is able to attain a useful balance between accessibility
and improved modeling ability, 3) Demonstrate some advantages of
this approach over traditional tract-averaged methods by looking at
both within-subject and between-group examples, 4) Validate this
approach against existing methods, while highlighting the extensible
nature of this workflow toolset, and 5) Make this generic toolset
available for others to use as building blocks for their own future
analyses (http://www.github.com/johncolby/along-tract-stats).

Along-tract statistics

Rationale

When standard tractography methods collapse tract groups, they
yield only a single mean DTI metric and variance estimate for each
tract and for each subject. This processing step ignores the potentially
rich anatomical variation in diffusion imaging metrics along the tracts,
and reduces the effectiveness of this technique. To see that this added
detail exists, one can browse through an FAmap, or look at a histogram

0.76 0.80 0.82 0.79 0.70 0.62 0.60

0.75 0.79 0.85 0.85 0.80 0.77 0.78

0.80 0.80 0.84 0.84 0.81 0.78 0.79

0.85 0.84 0.83 0.82 0.79 0.75 0.73

0.78 0.86 0.85 0.82 0.78 0.74 0.73

0.55 0.75 0.84 0.83 0.77 0.73 0.76

0.35 0.52 0.70 0.78 0.75 0.72 0.78

0.36 0.47 0.45 0.32 0.18 0.11 0.10

0.28 0.41 0.45 0.39 0.26 0.12 0.09

0.16 0.25 0.34 0.39 0.34 0.19 0.10

0.08 0.11 0.19 0.29 0.32 0.24 0.14
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0.05 0.06 0.08 0.09 0.08 0.07 0.05

Fig. 1. FA variations throughout the brain: Fractional anisotropy (FA) varies widely throughout the white matter, with values ranging from below 0.2 at the transition to gray matter
near the cortex (top breakout panel), to greater than 0.8 in tightly coherent fiber bundles like the midline corpus callosum (bottom breakout panel).
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of its contents. FA varies widely throughout the white matter — with
very low values (below 0.2) at the transition to the gray matter of the
cortex, and very high values (above 0.8) in highly coherent areas like
the midline corpus callosum (Fig. 1). However, when the tract-
averaged estimates of mean FA in the major white matter tracts are
examined, they generally fall between 0.4 and 0.6 (with the majority
between the even tighter range of 0.4 to 0.5) (Wakana et al., 2007).
This suggests that a large amount of blurring is taking place in the
data and that potentially interesting features are being lost. Another

useful way to see the extent of within-tract variability is to overlay
the scalarmeasure of interest (e.g., FA) onto the streamlines themselves
(Fig. 2). Here again it is easy to see the amount of detail within tracts.
This representation, in particular, begs the analogy to a highway
system: There is a collection of roads (tracts) with different speeds
(FA).While there is some variation in average speed between highways
(some highways are always slower than others), and some interesting
inferences can even be made this way (traffic might universally be
worse on the way to work than at midnight), to get the most complete

Fig. 2. Along-tract variations in the human brain and the Los Angeles highway system: (Top panel) Deterministic tractography dissection of the left corticospinal tract in one indi-
vidual. Color is used to encode FA variations along the tract. (Bottom panel) Highway map of Los Angeles, CA. Color is used to encode traffic speed.
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picture of what is happening in the system, one must consider the
within-highway effects that can have large influences (e.g., car crashes,
construction, and lane geometry can all have profound focal effects on
the flow of traffic). Shifting back to the brain, there is a similarly strong
neurobiological basis for within-tract variability, as the vascular (Ishii et
al., 1996; Ito et al., 2005), supporting glial (Innocenti et al., 1983;Monier
et al., 2006, 2007; Yeh et al., 2009), biochemical (McIntosh et al., 2008;
Moghaddam and Adams, 1987; Pankonin et al., 2009; Perry et al., 1971;
Stamford et al., 1984; Vasung et al., 2010; Warrington et al., 2007), and
biophysical environments (Childs et al., 2007) are all found to vary
throughout the interior of the brain.

Beyond true biological variation in white matter properties along
tracts, the local disturbance of diffusion imaging parameters due to
methodological issues is another reason that makes it attractive to
analyze these properties along tracts. For example, complex fiber
geometries like crossing, kissing, and partial volume averaging in general
can alter properties like FA while more direct measurements of myelin
content may remain unchanged (Stikov et al., 2011). Further rationale
comes from the difficulty in corroborating results across studies. For
any given diffusion imaging application, it is common to find that some
studies have used voxelwise methods like tract-based spatial statistics
(TBSS) (Smith et al., 2007), while a different collection may have used
tract-averaged streamline tractography. Comparing the two types of
studies is not always straightforward, and can lead to puzzling questions,
like: Where along the tract-averaged ROI is the affected region located?
Is it a constant difference along the whole tract, or a more focal abnor-
mality? How does a voxelwise cluster in the internal capsule in one
study relate to a significant tract-averaged tractography finding across
the corticospinal tract in another? Are the same voxels even included
in both studies? Attaining a higher degree of within-tract detail in our
tractography analyses may help improve the level of interoperability
and comparability between tractography and voxelwise methods.

Importantly, this general approach is not meant to replace the stan-
dard tract-averaged analysis techniques, but to provide the option for
additional detail. Conversely, this report is not intended to be a focused
exploration of the lower-level nuances between the different
resampling, point alignment, and other mathematical parameters
involved. Rather, we will emphasize a high-level perspective on the
broader practical considerations of applications scientists, and intend
to convince the reader that by making these minor modifications to
existing tractography workflows, one can map the along-tract detail
in the brain and enhance a broad range of white matter tractography
analyses.

Overview

We aimed to create an intuitive and flexible set of modular tools
with a balance between within-tract modeling complexity and acces-
sibility. We tapped into established computational, statistical, and
visualization libraries where possible, and, where decisions on low
level processing approaches or parameters were needed, we
attempted to make rational “middle-of-the-road” choices. Again, the
overall goal was to create an end-to-end workflow that would be a
useful and flexible starting point for applications-oriented neurosci-
entists who would otherwise conduct a standard tract-averaged
tractography analysis. In short, for a given tract group, we 1) Reorient
the streamlines according to a common origin, 2) Re-parameterize
the streamlines with cubic B-splines, 3) Resample the streamlines
so that each has the same number of points spread evenly along its
length, 4) Resample the underlying voxel volume at these new
vertices, and then 5) Collapse these values across streamlines at
each analogous group of vertices to obtain mean scalar estimates at
many locations along the tract. This allows FA or other scalar metrics
to be analyzed between subjects/groups at each collection of vertices
along the length of the tract, instead of using one overall tract-
averaged value.

The included toolset (http://github.com/johncolby/along-tract-
stats) allows the reader to begin with their own raw streamline
tract groups and proceed through all the steps necessary to perform
a complete along-tract analysis (these steps are described next in
Processing workflow section). These tools may be operated one by
one in an exploratory interactive manner, or automated in a batch
mode to streamline an entire between group analysis through to
the creation of customized statistical plots like those seen in this
manuscript. Available to the reader are full documentation of all
processing tools, an online interactive web demonstration of along-tract
methods (http://www.openprocessing.org/visuals/?visualID=25715),
and online tutorials including example data to download and full example
analyses (http://github.com/johncolby/along-tract-stats/wiki).

Processing workflow

Preprocessing

Before calculating along-tract statistics, the tract groups must be
delineated. There are many available software platforms to do this.
We used tract groups delineated manually for each subject in Track-
Vis (http://www.trackvis.org). Because these tools are modular
functions written in plain text in MATLAB, this framework can be
straightforwardly adapted to operate on streamline data from a
variety of sources. First, a tensor or alternative diffusion model is fit
to the raw data, and the resulting directionality information at each
voxel is used to generate a collection of streamlines representing
white matter pathways across the entire brain. This initial set of fibers
must then be pared down to just the groups that comprise each tract.
The means of achieving this virtual dissection can vary, and a variety
of atlas-based (Lebel et al., 2008b) or more unsupervised clustering
(Clayden et al., 2007; Maddah et al., 2008) approaches can be
attractive options depending on the size of the dataset and other
considerations. Nevertheless, for between-group comparisons with
clinical populations, the gold standard remains manual ROI-based
dissection by a trained experimenter according to a reliable protocol.
While the following descriptions will focus on FA maps from diffusion
tensor imaging (DTI) data, these techniques are more generic in nature
and could be applicable in a variety of other scenarios (e.g., vertex
output of other packages, higher order diffusion models, multi-
streamline/probabilistic tractography algorithms, mean diffusivity
maps, etc.).

Reorient streamlines

Streamlines generated using brute force tractography algorithms
(such as the standard Fiber Assignment by Continuous Tracking
(FACT) algorithm (Mori et al., 1999) used in TrackVis) are naïve to
any sort of tract origin. For example, when streamlines are generated
that will end up comprising the corticospinal tract, there is no logic to
say whether the streamlines are ordered to “start” at the cortex end
or the brainstem end of the tract. To proceed with the cross-
sectional along-tract modeling, the streamlines in each tract group
must be reoriented so that they all “start” at the same end. For
some relatively linear tracts, like the corticospinal tract, this can be
automated. For example, the starting end of corticospinal tract
streamlines could always be chosen to be the end closest to the
lowest axial slice. For other tracts, like the arcuate fasciculus, however,
intersubject variation in tract position and in-scanner positioning
makes this less straightforward. In these cases, some sort of in-line
interactive assignment may make the most sense. For example, a tract
group can “pop up” on the screen and the user can click on the end
that they want to designate as the “origin”. See Table 1 for a list of the
tract origin conventions used in this report.
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Model streamlines with cubic B-splines

The main hurdle to conducting an along-tract analysis at many
locations within a tract is that the number of vertices that make up
a streamline can vary between streamlines and subjects. Further,
the spacing of the vertices within each streamline is also variable,
resulting from the way the vertices are laid down as the streamlines
traverse the underlying cuboidal voxel structure. One natural option,
which we use to address this issue here, is to use cubic B-splines to re-
parameterize the polylines as curves (a schematic is shown in
Figs. 3A,B) (Corouge et al., 2006; O'Donnell et al., 2009; Zhu et al.,
2010). Fig. 3 is also useful to demonstrate that by “cross-section”,

we mean a collection of analogous points across streamlines, rather
than a simple two-dimensional slice plane.

Resample streamlines with constant number of vertices

Once the streamlines have been approximated using cubic B-
splines, they can be resampled according to different criteria. Perhaps
the most straightforward option, here we focus on an approach that
resamples each streamline into the same number of vertices spread
evenly along their lengths, regardless of the length of the streamlines
(Figs. 3C,D). This type of method accounts for inter-streamline and
inter-subject scaling, and facilitates between-subject statistical
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Fig. 3. B-spline based resampling: (A) Raw deterministic tractography streamlines are difficult to analyze along their length due to differing numbers of vertices, and non-uniform
spatial sampling. To address this, the raw streamlines can be re-parameterized using cubic B-spline curves (B), and then resampled to allow for a straightforward analysis at dif-
ferent tract “cross-sections” (C). (D) Streamline processing for an example tract group (left corticospinal tract) derived from actual data. The streamlines are first reoriented so that
their origins (red points) are near a common tract terminus, and then resampled to allow for comparison across streamlines at different cross-sections (dotted lines, right).

Table 1
Single subject tract information and ANOVA results between along-tract and tract-averaged models: Hemisphere, tract origin, number of streamlines, and number of resampled
vertices are tabulated for each tract group in the single subject atlas (Fig. 5). The along-tract and tract-averaged linear models were fit to these streamline data, and ANOVA was
used to determine if moving to the along-tract approach provided significant increases in explained variance over the tract-averaged form.

Tract Hemisphere Origin Streamlines Resampled
vertices

F df (numerator, denominator) p-value

Cingulum–cingulate gyrus part L Anterior 73 30 48.4 29, 2160 b2.2e-16
Cingulum–hippocampal part L Anterior 71 14 12.4 13, 980 b2.2e-16
Corticospinal tract L Inferior 180 47 138.2 46, 8413 b2.2e-16
Anterior thalamic radiations L Anterior 123 31 43.3 30, 3782 b2.2e-16
Arcuate fasciculus L Frontal 125 40 72.8 39, 4960 b2.2e-16
Inferior longitudinal fasciculus L Anterior 241 41 216.0 40, 9840 b2.2e-16
Inferior fronto-occipital fasciculus L Anterior 99 62 93.6 61, 6076 b2.2e-16
Uncinate fasciculus L Frontal 89 28 48.0 27, 2464 b2.2e-16
Corpus callosum — forceps major – Right 94 64 142.8 63, 5952 b2.2e-16
Corpus callosum — forceps minor – Right 496 41 326.0 40, 20295 b2.2e-16
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analysis by maintaining a one-to-one mapping of the vertices at each
cross-section, and across streamlines and subjects.

Extract scalars and collapse cross-sectionally

The final step in compiling along-tract data is to resample the
underlying scalar volume (e.g., FA map) at the new sets of streamline
vertices. For each subject, these scalars are then averaged at each
analogous set of vertices along the tract, to obtain cross-sectional
scalar mean and variance estimates. An important note with this
approach is that each vertex contributes to these mean and variance
estimates. Because there is usually a higher streamline density
toward the center of a tract, these values will typically be weighted
to favor the cores of tracts where multiple streamlines pass through
the same voxels. While this is something that may or may not be
desirable, given a particular application, it is an important and inter-
esting topic to consider when performing along-tract analysis. The
spatial location of the vertices can also be averaged to obtain a single
streamline that represents the mean tract geometry. This aids visual-
ization by displaying the along-tract scalar estimates of a single

subject, and statistical results of between-group analyses (see
Figs. 5 and 7). Again we stress that because of the flexibility this
implementation allows, our processing decisions tend towards straight-
forward options like this in order to allow operators to develop an intu-
itive understanding of the broader workflowwhile still facilitating their
implementation of other variations on these techniques if so desired at a
later time (For example, see Toolkit extensibility section for an example
implementation of several other options from the literature, and
O'Donnell et al. (2009) for a discussion of the variability to expect
among these approaches).

Between-group statistical analysis

Linear mixed-effects model
With cross-sectional mean FA and variance estimates obtained at

many locations along a tract, and at analogous anatomical locations
in each individual, we now fit statistical models to these data. This
statistical analysis and later data visualization are performed using
R (http://www.r-project.org), a flexible platform that is emerging as
a powerful source for neuroimaging analysis resources (Tabelow et
al., 2011). A linear mixed-effects (LME) model is applied serially for
each tract group (i.e. for each tract and hemisphere) (Pinheiro and
Bates, 2000). Fixed effects include: an overall intercept, a “position”
factor (dummy coding the tract cross-section indices as levels of an
unordered factor), a “group” factor (i.e. Control or Patient), and a
“group:position” interaction. A subject level random effect term is
also included to explain the variance component associated with
this repeated measures design. Standard analysis of variance
(ANOVA) can then be used to test the significance of these sets of
terms in the model. The intercept term tests whether the overall
grand mean FA is different from zero, which will be true by definition
since there will be no streamlines if there is no FA. The group term
tests whether there is an overall effect of group membership on the
FA vs. position curve (analogous to the traditional tractography
analysis that tests for changes in tract-averaged mean FA). While
this example uses the case of a binary covariate testing for a group
difference, the general linear model (GLM) can also accommodate
multilevel factors or continuous covariates. The F-test across the posi-
tion terms tests whether FA is, in fact, varying within the tract. Finally,
the F-test across the group:position interaction term determines
whether the effect of group on FA varies based on position. In other
words, it tests for any more focal regions of group effects isolated to
regions along the tract. Another option would be to use a multivariate
approach; either option is valid, and the choice depends on the types
of questions researchers want to ask.

Multiple comparisons
One consequence of choosing the serial univariate approach is that

the family-wise Type 1 error rate of the individual t-tests along the
tracts, if examined directly, will be inflated due to the increased
number of multiple comparisons (Shaffer, 1995). To address this,
we can apply permutation methods to adjust the p-values and control
the Type 1 error. Using the test for group differences as an example,
we assume there is no group effect under the null hypothesis, and
therefore that the group labels are exchangeable. The group labels
can then be permuted, the model fit once again, and the maximum
statistic across all comparisons recorded. This process is repeated
many times to empirically build up the distribution of the maximum
test statistic under the null hypothesis. To determine how extreme
the test statistics obtained from the model fit to the real data are,

Fig. 5. Single subject along-tract analysis: The raw streamlines (left panels), mean tract geometries (middle panels), and along-tract variations in FA (right panels) are displayed for
10 major white matter tracts in the human brain. In the two streamline views, color is used to encode variation in FA. In the along-tract plots, FA is plotted versus position from tract
origin (designated as the side of the tract near the red star in the streamline views; see also Table 1). The distribution of individual streamlines is shown in the background (black
lines; transparency and slight x-axis jitter used to control overplotting). Overlaid is the along-tract cross-sectional mean FA (blue; ± pointwise standard deviation). Also included is
the standard tract-averaged point-spread estimate (red).
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one can simply compare them to this null distribution in order to
obtain p-values corrected for multiple comparisons (Nichols and
Hayasaka, 2003; Nichols and Holmes, 2002). This same procedure
can also be applied to correct the p-values associated with other
covariates of interest (age, cognitive measures, etc.) (Fig. 4).

Visualization

Two dimensional (see Fig. 6)
Along-tractmethods increase the amount of data that results from a

tractography analysis (for example, Fig. 10 contains on the order of
200,000 data points), so it is important to consider how this expanded
data structure is presented to the viewer in order to maximize the
usefulness of the data for various tasks. We begin with a single panel,
which displays the scalar metric plotted as a function of position along
the tract, and colored according to group membership. The reader is
given access to the raw data for each subject, displayed semi-
transparently in the background, as well as a higher-level statistical
summary like the smoothed estimate of the group mean±95% point-
wise confidence interval. Annotations can also be overlaid to convey
the results of hypothesis testing— for example, an asterisk in the corner
if there is an overall offset between groups, or, if the group:position F-
statistic is significant, a bar to signify which component statistical
tests are significant. The natural divisions in the data by tract and hemi-
sphere can then be used to generate a facetted display of these panels,
which allows for efficient review of the entire dataset once the reader
becomes familiar with a single panel (Tufte, 2001). The panels are
placed in close context, so the researcher can quickly review differences
between hemispheres and tracts, and explore multivariate patterns
across tracts and hemispheres. Whole tract properties, like the number
of streamlines, may also be displayed in adjacent panels of bar or box
plots. These data can even be encoded into the main panels through
other plotting esthetics such as line width. This could be used to draw
attention to individuals with many streamlines or to check if outliers
have too few. Finally, it is important that the generation of these
statistical graphics be automated and reproducible, to provide
robustness to operator errors, and easy extensibility/portability to
new datasets and applications. To achieve this, we employ an imple-
mentation of the “grammar of graphics” in R (http://had.co.nz/
ggplot2), which provides a rich set of abstracted graphical language
tools to generate these complex multilayered plots (Wickham, 2009;
Wilkinson, 2005).

Three dimensional (see Fig. 7)
As a complement to the 2D statistical graphics, it is also useful to

view the statistical results overlaid on the tract geometry. To do
this, the mean tract geometries for all of the tract groups for a repre-
sentative subject can be displayed together. However, in addition to
using color to encode FA or direction, we can use it to visualize the
effect sizes and p-values from a statistical analysis. This may be partic-
ularly useful when comparing tractography results to voxelwise
results – either from the same individuals or from other analyses
reported in the literature – as it directly connects these two methods
and makes it easier to corroborate results.

Example implementation

Data acquisition and preprocessing protocol

For the within-subject and between-group analyses below
(Within-subject analysis and Between-group analysis sections),
whole brain diffusion weighted imaging data were acquired on a 3 T
Siemens Trio MRI scanner. Each DTI acquisition included diffusion
weighted volumes (30 directions, b=1000 s/mm2, 240 mm field of
view, 96×96 in-plane matrix, 55 axial slices of 2.5 mm thickness,
resulting in 2.5×2.5×2.5 mm3 isotropic voxels), and one non-

diffusion-weighted volume (b=0 s/mm2). A tensor model of diffu-
sion was fit to these raw data, and scalar maps of FA were generated.
Whole-brain brute force deterministic tractography was performed
according to the FACT algorithm (Mori et al., 1999), as implemented
in Diffusion Toolkit v0.6 (http://www.trackvis.org/dtk). Tracking con-
straints included a minimum FA threshold of 0.15 and a maximum
fiber turning angle of 60°. Tract groups were then manually extracted
in TrackVis v0.5.1 (http://www.trackvis.org) by a trained experi-
menter (L.S.) according to the instructions from Wakana et al.
(2007). Human subjects data were collected as part of an ongoing
study that has been approved by the institutional review board at
UCLA.

Within-subject analysis

To validate this along-tract approach relative to the traditional tract-
averaged method, we compared the two analyses to each other for ten
tracts in one healthy young adult subject. The resulting tracts were
compared 1) visually, by using the streamlines obtained from manual
delineation and the mean tract overlaid with average cross-sectional
FA values (see Fig. 5), and 2) quantitatively, by including data from all
streamlines for each tract in a simple linear model, and performing an
ANOVA between the along tract model (FA as a function of an intercept
term and position terms) and the tract-averaged model (FA as a
function of an intercept term only). As expected, along-tract processing
provided highly significant increases in the explained variance for all
tracts (see Table 1).

Between-group analysis

To demonstrate how easily this approach extends to between-group
analyses, we conducted a comparison between a group of childrenwith
fetal alcohol spectrum disorders (FASDs) (n=9, age=13.8±2.6 years,
4 females) and typically developing controls (n=11, age=13.2±
3.1 years, 5 females). FA was analyzed along tracts bilaterally within
the inferior longitudinal fasciculus (ILF) and the arcuate fasciculus
(AF). The ILF was chosen because it is linear, fairly “rope-like”, robustly
trackable, and exhibits some of the largest group differences between
these populations (Lebel et al., 2008a). Conversely, the AF was chosen
as a more challenging example because it has a nonlinear geometry
and is more difficult to track. The numbers of streamlines that made
up these tracts were first analyzed between groups, revealing that 1)
FASD subjects had significantly fewer streamlines than controls (t=−
2.35, df=76, p=0.022), and 2) The ILF has significantly more stream-
lines than the AF (t=3.70, df=76, p=4.10×10−4). Next, as might be
typical of many neuroscience applications where the experimenter
seeks tomap thewhitematter tract abnormalities associatedwith a cer-
tain disease, an along-tract statistical analysis was set up to look for
overall offsets in the FA vs. position curves between groups, and also
to look for more localized regions of effects along the tracts (see
Linear mixed-effects model section for a complete description). This
protocol failed to reveal any overall offsets between groups, but
along-tract analysis did demonstrate a significant group:position
interaction in the left inferior longitudinal fasciculus (L ILF)
(F29,522=2.53, p=2.64×10−5). This effect localized to a region in the
posterior portion of the tract where the FASD group had significantly
lower FA than the control group (t=−3.16, df=521, p=0.0017,
p=0.032 corrected) (see bottom left panel in Fig. 6, and visualization
in Fig. 7).

Toolkit extensibility

To demonstrate the strength of our toolkit's extensibility and
modularity, and to further validate our approach, for comparison we
implemented 2 other streamline correspondence schemes from the
literature. The “Distance Map” method pre-computes the minimum
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Euclidean distances from all points on a voxel-like grid to the vertices of
a prototype fiber geometry, and uses this information to generate a
lookup table describing which regions of the grid will be mapped to
which regions of the prototype (Fig. 8 shows a 2-dimensional example).
If multiple fibers share the same prototype (i.e., they are part of the
same tract group, or different subjects' tract groups that have been

registered to the same space), this has the advantage of dramatically
speeding up the processing (Maddah et al., 2008). In a related “Optimal
Point” matching approach, only the components of the Euclidean
distances tangent to the prototype fiber geometry are considered, and
matches are assigned via global cost optimization. This has the effect
of strongly favoring matches that lie orthogonal to the prototype fiber
(O'Donnell et al., 2009).

Fig. 8. Distance map method (2-dimensional): Euclidean distances are calculated from
each point on a grid to each point on the prototype fiber, and used to generate a
minimum distance map (A) and corresponding label map (B) matching regions of
the grid to different points on the prototype. This lookup table can then be used for
rapid processing of multiple fibers that share the same prototype (Maddah et al., 2008).
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Fig. 7. Visualization of between-group results: Statistical results are displayed on the
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colors represent regions of decreased FA in FASD subjects).
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A plug-in was generated with these algorithms, and their alternate
correspondence labels were easily incorporated into our existing data
structure. Leveraging our tools already available to the user, facetted

multi-panel figures of streamline correspondence plots (Fig. 9) and
along-tract data plots (Fig. 10) were then generated to allow for
comparison of these different methods for 3 different example tracts.

B

A

Constant Vertex # Optimal PointDistance Map

Fig. 9. Correspondence plots: Streamlines are colored by vertex index, highlighting which vertices have assigned correspondence and will be grouped together for the analysis (i.e.
all vertices with the same dark blue hue will be grouped together, etc.). (A) Left corticospinal tract, after 1) import of raw streamlines, 2) reorientation of streamlines toward a
common origin, 3) resampling of streamlines to have the same number of vertices, and 4) automatic prescription of an additional interior point of correspondence. (B) Comparison
of 3 different correspondence schemes (columns; Constant Vertex #, Distance Map, Optimal Point), for 3 different tract files (rows; left corticospinal tract, left arcuate fasciculus, left
inferior longitudinal fasciculus). The mean tract geometry (i.e., the prototype fiber) is also plotted, and is visible where not obscured by the other fibers.
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Discussion

Processing workflow

The main goal of this work was to generate a simple, flexible end-
to-end workflow for along-tract processing and statistical analysis.
We focused on the portion of the within-tract variability that exists
along tracts because: 1) Previous studies show that the largest
component of the within-tract variability exists along this axis, and
2) Tract groups already have longitudinal structure built in, due to
the connectivity of adjacent vertices in each streamline. Clearly this
decision is more appropriate for some tract geometries than others,
and suggests that these methods are best suited for tract dissections
that are relatively long (there is less benefit to analyzing differences
along a tract if the tract is so short that there is little change along
its length) and restricted to relatively tube-like point-to-point trajec-
tories between functional or anatomical regions. For example, an
analysis of the corticospinal tract's projections from the primary
motor cortex would be more appropriate than an analysis that
includes the fanning geometry of the entire corticospinal tract.
Whether the assumption of radial uniformity is valid is also
somewhat operator dependent, and will vary based on the types of
hypotheses and effect sizes expected in the data.

We used a “constant number of vertices” approach to resample
streamlines because it is simple; it implicitly scales all streamlines
to the same length, controlling for variation in tract length between
streamlines and subjects, and providing a natural tract “origin” at
either end of the tract; and it allows straightforward between-group
analysis because every subject's tract data will have a one-to-one

mapping along the curved spine of this “position” axis. Although the
optimal number of resampling points is expected to vary by many
factors including spatial resolution, the smoothness of the changes
in FA values, length of tracts, and the extent of expected group differ-
ences, a useful rule of thumb might be to resample approximately
once per voxel. Therefore, for 2.5 mm isotropic data, and a tract that
averages 100 mm in length across subjects, we would resample at
40 locations along its length.

The major assumption in doing this, however, is that the ends of
all the streamlines – and the vertices that make up the collection at
each cross-section – are analogous to each other and therefore appro-
priate to lump together during statistical comparisons. Radial
variability goes against this assumption, but, as previously discussed,
this is relatively minor compared to the longitudinal variability. This
assumption may also be less valid towards the ends of a tract group,
where the individual streamlines can stray to different terminal
areas, for example in the corticospinal tract, where most streamlines
terminate in the lowest slice of the brainstem, but the most inferior
cross-section will also include the final vertices of a few streamlines
that strayed posteriorly into the cerebellum. However, with many
streamlines making up each tract (approximately 100 per tract on
average in our sample analysis), a few spurious fibers are unlikely
to have much impact on individual subjects' along-tract estimates.
Nevertheless, these issues should always be considered during statis-
tical analysis, as varying noise levels between groups can alter their
power to detect effects, and thus potentially lead to spurious conclu-
sions. So far we have described an approach with higher sensitivity,
which might be a useful way to explore near-cortical white matter
at the expense of higher variability in the observations. Alternatively,

Fig. 10. Along-tract plots using different correspondence schemes: FA is plotted versus position from tract origin (similar to Fig. 5). The distribution of individual streamlines is
shown in the background (black lines; transparency and slight x-axis jitter used to control overplotting). Overlaid is the along-tract cross-sectional mean FA (blue; ± pointwise
standard deviation). Plots are annotated with number of streamlines (n), and transparency value used (alpha). As in Fig. 9, these plots are facetted into a 3×3 grid of different cor-
respondence schemes (columns), and tracts (rows).
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for an approach with higher specificity, one could apply the same
workflow we have described, but limit the analysis to more specific
portions of the tract. This could be performed by extracting a subsec-
tion of the tract during delineation, subjecting the streamlines to
additional constraints (length filters, uncertainty measures, etc.), or
by restricting the along-tract analysis to only the high confidence cen-
tral portions of tracts.

In spite of these shortcomings, this assumption of cross-sectional
uniformity is more appropriate than assuming that all the vertices
in the entire tract are analogous and comparable — as is the case
with the tract-averaged approach. It is also important to note that
this is more of a registration issue, and would still need to be consid-
ered carefully with more complex within-tract methods that might
look at shape metrics or the tensor fields themselves. Indeed, even
though tractography can circumvent some of the issues of traditional
voxelwise registration – since the tract groups are individualized
dissections based on the white matter anatomy of each subject – on
some level you are still going to have to make the assumption that
what you are trying to compare between individuals should actually
be compared.

Other along-tract approaches

Instead of pinning the streamlines together at either end, another
resampling strategy is to pin them down at some place in the middle
of the tract. This is the approach taken by Corouge et al. (2006),
where a manually identified slice plane is used to prescribe corre-
sponding origins across streamlines somewhere in the middle of the
tract where there is presumably higher confidence. While this might
be advantageous for some tract geometries (In Fig. 11, panel D
appears more appropriate than panel B because it avoids the
partial-volume-like averaging of possibly different vertex populations
towards the ends of the streamlines), it might be less appropriate for
others (In Fig. 11, panel A appears more appropriate than panel C
because it maintains the correspondence of vertices according to the
angular geometry of the tract). This also becomes challenging for
between-subject statistical analysis, given that between-subject scaling
must be implemented, and there are issues of how to dealwith differing
numbers of vertices between streamlines and subjects (Corouge et al.,
2006). To address the issue of differing tract scale among individuals
when parameterizing by arc length, others have used deformable

registration to bring individual subjects' tract shapes into alignment
with atlas-based templates, removing shape variability while still
allowing a type of along-tract parameterization (Goodlett et al., 2008).
However, since the sample locations along the streamlines are still
given by a continuous arc length variable (albeit now a standardized
arc length) there is a remaining correspondence issue since there is
not a one-to-one mapping of vertices across streamlines and subjects.
One progressive approach to circumvent this challenge has been to
model the underlying continuous biological variation in FA directly
though a higher dimensional framework for statistical inference called
functional data analysis (Goodlett et al., 2008, 2009; Zhu et al., 2010,
2011). A simpler general approach, which has also been successful,
only considers a more proximal set of vertices that have arc-length
positional correspondence across all streamlines. This correspondence
has variably been determined by 1) moving outwards with constant
spacing from some central origin as shown in Figs. 11C,D, or 2) updating
the group of corresponding vertices at each point along a mean (or
otherwise prototypical) fiber geometry by considering the Euclidean
distance of fiber points to each point on the prototype (Maddah et al.,
2008) or other optimized cost metrics (O'Donnell et al., 2009). While
these methods provide specificity, they sacrifice sensitivity to effects
in the more distal regions of the longer streamlines that are effectively
ignored. To gain access to thesemore variable (but possibly interesting)
regions, an alternative approach is to group all of the continuous arc
length positions into a set of discrete bins, which can then be analyzed
as a factor-coded variable (Madden et al., 2009a, 2009b; O'Donnell et al.,
2009). As a default option, we make available a somewhat hybrid
approach in our package: an extra tie-down origin can be implemented
in the middle of the tract by 1) determining the mean tract geometry
(see Extract scalars and collapse cross-sectionally section), 2) assigning
correspondence to the vertex in each streamline that is closest to the
midpoint of this mean tract geometry, and 3) resampling the stream-
lines with a constant number of vertices, and with an equal proportion
lying on either side of the tract midpoint. This allows for the prescrip-
tion of an interior correspondence point, as suggested by Corouge et
al. (2006), but does so in a way that is fully automated and avoids the
extra resampling step associated with re-binning an already-
interpolated arc length paramterization. Further, this approach utilizes
information provided by a kind of prototypical fiber geometry
(Maddah et al., 2008; O'Donnell et al., 2009), but does so in a way that
still retains sensitivity to the most distal parts of the tract groups.
Fig. 9A shows the evolution of this correspondence scheme as an exam-
ple corticospinal tract fiber group progresses through the along-tract
processing workflow. These “correspondence plots”, in the efficient
standardized style of O'Donnell et al. (2009), use color to showprecisely
which vertices will be grouped together and compared in the final
analysis. This can be helpful to users of the along-tract workflow by
explicitly demonstrating the effects that various processing choices
have on the point alignment and correspondence scheme of their own
tract groups.

Tomaintain balance between accessibility andmodeling complexity,
we employed the “constant number of vertices” resampling strategy.
However, because this workflow is open source and modular, one has
this flexibility to easily incorporate other variations on the individual
processing components into these broader themes. For instance, consid-
er the intuitive techniques of using functional Brodmann areamasks (Oh
et al., 2009) or the “bend” in the arcuate fasciculus (Yeatman et al., 2012)
to prescribe additional points of correspondence across streamlines.
These approaches could be easily utilized through the current frame-
work, while retaining the advantages of fiber-tracking software
interoperability, automation across multiple subjects and tract files,
and rich analysis and visualization facilities. For a more sensitive style,
the user can input the full tract groups, while for a highly specific style,
the user can prescribe an additional interior origin, and choose to clip
their tract groups using the “cut” strategy. To demonstrate the extensibil-
ity of our workflow, and further validate our hybrid resampling scheme

NA

NA

NA NA

A C

B D

Fig. 11. Comparison of resampling strategies: (A,B) Streamlines resampled with a con-
stant number of vertices, but variable spacing, and pinned together at either end (tract
origins designated by the gray groupings of vertices). (C,D) Streamlines resampled
with variable numbers of vertices, but constant spacing, and pinned together at the
midpoint of the mean tract geometry.
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against existing methods, we also implemented the “Distance Map”
(Maddah et al., 2008) and “Optimal Point” (O'Donnell et al., 2009) corre-
spondence schemes from the literature. By integrating these alternate
algorithms in the context of the generalized along-tract workflow
described in this report, the user is given immediate access the tools
that are already available for existingmethods. For example, we showed
how this could be used to generate faceted figures of correspondence
plots (Fig. 9), as well as fully-automated, richly detailed, along-tract
plots of the extracted data (Fig. 10). This is not meant as an exhaustive
exploration of these different options, as there will be some variation
in the data extracted by these methods as their different parameters
are adjusted. Rather, this comparison shows that all methods are gener-
ally successful at extracting along-tract data from tractography fiber
groups, and all benefit from being implemented in a broader along-
tract workflow.

Example analyses

It is clear from applying these along-tract methods to example
data that they offer promising advantages for many tractography
applications. Rather than treating each tract as homogenous, these
methods reveal significant along-tract variations in FA for all of the
major white matter tracts studied, as would be expected based on
previous voxel-based studies of the white matter (Schmithorst and
Yuan, 2010; Wozniak and Lim, 2006), and other tract-based
approaches that have examined FA within tracts (Concha et al.,
2010; Davis et al., 2009; Sullivan and Pfefferbaum, 2006; Xue et al.,
1999; Yushkevich et al., 2008). The largest benefits of shifting to an
along-tract analysis are seen in the subset of tracts that are long and
fairly rope-like (Fig. 5), including the corticospinal tract, the inferior
fronto-occipital fasciculus, and the occipital projections of the corpus
callosum (i.e., the forceps major). Here, along-tract modeling gives a
large improvement in detail and a prominent decrease in the residual
unexplained variance components (e.g., in the corticospinal tract, the
tract-averaged standard deviation of 0.16 decreases to less than 0.08
at many of the along-tract cross-sections). This also suggests that
along-tract methods may be useful in graph-theory-type structural
brain network studies, as these analyses typically employ the type
of small, sometimes distant, tracking ROIs that may benefit most
from this approach (Bullmore and Sporns, 2009; Hagmann et al.,
2010). Further, in these analyses we commonly scale the number of
streamlines between two ROIs by some measure of their quality –
like average FA or inverse diffusivity – in order to investigate interest-
ing network properties like efficiency (Rubinov and Sporns, 2010).
Along-tract methods may be able to contribute to such studies by
allowing for their extension to investigate focal along-tract hypothe-
ses that are born out of an initial network analysis.

Another benefit of along-tract methods is that they can be used to
address some types of partial volume effects by implementing quality
control measures to check the along-tract streamline distribution for
outliers or multiple streamline populations. For example, the
symmetric parasagittal dips in FA in the forceps major likely result
from partial volume averaging with cerebrospinal fluid in the
adjacent lateral ventricles (Jones et al., 2005). Similarly, along-tract
techniques might also be used to highlight crossing fibers areas that
are not resolved by the single tensor model of diffusion.

The example between-group analysis demonstrates the richness
with which these methods allow one to interrogate their data (Fig. 6).
The finding of decreased FA in the inferior longitudinal fasciculus of
the FASD group is particularly useful to demonstrate the advantages
of modeling diffusion indices along tracts, as the effect is rather
localized to only a portion of the entire tract. Although this effect region
might generate a significant tract-averaged finding with enough
subjects, it could easily be missed if the study were not sufficiently
powered, or if there were intermingled effects in the opposite direction.
Thus, the along-tract analysis increases power to detect these more

focal effects, and also provides better ability to localize effects. For exam-
ple, in regards to fetal alcohol exposure, an along-tract finding in this
part of the ILF is consistent with a previous tract-averaged finding in
the same tract (Lebel et al., 2008a), but is also consistent with previous
voxelwise findings of decreased FA in FASD subjects in the posterior
temporal lobe (Sowell et al., 2008). This simple meta-analytical com-
parison becomes more meaningful with the addition of within-tract
detail, as previously it might have been ambiguous whether similar
effects reported in a tractography study and a voxelwise study were
actually localized to similar regions.

Other options for improving within-tract tractography detail

Segmentation of fiber tracts
Segmentation is perhaps the simplest method to achieve greater

within-tract detail, but has also had some of the broadest impact
because of its easy implementation and long history of effectiveness
in T1-weighted anatomical analyses. The prototypical example of this
approach is an analysis of the midline corpus callosum, where it is
segmented into different sub-regions that are analyzed individually.
These segmentations may be generated, for example, by straightfor-
ward coronal slice planes (Wozniak et al., 2009), but have also been
created by a variety of other strategies. Even before the widespread
adoption of diffusion imaging, this general approach allowed for region-
al summaries to be generated of voxelwise and morphological analyses
(e.g., (Riley et al., 1995; Thompson et al., 2000)). More recently,
segmented tractography analyses have been attained in a similar
manner by employing sets of masks to extract tract groups that origi-
nate from different anatomical portions of the corpus callosum
(Schulte et al., 2010), or alternatively, project to different functional
regions of the cortex (Huang et al., 2005; Lebel et al., 2010; Whitford
et al., 2010). In an interesting variation on this theme, a prescribed
structural or functional segmentation of the streamlines at one tract ter-
minus can even be used to drive a connectivity-based segmentation of
the structures that lie at the opposite tract terminus (Behrens et al.,
2003). Compared to the types of methods described in this report that
focus on the along-streamline variance component, this approach is
typically implemented as a way to model the between-streamline vari-
ance component without having to resort to a more comprehensive
within-tract framework (Yushkevich et al., 2008; Zhang et al., 2010).

Tract-based masks for voxelwise analysis
Instead of using different voxelwise landmarks to restrict the

tractography, as described in the previous section, the process can
be performed in a somewhat inverse manner, with the tract groups
used to mask a voxelwise analysis, either voxel-by-voxel within the
tract group mask, or collapsed along a single anatomical axis. This
latter approach, in particular, is a close relative of the along-tract
methods described here, and reveals some of the along-tract variation,
particularly for relatively linear tracts that parallel one of the anatomical
axes (e.g., the corticospinal tract) (Pfefferbaumet al., 2005; Sullivan and
Pfefferbaum, 2006; Wakana et al., 2007; Xue et al., 1999). However, for
tracts withmore complex geometries that don't align linearly along one
of these axes (e.g., the forceps major/minor, arcuate fasciculus, etc.),
along-tract parameterization like we have described is needed to
uncover these variations.

Shape analysis
Building on the long history of surface-based anatomical analyses

of T1-weighted data (Fischl and Dale, 2000; Luders et al., 2004;
Sowell et al., 2003), the shapes of the white matter tracts can provide
important complementary information to the voxelwise intensity
values that lie within the tract groups. Shape information can be
used to drive a registration algorithm, bringing voxelwise (Eckstein
et al., 2009) or deterministic/probabilistic-based tract groups into
alignment with a common template model (Clayden et al., 2007),
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and allowing voxelwise analysis of intensity values throughout their
interior, or projection of these values onto the shape-based tract
model and subsequent surface-based analysis. Compared to the
simpler spline-based along-tract strategies, which assume cross-
sectional symmetry along the tracts, these more generic within-
tract methods capture variability along more dimensions within a
tract (Yushkevich et al., 2008; Zhang et al., 2010). While this might
not be an important distinction for the long rope-like tract groups
that are typical of tract dissections towards distinct functional areas
(e.g., the corticospinal tract projections to the primary motor cortex),
it could be particularly valuable as a way to investigate variability
across related bundles (e.g., the entire fanning geometry of the
corticospinal tract, or the entire set of fibers that pass anywhere
through the corpus callosum). An alternative approach to utilize
shape information is to directly analyze the shape properties, for
example, the vertex-wise deformation needed to bring each tract
group shape into register (Qiu et al., 2010), the shape “context”
contributed by analyzing where a set of streamlines travel beyond a
voxel of interest (Adluru et al., 2009), or streamline curvature and
torsion (Batchelor et al., 2006). In the context of the present report,
these types of metrics can be mapped to the vertex-wise tract loca-
tions to provide complementary information to FA. For instance, the
relative size (i.e. width) of the tract along its path could be directly
calculated from the spatial spread of the vertices at each cross-
section. While lacking a framework for inference, early work by
Jones et al. (2005) to map alternative diffusion tensor indices and
fiber orientation uncertainty along tracts demonstrated the rich
potential of pursuing such integration.

Directionality-aware registration
A final class of advanced methods incorporate some sort of

directionality information to drive the registration of the voxel-wise
diffusion imaging data. This has been performed by developing
methods to process the diffusion tensors (Alexander et al., 2001;
Arsigny et al., 2006; Corouge et al., 2006; Yeo et al., 2009; Zhang et al.,
2006) or the higher order orientation distribution function (ODF) repre-
sentations of high angular resolution diffusion imaging (HARDI) recon-
struction schemes (Chiang et al., 2008), but has also been achieved by
either splitting the tensor data into multiple channels (Park et al.,
2003), or summarizing the tensor data in single metrics that can be
incorporated into the cost functions of existing registration algorithms
in a simpler manner (Yap et al., 2009).

Relation to other diffusion models

While this report has focused on example data from a clinical-type
DTI sequence (30 directions, 2.5 mm isotropic voxels) analyzed with
the FACT algorithm, the general principles can extend to a variety of
other diffusion models and tractography approaches that can similarly
result in an analogous set of polyline-based tract groups, and their util-
ity is likely to grow with advancements that continue to increase the
effective resolution of diffusion imaging data, as this will only further
highlight the within-tract heterogeneity. Similarly, these analysis tools
are equally relevant to the study of additional diffusion imaging indices
like mean diffusivity or axial and radial diffusion components. Other
types of data could also be integrated — for example, maps could be
generated showing where frontal lobe measures of executive
functioning correlatewith diffusion imaging indices along tracts leading
from the frontal lobe. Perhaps most interesting, other types of imaging
data could even be mapped to these same anatomical locations in a
multi-modal approach that could examine correlations between
along-tract estimates of diffusion imaging indices, and things like local
shape attributes, adjacent cortical thickness, sulcal depth, or even
fMRI activation indices.

Conclusion

It is clear from inspection of deterministic tractography dissections
that there are prominent variations in scalar diffusion imaging metrics
(like FA) within the major white matter tracts in the human brain.
However, the majority of diffusion tractography analyses still rely on a
whole-tract-averaged approach for analyzing differences in these scalar
metrics. Moreover, despite excellent work on individual topics related
to along-tract processing, and promising advancements towards even
more exotic forms of statistical inference in this arena, this present
work provides the first extensible end-to-end along-tract workflow
for performing and robustly visualizing a standard multiple regression
GLM analysis, and an accompanying primer focused on practical
considerations for applications-oriented scientists and clinicians. By
assuming tracts are relatively tube-like structures with cross-sectional
uniformity, we have implemented a straightforward spline-based
resampling strategy that captures the large portion of within-tract var-
iance that exists along the tracts. These tools have been incorporated
into an open source end-to-end workflow for along-tract analysis, and
are important because they: 1) Easily integrate into existing tractogra-
phy studies, 2) Reveal a much richer data landscape than what is
typically utilized by traditional tractography methods, 3) Directly
extend to enable flexible between-group statistical analyses, and
4) Offer the opportunity to enhance the connectivity analyses of a
wide range of neuroscience applications.
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CHAPTER 6

Fetal Alcohol Spectrum Disorders (FASDs)

6.1 Demographics

Data were collected between Summer 2008 and Summer 2011 according to the protocol described

in § 3.3.4. During this time, 70 participants were enrolled for scanning at UCLA. Of these, 61

completed one or more DTI acquisitions without any gross artifacts (e.g. aliasing along the an-

terior–posterior phase-encoding direction, clipping of the top/bottom of the brain, whole-slice

dropout due to ballistic head movements). Additional subjects were excluded if they were pilots

scans (1), young adults (age > 18) (2), members of patient groups for other studies (5), or longitu-

dinal repeat visits (2). This left 51 total subjects available for the analysis.

According to the diagnostic criteria described in §2.3.1 and §3.4.2, participants were assigned

to either the “FASD” or “Control” groups. The control group included 29 subjects (16 female,

age 12.5 ± 2.9 years), and the FASD group included 22 subjects (11 female, age 12.9 ± 2.3 years)

(Figure 6.1). Groups did not significantly differ in age or gender. Importantly, 10 FASD subjects

also had exposure to methamphetamine.

6.2 Voxelwise analysis

Group differences in FA between the FASD and Control groups were assessed with TBSS. The

analysis protocol generally followed the descriptions in § 2.3 and Chapter 4. However, here the

FMRIB58 FA atlas brain was used as the nonlinear registration target. Using a linear model with

group intercept terms and an across-group age covariate, we observed the typical developmental
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Figure 6.1: Age distributions by gender and group

pattern of increasing FA and decreasing MD, driven by decreasing AD and even larger decreases in

RD (Figure 6.2). However, correcting for multiple comparisons, no significant voxels were found

for the group contrasts for any of the DTI metrics.

We also failed to find any significant voxels in the group contrasts when this analysis was re-

peated using the restricted set of only 12 FASD subjects who did not have any comorbid exposure

to methamphetamine. The age effects in this follow-up analysis again showed increasing FA, and

decreasing MD, AD, and RD. In particular, the regions of positive correlation between FA and age

were more widespread in this analysis (Figure 6.3).

6.3 Tractography analysis

Whole-brain streamline tractography data were generated and analyzed according to the methods

described in §3.3.7 and Chapter 5. Briefly, for each subject’s preprocessed tensor data, this included

fiber-trackingwith the standard Fiber Assignment byContinuous Tracking (FACT) algorithm (Mori

et al., 1999), manual delineation of 10 major white matter tracts by a trained experimenter (Wakana

et al., 2007), tabulation of DTI metrics at many points along these tracts, and between-group statis-

tical modeling (Colby et al., 2012). For an explanation of tract abbreviations, see especially Figure

5 in the Colby et al. (2012) paper.
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(A) (+) Fractional anisotropy (FA)

(B) (−) Mean diffusivity (MD)

(C) (−) Axial diffusivity (AD)

(D) (−) Radial diffusivity (RD)

Figure 6.2: Voxelwise correlations between DTI metrics and age (𝑛 = 51, 𝑃 < 0.05).

6.3.1 Across-tract observations

6.3.1.1 Tracking failures

The first step in analyzing deterministic tractography data is to simply tabulate the number of tract

groups where tracking was successful (i.e. one or more fibers were identified) versus the number

of failures (i.e. zero fibers were identified) (Table 6.1). The number of failures was highest in

the arcuate fasciculus — particularly the right hemisphere. In proportion to their sample sizes,

the FASD group also tended to have more tracking failures overall, but this was not statistically

significant (𝑃 = 0.15).
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Figure 6.3: Voxelwise correlations between FA and age (𝑛 = 41, 𝑃 < 0.05).

Tract Hemisphere Control FASD
1 CGC L 3.45 4.55
2 CGC R 6.90 9.09
3 CGH L 3.45 9.09
4 CGH R 6.90 9.09
5 CST L 3.45 4.55
6 CST R 3.45 4.55
7 ATR L 3.45 0.00
8 ATR R 3.45 0.00
9 AF L 3.45 13.64

10 AF R 41.38 68.18
11 ILF L 6.90 4.55
12 ILF R 3.45 4.55
13 IFO L 3.45 4.55
14 IFO R 3.45 4.55
15 UNC L 3.45 9.09
16 UNC R 3.45 9.09
17 Fmajor L 3.45 0.00
18 Fminor L 3.45 0.00

Table 6.1: Tracking failures (%) by tract, hemisphere, and group

6.3.1.2 Tract length

Tract length naturally varies by tract, so average tract lengths were first calculated and used to

determine the number of interpolation points (nPts) for extracting along-tract data. The numbers of

interpolation points were chosen such that the underlying data get sampled approximately once per

voxel. Tract lengths did not significantly vary by hemisphere, so both versions were interpolated

with the same number of points to allow for potentially investigating group:hemisphere types of

effects. The average tract lengths and numbers of interpolation points are listed in Table 6.2. For

the subjects who had greater than zero fibers for a given tract, the FASD group generally had shorter

tracts (𝑃 < 0.001). This effect did not significantly vary by tract (𝑃 = 0.06).
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Tract Hemisphere Mean length (mm) nPts
1 CGC L 75.78 29
2 CGC R 68.29 29
3 CGH L 35.92 15
4 CGH R 39.49 15
5 CST L 102.28 41
6 CST R 101.75 41
7 ATR L 65.63 27
8 ATR R 67.52 27
9 AF L 84.55 35

10 AF R 85.37 35
11 ILF L 83.76 35
12 ILF R 85.11 35
13 IFO L 133.86 55
14 IFO R 135.96 55
15 UNC L 59.02 25
16 UNC R 59.56 25
17 Fmajor L 136.69 55
18 Fminor L 92.62 37

Table 6.2: Average tract lengths by tract and hemisphere

6.3.1.3 Number of streamlines

Similar to length, the number of streamlines in the tractography dissections varied by tract. When

considering all tracts jointly with ANOVA, we did not observe any significant overall hemisphere

or hemisphere:tract interactive effects. There was, however, a subthreshold trend towards a main

group effect of fewer streamlines on average in the FASD group (𝑃 = 0.10), as well as tract:group

(𝑃 = 0.08) interactive effects. These distributions are plotted in Figure 6.4 in the right set of panels.

6.3.2 Along-tract observations

For each tract and hemisphere, FA was modeled as a function of along-tract position, group (FASD

or Control), position:group interactions, and age. A single subject-level random intercept term

was also included. Because no significant group effects were observed when the TBSS analysis

was corrected for multiple comparisons, here we decided to first focus on the uncorrected maps so

at least we could qualitatively explore the trends in the data. Using this model, significant posi-
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tion:group interactive effects were identified in the left cigulate gyrus (hippocampal part), bilateral

corticospinal tracts, left inferior longitudinal fasciculus, and bilateral inferior frontal occipital fas-

ciculi. These types of effects correspond to focal regions of group differences that are isolated to

regions along the tracts. Examining the individual 𝑡 statistics along the tracts (Figure 6.4) reveals

the nature of these effects to be generally lower FA in the FASD group. However, the L ILF is an

exception, and has a mixed picture with regions of both higher and lower FA in the FASD group.

The entire along-tract data set is displayed in Figure 6.4. Accompanying t-statistic and P-value

plots for the main group contrast are shown in Figure 6.5. For reference, all pairwise significant

regions are shown in this plot, instead of masking them to only show the panels with a significant

position:group 𝐹 test as in Figure 6.4. P-values and effect sizes are also useful to visualize projected

back onto the 3D mean tract geometry of an example subject (Figure 6.6).

For familiarizing oneself with these types of figures, it is useful to first focus on one tract re-

gion and then identify it on all of the plots. For example, consider the inferior frontal occipital

fasciculus, which is a long tract connecting the frontal lobe (0% position in our along-tract plots)

to the occipital lobe (100% position in our along-tract plots) through the external capsule. It has

significant position:group interaction effects in both hemispheres, signaling the presence of focal

along-tract group effects. Therefore the regions within this tract that have significant pairwise t

statistics are tagged with black bars toward the bottom of the panels in Figure 6.4. Inspection of

the group mean curves in these same plots tells us that these effects are due to lower FA in the

FASD group. These significant regions are also highlighted in green in the analogous panels on

Figure 6.5, with the t-statistic plot again showing the directionality of this effect. Finally, moving

to the 3D plots (Figure 6.6), these regions show up in blue (i.e. negative effects in FASD relative

to control subjects) towards the posterior end of IFO.
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Figure 6.4: Along-tract variation in FA, by tract, hemisphere, and group. FA is plotted versus
position along tract, and panels are facetted into a grid by tract and hemisphere. 0% typically corresponds
to the frontal lobe tract terminus (exceptions: CST, inferior terminus; CC, left hemisphere terminus).
Color encodes group membership, and line-width encodes the number of streamlines for a given subject.
Individual subjects are displayed semi-transparently in the background, and group means are overlaid
on top. For panels with a significant position:group interaction, significant regions of group effects are
highlighted towards the bottom of each panel. Distributions of the number of streamlines are shown in
an accompanying set of panels at right.
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Figure 6.5: 2D statistical plots for Figure 6.4 (FASD–Control contrast)
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(A) Effect size (FA in FASD – Control)

(B) 2-way P-value plot

Figure 6.6: 3D statistical plots for Figure 6.4 (FASD–Control contrast)

6.4 Graph-based network analysis

In additional to the voxelwise and tract-based brain mapping approaches, which are serially univari-

ate with respect to different anatomical locations, it is reasonable that analyzing the multivariate

patterns of structural abnormalities across regions, and their relation to cognitive measures, might

provide additional and complementary insight into the biological basis of typical brain development

and its perturbation in the context of FASDs.

Graph-theory-based network analysis is one such approach that has recently emerged as a pop-

ular tool in the neuroimaging community (Bullmore and Sporns, 2009; Dosenbach et al., 2010;

Fair et al., 2008). This is in part because the field has a long and successful history of theoret-

ical advancements, as well as applications to the study of topological properties of other physi-

cal/communication/information systems (Strogatz, 2001). In the language of graph analysis, the

network topology of an individual brain’s structural or functional network connectivity can be

summarized as a list of nodes (i.e. focal brain regions) and their pairwise connection strengths.
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The physical/imaging metric prescribed to this connectedness quality is variable, and, for example,

could be the number of streamline fibers between nodes in a deterministic tractography analysis

(Brown et al., 2011), or the pairwise time series correlation in a functional connectivity analysis

(Power et al., 2010). This allows the entire network topology to be summarized in a simple connec-

tivity matrix, where the rows and columns correspond to the different nodes, and each cell contains

their pairwise connectivity weight (Figure 6.7). This high degree of data compression is one im-

portant reason why graph theory measures have become especially useful summaries for the largest

and most complexly connected systems like Facebook social networks or the human brain. From

these raw connectivity matrices, one can derive a variety of summary meta-statistics describing

different aspects of their “global” connectivity across all nodes. Similarly, the connectivity of indi-

vidual nodes can be summarized through a variety of “nodal” measures. As a powerful qualitative

visualization of the network topology, the layout from the raw connectivity matrix can be displayed

as a series of interconnected nodes and edges, and simultaneously encoded with any of these graph

theoretical measures (Figure 6.8).

6.4.1 UCLA Multimodal Connectivity Database (UMCD)

Since initially-large and diverse brain imaging data sets are highly distilled for graph-based ap-

proaches into a set of uniform input connectivity matrices, these graph theory techniques lend

themselves especially well to fully-automated processing pipelines. One such effort is the UCLA

Multimodal Connectivity Database (UMCD), which provides a public web-based interactive in-

terface to an automated graph theory pipeline, and outputs many of the most common global and

nodal connectivity measures.

To automate the submission and retrieval of UMCD processing requests, we authored R-

UMCD, an R interface to the web API that powers this online tool. With this wrapper, a batch

of results for a list of subjects can be compiled directly from within an R session, and then imme-

diately analyzed and visualized.
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Figure 6.7: Study-wide DTI connectivity matrix (𝑛 = 51). Color indicates average fiber count. Nodes
clustered via hierarchical agglomerative algorithm.
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6.4.2 Results

Graph theoretical measures of white matter network connectivity were examined in all 51 subjects.

Streamline tractography fiber counts were calculated in a pairwise fashion between 110 cortical

and subcortical ROIs derived from the Harvard-Oxford atlas, and used to generate white matter

connectivity matrices for each individual. These were aggregated by group and used to generate

group-mean network metric summaries via the UMCD. Qualitatively, the FASD group mean ex-

hibited lower overall connection density, and, when both groups were normalized to a prescribed

sparsity of 20%, lower modularity and lower normalized clustering coefficient. Overall, this pattern

leads to a lower sigma measure of “small-worldness” in the FASD group (Table 6.3).

Measure control_mean fasd_mean
1 Characteristic Path Length 2.00 1.99
2 Clustering Coefficient 0.58 0.57
3 Gamma 1.09 1.09
4 Global Efficiency 0.57 0.57
5 Lambda 2.09 1.99
6 Modularity (Q) 0.38 0.36
7 Number of Components 1.00 1.00
8 Raw Density (%) 30.46 29.24
9 Sigma 1.92 1.83

Table 6.3: Qualitative comparison of global graph theory measures between group mean networks.

To see if this qualitative patten was statistically significant, a full between-group analysis was

conducted using global measures derived from single-subject connectivity matrices. Age, group,

and age:group interactive effects were considered in a linear model that was fit for each global

measure. Even without considering the large number of comparisons, all of the terms for all of the

metrics are nearly at or below threshold (Table 6.4). The lack of any prominent relationship is also

clear when examining plots of these data (Figure 6.9).

116



●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

● ●

● ● ●●●

●

●

● ● ●

●

●

●● ●●

●

●

●

●

●

●●● ●● ●● ●

●

●

●

●

● ●●

●

● ●● ●●● ●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Characteristic Path Length Clustering Coefficient Gamma

Global Efficiency Lambda Modularity (Q)

Number of Components Raw Density (%) Sigma

2.5

2.6

2.7

2.8

0.38

0.40

0.42

0.44

0.46

0.48

1.10

1.12

1.14

1.16

0.40

0.42

0.44

0.46

3.0

3.5

4.0

0.40

0.42

0.44

0.46

0.48

0.50

0.52

1

2

3

4

7

8

9

10

2.5

3.0

3.5

8 10 12 14 16 18 8 10 12 14 16 18 8 10 12 14 16 18
age

va
lu

e

Subject Pool
●

●

Control

FASD

Figure 6.9: Global graph theory measures by age and group
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Measure Term Estimate Std. Error t-value Pr(>|t|)
1 Characteristic Path Length age -0.01 0.01 -0.89 0.38
2 Characteristic Path Length ‘Subject Pool‘FASD -0.04 0.19 -0.21 0.83
3 Characteristic Path Length age:‘Subject Pool‘FASD 0.00 0.01 0.29 0.78
4 Clustering Coefficient age 0.00 0.00 0.50 0.62
5 Clustering Coefficient ‘Subject Pool‘FASD 0.02 0.04 0.45 0.65
6 Clustering Coefficient age:‘Subject Pool‘FASD -0.00 0.00 -0.45 0.66
7 Gamma age -0.00 0.00 -0.31 0.76
8 Gamma ‘Subject Pool‘FASD -0.03 0.04 -0.94 0.36
9 Gamma age:‘Subject Pool‘FASD 0.00 0.00 0.99 0.33

10 Global Efficiency age 0.00 0.00 1.26 0.21
11 Global Efficiency ‘Subject Pool‘FASD 0.03 0.02 1.19 0.24
12 Global Efficiency age:‘Subject Pool‘FASD -0.00 0.00 -1.25 0.22
13 Lambda age 0.03 0.03 0.90 0.37
14 Lambda ‘Subject Pool‘FASD 0.47 0.76 0.62 0.54
15 Lambda age:‘Subject Pool‘FASD -0.02 0.06 -0.35 0.73
16 Modularity (Q) age 0.00 0.00 0.15 0.88
17 Modularity (Q) ‘Subject Pool‘FASD 0.01 0.03 0.21 0.83
18 Modularity (Q) age:‘Subject Pool‘FASD -0.00 0.00 -0.28 0.78
19 Number of Components age -0.08 0.04 -1.95 0.06
20 Number of Components ‘Subject Pool‘FASD -2.58 0.99 -2.61 0.01
21 Number of Components age:‘Subject Pool‘FASD 0.18 0.08 2.37 0.02
22 Raw Density (%) age 0.04 0.05 0.80 0.43
23 Raw Density (%) ‘Subject Pool‘FASD 0.55 1.20 0.46 0.65
24 Raw Density (%) age:‘Subject Pool‘FASD -0.05 0.09 -0.56 0.58
25 Sigma age 0.03 0.03 0.99 0.33
26 Sigma ‘Subject Pool‘FASD 0.49 0.63 0.78 0.44
27 Sigma age:‘Subject Pool‘FASD -0.02 0.05 -0.50 0.62

Table 6.4: Between-group analysis of global measures

6.5 Discussion

6.5.1 Age effects

On the whole, this investigation was able to successfully demonstrate the expected patterns of de-

velopmental maturation in the white matter — including decreasing diffusivity, and increasing

fractional anisotropy. However, the robustness of these findings, particularly for FA, was lower

than expected. For instance, while we expected broadly increasing FA across many brain regions,

significant effects were isolated to only modest regions of the brainstem, genu of the corpus callo-
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sum, and right cingulum on the voxelwise TBSS analysis (Figure 6.2A). The pattern was closer to

what was expected when the analysis was repeated while excluding the methamphetamine-exposed

subjects (Figure 6.3). This makes sense generally because a uniform typically-developing control

group is expected to be one of the “cleanest” samples for demonstrating simple age effects. With

the addition of patient groups, even when modeling different intercepts, the increased noise in the

sample could outweigh the expected increase in power due to the higher 𝑛. This appears to be the

case here. The confound of methamphetamine exposure is especially relevant, since we have shown

this to be associated with effects on FA (Chapter 2) that could further muddy the usefulness of the

FASD group for demonstrating age effects. The lateralization of the arcuate fasciculus, in terms

of the number of streamlines in each tract (Lebel and Beaulieu, 2009), is another typically-large

developmental effect that we were able to demonstrate only weakly.

6.5.2 FASD effects

When correcting for multiple comparisons across all spatial positions, neither the voxelwise TBSS

analysis, nor the along-tract tractography analysis, were able to demonstrate any significant group

effects between the FASD and Control subjects. The graph theory network-based approach was

even less fruitful. This is not surprising given the low 𝑛 and contamination in the FASD group.

However, when more omnibus tests were performed on the along-tract tractography data, signifi-

cant position:group interactions in predicting FA were observed in several regions (§6.3.2). The

t tests along these specific tracts showed these effects generally to be due to decreased FA in the

FASD group, which is consistent with previous literature showing broadly decreased FA and in-

creased MD in these individuals (Lebel et al., 2008a; Norman et al., 2009). The bilateral nature

and similarity in along-tract localization of the findings in the inferior frontal occipital fasciculus

(IFO) and corticospinal tract (CST) lend somewhat more confidence to these observations. The

posterior IFO localization, especially, is consistent with a previous voxelwise TBSS analysis that

also demonstrated lower FA in the same region bilaterally (Fryer et al., 2009). Abnormalities in

this region are also functionally consistent with deficits in visuospatial processing seen in FASDs
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(Mattson and Riley, 1998; Mattson et al., 1998). However, it is conspicuous then that we failed to

observe any effects in the corpus callosum, which typically shows the largest abnormalities, and

has been broadly replicated across studies (Wozniak andMuetzel, 2011). Finally, looking at across-

tract properties, the fact that the FASD group had shorter tracts overall, and a trend toward more

tracking failures, was expected based on the global microcephaly that is commonly seen in these

individuals (Spohr et al., 2007).

6.5.3 Voxelwise analysis vs. tractography

The voxelwise TBSS analysis §6.2 and the streamline tractography analysis §6.3 take very differ-

ent approaches to data processing, and yet both get used with the goal of demonstrating the same

ultimate phenomena. So which is better? Although there are many differences between the two

approaches, one of the most important is that TBSS implements a nonlinear warp on the scalar FA

maps to bring different subjects into register, while tractography takes a more implicit approach to

registration by imposing anatomical constraints on the vector diffusion directionality fields. This

means that the TBSS registration will be driven by the high-contrast edges between white/gray

matter, and other regions of high/low fiber coherence on the FA maps, but will be relatively blind

to important edges in directionality space (e.g. two highly coherent bundles passing adjacent to

each other). Additionally, because the anatomical constraint in voxelwise registrations is that all

brains should have the same general morphology, they are less accommodating to large structural

differences that can be seen in disease or even across the span of typical development. On the other

hand, there are certain regions of the white matter that typically do not segregate into any of the

standard white matter tract groups with tractography, and thus are never even analyzed with this

approach. This is especially true with DTI-type analyses that only consider a single intravoxel fiber

population. In these analyses, regions of crossing fibers act to cleave off the minor intravoxel fiber

populations, and leave these fiber groups isolated from the rest of the network. One classic exam-

ple of this is the 3-way intersection of the corticospinal tract, superior longitudinal fasciculus, and

lateral corpus callosum extension, where the corticospinal tract dissections almost never include
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projections to the more lateral aspects of the primary motor strip.

6.5.4 Participants

The sample characteristics of this study are clearly its most important limitation. When data collec-

tion started, the goal was to collect 70 subjects in each group. Actual data collection fell far short

of this mark, with only 70 subjects total enrolled in the study. Further, if the subjects with metham-

phetamine exposure are excluded—which is a reasonable thing to do based on potential confounds

— only 12 subjects remain in the FASD patient group. With baseline power for detecting group

effects this low, it is no surprise that we were unable to demonstrate the same level of widespread

white matter abnormalities that have been previously reported (Wozniak and Muetzel, 2011). This

low 𝑛, especially in the FASD group, also prevents a thorough investigation of the more complex

aspects of our initial proposal, which concerned mapping the nonlinear developmental trajectories

(See Aim 1b) and machine learning classification of FASD subjects from controls (See Aim 2d).

6.5.5 Data quality

Upon reflection, the overall image quality of this data set is also likely contributing to lower power

and our failing to demonstrate specific hypothesized findings. During processing of this data set,

several data quality issues were noted — all of which can be generally grouped under the umbrella

of “growing pains” as research was transitioned to a new Siemens Trio scanner at the UCLA Brain

Mapping Center in 2008. These problems reduced the overall yield of usable scans, and, for those

scans that were included, are likely still contributing in subtler ways.

Low SNR: For reasons unknown to us, the overall SNR in the raw data fluctuated during the ini-

tial months of operation, causing some scans to have unacceptably low SNR. Compare Fig-

ure 6.10A to Figure 6.10B.

Artifacts: Focal artifacts were also a problem. By far the most severe was a vibration artifact

that would manifest prominently in the processed data as spurious fibers along the x axis
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(A) Low SNR (B) Typical SNR (C) Vibration artifact (D) Clipping/aliasing

Figure 6.10: Data quality issues

(Figure 6.10C).

New protocol: Due to the new acquisition protocol, with a new field of view and total z slab thick-

ness, subject positioning issues became a common problem. This included aliasing along the

A–P phase-encode direction, clipping of the brain either superiorly or inferiorly along the z

axis, and sometimes even both (Figure 6.10D).

6.5.6 Conclusion

In spite of the limitations of this sample, we were able to successfully demonstrate the more gen-

eral aspects of developmental maturation in DTI metrics across groups. Although underpowered,

patterns of abnormalities in fractional anisotropy — a DTI metric sensitive to myelination — were

also demonstrated in the FASD group, and are broadly consistent with previous voxelwise and

tract-based results. Further, the application of along-tract analysis techniques has provided some

promising insight, albeit preliminary, into the within-tract localization of these findings.
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CHAPTER 7

Machine learning classification of attention deficit hyperactivity

disorder (𝑛 = 973)

7.1 Introduction

As part of our NRSA grant proposal to study the effects of prenatal alcohol exposure on white

matter microstructure and its relationship to executive function (Chapter 3), we had originally in-

tended to investigate the usefulness of neuroimaging features (e.g. along-tract DTI measures as

in § 6.3) for the classification of individuals with FASDs from typically-developing controls. In

light of the sample size limitations of the UCLA FASD data set, we instead decided to shift our

focus to a phenotypically-related neurodevelopmental disorder — Attention Deficit Hyperactiv-

ity Disorder (ADHD). This was made possible through the recent public release of the exciting

8-site ADHD–200 data set, and a collaborative team effort between myself, Jesse Brown, Jeffrey

Rudie, and Pamela Douglas (from UCLA), and Zarrar Shehzad (from Yale University). Although

not specific to FASDs, the hope for me was that this effort would also reveal broader insights into

the diagnostic classification potential of neuroimaging features that could be generalizable across

different neurodevelopmental disorders.

ADHD is an important neurodevelopmental disorder that is estimated to affect approximately

10% of children (Froehlich et al., 2007; Larson et al., 2011; Merikangas et al., 2010), with an es-

timated economic cost to society in the tens of billions of dollars per year (Pelham et al., 2007).

Overall, ADHD is more common in males than females, with over a 2:1 ratio (“MMWR” 2010).

Diagnosis is made based on behavioral symptoms reported by the child and parent, in areas related
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to inattention, impulsivity, and hyperactivity. The DSM-IV recognizes three ADHD subtypes,

predominantly hyperactive-impulsive (ADHD-H), predominantly inattentive (ADHD-I), and com-

bined hyperactive-impulsive and inattentive (ADHD-C). Like many Axis I disorders, diagnosis

also hinges on the degree to which these impairments actually interfere with daily life at school,

home, and/or work (DSM-IV 2000). Treatment includes medication, behavioral therapy, and/or ed-

ucational interventions (Wolraich et al., 2011). Although ADHD is clinically-diagnosed disorder,

there have also been a variety of neuroimaging findings reported in the literature. These include

altered functional activation and structural connectivity (Liston et al., 2011), and cortical develop-

ment (Shaw et al., 2007; Shaw et al., 2006b). Importantly, while FASDs are driven by a different

upstream insult — prenatal alcohol exposure— they share many behavioral phenotypic similarities

with children with ADHD (Fryer et al., 2007).

The ADHD–200 initiative was structured into a machine learning contest — The ADHD–200

Global Competition— in order to spur interest in the project across disciplines (neuroscience, statis-

tics, computer science, etc.). The broad goal was to investigate whether these previously-observed

neuroimaging biomarkers of the disorder could be translated into a classifier that could be able to

accurately classify new individuals. A training data set was released first, and included imaging

data from 776 individuals (491 typically-developing (TD) and 285 ADHD), their diagnostic class

labels (TD or ADHD subtype), and accompanying demographic information (e.g. site, age, IQ).

Imaging data for all subjects included one or more resting-state functional MRI (fMRI) scans, and

a high resolution T1-weighted anatomical scan. This portion of the data was used to design and

train an imaging-based diagnostic classifier that could then be used to predict the unknown group

memberships of additional subjects based on their imaging and demographic features alone. The

different classifiers entered into the contest were then judged based on their diagnostic prediction

accuracies across a final hold-out (i.e. previously-unreleased) test data set. A greater penalty was

placed on false-positive (type I) errors, which is relatable to many “confirmatory”-type diagnostic

tests in the real world where there is some risk of harm associated with the treatment itself and

therefore false positives must be avoided.
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7.2 Demographics

7.2.1 Numbers of subjects by diagnosis and site

Even before diving into the more complex imaging features, the demographics data were able to

provide extremely valuable insight. The most basic finding is that the prevalence of ADHD across

the entire training set is 37%. Ignoring the two sites without any ADHD subjects in their training

data, this number jumps up to 46%. This simple fact is critical to appreciate because — assuming

the training set is representative of the final test set (See §7.2.4) — it lays down the general pretest

probability for whatever final classifier is developed. For example, given a test subject with equiv-

ocal imaging features, we would like a classifer that does not simply flip a coin and assign their

diagnosis based on 50/50 chance, but would favor a moderately higher probability diagnosis of TD

based on the higher representation of TD subjects across the training set. In diagnostic testing terms,

the lower the pretest probability of ADHD, the lower the positive predictive value of our test. After

all, even if we develop a test that is 99.99% accurate at diagnosing some disease, if we know for a

fact that the prevalence of the disease in our population is 0%, than all of the positive test results

are still going to be false positive type I errors. The greatest class prevalence in the training data set

is also called the no-information rate, and is a more useful benchmark of what we need to beat in

order for our classifier to be useful. For example, if our classifier is 80% accurate at diagnosing an

individual as ADHD or TD, but we know that 9 out of 10 people in the real world are TD, then we

are better off throwing away our classifier and just calling everyone TD! Consequently, the barrier

to developing a useful diagnostic test is higher in the real world, where the disease prevalences

are typically lower than in controlled studies, and there are additional factors to consider such as

cost and potential treatment risks. Consider autism, where the low real-world prevalence of around

1% generally precludes the use of any imaging-based classifiers in a screening/diagnostic context,

and instead limits their usefulness to a more descriptive role in research studies where the pretest

probability is already high. This exact situation put the authors of an otherwise well-written paper

in hot water when their later comments combined with an over-zealous press release to overstate
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the implications of their work (Ecker et al., 2010; Heneghan, 2010).

TD ADHD-C ADHD-H ADHD-I Sum
Peking 116 29 0 49 194

KKI 61 16 1 5 83
NI 23 18 6 1 48

NYU 99 77 2 44 222
OHSU 42 23 2 12 79

Pitt 89 0 0 0 89
WashU 61 0 0 0 61
Sum 491 163 11 111 776

Table 7.1: Number of subjects in training set data, by site and diagnosis

TD ADHD
Peking 0.60 0.40

KKI 0.73 0.27
NI 0.48 0.52

NYU 0.45 0.55
OHSU 0.53 0.47

Pitt 1.00 0.00
WashU 1.00 0.00

Table 7.2: Overall class proportions by site. ADHD-H subjects excluded (no test set data).

Breaking down these numbers further, we can see that there are also prominent differences in

ADHD prevalence, as well as ADHD subtype ratios, between sites (Table 7.1). The ADHD-H is the

lowest represented among the three subtypes, and we were told that no subjects with this diagnosis

would be included in the test set. Therefore these subjects were excluded up front. Of the remaining

subjects, the highest prevalence of ADHD is 55% at the NYU site, and the lowest is 27% at the

KKI site (Table 7.2). Of the two remaining subtypes, ratios varied widely between sites — from

18:1 ADHD-C:ADHD-I at the NeuroIMAGE site to 29:49 at the Peking site. While these specific

numbers are of course artifacts of sampling bias across the individually-designed studies that joined

ADHD–200, they again highlight the importance of tuning our classifier to the variable prevalence

within sub-groups in our population. Similar diversity also exists in the real world. Perhaps some

regions of the country have a higher prevalence of a certain disease due to differing demographic,
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genetic, or environmental factors? Or maybe care providers at one institution are more in tune to

making a certain diagnosis because a specialized clinic exists for it at their site and keeps it fresh

in their minds? All of these things must be considered. Shifting back to the ADHD–200 sample,

we continued to build our intuitive understanding of how we wanted our classifier to perform. We

already knew that designing a classifier to resolve a behaviorally-diagnosed disease like ADHD

from TD, based on brain imaging data alone, would be challenging. On top of that, it seemed

unlikely that imaging features would outperform these strong baseline expectations about which

subtype to expect at which site. Therefore, we decided early on that we would concentrate our

effort on classifying ADHD from TD, generally, and would default to these prior expectations for

assigning ADHD subtypes.

7.2.2 Gender

The next way to slice the data is by gender (Table 7.3). In the general population, ADHD is far more

common in males than in females, so we expected this feature would be very useful. The first thing

to notice is that, in aggregate across the training set, ADHD is far less common in females than

in males. Ignoring the sites with no ADHD subjects, the prevalence of ADHD in females is 27%,

but in males it is 54%. This effect is huge, and immediately told us that our pretest expectations

about ADHD diagnosis would vary prominently based on whether a given test set subject is male

or female. Similar to the ADHD prevalence across gender, these numbers also vary strongly by

site. For example, at Peking, only 13% of female training subjects are ADHD, while at NYU 64%

of males are ADHD.

7.2.3 Age and IQ

Beyond looking at prevalence rates across sites and genders, the two main continuous-valued de-

mographic features made available were age and a full-scale IQ score. The relationships between

age, IQ, and diagnosis — together with how these vary by site and gender — can all be very effec-
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TD ADHD-C ADHD-I Sum
Peking 45 (86.5) 0 (0.0) 7 (13.5) 52 (100.0)

KKI 27 (73.0) 9 (24.3) 1 (2.7) 37 (100.0)
NI 12 (75.0) 4 (25.0) 0 (0.0) 16 (100.0)

NYU 52 (65.8) 12 (15.2) 15 (19.0) 79 (100.0)
OHSU 24 (70.6) 4 (11.8) 6 (17.6) 34 (100.0)
Sum 160 (73.4) 29 (13.3) 29 (13.3) 218 (100.0)

(A) Females

TD ADHD-C ADHD-I Sum
Peking 71 (50.0) 29 (20.4) 42 (29.6) 142 (100.0)

KKI 34 (75.6) 7 (15.6) 4 (8.9) 45 (100.0)
NI 11 (42.3) 14 (53.8) 1 (3.8) 26 (100.0)

NYU 47 (33.6) 64 (45.7) 29 (20.7) 140 (100.0)
OHSU 18 (41.9) 19 (44.2) 6 (14.0) 43 (100.0)
Sum 181 (45.7) 133 (33.6) 82 (20.7) 396 (100.0)

(B) Males

Table 7.3: Numbers of subjects by site, diagnosis, and gender. Percentages of row totals are shown in
parentheses. ADHD-H subjects excluded (no test set data). Pittsburgh and Washington University sites
excluded (no ADHD subjects).

tively visualized in a single display (Figure 7.1). There are several important things to notice here.

First, considering the marginal distributions, there is no striking gender effect on age or IQ (i.e.

age and IQ are relatively well-matched across genders), but there is a strong site effect on both age

and IQ. At the extremes, OHSU doesn’t have any subjects older than 12 years old, and Pittsburgh

doesn’t have any subjects younger than 10. Similarly, OHSU females have exceptionally high IQs.

Secondly, considering main effects, there is a strong correlation between lower IQ and ADHD di-

agnosis, but no appreciable age effect is present. Lastly, considering the joint usefulness of age and

IQ for predicting diagnosis, we can see a large degree of variability between sites and genders. For

example, whereas Peking subjects separate nicely based on these features, NYU subjects do not.
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Figure 7.1: IQ vs. age, by diagnosis, site, and gender

7.2.4 Training set vs. test set

One of ourmost important discussionswaswhether we could expect similar demographic/prevalence

biases in the test set. In the real world we would expect that we could, but, in the context of a de-

signed study, we were unsure. Perhaps, specifically to emphasize the classification potential of

imaging features, the test set was age and IQ matched between ADHD and TD, and hand-picked to

be 50:50 ADHD:TD. To investigate this, we compared the test set to the training set on the features

that we were given — namely age and IQ (Figure 7.2). We reasoned that comparing these distri-

butions would give us insight into whether or not we might suspect something-other-than-random

sampling in the test set. If this were the case, we would consider abandoning our plan to make these

features central to our classifier. For example, considering the large IQ difference between male

Peking ADHD and TD subjects (bottom left panel in Figure 7.1), we might suspect that the test set

was being designed to match on IQ if the IQ distribution was generally lower than in the training

set. From examining Figure Figure 7.2, however, it does appear that the training set is generally

representative of the test set.

7.2.5 Site-specific observations

Several important site-specific aspects of the ADHD–200 dataset also become apparent when exam-

ining the demographics features. Most strikingly, the Washington University site is not represented
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(A) Age

(B) IQ

Figure 7.2: Comparison of training/test sets, by site and gender

in the test data set, and the Brown site is not represented in the training data set. A third site, Pitts-

burgh, has both training data and test data, but no ADHD representation in the training data. Given

the large site effects that have already been discussed in some detail (and will be discussed further,

with respect to imaging features, in §7.3), these missing data pose several critical questions:

• Should the Washington University data even be included when training our classifier, or

ignored completely?

• How can we utilize the Pittsburgh training data without inaccurately biasing the classifier

towards a TD diagnosis at this site?

• Finally, how can we most effectively accommodate test subjects from the Brown site, given

that there are no training data available?
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Confusion Matrix and Statistics

Reference
Prediction TD ADHD-C ADHD-I

TD 2720 773 631
ADHD-C 287 571 212
ADHD-I 93 96 227

Overall Statistics

Accuracy : 0.6271
95% CI : (0.6143, 0.6398)

No Information Rate : 0.5526
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.2973
Mcnemar’s Test P-Value : < 2.2e-16

Statistics by Class:

Class: TD Class: ADHD-C Class: ADHD-I
Sensitivity 0.8774 0.3965 0.21215
Specificity 0.4406 0.8803 0.95837
Pos Pred Value 0.6596 0.5336 0.54567
Neg Pred Value 0.7443 0.8086 0.83770
Prevalence 0.5526 0.2567 0.19073
Detection Rate 0.4848 0.1018 0.04046
Detection Prevalence 0.7351 0.1907 0.07415

Figure 7.3: Classifier statistics for 3-class RBF SVM trained on demographics

7.2.6 Classification based on demographics data alone

As a baseline reference for building our imaging-based classifier, we explored the generalization

performance we could expect from training a classifier on only the demographics features. Age,

gender, site, and IQ features were included from the four sites with complete data (Peking, KKI,

NYU, and OHSU), and used to train an RBF SVM classifier (See §7.4.2 for an explanation). Using

these features alone, predicted generalization accuracy was 62.7%. The no-information rate for this

subset of the data was 55.3%, suggesting that demographics features alone are able to moderately

improve classification performance Figure 7.3. Taking into account the fact that greater emphasis

was placed on correct TD diagnoses, this would correspond to us achieving 65.5% of the total

possible points.
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7.2.7 Summary

On the whole, this analysis of the demographics data revealed a very strong feature set, with promi-

nent site and gender effects. It was clear to us at this early stage that these demographics features

would form the core of our classifier, and would set the bar high for finding imaging features that

could further clarify the picture.

7.3 Feature pool

7.3.1 Imaging

7.3.1.1 Structural

Under an effort led by Jesse Brown, T1-weighted anatomical MRI scans were processed with the

Freesurfer processing pipeline (Fischl and Dale, 2000). This generates segmentations of white mat-

ter, gray matter, and subcortical volumes. Cortical areas are also used to generate a mesh model of

the cortical surface, which is then subdivided into different cortical regions (e.g. precentral gyrus,

superior frontal gyrus, pars triangularis, etc.). For each, features are generated for cortical surface

area, thickness, volume, and local curvature.

7.3.1.2 Functional

Resting-state fMRI scans were preprocessed with standard AFNI and FSL tools by other members

of the community (the “Neuro Bureau”), and made available to all users. Under an effort led by Jef-

frey Rudie, for each subject the pairwise average time series correlations were calculated between

all sets of nodes (derived from an atlas containing different cortical regions of interest), and used

to populate a connectivity matrix (for example, Figure 6.7). Several atlases were explored, ranging

from the Harvard–Oxford atlas (a relatively course anatomical atlas with around 100 nodes), all

the way up to the CC400 atlas (a fine functionally-derived atlas with 400 nodes). As one option,
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these raw times series correlations were used directly as features. As another, they were used to

generate nodal and global graph theoretical summaries of the network properties, and these were

used as features. Under an effort led by Pamela Douglas, independent component analysis (ICA)

was performed, and the number of independent components needed to describe a certain percent-

age of the total variance in the data was used as a feature. Finally, under an effort led by Zarrar

Shehzad, several emerging techniques for functional brain network analysis were also used to gen-

erate complementary sets of features. These included node-wise frequency analysis (the bins from

a frequency-domain power spectrum were used as features), and regional homogeneity analysis

(ReHO; in which the similarity is calculated between the time series at any given point in the brain,

and those of its surrounding neighbors) (Zang et al., 2004).

7.3.2 Other ideas

In addition to the imaging and demographics features, we also investigated several other more

creative features.

7.3.2.1 QC results

Based in part on our experience scanning children with FASDs, the majority of whom also have

attention or hyperactivity problems, we reasoned that the quality of the MRI scans could provide

a useful feature for classifying ADHD from TD. We examined two scores: 1) the total number of

fMRI scans performed, and 2) the fraction of these that were tagged as “usable” in the demographics

table. As expected, ADHD subjects had a significantly higher number of scans performed (𝑃 =

0.0005), but had a significantly lower fraction of usable scans (𝑃 = 0.0003). In other words,

ADHD subjects took more tries to get the required data needed for the study.
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7.3.2.2 Motion

Standard fMRI processing includes registration of the individual time series volumes, and this step

outputs the translations and rotations that were needed to bring each volume into alignment. This

set of 6 rigid-body registration parameters reflects subject motion between two adjacent time points.

We examined the distributions of the means, as well as the maximums, of these parameters between

ADHD and TD (Figure 7.4). As expected, we found highly significant group differences.

Figure 7.4: Motion parameters from fMRI data registration

7.4 Feature selection

The field of neuroimaging is not alone in facing the challenge of an accelerating explosion of data.

Whether it be genetics and genome-wide sequencing data, medicine and advancing electronic medi-

cal records keeping, or commercial technology companies and their minute-by-minute user activity

data, diverse fields are all converging on the samemajor challenge—How do you distill these large,

multimodal, and multivariate data sets down into useful summaries that can be actionable by their

human wranglers?
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7.4.1 Feature ranking with SVM–RFE

If all of the many tens of thousands of features described in §7.3 are included in the same classifier,

the individual variability across the many useless features will typically overwhelm the discrim-

inating power of the subset of features that are actually useful. Therefore, in many classification

applications, the first step is some form of dimensionality reduction or feature selection. We chose

to apply the support vector machine recursive feature elimination (SVM–RFE) algorithm (Guyon

et al., 2002) because of its established history and successful application to microarray-based di-

agnostic classification (Johannes et al., 2010; Shi et al., 2011) — a similarly medical and connec-

tivity/network type of application.

SVM–RFE, as its name would suggest, works backwards from the initial full set of features and

eliminates the least “useful” feature on each recursive pass. In contrast to optimization methods

that can revisit locations in feature space (e.g. genetic/evolutionary algorithms (Vafaie and Imam,

1994)), it is important to note that this is a greedy approach in that once a feature is cut, it is cut

for good. The criterion used to judge feature usefulness in SVM–RFE is the feature weight from a

linear support vector machine (SVM) fit to the data set. Linear SVM is a linear discriminant, in that

it seeks to find a linear combination of the features that allows for the best classification of groups.

Whereas the classical Linear Discriminant Analysis (LDA) interpretation seeks to maximize the

ratio of the between-class variance to the within-class variance in the standard ANOVA sense,

SVM seeks a discriminant function that maximizes the distance (i.e.margin) to the nearest training

set observation of either class. The theory was originally described by Vapnik and Lerner (1963),

and later extended to accommodate the exceedingly common situation where the classes are not

completely separable and therefore some training examples must remain mislabeled in the solution

(Cortes and Vapnik, 1995). This decision boundary ends up as a line in two dimensional feature

space and as a higher dimensional hyperplane when more features are present. Because linear SVM

assigns weights multivariately to all remaining features at once, it has the ability to accommodate

highly correlated features, as well as potential mutual information between features that might not

be very useful on their own. This approach contrasts with univariate correlation-based feature
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ranking, where features are ordered, for example, by conducting simple between-group t-tests for

each (Guyon et al., 2002).

In practice, the general idea is very intuitive. Consider the simplified 2-dimensional, 2-class,

case of distinguishing ADHD from TD subjects from the Peking site based on age and IQ alone.

This corresponds to the bottom-left panel in Figure 7.1. If we plot the results of the linear SVM fit,

we can see that the decision boundary cuts more along the IQ axis. This means that the IQ feature

has a higher weight than age, and that age would be dropped first in the recursive elimination

algorithm.
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Figure 7.5: Linear SVM fit to Peking age and IQ data

Wrapped around the basic SVM–RFE algorithm, we also included two enhancements that were

very useful for our application:

CV-based stabilization of feature rankings: Due in part to its multivariate nature, and also sim-

ple sampling variability, some of the feature rankings that get output from the SVM–RFE

algorithm can be unstable. Take, for example, the case of two highly correlated — but useful

— features. Their joint weight will initially be split between the two features. When the one

with the (arbitrarily) slightly lower weight is dropped in the recursive feature elimination, the

remaining feature will absorb its weight in the subsequent recursions, and could end up be-

ing labeled much more useful in the final rankings. Because the large 𝑛 in this study means
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there are plenty of observations to expend, resampling methods provide a simple route to

improving the stability of these rankings. We chose to use the multiple SVM–RFE extension

described by Duan et al. (2005) (not to be confused with multiple class SVM–RFE (Zhou and

Tuck, 2007)), which imposes a resampling layer on each recursion pass such that the weights

used for feature ranking/dropping are stabilized by averaging across multiple subsamples.

Specifically, we used 10-fold cross validation as our subsampling method.

Exponential reduction in feature number: While the initial SVM–RFE paper described a one-

by-one backward feature elimination, this can become time consuming when dealing with

many features. Additionally, we often don’t even care about the precise rankings among

a bunch of useless features anyway. Therefore it can be useful to initially drop a greater

number of the total features on each pass until the list of remaining features drops to a more

manageable level. We chose to drop half of the features on each pass until the remaining

number dropped below 5000. Then we switched to the one-by-one mode to give the most

accurate rankings of the top features. While this can be detrimental in some situations (e.g.

when a useful feature is dropped in a large batch, but its weight might have actually improved

if some of those other features were dropped first) this short-cut was useful given restrictions

on computing resources.

7.4.2 Optimal subset selection

Once we obtained ranked lists of the features for each imaging modality, ordered by their usefulness

as judged by mSVM–RFE, the next step was to choose the optimal subsets of those top features.

This is an important step in optimizing many types of machine learning classifiers, as you’d like to

keep enough features to capture the most important aspects of the data (with respect to classifica-

tion), but not too many as to lead to overfitting and poor generalization performance. Often there

is some optimal middle ground.

At this stage, we shifted to a radial-basis-function SVM (RBF SVM) as our main classifier. This
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is similar to the linear SVM used in the feature ranking algorithm, but employs a kernel transforma-

tion to allow for a nonlinear decision boundary in the original feature space (Compare Figure 7.6

to Figure 7.5). The width of the kernel parameter, together with the soft margin misclassification

penalty, are optimized using grid search and internal 10-fold cross validation. This prevents over-

fitting the data. For example, if the decision boundary was allowed to be curvy enough, it would

fit the training data perfectly, but would likely generalize poorly to the rest of the population.
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Figure 7.6: RBF SVM fit to Peking age and IQ data

Estimated generalization performance was determined using a layer of 10-fold cross validation.

Within each fold, the classification accuracy on the hold-out samples was repeatedly gauged, while

varying the number of the top features used as input. Averaging across all 10 folds allowed us to

generate plots of generalization performance vs. number of features (Figure 7.7). The minimum

along the curve was selected as the optimal subset of features to use in our final classifier. Impor-

tantly, this estimation of generalization performance and 10-fold cross validation was external to

the feature ranking step. In other words, the features were ranked 10 times, each time indepen-

dent of the hold-out samples for that given fold. This ensures that the estimated generalization

performance is unbiased by spurious features that might nicely explain the training labels but don’t

generalize to the population (Ambroise and McLachlan, 2002). This is especially important when

dealing with many features, since by random chance there will be some useless features that just

happen to closely match the training labels.
138



(A) fMRI example (B) Freesurfer example

Figure 7.7: Expected generalization error vs. number of top features

7.5 Final classifier

7.5.1 Site-specific classifiers

Our general approach to classification was to employ a collection of site-specific classifiers, rather

than a single classifier with site as a feature. This allowed us to tailor our feature selection (§7.3)

to each site, while also accommodating the unique site-specific aspects of the data set (§ 7.2.5).

For example, because of varying T1-weighted scan qualities, the Freesurfer features might be very

useful at one site, but not at another. Additionally, this approach is able to handle missing features

(e.g. IQ is not reported from the NeuroIMAGE site), since the classifier for that site can simply be

trained without them. For the Pittsburgh site, although there were no ADHD subjects in the training

data, the available TD subjects were used to align TD feature means across sites, and thus allowed

us to tap into the discriminating aspects of the data from the other sites (Figure 7.8). For the Brown

site, which was most challenging because it lacked any training data, a similar across-site classifier

was used, but it lacked the feature-wise bias adjustment that was made possible for the Pittsburgh

139



KKI NYU Peking Pitt

−5

0

5

10

−5

0

5

10

●

●

●

●

●

●

O
riginal

A
ligned

V
al

ue

DX

●

●

TD

ADHD

Figure 7.8: Across-site alignment schematic. For sites without complete training data (e.g. Pitts-
burgh), sites were aligned by their available subgroups (here, TD) and then an across-group classifier
was trained.

site by its available TD training data. TheWashington University site was excluded altogether from

our final classification approach.

7.5.2 Combining modalities

Feature ranking (§7.4.1) and optimal subset selection (§7.4.2) were performed independently for

each imagingmodality. We chose this approach so that the tens of thousands of fMRI features would

not swamp the much fewer Freesurfer features, and also so that we could choose the most effective

processing options (e.g. 200 nodes vs. 400 nodes for extracting graph theory metrics from the fMRI

time series data) among different preprocessing runs for the same modality. For each site, a set of

RBF SVMs were then trained— once for each imaging modality, once for the demographics alone,

and once with all the top features from all modalities together. These were used to generate a list

of class predictions for each test set subject. Final assignment was made by simple majority voting.

ADHD subtypes were assigned according to what was most common in a given site’s training data

(Tables 7.1 and 7.3).
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7.6 Discussion

7.6.1 Feature selection

The robustness of our feature selection approach is one positive aspect to take away from our effort.

The multiple SVM-RFE method was able to handle large feature sets (e.g. the CC400 atlas has

160,000) in a reasonable amount of time, and consistently returned useful ranked lists of the top

features. As a reality check, consider the IQ feature, which, from simple inspection (Figure 7.1),

we already knew was a highly useful feature. Therefore we expected it to rise towards the top

of our ranked feature lists when it was included with features from the other imaging modalities.

However, a worry was that maybe highly useful features like IQ could get lost among the sea of

useless features that we expected to be in the raw output of the fMRI processing. When the feature

ranking was performed, however, IQ consistently rose into the top 10 list of features — often the

top feature — even when accompanied by all 160,000 CC400 features and no prior constraints. On

the flip side, this early observation was already a clear sign to us that the imaging features were not

going to be as marginally useful as we all had hoped.

7.6.2 Creative features

The motion features we generated are another clear example of the fact that just because a feature

shows significant differences between classes does not necessarily imply that it is going to improve

classification performance. This is especially important to remember for studies with high 𝑛, since

it is easy for even small effect sizes to be “highly significant”. Even though these are true effects,

and perhaps interesting to study in population-based research studies, their small size and large

individual variability combine to limit their usefulness for the diagnostic classification of individual

subjects.
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7.6.3 Collaboration and data sharing

The collaborative data sharing experience of the ADHD–200 initiative is one of its most important

and widely-applicable outcomes. On one level, the collaboration between the organizing sites,

together with their open-access philosophy toward data sharing, has combined to produce one of

the most valuable publicly-available developmental neuroimaging data sets. Even more exciting is

the response that the community has had in building on this foundation. We of course make our

tools available to anyone who wants to use them (http://github.com/johncolby/SVM-RFE), but the

best example is the preprocessed version of the original fMRI data set that has been contributed back

to the community by the Neuro Bureau (http://neurobureau.projects.nitrc.org/ADHD200). This

resource lowers the entry barrier to the field, allowing a broader range groups (i.e. those lacking an

fMRI background) to start exploring the data without having to get bogged down in the details of

fMRI preprocessing. Additionally, for those already in the neuroimaging field, it brings a sorely-

needed level of standardization between studies, which allows for an enhanced ability to replicate

results (or compare differences) between different analyses. After all, there are so many different

processing parameters in modern neuroimaging studies, that, even if two groups started from the

same raw data, there will always be the nagging suspicion that different findings could simply be due

to different processing settings. With this type of standardized preprocessed data made available,

however, we can be more confident that any observed differences are due to the specific parameter

we are actually trying to investigate — in this case our classification methodologies.

7.6.4 Multisite studies

Another important and generalizable area of insight concerns the design of multisite studies. On

their face, they sound like a great idea: More collaboration, higher 𝑛, more power, broader gen-

eralization, and distributed costs and responsibility. However, all of these positive gains must be

weighted against the negative impact of increased variability in diverse aspects of the data due to

site-specific effects. One striking example from the ADHD–200 data set is that the distributions
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of one of the broadest anatomical measures — mean cortical thickness across the entire brain —

varied widely between sites. Knowing that ADHD is associated with thinner cortex (Shaw et al.,

2006b), you might naturally train a classifier to diagnose based on this feature. However, if you

applied this classifier to subjects from a different site (one that has a global negative site effect

on thickness) without accounting for this overall site offset, you might inadvertently misclassify

all of those subjects as having ADHD. This situation is demonstrated using simulated data in the

schematic of our between-site feature alignment procedure for the Pittsburgh site (Figure 7.8). If

the Pittsburgh TD subjects were classified based on a classifier trained on this simulated feature

at the KKI site, they would all be erroneously classified as ADHD due to a simple negative site

offset at Pittsburgh. Another example is the IQ score, which was derived from different raters and

different test instruments depending on site. Further, just like in this project, different sites could

be missing different aspects of the data. In the end, we opted for a series of site-specific classifiers

rather than a single across-site classifier. In effect this largely forgoes the potential benefits of a true

multisite study, and instead could be better described as a meta analysis of ADHD classification

based on a handful of individual studies. The point, then, is that it is crucial to strive for across-site

uniformity in multisite studies, as it is all to easy to let a handful of uncontrolled parameters spoil

their potential benefits.

7.6.5 Performance on test data

The most surprising result to come out of the ADHD–200 competition was that, although imag-

ing features were moderately useful for classifying ADHD from TD subjects, including these fea-

tures failed to provide any additional benefit over using demographic features alone. There were

195 possible points (1 test subject was excluded), which would have required correctly predict-

ing all TD subjects as well as all ADHD subtypes. The winning imaging-based classifier scored

119 points. For reference, we scored 110.5 points, which put us in 4th place out of 21 entries.

However, the best overall score of 124 points was reached by completely ignoring all of the imag-

ing features and relying solely on the demographics information. Even though this is close to the
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195 points× 65.5% = 127.725 points we predicted based on our own analysis of the demographics

features in §7.2.6, we and others decided to stick it out with the imaging features since that was

the focus of the project. Still, this finding makes the cautionary point that when we see claims

like “Feature 𝑋 is useful for classifying disease 𝑌 ”, we must always ask the question, “Relative

to what baseline?” Similarly, it is also important to consider the performance we could have ex-

pected based on chance alone. Based on hierarchically flipping a coin to determine TD vs. ADHD,

and, if the diagnosis is ADHD, flipping it again to determine the ADHD subtype diagnosis, the

study organizers describe an expected chance-level accuracy of 38.75% (corresponding to 86.5

points). However, as we’ve discussed before, a more useful baseline is the no-information rate,

which takes into consideration the actual class prevalences in the training set. Seeing as TD was

the most common overall diagnosis in the training set, if we had simply predicted all of the test

subjects would also be TD, we would have received 195 points × 55% = 107.725 points. With

respect to the performance of the imaging-based classifiers, this number is just as striking as the

demographics-only performance. It suggests that around half of the imaging-based entries would

have performed better — and certainly expended less effort — by simply classifying everyone as

TD. Considering the large individual variability that accompanies even real group effects, and the

relatively low prevalences that exist in community populations (compared to research studies), it is

unlikely that neuroimaging features are going to be useful any time soon for the diagnostic classifi-

cation of behaviorally-diagnosed neurological syndromes like ADHD—and, in the case of ADHD,

why would we even want them to? Existing diagnostic instruments are quick, effective, and cheap

(DSM-IV 2000; Goldman et al., 1998; Power et al., 2001), and existing treatments are effective

(Elia et al., 1991) and with relatively low risk (Cooper et al., 2011; Habel et al., 2011). Rather,

imaging-based classifiers of ADHD show their biggest promise in populations where the pretest

probability is high or diagnosis is already assumed. For example, in a scientific context towards

further understanding the neurobiological basis of the disorder, these techniques can be used to map

regions of the brain that are most useful for classification, thereby providing a complementary tool

to standard hypothesis testing. Similarly, in a clinical context, they may be more useful in predict-
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ing diagnostic subtypes among individuals who have already been screened from the population at

large, or for predicting later treatment response and prognosis.

7.6.6 Conclusion

On the whole, the ADHD–200 project was able to successfully demonstrate that imaging features

show modest potential for the classification of ADHD subjects from typically-developing controls.

Additionally, the initiative provides a strong example of the benefits of collaborative open-access

research and data sharing within the neuroimaging community. However, the biggest message is

that we must be realistic in our expectations about what neuroimaging data can — and cannot —

do for us. This way our limited effort and funding can be best targeted to the most high-yield types

of research questions.
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CHAPTER 8

Comprehensive mapping of white matter development in the

PING sample (𝑛 = 869)

8.1 Introduction

Our previous discussion has shown that the trajectories of many aspects of human brain develop-

ment are nonlinear in nature, with developmental changes occurring rapidly from before birth, and

then slowly decelerating with age. Further, we have seen how these phenomena vary by brain re-

gion, and exhibit regionally-specific relationships with cognitive measures (Chapter 1). Continuing

our focus on the white matter, it is also clear that different white matter tracts develop with different

timings in their developmental trajectories (Figure 1.7; Lebel et al., 2008b), and that white mat-

ter development generally takes place in a caudal-to-rostral gradient across different brain regions

(Chapter 4). Knowing that white matter properties also vary prominently along specific white mat-

ter tracts (Chapter 5), we set out to provide the first along-tract maps of white matter developmental

timing (Aim 1b).

While we had originally aimed to carry out this exploration on our UCLA data set, which

would have allowed us to also study how these timing patterns are possibly affected in the context

of FASDs, we were instead given the exciting opportunity to conduct this investigation on the

Pediatric Imaging, Neurocognition, andGenetics (PING) data set. Similar to the ADHD–200 effort,

PING is a large, multisite, and multimodal study that, among its aims, will also provide a valuable

resource to the community through public data sharing. The broad goal of PING is to map the

genetic, environmental, and neurobiological factors that contribute to our “individuality”. These
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aspects are being assessed in a large cohort of 1400 individuals (age 3–21 years) via a genome-wide

single nucleotide polymorphism (SNP) array (Affymetrix 6.0; Bakken et al., 2012), a background

questionnaire on demographics and medical history, brain imaging (including a T1-weighted high

resolution anatomical scan, a resting-state functional MRI scan, and a 30-direction DTI scan), and

a computerized neuropsychological and cognitive testing battery. This initial effort will focus on

mapping patterns of variability in the developmental timing of white matter maturation, but this rich

data environment will also allow us to eventually generate novel along-tract maps of relationships

with the genetic and behavioral data.

8.2 Demographics

DTI data have been collected for 869 participants as of January 2012. Out of these, 855 are “com-

plete” — indicating that they have also completed all the other aspects of the study. This subset of

subjects is being used for further analysis. 9 of the 10 PING sites are represented in this sample,

including Cornell University, UC Davis, University of Hawaii, the Kennedy-Kreiger Institute at

Johns Hopkins University (KKI), Massachusetts General Hospital at Harvard University (MGH),

UC Los Angeles (UCLA), UC San Diego (UCSD), University of Massachusetts Medical School

(UMMS), and Yale University. Data were collected between January 2010, and August 2011, with

different sites joining the project at different times (Figure 8.1).

8.2.1 Gender

Genders are represented relatively equally, and the ratio between males and females does not sig-

nificantly vary by site (𝜒2
8 = 2.04, 𝑃 = 0.98) (Table 8.1).

8.2.2 Age

Subjects are between the ages of 3 and 21. Males (range 3–21, mean 13.1 ± 4.8 years) and females

(range 3–21, mean 13.3 ± 5.0 years) do not significantly differ in age (𝐹1,836 = 0.25, 𝑃 = 0.62).
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Figure 8.1: Distribution of subjects by recruitment date (IMG_ExamDate) and gender. Gender means are
shown as tick marks in the plot rug region.

Gender
Site Male Female Sum

Cornell 45 47 92
Davis 40 38 78

Hawaii 65 61 126
KKI 51 49 100

MGH 44 37 81
UCLA 38 27 65
UCSD 99 89 188
UMMS 24 19 43

Yale 45 37 82
Sum 451 404 855

Table 8.1: Number of subjects by gender and site

However, there is clearly a site effect on age (𝐹8,836 = 7.88, 𝑃 = 3.02 × 10−10). For example, the

mean age at the KKI site (15.4 years) is over 3 years older than at the UCSD site (12.1 years). Addi-

tionally, while there is no main effect of gender on age, there is a significant site:gender interactive

effect (𝐹8,836 = 2.03, 𝑃 = 0.04). For example, on average, females are 2.5 years older than males

at UC Davis, but females are 1.5 years younger than males at MGH.
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Figure 8.2: Distribution of subjects by age and gender. Gender means are shown as tick marks in the
plot rug region.

8.3 Methods

Different sites have different MRI scanners, so there was variation in the exact DTI sequence used.

However, more general parameters were aligned across sites, including the use of 30 diffusion-

encoding directions and 2.5 × 2.5 × 2.5mm isotropic voxel size.

8.3.1 Preprocessing

Several initial preprocessing steps were performed on the DTI data as part of a broader study-wide

preprocessing pipeline at UCSD. These included 1) conversion of the scanner-specific raw data

into a common NIfTI data format, 2) mapping and unwarping of eddy-current-induced geometric

distortions in the images through the use of multiple b0s with opposite phase-encoding directions,

3) registration of the diffusion-encoding volumes to the 𝑏 = 0 volume, 4) registration of all subjects’

DTI data to a common template space, and 5) calculation of a binarized brain mask.

8.3.2 Automated atlas-based deterministic tractography

Once the data were transferred to UCLA, we implemented a fully-automated atlas-based determin-

istic tractography protocol to extract tract groups for all subjects. This approach contrasts with the
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manual method used in Chapters 5 and 6. For each subject, a standard DTI model of diffusion

was fit to the raw data, and then whole-brain deterministic tractography was performed. General

tracking constraints included an FA threshold of 0.15, a fiber turning angle threshold of 60°, and

a mask to exclude fibers outside the brain. These steps were performed with Diffusion Toolkit

v0.6.2. Next, FLIRT from the FSL toolkit was used to register the UCSD template image into

MNI152 space using a 12-parameter affine approach. This transformation matrix was then applied

to each subject’s fiber data. According to the Wakana et al. (2007) protocol, a single set of tracking

ROIs was drawn for the left hemisphere tracts. The FMRIB58 FA template in MNI152 space was

used as the reference image. These ROIs were reflected across the mid-sagittal slice to generate an

additional, unbiased, set of ROIs for the right hemisphere tracts. Since the streamline data for all

subjects were already in the same space, these ROIs could then be automatically applied to mask out

all of the tracts of interest. This was performed with TrackVis v0.5.2. Additionally, for each sub-

ject, we automatically compiled and annotated these ROIs and tract groups into a TrackVis “scene”

for later interactive viewing (Figure 8.3). For example, the arcuate fasciculus and its tracking ROIs

are shown in red in the 3D display, as well as labeled with their names and colored red in the list

of annotations to the right.

8.3.3 Extraction of along-tract data

As with the tractography processing, the common template space also facilitates automating the

along-tract data extraction step. For each tract, a tract origin was specified in template space (e.g.

a point in the frontal lobe was chosen for the left inferior frontal occipital fasciculus; See Figure 5

in Colby et al. (2012) for the rest of our conventions). The streamlines in that tract group for all

the subjects were then reoriented accordingly. Spline-based resampling of the underlying scalar

volume, collection of data across streamlines, calculation of the mean streamline geometry, and

final data export then proceed as described in §3.3.7 and Chapter 5. For each subject, the mean

tract geometries (i.e. the tract “cores”) and along-tract scalar estimates were automatically compiled

into a custom TrackVis scene for later visualization (Figure 8.4).
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Figure 8.3: Example automatically-generated TrackVis scene
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Figure 8.4: 3D rendering of the along-tract variation in FA for a single subject. The scalar estimates
are overlaid onto the mean tract geometries for this subject. Warmer colors represent higher FA.

8.3.4 Quality control

It is important that any neuroimaging processing pipeline be as automated as possible. This mini-

mizes human errors, and is often absolutely necessary from a practical standpoint. Such is the case

with the PING data, which include 869 subjects and potentially 16 tract groups each. Accordingly,

we designed the previous steps to be fully-automated and embarrassingly-parallel across subjects.

Total processing time per subject is approximately 3 minutes, and all subjects can be submitted

simultaneously to a cluster job scheduler. This means that the final processed data, ready for sta-

tistical modeling, can be regenerated from scratch in less than an hour.

Nevertheless, it is still crucial that quality control measures be put in place to ensure the va-

lidity of the processed data, which will eventually be analyzed, interpreted, and reported to the

community. We implemented several QC steps into our methods:

Tracking failures: As described in § 6.3, the number of tracking failures is a simple — yet im-

portant — metric to examine. Since PING is a multisite study, we wanted to compare the

tracking success rates between sites in order to determine if there were any site-specific pro-

cessing issues. We did this by tabulating, for each site, the distribution of the number of

tracking failures per subject. There were 16 tract groups in this analysis, so 16 failures would

mean the automated tract delineation protocol didn’t identify a single tract. Such a situation

in an individual subject would make us look closer at their data for problems, and a pattern

of many subjects with many failures at a given site would make us look closer at that site for
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problems. Early on in our analysis, this approach let us identify a significant problem with

6 out of the 9 sites (Figure 8.5). It turned out that these sites all had Siemens Trio scanners,

and the problem was traced to an error in handling the diffusion-encoding gradient table from

this type of scanner in the early preprocessing pipeline at UCSD.
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Figure 8.5: Distributions of tracking failures (lower nFailed numbers are better) by site and gender

Streamlines: In order to optimize our automated tracking protocol, we also examined, for each

tract and hemisphere, the distribution of the number of streamlines in the tract dissections

(Figure 8.6). This makes it easy to identify if there are any major problems (e.g. incorrect

tracking ROIs or incorrect filters on length).
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Figure 8.6: Distributions of the number of streamlines, by tract, hemisphere, and gender

Raw along-tract data: Similarly, examining the raw along-tract data is a good way to see if there

are any questionable sub-populations for a given tract group. In this analysis, the forceps
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minor dissections initially contained an obvious sub-population of streamlines with lower

FA. Closer examination traced the source of the problem to cerebellar fibers that were being

grouped in, and allowed us to then tweak our tracking protocol to address the issue.

Correspondence plots: The usefulness of this analysis also rests largely on the accurate extraction

of along-tract data for each of the tract groups generated with the automated tractography

protocol. As we have discussed previously, correspondence plots are an efficient way to

supervise this process, as they show which streamlines will be grouped together along the

entire tract (e.g. Figure 9 in Colby et al. (2012)). For each subject, a HTML QC report

was automatically generated containing an overview of all of the correspondence plots for a

given subject (Figure 8.7). Additionally, a more detailed view automatically appears when

you hover over a specific tract (Figure 8.8).

Video loops: With 869 subjects, even glancing at a simple QCHTML page for each subject takes a

lot of time. Therefore, the last, and most effective, QC measure we employed was to view all

subjects’ QC images for a given tract in a video loop at 15 frames per second. This allowed

us to directly see the data for all individual subjects in about one minute. Surprisingly, even

at the speed, the brain is very effective at identifying outlying individuals. These subjects

can then be investigated closer to see if any changes need to be made. As an example, we in-

clude a QC video for the left arcuate fasciculus (http://vimeo.com/johncolby/qcvideoloop),

which includes examples of both tractography and along-tract data extraction errors, as well

as several suspect raw images.

8.3.5 Statistical modeling

Across-tract properties (tract length, tract-averaged FA, number of streamlines) were examined

first, using mixed-effects linear models and ANOVA to examine main effects of tract, hemisphere,

gender. Typically, a single subject-level intercept term was included as a random effect to ac-

commodate the repeated measures in the data. Interactive effects between predictors were also
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Figure 8.7: Automatically-generated HTML QC report for along-tract data

considered.

For the along-tract data, a mono-exponential model of development was fit to the FA vs. age

developmental trajectory for all subjects’ data using nonlinear least squares. This was done sep-

arately for each combination of tract, hemisphere, gender, and along-tract position. This model

assumes some initial FA value at birth (𝐹𝐴0), and then approximates white matter development

— in terms of increasing FA — as decelerating with age until an eventual adult plateau is reached

(𝐹𝐴∞) (Figure 8.9). The third parameter in this model is a unitless exponential decay constant (𝜆),

which describes whether these developmental changes occur rapidly or slowly. The decay constant

is often reformatted into a time constant, for example 𝑡75% = ln(4)
𝜆 , which is easily interpretable as
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Figure 8.8: Example correspondence plot (R IFO). Color hue designates which vertices will be grouped
together for the analysis.

“the time it takes (in years) for 75% of the developmental changes that will ever occur from birth

to plateau, to have occurred”.

To stabilize the parameter estimates in these nonlinear fits, the process was wrapped in a boot-

strap resampling scheme and replicated 1000 times.

8.4 Results

8.4.1 Whole-tract observations

In MNI152 space, the average tract lengths ranged from 60mm for the uncinate fasciculus to

151mm for the inferior frontal occipital fasciculus. Like in Chapters 5 and 6, these lengths were

used to adaptively set the number of interpolation points for extracting along-tract data (Table 8.2).

On average, compared to the left hemisphere, tract groups in the right hemisphere were not
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FA = FA∞ + (FA0 − FA∞)e−λ⋅Age

Age

FA

FA∞

FA0

t75%

Figure 8.9: Mono-exponential model of developmental increases in FA

significantly different in length (𝑡7745 = 0.35, 𝑃 = 0.73), and did not have a significantly different

number of streamlines (𝑡7745 = −1.15, 𝑃 = 0.25). However, they did have 0.008 lower FA (𝑡7745 =

−7.27, 𝑃 = 3.9 × 10−13). On average, compared to males, tract groups from females were 2.5mm

shorter (𝑡853 = −2.64, 𝑃 = 0.008), had 0.005 lower tract-averaged FA (𝑡853 = −2.93, 𝑃 = 0.004),

and had 20 fewer streamlines (𝑡853 = −3.73, 𝑃 = 2.0 × 10−4). The distributions of these metrics,

grouped by tract, hemisphere, and gender, are displayed in Figure 8.10.

8.4.2 Along-tract variations in developmental timing

We observed wide variation in developmental timing when the 𝑡75% parameter was qualitatively

examined between tracts, hemispheres, along-tract positions, and genders. Using our previously-

developed visualization tools for along-tract analyses, we generated 2D (Figure 8.11) and 3D

(Figure 8.12) plots of these results. When averaged across all the data, the average 𝑡75% was

9.2 years. Developmental timing was 1.7 years earlier in the right hemisphere tracts than their

left hemisphere couterparts (𝑡1085 = −4.07, 𝑃 = 5.09 × 10−5). Females had earlier developmen-

tal timing than males (𝑡1085 = −9.60, 𝑃 = 5.47 × 10−21), and this effect varied by hemisphere

(𝑡1085 = 4.30, 𝑃 = 1.90 × 10−5). In the left hemisphere, females had developmental timing 6.4

years earlier than males, but in the right hemisphere the difference was only 2.3 years earlier.
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Figure 8.10: Distributions of whole-tract properties, by tract, hemisphere, and gender
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Figure 8.11: Along-tract variation in developmental timing (2D), by tract, hemisphere, and gender. The
y-axis is on a log2 scale and is in units of years.
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(A) 𝑡75% in Males

(B) 𝑡75% in Females

(C) Female – Male difference map

Figure 8.12: Along-tract variation in developmental timing (3D), by tract, hemisphere, and gender. In
(A) and (B), cooler colors represent slower developmental timing. In (C), cooler colors represent slower
developmental timing in males compared to females.
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Hemisphere
Tract L R

1 CGC 102.24 (51) 100.41 (51)
2 CST 116.42 (59) 120.03 (59)
3 ATR 81.22 (41) 80.53 (41)
4 AF 108.25 (55) 110.64 (55)
5 ILF 99.48 (51) 101.51 (51)
6 IFO 150.96 (75) 147.87 (75)
7 UNC 59.95 (31) 61.63 (31)
8 Fmajor 139.96 (71)
9 Fminor 93.30 (47)

Table 8.2: Mean tract lengths (mm) across all PING subjects. The numbers of interpolation points used
for along-tract modeling are given in parentheses.

8.5 Discussion

8.5.1 Developmental timing

The finding of earlier developmental timing in females is consistent with previous reports on the

timing of maturational changes in the white matter (Asato et al., 2010; Herting et al., 2011; Lenroot

et al., 2007), cortex (Clayden et al., 2011; Giedd et al., 1999a), and other brain structures (Giedd

et al., 1997). It is also in line with the much broader cross-sectional literature documenting gender

effects on brain structure (Lenroot and Giedd, 2010). However, the really novel aspect of the present

analysis is that we break this down further, and go on to examine how developmental timing — as

well gender and hemisphere effects on this trajectory — vary along major white matter tracts in

the human brain (Figures 8.11 and 8.12). When examining these plots, it is clear that some tracts

show prominent along-tract variation in their developmental timing. To get a feel for what different

𝑡75% values look like, in terms of their corresponding FA vs. age developmental trajectories, we

plotted two different positions from the left inferior longitudinal fasciculus (ILF) in Figure 8.13.

The more anterior position (32%) is relatively slowly-developing, and has 𝑡75% = 25 years, while

the more posterior position (58%) is relatively quickly-developing, and has 𝑡75% = 3 years. The

arcuate fasciculus is another tract that shows along-tract variations, with slower development in
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its frontal lobe portion. This is consistent with the literature describing frontal lobe development

to be especially protracted (Chapter 1). The anterior thalamic radiations (ATR) also show a more

protracted time course as you move towards the frontal lobe from their thalamus terminus. This

tract, in particular, is striking because these changes form a smooth gradient that is nearlymonotonic

through the posterior half of the tract. The ATR is also a useful example to show that some features

of the along-tract pattern of developmental timing can be broadly conserved between hemispheres

and genders. The along-tract variation in the gender effect is also prominent. For example, females

show earlier timing at nearly every point along the left anterior portion of the cingulate (CGC),

but not in the posterior half of the tract, and not in the right hemisphere. These differences are

highlighted in Figure 8.12C. Along the corticospinal tract (CST) in both hemispheres, females

also show earlier timing towards either tract terminus, but not in the central portion of the tract.

Although still preliminary, these findings already suggest that there is wide variability in the FA

vs. age developmental trajectory even within the same white matter tract in the human brain.

0.3
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0.5

0.6

5 10 15 20
Age

FA

Streamlines

200

400

600

800
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58

Figure 8.13: Example along-tract variation in developmental trajectories. FA is plotted vs. age for
all subjects, for two different positions along the L ILF. These positions were chosen approximately one
third (32%) and two thirds (58%) from the anterior tract terminus. Model fits for the mono-exponential
developmental trajectory model are overlaid. The number of streamlines in each tract group is encoded
by point size.
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8.5.2 Exponential model

The choice of which developmental model to use is an important one. We decided to use a mono-

exponential function because of its previous use in the developmental neuroimaging community

(Lebel et al., 2008b), and the easy biological interpretability of its three parameters. While this

is often a useful simplification, it does ignore some of the nuances of brain development. As one

example, this model assumes monotonically increasing FA towards an asymptotic plateau. In re-

ality, many white matter regions actually exhibit modest decreases in FA during adulthood, which

have been approximated by quadratic fits if the maximum age is younger (Colby et al., 2011; Lebel

and Beaulieu, 2011), or poisson fits if the maximum age is older (Lebel et al., 2012). Additionally,

unlike the simpler physical systems where these models originated (Michaelis et al., 2011), there

is no strong theoretical basis that human brain development should follow such simple kinetics.

Our application of the same model to all brain regions is a similar trade-off. One the one hand, it

certainly simplifies the analysis and interpretability of the results. Again, however, the true neuro-

biology is likely less homogeneous region-to-region. Methodological concerns come into play as

well. From examining Figure 8.11, we can see many regions have a thick line, which indicates that

there were many failures of the model fits across the subsampled data replications at these points.

For some regions, this likely implies that the mono-exponential model is a poor approximation to

the true developmental trajectory. For others, it means that our age range failed to capture the

developmental changes and that the FA vs. age curve appears flat. In these regions, some of the

nonlinear least squares fits could fail to converge, and, for the times when the model does converge,

the estimate for the timing parameter will swing wildly from very early to very late. Similarly, we

should be suspect of extremely small and extremely large values for the timing parameter that are

far outside of our age range. Even though white matter development is relatively protracted, dense

sampling during early childhood old is crucial for approximating these developmental trajectories.

The PING sample does include subjects aged 3–21, but the sampling distribution is not uniform

over this range, and younger subjects are less represented.
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8.5.3 Site effects

Although the PING study has many strengths, one fairly basic limitation is that it is a multisite study

of development, and yet participants are not matched on age between sites. As we saw with the

ADHD–200 sample, it is also very common to have large site/scanner effects on the imaging data.

These two factors combine to make interpretation of all aspects of the data more challenging. For

example, considering the age distributions in Figure 8.2, if we saw lower FA in the UCSD subjects,

relative to the KKI subjects, is this due to a simple scanner effect (in which case it is a nuisance

effect that we would like to control for)? — Or is it due to the UCSD subjects being younger (in

which case it is part of the age effect that we are actually trying to study)? One common approach

to address this situation would be to simply fit a linear model with both age and site predictors at the

same time. However, due to the nonlinearities in the developmental trajectory — the very topic we

are trying to study— this method is not perfect. Another way to estimate the site effect would be to

analyze the subset of subjects who domatch on age across sites. Considering nonlinearities, slicing

out a cross-section of the data like this is a stronger way to estimate the main site effects. However,

this comes with its own challenges, as a matched subset may not always be available. The PING

study is in the gray area here, as all sites do span the central age range of late childhood; however,

some sites have much sparser sampling (e.g. UC Davis, UMMS). The origin of this problem is

also important to consider for its implication on designing multisite studies. When the different

sites were enrolled, there were no particular quotas on different subgroups of ages. Therefore the

sites that began scanning earlier naturally enrolled more older subjects, who are easier to schedule

and scan. Fortunately, this problem was noticed part way through enrollment, so the organizers

were able to partially correct the problem. Nevertheless it is an important lesson that if we are

trying to recruit subjects aged 3–7 from our collaborators, we better be more specific than just

giving an age range of 3–21 years. A last thing to always consider in multisite studies is the likely

possibility of site:* interactions. Maybe one scanner is less comfortable particularly for younger

subjects. Perhaps another scanner has relatively lower sensitivity in older subjects. These effects

are not being estimated directly in this study, but they should still be considered when interpreting
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multisite results as their effects are likely present in subtle ways.

8.5.4 Future work

The PING study is a huge initiative, and we have only just begun to scratch the surface of the

data. Focusing first on the preliminary study of white matter developmental timing we have just

described, there are several important areas of future work. First, with such a large sample, and the

added diversity that comes with a multisite design, this effort will likely benefit from several more

cycles of protocol optimization and quality control. Also, our comparisons of patterns in develop-

mental timing along tracts have thus far been qualitative in nature. Therefore another important step

will be to extend these observations with statistical inference; for example, answering the question,

“How confident are we that the interesting focal gender effect two thirds of the way along the L IFO

in Figure 8.11 is a real phenomenon, and not something that could likely occur by chance?” After

these methodological details are flushed out, the rich genomic and behavioral data on these sub-

jects provide many long-term opportunities for scientific discovery. Integrating genomic data will

increase power by explaining variance components in our data that are under strong genetic control

(Chiang et al., 2011). Additionally, we can generate detailed along-tract maps of the neurobio-

logical correlates of disease candidate genes. Even more directly, we can investigate correlations

between behavioral measures and developmental timing. For example, does higher intelligence

also correlate with more dynamic development (i.e. an earlier time constant) in the white matter,

like it does in the cortex, and also show a similar pattern of frontal/temporal localization (Shaw

et al., 2006a)?

8.5.5 Conclusions

Although preliminary, this effort is already one of the largest diffusion MRI study to date of white

matter development, and one that spans the crucial age range of early childhood. Further, using

cutting-edge techniques for along-tract analysis, it is the first time that regional variations in de-
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velopmental timing have been mapped within major white matter tracts. These initial observations

are contributing to our growing understanding that the patterns of white matter development in the

human brain are more complex than previously appreciated, and also inform the broad range of

studies that seek to examine disease within the background context of this expected brain matura-

tion. Finally, the wealth of accompanying data on these subjects holds major promise for extending

these analyses to other modalities in the future.
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