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'IS IT POSSIBLE TO GENERATE A PHYSICAL p-MESON

. *
WITH NO CDD POLES?

Chih Kwan Chen
Lawrence Berkeley Laboratory

University of California
Berkeley, California 9h720

July 6, 1971

ABSTRACT

The possibility of generating a physical p meson in gmn P waﬁe
by the N/D method with no CDD pole is reinvestigated. »A general model
with some dual properties is introduced to represent.high-energy behavior
of the input potential, so the arbitrary cutoff  is eliminated. This
modeljreqﬁirest@gf.the Pomeranchuk intercept be less thép one, and shows
that the high-energy behavior of the potential is dominated by the
Pomeranchuk tréjector&. This model also gives a repulsive potentigl in
the high eﬁérgy’region,>aﬁd suggests the necessity of CDD poles to
generate a p meson with correct mass. Also in the absence of CDD poles,
it is shown that near-by singularities mainly control the width of the

sutput particle and distant sihgularities mainly determine its mass.
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I. INTRODUCTION

The problem of generating the I = 1, gnn p-wave resonance
(p-meson) has been investigated many tiﬁes by a variety of methods
since the orig%nal study by Chew and Ma.ndelstam.l Many investiga-
’cionse-11 have been based on the assumed absence of CID poles,12 but
with.the failure of such attempts to generate a narrow-width p meson,
the importance of inelastic channels as revealed by multi-chénnel
13,14

calculations, and the progress made in understanding the connection

15-18

between CDD poles and inelastié resonances, the speculation grows
that CDD poles are ﬁecessary to generate a narrow width p-meson.
Previous analysis of the no-CDD-pole problem nevertheless
suffers from certain defects. Thé most common defect’ is the failure
to recognize the importance of inelasticity and the effect of distant

19

singularities even if CDD pples are assumed absent. A second point
to keep in mind concerning such.calculations is thaﬁ Eoth near-by and
distant "input" singularities lie in the unphysical region and are
usually model dependent. A third point is that some of the previous
investigations involve numerical calculations, which leave uncertain
the possibility of improving the outpuf result. Therefore even though
the collection of devices heretofore employed to.generate a narrow
width p-meson with no CDD pole has failed, all possibilities may still
not have beenrexhausted. In this article we wili review the problem of
the p as a gnnx composite in a gualitative but analytic way based on
the N/D method, in order to investigate the possibilities of improving
the output width of the p meson and to see whether or not we can
generate a p -meson at its physical mass with no dDD'poles.

We accept the fact that both near-by and distant singularities

are model dependent, and we begin by representing both with arbitrary
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parameters. The elementary p-meson exchange model is used as a standard
to compare with other models of near-by singularities. By requiring a
p meson of correct width and mass to be generated in the gxv p-wave
amplitude, we obtain necessary conditions which must be satisfied by
near-by and distant singularities. This analysis is performed in Sec.
3. The condition for near-by singularities is that the input potential
attraction at low energy, which is assumed to be dominated by near-by
singularities, must be substantially weaker than the attraction from
the elementary p-meson exchange potential. (The elementary p-meson
exchange potential generates a o meson with a width too large by a
factor =3, when distant singularities are adjusted to give correct
p mass, 750 MeV.) Through the analysis of Sec. 3, it is shown that the
mass of the output resonance is mainly controlled by distant singulari-
ties, whereas the output width is mainly determined by near-by
singularitie;.

In Sec. 4 we consider models that represent near-by singulari-
ties by cross-channel Regge poles. The original study of Regge-ﬁéle
exchange potential in Ref. (20) was discussed in the language of the
new form of the strip approximation. In our formulation of the Regge-
pole exchange potential, which only represents near-by singularities,
reference to the strip approximation can be avoided. The essential
problem of such a model is how to modifyy the cross-channel Regge-pole
terms in order to let them have correct boundaries of double spectral
functions. In principle this can be done by the Chew-~Jones
representation,6 but it is very difficult to perform an analytic
calculation suitable for a qualitative discussion. We only consider
p and Pomeranchuk trajectories, assuming that the J =1 state, i.e.,

p meson, is dominant in the Regge p-exchange potential, while the J =0

-

state, 1.e., the ghost with a proper ghost killing factor, dominates
the Pomeranchuk exchange potential. An approximation can be made based
on these assumptions, and we can restore the correct boundary of the

21,2
»22 This

Regge-pole terms through the Froissart-Gribov projection.
result can be written down analytically, and the contributions of the
Regge p-exchange potential and Pomeranchuk exchange potential at the

huz threshold are compared with that of elementary b-exchange
potentials.

Our analysis in Sec. 4 implies that Regge-pole exchange poten-
tials for the xx p wave depend very much on the t dependence of Regge
residues and on the slope of Regge trajectories. In the case of a
p-Regge-pole exchange potential with the residue function and trajectory
given by the nx — yx Veneziano model,25_26 the attraction of the
potential at low energy remains almost the same as that of the elemen-
tary p-meson exchange potential, so introduction of the Regge p-exchange
potehtial will not help to reduce the output p width. The Pomeranchuk
exchange potential for the yrx p-wave, with a "normal" residue
function and trajectory slope (as, for example, in the model of Wong27),
is attractive rather tﬁan repulsive in the low energy, so the output

p width will be increased further by including this potential. This

result coincides qualitatively with that of Ref. (28). 'But if the

slope of the Pomeranchuk trajectory becomes small or the residue
decreases abnormally fast away from the forward directidﬁ,‘the
Pomeranchuk exchange potential for the nn  Pp-wave can become repulsive
in the low-energy region and may reduce the output width.

In Sec. 5 we introduce a model, which bases on some general
dual properties extrapolated from the nn Veneziano modelgi'26 for

the p-fo trajectory, and then generalize this model to include a
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Pcmeranchuk trajectory. Our result shows that the high-energy behavior.

Hy

cf the input potential, which is controlled by distant singularities,

is dominated by the Pomeranchuk trajectory. Therefore the attemptseg’Bo
to obtain a. potential from.the % Véneziano model with no Pomeranchuk
trajectory arenot enough to conclude the necessity of CDD poles to
gemerate a p meson with correc{ mass.

» fhe model for &istént singuiarities consists of the following
ﬁhree assumptions;»

(1) a defiﬁite isosﬁin nn elastic amplitude is built "up from a

linear combingtion of three functions Ast’ A

su’ and Atu’ where Ast_

cbutains'only s- and t-channel singularities but ﬁo u-¢hannel singﬁlari;
ties, and .Asu and Atu have corresponding properties. The function )
Ay has leading Regge asymptotic behavior at the limit sf(o_r 1) o 1o,
t {or s).fiXed but damps out faster than these leading Regge_A
asymptotic behaviors at the limit s (or t) — 4w, u fixed. The
functions ASu and Ast have corresponding.as&mptotic behaviors.

(2) The Regge asymptotic behavior of Ast >ét the limit
s for t) - 4w, with t (or s) fixed is generated by s- (or té‘channei
singularities. The functions Asu and Atu havé corresponding
Eroperties.
» (3) A dispersion relationwith & finité‘nﬁmber of ‘subtractions is
. satisfied by the reduced partial-wave ampliﬁudes.

We show in Sec. 5 that this model léads fé the conclusion that

the Pomeranqhuk trajectory intercépt must be less than one; otherwise

the three assumptions become inconsistent. ‘Further, we show that the

Pomeranchuk contribution to distant singularities causes a repulsive

~6-
high-energy behavior, whereas the analysis of Sec. 3>requifes an overall
attracfive potential in the region above the low-energy resonances to
generate a physical p meson. This éuggeéts the necessity of CID boleé-
in this model.
In the Appendix a detailed formulatién ié given of the N/D

integral equation with no CDD poles.
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II. FORMULATION QF THE PROBLEM
In this section we will write the N/D integral equation for
the nx p wave and also define for later usage the elementary p-meson
exchange potential. Certain detailed aspects of the N/D integral
equation are discussed in the Appendix.
The £ =1, gr-partial wave amplitude Al(s) is defined as

1

=1
a(s) = 3= az B (z.) A7 (s,2,), (2.1)
-1

where the end points of the contour of the above integration on the
zS plane are fixed ét zg, = £l, but the contour may deviate from the
real ’Es)a is if t or u singularities of A;zl(s,zs) cross the
physical ZS interval as s 1s continued away from the s-channel

physical region. A reduced partial wave amplitude Bl(s) is defined

as

We assume that Bl(s) satisfies a partial-wave dispersion relation with

no subtraction:

[ee]

Disc.[Bl(s')] 1

_ —_— L e — t
B(s) = 33 ds 5T - s * 5 ds
L.H.C. hug
s '
Dlsc.[Bl(s )] , (2.1')

X —s5 -5

where the contour J[ ds' is taken around the left-hand singu-
L.H.C.

larities generated by the coincidence of t and u singularities with

_8-

the end points z = +1 in Eq. (2.1) fixed. The potential Vl(s) is

defined as

1 '
Vl(s) = 27(—1 ds -——S,——_—S—-—— . (2.2)

L.H.C.

We write the partial-wave unitarity relation through the R-function

method%

-pl(s) Rl(s) >

. 1
5 - hgz (} - h“2:>2
S 3

or(s) = ) (2.3)
(o) In B, (s) ot (s)

) = = r}
' o (s)B ()| Sy

In the absence of CDD poles, the N/D integral equation from the R-
functionl method and that from Frye-Warnock's method51 are equivalent.
We choose the R-function method, because its form is simpler.

We assume the absence of CDD poles, that is, our solution is
assumed to be uniquely determined by a knowledge of Vl(s) and Rl(s).
This assumption can be formulated in the following precise statementsl9
through the N/D method,:L

(a) The decomposition Bl(s) = [Nl(s)]/[Dl(s)] can be made in a
way such that Nl(s) contains only the left-hand cut and Dl(s)

contains only the cuts from hpg to +», and the zeros of Dl(s) are

in one-to-one correspondence with the poles of the amplitude Bl(s).
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(b) The function Nl(s) satisfies a dispersion relation with no
subtraction, and Dl(s) satisfies a dispersion relation with one
subtraction. No poles are present in either Nl(s) or Dl(s).
(¢) The N/D integral equation constructed by Uretsky's method2277
is Fredholm. |
From the aﬁove statements (a)b- (c), the N/D integral equation can be

constructed as

©

py(s") R (s') Ny(s")
s'(s' - s) s

D (s) = 1 . ds'
n 2
bp

o, () Ry (s) Y2

th(S) = Nl(s) - )
(s) R, (s) \2 o |
th(s) = Vy(s) D]_(S)<i];_s—s—l‘s—> +[ as' 1 (s3 s")
e |
X th(si)
K (s58") = % pl(s)sRl(S) 0 Dl(s':'Rl(s')> |

s' Vl(s') -5 Vl(s)

s' - s

/
(2.4).

where we have normalized the subtraction constant of the dispersion
relation for Dl(s) to one, since both Dl(s) and Nl(s) are
proportional to that subtraction constant and the quotient 'Nl(s)/Dl(s)
is independent of it. The condition to make the integral equation for

th(s) Fredholm is

-10-

- o 2}
01 (s)R,(s)o (s )R (s') [s'V (s') - sV (s)|"}
ds ds' L 1 } 1 . 1 _ 1 v < e
SS S - 8
bt e
and {
' !
® py(s) By(s)
ds -l———g—l——— 'lvl(s)ig < oo, J
e
(2.5)

The condition of Eq. (2.5) is satisfied for the input Rl(s) and Vl(s)
if they are constrained by
lim sVl(s) < 4w

S— 4w

(2.6)

= 0 for some positive e.
S— +0 8

In this article we consider only the input information whichvsatisfies
Eq. (2.6).

As discussed above, the left-hand singularities in Eq. (1) are
generated when the cross channel singularities in AIzl(s,zS)> in the
z plane encounter the end points z, = +l. We assume that the low-
energy behavior of the potential Vl(s) defined by Eq. (2.2) is
dominated by near-by singularities. Near-by singularities may be
evaluated by approximating the amplitude AI=l(s,zS) by some explicit
function and partial wave projecting on the s-channel p-wave amplitude
as in Eq. (2.1) to find the discontinuity across the left-hand cut.

The elementary p-meson .exchange potential is derived by approxi-
mating the s-channel isospin one nx elastic amplitude by one

t-channel and one u-channel p-meson term,
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- e PP pz) (e )7 W) By (2y)
A" (s,2 ) = = Leis 1t 1 u
o s 5 2 5
Rem -t Rem ™~ -u !
p P
2.
vwhere (2.7
2s
2, = 1+——"p,
t - by
2t
z. = 14—t
u a - up?
z, = 1+ ———23—5 .
s - Ly

The factor 1/2 1is the igospin crossing matrix element,l and the

] . 01 .
function T (x) is the threshold function. We define fd(x) as

o 2,2
T(x) = a4y /qx=Rem 2 for X near hue
&
and
lim fx(x) = +1.
X— foo

The gnp coupling constant g2 " is defined by
bi10o)

—

2
(gﬂﬂp)

325

| 1m0 mp2|~[Re m 2]3
I (2.8)

p
2[Re m 2. hp2]~
e
By partial-wav jecti th i I=1
e projecting the expression for Ap (s,zs) in Eq. (2.7)
we can see that there are left-hand cuts starting from s = Hug - Rem 2,
p

but no right-hand singularities. Therefore the elementary p-meson

exchange potential Viz'p(s) can be defined directly as

_12-

1

2. 1 1 I=1
Ve p(s) = —E . —5—2? dZS Ap (S,ZS)- (2'9)

g -1
The potenﬁial can be evaluated explicitly, and it varies slowly through
the low-energy region from numerical calculation. Its threshold value

and asymptotic behavior are

(e ) ?
el-p, 2 P b 1 1 . by
v (W) = = 3 7’ 5 2 -l
Rem -~ Rem -~ - by Re m
o] &
(2.10)
and
. (e ) / 2N
vin  sveEP(s) = 22— 20 moe+m{1 - —42).
52+ 2 ) ?
§— +oo Re m © - by . Rem
P L P

We note that there are alternative methods for defining the elementary
p-meson exchange potential, but the behavior at low energy is always
roughly equivalent to that of our potentizal.

The above-defined elementary p-meson exchange potential will serve
as the standard in this article when we compare various other models for
representing near-by singularities, especially the Regge-pole exchange

potential in Sec. L.
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III. ANALYSIS OF THE RELATIVE ROLES OF NEAR-BY )
a for hp“ <s < So»

AND DISTANT SINGULARITIES

We have stated that both neai-by and distant singularities are

model dependent. In this section we will approximately represent both : b 5
— for k" <s < Sor

]
[

types of singularities through arbitrary parameters, and investigate the

s < s'
K, (s; s’ )
relative role of near-by and distant singularities in the solution. We " l( > ) L~ ¢ (3.2)
s) R, (s s') R, (s)]?
shall find necessary conditions which the parameters must satisfy in [pl( ) l( ) pl( ) l(s )] bl
ss’ 5~ for s <s, Ly~ <s' <s
order to generate a p meson with physical mass and width.
‘We assume 0 for s < s, s <s'
c c
2
a; for Lp® <s < s,
v (s) = : (3.1) With the kernel approximated by Eq. (3.2), the integral equation for
l - - -
by v » th(s), i.e., Eg. (2.4), can be solved explicitly to give
- for s _<s ,
\s e
a.x b.Y \
s 1
o Re Dl(s) = 1-=- <:al o / . Il(s, sc)
1 T %S¢
s blx blY
The motivation for such an assumption is that the elementary p-meson - b, + —t— Ig(s; sc), (3.3)
exchange potential in Sec. 2 causes a relatively slow variation in the ‘T
2 % Yy 2
low-energy region, and the asymptotic behavior bl/s is consistent Im Dl(s) = -5 P (s) - a) +——+ — for hp”~ <s < Sq»
with the asymptotic behavior of the reduced partial-wave amplitude
. sas where
given by Regge theory. 1In addition, the parameter bl can be chosen
very large or very small to represent small deviations from an exact : o 2(3) _ pl(s) Rl(s)
1 - s ’
1/s asymptotic behavior. By the assumption of Eq. (3.1), we can
approximate the kernel Kl(s; s') of Eq. (2.h4) as s, 5
p, (s")
I.(s; s ) = P ds' —=
1V°? Pe’ T § 5T s
>
e
2
, pl (S")
12(5, SC) = dS S' sl - 5 2
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and
x E, (b 2 +na )
X - 1\01 Fp T
= —~ ,
n(x - a)E)) - by EE,
5
w by By
Y = 2E -
- - : p)
nln - 8By ) - by By By
s
c
. o
B, = ds p, (s) ,
h?
' 2
” P, (s)
E = ds 5 .
2 2
S¢
We assume
(. . o 3 o2 v
1 for by < s < Sq
1 S :
.Rl(s) = ¢ — “{(R, - 1)s + (se - R, sd»L for sy <s<s,
e [s}
{ Ru° . ‘} for S < 8.

(3.4) .
3l

This assumption is consistent with experimental data. We must note

+hat the form assumed in Eq. (3.4) does not prohibit a possible logar-
ithmic dependence of the energy s -at high energy, but we approximate
it by a constant. From experimental evidence about the xx p-wave

3k

.phase shift and the inelastic factor,” we put

~16-

2
sd = 0 u, Se = 100 p , R = 5. (3'5)

We only need to consider the case 8o < 8os since if S < Ses distant
singularities turn out to be too weak to generate a p meson at 750 MeV.

We put
- Rem 2 = 30 uz,
p -
and reguire
2y ‘
Re D,(30 %) = 0, A . (3.6)

which corresponds to a iequirement that a p-mesdén pole be genefated at.

is given by

about 750 MeV. The output width P out

1 . Im D, (30 u2)

- 2
50 [9— Re D (s)]
|3 A PR

Tout . (3.7)

In Egs. (3.6) and (3.7);the right-hand sides are both functions of &,
and Se (or bl)' Table I shows combinations of‘ ay and Se thaﬁ_
satisfy Eq. (3.6), i.e:, that -give the correct p-meson mass. The
corresponding values of the output width are also shown.

From the results.in Table I. we observe that in order to
generate a p meson with mass 750 MeV and width lEO'MeV, ay must be’
much weaker than Viz'p(hue) ~5.1X 10'3/u2_ Furthermore, in the
region of ay where the outﬁut width is not far from 120 Mev; bl
varies slowly éven though the changes in a, are large. These observa- -

tions imply the‘following'three qualitative properties;
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(1) The mass of the output p wmeson is mainly controlled by the
distant singularities. ‘ ‘

(2) The width of the output p ‘meson is mainly controlled 5y the
near-by singularities.

(3) If we assuhe that a physical p¥meson can be generated through
the present model; i.e..an N/D equation with no CDD poles, the attrac-
tion of the potential at low energy,bwhich.is éaﬁséd by near-by
singuiaritieé, should be much weaker than that of the elementary
p-mesbn exchange poténtial.A

In the féllowingvsectiéns some models to represent near-by and

distant singularities are considered.

- Regge pole exchange potential.go
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IV. REGGE-POLE EXCHANGE POTENTIALSEO

In this section, a model to represent near-by singularities ﬁy
cross-channel Regge poles is considered. Such a model is called the
We coﬂsider only the o and
Pomeranchuk exchange potentials in this section. In Ref. 20,Regge—pole
exchange ﬁotentials are formulated in the language of the néw form of
the strip approximation{6’35 and they represent both distant and near—by
singularities. But the idea of Regge-pole’exchangg'potentials for the
representation of near-by singularities can be formulated'wifhout
referring to the strip approximation. Thé essence:of this model is to
approximété.the nx elastic amplitude by several ¢~ and u-channel
Regge poles, and then to projecf them onto the s-channel p-wave ampli-
tude to find their contribution to fhe discontinuity across the left--
handrcut. The difficulty arises due to the fact that an ordinary Régée
pole term doeé not have the correct boundary for its double spectrél
functions, and a naive s-channel partial-wave projection of such a term
will pick up some unphysical neér-by ;gft-hand singularities. 1In
principlg this difficulty can be resolved by modifying fhe ordinary
Regge pole term through the dhew-Jones representation6 in order to
restore the cérrect boundary of double spectral functions. Suéh a

28’ 36'38

process will involve extensive numerical calcﬁlations, and is
not appropriaté for our qualitative discussion. Instead we make the
following approximation to simplify the calculation.

We first consider a f—channel p-Regge pole, which can be written

as

- G (%) 1 ‘
Ao(tz) = - mraey B Fa (0)(7%) 7 By ({2
)
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We may approximate Ap(t,zt) by the lowest nonvanishing partial wave

smplitude, t-channel p wave in this case, and write it as

A (t,2,) = 16:X3 4°() Py(s,), )

where Alp(t) is calculated from Eq. (4.1) through Froissart-Gribov

21,22

projection. We may argue alternatiwely that since p-meson‘contri}

bution is dominant over .other higher spin iesongnces‘on the p-trajectory,

we may approximate Ap(t,zt) as in Eq. (k.2),
To accomplish this projection we begin by rewriting Eq. (k.1)

into a definite signature form

G (t)

f‘;z;'ﬁ‘agrayvﬂ P (1))

Ap(tyzt)
The discohtinuity of the abové expression with respect to 2y is

>1

for zt N

D(z,)(t24) = (h.3)

0 “for 2, € 1.
The -physical discontinuity should vanish in the region
t

1l £z, & .Zt('t,s=l¥u2), :

in order to give thé correct boundary of double épectral functions. The

Froissart-Gribov projection implies

L]

Azp(t) = 5 dz' QE(Z') DR(‘Zt)(t,z'),

16x 5
2 (6,1%)

&,
Bk

<20~

so the correct boundary is restored for the partial wave amplitude.
Substituting Eg. (4.3) into the right-hand side for the case 7 =1,

we have

nP(e) = 25 e - @ qe) By (2
2, (t,4°)
This can be evaluated as39
oy 1 _ Fp(t) ‘
‘ -2' . : 1 . . |. E=o
Fo(8) = 67 - 1) (Ry () ()01 () - (0 By (1) (DM cy (5,2
(b.1)
Since
£,h07) = 14 S8 o 4o,
Zt( v * t - huz - hp2+0
39

by the behavior

’ { % (e + i -£-1
%) Xt ;2’% ) r%z +§§ $ &) ’
oV F(v + %)

Pv(x) * (x)v,

> oo (x)2 T D)

we have
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o (£)-2  1(2) r(oc (t) + 2)

2
F(t=4"+n) = (2)°
P r@) r@@,(+) + D
. : o (t)-1
: 2
] ' S . <§E_ )»p .
* ) Defining a reduced residue 5 (t) as

a (t)

®
3,00 (f-) o) - ( ) o, (0),

we may rewrite Eq. (4.14) as

[ao(t) +2)

() o (t)-2 PQ; () + -) L2
o - p LB o1 b -k
A7(8) = 62 3 o (2) P h p(g T+ ;) suep
. T_-_?]I;—(-t-)- . (ll—.5)
[
Substituting Eq. (4.5) into Eq. (4.2), we have
, | ) . r(a (t) + é) a (t)-2
. A {(t,z.) = ———9—-—————— . (2) P
v - ,°) P (?')
( ) — a’:m . (4.6)

We note that in Eq. (4.6) the right-hand side has no s singularities,

and it has t singularities only for t > hpg. Therefore the Regge

p-exchange potential Vi'p(s) may be defined as

=P2=-

vPs) = L5 -5;—ﬂ az P (z) X %{Ap(t,zt) v 4 (2,2)).

.

(%.7)

By evaluating Eq. (4.7) explicitly with the substitution of Eq. (4.6),

its threshold value is

w0, 2 1 B(O) B (0)  a(o) 1
V? P®) = l6ﬂ2/. T - a (o) | gi(o) *T -pap(o) * ;;E s

Ctp(t)-g. I

"Gt 1) 5 () .

B, (t) e . r(@p(t) - é) A

We approximate _ap(t) by comparing the p-Regge pole term of

"Eq. (4.1) in the limit s — 4=, t fixed, with the corresponding limit

of the "standard" Veneziano model for the gxx elastic scattering ampli-

tude (withv p-f, trajectory only but no Pomeranchuk trﬁjectory).23_26A
We find
N 6 (x)?/2 r(@p(t) + i) 2 (%)
Gp(t) = ( ) ° C (-t l) * (21.1 a‘) (14.9)
r ap(t) r ap ) + 5
where
Otp(t) = at +b b
a = L
2 Rem 2,
(4.10)
1
b o=z,
2
_ (8,p)
B = 5 5 -
Re m ~ - ky
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Substituting Eqs. (4.9) and (4.10) into Eq. (4.8), we obtain

RP(1,2) (gmre)2 Iy o : n
14 = . - . .
1 32(:{)3 2 3 Re mp2 Re mpz - hue

1 Re m 2
2-54n—%5 _
o 22“ o T ()
Re m by .

Comparing Vi'p(hpe) with ViZ'P(huz) of Eq. (2.10), and taking

Re mp2 = 30 u2,

we have
VPP ~ 105 VPSS .

This result implies that even if we replaée_the elementary.p—meson_
exchange potential by the Regge p-exchange potential, the width of the
output p-meson does not improve. This conclusion agrees with the result
of Refj 28 and Ref. 37. We note that our result is gqualitatively
different from fhat of Ref. 20, since the contribution of a ﬁegge-pole
exchange pqtential to an s-chénnel partial wave amplitude depends
criticaliy on whether the angular momentum of the s-channel partial

wave is even or odd. The conclusion of Ref. 20 is only applicable to
the potential for an even angular momentum partial wave. 1In our model,
if we calculate the p-exchange potential for the nn s wave, we also

get

Vo) ~ 0.65 VeLP(wi®) .

).
The Pomeranchuk exchange potential can be derived in a way
similar o that of the Regge p-exchange potential. This time we assume

that the J = 0 ghost with a proper ghost killing factor is dominant,

and approximate the t-channel Pomeranchuk term

6p(t) o e

t - - - ' .'
Ap(t,z,) | Ez;rj;jigrgy Pap(t)(’zt)b . (4.12)
by the expressién
P
AP(t,zt) ~ 16 ¢ A, (t) .
By a calculation similar to that for the p-exchange potential, we have
Bo(t)
P 1
hpltsze) = -5y " %
a1 Gt +d
) - @7 2 g ()
_ : r3) P@P(t) +1)
. 2 aP(t) .
Gp(t) = ""ii'Tij) o Gp(e)
t - by
. ] . :o
The Pomeranchuk exchange potential is defined as
1 _ : ) R
P 1 1 1 ‘ :
Vlv(s) = ;—5 "o n "3 dzstl(zS) . (AP(t,zt) -_AP(u,zu)}.
s -1

(h.14)

Substituting Eq. (4.13) into Eq. (L.14) and evalueting at s = b2,

we have
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poo 1 o (0 [e(0) (o)
EES R A O RO Bx O F S

We can apprdximate the residue GP(t) by comparing with the Regge

. : 2 . .
asymptotic behavior of Wong's model, 7 which i1s a dual resonance model

for the nn elaétic,amplitude with a Pomgranchuk trajectory. We then

have ',’. . _
. (%) 7 B : (t) ‘
Bp(t) = @ X . (3) 7 (4.16)
R ‘ F(éé(ti) ’ _
. i _ o
aP(t)_ a'P_t."'.b'P’ ap = 8 o Re m 2
1
By y
-ﬁ— = 0.5

Substituting Eq.. (4.16) into Eq. (4.15) and comparing with vf‘p(hu?),
we héve 7 '
P,y 2

Vi (%)

—— ~ 0.8 X 10 << 1.
v (%) |
1+ :

This result implies that the Pomeranchuk exchange potential

for fhe nn  p-wave with residue function and trajectory given by Eq.

(k.16) is weaklyﬂattractive at the threshold; therefore,the inclusion
of such a potential will not improve the width of the output p meson.
This result seems to agree qualitatively with Ref. 28..

We note that in Eq. (4.15) if

-26-

Bp(0) - - op,(0)

B0 7 a0
i.e., if either the residue decreases,las 1t| increases, much féster
than in the model of Eé.'(h.lS)'or the slope of the Pomeranchuk traj;.'
ectéry at £_= 0 Mis much smaller than that of Eq. (4.16), we can get
a repulsive potential at low energy and may reduce the ouﬁpué p-meSSﬁ
width. | ' | |

Again we sote that the conclusion Qf Ref. 20 about thg
Ponmeranchuk exch#nge potentiﬁl only applieé to the even angular

momentum partial wave potential.
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V. A MODEL FOR DISTANT SINGULARITIES

From the argument in Sec. 3 that distant singularities mainly
control the mass of the output ﬁole and near-by singularities mainly
determine the width of the output pole,we can meaningfully study various
models to repreéent distant singularities, even though the nature of
the near-by'singulérities may remain uncertain.

In this section we first present a model with some of its
assumptions extrapolated from the Veneziano model for.the o elastic

amplitude with only the o-f, trajectory,?3™20

and subsequently
genefalize if to a model with the Pomeranchuk trajectory. We will see
that the application of this model to an aﬁplitude with pnly_exchangg—
degenerated p and fo ‘trajectories, but no Pomeranchuk trajectory
{1ike the xn Veneziano model),will lead to a high-energy behavibr of
the input potential,'which is too weak to generate a p-meson witﬁ the
correct mass. This result, of course, agrees with the attempt$29’50
to extrapolate a potential for use in N/D calculation from the gx
Veneziano model with only the p-fo trajectory. By applyiﬁg our model

to an amplitude with both Pomeranchuk trajectory and exchange - degener-

ated p-f

0 trajectories, we will see that the high-energy behavior. of

the potential, which is dominated by distant singularities, is deter-
mined by thé Pomeranchuk trajectory. Therefore it is not meaningful to
guestion whether CDD poles are necessary or not for generating a p-meson
with the correct mass if the Pomeranchuk trajectory is not contained.

We find, in the model with both the Pomeranchuk and the exchange

degenerated p-f

0 trajectory, that the Pomeranchuk intercepf must be

less than one for our model to be consistent. The high-energy

behavior of the potential given by this model is repulsive, whereas.
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we have shown in Sec. 2 that an attractive behavior is required to
generate a p meson with the correct mass. This will imply the necessity
§f inclusion of CDD poles in this model.
The model consists of the following three assumptions;
(1) A definite isospin mn elastic-scattering amplitude is built

up from a linear combination of three functions A A

st? “su’

where Ast contains only s- and t-channel singularities but no

and Atu’

(V)

u-channel singularities. The functions ASu and A have corres-.

tu
ponding proberties, The function ASt has the leading Regge asymptotic
behavior (they can be that of Pomeranchuk trajectory, or p and fo
trajectories,depending on what kinds of Regge trajectories we contain

in this model) in the limit s (or t) - 4w with t (or s) fixed,

but it damps out faster in the limit s (or t) — 1o with u fixed.

The -functions Asu and - Atu have corresponding asymptotic behaviors

with the 1imits'changed properly.

(2) The Regge asymptotic behavior of A . in the limit
s (or t) -+ with t (ér s) fikedris generated by s-(or t-)
channel singulafities. The functions ASu and Atu have corresponding
properties. .

(3) A dispersion relation with a finite number of subtractions is
satisfied by the reduced partial-wave amplitude Bz(s). (The reduced
e . p-wave amplitude satisfies a dispersion relation with no
subtraction.)

Conditions (1) - (3) can be stated more explieitly as follows:

A definite isospin s-channel amplitude has a Regge asymptotic behavior

I t) L Lo(t) a(t)
A TS sinﬁi &(t) " (s + 7(-s) Vs
t fixed '
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where T is the signaturc. Condition (1) means that the term sa(t)
comes from the asymptotic behavior of Ag ., and the term (-s)a(t)

ot Condltlon (2) further implies that the term

(bs)a(t) is generated by s-channel s1ngular1t1es From condltlon (3)

‘comes from that of A

© we can deflne a potential V (s) as

'DiSC.[BzI(s')]
o F-J .

y . s'-s.
~“L.H.C.
‘where we did not writefﬁhe possible subtractions explicitly. We

see. that V (s) does not contaln any s-channel 31ngular1t1es
Condltlon (2) then implies that the term - (- S)a(t) does not contribute
to the hlgh-energy behavior of V, (s), but the term sa(t) does.

We next conéider the "standard" nx Veneziano model,23 26
which containe only fhe.exchange degenerated p—fo trajectory but no
Pomeranchuk trajectory. Condition (3) ie only true for the isospin one

partial wave ampl:i.i:_ude)m"b'l

and the resolution of this difficulty will
be discussed later. Here we only consider the isospin one partialfwave
amplitudes. In the limit s — 4w, t fixed, the t-channel isospin zero

and two amplitudes have the Regge asymptotic behaviors

I=0 3. 8(t) .' a(t) _ya(t)
At 5 4o 2 sin n a(t (s +(S)‘ b
t fixed
(fo trajectory)
I=1 . 8(t) 16 o(t) _ .
Ay 5 T sin x (%) {s - (-s) }, (p trajectory).
t fixed .

'By introducing proper isospin crossing matrix elem.ents,l the contribu-

tion of these two trajectories_tb'the s-channel isospin ore amplitude is
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=0 ) 1 :
5o 4w i Sinﬁi ng) ' (-s)a(t) )

t fixed

At the limit s -+ with u fixed, we obtain

()P

I=1 N B(u)
A o " sin x a(u)
8- +o0 .
u fixed
We see that in the xx Veneziano model, the terms sa(t) and sa(u)

are absent in the asymptotic behavior of the I =1 s-channel amplitude

sa(u)

If the terms sa(t) and are present, and a(t) and alu) are

linear trajectories with sufficiently rapid damping residue g(t) and

g(u), they will give the rotentlal VI l(s) an asymptotic behavior

2-b
1/s s (b is the intercept of the p-fo trajectory) from
conditions (1) - (3). The absence of the terms gz(t) and sa(u) then
implies
: <,/ 1 ’ R
lim Vi (s)/i———————— = 0. (5.1) .
§— oo £=1 s2P s :

. Comparing this result with the analysis of Sec. 3, it is apparent that

such a potential cannot generate a p-meson with the correct mass.29’3o
Hereafter we consider a modei with both the Pomeranchuk
trajectory.and the exchange degenerated p-fo trajectory, which is
similar to that of the snx Veneziano model. Since there isno I =1
exchange-degenerated partner for the Pomeranchuk trajectory, the terms
ap(®) o -

and s will appear in the asymptotic behavior of A

which contribute to the high-energy behavior of Vif (s) with odd 2
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according to conditions (1) - (3). Therefore the high-energy behavior
sf the potential is controlled by the Pomeranchuk trajectory.

We must note that in the .nx Veneziano model. the I =1
vartial-wave amplitudes satisfy condition (3)’h0 but the I =0 and
I = 2 partial wave amplitudes do not.satisfy condition (3).1,'l The
difference between even and odd isospin amplitudes is due to the
presence and the absence of the function corresponding to Atu‘ But
this property of the nx Veneziano model, i.e., the violation of
condition (3) if the function corresﬁonding to Atu‘ is present, does
nct seem to be essential. We may, for example, assume that a proper
unitarization of the Veneziano model, or the addition of proper
secondary termsu2 will resolve this difficulty. In the following
discussion we always assume condition (3) is satisfied, since we do
not need any explicit representation éf the amplitudes as in the: nax
Veneziano model.

The Regge asymptotic behavior of the Pomeranchuk trajectory for

the I = 1. s-channel amplitude can be written as

Il ' 1 Bp(t) o (t) op ()
AT S g b 9
t fixed
1 BP(U) GP(U) aP(u)
e RO R
u fixed :

where the factor 1/3 is the isospin crossing matrix element, and

BP(o) > O.
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From the previous discussion about condition (1) - (3), we see that the

high-energy behavior of Viii(s) is given by

1
1 1
e swn. Tz | %Rl
9 -1
e
ag(®) ap(a)
1 (s! o gsz . o
° '5' 'Bp(t) " Sin « aP % * Bp(u). sin x G“P o) [ . (5 )
The right-hand side of Eq. (5.2) is indefinite if
aP(o) = 1.
Therefore we must assume
aP(O) = 1-¢€ (e positive)
in order to make condition (3) consistent with conditions (1) and (2).
We assume that the Pomeranchuk trajectory is linear, then in
Eq. (5.2) the t-channel Pomeranchuk trajectory mainly contributes to
the forward direction and the u-channel one to the backward direction.
Therefore we have
.

1lim sVl(s) < 0,
S +

This implies that the high-energy behavior of the potential from this’

model is repulsive, whereas, in Sec. 2, we see that

b, = lim sV (s) ~ 0.7 > O
s— oo

is necessary to generate a p meson with mass 750 MeV. Therefore we

cannot generate a physical p meson in this model.
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We must note.that the bl/s behavior of the potential in the
tizh-energy region is only an effective approximation. For example, a
vetential with sufficiently large attraction in the intermediate energy
region and a repulsive high-energy tail can still generate a p-meson with
the cor;ect mass. Such a strong éttraction iﬂ the intermediate energy
can ﬁdt be considerea-by the models with no CDD poles. »Therefore we
mzy conclude that CDD.poles are necessary. to generate a phyéical p-meson

im the present model to represent distant singularities.

~3h.
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APPENDIX
In Sec. 2 the three condtions (a), (b), and (c) are quoted as
teing equivalent to the absence of CDD poles. We will discuss their
necessity in some detail in this Appendix. The reduced partial wave
amplitude Bl(s) is assumed to.satisfy a partial-wave dispersion

relation with no subtraction

A, (s)
B(s) = 2

g

Disc. [B (s")] ® Disc.[B, (s')]

1 1 , !

B, (s) ='2—;(—i[ s'-s - ds s - 8
L.H.C. i L 2
H (a.1)

, ' 1 pisc.[B (s')]
vils) = 5= s
L.H.C.

We only consider the case

lim sVl(s) < 4w,
5> +oo

which is consistent with linear Regge trajectories. The partial-wave

unitarity relation in terms of the R-functionl is

“{5t0]

’Dl(s) Rl(s)‘ ,

1
2 2]2 :
p (s) = = 2 [S - ] , (a.2)
(5) UEZial Im Bl(s)
R = n =
1T sty T (o) )s, (a))?
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The absence of CDD poles in the formulation of N/D method is interpreted
to mean that the solution of the N/D integral equation is uniquely

determined by the input information Rl(s) and Vl(s).
of uniqueness of the solution will be satisfied if the following three

conditions (a), (b), and (c) are assumed

N, (s)
(a) The decomposition Bl(s) //5-137/’ean be made in a way such that

Nl(s) contains only the left-hand cuts and le(s) contains only the
cuts from hpe to +o. The geros of Dl(s) are in one-to-one
correspondence with the poles of the amplitude Bl(s).

(v) The function Nl(s) satisfies a dispersion relation with no
subtractions and Dl(s) satisfies a dispersion relation with one
subtraction. No poles are present in either Dl(s) or Nl(s).

(c) The N/D integral equation constructed using Uretsky36 and
Mandelstam's” | method is Fredholm. |

ECoﬁdition (c) is necessary ffom the analysis of Refs. 16 - 18.
In order to see the necessity of condition (b), we first'constiuct the
N/D integral equation whieh satisfiescoﬁditions(a), (v), and (c), and
show that its solution is uniquely determined by the input informatien
Rl(s) and Vl(s); then we show that the solution is no longer unique
if condition (b) is violated; i.e., arbitrary constants, which cannot
be determined from Rl(s) and Vl(s), will be contained in the solution.
In the'following discussion we do not use Levinson's theorem,hB which
is violated if Regge trajectories rise indef:i.nitely.m"’)+5

A function C,(s) is defined as

cy(s) = W(s) - v;(s) Dy(s).

This requirement

€)1
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From condition (a) we have

2
-pl(s) Rl(s) Nl(s) for s 2 5,
Im Dl(s) = ’ -
0 for s <y,
and |
py(s) By (s) V) (s) Ny(s) =~ for s > Wi
Im Cl(s) = . : , ,
0 . ‘ for s < hu .

From the definition of V,(s) and condition (b), we see that Ci(s)

also satisfies a dispersion relation with no subtraction,

o0

plgs')Rl(S')Vl(S')Nl(s')

cp(s) = M(s) - V() Dy(s) = T |  as 2
e
(a.3)

-The once-subtracted dispersion relation for Dl(s) is

©«©
s
Dl(s) = Dl(O)_- = ds'

hug

oy (s) By (s7) My (s")
s'(s' - s)

,»  (A4)

where we have chosen the subtraction point at s = O. The subtraction

"peint is, of course, not significant. If we insist on choosing an

zrpitrary subtraction point,'for example, at s = S1s We need only

replace Di(o) in Eq. (A.4) by

as' py(s') By(s') Wy(s') -

51

Asp) = Dylsy) - =
. \ 2
by
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and the following discussion still'applies. Since it is not an essen-

tial complication, we only consider Eq. (A.4) here. Substituting Eg.

(A.4) into Eq. (A.3), we have

(=]

Nl(s) = Dl(Q) Vl(s) + . ds! Kl(s; s') Nl(s')’
hpz
(a.5)
. stV (s") - sV (s)
Kl(s; S') = ; - pl(s') Rl(S') ¢ :;'(S' - s)l . E

' The kernel Kl(s; s') 1is independent of Dl(O), and is determined

completely by the input information Rl(s)- and Vl(s), The Fredholm
condition (c) can be satisfied by properly choosing Rl(s) and Vl(s).
In particular, the conditions

lim  sVy(s) < 4= ,
5+

IRl(s)l & constant for any s

will guarantee that the integral equation Eq. (A.6) is Fredholm. The
resolvent of the kernel Kl(s; s'), to be denoted by Hl(s; s'),

satisfies the integral eguation

Hy(s58") = K(s;87) +
1y

ds" Kl(s; s") Hl(s",s').

Since Kl(s; s') is independent of the subtraction constant Dl(O), so
is Hi(s; s'). From the property of a Fredholm integral equation, the

solution of Eq. (A.5) can be written as



=
l,_l
~~
ui
o
|
=
S
—
o
g
LR
o~~~
1]
N

(a.7) -

=
=
—
0
~
{
<3
[
—
[}
~
+

where ﬁi(s)" is independent of Dl(O). "By substituting Eq. (A.6)

into Eq. (4.4), we obtain

Dy(s) = Dl(o) . ﬁl(s) ,
o ® p,(s") R (s') N, (s")
2.

Again the function ﬁl(s) is independent of D, (0). Therefore the

guotient

~

Nl(s) Nl(s)
2T R T 5

is independent of Dl(o), and is uniquely dete;mined by the input
information Rl(s) and Vl(s). »

Next we show that if condition (b) is not satisfied, the
solution will contain arbitrary constants which cannot be determined
by the inpﬁt information Rl(s) and Vl(s). We consider only the case
that Nl(s) satisfies a dispersion relation with one subtraction and
Dl(s) satisfies a dispersion relation with two subtractions.. Other
numbers of subtractions are trivial generalizations of this case. We
write N, (s), Dl(s), and Cl(s) in this‘cgse as Nil)(s), D£1)(s),

and c§1)(s). From the definition of C§l)(s))

-lo-
C§1)(s) = N{l)(s) - ¥y (s) D£l)(s),

and the restriction

lim sVl(s) < oo,
S— oo

1 ' :
C§ )(s)vvalso satisfies a dispersion relation with one subtraction,

C£l)(s) N§1)(s) - Vl(s) Dil)(s) '
© A ! y ’ 1 (1) ’
, S ep(s') Ry(s') Vo (s") Np77(s")
= KO + = ds ) s (s’ - 8) — »
huz
where v (A.7)
>\O = C](_l)(o): V

vwhere we have chosen the subtraction point at s = O and the generali«
zation to an arbitrary subtraction point is a trivial process as

discussed following Eq. (A.4). The dispersion relation for D§l)(s)

can be written as

. 2
-5 '

Mot oSN > ‘ ds
hue

o (s7) Ry () N{P(s7)

s 2(s' - 8) ’

)

where

[
|

oty , (.8)

2. = [%E Dil)(s)]

b
|

=0

Substituting BEq. (A.8) into Eg. (A.7), we have the N/D integral equation

for Nil)(s)

2

(J‘ B
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where Go(s), Gl(s), and Gy(s) are independent of the A's. The

1
ns) = =+ mH(s)
s quotient
o0 . .
A (s) . ' .N(l) ’ F.(s) + F.(s) + F (s
h(s) = 'Eg gt _}E__ + N Vl(s) + ds' Kl(s; s')h(s") , B.(s) = 1 (s) _ O( ) L5 l( ) L) 2( ) ,
, , 5 1 Dgl)(s) Go(s7'+ i Gl(s) + 7, 62(87
" (a.9) ,
: where
’ ( ')'_ 1, (S')R(S')‘s‘vl(S)-Svl(S) . N
Ks; s =% P 1 s'(s' - s) . : n o= =,
: o
We note that the kernel ’Kl(s; s') of Eq. (A.9) is the same as that of
. | _ N
s 2
%g. (A.5), so the solution of Eq. (A.9) can be written as . : T, = ;g .
N(l)(s) = x. F{s) + A F (s) +n, Fo(s) . . )
1 % o 171 2 e ) This result shows explicitly that Bl(s) contains two parameters n
where : o and ré; which cannot be determined from the input information Vl(s)
© :
1 and R;(s).
Fo(s)_ = s ds' o7 - Hl(s; s') , _ 1( )
e
» (A.10)
® 'Vl(s')
El(s) = s ds' Hl(s; s') - = ,
00
F(s) = fJ[- ds' Hy(sj s') Vy(s'),
P

where the functions Fi(s)'s are independent of A, Ay, and e

substituting Eq. (A.10) into Eq. (A.8), we obtain

p(M(s) = ag Gols) + ag Gyle) + 1 Gpls)
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Table I. Veriation of parameters in the potential Vl(s) and the

corresponding output width.

% Se il Toutput

5.1 X 1070 /u® 165 n° 0.84: 380 MeV
4.0 X100 /2 199 2 0.80 300
3.0 X 107 u® 251 ° 0.75 - 240
2.1.x’1o'5/u2 348 u? 0.73 190
1.5 x 1070 /8 467 u° 0.70 165
1.2 X 1070/ 576 12 0.69 148
1.0 X 1070 /u® 688 1o 0.69 138
0.8 X 1070 /u° 85k 7 0.684 | 127
0.7 X 1070 /u® 974 12 0.681 121
0.6 % 1077 /u® 1132 @ 0.679 115
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