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RESEARCH ARTICLE Open Access

Germline contamination and leakage in
whole genome somatic single nucleotide
variant detection
Dorota H. Sendorek1†, Cristian Caloian1†, Kyle Ellrott3,4, J. Christopher Bare2, Takafumi N. Yamaguchi1,
Adam D. Ewing3,5, Kathleen E. Houlahan1, Thea C. Norman2, Adam A. Margolin2,4,6, Joshua M. Stuart3

and Paul C. Boutros1,7,8*

Abstract

Background: The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the
world. However, concerns over patient re-identification from these data lead to questions about how tightly access
should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However,
somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called
“germline leakage”. The rate of germline leakage across different somatic variant detection pipelines is not well-
understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this
gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs)
predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge.

Results: The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism.
The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated
with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To
aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic
SNV databases.

Conclusions: The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led
to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-
publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We
find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further
reduced, especially for cloud-sharing, using pre-filtering software.

Keywords: Cancer genomics, Next-generation sequencing, Mutation calling, Germline contamination, Germline
leakage, Patient identifiability, Single nucleotide variant, SNV

Background
The appropriate limits on data sharing remains a conten-
tious issue throughout biomedical research, as shown by
recent controversies [1]. Studies such as the Personal
Genome Project (PGP) have pioneered open sharing of

patient data for biomedical research, while ensuring that
enrolled patients consent to risks of identification [2]. In
fact, analysis of PGP data has showed that a majority of
participants can be linked to a specific named individual
[3]. Identifiability is greatly facilitated when researchers
release all generated data online – as is standard in some
fields [4]. This public, barrier-free release has numerous
advantages. It can minimize storage costs, increase data re-
dundancy to reduce the risk of data-loss and maximize data
availability and re-use. As a result, it is argued that barrier-
free deposition of genomic data in public repositories like
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GEO [5, 6] or dbGaP [7, 8] promotes collaborative work
and maximizes the value of already-funded research [9].
Further, many researchers believe they have an ethical duty
to release all data [10].
Nevertheless, there are at least four counter-arguments

in favour of a conservative approach to data protection.
First, the groups generating the data have uniquely intim-
ate knowledge of it and studies done without their partici-
pation can be more prone to errors, although improved
documentation of the research process can mitigate this
effect [1]. Second, the desire to immediately release data
may oppose the desire to explore complex inter-linked
questions. The initial report of a dataset may not fully
reflect the magnitude of work that goes into generating it,
particularly for clinical trials. With immediate data release,
the data collectors may find themselves under time
constraints, unable to comprehensively exploit the data
they produced without competition from subsequent
researchers who are able to use the data freely. This effect-
ively disincentivizes the challenging work of dataset
creation, producing a situation akin to a tragedy of the
commons. Third, the inherent value in large datasets may
enable data producers to seek commercialization oppor-
tunities by keeping data resources private. Fourth, many
studies involve data derived from human subjects that
contain revealing and personal information, which is
under legal protection [11]. Legislation designed to protect
patient privacy, such as the Health Insurance Portability
and Accountability Act (HIPAA) [12], the Common Rule
[13] and the European Union’s General Data Protection
Regulation [14] impose harsh financial and professional
penalties for violations. As genomic data becomes widely
available and techniques for interpreting them improve,
de-identification grows increasingly difficult, challenging
implementation of barrier-free access that upholds ethical
considerations. We focus here on this fourth challenge, or
re-identifiability.
Earlier studies have quantified how much DNA infor-

mation is required to identify individuals. One suggests
that as few as 30–80 statistically-independent single
nucleotide polymorphisms (SNPs) suffice [15]. Under
certain circumstances, small segments of DNA can even
be used to recover participants’ names by accessing
publicly available, commercial genealogy websites [16].
These problems are compounded by deficiencies in
techniques used to prevent re-identification: for ex-
ample, pooling DNA samples does not prevent detection
of any individual sequence [17]. More recently, research
into information leakage demonstrated how easily
patients can be linked back to data from which they
previously had been disassociated by correlating seem-
ingly disparate features, namely from phenotypic and
genotypic datasets, in what is referred to as a ‘linking
attack’ [18, 19].

In cancer research, many studies concentrate on
identifying somatic mutations that are induced in the
process of tumourigenesis and tumour evolution. Identi-
fying these causative mutations can lead to discovery of
novel biomarkers and potential therapeutic targets,
making public data release critical for accelerating
research. Because these mutations are found in the
tumour and not in an individual’s germline genome, they
do not, by themselves, provide identifying information.
Barrier-free release of somatic mutational data can, in
theory, occur without compromising patient privacy.
However, tools used to distinguish somatic mutations

from germline are imperfect, and sometimes the
predicted somatic mutations are in fact germline genetic
variants. This “germline leakage” can occur in several
ways. Most next-generation sequencing (NGS) base
calling algorithms have low error rates [20], including
both undetected true variants (false negatives) while
some non-existent variants get reported (false positives).
These false positives can occur for several reasons,
including low coverage (number of reads aligning to a
specific position in the genome), which reduces statis-
tical confidence [21]. Even datasets with high total
coverage have variable coverage across the genome with
particular regions getting sampled at lower rates either
through stochastic or structurally biased factors. As a
result, sets of somatic variant predictions can be con-
taminated with germline variants, particularly in the case
of single nucleotide variants (SNVs). To account for
these errors, some groups filter out any variant seen in a
germline database like dbSNP, while others allow only
release of mutations in the exome [22]. Still others allow
public release of somatic variant predictions from the
whole genome [23]. These variations reflect differing
views on the likelihoods and risks of germline leakage,
and many groups have not yet developed or articulated
specific policies.
To help improve our understanding of the magnitude

of germline leakage, we analyzed a set of 259 somatic
mutation predictions made by 21 groups from around
the world on three synthetic tumours during the ICGC-
TCGA DREAM Somatic Mutation Calling-DNA (SMC-
DNA) Challenge [24]. We developed a software tool,
called GermlineFilter, which can help to quantify and
mitigate the risks of germline leakage for publicly avail-
able somatic SNV data.

Results
Gold standards of germline leakage
We sought to evaluate the extent of germline contamin-
ation in contemporary cancer whole-genome sequencing
(WGS) datasets, particularly those comprising somatic
SNV predictions across the entire genome. To do so, we
exploited the synthetic data from the ICGC-TCGA
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DREAM SMC-DNA Challenge [24, 25], which bench-
marked somatic SNV predictions using synthetic and
real tumour-normal whole-genome pairs. The gener-
ation of the synthetic tumours and their properties are
fully detailed in Ewing et al. [25]. Briefly, high coverage
binary alignment map (BAM) files were obtained from
cell lines HCC1143 and HCC1954 [26]. BAMSurgeon
[25] was used to randomly ‘spike-in’ germline mutations
into the BAM files. Each file was then split into two: one
file representing a synthetic tumour and the other file
representing the matched normal. The tumour BAM file
was finalized by adding somatic mutations: both SNVs
and structural variants. This methodology allows for the
creation of a “gold standard” dataset in which the precise
locations of germline and somatic variants are known,
enabling comprehensive assessment of leaked germline
mutations. We focused on the first three synthetic
tumours from SMC-DNA, referred to as IS1, IS2 and
IS3. These tumours vary in the number of mutations,
normal contamination and subclonal complexity
(Additional file 1: Table S1) [25]. The synthetic tu-
mours have been available to the public for several
years and have thus accumulated a large number of
somatic mutation calling results from various submit-
ted methods. Additionally, the organizers ran several
widely used algorithms with default settings as a
baseline [25]. In total, we evaluated 5,792,868 somatic
mutations that included 259 analyses by 21 teams
across the three tumours (nIS1 = 120; nIS2 = 71; nIS3 = 68).

Assessment of germline leakage
To quantify germline leakage in submissions to the
SMC-DNA tumours, we created a Python program
called GermlineFilter, which simultaneously evaluates
germline leakage in somatic SNV predictions and filters
them in real-time to allow barrier-free access to the final
results. The overall process has two steps and the work-
flow employed by the Challenge administrators has been
visualized in Fig. 1. During the initial preprocessing step,
a germline caller is run on paired tumour and normal
BAM files to generate the germline variant calls. Current
germline callers have high accuracy rates which can be
attributed to diploidy-based assumptions of normal
human tissue, assumptions that do not hold for somatic
variants due to a host of issues (e.g. intra-tumour
heterogeneity, tissue cellularity, genomic instability). In
the following step, each germline SNP is compared
against the somatic SNV predictions to be filtered,
provided in standard variant call format (VCF), and the
matches are identified. Finally, somatic SNV calls can
now be filtered, either by rejecting entire submissions
that exceed an acceptable level of leakage or by simply
removing the calls that match a germline variant. Thus
in this mode of execution, a data provider who operates
the server can then run GermlineFilter in online mode.
This can be used to enable real-time uploads of somatic
SNV predictions (as might be done in a benchmarking
study), or simply to help prevent inadvertent leakage of
germline variants due to erroneous uploads.

Fig. 1 GermlineFilter Workflow for the SMC Challenge. Locally, tumour-normal BAM files are submitted to a germline caller (e.g. GATK) to create a
germline SNP call VCF file, which is later hashed and encrypted. The encrypted, hashed germline calls can now be moved to any server and used
to filter for germline leakage in somatic SNV call VCF files. The output is the germline count found in the somatic calls. To quantify germline
leakage using the Challenge submissions, the germline variant VCF file was created by the Challenge administrators “in-house” on a private server.
The somatic SNV prediction VCF files were provided by the teams participating in the Challenge
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Germline contamination reduces somatic SNV prediction
accuracy
The 259 somatic call VCFs submitted during the IS1,
IS2 and IS3 phases of the SMC-DNA challenge
contained a median of 4325 SNV calls (averaging 22,366
SNV calls). Each of these was run through GermlineFil-
ter to quantify germline leakage in terms of the number
of true germline SNPs misidentified as somatic SNVs.
Prediction accuracy for each submission was measured
using the F1-score (i.e. the harmonic mean of precision
and recall) in keeping with the metrics used in the
DREAM SMC-DNA challenge.

Germline leakage was highly variable across submis-
sions, ranging from 0 to 45,300, with a median of 1 per
submission. The median leakage rate across tumours
ranged from 0 (IS3), to 2 (IS1) and went up as high as 6
(IS2). IS2 contained the highest normal contamination
(20%), suggesting that even low normal contamination
can increase germline leakage. For each tumour, we
compared germline count to the previously reported
F1-scores (Fig. 2a) and found a highly significant nega-
tive correlation in each of the three tumours (Spear-
man’s ρIS1 = − 0.557, ρIS2 = − 0.477, ρIS3 = − 0.410,
Additional file 1: Table S1). For a number of algorithms,

Fig. 2 Assessment of somatic SNV prediction accuracy against germline leakage. a F1-scores for each submission are plotted against the germline
count (as determined by GermlineFilter). Submissions for different tumours are colour-coded (IS1 = orange, IS2 = green, IS3 = purple). The grey
area represents 30–80 counts: the minimum number of independent SNPs required to correctly identify a subject, according to Lin et al. [15]. b
Proportions of germline calls as found in total submission calls (upper panel) and in false positive submission calls (lower panel) per tumour. The
horizontal red lines indicate the 30 count mark (the lower bound of the 30–80 SNP range mentioned above)
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the germline variants make up a substantial fraction of the
total calls, showing an association with the number of
false positive calls (Fig. 2b). Thus germline leakage is, as
expected, associated with reduced overall accuracy of
mutation calling.

Quantifying germline leakage across tumours and
between algorithms
Submissions were further analyzed to determine recur-
rence of individual germline contaminants across the
mutation calling algorithms. For these purposes, only
the highest F1-score submission from each team was
selected, as in the primary report of the somatic SNV
data [25]. This was done separately for each tumour,
resulting in 15 submissions for IS1, 12 for IS2 and 11 for
IS3. A plurality of submissions harboured no germline
variants (IS1 = 40.0%; IS2 = 41.7%; IS3 = 45.5%), but there
was substantial variability, with one submission contain-
ing 43 germline SNPs (Additional file 2: Table S2).
Individual leaked germline variants varied significantly

across algorithms (Fig. 3). Of the 85 germline variants
leaked in the 12 IS2 submissions (all with an F1 > 0.863),

only five were identified more than once. Similarly, of
the 23 germline variants leaked in the 11 IS3 submis-
sions, only two were identified more than once. Leaked
variants were distributed uniformly across chromo-
somes. These data suggest that in modern pipelines,
germline leakage rates are low and different variants are
leaked by different pipelines.
Due to the voluntary nature of self-reporting Challenge

submission details, the specifics on algorithm and data
processing techniques employed by the participants were
only provided for a minority of the submissions [25].
However, this information is available for submissions
created by the Challenge administrators, where several
popular SNV calling algorithms were selected and run
with default parameters on tumours IS1 and IS2. Germ-
line leakage was quantified for the submissions generated
using SNV callers Strelka [27], MuTect [28] and VarScan
[29]. Strelka had both the highest-scoring performance for
tumours IS1 (F1-score = 0.871) and IS2 (F1-score = 0.887)
and very low germline leakage in the somatic variant pre-
dictions (IS1 = 3; IS2 = 6). However, despite worse overall
performance, MuTect-derived somatic predictions con-
tained even fewer germline leaks with 2 leaks in IS1

Fig. 3 Germline leakage across all tumours (IS1, IS2, IS3) and SNV-calling algorithms. Teams are consistently colour-coded across multiple tumours.
Barplots show F1-scores from each team’s top-scoring submission. Leaked variants are displayed below with their corresponding chromosomes.
Variant bars that overlap horizontally represent recurrent germline leaks
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results and 3 leaks in IS2 results. Importantly none of
these analyses used post-filtering, so these reflect the true
germline leakage rates of the algorithms in isolate, at their
state of development in 2014–2015. This thus provides an
upper-bound on the leakage rate of even relatively simple
somatic detection pipelines.
To complement these findings, we analyzed reports

for the top-scoring submission from each of the three
tumours. Interestingly, each of these prediction sets was
generated using MuTect and all three contained zero
germline leaks (Fig. 3). This suggests that parameter
optimization can substantially improve overall caller
performance while further minimizing germline leakage.
In addition to the spiked-in mutations, common SNP

sites were also analyzed. The Exome Aggregation
Consortium (ExAC) has produced a library of variant
sites seen across 60,706 individuals [30]. These sites
represent locations where samples commonly deviate
from the reference. Due to the very large number of in-
dividuals represented, this set of SNP sites is often used
as a filter of possible germline variant sites. ExAC pro-
vides ~ 9.3 million potential common SNP sites, much
more than the thousands of spiked-in mutations. The
number of false positive calls using ExAC as a filter
remained very low (medians: IS1 = 2; IS2 = 3; IS3 = 1.5).
As these sites are publicly available and known to be
common for SNPs, most modern somatic calling pipe-
lines can directly incorporate this information into their
filtering strategy.

Discussion
Barrier-free access to genomic data can expand its
utility, maximizing investments in research funding,
enabling citizen-scientists and facilitating collaboration.
Strong barriers to access can limit these positive conse-
quences of large investments in dataset generation.
Indeed, even when data is made available through
protected databases, the processes to gain access can be
time-consuming, advantaging labs or institutions that
have resources dedicated to gaining and maintaining
data-access authorizations. Accessibility can be skewed
by variability in the standards, knowledge and impartial-
ity of data access committees that authorize use of
controlled data [31, 32].
We quantified the amount of leakage in three compre-

hensively studied tumours used in a crowd-sourced
prediction benchmarking challenge. While some submis-
sions showed large amounts of germline leakage, the
median submission leaked only one germline SNP, and
indeed the top three teams for each tumour leaked none.
Given that the SMC-DNA Challenge was run in 2014–
2015 and that detection pipelines and the quality of
genomic data have improved further since, it appears
that modern optimized variant-calling pipelines leak an

insignificant number of germline variants on many
tumours, well below the 30–80 independent SNP range
needed for re-identification [15].
However, several caveats must be evaluated when

considering barrier-free access to whole-genome somatic
SNV predictions. First, the data we evaluated only
included three tumours, and further evaluations on larger
numbers with a range of cellularities will be critical to
generalize these conclusions. Additionally, while we
considered the amount of germline leakage in tumors with
different subclonal complexities, we did not investigate
whether germline leakage is more likely in genomic
regions with specific tumour characteristics (e.g. muta-
tional hotspots, trinucleotide context, subclonality, copy
number alterations, loss of heterozygosity, etc.). On-going
work from the ICGC Pan-Cancer Analysis of Whole
Genomes (PCAWG) may provide the data necessary to
address this. Second, genomic alterations other than
nuclear SNVs (e.g. germline copy number variants and
mitochondrial polymorphisms) may provide information
contributing to identifiability. Third, while most individual
pipelines leaked few variants, aggregating multiple pipe-
lines could increase the information content: the union of
variants across all 12 pipelines from IS2 contain 85 leaked
SNPs, potentially providing sufficient information for re-
identification [15]. Since ensemble calling generally adopts
a ‘majority rules’ approach [33], which would remove most
germline variants due to low recurrence, this is most
relevant in cases of malicious intent. Finally, there is some
inherent trade-off to the use of GermlineFilter as a soft-
ware solution to help mitigate leakage: it will inevitably
slightly increase the false-negative rate of somatic detec-
tion, by about 0.1% in our dataset. Given the challenges
with sharing genomic data to date and the need to
maximize data openness, this may be an acceptable trade-
off for almost all biological questions.

Conclusions
Taken together, our findings suggest that germline con-
tamination in somatic SNV calling is relatively rare, and
supports additional consideration of barrier-free access to
these data. Re-identification risks can be substantially
reduced by incorporating automated checks into the data
release process, designed to identify germline leakage and
remove these prior to data release. GermlineFilter pro-
vides a convenient and secure way to monitor leakage by
individual algorithms, and may be useful as a front-end to
cloud-based SNV databases to quantify and minimize risk
in real-time.

Methods
Software
GermlineFilter works in an encrypted fashion, allowing
its use on a public server. The software is executed in
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two steps (Fig. 1). For the first step, performed offline,
a VCF file containing germline calls is generated using
paired tumour and normal BAM files. For each
germline SNP in the VCF file, the chromosome,
position, reference base and alternate base are
extracted. This information is hashed and written to a
file that is then encrypted. It is this encrypted file of
hashes rather than the actual variants that is then
transferred to the server. It is technically possible to
reveal the actual germline variants if their hashes are
successfully matched with hashes of known variants. As
such, the encryption serves as an additional security
measure. For the next step, online somatic VCF filtering
is performed. At runtime, the truth germline VCF is
decrypted in memory and the somatic VCF undergoes
preprocessing and hashing. Finally, an in-memory
comparison of hashes is done and the number of
matches is returned. At no point are the decrypted
germline variant hashes stored on the server. Germline-
Filter can spawn multiple instances to process multiple
germline VCFs for different tumours or multiple
somatic VCFs for a single tumour. The user chooses
the encryption and hashing protocols, with strong
default settings in place to help minimize risks such as
hash collisions. The user also has the option to specify
alternative germline call sets, such as a list of all dbSNP
entries, although these would elevate the false-negative
rate by removing true somatic mutations. Another fea-
ture for local use allows the user to obtain a list of the
actual positions of the germline leaks within the som-
atic VCF. This list can be used to filter out the germline
mutations in preparation for publication.
The GermlineFilter software package was written in

Python 2.7 and it is supported for Unix and Linux plat-
forms. The encryption and hashing is done using the
PyCrypto v2.6.1 Python module. The tool currently sup-
ports two encryption protocols – AES (default) and
Blowfish, as well as two hashing protocols – SHA512
(default) and md5, selected for their security and broad
usage. GermlineFilter v1.2 is the stable version and it is
available for download at: https://pypi.python.org/pypi/
GermlineFilter. Alternatively, it can be installed via pip
install GermlineFilter.

Data
The analysis data was taken from Ewing et al. [25] and
it consists of the first three publicly available in silico
datasets from the ICGC-TCGA DREAM Somatic Mu-
tation Calling Challenge and their corresponding SNV
submissions from the challenge participants. The truth
germline calls were generated using GATK Haplotype-
Caller v3.3. A description of the synthetic tumour data
and a summary of participating teams and their sub-
missions can be found in Additional file 1: Table S1. All

challenge submissions and their scores are listed in
Additional file 2: Table S2.
For each of the 259 submissions we calculated: pre-

cision (the fraction of submitted calls that are true
somatic SNVs), recall (the fraction of true somatic
SNVs that are identified by the caller) and the F1-
score (the harmonic mean of precision and recall), as
previously reported [25]. The F1-score was selected to
be the accuracy metric as it does not rely on true
negative information which, given the nature of som-
atic variant calling on whole genome sequencing data,
would overwhelm alternative scoring metrics such as
specificity (the fraction of non-SNV bases that are
correctly identified as such by the caller).
Each tumour’s germline calls were encrypted separ-

ately using default methods: AES for encryption and
SHA512 for hashing. Somatic calls from all challenge
submissions were filtered against their corresponding
tumour’s encrypted germline calls. For a somatic SNV
call to be designated a germline leak, it exactly matched
a germline variant at the chromosome, position, refer-
ence allele and alternate allele.
The resulting germline leak counts were compared to

F1-scores using Spearman correlation. The best team
submissions per tumour were selected to look at leaked
germline variant recurrence across tumours and muta-
tion callers. Best submissions were defined as having the
highest F1-score.

Visualization
All data figures were created using custom R scripts
executed in the R statistical environment (v3.2.3)
using the BPG (v5.6.8) package [34].

Additional files

Additional file 1: Table S1. Tumour information from each tumour
challenge (IS1, IS2, IS3). This includes information on in silico tumour
construction, composition, and a summary of participating teams and
their challenge submissions. (XLS 12 kb)

Additional file 2: Table S2. Contains the following information for
every challenge submission: tumour, submission ID, precision, recall, F1-
score, the number of germline variants leaked and whether it was a
Challenge administrator submission. (XLS 39 kb)
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