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. IS IT POSSIBLE TO GENEBATE A PHYSICAL p-MESON 

* WITH NO CDD POLES? 

Chih Kwan Chen 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

July 6, 1971 

ABSTRACT 

The possibility of generating a physical p meson in 

LBL-5 

nn p wave 

I 1 · · t1.'gated A general model by the N D method with no CDD po e l.S re1.nves · 

•ith some dual properties is introduced to represent ,high-energy behavior 

of the input potential, so the arbitrary cutoff is eliminated. This 

h · t t b less than one, and shows model requirest~t the Pomeranc uk 1.n ercep e 

that the high-energy behavior of the potential is dominat~d by the 

Pomeranchuk tr~jectory. This model also gives a repulsive potential in 

the high energy region, and suggests the necessity of CDD poles to 

generate a p meson with correct mass. Also in the absence of CDD poles, 

it is shown that near-by singularities mainly control the width of the 

:utput particle and distant singularities mainly determine its mass. 
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I. INTRODUCTION 

The problem of generating the I = 1, nn p-wave resonance 

(p meson) has been investigated many times by a variety of methods 

since the orig~nal study by Chew and Mandelstam. 1 Many investiga• 

tions 2-11 have been based on the assumed absence of CDD 12 poles, but 

with the failure of such attempts to generate a·narrow-width p meson, 

the importance of inelastic channels as revealed by multi-channel 

calculations,l3,l4 and the progress made in understanding the connection 

15-18 between CDD poles and inelastic resonances, the speculation grows 

that CDD poles are necessary to generate a narrow width p meson. 

Previous analysis of the no-CDD-pole problem nevertheless 

suffers from certain defects. The most common defect-is the failure 

to recognize the importance of inelasticity and the effect of distant 

singularities even if CDD p~les are assumed absent. 19 A s~cond point 

to keep in mind concerning such calculations is that both near-by and 

distant "input" singularities lie in the unphysical region .and are 

usually model dependent. A third point is that some of the previous 

investigations involve numerical calculations, which leave uncertain 

the possibility of improving the output result. Therefore even though 

the collection of devices heretofore employed to generate a narrow 

width p·meson with no CDD pole has failed, all possibilities may still 

not have been exhausted. In this article we will review the problem of 

the p as a nn composite in a qualitative but analytic way based on 

the N/D method, in order to investigate the possibilities of improving 

the output width of the p meson and to see whether or not we can 

generate a p-meson at its physical mass with no CDD poles. 

We accept the fact that both near-by and distant singularities 

are model dependent, and we begin by representing both with arbitrary 
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parameters. The elementary p-meson exchange model is used as a standard 

to compare with other models of near-by singularities. By requiring a 

P meson of correct width and mass to be generated in the nn :p-wave 

amplitude, we obtain necessary conditions which must be satisfied by 

near-by and distant singularities. This analysis is performed in Sec. 

3. The condition .for near-by singularities is that the input potential 

attraction at low energy, which is assumed to be dominated by near-by 

singularities, must be substantially weaker than the attraction from 

the elementary p-meson exchange :potential. (The elementary p-meson 

exchange :potential generates a p meson with a width too large by a 

factor ~3, when distant singularities are adjusted to give correct 

P mass, 750 MeV.) Through the analysis of Sec. 3, it is shown that the 

mass of the output resonance is mainly· controlled by distant singulari­

ties, whereas the output width is mainly determined by near-by 

singularities. 

In Sec. 4 we consider models that represent near-by singulari­

ties by cross-channel Regge poles. The original study of Regge-:pole 

· 1 · Ref. (20) was discussed in the language of the exchange :potent1a 1n 

6 new form of the strip approximation. In our formulation of the Regge-

:pole exchange potential, which only represents near-by singularities, 

reference to the strip approximation can be avoided. The essential 

:problem of such a model is how to modify the cross-channel Regge-:pole 

terms in order to let them have correct boundaries of double spectral 

functions. In :principle this can be done by the Chew-Jones 

re:presentation, 6 but it is very difficult to perform an analytic 

calculation suitable for a qualitative discussion. We only consider 

p and Pomeranchuk trajectories, assuming that the J = l state, i.e., 

p meson, is dominant in the Regge p-exchange potential, while the J = 0 

-4-

state, i.e., the ghost with a proper ghost killing factor, dominates 

the Pomeranchuk exchange :potential. An approximation can be made based 

on these assumptions, and we can restore the correct boundary of the 

0 0 t• 21,22 Regge-:pole terms through the Froissart-Grlbov :proJec 10n. This 

result can be written down analytically, and the contributions of the 

Regge p-exchange :potential and Pomeranchuk exchange potential at the 

4l threshold are compared with that of elementary p-exchange 

:potentials. 

Our analysis in Sec. 4 implies that Regge-:pole exchange paten-

tials for the nn :p wave depend very much on the tdependence of Regge 

residues and on the slope of Regge trajectories. In the case of a 

p-Regge-pole exchange potential with the residue function and trajectory 

given by the nn ~ nn 23-26 Veneziano model, the attraction of the 

potential at low energy remains almost the same as that of the elemen-

tary p-meson exchange potential, so introduction of the Regge p-exchange 

potential will not help to reduce the output p width. The Pomeranchuk 

exchange potential for the 111l :p·vJave, with a "normal" residue 

function and trajectory slope (as, for example, in the model of Wong27), 

is attractive rather than repulsive in the low energy, so the output 

p width will be increased further by including this potential. This 

result coincides qualitatively with that of Ref. (28). But if the 

slope of the Pomeranchuk trajectory becomes small or the residue 

decreases abnormally fast away from the forward direction, the 

Pomeranchuk exchange potential for the nn :p-wave can become repulsive 

in the low-energy region and may reduce the output width. 

In Sec. 5 we introduce a model, which bases on some general 

dual properties extrapolated from the nn 23-26 Veneziano model for 

the p-f0 trajectory, and then generalize this model to include a 

.. 
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Pcmeranchuk trajectory. Our result shows that the high-energy behavior 

of the input potential, which is controlled by distant singularities, 

. 29 30 is dominated by the Pomeranchuk trajectory. Therefore the attempts ' 

to obtain a potential from the nn Veneziano model_with no Pomeranchuk 

trajectoryarenot eno~h to conclude the necessity of CDD poles ·to 

generate a p ~eson with correct mass. 

The model for distant singularities consists of the following 

three assumptions; 

(1) A definite isospin nn elastic amplitude is built ·up from a 

linear combination of three functions Ast' Asu' and Atu' where Ast 

=tains only s- and t-channel singularities but no u-channel singul.a.ri-

ties, and A and At have corresponding properties. The function su u 

A
5
t bas leaditig Regge asymptotic behavior at the limit s (or t) _,;to:>, 

t {or s) fixed but damps out faster than these leading Regge 

asymptotic behaviors at the limit s (or t) ->too, u fixed. The 

fUnctions Asu and Ast have corresponding asymptotic behaviors. 

(2) The Regge asymptotic behavior of Ast at the limit 

s (or t) _, +oo, with t (or s) fixed is generated by s-(or t1 channel 

s~arities. The functions Asu and Atu have corresponding 

properties. 

1. (3) A dispersion relation with· a finite ntimber of· Subtractions is 

satisfied by the reduced partial-wave amplituQ.es. 

We show in Sec. 5 that this model leads to the conclusion that 

the Pomeranchuk trajectory intercept must be less than one; otherwise 

-d:Le three assumptions become inconsistent. Further, we show that the 

Pomeranchuk contribution to distant singularities causes a repulsive 

-6-

high-energy behavior, whereas the analysis of Sec. 3 requires an overall 

attractive potential in the region above the low-energy resonances to 

generate a physical p meson. This suggests the necessity of CDD poles 

in this model. 

In the Appendix a detailed formulation is giv~n of the N/D 

integral equation with no CDD poles. 



-7-

II. FORMULATION OF THE PROBLEM 

In this section we will write the N/D integral equation for 

the rrrr p wave and also define for later usage the elementary p-meson 

exchange potential. Certain detailed aspects of the N/D integral 

equation are discussed in the Appendix. 

The £ = 1, rrrr-partial wave amplitude A1 (s) is defined as 

1 
32rr f (2.1) I -1 dz p

1
(z ) A- (s,z ), 

s s s 

where the end points of the contour of the above integration on the 

z plane are fixed at zs 

r:al z ~~is if t or ___ s 

physical z 
s 

interval as 

u 

s 

±1, but the contour may deviate from the 

singularities of AI=l(s,zs) cross the 

is continued away from the s-channel 

physical region. A reduced partial wave amplitude B1 (s) is defined 

1 as 

2 s - 4[1 
4 

We assume that B
1

(s) satisfies a partial-wave dispersion relation with 

no subtraction : 

1 
2rri f d'' 

L.H.C. 

Disc.[B1 (s' )] + _!_ 
s' - s 2rri 

X 
Disc.[B1 (s' )] 

s' - s 

ds' 

(2 .1') 

where the contour J( ds' is taken around the left-hand singu-
L.H.C. 

larities generated by the coincidence of t and u singularities with 

the end points 

defined as 

z s 

-8-

+1 in Eq. (2.1) fixed. The potential v1 (s) is 

1 
2rri LH.C ds' 

Disc. [B1 (s')] 
(2.2) 

s' - s 

We write the partial-wave unitarity relation through the R-function 

method\ 

(2.3) 

total( ) 
(J£=1 s 
elastic( ) 

(J£=1 s J 

In the absence of CDD poles, the N/D integral equation from the R­

function1 method and that from Frye-Warnock's method3l are equivalent. 

We choose the R-function method, because its form is simpler. 

We assume the absence of CDD poles, that is, our solution is 

assumed to be uniquely determined by a knowledge of v1(s) and R1(s). 

This assumption can be formulated in the following precise statements19 
1 through the N/D method, 

(a) The decomposition B1 (s) = [N1 (s)]/[D1 (s)] can be made in a 

way such that N1 (s) contains only the left-hand cut and D1 (s) 

contains only the cuts from 4l to -+<x>, and the zeros of D1 (s) are 

in one-to-one correspondence with the poles of the amplitude B1 (s). 



• 

• 

-9-

(b) The function N1 (s) satisfies a dispersion relation with no 

subtraction, and D1 (s) satisfies a dispersion relation with one 

subtraction. No poles are present in either N
1

(s) or D
1

(s). 

(c) The N/D integral equation constructed by Uretsky 1 s method32 ,33 

is Fredholm. 

From the above statements (a) - (c), the N/D integral equation can be 

constructed as 

1 -; 12oo dsl 

4~ 

pl ( s I ) Rl ( s I ) Nl ( s I ) 

s 1 (S 1 -s) 

p (s 1
) R (s 1 ))~ 1 1 
sl 

S I - S 

(2.4) 
where we have normalized the subtraction constant of the dispersion 

relation for D1 (s) to one, since both D1 (s) and N1 (s) are 

proportional to that subtraction constant and the quotient ·N1 (s)/D1 (s) 

is independent of it. The condition to make the integral equation for · 

N h1 (s) Fredholm is 

-10-

<+co 

and 

(2 +co. J 

(2.5) 

The condition of Eq. (2.5) is satisfied for the input R1 (s) and v1 (s) 

if they are constrained by 

lim 
S-> +co 

R1(s) 
lim --r.:E" 
S-> +co S 

< +co 

0 

(2.6) 

for some positive E. 

In this article we consider only the input information which satisfies 

Eq. (2.6). 

As discussed above, the left-hand singularities in Eq. (1) are 

I-1 · 
generated when the cross channel singularities in A - (s,zs) in the 

zs plane encounter the end points 

energy behavior of the potential 

z 
s 

tl. We assume that the low-

defined by Eq. (2.2) is 

dominated by near-by singularities. Near-by singularities may be 

evaluated by approximating the amplitude by some explicit 

function and partial wave projecting on the s-channel p-wave amplitude 

as in Eq. (2.1) to find the discontinuity across the left-hand cut. 

The elementary p-meson exchange potential is derived by approxi-

mating the s-channel isospin one rrrr elastic amplitude by one 

t-channel and one u-channel p-meson term, 
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+ (gnrrp)2 To:;u) pl (z) l 
Re m - u f , 

~Vhere 

z u 

z s 

The factor 

function 

and 

lim 
X-> :too 

The rrrrp 

1 + --=2-=s~-
2 ' t - 41J. 

1 + 
2t 

2 ' u - 41J. 

1 + 2t 
2 s - 41J. 

1/2 is the isospin crossing matrix 

To:(x) is the threshold function. We 

To:(x) ±1. 

coupling constant 
2 

is g defined by 
nnp 

(g )2 
nrrp 

1 

lrm m 2 1 ·[Re m 2 ]~ 
p p 

2 2 1. 32rr 2[Re m - 41J. )2 
p 

p J 
(2.7) 

1 element, and the 

define To:(x) as 

(2.8) 

By partial-wave projecting the expression for AI=l(s,z ) 
p s 

in Eq. (2. 7) 

we can see that there are left-hand cuts starting from s = 41-!
2

- Re mp
2

, 

but no right-hand singularities. Therefore the elementary p-meson 

exchange potent.1'al v
1
e£·p (s) can be defined directly as 

-12-

1 
1 . 3~nl 

-1 

(2.9) I-1 dz A - ( s, z ) . 
s p s 

The potential can be evaluated explicitly, and it varies slowly through 

the low-energy region from numerical calculation. Its threshold value 

and asymptotic behavior are 

2 ·( 4 2 0 v~£·p(41J.2 ) 
(gn:rrp) 4 1 1 +-IJ. __ 

32:rr 3 ~ 2 2 Re m 2 
Re m Re m - 41J. 

p p p 

(2.10) 

and 
2 + 

I 

sV~£·p(s) 
(g1l!l[2) 20 / 4 2~1 

lim 2 + £n ( 1 ~\ 
32n Re 2 41-!2 " 

Re m 2 )' 
S--> -l<x> m p 

" 
p / j 

We note that there are alternative methods for defining the elementary 

p-meson exchange potential, but the behavior at low energy is always 

roughly equivalent to that of our potential. 

The above-defined elementary p-meson exchange potential ~Vill serve 

as the standard in this article when we compare various other models for 

representing near-by singularities, especially the Regge-pole exchange 

potential in Sec. 4. 

• 

' '' 
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III. ANALYSIS OF THE RELATIVE ROLES OF NEAR-BY 

AND DISTANT SINGULARITIES 

We have stated that both near-by and distant singularities are 

model dependent. In this section we will approximately represent both 

types of singularities through arbitrary parameters, and investigate the 

relative role of near-by and distant singularities in the solution. We 

shall find necessary conditions which the parameters must satisfy in 

order to generate a p meson with physical mass and width. 

We assume 

{ 
2 

al for 41-l < s < s c 

v1 (s) (3.1) 

bl 
for s < s 

l s . c 

The motivation for such an assumption is that the elementary p-meson 

exchange potential in Sec. 2 causes a relatively slow variation in the 

low-energy region, and the asymptotic behavior b1/s is consistent 

with the asymptotic behavior of the reduced partial-wave amplitude 

given by Regge theory. In addition, the parameter b1 can be chosen 

very large or very small to represent small deviations from an exact 

1/s asymptotic behavior. By the assumption of Eq. (3.1), we can 

approximate the kernel of Eq. ( 2. 4) as 

-14-

( al for 41-12 < s < s c' I 
! 41-12 <. s' < s 

j 
C I 

bl 
for S' 

41-12 < s < s c' 

n K1 (s; s') s < s' c 

"" (3.2) 
[p1 (s) R1 (s) p1 (s') R1 (s' )]~ 

bl 
ss' - for s < s, 41-1 2 < s' < s s c c. 

0 for s < s, s < s' c c 

With the kernel approximated by Eq. (3.2), the integral equation for 

h1N(s), i.e., Eq. (2.4), can be solved explicitly to give 

Re D1 (s) l - ~ 
J( 

s 
(bl 

+ b1x + b1Y ) • 
I 2 (s; sc), (3.3) 

J( J( J( 

2 
(al 

a
1

x by)' 2 •l 
-s p1 (s) +-- + -- for 41-l < s < sc, 

J( J( 

where 

ds' 

2 
Pl (s') 

S I - S 

2 
Pl (s') 

ds' 
s'(s' - s)' 
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e..nd 

2 

X 
rr E1 (b1 E2 + rra1 ) 

. 2 
rr(rr - a1E1 ) - bl E1E2 

J 

2 

y 
rr. b1 E2 . 

rr(rr- alElf - bl~lE2 J 

El L' ds p1
2(s) 

4~-t 

[ 
2 

E2 ds 
Pl (s) 
-2-

s 
sc 

ire assume 

1 for 

for 

R for 
co 

I'his assumption is consistent with experimental data. 3
4 

We must note 

:hat the form assumed in Eq. (3.4) does not prohibit a possible .logar-

ithmic dependence of the energy s at high energy, but we approximate 

it by a constant. From experimental evidence about the rrrr p-wave 

]phase shift and the inelastic factor,3
4 

we put 

2 
70 1-L ' 

-16-

2 
100 1-L ' 

We only need to consider the case 

5· (3.5) R 
co 

singularities turn out to be too weak to generate a p meson at 750 MeV. 

We put 

Rem 2 
p 

and require 

2 
30 1-L ' 

o, 

which corresponds to a requirement that a p-mes6n pole be generated at 

about 750 MeV. The output width rout is given by 

1 
----2 

. 30 1-L 

(3.7) 

In Eqs. (3.6) and (3.7) the right-hand sides are both functions f o a
1 

and s c Table I shows combinations of a1 and s c 

satisfy Eq. (3.6), i.e., that give the correct p-meson mass. 

corresponding values of the output width are also shown. 

that 

The 

From the results in Table I. we observe that in order to 

generate a p meson with mass 750 MeV and width 120 MeV, a1 must be 

much weaker than V~£·p·(4~-t2 ) ""5.lX 10-3/~-t2 . Furthermore, in the 

region of a1 where the output width is not far from 120 MeV, b1 

varies slowly even though the changes in a1 are large. These observa­

tions imply the following three qualitative properties; 

• 
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(1) The mass of the output p meson is mainly controlled by the 

distant singularities. 

(2) The width of the output p ·meson is mainly controlled by the 

near-by singularities . 

(3) If we assume that a physical p-meson can be generated through 

the present model, i.e.,., an N/D equation .with no CDD pole.s, the attrac­

tion of the potential at low energy, which is caused by near-by 

singularities, should cbe much weaker than that of the elementary 

p-meson exchange potential •. 

In the following sections some models to represent near-by and 

distant singularities are considered. 

-18-

IV. REGGE-POLE EXCHANGE POTENTIALs
20 

In this section, a model to represent near-by singularities by 

cross-channel Regge poles is considered. Such a model is called the 

Regge pole exchange potential.
20 

We consider only the p and 

Pomeranchuk exchange potentials in this section. In Ref. 20,Regge-:pole 

exchange potentials are formulated in the language of the new form of 

the strip approximation, 6' 35 and they represent both distant and near-by 

singularities. But the idea of Regge-pole exchange potentials for the 

representation of near-by singularities can be formulated without 

referring to the strip approximation. The essence of this model is to 

approximate the :rc:rc elastic amplitude by several t- and u-channel 

Regge poles, and then to project them onto the s-channel p-wave ampli-

tude to find their contribution to the discontinuity across the left~ 

hand cut. The difficulty arises due to the fact that an. ordinary Regge 

pole term does not have the correct boundary for its double spectral 

functions, and a naive s-channel partial-wave projection of such a term 

will pick up some unphysical near-by left-hand singularities. In 

principle this difficulty can be resolved by modifying the ordinary 

Regge pole term through the Chew-Jones representation6 in order to 

restore the correct boundary of double spectral functions. Such a 

process will involve extensive numerical calculations, 28,36-38 and is 

not appropriate for our qualitative discussion. Instead we make the 

following approximation to simplify the calculation. 

We first consider a t-channel p-Regge pole, which can be written 

as 

G ( t) 
p 

sin :rc ex (t) p 

1 
2 - Pcx (t)(zt) ). 

p 

(4.1) 
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We ~y approximate AP(t,zt) by the lowest nonvanishing partial wave 

~plitude, t-channe1 p wave in this case, and write it as 

(4.2) 

~ere A
1
P(t) is calculated from Eq. (4.1) through Froissart-Gribov 

projection. 21 , 22 We may argue alternatively that since p-meson contri-

bution is dominant over other higher spin resonances on the p·trajectory, 

we may approximate AP(t,zt) as in Eq. (4.2). 

To accomplish this projection we begin ey rewriting Eq." (4.1) 

into a definite signature form 

G (t) 
. p 
sin :rr a (t) 

p 

The discontinuity of the above expression with respect to zt is 

for zt > 1, 

T.be physical discontinuity should vanish in the region 

in order to give the correct boundary of double spectral functions. 

Froissart-Gribov projection implies 

The 

-20-

so the correct boundary is restored for the partial wave amplitude. 

Substituting Eq. (4.3) into the right-hand side for the case ;; = 1, 

we have 

1 
· GP(t) ·I"" 

2 
dz' 

16n
2 

zt(t,41l ) 

This can be evaluated as39 

F (t) 
p 

Since 

by the behavior39 

p (x) 
v 

we have 

-X-+-!«> 

Ql. (x) ;p~P (t) (x) }]=t (t,41l2). 

(4,4) 

r(£ + 1) . (x)-£-1 
r(£ + ~) 

1 
r(v + 2) 

. (x) v' r(v + 1) 
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2 
F (t = 41-1 + ll) p 

0: (t)-2 
(2) p 
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r(2) r~P(t) + ~) 

r(;) r~P (t) + y 

( 
2 )0:· (t)-1 fu..p 

[', 

D€fining a reduced residu~ G (t) as 
p 

we may rewrite Eq. (4.4) as 

G (t) 4 1 o: (t)-2 
~ . - . ---r . (2) p 
16n:2 3 (n)2 

1 
1 - 0: (t) 

p 

Substituting Eq. (4.5) into Eq. (4.2), we have 

• (o: ( t) + 2) 
p 

2 
t - 41-1 

sl 

0: (t)-2 
(2) p 

(4.6) 

We note that in Eq. (4.6) the right-hand side has no s singularities, 

and it has t singularities only for t > 41-1
2

. Therefore the Regge 

p-exchange potential ~·p(s) may be defined as 
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+A(u,z)). 
p u 

By evaluating Eq. (4.7) explicitly with the substitution of Eq. (4.6), 

its threshold value is 

~·p(4 2) 
1 . 1-1 

~ ( t) p 

0: (t)-2 
(2) p 

{

8' (0) . 0:~ (0) 
• ~ + 1 - o: (o) 

p p 

4 -------r . 
r(CxP(t) +f) 
r0P (t) + y · G (t) . p 3(n)2 

(4.8) 

We approximate G (t) by comparing the p-Regge pole term of p . 

Eq. (4.1) in the limit s.~+oo, t fixed, with the corresponding limit 

of the "standard" Veneziano model for the nn elastic scattering ampli-

. ~-~ 
tude (with p-f0 trajectory only but no Pomeranchuk trajectory). 

We find 

where 

G (t) 
p 

0: (t) 
p 

a 

at + b 

1 

2 Re m 
2 

' 
p 

r0P(t) +:i) 
r0P(t) + ~) 

1 
b = 2 

8 2 2 
Re m - 41-1 

p 

2 0: (t) 
(2!-1 a) P (4.9) 

(4.10) 
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Substituting Eqs. (4.9) and (4.10) into Eq. (4.8), we obtain 

. ' 
1 Rem 

2 

1 
2 2 

Re m - 4~ 
p 

2 --.en____£_ 
__ 2_--::::,....;2~2- + _1_ 

Re m 2 4~2 
p 

Comparing ~·p(4~2 ) with V~£·p(4~2 ) of Eq. (2.10), and taking 

we have 

Rem 2 
p 

2 
30 ~ , 

__ Rl•p(4 .. 2) 1 0 e£·p(· 4 2) v:· ,.. "'" • 5 v
1 

·· ~ . 

(4.11) 

This result implies that even if we replace the elementary p-meson 

exchange potential by the Regge p-exchange potential, the width of .the 

output p··JD.eson does not improve. This conclusion agrees with the result 

of Ref. 28 and Ref. 37· We note that our result is qualitatively 

different from that of Ref. 20, since the contribution of a Regge-pole 

exchange potential to an s-channel partial wave amplitude depends 

critically on whether the angular momentum of the s-channel partial 

.ave is even or odd. The conclusion of Ref. 20 is only applicable to 

the potential for an even angular momentum partial wave. In our model, 

if we calculate the p-exchange potential for the nn s wave, we also 

get 
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The Pomeranchuk exchange potential can be derived in a way 

similar -co that of the Regge p-exchange potential. This time we assume 

that the J = 0 ghost with a proper ghost killing factor is dominant, 

and approximate the t-channel Pomeranchuk term 

~(t) 
(4.12) 

by the expression 

By a calculation similar to that for the p~exchange potential, we have 

. opCt)-1 rGpCt> + ~) ~ 
(2) • • G ( t) 

r(~) r~(t) + ~ P J 

.(4.13) 

The Pomeranchuk exchange potential is defined as 

(4.14) 

Substituting Eq. (4.13) into Eq. (4.14) and evaluating at s = 4~2 , 

we have 



• 

( 
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(4.15) 2 
9 

1 

- 32/ 

We can approximate the residue Gp(t) by comparing with the Regge 

as}'ll~Ptotic behavior of Wong's model, 
27 which is a dual resonance model 

:for the rrrr elastic amplitude with a Pomeranchuk trajectory. We then 

have 

t3p(t) 
~(t) rr Bx . 2 ~(t) 

(4.16) (2) • • (21-1 a) 
r(~(t)) 

~(t) ~t + bP' 
1 

~ = a 2 2 Re m p 

bp 
1 

- 2 

Substituting Eq •. (4.16) into Eq. (4.15) and comparing wl.th ~·p(41l2 ), 

we have 

v/C41l
2

) 

~-p(41l2) 
~ . o. 8 X 10-

2 « 1 • 

This result implies that the Pomeranchuk exchange potential 

f'or the rrrr p wave with residue function and trajectory given by Eq. 

(4.16) is weaklyattractive at the threshold; therefore,the inclusion 

of such a potential will not improve the width of the output p ·meson. 

This result seems to agree qualitatively with Ref. 28 .. 

we note that in Eq. (4.15) if 

ap(o) 
~(o) ' 

-26-

.:: .. 
i.e., if either the residue decreases, as ltl increases, much faster 

than in the model of Eq. · (4.16) or the slope of the Pomeranchuk traj­

ectory at t = 0 is much smaller than that of Eq. (4.16), we can get 

a repulsive potential at low energy and may reduce the output p-meson 

width. 

Again we note that the conclusion of Ref. 20 about the 

Pomeranchuk exchange potential only applies to the even angular 

momentum partial wave potential. 
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V. A MODEL FOR DISTANT SINGULARITIES 

From the argument in Sec. 3 that distant singularities mainly 

control the mass of the output pole and near-by singularities mainly 

determine the width of the output pole,we can meaningfully study various 

models to represent distant singularities, even though the nature of 

the near-by'singularities may remain uncertain. 

In this section we first present a model with some of its 

assumptions extrapolated from the Veneziano model for the rrrr elastic 

amplitude with only the 23-26 trajectory, and subsequently 

generalize it to a model with the Pomeranchuk trajectory. We will see 

that the application of this model to an amplitude with only exchange-

degenerated p and f 0 ·trajectories, but no Pomeranchuk trajectory 

(like the rrrr Veneziano model),will lead to a high-energy behavior of 

the input potential, which is too weak to generate a p meson with the 

correct mass. This result, of course, agrees with the attempts29,30 

to extrapolate a potential for use in N/D calculation from the rrrr 

Veneziano model with only the p-f0 trajectory. By applying our m.odel 

to an amplitude with both Pomeranchuk trajectory and exchange · degener-

ated p-f0 trajectories, we will see that the high-energy behavior of 

the potential, which is dominated by distant singularities, is deter-

mined by the Pomeranchuk trajectory. Therefore it is not meaningful to 

question whether CDD poles are necessary or not for generating a p-meson 

w:ith the correct mass if the Pomeranchilk trajectory is not contained. 

We find, in the model with both the Pomeranchuk and the exchange 

degenerated p-f0 trajectory, that the Pomeranchuk intercept must be 

less than one for our model to be consistent. The high-energy 

behavior of the potential given by this model is repulsive, whereas. 

-2$-

we have shown in Sec. 2 that an attractive behavior is required to 

generate a p meson with the correct mass. This will imply the necessity 

of inclusion of CDD poles in this model. 

The model consists of the following three assumptions; 

(1) A definite isospin rrrr elastic-scattering amplitude is built · 

up from a linear combination of three functions Ast' Asu' and Atu' 

where Ast contains only s- and t-channel singularities but no 

u-channel singularities. The functions Asu and Atu have corres-

ponding properties. The function Ast has the leading Regge asymptotic 

behavior (they can be that of Pomeranchuk trajectory, or p and f
0 

trajectories,depending on what kinds of Regge trajectories we contain 

in this model) in the limit s (or t) ~too with t (or s) fixed, 

but it damps out faster in the limit s (or t) ~too with u fixed. 

The functions Asu and Atu have corresponding asymptotic behaviors 

with the limits changed properly. 

(2) The Regge asymptotic behavior of Ast in the limit 

s (or t) ~+oo with t (or s) fixed is generated by s-(or t-) 

channel singularities. The functions A and At have corresponding su u 

properties. 

(3) A dispersion relation with a finite number of subtractions is 

satisfied by the reduced partial-wave amplitude B£(s). (The reduced 

rrrr p-wave amplitude satisfies a dispersion relation with no 

subtraction.) 

Conditions (1) - (3) can be stated more explicitly as follows: 

A definite isospin s-channel amplitude has a Regge asymptotic behavior 

A I 
s s~ +oo 

t fixed 

(?(t) . (so:(t) + T(-s)o:(t)} ' 
sin rr o:(t) 

• 



• 

·.;here 

c·omes 
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T is the signatur~. Condition (1) means that the 

from the asymptoti.c behavior of Atu' and the term 

term sa(t) 

( -s )a( t) 

comes from that of Ast" Condition (2) further implies that the te.rm 

C-s )a(t) is generated by .s-channel singularities. From condition (3) 

we can define a potential Vp,I(s) as 

. I __ l_ 1 ds'Disc.[B_/(s')] 
V p, · ( s) - 2 11 i . s' - s 

. L.H.C. · 

mere we did not write .. the possible subtractions explicitly. We 

see. that does not contain any s-channel singularities. 

Condition (2) then implies that the term does not contribute 

to the high-energy behaYior of Vp,I(s), but the term sa{t) does. 

We next consider the "standard" n1f. Veneziano model, 23-26 

which contains only the .exchange degenerated p-f0 trajectory but no 

Pomeranchuk trajectory. Condition (3) is only true for the isospin one 

partial wave amplitude 40, 41 and the resolution of this difficulty will 

be discussed later. Here we only consider the isospin one partial~wave 

amplitudes. In the limit s -> +<>o, t fixed, the t-channel isospin zero 

and two amplitudes have the Regge asymptotic behaviors 

AI=O - 2 
t S-> +<>o 2 

f3(t) 
sin n a(t) 

t fixed 
(f0 trajectory) ~ 

AI=l 
t S-,'+ +<>o 

13(t) . (sa(t) _ (-s)a(t) }, 
sin n a(t) (p trajectocy). 

t fixed 

1 By introducing proper isospin crossing matrix elements, the contribu-

1tion of these two trajectories to the s-channel isospin one amplitude is 
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13(t) . (-s)a(t) . 
sin n a(t) 

S-> +<x> 

t fixed 

At the limit s -> +<x> with u fixed, we obtain 

S-> +<x> 

u fixed 

f3(u) • (-s)a(u) 
sin n a(u) 

We see that in the nn Veneziano model, the terms sa(t) and sa(u) 

are absent in the asymptotic behavior of the I = 1 s-channel amplitude 

If the terms a(t) s and s a(u) are present, and a(t) and a(u) are 

linear trajectories with sufficiently rapid damping residue B(t) and 

f3(u), they will give the potential ~=i(s) an asymptotic behavior 

l/s
2-b "n s (b · th · t t ) k ~s e· ~n ercep of the p-f0 trajectory from 

conditions (1) - (3). The absence of the terms sa(t) and sa(u) then 

implies 

lim 
S-> +<x> 

o. (5.1) 

Comparing thi.s result with the analysis of Sec. 3, it is apparent that 

such a potential cannot generate a p-meson with the correct mass. 29,30 

Hereafter we consider a model with both the Pomeranchuk 

trajectory and the exchange degenerated p-f
0 

trajectory, which is 

similar to that of the nn Veneziano model. Since there is no I = 1 

exchange-degenerated partner for the Pomeranchuk trajectory, the terms 
~(t) ap(u) 

s and s. will appear in the asymptotic behavior of AI=l 
s ' 

which contribute to the high-energy behavior of ~=1 (s) with odd p, 
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according to conditions (1) - (3). Therefore the high-energy behavior 

a: the potential is controlled by the Pomeranchuk trajectory. 

We must note that in the n:n: Veneziano modeL the I 1 

partial-wave amplitudes satisfy condition (3), 40 
but the I 0 and 

I = 2 partial wave amplitudes do not satisfy condition (3). 41 
The 

difference between even and odd isospin amplitudes is due to the 

presence and the absence of the function corresponding to Atu' But 

this property of the :n::n: Veneziano model, i.e., the violation of 

condition (3) if the function corresponding to Atu is present, does 

not seem to be essential. We may, for example, assume that a proper 

unitarization of the Veneziano model, or the addition of proper 

secondary terms
42 

will resolve this difficulty. In the following 

discussion we always assume condition (3) is satisfied, since we do 

not need any explicit representation of the amplitudes as in the :n::n: 

Veneziano. model. 

The Regge asymptotic behavior of the Pomeranchuk trajectory for 

the I = 1 s-channel amplitude can be written as 

s~ too 

t fixed 

s~ too 

u fixed 

1 
3 

13p(t) ~(t) ~(t) 
sin :n: ~(t) ' (s + (-s) } 

13p(u) ~(u) ~(u) 
sin :n:~(u) • {s + (-s) } ' 

~~ere the factor 1/3 is the isospin crossing matrix element, and 
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From the previous discussion about condition (1) - (3), we see that the 

high-energy behavior of ~=i(s) is given by 

·f 
. !. {-13 ( t) 3 p 

The right-hand side of Eq. (5.2) is indefinite if 

~(o) 1. 

Therefore we must assume 

~(0) 1 - € (e positive) 

in order to make condition (3) consistent with conditions (1) and (2). 

We assume that the Pomeranchuk trajectory is linear, then in 

Eq. (5.2) the t-channel Pomeranchuk trajectory mainly contributes to 

the forward direction and the u-channel one to the backward direction. 

Therefore we have 

lim sv1 (s) 
s~ too 

< o. 

This implies that the high-energy behavior of the potential from this 

model is repulsive, whereas., in Sec. 2, we see that 

lim sV1 (s) ~ 0.7 > 0 
s~ too 

is necessary to generate a p meson with mass 750 MeV. Therefore we 

cannot generate a physical p meson in this model. 

t 

" 
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We must note that the b1/s behavior of the potential in the ACKNOWLEDGMENTS 

t..::".::;ic-energy region is only an effective approximation. For example, a The author is grateful to Professor G. Chew for his constant 

:9ccential with sufficiently large attraction in the intermediate energy guidance and encouragement throughout the development of this work. The 

region and a repulsive high-energy tail- can still generate a pmeson with author is also grateful for many helpful discussions with Professor 

~ correct mass. Such a strong attraction in the intermediate energy s. Mandelstam. 

can not be considered by the models with no CDD poles. Therefore we 
( 

~conclude that CDD.poles are necessary. to generate a physical p-meson 

in the present model to represent distant singularities. 
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APPENDIX 

In Sec. 2 the three condtions (a), (b), and (c) are quoted as 

oeing equivalent to the absence of CDD poles. We.will discuss their 

necessity in some detail in this Appendix. The reduced partial wave 

amplitude B
1

(s) is assumed to satisfy a partial-wave dispersion 

relation with no subtraction· 

~(s) 

1 I 2n:i ds' -~.--~-- + 2ln:J.· 
Disc.[B1 (s')] f"' 

S I - S 

L.H.C. 

2!i f dB' 
L.H.C. 

ie only consider the case 

lim sV1 (s) < +oo., 
s~ +oo 

41-12 

Disc.[B
1
(s')] 

s, - s 

Disc.[B
1
(s')] 

ds' s' - s 

(A.l) 

~ch is consistent with linear Regge trajectories. The partial-wave 

unitarity relation in terms of the ~-function1 is 

(A.2) 

elastic( ) 
a£=l s 
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The absence of CDD poles in the formulation of N/D method is interpreted 

to mean that the solution of the N/D integral equation is uniquely 

determined by the input information R1 (s) and v1 (s). This requirement 

of uniqueness of the solution will be satisfied if the following three 

conditions (a), (b), and (c) are assumed; 

(a) 
. N1 {s) 

The decomposition B1 {s) ~ ean be made in a way such that 

contains only the left-hand cuts and D
1

(s) contains only the 

cuts from 41-12 to +oo, The zeros of D1(s) are in one-to-one 

correspondence with the poles of the amplitude B
1

(s). 

(b) The function N
1 

(s) satisfies a dispersion relation with no 

subtractions and D1 (s) satisfies a dispersion relation with one 

subtraction. No poles are present in either D
1

(s) or N
1

(s). 

(c) The N/D integral equation constructed using Urets~6 and 

Mandelstam's37 method is Fredholm. 

,Condition (c) is necessary from the analysis of Refs. 16 - 18. 

In order to see the necessity of condition (b), we first construct the 

N/D integral equation which satisfies conditions (a), (b), and (c), and 

show that its solution is uniquely determined by the input information 

R1 (s) and v1 (s); then we show that the solution is no longer unique 

if condition (b) is violated; i.e., arbitrary constants, which cannot 

be determined from R1 (s) and v1 (s), will be contained in the solution. 

In the following discussion we do not use Levinson's theorem, 43 which 

is violated if Regge trajectories rise indefinitely. 44•45 

A function c1{s) is defined as 

J 



(j 

( 

( 
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?~~m condition (a) we have 

r:l (,) Rl (s) Nl (•) 2 for s ? 4J.l. J 

Im D1 (s) 
2 for s < 4J.L , 

and 

{ :1(•) ',(•) vl(•) Nl(•) 2 for S ~ 4J.l. I 

Im c1 (s) 
2 for s < 4J.l. • 

From the definition of v1 (s) and condition (b), we see that c1 (s) 

also satisfies a dispersion relation with no subtraction, 

The once-subtracted dispersion relation for D1(s) is 

(A.4) 

abere we have chosen the subtraction point at s = 0~ The subtraction 

·point is, of course, not significant. If we insist on choosing an 

arbitrary subtraction point, for example, at s = s1, we need only 

replace D1 (o) in Eq. (A.4) by 

- srrl 1 "'2 ds ' 1 r..(s1 ) = D1 (s1 ) p1 (s') R1 (s') N1 (s') • -..,...,_...:;:...-...... s'(s' -s) 

4J.L 

-38-

and the following discussion still applies. Since it is not an essen-

tial complication, we only consider Eq. (A.4) here. Substituting Eq. 

(A.4) into Eq. (A.3), we have 

(A.5) 

1 
s' v1(s')- sv1 (s) 

s'(s' s) 

The kernel K1(s; s') is independent of D1(o), and is determined 

completely by the input information R
1 

(s) and v1 (s).. The Fredholm 

condition (c) can be satisfied by .properly choosing R1 (s) and v1 (s). 

In particular, the conditions 

for any s 

will guarantee that the integral equation Eq. (A.6) is Fredholm. 

resolvent of the kernel K1 (s; s'), to be denoted by H1 (s; s'), 

satisfies the integral equation 

H1 (s; s') = ~(s; s') +1"" ds" K1 (s; s") H1 (s",s'). 

4J.L2 

The 

Since ~(s; s') is independent of the subtraction constant D1 (o), so 

is H
1

(s; s'). From the property of a Fredholm integral equation, the 

solution of Eq. (A.5) can be written as 



-39-

(A. 7) . 

T.diere N'1 (s) is independent of D1 (0). By substituting Eq. (A.6) 

into Eq. (4.4), we obtain 

Again the function n1 (s) is independent of D1 (o). Therefore the 

.quotient 

is independent of D1 (o), and is uniquely determined by the input 

information R1 (s) and v1 (s). 

Next we show that if condition (b) is not satisfied, the 

solution will contain arbitrary constants which cannot be determined 

by the input information R1 (s) and v1 (s). We consider only the case 

that N
1

(s) satisfies a dispersion relation with one subtraction and 

D1(s) satisfies a dispersion relation with two subtractions. Other 

numbers of subtractions are trivial generalizations of this case. We 

'.orite N1 {s), 

and ci1 )(s). 

n
1

(s), and c
1

(s) in this case as Ni1 )(s), ni1 )(s), 

From the definition of cil) (s) , 

and the restriction 

lim svl(s) < +oo, 
s~ +oo 
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ci1 )(s) also satisfies a dispersion relation with one subtraction, 

ds' 

where 

p (s') R (s') V (s') N(l)(s') 
1 1 1 1 

s'(s' -s) .J 

(A.7) 

where we have chosen th~ subtraction point at s = 0 and the generali• 

zation to an arbitrary subtraction point is a trivial process as 

discussed following Eq. (A.4). The dispersion relation for ni1 ){s) 

can be written as 

A.l + s"-2 

where 

P (s'} R (s'} N(l)(s'} 
1 1 1 

'2 
s (s' - s} 

(A.8) 

Substituting Eq. (A.8) into Eq. (A.7), we have the N/D integral equation 

for N(l) (s) 
1 .J 

J 



( 

( 

h(s) 

h(s) 
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IS_(s; s')h(s') 

(A.9) 

w;e note that the kernel 'K1 (s; s') of Eq. (A.9) is the same as that of 

Eq. (A.5), so the solution of Eq. (A.9) can be written as 

-.mere 

(A.lO) 

f oo vl (s') 
s ds' H1(s; s') • -s-,-

4ji2 

where the functions Fi(s)'s are independent of Ao' Al' and ~· 

~ubstituting Eq. (A.lO) into Eq. (A.8), we obtain 
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where G0(s), G1 (s), and G2(s) are independent of the A's. The 

quotient 

where 

Nil)(s) 

nil)(s) 

F0(s) + r1 F1 (s) + r2 F2(s) 

G0(s) + r1 G1 (s) + r2 G2 (s) ' 

This result shows explicitly that B1 {s) contains two parameters r
1 

and r2, which cannot be determined from the input information v1 (s) 

and R1 (s). 
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Table I. Variation of parameters in the potential v1 (s) and the 

corresponding output width. 

\ 

al s bl = alsc r output c 

5.1 X 10-3 j~/ l/55 2 0.84• 380 MeV ll 

. 4.0 J( 10-3 /J.l2 
199 

2 0.80 300 ll 

3.0 X 10-3 /J.l2 
251 ll 

2 
0-75. 240 

2.1 )( 10-3 ;l 348 J.l2 
0.73 190 

1.5 X 10-3 /l 467 ll 
2 

0.70 165 

1.2 X 10-3 /J.l2 
576 ll 

2 I 0.69 148 

1.0 X 10-3 /l 688 J.l2 
0.69 138 

0.8 )( 10-3 !ll2 2 l -
854 ll 0.684 127 

0.7 X 10-3 /J.l2 
974 

2 0.681 121 ll 

o.6 X 10-3 !ll2 
1132 ll 

2 
0.679 115 
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