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Mini-Review

Predictive modeling and in vivo
assessment of cerebral blood flow
in the management of complex
cerebral aneurysms

Brian P Walcott1,*, Clemens Reinshagen2,*,
Christopher J Stapleton3, Omar Choudhri1, Vitaliy Rayz4,5,
David Saloner6 and Michael T Lawton1

Abstract

Cerebral aneurysms are weakened blood vessel dilatations that can result in spontaneous, devastating hemorrhage

events. Aneurysm treatment aims to reduce hemorrhage events, and strategies for complex aneurysms often require

surgical bypass or endovascular stenting for blood flow diversion. Interventions that divert blood flow from their normal

circulation patterns have the potential to result in unintentional ischemia. Recent developments in computational

modeling and in vivo assessment of hemodynamics for cerebral aneurysm treatment have entered into clinical practice.

Herein, we review how these techniques are currently utilized to improve risk stratification and treatment planning.
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Background

Cerebral aneurysms are focal dilations resulting from
weaknesses in blood vessel walls. They are found in 3%
of the general population and carry a risk of rupture
and potentially devastating brain hemorrhage.1

Treatment is ideally carried out before hemorrhage
occurs and can be accomplished with microsurgical
clip occlusion or with the endovascular coil emboliza-
tion to exclude the aneurysm from the native circula-
tion. For more complex aneurysms, such as those that
incorporate large segments of multiple blood vessels,
simple clipping or coiling of the aneurysm may not be
feasible without sacrificing blood flow in parent
and branch vessels. In these cases, advanced surgical
bypass techniques or flow diverting endovascular
stents are used to thrombose the aneurysm and preserve
blood flow to the normal circulation. Preoperative
knowledge regarding how these interventions alter
local cerebral hemodynamics has been largely
unknown, particularly with respect to preservation of
small perforating arteries that supply critical structures
(such as the brainstem). While once a strictly research

interest, the ability to model cerebral blood flow based
on 3D blood vessel morphology (computational fluid
dynamics (CFD)) as well as to perform quantitative
in vivo measurements via phase contrast magnetic res-
onance imaging (MRI) (4D Flow MRI) has become an
important clinical tool to stratify procedural risk as it
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relates to perforating and branch artery preserva-
tion.2–9 Various treatment strategies can be compared
in a simulation model to guide clinicians toward a strat-
egy that ensures aneurysm obliteration and minimizes
complications. For endovascular flow diverting treat-
ments in particular, CFD modeling may be able to pre-
dict hemodynamic forces that could result in aneurysm
hemorrhage following treatment.10

Techniques

The process of modeling blood flow begins with defin-
ing the blood vessel lumen architecture, typically with
the use of high-resolution, contrast-enhanced MR, CT,
or 3D rotational angiography.11 3D projections repre-
senting the luminal boundaries are then transferred into
a modeling software environment, where the aneurysm
is selected, along with its proximal and distal parent
arteries. Small perforating arteries, if not visualized
on the source imaging, can be virtually added
based on typical anatomic patterns. These smaller
branches of the basilar artery provide vital blood flow
to the brainstem and their patency is often a major
focus of predictive modeling. Their anatomical patterns
are well known based on surgical and cadaveric studies,
and major deviations seen on digital subtraction angi-
ography can be accounted for on a case-by-case basis.
In brief, addition of perforating arteries is accom-
plished in the preprocessing phase by creating a circular
opening in the basilar wall and then creating a 3D
spline representing the typical path for the vessel.
Next, a surface of the vessel can be constructed by
sweeping the opening circumference along the spline.
Next, computational methods (numerical solutions of
flow equations) are used to simulate blood flow pat-
terns in the system as previously described,3 assuming
inlet flow and outlet flow are constant, in addition to
other mathematical assumptions. Patient-specific blood
flow velocities in the inflow vessels can be measured via
phase contrast MRI and then used as references in
these models. Ultimately, a multitude of alternative
treatment options can be constructed and analyzed pre-
operatively. In the case of evaluating surgical strategies,
virtual proximal occlusion and revascularization tech-
niques can be introduced. When endovascular stenting
is simulated, virtual stents with varying levels of poros-
ity can be deployed.12 Visualization of these treatment
options using a ‘‘virtual contrast’’ technique can then
assess changes in the streamline flow patterns
through the aneurysm and surrounding vessels, intra-
aneurysmal flow residence time, as well as changes in
the intra-aneurysmal velocity and pressure.10,13 Various
commercial CFD software programs such as Fluent
and Ansys CFX (ANSYS, Inc., Canonsburg, PA,
USA), ADINA (ADINA R&D, Inc., Watertown,

MA, USA), COMSOL (COMSOL, Inc., Burlington,
MA, USA), CFD-ACE (ESI Group, Paris, France),
Flow-3D (Flow Science, Inc., Pasadena, CA, USA),
and STAR-CD (CD-adapco, Melville, NY, USA),
among others, are available for utilization.

In addition to CFD, quantitative in vivo blood flow
measurements can be obtained via time-resolved phase
contrast MRI (4D Flow).14,15 In a comparison with
CFD models, there is relatively good qualitative agree-
ment between the two techniques,16,17 but an important
discrepancy can be seen in regions of relatively low
intra-aneurysmal velocities.3 This noise, likely an arti-
fact of low/disturbed flow regions, supports the need
for further investigation of 4D Flow in aneurysms of
different morphologies and locations.

Clinical application

Cerebrovascular bypass

For aneurysms that are not amenable to direct surgical
clipping, such as those with dolichoectatic or fusiform
morphologies, cerebrovascular bypass techniques
(revascularization surgery) have been developed to pro-
vide an alternative source of blood flow in the setting of
planned segment occlusion of major intracranial ves-
sel(s).18,19 In even more complex scenarios, surgical
strategies aim at blood flow reduction to the aneurysm,
rather than elimination, in order to keep vital perforat-
ing vessels patent while minimizing the hemodynamic
forces that lead to aneurysm growth and rupture.
Historically, selection of these various bypass tech-
niques has been guided by anecdotal experience at
highly specialized centers. Complications, including
bypass graft occlusion, perforator vessel occlusion,
and parent vessel occlusion, can occur despite sound
surgical technique. This has driven the need to better
understand the hemodynamic changes brought about
by revascularization surgery and ultimately make
informed choices about technique options based on
this. Preoperative CFD modeling provides crucial
data in these complex scenarios to expand upon the
surgeons’ intuition and individually assess resultant
blood flow patterns for the treatment options con-
sidered (Figure 1). Necessity is an important driver of
innovation, and we have used predictive modeling pri-
marily in some of the most challenging aneurysms we
have encountered in clinical practice, as in cases of
dolichoectatic basilar artery trunk aneurysms.20

Endovascular flow diversion

Another treatment option for aneurysms that incorpor-
ate long segments of the parent artery is endovascular
flow diversion. As opposed to other intravascular
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devices, such as cardiac stents that are placed to main-
tain the patency of blood vessels, flow diverting stents
represent a method of treating cerebral aneurysms by
redirecting blood flow away from the aneurysm into the
parent vessel (Figure 2).21,22 Over time, because of the
diverted blood flow, the aneurysm undergoes throm-
bosis and a new endothelium develops covering neck
of the aneurysm, thereby reconstructing the native
parent vessel. Since blood is diverted away from the
aneurysm, it may also be diverted away from nearby
perforator arteries, resulting in downstream ischemia.23

Furthermore, a reduction in blood flow into the aneur-
ysm does not necessarily equate to an immediate reduc-
tion in pressure experienced by the aneurysm wall,24

and postprocedural hemorrhage is another known
complication.10 These potentially devastating adverse
events have limited the widespread use of flow diversion
as a treatment technique, and it is currently considered
for only a subset of aneurysms of the proximal internal
carotid artery that have been shown to be less prone to
these complications.25 CFD modeling has the potential
to evaluate procedural risk, such as potential intra-
aneurysmal pressure increases following stent deploy-
ment and risk of perforating artery occlusion for those
branch arteries also covered by the stent.26

Future directions

Although still in the early stages of clinical application,
blood flow modeling with CFD has been used to guide

the treatment plans for many complex aneurysms.3,6

We continue to try to refine our surgical and endovas-
cular treatment strategies for these lesions by ongoing
comparison of predictive modeling and clinical out-
comes. While treatment planning for every aneurysm
is not practical or necessary, improved software work-
flow efficiency and close collaboration within a team of
neurovascular clinicians and researchers allows for
identification and preoperative study of many of the
more complex clinical scenarios. Currently, the main
utilization is to compare various surgical bypass
options. Optimizing the predictive power of these
models requires further study with endovascular quan-
titative flow assessment techniques and postoperative
time-resolved angiography to provide further refine-
ments and validation.27 As CFD workflow routines
become more streamlined and efficient, it is likely that
other aneurysms, in addition to those not requiring
bypass techniques, may also benefit from preoperative
evaluation. Examples of this include preoperative
models to reconstruct parent vessels with aneurysm
clips prior to microsurgical clip occlusion and to deter-
mine flow alterations in branch arteries that originate
from the aneurysm necks prior to flow diversion.

CFD modeling has also been instrumental in under-
standing the unexpected complication of hemorrhage
following aneurysm treatment with flow diverting
stents. While the mechanism is not yet fully elucidated,
CFD suggests that failure to lower intra-aneurysmal
pressure may be responsible for hemorrhage at a critical

Figure 1. Computational fluid dynamic modeling of treatment options for dolichoectatic vertebral-basilar artery aneurysm.

Left: Preoperative conditions. Middle: The basilar artery is clipped below the superior cerebellar arteries, nondominant vertebral

artery is occluded, and bypass is performed from the dominant vertebral artery to the contralateral posterior cerebral artery.

Right: Nondominant vertebral artery is occluded and bypass is performed from the dominant vertebral to the contralateral posterior

cerebral artery. Only in the scenario on the right does blood fill the basilar trunk sufficiently to perfuse all of the perforating arteries to

the brainstem. Occlusion of the nondominant vertebral artery and bypass graft limits the hemodynamic forces imparted on the

aneurysm.
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period after treatment when the aneurysm wall is wea-
kened.10,28 It may be possible to predict those patients
that would suffer posttreatment hemorrhage based on
simulated pressure measurements. Other indications for
flow diversion (off label), such as the vertebrobasilar
circulation and distal anterior circulation are at the
frontlines of investigation, particularly in the setting
of next generation devices and a growing skillset.29–32

However, perforating artery patency (resulting in ische-
mic complications) remains one of the greatest concerns
when placing a stent in these locations. Clinical and
radiographic evaluation of named branch vessels in
these locations, namely the ophthalmic artery,33,34 the
anterior choroidal artery,35,36 and the posterior inferior
cerebellar artery,37 demonstrate that occlusion is rare
and clinical sequelae from occlusion is exceedingly rare.

Occlusion of these branch vessels can be explained by
blood flow pressure gradients, which are largely influ-
enced by collateral circulation patterns. Integration of
these individualized collateral circulation patterns from
the extracranial–intracranial circulation and across the
Circle of Willis into predictive modeling calculations is
an area of ongoing investigation.

Conclusions

CFD modeling is in clinical use to evaluate complex
aneurysm treatment options preoperatively, predicting
the effects of cerebrovascular bypass variations on
aneurysm occlusion and perforator artery patency.
Further applications in aneurysm treatment, including
modeling of flow diverting stents and direct clip

Figure 2. Comparison of computational fluid dynamic and in vitro 4D Flow MRI modeling. A patient with a giant carotid artery

aneurysm was evaluated prior to placement of a flow diverting stent. CFD modeling flow streamlines (top, left) matched closely with

in vivo 4D Flow MRI measurements (bottom, left). CFD modeling (top, right) of stent placement also had close agreement with in vitro

4D Flow MRI models (bottom, right). MRI assessment after stent placement is not yet possible secondary to stent-related imaging

artifact.
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reconstruction strategies, may help to mitigate risk
associated with these treatments.
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