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Mechanisms of DNA hypomethylating agents in acute myeloid leukemia 

Raymond Dai 

Abstract 

Aberrant DNA methylation is a hallmark of many cancers. As such, there has been 

substantial interest in the development of anti-cancer strategies which modulate 

epigenetic programs associated with alterations in DNA methylation. In acute myeloid 

leukemia (AML), decitabine is a clinically-approved DNA hypomethylating agent used for 

a subset of high-risk patients with poor prognoses. Despite the clinical use of this drug, 

and clear evidence of a clinical benefit for this patient cohort, the mechanisms by which 

decitabine acts as an anti-cancer agent through perturbing DNA methylation remains 

poorly understood. In this research, we describe our approach using functional genomics 

and multiomics to examine the mechanisms by which decitabine acts to kill cancer cells 

in the context of AML. More specifically, our results unexpectedly reveal RNA dynamics 

as key regulators of DNA hypomethylation induced cell death in AML. Specifically, we 

show that RNA decapping quality control promotes cellular resistance to DNA 

hypomethylation, and conversely, we also observe that RNA methylation promotes 

cellular sensitivity to DNA hypomethylation. Overall, our findings linking RNA dynamics 

to DNA methylation suggests new levels of cellular integration between RNA and DNA 

regulatory biology that may aid in the design of future therapeutic strategies.  
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Chapter 1: DNA methylation in cancer and use of DNA hypomethylating agents in 
acute myeloid leukemia  

 One of the many hallmarks of cancer is the dysregulation of broad epigenetic 

programs within a cell that drive aberrant gene expression and promote cancer cell 

initiation and progression1. A major advancement in the genomics era of cancer biology 

has been the discovery that most cancer genomes are epigenetically rewired, and many 

cancers frequently incur mutations in genes that regulate broad gene expression such as 

DNMT3A/B, TET1-3 and IDH1/22,3. Given these observations, there has also been 

significant interest in developing anti-cancer strategies by targeting these cancer-

associated programs as potential therapeutic vulnerabilities4-6.  

 Aberrant DNA methylation in particular has been observed across most cancer 

types. A canonical theory for why changes in DNA methylation may drive tumorigenesis 

is through driving global hypermethylation which leads to the silencing of many important 

genes including key tumor suppressor genes7. As such, one strategy has centered 

around the targeting of key enzymes, namely DNA methyltransferases (DNMTs), 

responsible for the maintenance and regulation of DNA methylation to reverse the global 

hypermethylation phenotype by inducing DNA hypomethylation, which then leads to the 

reactivation of key genes that regulate cell growth and can limit the proliferative capacity 

of cancer cells4-6. Specifically, the DNA methyltransferases DNMT1, DNMT3A and 

DNMT3B are most established for playing direct key roles in regulating DNA methylation 

across the genome8. DNMT1 in particular is known as the primary enzyme responsible 

for global maintenance methylation across the genome. During replication, DNMT1 

maintains the specific pattern of methylation across the daughter strand based on the 
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parental DNA. DNMT3A and DNMT3B on the other hand are de novo methyltransferases 

that play roles in establishing new DNA methylation patterns within a cell. Given the 

distinct role of DNMT1, one theory posits that the global hypomethylation effects induced 

by broad inhibition of DNMTs is primarily driven by the inhibition of DNMT1 specifically, 

rather than DNMT3A and DNMT3B.  

 One approach for inhibiting DNMTs to induce broad hypomethylation has been 

through using small molecule drugs such as decitabine (5-aza-2’-deoxycytidine)8. 

Decitabine is a cytidine analog, where the carbon atom at position 5 in the pyrimidine ring 

has been replaced with a nitrogen atom9-11. Decitabine, in the form of a pro-drug, is 

converted into 5-aza-2’-deoxycytidine monophosphate once inside the cell. This 

nucleoside analogue then incorporates into DNA during replication, where it is thought to 

irreversibly and covalently trap and inhibit the key DNA methyltransferases DNMT1, 

DNMT3A and DNMT3B. Trapping of DNMTs renders them enzymatically inactive, 

resulting in global DNA hypomethylation and dysregulated gene expression. Originally 

intended as a cytotoxic drug, decitabine was primarily used at high doses to induce DNA 

damage within a cancer cell to induce cell death8-11. It was later observed at lower doses 

that decitabine treatment causes broad DNA hypomethylation as well.  

 Thus far the clinical use of decitabine has centered around treatments for acute 

myeloid leukemia (AML), where decitabine has been shown to have a significant clinical 

benefit for certain subsets of AML patients12,13. AML is a hematologic malignancy that 

originates in the bone marrow and is most common in patients older than 60 years of age. 

The current standard of care of induction therapy involves the use of a combination of 

cytotoxic chemotherapy agents that eradicate a patient’s bone marrow. Many older 
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patients, usually over the age of 65, are deemed unfit for this intense cytotoxic 

chemotherapy often due to unfavorable cytogenetic abnormalities such as mutations in 

the TP53 gene. These patients are deemed “high-risk” and are instead treated with 

decitabine, usually in combination with the BCL2-inhibitor venetoclax as the standard of 

care14. However, while the use of decitabine has improved remission rates for this high-

risk older patient subset, with median survival nearly doubling when treated with 

decitabine compared to standard induction therapy, median survival is still only less than 

1 year and 30-day mortality is still 10-40% depending on pre-existing risk factors12-14. 

Additionally, given that decitabine is a nucleoside analogue that incorporates into DNA, 

high doses of decitabine also cause DNA replicative stress and DNA damage, rendering 

the clinical use of decitabine to only low doses as to avoid toxicity for this subset of AML 

patients. Unfortunately, despite clear evidence of a clinical benefit of decitabine for these 

AML patients, relatively little progress has been made on improving the clinical activity of 

decitabine or DNA hypomethylating agents as a whole in AML or other cancers in part 

because the molecular determinants that modulate response to decitabine or this broad 

class of drugs remain unclear.  

 A recent clinical study of molecular determinants of response to decitabine in AML 

patients has suggested that mutations in DNMT3A, IDH1/2 and TET2 are not correlated 

with response to decitabine13. In the same study, it was noted that TP53 mutations are 

also not correlated with poor clinical response to decitabine. These findings are unusual 

in two ways. First, it had previously been hypothesized that tumors with mutations that 

drive aberrant DNA methylation profiles may be more susceptible to DNA 

hypomethylation. Secondly, TP53 mutations are generally associated with drug 
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resistance and poor prognosis in many cancers, so it is unexpected that TP53 mutations 

in AML seem to not play a role in determining clinical outcomes following treatment with 

decitabine. This result suggests that decitabine’s anti-cancer activity in AML occurs 

through a TP53 independent mechanism. Given the central role TP53 plays in canonical 

apoptotic BCL2 family protein dependent programmed cell death, at one level this study 

appears to contradict recent clinical trial results in AML which demonstrated superior 

clinical outcomes from the combination of decitabine and venetoclax, a BCL2 inhibitor 

thought to drive programmed cell death in cancer cells14. One explanation that could 

account for both sets of clinical observations is that DNA hypomethylation may drive cell 

death via an unknown TP53 independent apoptotic pathway. A more robust 

understanding of decitabine’s mechanisms of anti-cancer activity in TP53-mutant tumors 

could enable innovative therapeutic strategies and a better understanding of patients who 

do and do not respond robustly to DNA hypomethylating agents.  

 In addition to the aforementioned canonical theory of reactivating tumor 

suppressor genes for how perturbing DNA methylation may lead to cancer cell death, 

other theories have emerged based on recent studies examining the effects of decitabine 

across diverse cancer cell types15-17. Specifically, two recent studies on DNMT inhibition 

in colorectal and ovarian cancers, respectively, revealed a separate pathway of cell 

death15,16. These studies demonstrated that DNMT inhibition via decitabine triggers an 

anti-viral defense response and upregulates immune signaling through the interferon 

(IFN) pathway. Though the nominated genes differed between studies, the convergence 

on immune signaling, and particularly IFN signaling, highlights a new way decitabine is 

thought to induce cancer cell death. Separately, a third hypothesis emerged in recent 
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years demonstrating in a lung cancer model that decitabine kills cancer cells by promoting 

de novo transcription through the induction of hundreds of cryptic transcription start sites 

(TSSs), many of which encoded chimeric or truncated transcripts that translated into 

aberrant proteins and were shown to have anti-proliferative effects17. While an 

upregulation of immune and viral defense genes was also noted here, the majority of 

transcriptional effects were due to the activation of cryptic TSSs. It is possible for these 

effects to be cancer-type specific, and translatability into AML is especially important to 

consider given that the aforementioned studies were performed in solid tumor models 

where the tumor microenvironment has a significant influence on cell state especially in 

immune signaling pathways such as interferon response. Also to note is that the lung 

cancer study used a more in-depth approach to identify the cryptic TSSs and it is possible 

the previous studies in colorectal and ovarian cancer cells could not adequately identify 

these cryptic sites with the approaches they used. The lung cancer study also validated 

a select handful of chimeric transcripts in HL60 cells, a well-established AML cell line, 

suggesting these cryptic TSSs could exist in decitabine-treated AML cells as well17.  

 Overall, given the importance of decitabine in clinic, and the potential impact of 

DNA hypomethylating agents in cancer broadly, there remains the critical need to 

elucidate the mechanisms of action of decitabine and identify key pathways that may 

intersect with decitabine to drive cancer cell death, which may then in turn aid the future 

development of improved therapeutic strategies involving hypomethylating agents for the 

treatment of AML and other cancers.  
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Chapter 2: RNA dynamics promote cellular sensitivity to DNA hypomethylation in 
acute myeloid leukemia   

Abstract 

 The search for new approaches in cancer therapy requires a mechanistic 

understanding of cancer vulnerabilities and anti-cancer drug mechanisms of action. 

Problematically, some effective therapeutics target cancer vulnerabilities that have poorly 

defined mechanisms of anti-cancer activity. One such drug is decitabine, a frontline 

therapeutic approved for the treatment of high-risk acute myeloid leukemia (AML). 

Decitabine is thought to kill cancer cells selectively via inhibition of DNA 

methyltransferase enzymes, but the genes and mechanisms involved remain unclear. 

Here, we apply an integrated multiomics and CRISPR functional genomics approach to 

identify genes and processes associated with response to decitabine in AML cells. Our 

integrated multiomics approach reveals RNA dynamics are key regulators of DNA 

hypomethylation induced cell death. Specifically, regulation of RNA decapping, splicing 

and RNA methylation emerge as important regulators of cellular response to decitabine. 

 

Introduction 

 Epigenetic dysregulation drives many of the hallmarks of cancer by enabling 

aberrant gene expression programs which underlie cancer cellular plasticity and tumor 

heterogeneity phenotypes that promote cancer initiation, progression, metastasis and 

drug resistance1. Indeed, one of the key findings of the genomics era in cancer biology 

has been that most cancer genomes are epigenetically abnormal and mutations in genes 

that regulate DNA methylation, such as DNMT3A/B, TET1-3 and IDH1/2, are prevalent2,3. 

Together, these observations suggest that epigenetic dysregulation promotes cancer but 
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may also represent a targetable vulnerability. As such, there has been substantial interest 

in the development of anti-cancer strategies which modulate cancer associated 

epigenetic programs and dependencies4–6. One such promising strategy which has 

shown success in the context of certain subtypes of acute myeloid leukemia (AML) is to 

inhibit the activity of key enzymes required for maintenance and regulation of DNA 

methylation by small molecule drugs, such as decitabine, resulting in global DNA 

hypomethylation. There is clear evidence of clinical benefit of decitabine treatment for 

AML patients who have cytogenetic abnormalities associated with unfavorable risk, TP53 

mutations or both (defined hereafter as high-risk AML patients)7,8. Unfortunately, despite 

this benefit, most AML patients eventually progress following decitabine treatment with a 

median overall survival of less than 1 year. Problematically, relatively little progress has 

been made on improving the clinical activity of DNA hypomethylating agents (HMA) such 

as decitabine in AML or other cancers in part because the molecular determinants of 

response to HMAs are unclear. 

 A recent clinical study of molecular determinants of response to decitabine in AML 

patients has suggested that mutations in DNMT3A, IDH1/2 and TET2 are not correlated 

with response to decitabine8. In the same study, it was noted that TP53 mutations are 

also not correlated with poor clinical response to decitabine. These findings are unusual 

in two ways. First, it had previously been hypothesized that tumors with mutations that 

drive aberrant DNA methylation profiles may be more susceptible to HMAs. Secondly, 

TP53 mutations are generally associated with drug resistance and poor prognosis in 

many cancers, so it is unexpected that TP53 mutations in AML seem to not play a role in 

determining clinical outcomes following treatment with decitabine. This result suggests 
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that decitabine’s anti-cancer activity in AML occurs through a TP53 independent 

mechanism. Given the central role TP53 plays in canonical apoptotic BCL2 family protein 

dependent programmed cell death, at one level this study appears to contradict recent 

clinical trial results in AML which demonstrated superior clinical outcomes from the 

combination of HMAs and venetoclax, a BCL2 inhibitor thought to drive programmed cell 

death in cancer cells9. One explanation that could account for both sets of clinical 

observations is that HMAs may drive cell death via an unknown TP53 independent 

apoptotic pathway. A more robust understanding of decitabine’s mechanisms of anti-

cancer activity in TP53-mutant tumors could enable innovative therapeutic strategies and 

a better understanding of patients who do and do not respond robustly to HMAs. An 

alternate hypothesis for how HMAs kill cancer cells arises from the observation that 

treatment with HMAs results in accumulation of non-canonical transcripts including 

inverted SINE elements, endogenous retroviral elements and cryptic transcription start 

sites encoded in long terminal repeats which collectively act to induce immune 

activation10–14. Lastly, it has also been suggested that HMAs induce cellular differentiation 

in AML which may contribute to therapeutic efficacy15. 

 To identify genes that modulate decitabine’s anti-cancer activity in high-risk AML 

in an unbiased manner, we performed genome-scale CRISPR genetic screens and 

integrated this data with multiomics measurements of decitabine response in AML cells. 

Our results recapitulate multiple known factors which modulate response to decitabine, 

including DCK, SLC29A1, MCL1 and BCL2, indicating the utility and robustness of our 

approach for interrogating the biology of decitabine in AML9,16–22. Central to our study was 

the finding that epitranscriptomic RNA modification and RNA quality control pathways 
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effectively modulate response to decitabine in AML cells. In short, we have identified 

unexpected regulatory connections between DNA methylation, RNA methylation and 

RNA quality control pathways, which may provide further insight into decitabine’s 

mechanism(s) of action. 

 

Main text 

 We set out to perform a genome-scale genetic screen using our previously 

described CRISPR interference (CRISPRi) functional genomics platform to identify genes 

that regulate cancer cell response to decitabine (Fig. 1a), a clinically approved HMA23,24. 

For this, we used the HL-60 cell line, which is an established model of AML. The cell line 

is TP53, NRAS and MYC mutant and captures the biology of high-risk AML and more 

generally of an aggressive human cancer. To begin, we generated an HL-60 CRISPRi 

cell-line model that stably expressed the dCas9-BFP-KRAB fusion protein. We validated 

that the resulting CRISPRi HL-60 cell line, hereafter referred to as HL-60i, is highly active 

for targeted gene knockdowns (Supplementary Fig. 1a). 

 Decitabine (5-aza-2’-deoxycytidine) is a pro-drug that is converted intracellularly 

into 5-aza-2’-deoxycytidine monophosphate17,19,22. This nucleoside analogue is in turn 

incorporated into DNA during replication, where it is thought to irreversibly and covalently 

trap and inhibit DNA methyltransferases DNMT1/DNMT3A/DNMT3B (Fig. 1a). Trapping 

of DNMTs renders them enzymatically inactive, resulting in global DNA hypomethylation 

and dysregulated gene expression. This broad reprogramming of the gene expression 

landscape results in cell cycle arrest or cell death through poorly characterized molecular 

mechanisms. At high doses, decitabine also causes DNA replicative stress and DNA 
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damage. To further characterize decitabine’s activity in an AML cell model, we used 

publicly available data to analyze changes in genome-scale DNA methylation patterns in 

HL-60 cells treated for 120 hours with a low dose of decitabine (Supplementary Fig. 1b-

d)25. As expected, we observed global hypomethylation of CpG dinucleotides and 

hypomethylation of differentially methylated regions (DMRs) following treatment with 

decitabine. This confirms the expected activity of decitabine, a non-specific DNMT 

inhibitor, in AML cells. As discussed above, there is a hypothesis raised by clinical results 

that perhaps decitabine induces TP53 independent but BCL2 family protein dependent 

apoptosis. To address this, we next assessed whether decitabine treatment induces 

caspase 3/7 dependent apoptosis in our HL-60 model. We observed a dose dependent 

increase in caspase 3/7 activation upon treatment with low concentrations of decitabine 

(Supplementary Fig. 1e). Together, our results indicate that decitabine induces TP53-

independent apoptosis and DNA hypomethylation in a model of high-risk AML and further 

supports our notion that this model could provide insight into decitabine’s mechanism(s) 

of action. 

 For the genome-scale CRISPRi screen design and all subsequent experiments, 

we chose to treat cells with a clinically relevant low dose of decitabine (~IC30; 100 nM)26. 

At this concentration, decitabine’s anti-cancer activity is thought to predominantly arise 

due to global DNA hypomethylation rather than via DNA replication stress27,28. The 

genome-scale pooled genetic screen was performed by transducing the cell line with a 

human genome-scale CRISPRi sgRNA library at a low multiplicity of infection such that a 

single sgRNA is expressed in most cells, and then cells were selected with puromycin to 

remove uninfected cells from the population (Fig. 1b). In addition to time-zero samples, 
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we also collected samples after growing the library in the presence and absence of 

decitabine (in biological duplicates). Next-generation sequencing was used to quantify 

the relative abundance of cells expressing each sgRNA in each sample. We then used 

measurements across the entire library to calculate sgRNA- and gene-level phenotypic 

scores (Supplementary Fig. 2a). Results obtained from the replicate screens were highly 

correlated with high data quality in both the DMSO and decitabine experiments 

(Supplementary Fig. 2b-e). Analysis of our decitabine screen data revealed a large 

number of genes that modulate cellular response to decitabine (1293 genes with Mann-

Whitney p-value < 0.05 and absolute value of rho score > 0.1) (Fig. 1c and Supplementary 

Table 1). These results may reflect the pleiotropic nature of DNA methylation biology. 

 Initial inspection of top hits from our decitabine CRISPRi screen in HL-60 cells 

recapitulated a number of genes whose knockdown is known to impact drug resistance 

and sensitivity (Fig. 1c). For example, the top resistance hit was DCK, which 

phosphorylates decitabine resulting in conversion of the pro-drug to the active drug18,19. 

Another top resistance hit was SLC29A1, which is a solute carrier protein required for 

decitabine entry into cells18,19. Lastly, DCTD is thought to play a role in the metabolism of 

decitabine and is revealed as a strong resistance hit as well29. We also observed that 

knockdown of BCL2 and MCL1 sensitizes HL-60i to decitabine, as expected from the 

clinical literature which suggests decitabine induces BCL2 family protein mediated cell 

death20,21. The recapitulation of known positive control hits in our screens indicate the 

utility and robustness of our approach for interrogating the biology of decitabine in AML. 

 Buoyed by these positive endogenous controls, we next examined the remaining 

CRISPRi hits to search for new biological insights and to generate hypotheses on the 
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cellular mechanisms of decitabine action. First, we noted that the pathway-level analysis 

of our screen identifies mRNA processing pathways as a top-scoring enriched term 

(Supplementary Fig. 2f and Supplementary Table 2)30,31. Further analysis of these top 

hits revealed a strong enrichment for two specific RNA biological processes. Specifically, 

we observed that repression of RNA decapping enzymes such as DCP1A, DCP2 and 

DCPS sensitizes HL-60 to decitabine (Fig.1c). We also observed that repression of 

multiple genes (METTL3, YTHDF2, ZC3H13 and CBLL1) that regulate RNA methylation 

marks, specifically N6-methyladenosine or m6A, promoted resistance to decitabine. 

Together, these observations suggest that modulation of specific RNA regulatory 

pathways is a key determinant of response to DNA hypomethylation induced by 

decitabine. To independently validate the results from our screen, we chose 10 hit genes 

from our decitabine HL-60 CRISPRi screen (2 sgRNAs/gene) and used a mixed 

competition fluorescence cell survival CRISPRi knockdown assay to measure how 

perturbation of individual genes modulates response to decitabine. Our validation 

experiments demonstrated the reproducibility of our CRISPRi genome-scale screen 

measurements across all the resistance and sensitivity genes tested (Fig. 1d-f and 

Supplementary Fig. 2g). Interestingly, we observed that repression of PTEN, a tumor 

suppressor gene that is commonly mutated in cancer, sensitized HL-60 cells to decitabine 

(Fig. 1e). 

 We were intrigued by the connection between decitabine and RNA decapping 

quality control processes. To begin, we confirmed that repression of DCP2 sensitizes 

cells to decitabine (Fig. 1e). We chemically validated that RNA decapping is a pro-survival 

dependency by combining RG3039, a clinical grade chemical inhibitor of DCPS, with 
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decitabine32,33. We observed the combination of decitabine and RG3039 had synergistic 

anti-cancer activity in vitro in two independent AML cell models (Supplementary Fig. 3a-

b). We also observed that the combination of decitabine and RG3039 synergistically 

induced caspase 3/7 activation and cell cycle arrest in HL-60 (Fig. 1g-h). Lastly, we 

profiled the transcriptional consequences of treating cells with DMSO, decitabine alone, 

RG3039 alone or decitabine and RG3039 together. Because previous literature has 

demonstrated HMAs can induce expression of endogenous retroviral elements, we 

mapped both protein coding transcript expression and ERV transcript expression. We 

observed that treatment with decitabine or RG3039 alone drives a transcriptional 

response, and that the combination of decitabine with RG3039 induces transcriptional 

responses shared with the single drug conditions but also drug combination specific 

transcriptional changes (Supplementary Fig. 3c-d). Gene ontology analysis comparing 

decitabine to decitabine plus RG3039 or DMSO to decitabine plus RG3039 demonstrated 

up regulation of term enrichment for biological processes such as myeloid differentiation 

and immune function, as well as down regulation for biological processes relating to 

methylation and protein translation (Supplementary Fig. 3e). For example, we observed 

the upregulation of positive regulators of TNFα cytokine production specifically in the 

decitabine plus RG3039 condition relative to decitabine alone (Fig. 1i). Additionally, we 

further examined myeloid differentiation as a top enriched process and observed broadly 

that treatment with decitabine or RG3039 alone induced a signature of differentiation 

relative to DMSO, and that this was further induced by the combined treatment of 

decitabine plus RG3039, suggesting that AML differentiation occurs from treatment with 

decitabine or RG3039 alone as well as in combination (Supplementary Fig. 3f-j). Lastly, 



 16 

prior studies have shown decitabine treatment alone can induce expression of atypical 

transcripts which in turn can induce an inflammatory response10,34. Our analysis of ERV 

transcriptional changes demonstrated that the combination of decitabine plus RG3039 

strongly induced specific ERV transcripts, such as LTR67B (chr6:36350628−36351191), 

relative to DMSO or each single drug alone (Supplementary Fig. 3k-l). Notably, most 

ERVs do not change expression, and changes in expression are often not concordant 

across families or classes of ERVs. Together, this data suggests that RNA decapping is 

one of multiple processes which can affect response to decitabine in AML cells. 

 As highlighted above, we observed that repression of multiple genes encoding 

m6A methylation machinery promotes cellular resistance to decitabine (Fig. 1c,f). Top 

screen hits included the m6A-writer METTL3, the m6A-reader YTHDF2 and the 

methyltransferase complex components ZC3H13 and CBLL1. We validated that 

repression of METTL3, YTHDF2, and ZC3H13 promotes resistance to DNMT inhibition 

by decitabine treatment in HL-60i over a time course using a mixed competition 

fluorescence cell survival CRISPRi knockdown assay (Fig. 2a). This result suggests 

regulation of RNA methylation modulates AML cell survival upon treatment with 

decitabine. 

 To systematically examine the molecular effect of decitabine treatment on m6A 

RNA methylation, we next performed methylated RNA immunoprecipitation sequencing 

(MeRIP-seq), a method for detection of m6A modifications (Fig. 2b)35. To assess the 

quality of this dataset, we first performed peak calling in control DMSO-treated samples 

followed by downstream analysis to recapitulate known features of the RNA modification 

sites across the transcriptome. We also performed a motif-enrichment analysis to ensure 
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the enrichment of the RGAC ([AG]GAC) motif sequence, a known m6A motif, among 

predicted peaks (Fig. 2c)36,37. Finally, we confirmed the preferential localization of RNA 

methylation peaks near the stop codon, which is consistent with prior literature (Fig. 2d)38. 

 To then identify decitabine-induced hyper- and hypomethylated sites, we 

performed differential RNA methylation analysis to compare treatment with decitabine to 

DMSO controls39. Interestingly, we observed a significant increase in m6A RNA 

methylation peaks across mRNAs of protein coding genes upon decitabine treatment 

(Fig. 2e and Supplementary Table 3). Specifically, our analysis identified 2064 decitabine 

induced hypermethylated peaks (logFC >1 and p-value <0.005) but only 1399 

hypomethylated peaks (logFC <-1 and p-value <0.005) (Supplementary Fig. 4b-d). 

 Additionally, it has been observed in AML cell lines and patient data that treatment 

with different HMAs such as decitabine induces transcriptional upregulation of different 

ERVs including retroposons, LINEs and SINEs12,40,41. It has also been shown that m6A 

RNA methylation regulates the levels of ERVs42. To evaluate the effect of decitabine 

treatment on ERV RNA methylation, we mapped our MeRIP-seq data to relevant 

annotations and followed similar analyses as discussed above to examine differential 

RNA methylation changes in ERVs43. Interestingly, we observed a significant enrichment 

of m6A methylation peaks across retroposon, LINE and SINE transcripts upon decitabine 

treatment (Supplementary Fig. 4e-f). Specifically, our analysis here identified 37, 180 and 

131 hypermethylated peaks (logFC >1 and p-value <0.005) but only 9, 45 and 48 

hypomethylated peaks (logFC <-1 and p-value <0.005) for retroposon, LINE and SINE 

transcripts, respectively.  
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 Taken together, our findings suggest that treatment of AML cells with decitabine 

results in global CpG DNA hypomethylation along with a concomitant increase in m6A 

RNA methylation, and that HMA anti-cancer activity in AML cells may be modulated by 

genes that regulate m6A RNA methylation. 

 RNA methylation has been implicated in various aspects of the RNA life cycle in 

the cell, from RNA processing to RNA stability to translation, and more recently, crosstalk 

between epitranscriptome and epigenome44–52. To further understand the connection 

between global DNA hypomethylation and RNA dynamics in AML cells, we set out to 

interrogate, via an integrated multiomics approach, the effects of decitabine-induced RNA 

hypermethylation on AML cells. Here, we aimed to integrate comparisons between 

treatment with decitabine or DMSO from the following datasets: RNA-seq for differential 

gene expression and RNA stability, MeRIP-seq for RNA methylation, Ribo-seq for protein 

translation efficiency, and genome-scale CRISPRi functional genomics screening data. 

We first performed an RNA-seq time course experiment in the HL-60 AML model 

(Supplementary Fig. 5a) at 6, 72 and 120 hours following treatment with decitabine or 

DMSO. We used this data to perform differential gene expression analysis across 

conditions. We also used REMBRANDTS, a method we have previously developed for 

differential RNA stability analysis, to estimate post-transcriptional modulations in relative 

RNA decay rates (Fig. 3a-b)53–58. We performed gene set enrichment analysis of 

differential mRNA stability and expression across all three time points for the HL-60 cell 

line (Supplementary Fig. 5b-c)59. For expression, we observed enrichment for largely 

expected ontologies, such as immune receptor activity and regulation of cell 

killing10,12,14,34. Interestingly, for post-transcriptional modulations in RNA stability, we 
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observed previously unexplored terms, such as sterol biology. Moreover, to also capture 

patient heterogeneity, we performed RNA-seq on a panel of five additional AML cell lines 

treated with decitabine or DMSO. Across all six AML cell lines, we observed that 

decitabine treatment induced widespread changes in RNA transcript abundance and RNA 

stability with varying degrees of concordant RNA expression and stability changes (Fig. 

3c-d). 

 Given that RNA m6A methylation marks have been previously implicated in 

translational control, we used Ribo-seq to measure changes in the translational efficiency 

landscape of HL-60 cells treated with decitabine or DMSO47,60. Treatment with decitabine 

had little effect on translation efficiency, and we did not observe a concerted change in 

the translation efficiency of hypermethylated mRNAs (Supplementary Fig. 6a-d). In other 

words, changes in translation efficiency of mRNAs that are differentially methylated in 

decitabine-treated cells are not likely to be responsible for cellular sensitivity to this drug. 

 Having ruled out translational control as the mechanism through which RNA 

methylation may be involved, we next sought to identify genes whose RNA 

hypermethylation drives cellular sensitivity to decitabine through other post-transcriptional 

regulatory programs. Since m6A RNA methylation has been shown to reduce RNA 

stability and expression, we intersected our set of decitabine-induced hypermethylated 

genes with those that are downregulated in decitabine treated cells, and their lower 

expression is associated with higher sensitivity to decitabine in our functional CRISPRi 

screen61. In this analysis, we observed ten genes that were sensitizing hits in the CRISPRi 

screen and upon decitabine treatment, showed RNA hypermethylated peaks and lower 

mRNA levels (Fig. 4a-b). We observed that these genes collectively regulate nuclear 
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processes (INTS5, INO80D, ZNF777, MYBBP1A, RNF126, RBM14-RBM4)) or 

metabolism (SQLE, DHODH, PMPCA, SLC7A6). From this list we selected SQLE and 

INTS5 and first validated that repression of each gene by CRISPRi conferred sensitivity 

to decitabine treatment in HL-60 cells (Fig. 4c). We then validated that their mRNA 

abundance is decreased and m6A methylation is increased following decitabine treatment 

(Fig. 4d and Supplementary Fig. 7a-b). Consistently, we observed that SQLE and INTS5 

pre-mRNA levels do not change, showing that the decreased mRNA levels are not due 

to a decrease in transcription. Additionally, we further examined mRNA stability of each 

gene in decitabine-treated cells by using α-amanitin to inhibit RNA polymerase II and 

observed that mRNA decay rates were significantly higher upon decitabine treatment 

(Fig. 4e). Lastly, we were intrigued by whether the increase in m6A methylation from 

decitabine occurred through METTL3 given the methyltransferase’s direct role in 

regulating m6A methylation. Interestingly, we observed that upon METTL3 knockdown, 

decitabine treatment no longer resulted in a significant increase in m6A methylation, 

suggesting that the decitabine-induced hypermethylation of these transcripts occurs 

through METTL3 (Fig. 4f). These results together suggest that we have identified a small 

number of mRNAs that are downregulated upon decitabine treatment, likely through post-

transcriptional processes including increased m6A methylation that is mediated by 

METTL3, and that these genes may be functionally important for cellular response to 

decitabine.  

 To extend our observations, we also identified genes that (i) were downregulated 

upon decitabine treatment across our panel of six AML cell lines, (ii) sensitizing hits in our 

HL-60 CRISPRi screen, and (iii) showed hypermethylated peaks upon decitabine 
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treatment in our MeRIP-seq HL-60 data (Fig. 4g-h). Although this analysis converges on 

a very small number of genes, we were nevertheless intrigued by the possibility that 

several nominated genes could serve as a link between RNA methylation and the cell 

death induced by decitabine. 

 Given the known heterogeneity of AML, we chose to perform genome-scale 

CRISPRi screens in two additional AML models to further examine the degree of common 

and specific mechanisms across cell lines that regulate cellular response to decitabine. 

For this we used SKM-1 and MOLM-13 cells, which are established models of AML. 

Comparing the known driver mutations in these AML models, we noted that SKM-1 is 

TP53 and KRAS mutant, which similarly to HL-60, captures the biology of high-risk AML 

and more generally of an aggressive human cancer. Meanwhile, MOLM-13 is FLT3-ITD 

and MLL-fusion but TP53 wild-type. We also examined the genetic status of the RNA-

related genes of interest from our HL-60 screen and noted that these genes are not 

commonly mutated across AML (Supplementary Fig. 8a-b). We engineered CRISPRi cell 

lines for each model and performed genome-scale CRISPRi screens to identify genes 

that regulate response to decitabine (~IC30; 15-100 nM) as described above and 

compared the results with the HL-60 screen (Supplementary Fig. 8c-f). 

 Similar to the HL-60 screen, we observed that the SKM-1 and MOLM-13 screens 

also captured mRNA processing as an enriched term across top hits and positive control 

genes whose knockdown is known to impact drug resistance, namely DCK, SLC29A1 

and DCTD (Supplementary Fig. 8d-f and Supplementary Tables 4-5)18,19,29. Additionally, 

we observed that repression of METTL3 promoted resistance to decitabine across all 

three cell lines. As expected from the heterogeneity of AML, we also observed differences 
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across cell lines with respect to genes that modulate response to decitabine. Interestingly, 

the two cell lines classified as TP53-inactive (HL-60 and SKM-1), and are representative 

of the high-risk AML patient cohort that benefits from the combination therapy of 

decitabine and venetoclax, revealed BCL2 and MCL1 as sensitizing hits in the presence 

of decitabine, while the TP53-wild-type cell line (MOLM-13) did not20-21. Additionally, 

repression of genes encoding RNA decapping enzymes such as DCP2 and DCPS 

sensitized HL-60 and SKM-1 cells, but not MOLM-13 cells, to decitabine treatment. 

Overall, comparison of genome-scale decitabine CRISPRi screens in three AML models 

reveals common and unique regulators of response. These findings are in line with our 

understanding of the heterogeneity of AML biology and suggest that therapeutic 

strategies in AML should be evaluated in multiple models representative of diverse 

tumors. 

 In summary, our experiments identify previously known and unknown genes and 

pathways that modulate cellular response to decitabine, a clinically approved HMA with 

poorly understood cellular mechanisms of action. Our results unexpectedly reveal a key 

role for RNA dynamics in modulating the response to DNA hypomethylation induced by 

decitabine. Specifically, we observed that genes which are thought to regulate mRNA 

decapping promote cellular resistance to decitabine. One hypothesis for why loss of RNA 

decapping enzyme activity sensitizes AML cells to decitabine is that this RNA quality 

control pathway becomes an induced dependency upon decitabine treatment due to 

repressed or aberrant transcripts that accumulate upon decitabine-induced DNA 

hypomethylation. Alternatively, some RNA decapping proteins are also key regulators of 
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splicing, so it may be that this biology is more complex with respect to transcription than 

currently appreciated62,63. 

 We also found that genes responsible for writing and reading m6A RNA 

methylation mediate cellular response to decitabine. While emerging evidence suggests 

potential cellular crosstalk between DNA and RNA methylation, the direct connection 

between the two processes, particularly in the context of m6A RNA methylation and 

DNMT inhibitors, remains underexplored50,52,64. Our results demonstrate that decitabine 

treatment induces global m6A hypermethylation in AML cells, and that inhibition of a key 

adenosine methyltransferase METTL3 promotes resistance to decitabine. Given that 

METTL3 has been previously shown to be a potential therapeutic vulnerability in AML65,66, 

it is intriguing to posit why its inhibition may promote resistance to a drug used in clinic to 

treat high-risk AML. Given all known human methyltransferase enzymes use S-adenosyl 

methionine (SAM) as a cofactor for transfer of methyl groups, one hypothesis arises in 

which treatment of cells with decitabine results in global inhibition of DNMTs, resulting in 

increased SAM levels and subsequently hypermethylation of mRNAs leading to transcript 

instability and cell death. To our knowledge, crosstalk between methyltransferase 

enzymes and different macromolecular substrates is not known, and this hypothesis may 

merit further investigation. 

 Our efforts may have several translational implications for AML patients who are 

treated with decitabine. First, we experimentally confirm that decitabine induces TP53 

independent apoptosis in experimental models. In line with this, our results genetically re-

nominate a clinically efficacious combination therapy of decitabine and a BCL2 inhibitor, 

which together likely induces synergistic apoptosis20-21. We also demonstrate through 
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both genetic and chemical approaches that RNA decapping pathways promote the 

survival of AML cells treated with decitabine in vitro. Lastly, we observe dysregulation of 

specific transcripts that may have therapeutic relevance, such as SQLE, where studies in 

various cancer models have suggested that its inhibition may suppress tumor growth, or 

DHODH, which has previously been implicated in AML and currently has an inhibitor in 

clinical trials for relapsed/refractory AML67–71. 

 We anticipate that our study serves as an integrated multiomics resource for 

understanding AML cellular response to decitabine and nominates new connections 

between cell death, DNA methylation and RNA dynamics. 
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Methods 
 
Cell culture and reagents 

 HL-60 and KG-1 cells were obtained from the American Type Culture Collection. 

MOLM-13, SKM-1 and OCI-AML3 cells were obtained from the Leibniz Institute DSMZ 

(German Collection of Microorganisms and Cell Cultures). MOLM-14 cells were obtained 

from the Shannon Lab at the University of California, San Francisco (UCSF). HEK-293T 

cells were obtained from the Weissman Lab at UCSF. HL-60, OCI-AML3 and KG-1 cells 

were cultured in Iscove’s Modified Dulbecco’s Medium (Gibco) supplemented with 20% 

fetal bovine serum (Seradigm), 100 U/mL penicillin (Gibco), 100 ug/mL streptomycin 

(Gibco) and 0.292 mg/mL glutamine (Gibco). SKM-1, MOLM-13 and MOLM-14 cells were 

cultured in RPMI-1640 medium (Gibco) supplemented with 20% FBS, penicillin, 

streptomycin and glutamine. HEK-293T cells were cultured in Dulbecco’s Modified Eagle 

Medium (Gibco) supplemented with 10% FBS and penicillin, streptomycin and glutamine. 

All cell lines were grown at 37℃ and 5% CO2 and were tested for mycoplasma 

contamination using the MycoAlert PLUS Mycoplasma Testing Kit (Lonza) according to 

the manufacturer’s instructions. 

 Decitabine powder was obtained from Selleck Chemicals and stored at -20℃. A 

stock solution of decitabine was created by reconstituting decitabine powder in dimethyl 

sulfoxide (DMSO) at a final concentration of 10 mM. The stock solution was aliquoted and 

stored at -80℃ until experimental use. RG3039 and α-amanitin were obtained from 

MedChemExpress. 
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DNA transfections and lentivirus production 

 HEK-293T cells were transfected with pMD2.G, pCMV-dR8.91 and a transfer 

plasmid using the TransIT-LT1 Transfection Reagent (Mirus Bio) and 8 ng/uL polybrene. 

Culture medium was exchanged with fresh medium supplemented with ViralBoost 

(Alstem) one day post-transfection. Lentiviral supernatant was collected, filtered through 

a 0.44 μm filter (Millipore) and used fresh (for CRISPRi screening) or concentrated via 

ultracentrifugation at 25,000 rpm for 90 minutes and frozen (for all other methods) three 

days post-transfection. 

 

CRISPRi cell line generation 

 HL-60 cells were transduced with Ef1a-dCas9-BFP-KRAB and sorted twice for 

BFP positive cells on a BD FACS Aria III. Sorted cells were diluted to single cell 

concentration (5, 1 or 0.2 cells per well) and plated into 96-well plates. Individual clones 

were expanded and assayed for CRISPRi activity by transducing sgRNAs targeting five 

essential genes (PLK1, HSPA9, AARS, POLR1D, DNAJC19) and assessing for relative 

depletion of GFP (i.e., sgRNA positive cells) via flow cytometry between day 3 and day 9 

post-transfection. The clone with the highest relative GFP depletion was selected to be 

the HL-60 CRISPRi cell line for downstream experiments. SKM-1 and MOLM-13 cells 

were transduced with Ef1a-dCas9-BFP-KRAB and sorted twice for BFP positive cells on 

a BD FACS Aria III. Cells were then assayed for CRISPRi activity by transducing sgRNAs 

targeting two essential genes (PLK1, HSPA9) and assessing for relative depletion of GFP 

(i.e., sgRNA positive cells) via flow cytometry between day 3 and day 9 post-transfection. 
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CRISPRi screen experimental procedure 

 Genome-scale CRISPRi screens were performed similarly to those previously 

described23. The human CRISPRi-v2 sgRNA library (top 5 sgRNAs per gene) was 

transduced into HL-60, SKM-1 and MOLM-13 cells at 250 to 500-fold coverage. Cells 

were resuspended in lentiviral supernatant with 8 μg/mL polybrene in 6-well plates and 

centrifuged at 1000 g for 2 hours at room temperature. Cells were resuspended into fresh 

medium following spinfection. 72 hours following infection, cells were seeded at 

1,000,000 cells/mL for puromycin selection (0.5-1 ug/mL). Following puromycin selection, 

“time-zero” samples were harvested at 500x library coverage. The remaining cells were 

divided into two conditions, DMSO and decitabine, two replicates per condition. For the 

decitabine condition, cells were treated with decitabine at low dose (~IC30; 15-100 nM) 

every 24 hours for 72 hours. For HL-60, cells were cultured in static T150 flasks (Corning) 

and split when appropriate while maintaining 500x coverage; after 19 days of growth, cells 

were harvested at 500x coverage. For SKM-1 and MOLM-13, cells were cultured in 250 

mL OptimumGrowth (Thomson) shaking flasks with a shaking speed of 120 rpm and split 

when appropriate while maintaining a minimum coverage of 500x; after 12 days of growth, 

cells were harvested at 500-1000x coverage. Genomic DNA was isolated from all 

samples and the sgRNA-encoding region was enriched, amplified and processed for 

sequencing on the Illumina HiSeq 4000 (50 base pair single end reads) as previously 

described72. 
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CRISPRi screen computational analysis 

 Sequencing reads were trimmed, aligned to the human CRISPRi-v2 sgRNA library 

and counted using a previously described pipeline 

(https://github.com/mhorlbeck/ScreenProcessing). Growth (γ) and drug 

sensitivity/resistance (ρ) phenotypes were calculated based on sgRNA frequencies 

across conditions23. Gene phenotypes were calculated by taking the mean of the top three 

sgRNA phenotypes per gene by magnitude. Gene phenotype p-values were calculated 

using the Mann-Whitney test comparing the gene-targeting sgRNAs with a set of non-

targeting control sgRNAs. For genes with multiple annotated transcription start sites 

(TSS), sgRNAs were first clustered by TSS, and the TSS with the smallest Mann-Whitney 

p-value was used to represent the gene. Hits were defined as genes with a phenotype Z-

score greater or equal to 6. Z-scores were calculated by dividing the gene phenotype by 

the standard deviation of the non-targeting sgRNA phenotypes23.  

 To assess pathway-level enrichment of gene phenotypes in the CRISPRi screen, 

we used blitzGSEA, a Python package for the computation of Gene Set Enrichment 

Analysis (GSEA) (https://github.com/MaayanLab/blitzgsea)30. We obtained gene 

ontology (GO) gene sets from MSigDB (version 7.4.) and then conducted two separate 

analyses: (1) To identify smaller, focused pathways associated with drug sensitivity or 

resistance, we performed GSEA analysis on genes ranked by ρ phenotype and defined 

minimum and maximum thresholds for gene set size when running the `gsea` function 

(`min_size=15` and `max_size=150`)31,73. Thus, positive normalized enrichment scores 

(NES) corresponded to gene sets enriched among positive ρ phenotypes (i.e., resistance 

phenotypes) and negative NES corresponded to gene sets enriched among negative ρ 
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phenotypes (i.e., sensitivity phenotypes). (2) To identify broader pathways associated 

with drug response irrespective of ρ phenotype direction, we performed GSEA analysis 

on genes ranked by 1 – Mann-Whitney p-value (calculated for each ρ phenotype as 

above) and set a minimum threshold for gene set size (i.e., `min_size=200`). 

 

Individual sgRNA validation 

 Individual sgRNAs were validated using a competitive growth assay as previously 

described23. Briefly, sgRNA protospacers with flanking BstXI and BlpI restriction sites 

were cloned into the BstXI/BlpI-digested pCRISPRia-v2 plasmid (Addgene #84832). 

Protospacer sequences are listed in Supplementary Table 1. Individual sgRNA vectors 

(including a non-targeting control sgRNA) were then packaged into lentivirus as described 

above and transduced into HL-60 CRISPRi cells in duplicate. Three days after 

transduction, cells were treated with DMSO or 100 nM decitabine. The proportion of 

sgRNA-expressing cells was measured by flow cytometry on an LSR II (BD Biosciences) 

gating for GFP expression. The individual sgRNA phenotype was calculated by dividing 

the fraction of sgRNA-expressing cells in the treated condition by the fraction of sgRNA-

expressing cells in the untreated condition. To confirm gene knockdown at the 

transcriptional level, mRNA abundances were measured in CRISPRi cells transduced 

with gene-targeting sgRNAs and were quantified relative to mRNA abundances in cells 

transduced with a non-targeting control sgRNA, as previously described74. 
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Reanalysis of public bisulfite sequencing data in HL-60 cells 

 Shareef et. al, as part of a study to introduce their extended-representation bisulfite 

sequencing method, treated HL-60 cells with DMSO (GSM4518676) or 300 nM decitabine 

(GSM4518677) and harvested cells after 5 days25. Raw FASTQ files were downloaded 

using the SRA Toolkit. TrimGalore and Bismark were used to preprocess and map 

bisulfite-treated reads to the h38 reference genome and subsequently call cytosine 

methylation75. We followed the Bismark standard pipeline, which includes four functions: 

(1) `bismark_genome_preparation`, (2) `bismark`, (3) `deduplicate_bismark` and (4) 

`bismark_methylation_extractor` which extracts context dependent (CpG/CHG/CHH) 

methylation. 

 Differential CpG DNA methylation analysis was performed using the methylKit R 

package76. CpG methylation data from Bismark was imported and the 

`getMethylationStats` function was used to calculate descriptive statistics. To search for 

differentially methylated tiles, the `tileMethylCounts` function was used with options 

`win.size=1000` and `step.size=1000`. Differentially methylated regions (DMRs) scored 

by % methylation difference and q-value were calculated using the `calculateDiffMeth` 

function. A one-sample, one-sided (lower-tail) t-test was used to test for statistically 

significant global DNA hypomethylation. 

 

Cell viability assay and Bliss excess score calculation  

 Cells were seeded into 96-well plates at 100,000 cells/mL in duplicate and were 

treated with decitabine (seven-point 1:3 dilution series from 0.5 uM to 0.002 uM), RG3039 

(seven-point 1:4 dilution series from 10 uM to 0.010 uM) or the combination of both drugs 
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at all possible dose combinations. Control cells treated with DMSO were counted at day 

3, and all cells were split at the ratio required to dilute control cells to a concentration of 

100,000 cells/mL. Raw fluorescence units (RLUs) were assessed at day 3, day 5 and day 

7 for each condition using the CellTiter-Glo (CTG) luminescence-based assay (Promega). 

Diluted CTG reagent (100 uL 1:4 CTG reagent to PBS) was added to cells (100 uL) and 

the mixture was pipetted up and down to ensure complete cell lysis. Luminescence was 

then assayed using a GloMax Veritas Luminometer (Promega). To calculate the 

proportion of viable cells, RLUs from the CTG assay were averaged between replicates 

and normalized to the DMSO control. The proportion of inhibited cells was calculated as 

one minus the proportion of viable cells. Drug synergy was determined by calculating the 

Bliss excess score (Bliss 1956)77. 

 

Cleaved caspase 3/7 assay 

 Cells were seeded into 24-well plates at 100,000 cells/mL in triplicate and were 

treated with decitabine (50 nM, 100 nM or 200 nM on days 0, 1 and 2) with and without 

RG3039 (2 uM on day 0). Cells were harvested on day 5 and the proportion of apoptotic 

cells was assessed using the NucView 488 Caspase-3 Assay Kit (Biotium) according to 

the manufacturer’s instructions and an Attune NxT flow cytometer (Thermo Fisher 

Scientific) gating on the BL-1 channel. 

 

Cell cycle assay 

 Cells were seeded into 24-well plates at 100,000 cells/mL in triplicate and were 

treated with decitabine (50 nM, 100 nM or 200 nM on days 0, 1 and 2) with and without 
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RG3039 (2 uM on day 0). Cells (500,000–1,000,000 per sample) were harvested on day 

5 and the proportions of cells in each phase of the cell cycle were assessed using the 

FxCycle Violet Kit (Thermo Fisher Scientific)  and an Attune NxT flow cytometer (Thermo 

Fisher Scientific) gating on the VL-1 channel. Briefly, cells were washed once with PBS, 

fixed with 70% ethanol overnight at -20 °C, pelleted, and then washed with PBS 1–2 

times. Cells were then resuspended in 1 mL permeabilization buffer (PBS with 1% FBS 

and 0.1% Triton X-100) and 1 uL Fx cycle and stained for 30 minutes in the dark before 

being analyzed via flow cytometry. 

 

RNA-seq experimental procedures 

 3’ RNA-seq was performed to assess differential gene expression following 

decitabine and/or RG3039 treatment. Cells were seeded into 6-well plates at 100,000 

cells/mL in duplicate and were treated with decitabine (100 nM on days 0, 1 and 2), 

RG3039 (2 uM on day 0), both drugs or DMSO. On day 3, RNA was extracted using the 

RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. RNA-seq libraries 

were prepared using the QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for Illumina 

(Lexogen) and assessed on a BioAnalyzer 2100 (Agilent) for library quantification and 

quality control. RNA-seq libraries were sequenced on an Illumina HiSeq 4000 using 

single-end, 50–base pair sequencing.  

 Stranded RNA-seq was performed for experiments in which strand directionality 

was required for downstream analysis. Cells were seeded into 6-well plates at 100,000 

cells/mL in duplicate or triplicate and were treated with decitabine (100 nM on days 0, 1 

and 2) or DMSO. At 6, 72 and/or 120 hours, RNA was extracted using the RNeasy Mini 
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Kit (Qiagen) according to the manufacturer’s instructions. For HL-60 experiments, RNA-

seq libraries were prepared using the ScriptSeq v2 kit (EpiCentre). Total RNA was 

depleted using RiboZero Gold (EpiCentre) and purified using the MinElute RNA kit 

(Qiagen). For all other cell lines, RNA-seq libraries were prepared using the SMARTer 

Stranded Total RNA Sample Prep Kit - HI Mammalian kit (Takara) due to retirement of 

the ScriptSeq v2 kit. Total RNA was depleted using the RiboGone module included with 

the SMARTer kit. All RNA-seq libraries were assessed on a BioAnalyzer 2100 (Agilent) 

for library quantification and quality control and sequenced on an Illumina HiSeq 4000 

using single-end, 50–base pair sequencing. 

 

Differential gene expression analysis 

 We used a workflow hereafter referred to as the “Salmon-tximport-DESeq2 

pipeline” to perform differential gene expression analysis. Salmon (version 1.2.1) was first 

used to quantify transcript abundance55. A Salmon index was generated using the 

GENCODE (version 34) genome annotation, and subsequently the `salmon quant` tool 

was used with the ̀ --validateMappings` option to calculate transcript abundances78. Then, 

the R package tximport was used to import Salmon results into R and perform data 

preparation54. The `summarizeToGene` function was used to collapse transcript 

abundances to the gene level. From here, the R package DESeq2 was used for 

differential gene expression analysis53. We first extracted normalized counts for each 

RNA-seq experiment using DESeq2 by running the `estimateSizeFactors` function and 

then the `counts` function with option `normalized=TRUE`. For each individual 

experiment, the DESeq2 statistical model was modified based on the experimental 
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design. For experimental designs with multiple variables (e.g., multiple drug conditions, 

time points, etc.), we used the likelihood ratio test (LRT) to perform differential expression 

analysis. The LRT is conceptually similar to an analysis of variance (ANOVA) calculation 

in a linear regression model79. In these cases, we specified the model design in the 

`DESeq2` function as `~0 + variable1 + variable2 + variable1:variable2` and the option 

`test=LRT`. In simple experimental designs with one variable (e.g., DMSO vs. decitabine 

treatment), DESeq2 was used with default options (i.e., a Wald test was used instead of 

a LRT). In these cases, the model design was specified as `~cond`. For experiments with 

batch effects, the model design was specified as `~cond + reps`.  

 

Differential RNA stability analysis 

 For analyses which required measurements of pre-mRNA and mature mRNA 

abundances from RNA-seq samples (i.e., differential RNA stability analysis), we used a 

workflow hereafter referred to as the “STAR-featureCounts-REMBRANDTS-limma 

pipeline”. RNA-seq sequencing reads were first aligned to the hg38 reference genome 

using STAR (version 2.7.3a)56. Then, featureCounts was used to quantify intron and exon 

level counts. Finally, REMBRANDTS was used to calculate mRNA stability as previously 

described (https://github.com/csglab/REMBRANDTS)58. Briefly, the package estimates 

a gene-specific bias function that is subtracted from Δexon–Δintron calculations to 

provide unbiased mRNA stability measurements. To assess differential RNA stability 

changes, we used limma, which was designed for microarray experiments and serves a 

similar function to DESeq2, though it supports negative values (relevant for RNA stability 
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analysis)57. The model designs used here are analogous to the designs for differential 

expression analysis described above. 

 

Gene set enrichment analysis using PAGE algorithm 

 Briefly, PAGE quantizes differential measurements into equally populated bins and 

then, for every given geneset, calculates the mutual information (MI) between each 

cluster bin and a binary vector of pathway memberships for genes in a given gene set59. 

The significance of each MI value is then assessed through a randomization-based 

statistical test and hypergeometric distribution to determine whether there is over or under 

representation of a gene set in each cluster bin. The final result is a p-values matrix in 

which rows are gene sets and columns are cluster bins (visualized as heatmaps). Code 

for iPAGE and onePAGE analyses are available at https://github.com/abearab/pager. 

 The iPAGE algorithm was used for gene set and pathway enrichment analysis on 

differential RNA expression and stability results59. MSigDB (version 7.4.) was 

downloaded and modified to be compatible with iPAGE workflow73. iPAGE was used in 

continuous mode, which accepts gene-level numeric values (e.g., logFCs) as input.  

 For a selected list of genes, the PAGE run is performed on the single gene set as 

first input and gene-level numeric values (e.g., log fold changes) as the other input – this 

form of the analysis is called onePAGE. This analysis applied to a specific gene set for 

multiple inputs (e.g., differentially expressed genes from different conditions) and results 

shown as heatmap where each row corresponds to an input condition and each column 

corresponds to a cluster bin.  
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Pre-processing HERV annotations for alignment tasks 

 Annotations in BED12 format were downloaded from the Human Endogenous 

RetroViruses Database43. To prepare these annotations for alignment tasks, i.e., building 

Salmon and STAR indices, CGAT Apps was used to convert BED12 files to GTF format 

(`cgat bed2gff --as-gtf`) and the `getfasta` module from bedtools (with options `-name+ -

split`) was used to convert BED12 files to FASTA format80,81. Reproducible scripts for 

preparing ERV annotations for alignment tasks are available at 

https://github.com/abearab/HERVs. 

 

Decitabine and RG3039 drug combination experiments 

 We performed 3’ RNA-seq on HL-60 cells treated with DMSO, decitabine alone, 

RG3039 alone or both drugs for 72 hours in duplicate (see above for experimental 

procedures). Raw sequencing data were processed using our Salmon-tximport-DESeq2 

pipeline (see above). DESeq2 was used to conduct differential gene expression analysis 

using a likelihood ratio test and the model design `~0 + decitabine + rg3039 + 

decitabine:rg3039`. Pathway enrichment was assessed using iPAGE (see above). For 

PCA analysis, the `varianceStabilizingTransformation` function from the DESeq2 

package was used to prepare counts. The `plotPCA` function was used to calculate PC 

variances as percentages. Finally, `ggplot2` was used to visualize a two-dimensional 

representation of the PCA analysis. Bar plots were used to visualize mRNA abundances 

(measured as log2 of transcripts per million [TPM]) of differentiation markers across 

conditions. Gene set enrichment was performed on log2-fold-change (log2FC) values 

across conditions using the positive regulation of myeloid differentiation GO term and the 
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PAGE method described above. For differential ERV expression analysis, processed 

ERV annotations (see above) in FASTA format were used to build an index for Salmon 

workflow and then samples were processed through the Salmon-tximport-DESeq2 

pipeline (see above). Upregulated ERVs were defined as p-value < 0.05 and log2FC > 2, 

and downregulated ERVs were defined as p-value < 0.05 and log2FC < –2. The 

intersections of ERV data were visualized using UpSet plots in Python82. 

 

Reanalysis of public RNA-seq data for HL-60 derived myeloid differentiation 

 Ramirez et al. studied the dynamics of gene regulation in human myeloid 

differentiation83. We reanalyzed their RNA-seq data for differential gene expression 

changes between parental HL-60 and HL-60 derived macrophages, neutrophils and 

monocytes processed after 3 hours, 12 hours, 48 hours, 96 hours and 120 hours 

(GSE79044) using our Salmon-tximport-DESeq2 pipeline (see above). Pearson 

correlation coefficients were used to measure the correlation of log2-fold gene expression 

changes between (1) drug treatment (i.e., decitabine and RG3039 vs. DMSO) and (2) HL-

60 differentiation. UpSet plots in Python82 were used to show specific upregulated genes 

in each differentiated cell type. Lastly, the onePAGE algorithm was used to assess the 

enrichment of select up or downregulated genes in neutrophils (see above). 

 

HL-60 time-series experiments 

 We performed stranded RNA-seq on HL-60 cells treated with decitabine for 6 

hours, 72 hours and 120 hours in duplicate (see above for experimental procedures). 

Differential expression analysis was performed using our Salmon-tximport-DESeq2 
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pipeline (see above), using a likelihood ratio test and a two-variable model design 

incorporating treatment condition (decitabine or DMSO) and time (6, 72 or 120 hours). 

Differential RNA stability analysis was performed using our STAR-featureCounts-

REMBRANDTS-limma pipeline (see above). Pathway enrichment for differential 

expression and RNA stability data was assessed using iPAGE (see above). 

 

AML cell line panel experiments 

 We performed stranded RNA-seq on AML cell lines treated with decitabine or 

DMSO for 72 hours in three replicates (see above for experimental procedures). 

Differential expression analysis was performed using our Salmon-tximport-DESeq2 

pipeline (see above), using a Wald test. Differential RNA stability analysis was conducted 

using our STAR-featureCounts-REMBRANDTS-limma pipeline (see above). Pearson 

correlation tests from the Hmisc and corrplot R packages were used to assess correlation 

between differentially expressed genes in HL-60 and other AML cell lines. UpSet plots in 

Python82 were used to identify and visualize genes across multiple cell lines that 

conferred drug sensitivity in the CRISPRi screen (ρ score < –0.1 and p < 0.05), were RNA 

hypermethylated (log2FC > 1 and p < 0.05) upon decitabine treatment, and either had 

decreased expression or RNA stability (log2FC < –0.1 and p < 0.05) upon decitabine 

treatment. 

 

MeRIP-seq experimental procedure and analysis 

 We performed MeRIP-seq as previously described on HL-60 cells treated with 

DMSO or decitabine for 72 hours in biological duplicates35. First, 2 µg of the fragmented 
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total RNA per sample was used for RNA immunoprecipitation (IP) with 5 µg of the anti-

m6A antibody (ABE572, Millipore). RNA-seq libraries from input and IP samples were 

prepared using the SMARTer Pico Input Mammalian v2 RNA-seq kit (Takara) and 

sequenced as SE50 runs on an Illumina HiSeq4000. 

 MeRIP-seq reads were aligned to the hg38 reference genome using STAR 

(version 2.7.3a) with reference annotation GENCODE (version 34)56,78. Similarly, pre-

processed annotations used to build STAR indices for each type of HERV. Then, MeRIP-

seq reads were aligned separately with each STAR index to generate BAM files for the 

downstream tasks. 

 For experimental QC, the `exomepeak` function from the R package exomePeak 

was used to call m6A peaks from BAM files84. First, metagene plots were visualized using 

the Guitar R/Bioconductor package85. Then, the sequences of predicted m6A peaks were 

extracted using concepts described by Meng et al84. Briefly, the `bed2bed` tool from the 

Computational Genomics Analysis Toolkit (with options `--method=merge --merge-by-

name`) and the ̀ getfasta` module from bedtools (with options ̀ -name -s -split`) were used 

for sequence extraction80,81. Finally, the FIRE algorithm was used in non-discovery mode 

for enrichment analysis of known m6A motifs (i.e., RGAC or [AG]GAC) within peak 

sequences, compared to randomly generated sequences37. 

 RADAR (RNA methylAtion Differential Analysis in R) was used to perform peak 

calling and differential methylation analysis39. Differentially methylated peaks were 

defined as FDR < 0.1 and logFC > 0.5. The logFC values for protein coding genes and 

each of ERVs used to test global hypermethylation using Wilcoxon test and t-test 

functions with `mu=0`, `alternative="greater"` options. Results are shown as annotated 
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volcano plots using ggplot2 in R. For peak visualization across individual mRNA 

transcripts, the ̀ plotGeneCov` function from the RADAR R package was used to generate 

coverage plots. Then, the Gviz R Bioconductor package was used to draw detailed 

information for each mRNA transcript86. 

 Reproducible scripts for RNA methylation analyses using integrated tools are 

maintained as a GitHub project at https://github.com/abearab/imRIP. 

 

Ribo-seq experimental procedure and analysis 

 Ribosome profiling was performed as previously described in biological 

duplicates87. Approximately 10x106 cells were lysed in ice cold polysome buffer (20 mM 

Tris pH 7.6, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT, 100 µg/mL cycloheximide) 

supplemented with 1% v/v Triton X-100 and 25 U/mL Turbo DNase (Invitrogen). The 

lysates were triturated through a 27G needle and cleared for 10 min at 21,000 g at 4°C. 

The RNA concentrations in the lysates were determined with the Qubit RNA HS kit 

(Thermo). Lysate corresponding to 15 µg RNA was diluted to 200 µl in polysome buffer 

and digested with 0.75 µl RNaseI (Epicentre) for 45 min at room temperature. The RNaseI 

was then quenched by 5 µl SUPERaseIN (Thermo). 

 Monosomes were isolated using MicroSpin S-400 HR (Cytiva) columns, pre-

equilibrated with 3 mL polysome buffer per column. 100 µl digested lysate was loaded 

per column (two columns were used per 200 µl sample) and centrifuged 2 min at 600 g. 

The RNA from the flow through was isolated using the RNA Clean and Concentrator-25 

kit (Zymo). In parallel, total RNA from undigested lysates were isolated using the same 

kit. 
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 Ribosome protected footprints (RPFs) were gel-purified from 15% TBE-Urea gels 

as 17-35 nt fragments. RPFs were then end-repaired using T4 PNK (New England 

Biosciences) and pre-adenylated barcoded linkers were ligated to the RPFs using T4 

Rnl2(tr) K227Q (New England Biosciences). Unligated linkers were removed from the 

reaction by yeast 5’-deadenylase (New England Biosciences) and RecJ nuclease (New 

England Biosciences) treatment. RPFs ligated to barcoded linkers were pooled, and 

rRNA-depletion was performed using riboPOOLs (siTOOLs) per the manufacturer’s 

recommendations. Linker-ligated RPFs were reverse transcribed with ProtoScript II RT 

(New England Biosciences) and gel-purified from 15% TBE-Urea gels. cDNA was then 

circularized with CircLigase II (Epicentre) and used for library PCR. First, a small-scale 

library PCR was run supplemented with 1X SYBR Green and 1X ROX (Thermo) in a 

qPCR instrument. Then, a larger scale library PCR was run in a conventional PCR 

instrument, performing a number of cycles that resulted in ½ maximum signal intensity 

during qPCR. Library PCR was gel-purified from 8% TBE gels and sequenced on a SE50 

run on an Illumina HiSeq4000. 

 For data preprocessing, the adapters in the sequencing reads were removed using 

cutadapt88 (v3.1) with options `--trimmed-only -m 15 -a AGATCGGAAGAGCAC`. The 

PCR duplicates in the reads were collapsed using CLIPflexR (v0.1.19)89. The UMIs for 

each read were extracted using UMI-tools (v1.1.1)90 with the options `extract—bc-

pattern=NN` for the 5’ end and options `extract --3prime --bc-pattern=NNNNN` for the 3’ 

end. Reads corresponding to rRNA and other non-nuclear mRNA were removed by 

aligning out the reads using Bowtie2 (v2.4.2) on a depletion reference (rRNA, tRNA and 

mitochondrial RNA sequences)91. This depletion reference was built from the hg38 
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noncoding transcriptome (Ensembl version 96)92,93. The reads that did not align to the 

depletion reference were aligned to the hg38 mRNA transcriptome (Ensembl version 96) 

using Bowtie2 with options `--sensitive --end-to-end --norc`. The mRNA transcriptome 

was built using the cDNA longest CDS reads of Homo sapiens downloaded from the 

Ensembl release version. The resulting reads were converted to BAM files and then 

sorted using samtools (v1.11). The duplicate reads in the sorted files were removed using 

UMI-tools (v1.1.1) with options `dedup`. 

 For differential translational efficiency (TE) analysis, Ribolog was used to compare 

translational efficiency across conditions (https://github.com/goodarzilab/Ribolog)94. 

Briefly, Ribolog applies a logistic regression to model individual Ribo-seq and RNA-seq 

reads in order to provide estimates of logTER (i.e., logFC in TE) and its associated p-

value across the coding transcriptome. 

 

RNA expression and mutational status in cancer cell lines 

 RNA expression and mutational data for selected genes and cell lines were 

collected from the CCLE database (DepMap Public 21Q4). Cell line and gene level 

queries were performed using the Cancer Data Integrator95 – 

https://github.com/GilbertLabUCSF/CanDI. CanDI modified data for reproducible analysis 

is available at Harvard Dataverse – https://doi.org/10.7910/DVN/JIAT0H. Data were 

visualized in Python using the Matplotlib library. 
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Multiomics data integration 

 To identify candidate genes among our multiomics datasets for downstream 

validation of our decitabine-m6A model, we examined the intersection of three sets of 

genes: (1) sensitizing hits in the CRISPRi screen, defined as ρ score < –0.1 and p < 0.05; 

(2) genes with downregulated expression upon decitabine treatment, defined as log2FC 

< –0.1 and p < 0.05; (3) genes with RNA hypermethylation upon decitabine treatment, 

defined as logFC > 1 and p < 0.05. Intersections between sets were visualized through a 

Venn diagram in Python. 

 

Quantitative RT-PCR  

 To prepare cells for RT-qPCR and MeRIP-RT-qPCR, HL-60 cells were treated with 

DMSO or decitabine for 72 hours with three biological replicates per condition. To 

measure mRNA decay rates, cells were also treated with or without α-amanitin (10 µg/ml) 

in the final 16 hours prior to cell harvest. For MeRIP-RT-qPCR, cells were first transduced 

with a control sgRNA or METTL3-targeting sgRNA and sorted for fluorescent positive 

cells prior to drug treatment.  

 Total RNA was isolated using the Quick-RNA Microprep kit (Zymo) with on-column 

DNase treatment per the manufacturer’s protocol. For MeRIP-RT-qPCR, 2 µg of the 

fragmented total RNA per sample was used for RNA immunoprecipitation (IP) with 5 µg 

of the anti-m6A antibody (ABE572, Millipore).  

 Transcript levels were measured using RT-qPCR by first reverse transcribing total 

RNA to cDNA (Maxima H Minus RT, Thermo Fisher Scientific), then using fast SYBR 
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green master mix (Applied Biosystems) or Perfecta SYBR green supermix (QuantaBio) 

per the manufacturer’s instructions. HPRT1 was used as an endogenous control. 

 

Code availability 

 Reproducible code for mapping NGS reads to HERVs, flexible pathway level 

analysis using the PAGE algorithm, and integrated methods for MeRIP-seq analysis are 

publicly available at https://github.com/abearab/HERVs, 

https://github.com/abearab/pager and https://github.com/abearab/imRIP, respectively. 

Original code for all analyses in this study are available at 

https://github.com/GilbertLabUCSF/Decitabine-treatment. 
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Figures 

 

 

 

Figure 1. A genome-scale CRISPRi screen reveals gene knockdowns that confer 
sensitivity or resistance to 5-aza-2’-deoxycytidine (decitabine) 

(a) The chemical structure of decitabine. (b) Schematic of a genome-scale CRISPRi 
screen performed in HL-60 cells. (c) Volcano plot of gene-level rho (ρ) phenotypes and 
Mann-Whitney p-values. Negative rho values represent increased sensitivity to decitabine 
after knockdown, and positive rho values represent increased resistance.  
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(Figure caption continued from the previous page) 
 
(d-e) Validation of top screen hits. HL-60i cells were transduced with a control sgRNA 
(black) or an active sgRNA (red or blue) and treated with DMSO or decitabine, and the 
proportion of sgRNA+ cells in the decitabine condition relative to DMSO was observed 
over time. Data are shown as means ± SD, two sgRNAs per gene and two replicates per 
sgRNA. (f) Scatter plot showing the correlation between screen rho phenotype and 
validation phenotype (day 14-15 post-infection) for each validated sgRNA. (g) A cleaved 
caspase 3/7 assay shows the fraction of apoptotic HL-60 cells at day 5 following treatment 
with DMSO or decitabine ± RG3039. Data are shown as means ± SD for three replicates. 
(h) A cell cycle assay shows the fraction of HL-60 cells at different phases of the cell cycle 
at day 5 following treatment with DMSO or decitabine ± RG3039. Data are shown as 
means ± SD for three replicates. (i) Normalized counts for genes in GO:1903557 (positive 
regulation of tumor necrosis factor superfamily cytokine production) upregulated upon 
decitabine and RG3039 treatment. 
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Figure 2. Decitabine treatment of HL-60 cells results in global m6A 
hypermethylation 

(a) Validation of CRISPRi decitabine screen hits show that m6A-reader/writer complex 
genes promote resistance to decitabine treatment upon knockdown in HL-60i cells. HL-
60i cells were transduced with a control sgRNA (black) or an active sgRNA (red or pink) 
and treated with DMSO or decitabine, and the proportion of sgRNA+ cells in the 
decitabine condition relative to DMSO was observed over time. Data are shown as means 
± SD, two sgRNAs per gene and two replicates per sgRNA.  
 
(Figure caption continued on the next page) 
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(Figure caption continued from the previous page) 
 
(b) Schematic of MeRIP-seq experimental design and computational workflow. (c) The 
FIRE algorithm (in non-discovery mode) shows the known m6A motif RGAC ([AG]GAC) 
is enriched among predicted MeRIP-seq peaks relative to randomly generated sequences 
with similar dinucleotide frequencies. Data are shown as a heatmap, where yellow 
indicates over-representation and blue represents under-representation. Color intensity 
indicates the magnitude of enrichment. (d) Metagene plot shows distribution of m6A sites 
along transcripts with differential regional methylation and enrichment of m6A sites near 
the end codon. Transcripts are grouped into CDS (protein coding region), 5’ UTR 
(untranslated region) and 3’ UTR methylation based on the identified m6A sites. (e) 
Differential methylation analysis shows significant changes in RNA methylation peaks in 
HL-60 cells treated with decitabine (relative to DMSO). Peaks are called using the 
RADAR algorithm and visualized as annotated volcano plots. Wilcoxon and t-tests are 
used to assess statistical significance of global hypermethylation. 
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Figure 3. An analysis of differential gene expression and RNA stability across 
multiple AML cell lines and time points following decitabine treatment 

(a-b) RNA-seq reveals genes with significant changes in (a) gene expression and (b) RNA 
stability in HL-60 cells following treatment with decitabine vs. DMSO. Data are shown as 
heatmaps displaying counts (of two replicates) row-normalized into Z-scores, grouped by 
treatment condition and time. Differential RNA expression was calculated using our 
Salmon-tximport-DESeq2 pipeline. RNA stability was predicted using the REMBRANDTS 
algorithm and differential RNA stability was calculated using limma. (c-d) RNA-seq shows 
varying degrees of concordance of differential (c) gene expression and (d) RNA stability 
across a panel of six AML cell lines. The correlation analysis was performed on the logFC 
values from (c) DESeq2 and (d) limma results for cells treated with decitabine vs. DMSO. 
Data are shown as correlation matrices with Pearson’s correlation coefficients (PCC). 
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Figure 4. Charting genes likely downregulated due to m6A hypermethylation in 
HL-60 cells treated with decitabine and validating SQLE and INTS5 

(a) Venn diagram visualization of three sets of genes across multiomics datasets (i.e., 
CRISPRi screen, RNA-seq and MeRIP-seq) for HL-60 cells treated with decitabine vs. 
DMSO. 10 overlapping genes were shown to have (1) a sensitizing phenotype in our 
CRISPRi screen, (2) RNA hypermethylation upon decitabine treatment and (3) 
downregulation of mRNA upon decitabine treatment. (b) Normalized RNA-seq counts for 
SQLE and INTS5 in HL-60 cells treated with decitabine vs. DMSO at 6 hours, 72 hours 
and 120 hours. Data are shown as two replicates and p-values were generated using a 
likelihood ratio test in DESeq2 comparing the decitabine and DMSO conditions at 72 
hours. (c) Validation of CRISPRi decitabine screen hits show that SQLE and INTS5 
knockdown promotes sensitivity to decitabine treatment in HL-60i cells. HL-60i cells were 
transduced with a control sgRNA (black) or an active sgRNA (blue) and treated with 
DMSO or decitabine, and the proportion of sgRNA+ cells in the decitabine condition 
relative to DMSO was observed over time. Data are shown as means ± SD, two sgRNAs 
per gene and two replicates per sgRNA. (d) MeRIP-RT-qPCR in HL-60 cells treated with 
DMSO (gray) or decitabine (colored) validates decitabine-induced mRNA decay and RNA 
hypermethylation of SQLE and INTS5 transcripts. Three sets of primers were designed 
to capture abundances of pre-mRNA (top), mature mRNA (middle) and predicted m6A 
hypermethylated loci for each gene (bottom). Data are shown as three replicates and one-
tailed Mann-Whitney U-tests were used to assess statistical significance. (e) RT-qPCR 
validation of decitabine-induced mRNA decay of SQLE and INTS5 using α-amanitin. HL-
60 cells were treated with DMSO (gray) or decitabine (colored) ± α-amanitin and RT-
qPCR captured mRNA abundance. Relative decay was defined as the ratio between 
samples with and without α-amanitin for each respective condition. Data are shown as 
three replicates, and one-tailed Mann-Whitney U-tests were used to assess statistical 
significance. (f) MeRIP-RT-qPCR in HL-60 cells reveals METTL3 as a regulator of 
decitabine-induced m6A hypermethylation of SQLE and INTS5. Cells were transduced 
with a control sgRNA or METTL3-targeting sgRNA, treated with DMSO (gray) or 
decitabine (colored), and MeRIP-RT-qPCR captured abundance of predicted m6A 
hypermethylated loci. Data are shown as three replicates and one-tailed Mann-Whitney 
U-tests were used to assess statistical significance. (g-h) UpSet plots visualizing the 
intersection between genes which were (1) RNA hypermethylated upon decitabine 
treatment in HL-60 and (2) sensitizing hits in the HL-60 CRISPRi screen with (g) genes 
downregulated and (h) RNA destabilized across six AML cell lines. 
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Supplementary Figure 1. HL-60i validation and analysis of decitabine induced 
CpG DNA methylation changes in a public dataset 

(a) Relative depletion of five sgRNAs targeting essential genes at day 9 (relative to day 
3) in the HL-60i cell line, demonstrating functional CRISPRi activity. Each sgRNA was 
introduced into HL-60i via lentiviral transduction at infection rates of ~5–20%. GFP 
expression was used as a surrogate for sgRNA expression and the starting infection 
percentage for each sgRNA was normalized to 1. Cells were monitored over time via flow 
cytometry. Data are shown as means ± SD for two replicates. (b-d) Reanalysis of a public 
bisulfite-sequencing dataset (GSE149954) showing frequencies of base resolution CpG 
methylation in HL-60 cells treated with (b) DMSO or (c) 300 nM decitabine. (d) Volcano 
plot of differentially methylated regions (DMRs) comparing cells treated with decitabine 
vs. DMSO. A one-sided t-test shows statistically significant global hypomethylation of 
DNA CpG islands. (e) Apoptosis assay measuring cleaved caspase 3/7 at day 5 following 
treatment with DMSO or decitabine. Data are shown as means ± SD for three replicates. 
Data were derived from the same experiment as Figure 1G. 
 

A B Histogram of % CpG methylation

% methylation per base

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00
25

00

30.3

5.8

0.3

4.1

0.8

3.6

0.8

4.1

0.9

5.2

1.9

5.1

2.8

6.8

4

6.6

4.2
5.2

3.4 4

Decitabine

Histogram of % CpG methylation

% methylation per base

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
50

00
0

15
00

00
25

00
00

19.6

5

1

2.9
1.3

2
1.1

2.5
1

3

1.3
2.2 1.7

2.5 2.5
3.3

4

5.9

11

26.2
DMSO

0

10

20

DMSO
50

 nM
10

0 n
M

20
0 n

M

[Decitabine]

Fr
ac

tio
n 

of
 a

po
pt

ot
ic

 c
el

ls
 (%

)

C

D E



 64 

 

 



 65 

Supplementary Figure 2. CRISPRi decitabine screen phenotype score metrics and 
quality control analysis for HL-60 screen 

(a) Definition of CRISPRi screen phenotypes. (b-d) Distributions of sgRNA phenotypes 
per each HL-60 screen replicate show many sgRNAs are highly active relative to the 
negative control sgRNA distribution. (d-e) Scatter plots show robust correlation between 
HL-60 screen replicates for the gamma and tau phenotypes. Targeting and non-targeting 
sgRNAs included in the library are color coded black and gray, respectively. (f) GSEA plot 
showing enrichment of GO:0006397 (mRNA processing) among all screened genes 
ranked by Mann-Whitney p-value (corresponding to each gene’s ρ phenotype 
calculation). Normalized enrichment scores (NES) were calculated using the blitzGSEA 
Python package. (g) CRISPRi knockdown levels of nine hit genes in HL-60 cells. Data 
are plotted as mRNA abundance for each gene-targeting sgRNA relative to a non-
targeting control sgRNA.  
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Supplementary Figure 3. Characterizing synergy between decitabine and RG3039 
in AML 

(a) Dose response matrices for HL-60 and KG-1 treated with dose combinations of 
decitabine and RG3039. Heatmaps display % cell inhibition (generated using a CellTiter-
Glo assay; see methods for calculations) at each dose combination. Data are shown as 
means of two replicates. (b) Bliss excess scores (i.e., observed % cell inhibition – 
predicted % cell inhibition assuming Bliss independence; see methods for calculations) 
at each dose combination. Data are shown as means of two replicates. (c) PCA analysis 
of 3’ RNA-seq (in duplicate) performed on HL-60 treated with DMSO, decitabine alone, 
RG3039 alone or both drugs. (d) DESeq2 analysis of 3’ RNA-seq data reveals 
differentially expressed genes. Data are shown as a heatmap displaying counts row-
normalized into Z-scores. (e) iPAGE analysis shows enrichment of gene ontologies (GOs) 
(heatmap rows) among differentially expressed genes (heatmap columns) in HL-60 
treated with decitabine and RG3039 (top) or decitabine alone (bottom) vs. DMSO. Genes 
were first ranked based on log2FC from left to right and divided into eleven equally 
populated bins. Red boxes show enrichment and blue boxes show depletion. For each 
comparison, GOs are only shown if two of the first (i.e., upregulated GO) or last (i.e., down 
regulated GO) bins scored above 2. (f) Normalized RNA-seq counts for differentiation 
markers CD14 and CD11B in HL-60 cells treated with DMSO, decitabine, RG3039, or 
decitabine plus RG3039. Data are shown as means of two replicates. (g-h) Expression 
patterns for genes involved in positive regulation of myeloid leukocyte differentiation 
(GO:0002763). (g) GSEA plot shows enrichment of the GO:0002763 term in the 
combined drug treatment (decitabine plus RG3039) relative to DMSO or decitabine alone. 
Normalized enrichment scores (NES) were calculated using the blitzGSEA Python 
package. (h) Normalized counts for genes in GO:0002763 upregulated upon decitabine 
and RG3039 treatment. (i) Treatment with decitabine plus RG3039 is more highly 
correlated with macrophage, monocyte, and neutrophil differentiation transcriptional 
signatures (derived from the public dataset GSE79044) compared to treatment with either 
drug alone. Data are shown as correlation matrices with Pearson’s correlation coefficients 
(PCC). (j) An UpSet plot visualizes genes upregulated upon combined treatment with 
decitabine and RG3039 (top). PAGE analysis was performed to test for enrichment of 
genes involved in neutrophil differentiation, with results shown as a heatmap with rows 
as each logFC input and columns as cluster bins (bottom). Normalized counts for select 
genes most highly upregulated in the combination treatment (right). (k) An UpSet plot 
visualizes upregulated and downregulated endogenous retroviruses (ERVs) across 
treatment conditions. Upregulated ERVs (log2FC > 1 and p-value < 0.05) are labeled as 
“up”, downregulated ERVs (log2FC < -1 and p-value < 0.05) are labeled as “down” and 
all other ERVs are labeled as “no change”. (l) Scatter plots show differential ERV 
expression (as log2FC) in cells treated with decitabine or RG3039 alone (x-axis) vs. both 
drugs (y-axis). Pseudoautosomal boundary-like A (PABL_A) family members are 
highlighted in light blue. The labeled points correspond to the PABL_A chr9:9641512-
9642657 locus only upregulated in the decitabine and RG3039 drug combination. 
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Supplementary Figure 4. MeRIP-seq workflow to identify differentially methylated 
peaks associated with decitabine treatment in HL-60 cells 

(a) Schematic of MeRIP-seq computational workflow. (b-d) Visualization of m6A peaks 
across mRNA transcripts of (b) ARID4B, (c) PTEN and (d) ATRX. Peaks were called 
using the RADAR algorithm and plots were generated using the RADAR and Gviz R 
packages. MeRIP-seq experiments were performed in biological duplicates for each 
condition. (e) Differential methylation analysis shows significant changes in RNA 
methylation peaks in HL-60 cells treated with decitabine relative to DMSO. Global 
hypermethylation is observed in the decitabine condition for different families of ERVs. 
Peaks are called using the RADAR algorithm and visualized as annotated volcano plots. 
 
(Figure caption continued on the next page) 
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(Figure caption continued from the previous page) 
 
Wilcoxon and t-tests are used to assess statistical significance of global 
hypermethylation. (f) Coverage plot for a representative hypermethylated peak in the 
L1MD3_3end LINE transcript upon decitabine treatment (pink) compared to DMSO 
control (blue). 
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Supplementary Figure 5. Pathway-level changes in mRNA expression and 
stability associated with decitabine treatment in HL-60 cells 

(a) Schematic of RNA-seq workflows in HL-60 cells. Two parallel workflows describe 
analysis of differential mRNA stability (left) and differential mRNA expression (right). (b-
c) Gene set enrichment analysis with the iPAGE algorithm shows enrichment of GOs 
(heatmap rows) among changes in (b) RNA stability and (c) gene expression (heatmap 
columns; ranked and quantized into equal bins) upon decitabine treatment. The logFC 
values for HL-60 cells treated with decitabine vs. DMSO at 6 hours (top), 72 hours 
(middle) and 120 hours (bottom) were assessed separately. Highly-enriched GOs with 
genes upregulated or downregulated upon decitabine treatment are shown. 
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Supplementary Figure 6. Translational efficiency (TE) changes associated with 
decitabine treatment in HL-60 cells 

(a) Schematic of Ribo-seq experimental workflow. (b) Volcano plot visualization of 
Ribolog-calculated translational efficiency ratios (TERs) between the decitabine and 
DMSO conditions. (c) Bar plots showing enrichment of P-sites in the first frame of coding 
sequence (CDS) but not UTRs, consistent with ribosome protected fragments derived 
from protein coding mRNAs. (d) Ribosome occupancy profiles based on the 5' and 3' 
reads mapped to a reference codon for one sample (decitabine treated HL-60, single 
replicate). 
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Supplementary Figure 7. RNA m6A hypermethylated peaks from MeRIP-seq in HL-
60 following decitabine treatment 

(a-d) Visualization of m6A peaks across mRNA transcripts of (a) SQLE, (b) INTS5, (c) 
DHODH and (d) MYBBP1A. Peaks were called using the RADAR algorithm and plots 
were generated using the RADAR and Gviz R packages. MeRIP-seq experiments were 
performed in biological duplicates for each condition. 
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Supplementary Figure 8. Analysis of SKM-1 and MOLM-13 cell lines and genome-
scale CRISPRi decitabine screens: quality control and comparisons to the HL-60 
screen.  

(a) RNA expression levels for genes of interest (shown as log2 normalized counts) across 
AML cell lines vs. other cancer types using the CCLE database (DepMap Public 21Q4) 
curated with Cancer Data Integrator (CanDI). In total, 54 AML cell lines and 1,771 other 
cancer type cell lines are shown, with the 6 AML cell lines used in this study highlighted. 
(b) Mutational status of genes of interest across the 6 AML cell lines used in this study. 
(c) Scatter plots show robust correlation between replicates for the gamma and tau 
phenotypes in SKM-1 (left) and MOLM-13 (right) genome-scale CRISPRi decitabine 
screens. (d) GSEA plots for the SKM-1 (top) and MOLM-13 (bottom) screens show 
enrichment of the GO:0006397 (mRNA processing) term among all screened genes 
ranked by Mann-Whitney p-value (corresponding to each gene’s ρ phenotype 
calculation). Normalized enrichment scores (NES) were calculated using the blitzGSEA 
Python package. (e) Venn diagrams of significant hits across screens in three AML cell 
lines show overlapping and cell-line specific resistance (top) and sensitizing (bottom) 
phenotypes. Hits were selected by absolute gene-level rho (ρ) score values above 0.1 
and Mann-Whitney p-values less than 0.05. (f) Scatter plots of gene-level rho (ρ) scores 
comparing the HL-60 screen to the SKM-1 (top) and MOLM-13 (bottom) screens. Several 
hits of interest shared across cell lines are labeled in black. 
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Tables 

Supplementary Table 1. HL-60 CRISPRi decitabine screen. 

Due to size constrictions, please contact either raydai471@gmail.com or 
luke.gilbert@ucsf.edu for full table contents.  
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Supplementary Table 2. Pathway-level analysis of HL-60 CRISPRi drug phenotype 
scores. 

Due to size constrictions, please contact either raydai471@gmail.com or 
luke.gilbert@ucsf.edu for full table contents.  
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Supplementary Table 3. Differential RNA methylation analysis. 

Due to size constrictions, please contact either raydai471@gmail.com or 
luke.gilbert@ucsf.edu for full table contents.  
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Supplementary Table 4. SKM-1 and MOLM-13 CRISPRi decitabine screens. 

Due to size constrictions, please contact either raydai471@gmail.com or 
luke.gilbert@ucsf.edu for full table contents.  
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Supplementary Table 5. Pathway-level analysis of AML cell lines CRISPRi drug 
phenotype scores. 

Due to size constrictions, please contact either raydai471@gmail.com or 
luke.gilbert@ucsf.edu for full table contents.  
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