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ABSTRACT OF THE THESIS 

Simultaneous State and Parameter Estimation of Glucose Metabolism 
In Type 1 Diabetes Subjects 
 

by 

 

Vashishtha Janakkumar Bhatt 
 

    Master of Science, Graduate Program in Mechanical Engineering 
University of California, Riverside, June 2019 
       Dr. Thomas Stahovich, Chairperson 

 

Approximately 1.5 million people live with type 1 diabetes in the US alone. The 

chronic disease must be managed by adopting a strict glycemic control regimen. We have 

developed a prediction algorithm to aid in bolus calculation and meal planning. By 

continuously estimating the parameters of a physiological metabolism model, the 

algorithm can predict blood glucose concentrations 30-minutes in advance. Such a 

prediction system allows a subject to prevent hypoglycemic episodes. The algorithm uses 

continuous glucose monitor (CGM) measurements along with meal and insulin inputs to 

compute the best fit on a patient-specific model. The prediction accuracy is evaluated by 

computing the root mean squared error (RMSE) between predicted 30-minute 

concentration and the actual value. An average RMSE value of 18 mg/dl is achieved on 

the datasets. Also, over 83% of the predictions are within zone A of the Clarke error grid. 

Further, the system is implemented on a web server that interfaces with Dexcom’s share-

API. The web service makes prediction data available to care-providers in real time for 

timely intervention in hypoglycemia events.  
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1. Introduction 

Type 1 Diabetes (T1D) Mellitus is an autoimmune disorder that affects the body’s 

ability to produce insulin and thereby, metabolize glucose. Approximately 1.5 million 

people live with this condition in the US alone. While it is commonly known as ‘Juvenile 

Diabetes’, more adults live with the condition than children (National Center for chronic 

Disease Prevention and Health Promotion, 2017). Managing T1D requires keeping 

constant watch on blood glucose concentration and artificial insulin intake. Thus, 

managing the condition can become an overwhelming task for the newly diagnosed, 

especially children. With the increased availability of Continuous Glucose Monitoring 

(CGM) and computerized insulin pumps in the last decade, focus has shifted towards 

accurately anticipating glucose response to carbohydrate and insulin intake (David 

Rodbard, 2016). Research in this domain has ranged from advanced machine learning 

techniques to a control-theory approach to understanding glucose metabolism. This 

project focuses on the latter.  

Based on real patient data, several mathematical formulations are identified that 

can replicate real blood glucose (BG) behavior. These physiological models are expressed 

in the observer-canonical form and their parameters are fit to biological behavior. While, 

the blood glucose behavior simulated by a physiological model is repeaTable for a given 

set of inputs, real blood glucose behavior shows considerable variability across subjects 

and time. These deviations could be attributed to uncertainties in carbohydrate intake and 

unmodeled system behavior.  

Simultaneous state and parameter estimation of physiological model parameters 

can be achieved through Kalman Filters. CGM measurements are used to recursively 
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update the model physics and the updated model is used to generate predictions 30 

minutes into the future.  

The algorithm is implemented as a web service which can be set up with ease. 

The design and implementation borrow many elements from the open source ‘NightScout’ 

system (NightScout, 2019). It uses the Dexcom share API to download CGM data through 

HTTP POST requests. The website also provides 12-hour reports on prediction accuracy 

and glycemic control.  

The current prediction system also lays the necessary foundation work for a closed 

loop BG regulation system in concert with automated insulin pumps. Such “artificial 

pancreas” systems can lower the incidence of hypoglycemia and excessive time spent in 

hyperglycemia. Improved glycemic control is a pre-requisite for minimizing the 

complications from life-long diabetes (Group, 1993). Such a system would also help calm 

anxious nerves of newly diagnosed children and their parents.  

The next chapter focuses on compartmental models of glucose metabolism in type 

1 diabetics and the ever-evolving complexity of these models from a signal processing 

standpoint. Chapter 3 introduces existing approaches to hypoglycemia prediction and 

discusses the metrics used to evaluate prediction performance. Chapter 4 discusses the 

development of CGM devices and their accuracy metrics. The filtering and prediction 

algorithms are developed in chapter 5. A discussion of prediction results and their 

limitations is provided in chapter 6. Finally, chapter 7 provides an overview of the web 

service ‘SweetSpot’ developed in this project.  
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2. Compartmental Models 

2.1. Introduction 

Academic interest in computer assisted insulin therapy dates to the mid-1980s 

(Deutsh & Lehmann, 1996).  Given the wide variations in physiology across subjects as 

well as time-varying behavior patterns, optimal diabetes treatment is possible only with 

regular monitoring and patient-specific models. Work in this domain is split across 

physiological modelling (compartment models) and algorithm-based approaches. 

Furthermore, algorithmic approaches are supplemented through large scale data 

collection. ‘Knowledge Discovery through Data’ has found a lot of appeal in the diabetes 

community (Lebech, Johansen, & Hejlesen, 2016).  

Compartmental models of the glucoregulatory system are built from sub models of 

various physiological processes within the body. These include but are not limited to 

endogenous production of glucose in the liver, the extraction of glucose by the kidneys 

and various insulin dependent utilization mechanisms. One of the earliest full model 

implementations can be seen in AIDA (Lehmann & Deutsch, 1992).   Before AIDA, 

pharmacodynamic models were developed to simulate the action of subcutaneous insulin 

on glucose dynamics (Berger & Rodbard, 1989). Figure 1 provides a screenshot of a 

typical AIDA simulation with 5 meals and different insulin intakes. The compartment 

models used in the present work are described in the following sub-sections.  
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Figure 1: AIDA simulation for a single day 

2.2. Gut Sub compartment 

The gut subsystem mimics carbohydrate ingestion and glucose uptake. Several 

simulation models have been proposed. Lehman et al. proposed a single compartment 

model of glucose absorption that followed a trapezoidal gastric emptying profile (Lehmann 

& Deutsch, 1992). The amount of glucose in the gut, 𝐺𝑔𝑢𝑡 following the ingestion of a meal 

containing 𝐶ℎ millimoles of carbohydrate is defined as: 

𝑑𝐺𝑔𝑢𝑡

𝑑𝑡
= 𝐺𝑒𝑚𝑝𝑡 − 𝑘𝑎𝑏𝑠. 𝐺𝑔𝑢𝑡  (1) 
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𝑘𝑎𝑏𝑠 is the rate constant of glucose absorption into the blood stream. The rate of 

gastric emptying 𝐺𝑒𝑚𝑝𝑡 has a trapezoidal profile as shown in Figure 2 and describes the 

movement of ingested carbohydrate through the compartment.  

 

Figure 2: Rate of gastric emptying. (Lehmann & Deutsch, 1992) 

𝑇𝑎𝑠𝑐 and 𝑇𝑑𝑒𝑠 are the respective lengths of the ascending and descending branches 

of the gastric emptying curve and have default values of 30 minutes. 𝑉𝑚𝑎𝑥 is the maximal 

rate of gastric emptying and is set to 120 mmol/h. Furthermore, for small quantities, the 

rate of gastric emptying will not plateau out and was defined as: 

𝑇𝑎𝑠𝑐 = 𝑇𝑑𝑒𝑠 =
2 𝐶ℎ

𝑉𝑚𝑎𝑥
 (2) 

Man, et al. compared several models of glucose absorption against oral glucose 

tolerance test (OGTT) data (Man, Camilleri, & Cobelli, 2006). The database consisted of 

41 subjects with varying level of glucose tolerance. During the oral glucose tolerance tests, 
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75 g of glucose was administered, and researchers collected blood samples at 5-minute 

intervals up to 6 hours after ingestion. The Rate of Appearance (Ra) of glucose was then 

calculated.  

The present study uses a 2-compartment model proposed by Man et al. with a 

constant rate of emptying across the gut compartments. The model treats carbohydrate 

ingestion as step inputs. A descriptive image of the model is provided in Figure 3. 

 

Figure 3: Teo-compartment model of glucose absorption from gut. 

The model describes carbohydrate transit through the stomach and small intestine. It 

consists of a linear chain of three compartments. The discretized model Equations are: 

[

𝒒𝒔𝒕𝒐𝟏

𝒒𝒔𝒕𝒐𝟐

𝒒𝒔𝒕𝒐

∆𝒈𝒖𝒕

]

𝑘+1

=

[
 
 
 
 

𝒒𝒔𝒕𝒐𝟏(1−𝑘𝑒𝑚𝑝)+𝑼𝒄

𝒒𝒔𝒕𝒐𝟐(1 − 𝑘𝑒𝑚𝑝) + 𝒒𝒔𝒕𝒐𝟏𝑘𝑒𝑚𝑝

𝒒𝒔𝒕𝒐(1 − 𝑘𝑎𝑏𝑠) + 𝒒𝒔𝒕𝒐𝟐𝑘𝑒𝑚𝑝

𝒒𝒔𝒕𝒐𝑘𝑎𝑏𝑠𝑓 ]
 
 
 
 

𝑘

(3) 
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State variables are boldfaced and 𝑘 is the time step. This is a linear time invariant 

system where the carbohydrate input (in mg) is denoted as 𝑼𝒄. 𝑞𝑠𝑡𝑜1, 𝑞𝑠𝑡𝑜2 and 𝑞𝑠𝑡𝑜 is the 

carbohydrate content in each of the compartments (in mg). ∆𝑔𝑢𝑡 denotes the rate of 

appearance of glucose (in mg) in the blood stream.  The system response to a 30g 

carbohydrate input for different values of 𝑘𝑎𝑏𝑠  and 𝑘𝑒𝑚𝑝 = 0.9 is shown in Figure 4.   

 

Figure 4: System response to 30g carbohydrate intake at time t=0. 

2.3. Insulin sub compartment 

The insulin system incorporates the uptake of artificial insulin through 

subcutaneous injection. For type 1 diabetics, the secretion of insulin from the pancreas is 

not modeled. Insulin degradation occurs both in the liver and the periphery, however, 
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insulin clearance is modeled as a single rate constant.  A single compartment model of 

insulin is used for this study (Duke, 2010). 

[
𝑰𝒔𝒖𝒃

𝑰𝒄
]
𝑘+1

= [

𝑰𝒔𝒖𝒃(1 − 𝛼𝑖𝑟) + 𝑼𝑰

𝑰𝒄(1 − 𝛼𝑖𝑐) +
𝑓𝐼𝑆𝑰𝒔𝒖𝒃𝛼𝑖𝑟

𝑉𝐼𝑏𝑚

]

𝑘+1

(4) 

The parameters 𝛼𝑖𝑟 and 𝛼𝑖𝑐 are rate constants of insulin absorption from 

subcutaneous tissue and clearance respectively. For simplicity, the model does not 

consider variations in insulin type. 𝑈𝐼 denotes the insulin input in micro Insulin units µu. 

The ‘Insulin Unit (u)’ is the most basic measure of insulin. Injected insulin preparations are 

denoted in concentrations of u/ml denoting the amount of insulin present per milli liter of 

liquid.  𝐼𝑠𝑢𝑏 is the total amount of insulin present in subcutaneous spaces. 𝐼𝑐 denotes the 

insulin concentration in blood with units µu/ml. 𝑉𝐼 is the total volume of the insulin 

compartment in ml/kg. 𝑏𝑚 denotes the body mass of the subject in kg. An extra parameter 

𝑆 is added to represent insulin sensitivity of the subject on a scale of 0 to 1. Figure 5 shows 

the insulin concentration vs. time for a bolus of 10u taken at time t=0.  

 

Figure 5: System response to a 10u bolus at time t=0. 
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2.4. Glucose sub compartment 

The glucose sub compartment models the dynamic effects of insulin, carbohydrate 

and liver on blood sugar levels. Like for the meal subsystem several attempts have been 

made over the last two decades to make accurate physiological models for this. These 

models span a wide range of complexity.  This study uses the model defined by Plis et al. 

(Plis, Shubrook, & Schwartz, 2014). The model strikes a good balance between fidelity 

and mathematical simplicity. 

[
 
 
 
 
 
 
 
 
 
 
∆𝒆𝒈𝒑

∆𝒅𝒆𝒑

∆𝒊𝒏𝒅

∆𝒄𝒍𝒓

𝒈𝒎 ]
 
 
 
 
 
 
 
 
 
 

𝑘+1

=

[
 
 
 
 
 
 
 
 
 
 

−𝒈𝒎𝛼𝑒𝑔𝑝1

𝑄
+ 𝛼𝑒𝑔𝑝2𝑒

−𝑰𝒄
𝛼𝑒𝑔𝑝3

−𝛼𝑑𝑒𝑝1𝑰𝒄 (
𝒈𝒎

𝑄
+ 𝛼𝑑𝑒𝑝2)

−𝛼𝑖𝑛𝑑√
𝒈𝒎

𝑄

−𝛼𝑐𝑙𝑟1 [
𝒈𝒎

𝑄
]
𝛼𝑐𝑙𝑟2

𝒈𝒎 + ∆𝒂𝒃𝒔 + ∆𝒆𝒈𝒑 + ∆𝒅𝒆𝒑 + ∆𝒊𝒏𝒅 + ∆𝒄𝒍𝒓]
 
 
 
 
 
 
 
 
 
 

𝑘

(5) 

The endogenous production of glucose by the liver is represented by ∆𝑒𝑔𝑝 in mg. 

It is modeled a negative linear function of glucose mass in blood 𝑔𝑚 governed by rate 

constant 𝛼𝑒𝑔𝑝1.  It also varies exponentially with Insulin concentration. ∆𝑑𝑒𝑝 denotes the 

extraction of glucose (in mg) from blood due to insulin action in mg at a rate of −𝛼𝑑𝑒𝑝1 due 

to insulin action. ∆𝑖𝑛𝑑 (mg) accounts for the glucose utilization by the central nervous 

system at a rate of −𝛼𝑖𝑛𝑑.  Several authors have modeled renal clearance of glucose as 

a piecewise function (Man, et al., 2014). 

∆𝑐𝑙𝑟= {
−∝𝑐𝑙𝑟 (𝑔𝑐 − 115), 𝑔𝑐 > 115

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6) 
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The piecewise function is not differentiable, which can pose a problem for training 

models. As a remedy, in the present work, a first order polynomial approximation is instead 

used. While a higher order polynomial reduces the error with respect to the piecewise 

version, it increases the potential for linearization error during EKF implementation. A first-

order polynomial is therefore a good tradeoff.    

∆𝑐𝑙𝑟= −∝𝑐𝑙𝑟1 𝑔𝑐
∝𝑐𝑙𝑟2  (7) 

The total mass of glucose in the body 𝑔𝑚 (mg) is the sum of all the compartment 

contributions. Glucose mass is related to concentration 𝑔𝑐 (mg/dl) through volumetric 

parameter 𝑉𝑔 (dl/kg) which denotes the volume of glucose in blood (in dl) per kg of body 

weight. 

𝑄 = 𝑉𝑔𝑏𝑚 (8) 

Figure 7 provides an overview of the complete compartmental model used in the present 

work. The default values of the model parameters are listed in Table 1 along with their 

units of measure. The values have been discretized to 5 minutes. To check model 

behavior, a simulation is run for randomly selected days in the dataset one at a time. The 

model parameters in literature for insulin clearance and carbohydrate absorption were 

further adjusted by trial and error to ensure minimum variance between model-predicted 

and actual signals. A comparison between model predicted and actual BG is provided in 

Figure 7. 
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Figure 6: Complete system model. 

 

Figure 7: Model simulation vs. actual glucose concentration. Upper panel: Glucose concentration 
𝒈𝒄. Lower panel: Insulin concentration 𝐼𝑐 and meal inputs 𝑼𝒄 
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Table 1: Model parameter values and units. 

Parameter Value Explanation 

∝𝑖𝑟 0.04 Rate of insulin absorption. 

∝𝑖𝑐 0.165 Rate of insulin clearance. 

𝑉𝐼 1.42 𝑚𝑙/𝑘𝑔 Insulin volume. 

𝑘𝑒𝑚𝑝 0.9 Rate of gut emptying. 

𝑘𝑎𝑏𝑠 0.06 Rate of carb absorption. 

𝑆 1 Insulin sensitivity. 

∝𝑑𝑒𝑝1 0.128 Rate of insulin dependent utilization 

𝑓 0.2 Amplification factor 

∝𝑑𝑒𝑝2 90 Fitting parameter 

∝𝑖𝑛𝑑 6 Rate of insulin independent utilization 

∝𝑒𝑔𝑝1 0.165 Rate of endogenous glucose production. 

∝𝑒𝑔𝑝2 225 Fitting parameter 

∝𝑒𝑔𝑝3 15 Fitting parameter 

∝𝑐𝑙𝑟1 0.04 Rate of renal clearance 

∝𝑐𝑙𝑟2 1.676 Exponent of renal clearance 

𝑓𝐼 0.00005 Amplification factor 

𝑉𝐺 2.2 𝑑𝑙/𝑘𝑔 Glucose volume 
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The complete system model in observable canonical form is given by Equations 9 

and 10. 𝑔𝒄 denotes the blood glucose concentration in mg/dl.   

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑰𝒔𝒖𝒃

𝑰𝒄

𝒒𝒔𝒕𝒐𝟏

𝒒𝒔𝒕𝒐𝟐

𝒒𝒔𝒕𝒐

∆𝒈𝒖𝒕

∆𝒆𝒈𝒑

∆𝒅𝒆𝒑

∆𝒊𝒏𝒅

∆𝒄𝒍𝒓

𝒈𝒎 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑘+1

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑰𝒔𝒖𝒃(1 − 𝛼𝑖𝑟) + 𝑼𝑰

𝑰𝒄(1 − 𝛼𝑖𝑐) +
𝑆𝒇𝑰𝑰𝒔𝒖𝒃𝛼𝑖𝑟

𝑉𝐼𝑏𝑚
𝒒𝒔𝒕𝒐𝟏(1−𝑘𝑒𝑚𝑝)+𝑼𝒄

𝒒𝒔𝒕𝒐𝟐(1 − 𝑘𝑒𝑚𝑝) + 𝒒𝒔𝒕𝒐𝟏𝑘𝑒𝑚𝑝

𝒒𝒔𝒕𝒐(1 − 𝑘𝑎𝑏𝑠) + 𝒒𝒔𝒕𝒐𝟐𝑘𝑒𝑚𝑝

𝒒𝒔𝒕𝒐𝑘𝑎𝑏𝑠𝑓

−𝒈𝒎𝛼𝑒𝑔𝑝1

𝑄
+ 𝛼𝑒𝑔𝑝2𝑒

−𝑰𝒄
𝛼𝑒𝑔𝑝3

−𝛼𝑑𝑒𝑝1𝑰𝒄 (
𝒈𝒎

𝑄
+ 𝛼𝑑𝑒𝑝2)

−𝛼𝑖𝑛𝑑√
𝒈𝒎

𝑄

−𝛼𝑐𝑙𝑟1 [
𝒈𝒎

𝑄
]
𝛼𝑐𝑙𝑟2

𝒈𝒎 + ∆𝒂𝒃𝒔 + ∆𝒆𝒈𝒑 + ∆𝒅𝒆𝒑 + ∆𝒊𝒏𝒅 + ∆𝒄𝒍𝒓]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑘

(9) 

[𝒈𝒄]𝑘 = [
𝒈𝒎

𝑄
]
𝑘

(10) 
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3. Hypoglycemia Prediction 

3.1. Introduction 

Timely detection of hypoglycemia helps T1D patients prevent and minimize the 

adverse impacts of low blood glucose. Clinicians define hypoglycemia as blood glucose 

concentrations at or below 70 mg/dl. Signs and symptoms of hypoglycemia include 

fatigue, anxiety, sweating and hunger. Patients may also feel irriTable and notice paling 

of skin (Mayo Clinic, 2018). Hypoglycemia in T1D patients usually occurs as a result of 

overcompensation (by artificial insulin) to dangerously high insulin levels (hyperglycemia). 

Even in healthy people, hypoglycemia can occurs after meals because the body produces 

more insulin than needed. This type of hypoglycemia is called reactive/postprandial 

hypoglycemia. Remining in a hypoglycemic state can result in unconsciousness as the 

brain needs glucose to function. Moreover, degraded motor control in a hypoglycemic 

state can be catastrophic when driving or operating heavy machinery. Long term T1D and 

its associated higher occurrence of hypoglycemic events can lead to hypoglycemia-

unawareness. The body and brain no longer produce signs and symptoms associated with 

hypoglycemia, making detection and intervention difficult (diaTribe Learn, 2018). Timely 

hypoglycemia detection is therefore necessary for any computer-aided T1D support 

system. Moreover, the system must exhibit low false-positives rates as this would lead to 

a trust deficit between the user and the algorithm. This chapter will focus on previous 

academic work in this domain. A review of such work provides a baseline for evaluating 

the system developed in this work.  
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3.2. Scoring Prediction Accuracy 

Blood glucose predictions can be scored on a Clarke error grid which was 

developed in 1987 to quantify clinical accuracy of self-estimated blood glucose versus 

values obtained from a meter. The x-axis is the reference concentration (mg/dl) (meter-

value) and y-axis is the estimated concentration (mg/dl) (Clarke, Frederick, Carter, & Pohl, 

1987). The scatter plot evaluation is divided across five zones.  

 

 

Figure 8: The original Clarke Error Grid Analysis (Clarke, Frederick, Carter, & Pohl, 1987). 

For a prediction system: 

1. Zone A represents predictions that are within 20% of the true (sensor) value.  

2. Zone B represents predictions that differ from the true value by more than 20% but 

are inconsequential for treatment decisions. 



16 
 

3. Zone C represents predictions that lead to unnecessary treatment. 

4. Zone D represents predictions that are dangerous as they indicate a failure to 

detect hypo/hyper glycemia. 

5. Zone E represents predictions that would lead a patient to confuse treatment for 

hypoglycemia and hyperglycemia.  

To aid in evaluation of continuous glucose monitors, a rate-error grid was 

developed as shown in in Figure 9. Together with the original Clarke error grid, this 

evaluation system is known as the CG-EGA (Continuous Glucose – Error Grid Analysis) 

(Wentholt, Hoekstra, & DeVries, 2006). 

 

Figure 9: Rate-error grid analysis (Wentholt, Hoekstra, & DeVries, 2006). 

Historically, work on blood glucose prediction has employed statistical metrics for 

performance evaluation. This makes benchmarking and comparison difficult. The most 

common metric is the root of the mean of squared errors (RMSE). 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑏𝑔𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘 − 𝑏𝑔𝑎𝑐𝑡𝑢𝑎𝑙,𝑘)

2
𝑁

𝑘=1

 (11) 

𝑏𝑔𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘 is the predicted value of blood glucose at time step k and 𝑏𝑔𝑎𝑐𝑡𝑢𝑎𝑙,𝑘 is 

the actual value. For a given day, RMSE can be evaluated on the predicted blood glucose 

(at a future timestep) and actual blood glucose (at the same timestep).  

Another popular error metric concerns the relative absolute difference between the 

predicted and actual blood glucose values.  

𝑅𝐴𝐷𝑘 = |
(𝑏𝑔𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑘 − 𝑏𝑔𝑎𝑐𝑡𝑢𝑎𝑙,𝑘)

𝑏𝑔𝑎𝑐𝑡𝑢𝑎𝑙,𝑘
| (12) 

For the entire dataset, the RAD is averaged and expressed as a percentage.  

𝑀𝐴𝐷 =
1

𝑁
(∑ 𝑅𝐴𝐷𝑘

𝑁

𝑘=1

) × 100 (13) 

3.3. Review of Previous Work 

3.3.1. Autoregressive Estimation 

One of the simplest predictors that can be designed around CGM data is an 

Autoregressive (AR) model. There are numerous projects that span from simple AR 

estimators to more complex ARMAX (Autoregressive – Moving Average with Exogenous 

Input) systems.  

Let k denote the timestamp of a CGM sample. A 2nd order AR has the following 

form.  

𝑔𝑘 = 𝑎0 + 𝑎1𝑔𝑘−1 + 𝑎2𝑔𝑘−2 + 𝑤𝑘  (13) 
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The order of an AR model is also known as lag. A higher lag AR model can be 

applied to identify processes that evolve over a longer time period. The weights  𝑎1, 𝑎2 and 

𝑎0 are determined by least-squares curve fitting. 𝑤𝑘 is the process white noise. Even a 1st 

order model can predict crossing the hypoglycemia threshold 20-25 minutes ahead of time 

(Sparacino, et al., 2007). Sparacino et al. added an exponential forgetting-factor to past 

measurements that allows the weights to rapidly trach changes in the CGM signal. The 

prediction algorithm is described in Figure 10.  

 

Figure 10: AR parameter estimation and glucose prediction (Sparacino, et al., 2007). 

A comparison between actual blood glucose and predictions made 30 minutes 

ahead of time is shown in Figure 11. It is noted that the predicted signal tracks the actual 

CGM signal closely with exceptions at the peaks and nadirs. The average delay time for 

predictions during negative trends was found to be 12 minutes in the worst-case scenario. 
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The median RMSE of predictions error was 17.83 mg/dl for the entire dataset of 28 

subjects. 

 

Figure 11: A comparison of polynomial model (left) and 1st order AR model (right). Actual BG in 
dark. 30 minutes predicted BG in gray (Sparacino, et al., 2007). 

 

An autoregressive moving average (ARMA (p, q)) model is described in Equation 

14. Here, p and q are the orders of the AR and MA parts of the model.   

𝑔𝑘 = ∑𝑎𝑖𝑔𝑘−𝑖

𝑝

𝑖=1

+ ∑𝑤𝑘−𝑖𝜃𝑘

𝑞

𝑖=1

+ 𝑤𝑘  (14) 

𝑤𝑘 are the noise terms and 𝜃𝑘 are parameters of the moving average process. An 

ARMA model thus has p+q+1 parameters which must be estimated. These are estimated 

via Maximum Likelihood Estimation. Plis et al. used an ARMA model to predict blood 

glucose levels at 30-minute and 50-minute prediction horizons (Plis, Shubrook, & 

Schwartz, 2014). The results were compared to a physician predicted baseline in terms of 

RMSE. The ARMA model did not fare significantly better than the AR model with a mean 

RMSE over the dataset of 22.9 mg/dl. Oruklu et al. compared ARMA (3,1) predictions to 

3rd order AR predictions and found the ARMA model significantly improved prediction 

accuracy for type-2 diabetes subjects (Oruklu, Cinar, Quinn, & Smith, 2009). For a 30-
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minute prediction horizon, the ARMA model predicted over 81% of glucose values within 

zone A of the CG-EGA point error grid. Moreover, the system predicted 0% false positives 

(zone uD) for hypoglycemic events.  

 

Figure 12: Actual glucose values versus predictions at 5 minutes (PH=1) and 30 minutes (PH=6) (Oruklu, 
Cinar, Quinn, & Smith, 2009). 

Furthermore, Autoregressive models with Exogenous Inputs (ARX) consider the 

effect of carbohydrate and insulin intake.  

3.3.2. Bayesian Estimation Through Kalman Filters 

Bayesian estimation methods rely on the Bayes rule, which gives the probability of 

an event given prior knowledge of the conditions related to the event. Kalman filters 

provide sequential minimum mean squared estimation (MMSE) of a signal which is 

embedded in noise. The signal is characterized by a dynamical model. If the signal and 

noise are jointly gaussian, then the Kalman Filter is an optimal MMSE estimator (Kay, 

1993). Kalman filtering is a two-step process. First, the state is evolved through a transition 
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function along with the uncertainty in its estimate. Second, the measured signal is 

compared with the prediction from the first step. The error is used to calculate the ‘Kalman-

Gain’ which is then used to update the state estimate based on the relative uncertainty in 

process evolution and sensor measurement. The Extended Kalman Filer (EKF), Adaptive-

Extended Kalman Filter (AEKF) and Unscented Kalman Filters (UKF) used in this study 

are discussed in detail in Chapter 5.  

With the evolution of complex physiological modelling coupled with CGM data, 

Kalman filtering became an attractive option for prediction and de-noising algorithms. 

Knobbe et al. used an Extended Kalman Filter algorithm for CGM signals that is consistent 

across sensors based on optical and electrochemical processes  (Knobbe & Buckingham, 

2005). In their paper on CGM data smoothing, Fachchinetti et al. note that the signal to 

noise ratio in CGM signals is not constant, therefore, filter parameters must be 

continuously adjusted for noise (Facchinetti, Sparacino, & Cobelli, 2009). They compared 

the Kalman filter approach to the original moving average approach on simulated and real-

patient data and found significant improvements.  
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Figure 13: A comparison of Kalman filter (KA) and moving average (MA) denoising (Facchinetti, 
Sparacino, & Cobelli, 2009). 

 

Kalman filters can be used for predictions by evolving the updated state vector 

through the state-transition function repeatedly until the prediction horizon is reached. 

Palerm et al.. applied a linear-time-invariant glucose dynamics model to predict glucose 

concentrations 30-minutes ahead and generate warning-alarms for hypoglycemia. The 

study achieved a sensitivity and specificity of 90% and 79% respectively. Furthermore, 

their algorithm allowed for a user-defined warning threshold depending on tolerance of 

false-positives (Palerm & Bequette, 2007). To the author’s best knowledge, this is the 

earliest use of this technique. In his PhD thesis, Duke applied an EKF to his physiological 

model (a variant of which is used in this study) and predicted blood glucose values up to 

45 minutes into the future (Duke, 2010). The predicted results were evaluated on the CG-
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EGA and achieved a prediction accuracy of 84% and 65% for 15-minute and 45-minute 

prediction horizons. The study also compared results from AR and ARX models. A variant 

of the physiological model which incorporated exercise was also developed.   

 

Figure 14: Effect of prediction horizons on predictor performance (Palerm & Bequette, 2007). 

In both Duke’s and Palerm’s study, the parameters of the model remained 

constant. However, there is both an intra-patient and inter-patient variation in response to 

glucose and insulin inputs. Therefore, filtering approaches must combine state and 

parameter estimation. This is a difficult problem due to the large number of parameters 

and state variables even in conservative physiological models.  Wang et al.. tackled this 

problem by modelling glucose absorption from the gut as finite-impulse-response function. 

Glucose and insulin metabolism are defined as an AR process. A second order Extended 

Kalman Filter is used to recursively estimate the AR weights. The weights are assumed 

to evolve as function of noise alone. Furthermore, the consistency of the Kalman filter is 

evaluated through the Normalized Innovation Squared metric. The algorithm was applied 
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on both simulated and real patient data. The prediction system achieved a MAD of 10% 

and 20% respectively for simulated and real data (Wang, et al., 2014).    

 

Figure 15: CGM sensor readings versus 30-minute predictions (Wang, et al., 2014). 

3.3.3. Machine Learning Methods 

The application of machine learning tools in healthcare has picked up pace in the 

last decade. This is due to the availability of cheap computing power and storage. 

Hypoglycemia detection problems can be approached as classification problems (Hypo 

Yes/No) or regression problems as in previously discussed approaches. Research has 

mostly focused on the latter using recurrent neural networks (RNN). 

 Dubosson et al.. trained a classifier for detecting incidences of reactive 

hypoglycemia on real and simulated datasets. In their paper, they note that the problem 

is difficult due to imbalanced datasets and incorrectly labeled/missing data. A Random 
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forest classifier achieved F1 scores of 2.41%. The best performing classifier was a 

Support Vector Machine with an F1 score of 13.7%. Due to imbalanced datasets, the false 

positive rates were too high for the prediction system to be practical (Dubosson, Beatriz, 

& Schumacher, 2017).  

 Plis et al.. used a Support Vector Regressor (SVR) to identify the parameters of 

Duke’s physiological model. The gaussian kernel SVR was trained on features which 

encoded the difference between predicted and actual blood glucose from the model. The 

SVR achieved a 30-minute prediction accuracy of 19.5 mg/dl. For hypoglycemia detection, 

the SVR system achieved F1 score of 30%. However, when compared to physician and 

ARMA RMSE values of 19.8 mg/dl and 22.9 mg/dl, the SVR performed relatively well (Plis, 

Shubrook, & Schwartz, abcd, 2014). 

Pappada et al. developed a feed-forward neural network trained on 17 patients 

and tested its predictions on a 50-180-minute prediction horizons (Pappada, Cameron, & 

Rosman, 2008). The predictions were scored with MAD. They also provide breakdown of 

MAD in hypoglycemic and hyperglycemic regions. The prediction system achieved an 

overall MAD of 18.7% at the 100-minute prediction horizon. Moreover, the system failed 

at detecting hypoglycemia at the 100-minute horizon. The system achieves an overall 

MAD of 6.7% for the 50-minute prediction horizon but still struggles to detect 

hypoglycemia. This is due to the highly imbalanced nature of CGM datasets as subjects 

actively avoid hypoglycemia events.  
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Figure 16: Predictions over a 100-minute horizon versus actual CGM data for different training sets 
(Pappada, Cameron, & Rosman, 2008). 

 

Gandia et al. developed a feed-forward neural network with time-lagged data like 

that of Pappada et al. A network used a lag of 20, which translates to a time history of 100 

minutes. The predictions were evaluated at horizons of 15,30 and 45 minutes. The trained 

network was also benchmarked against a 1st order AR model developed by Sparacino et 

al. For a prediction horizon of 30 minutes, the network achieved a mean RMSE of 17.45 

mg/dl versus 20.27 mg/dl for the AR model on the same dataset. For a prediction horizon 

of 45 minutes, the system achieved an RMSE of 25.08 mg/dl versus 30.30 mg/dl achieved 

by AR. The system was also evaluated on CGM data from different device manufacturers. 
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The difference in prediction RMSE was within 1 SD of the mean (Perez-Gandia, et al., 

2010).   

 

Figure 17: Neural Network Architecture (Perez-Gandia, et al., 2010). 

Beyond just CGM samples, neural network models have been developed which 

consider compartment model predictions and meal inputs  (Mougiakakou, Prountzou, & 

Nikita, 2005). These methods, however, are beyond the scope of this work
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4. Continuous Glucose Monitoring 

4.1. Introduction 

The Diabetes Control and Complications Trial (DCCT) demonstrated that tight 

glycemic control can be achieved through frequent self-monitoring of blood glucose 

(Group, 1993).   Glucose finger sticks were introduced in the 1980’s to help patients 

accurately track blood glucose. Since their introduction, these porTable glucose meters 

have become smaller, more accurate and faster. While, extremely useful, finger sticks 

require pricking the skin to draw a blood sample. While not considered painful, this ‘wet’ 

procedure causes anxiety to those newly diagnosed (especially children). It also increases 

the risk of infections for those with weaker immune systems. This puts patients and 

caregivers at risk of contracting infections such as hepatitis B, HIV and hepatitis C 

(Geaghan, 2014).   A universal compliance standard does not exist for finger stick meters 

but the International Organization for Standardization suggests a 15 mg/dl error margin 

for glucose levels under 75 mg/dl and readings within 20% (zone A of CEGA) for glucose 

levels above 75 mg/dl (Olansky & Kennedy, 2010). 

 

Figure 18: Typical finger stick glucose meter (health24, 2017). 
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4.2.  Continuous measurement. 

Enzymatic measurement of glucose concentration based on hexokinase is the gold 

standard widely used in clinical laboratories. Current test-strip systems use glucose 

oxidase, glucose dehydrogenase and nicotinamide adenine  (Olansky & Kennedy, 2010).    

Aleppo et al. conducted a randomized trial with T1D subjects using CGM and traditional 

finger stick (BGM) measurements. During the study, 276 participants were divided into 

groups of CGM-only and CGM+BGM. Efficacy of glycemic control was evaluated for both 

groups.  It was noted that no severe hypoglycemic events occurred in the CGM-only group. 

Moreover, users in the CGM-only group showed the same level of glycemic control as the 

CGM+BGM group proving the safety and reliability of CGM meters.  The study also 

provided a vast set of CGM data with meal information. This dataset is used in the present 

study (Aleppo, et al., 2017).   The first CGM was approved by the FDA in 1999. Currently, 

there are at least 4 systems that see popular use. 

1. Dexcom’s G-series. 

2. Medtronic’s MiniMed. 

3. Abbott Laboratories Freestyle Navigator. 

4. Eversense Laboratories. 

4.2.1. The Sensor 

Currently available CGM’s measure blood glucose in the interstitial fluid through 

minimally invasive means. The sensor rests just under the skin and does not puncture 

blood vessels. The initial generations of devices required a warmup time ranging from a 

few hours to a day (Klonoff, 2005). The sensor uses the enzyme glucose oxidase which 

reacts with glucose to form hydrogen peroxide. The hydrogen peroxide reacts with 
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platinum inside the sensor to generate an electrical signal (Diabetes Forecast, 2014).   

Chen et al. note that there are three generations of glucose biosensors (Chen, Zhao, 

Hong, Zhu, & Qian, 2017). The first generation relied on the production-detection of 

hydrogen peroxide. The second generation employ electron-acceptors to solve the 

oxygen deficiency. Research on the third generation of glucose sensors is focused on 

getting rid of artificial mediators and the glucose enzyme.  The exhaustion of the glucose 

enzyme requires repeated sensor removals and insertion. This typically occurs at a 

frequency of 3 to 7 days.  Recently, the development of carbon nanotubes and graphene-

based electrodes have been intensively studied (Zhu, Gancedo, Flewitt, Xie, & Moussy, 

2012).  The chemistry behind the first-generation sensors is described in Equations 15 

and 16. The reduction of flavin adenine dinucleotide (FAD) in the glucose oxidase (GOD) 

enzyme results in the reduced form of the enzyme (𝐹𝐴𝐷𝐻2). The re-oxidation of flavin 

produces hydrogen peroxide as a byproduct.  

𝐺𝑂𝐷(𝐹𝐴𝐷) + 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 → 𝐺𝑂𝐷(𝐹𝐴𝐷𝐻2) + 𝑔𝑙𝑢𝑐𝑜𝑛𝑜𝑙𝑎𝑐𝑡𝑜𝑛𝑒 (15) 

𝐺𝑂𝐷(𝐹𝐴𝐷𝐻2) + 𝑂2 → 𝐺𝑂𝐷(𝐹𝐴𝐷) + 𝐻2𝑂2 (16) 

The measurements of hydrogen peroxide help in the simple design and 

miniaturized fabrication of the sensor. The sensor needle also has a protective layer to 

prevent an immune response. A more detailed discussion on sensor chemistry is beyond 

the scope of this work. 

4.2.2. Monitor and Signal Processing 

Modern CGM systems are connected wirelessly to the sensor apparatus. This 

allows for easy removal and changes. Some systems have eliminated the need for a 

dedicated monitor and send data directly to the subject’s smartphone over Bluetooth. 
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Some CGM systems are also bundled with insulin pumps to streamline the user interface. 

An example of the ‘MiniMed’ system by Medtronic is shown in Figure 19. Interfacing the 

CGM with a pump facilitates the development of closed loop insulin delivery systems, 

which are often called “artificial pancreas” systems.  

   

Figure 19: The 'MiniMed' 630G by Medtronic. 

 

 

CGMs measure glucose concentration in interstitial fluid rather than in blood. Thus, 

CGM measurements can lag the actual blood glucose concentration which presents a 

challenge to CGM accuracy.  Moreover, the data is corrupted by random noise.  Guerra 

et al. presented a deconvolution based approach relying on a linear regression model to 

account for the delay in glucose diffusion from blood to interstitial tissue (Guerra, 

Facchinetti, Sparacino, & Cobelli, 2012). The algorithm was tested on synthetic and real 

datasets and the results were evaluated on CG-EGA. A noTable aspect about this work 
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was that it treated the CGM device as a black box with no access to the raw electrode 

signals. The system achieved a score of 95% on zones A and B of the CG-EGA in the 

hypoglycemia region. It also outperformed the Kalman filter algorithm developed by 

Sparacino et al. discussed in chapter 3.   

 

Figure 20: An online system for improving CGM accuracy through deconvolution and SMBG 
measurements (Guerra, Facchinetti, Sparacino, & Cobelli, 2012). 
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5. Estimation & Prediction from Kalman Filters 

5.1. Introduction 

This study focuses on the use of Kalman filters to generate the minimum mean 

squared error approximation of the model described by Equations 9 and 10.  A review of 

previous work using this method is presented in Chapter 3. Multiple variations of Kalman 

filter based predictors are examined to identify the best performing algorithm. Figure 21 

shows the generic linear Kalman filtering process. Let the state vector be x with an external 

noise covariance Q. Let P be the prediction error covariance and R the sensor noise 

covariance. The update and measurement Equations are present in matrices A and H. 

The Kalman Gain matrix G provides the necessary factor to reconcile between the 

measured signal z and expected signal y. 

 

Figure 21: The general Kalman filtering process 

Predict:
𝑥𝑘+1|𝑘 = 𝐴𝑥𝑘

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘𝐴𝑇 + 𝑄𝑘

𝑦𝑘+1|𝑘 = 𝐻𝑥𝑘+1|𝑘

Measure:
∆= 𝑧𝑘+1 − 𝑦𝑘+1|𝐾

𝐺 = 𝐻𝑃𝐻𝑇 𝐻𝑃𝐻𝑇 + 𝑅𝑘
−1

Update:
𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐺∆

𝑃𝑘+1|𝑘+1 = 𝐻𝑃𝑘+1|𝑘𝐻𝑇(1 − 𝐺)
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The filtering process begins with predicting the state estimate and error at the next 

timestep. The pipe operator ‘|’ in the Equations provides context on how the 

state/measurement estimate is calculated. For example, the subscript ‘k+1|k’ indicates 

that the estimate at the next timestep (k+1) was calculated from the previous estimate at 

time k. Once, measurement from the sensor becomes available at time k+1, the error Δ is 

calculated. The Kalman Gain is computed from the prediction error and sensor noise. The 

prediction is now ‘updated’ using the Kalman gain and Δ as correction factors. The update 

Equation is like a recursive least square estimator. The filtering algorithm assumes a 

gaussian distribution of uncertainty.  Figure 22 shows how the Kalman filtering minimizes 

the uncertainty of mean between two gaussian distributions. 

 

Figure 22: Probability distribution of state, measurement and filtered estimate. 

5.2. An Adaptive Extended Kalman Filter for joint state & parameter estimation. 

The system being studied is non-linear in nature, moreover, the dependencies 

between the state variables and changing parameters make it time-variant. This is 

problem is not tracTable with the typical Kalman filter discussed in section 5.1. An 

Extended Kalman filter innovates on the first order Taylor series approximation of the state 

transition function. This is called the Jacobian.  The parameters of the model are assumed 
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to vary due to noise.  They are then taken as additional states in the system. Let x (n x 1) 

denote the vector of states and θ (p x 1) denote the vector of parameters. The augmented 

state is z (n + p x 1) with w and η representing the uncorrelated Gaussian white noise in 

the process and parameters respectively. The covariance matrix of process and 

parameter noise is Q (n x n) and ϕ (p x p) respectively.   

𝑧𝑘+1|𝑘̂ = [
𝑥𝑘+1

𝜃𝑘+1
] = [

𝑓(𝑥𝑘 , 𝑢𝑘, 𝜃𝑘)

𝜃𝑘
] + [

𝑤𝑘

𝜂𝑘
] (17) 

u is the vector of inputs (insulin and carbohydrates). The measurement function h 

has associated sensor noise v and noise covariance R (1 x 1). The measurement y is 

scalar as only the glucose concentration is measured.  

𝑦𝑘+1|𝑘̂ = ℎ(𝑧𝑘+1|𝑘̂) + 𝑣𝑘  (18) 

𝐹𝑘 = [
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝜃
0 𝐼

]

𝑥𝑘|𝑘,𝜃𝑘|𝑘

𝑎𝑛𝑑 𝐻𝑘+1 = [
𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝜃
]
𝑥𝑘+1|𝑘,𝜃𝑘+1|𝑘

 (19) 

 

Step 1: The state is predicted from Equations 17 and 18. The covariance of the 

prediction is calculated from Equation 20. 

𝑃𝑘+1|𝑘 = 𝐹𝑘𝑃𝑘|𝑘𝐹𝑘
𝑇 + 𝜓𝑘  (20) 

𝜓𝑘 = [
𝑄𝑘 0
0 𝜙𝑘

] (21) 

Step 2: The measurement is used to calculate the innovation Δ. The Kalman gain 

G is also calculated. 

Δk+1 = 𝑦𝑘+1 − 𝑦𝑘+1|𝑘̂ (22) 
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𝐺𝑘+1 = 𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇 (𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1

𝑇 + 𝑅𝑘)
−1

(23) 

Step 3: Update the state estimate and process noise covariance with the Kalman 

gain and innovation respectively. The covariance of prediction is updated accordingly.  

𝑧𝑘+1|𝑘+1̂ = 𝑧𝑘+1|𝑘̂ + 𝐺𝑘+1Δ𝑘+1 (24) 

𝑃𝑘+1|𝑘+1 = [𝐼 − 𝐺𝑘+1𝐻𝑘+1]𝑃𝑘+1|𝑘  (25) 

𝜓𝑘+1 = 𝛼𝜓𝑘 + (1 − 𝛼)(𝐺𝑘+1Δ𝑘+1Δ𝑘+1
𝑇 𝐺𝑘+1) (26) 

The algorithm assumes that external process noise encapsulates the time-varying 

nature of the parameters. α is a forgetting factor that controls how rapidly ψ is updated. 

Rather than a constant noise covariance, such a system allows the filter to track glycemic 

disturbances more accurately. The updated glucose concentration is now calculated.  

𝑦𝑘+1|𝑘+1̂ = ℎ(𝑧𝑘+1|𝑘+1̂ ) (27) 

Given the filtered state estimate 𝑧𝑘+1|𝑘+1̂ , a prediction can be made PH minutes 

into the future by computing Equations 17 and 18 𝑚 = 𝑃𝐻/𝐷 times for timesteps k+1 to 

k+1+m. D is the time discretization which is set to 5 minutes in the present study. 

Therefore, for a PH of 30 minutes, m=6.   

5.3. The Unscented Kalman filter for state estimation 

The extended Kalman filter relies on linearization of the state transition function 

when calculating the prediction error covariance. Given the strong non-linearities in the 

physiological model, The Unscented Kalman filter (UKF) might be a better choice. The 

UKF relies on sigma-points to estimate the true shape of the probability distribution rather 

than a simple linearization. While this does increase the required computational overhead, 
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it yields a more accurate estimate of error in the predicted state. Multiple strategies exist 

for the calculation of sigma points. This study uses the popular method described by 

Merwe and Van (Merwe & Wan, 2003). Consider a system described by Equations 28 and 

29.  

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘  (28) 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝜈𝑘  (29) 

Step 1: Let 𝑋𝑘  (𝑛 × (2𝑛 + 1)) be a matrix of sigma points. n is the number of state 

variables in f and each column in 𝑋𝑘 is an individual state. To initialize the system:  

𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 (30) 

α determines the spread of the sigma points while κ is a secondary scaling 

parameter. Let 𝑊𝑘  (1 × (2𝑛 + 1)) be the row vector of sigma point weights. 

 The sigma points for the latest state estimate 𝑥𝑘 are now calculated. The column 

index of the matrices  𝑋𝑘 and √(𝑛 + 𝜆)𝑃𝑘 are indicated in square brackets.  

𝑋𝑘[𝑖] = 𝑥𝑘 + (√(𝑛 + 𝜆)𝑃𝑘) [𝑖], 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 (31)  

𝑋𝑘[𝑖 + 𝑛] = 𝑥𝑘 − (√(𝑛 + 𝜆)𝑃𝑘) [𝑖], 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 (32) 

𝑋𝑘[0] = 𝑥𝑘  (33) 

 Each sigma point is now propagated through the non-linear process model f. Their 

weights are calculated in Equation 35 and 36. This is used to calculate the predicted state 

𝑥𝑘+1|𝑘 and covariance of the prediction.  

𝑋𝑘+1|𝑘[𝑖] = 𝑓(𝑋𝑘[𝑖]) 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 2𝑛 (34) 
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𝑌𝑘+1|𝑘[𝑖] = ℎ(𝑋𝑘+1|𝑘[𝑖]) (35) 

𝑊𝑘[0] =
𝜆

𝑛 + 𝜆
 (36) 

𝑊𝑘[𝑖] =
1

2(𝑛 + 𝜆)
 (37) 

𝑥𝑘+1|𝑘̂ = ∑𝑊𝑘[𝑖]𝑋𝑘+1|𝑘[𝑖]

2𝑛

𝑖=0

 (38) 

𝑃𝑘+1|𝑘 = ∑𝑊𝑘[𝑖](𝑋𝑘+1|𝑘[𝑖] − 𝑥𝑘+1|𝑘̂)(𝑋𝑘+1|𝑘[𝑖] − 𝑥𝑘+1|𝑘̂)
𝑇

2𝑛

𝑖=0

+ 𝑄𝑘  (39) 

 

Step 2: The measured signal is now used to calculate the innovation, innovation 

covariance C and the cross-covariance between the process and measurement B. This is 

then used to calculate the Kalman gain G. 

Δ𝑘+1 = 𝑦𝑘+1 − ℎ(𝑥𝑘+1|𝑘̂ ) = 𝑦𝑘+1 − 𝑦𝑘+1|𝑘̂ (40) 

𝐶𝑘+1 = ∑𝑊𝑘[𝑖](𝑌𝑘+1|𝑘[𝑖] − 𝑦𝑘+1|𝑘̂ )(𝑌𝑘+1|𝑘[𝑖] − 𝑦𝑘+1|𝑘̂)
𝑇

+ 𝑅𝑘

2𝑛

𝑖=0

 (41) 

𝐵𝑘+1 = ∑𝑊𝑘[𝑖]

2𝑛

𝑖=0

(𝑋𝑘+1|𝑘[𝑖] − 𝑥𝑘+1|𝑘̂)(𝑌𝑘+1|𝑘[𝑖] − 𝑦𝑘+1|𝑘̂)
𝑇

(42) 

𝐺𝑘+1 = 𝐵𝑘+1𝐶𝑘+1
−1  (43) 

Step 3: Finally, the filtered state estimate and error covariance are calculated.  

𝑥𝑘+1|𝑘+1̂ = 𝑥𝑘+1|𝑘̂ + 𝐺𝑘+1Δ𝑘+1 (44) 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 + 𝐺𝑘+1𝐶𝑘+1𝐺𝑘+1
𝑇  (45) 
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The matrix (√(𝑛 + 𝜆)𝑃𝑘) is calculated through the Cholesky decomposition.  

Like the EKF, the UKF can be extended to simultaneous state and parameter 

estimation by augmenting the state vector with the parameter vector. Also, innovation 

covariance matching can be used to arrive at an adaptive filtering scheme as in Equation 

26.  The filtered estimate of the state vector is now propagated through 6 timesteps to 

arrive at the 30-minute prediction.
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6. Prediction and Evaluation Algorithms 

6.1.  Introduction 

A variety of prediction algorithms were created and tested to identify which perform 

better at blood-glucose prediction and hypoglycemia prediction. Given the non-linear 

nature of the physiological model, both extended and unscented Kalman filter was used 

in the prediction algorithm. These filters were tested both in state-estimation and dual-

estimation mode. Adaptive Kalman filtering was also tested given that the nature of 

process noise is unknown. Lastly, to correct for reduced prediction accuracy during 

sudden drops in blood glucose, a mixed algorithm was also tested which combined an 

extended Kalman filter with an unscented filter as well as an infinite impulse response 

filter. The details of the various algorithms are described in the section below starting with 

a description of the skeletal filtering and prediction algorithm in section 6.2, followed by 

the various modifications. A naming system is developed to aid the reader. This is shown 

in Table 2. This convention will be used to refer to the prediction system from here 

onwards: <NOISE>_<FILTER>_<MODEL>_<ESTIMATION>_<INPUTS>. 

Table 2: Naming scheme 

Noise Filter Model Estimation Inputs 

Constant <C> Linear <KF> Pallerm <PAL> State <S> None <N> 

Process <A> Extended <EKF> Current <CR> Dual <SP> Carb <C> 

 Sigma <UKF>   Insulin <B> 

 AR <IIR>    
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6.2. The Skeletal Prediction Algorithm 

 For a given subject on a given day, the prediction and evaluation system operate 

as per the general algorithm given in Table 3. PH is the prediction horizon in minutes and 

D is the discretization parameter (5 minutes). vectors are boldfaced and zero-indexed in 

square brackets []. 

Table 2: Skeletal prediction algorithm 

1. Given timestamp k in and state 𝑧𝑘 

2. Get measurement CGM[k+1], inputs Carb[k] Bolus[k] and Basal[k] 

3. filter_predict(CGM[k+1], Carb[k], Bolus[k], Basal[k]) 

3.1. Calculate 𝑧𝑘+1|𝑘̂ = 𝑓(𝑧𝑘 , 𝑪𝒂𝒓𝒃[𝑘],𝑩𝒐𝒍𝒖𝒔[𝑘],𝑩𝒂𝒔𝒂𝒍[𝑘]) and 𝑃𝑘+1|𝑘 

3.2. Calculate 𝑦𝑘+1|𝑘̂ = ℎ(𝑧𝑘+1|𝑘̂) and 𝐻𝑘+1|𝑘 

3.3. Calculate innovation  Δk+1 = 𝑦𝑘+1 − 𝑦𝑘+1|𝑘̂   and gain 𝐺𝑘+1 

3.4. Update state estimate 𝑧𝑘+1|𝑘+1̂ = 𝑧𝑘+1|𝑘̂ + 𝐺𝑘+1Δ𝑘+1 

3.5. Update error covariance 𝑃𝑘+1|𝑘+1 = [𝐼 − 𝐺𝑘+1𝐻𝑘+1]𝑃𝑘+1|𝑘 

3.6. Let 𝑧𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑧𝑘+1|𝑘+1̂ , for m = 0 to PH/D 

3.6.1. 𝑧𝑛𝑒𝑥𝑡 = 𝑓(𝑧𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐶𝑎𝑟𝑏 = 0,𝐵𝑜𝑙𝑢𝑠 = 0,𝐵𝑎𝑠𝑎𝑙 = 𝑩𝒂𝒔𝒂𝒍[𝒌]) 

3.6.2. 𝒑𝒃𝒈[𝑚] = ℎ(𝑧𝑛𝑒𝑥𝑡) 

3.6.3. 𝑧𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑧𝑛𝑒𝑥𝑡 

3.7. return pbg 
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6.2.1. Failure Detection  

It was observed that during sudden drops in blood glucose levels occurring at or 

below 90 mg/dl, the filters do not converge to the new state/parameter estimates quickly 

enough before the hypoglycemic threshold. To account for this, a correction term is added 

to the generic scheme for future timesteps that adds the innovation error to the predicted 

blood glucose as per Equation 46. This error correction is applied to all filtering schemes 

and added before step 3.6.2.  

𝑖𝑓 Δ𝑘+1 < −3 𝑎𝑛𝑑 𝐶𝐺𝑀[𝑘 + 1] < 90, 𝑡ℎ𝑒𝑛 𝒑𝒃𝒈[𝑚] = 𝒑𝒃𝒈[𝑚] + Δ𝑘+1 (46) 

6.2.2. Dual Estimation and Adaptive Noise Covariance 

For a simple state estimator, the skeletal prediction algorithm shown in Table 3 

remains largely unchanged. Note that there is no parameter to augment, therefore 𝑧𝑘 =

𝑥𝑘 and 𝜓𝑘 = 𝑄𝑘. During adaptive estimation, the line 𝜓𝑘+1 = 𝛼𝜓𝑘 + (1 −

𝛼)(𝐺𝑘+1Δ𝑘+1Δ𝑘+1
𝑇 𝐺𝑘+1)  must be added to step 3.5.  

For the dual estimation scheme, the insulin dependent glucose utilization rate 

𝛼𝑑𝑒𝑝1 is augmented to the state vector as shown in Equation 47.  

𝑧𝑘 = [
𝑥𝑘

𝛼𝑑𝑒𝑝1
]  𝑎𝑛𝑑 𝑧𝑘+1|𝑘 = [

𝑓(𝑥𝑘 , 𝑢𝑘)
𝛼𝑑𝑒𝑝1

] (47) 

Steps 3.1 through 3.5 provide a general overview of the Kalman filter. To perform 

Extended Kalman filtering, the steps 3.1 through 3.5 must include Equations 17 through 

27. To perform Unscented Kalman filtering, Equations 28 through 45 must be included 

instead.  
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6.2.3. Mixed Prediction Algorithm 

To achieve a win-win situation across all performance metrics, experiments were 

also performed with a mixed prediction algorithm which contains a baseline scheme and 

a failure-mode scheme. The generic algorithm is now run twice at each timestep (once for 

each filter) and two pbg vectors are returned. A failure mode identification like the one 

developed in section 6.2.1 is applied. Equation 48 shows an example in which the baseline 

scheme is an adaptive dual estimation EKF (dAEKF) and the failure-mode scheme is an 

infinite impulse response filter (IIR).  

𝑖𝑓 𝑪𝑮𝑴[𝑘 + 1] < 90 𝑎𝑛𝑑 
𝑑𝐶𝐺𝑀

𝑑𝑡 𝑘+1
< 0 𝑡ℎ𝑒𝑛 𝑢𝑠𝑒 𝒑𝒃𝒈𝑰𝑰𝑹 𝑒𝑙𝑠𝑒 𝑢𝑠𝑒 𝒑𝒃𝒈𝒅𝑨𝑬𝑲𝑭 (48) 

6.3. Evaluation of Predictions 

 For PH=30, PH/D=6 and index m=5 denotes the blood glucose prediction 30 

minutes (or 6 timesteps) into the future. To evaluate prediction performance at any horizon 

m, the RMSE and MAD can be calculated for the entire day containing T=288 timesteps 

as shown in Equations 49 and 50. Note, vectors are zero-indexed, therefore filtering 

begins at timestep k=1 and 𝑝𝑏𝑔𝑘[5] indicates a prediction for the (k+6)th timestep. 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝒑𝒃𝒈𝒌[𝑚] − 𝑪𝑮𝑴[𝑘 + (𝑚 + 1)])2

𝑇−(𝑚+1)

𝑘=1

 (49) 

𝑀𝐴𝐷 =
1

𝑇
( ∑ |

(𝒑𝒃𝒈𝒌[𝑚] − 𝑪𝑮𝑴[𝑘 + (𝑚 + 1)])

𝑪𝑮𝑴[𝑘 + (𝑚 + 1)]
|

𝑇−(𝑚+1)

𝑘=1

) × 100 (50) 
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 The predicted 𝒑𝒃𝒈𝒌[𝑚] and reference blood glucose 𝑪𝑮𝑴[𝑘 + (𝑚 + 1)] is also 

plotted on the CG-EGA and the percentage of total points in each zone are recorded for 

the entire day. 

6.4. Benchmark Models 

Palerm et al. developed a 2nd order linear model of glucose metabolism to build a 

hypoglycemia classifier. The model dynamics are given by Equations 46 and 47 (Palerm 

& Bequette, 2007). The blood glucose concentration is represented by g and its rate of 

change represented by d. Further, the 2nd order derivative of glucose concentration is 

represented by f. 

[

𝑔
𝑑
𝑓
]

𝑘+1

= [
1 1 0
0 1 1
0 0 1

] [

𝑔
𝑑
𝑓
]

𝑘

+ [
0
0
1
]𝑤𝑘  (51) 

𝑦𝑘 = [1 0 0] [
0
0
1
] + 𝑣𝑘  (52) 

The first order AR model used by Sparacino et al. is shown in Equation 13 with 

higher order terms neglected. Both these models were evaluated on Dataset 1 and the 

overall results for each complete day given a prediction horizon of 30 minutes is shown in 

Table 4. The process noise covariance for Equation 46 is kept constant at 
𝑄

𝑅
= 0.00125  

as per the methodology of Palerm et al. The 30-minute predictions are compared in Figure 

23. Both prediction systems perform well overall with the AR model having a significant 

edge over the physiological model when detecting hypoglycemia episodes. The AR model 
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also has a higher overall RMSE for the dataset. Both the models are comparable when 

evaluating percentage of predictions in zone A.  

 

Figure 23: Comparison of 1st order AR and physiological model at PH=30 minutes. 

The model developed in this study is evaluated through an Extended Kalman filter. 

The process noise was kept constant as per the methodology of Palerm et al and failure 

detection was enabled. A significantly better performance on all evaluation metrics with 

exception to zone D predictions was observed. This shows that detailed physiological 

modelling improves prediction accuracy. The drawback of detailed physiological modelling 

is increased computational cost.   

 

Figure 24: Comparison of physiological models. Current Model=C_EKF_CR_S_CB. 
Palerm=C_KF_PAL_S_N. 
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Table 4: Comparison of prediction systems at PH=30 minutes. Overall mean (SD) on Dataset 1. 

Model Zone A % Zone B% Zone D% RMSE 

IIR 75.89 (5.65) 23.34 (5.40) 0.23 (0.55) 26.29 (4.20) 

C_KF_PAL_S_N 80.74 (5.63) 18.47 (5.20) 0.79 (1.35) 18.75 (3.59) 

C_EKF_CR_S_CB  85.22 (6.35) 14 (5.46) 0.77 (1.57) 16.12 (3.56) 

 

Accuracy increases as the prediction horizon is shortened. Figure 25 plots the 

zone A % for each prediction model with varying prediction horizons.  

 

Figure 25: Prediction Accuracy vs. Prediction Horizon for prediction system
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7. Discussion of Findings 

7.1. Introduction 

This study was conducted on two datasets. The first is from a single subject that 

recorded bolus insulin, basal insulin rate and detailed nutrition intake along with CGM and 

heart rate readings from a Dexcom G5 device over a 30-day period in free living-

conditions. This dataset will be hereby referred to as Dataset 1. The second dataset was 

compiled by Aleppo et al. for their study on CGM use in free living conditions. This consists 

of CGM readings of 285 participants along with carbohydrate intake and bolus data 

collected over 6 months. This data was further processed and divided participant-wise and 

day-wise. Days that contained missing CGM readings for over 4 hours were discarded. 

No such restriction was imposed on carbohydrate and bolus information. Therefore, while 

consistent CGM data was ensured, missing carbohydrate and meal data was allowed. 

This dataset will be referred to as Dataset 2. For a given subject on a given day, a file 

containing all the measurement and input vectors discretized to 5-minute intervals was 

created. The files (in csv file format) are organized with the input and measurement vectors 

on the columns and timestamps on the rows.  An example is provided in Table 2.  

Table 5: Measurement and Input vectors. 

T (min) CGM (mg/dl) Carb (g) Bolus (u) Basal (u) Heart Rate (bpm) 

740 133 0 0 0.039583333 65 

745 135 0 2.05 0.039583333 65 

750 134 0 0 0.039583333 83 

755 129 0 0 0.039583333 88 

760 127 0 0 0.039583333 77.5 

765 129 0 0 0.039583333 73 

770 129 32.8 0 0.039583333 73.28571429 
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7.2. Adaptive Noise Estimation 

To implement the adaptive filtering scheme developed in this study, the parameter 

α required careful tuning. For a prediction horizon of 30 minutes, the parameter was varied 

to identify the lowest possible overall RMSE on the dataset. Other metrics, such as zone 

A%, zone D% etc. were found to be unaffected while tuning α. Table 6 shows the results 

from the α tuning experiment. 

Table 3: Tuning α for AEKF estimation 

α tuning A_EKF_CR_S_CB  
ALPHA Zone A % Zone B% Zone C% Zone D% RMSE 

0.1 85.14 14 0 0.85 16.16 

0.2 85.16 13.97 0 0.85 16.11 

0.3 85.21 13.93 0 0.85 16.05 

0.4 85.23 13.91 0 0.85 16.01 

0.5 85.25 13.89 0 0.85 15.98 

0.6 85.3 13.84 0 0.85 15.95 

0.7 85.32 13.82 0 0.85 15.94 

0.8 85.39 13.77 0 0.83 15.94 

0.9 85.41 13.77 0 0.8 15.95 

 

To ensure Kalman filter consistency at the selected α, an additional check was 

introduced. The Innovation Magnitude Bound Test checks that Innovation Δ is unbiased 

and 95% of its values lie within 2σ. For a given day, the 30-minute predictions from 

A_EKF_CD_S_CB algorithm is plotted along with the carbohydrate and insulin inputs and 

the innovation from the filter in Figure 26.  
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Figure 26; Filter performance evaluation 
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7.3. Dual Estimation 

As was evident from Figure 26, the prediction system does not adapt to rapid drops 

in blood glucose. The innovation just preceding hypoglycemia episodes is outside the 2σ 

bounds. The filter fails to perform effectively as the underlying model fails to capture the 

system dynamics. In order to capture this behavior, the parameter 𝛼𝑑𝑒𝑝1 was varied as it 

captures the rate of blood glucose depletion due to physical activity. The new dual 

estimation and prediction scheme A_EKF_CR_SP_CB captures the hypoglycemic 

episodes better (as seen by reduction in zone D%). This is the ideal mix between the 

smoothness of physiological model and accuracy of an AR model. Evaluating the scheme 

on Dataset 1 for α=0.75 yields the comparison shown in Table 7. 

 

Figure 27: A comparison between state-estimation and dual-estimation prediction system at PH=30 

minutes. 
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Table 4: Overall performance of various prediction schemes on Dataset 1 at PH=30 minutes. 

Scheme Zone A% Zone B % Zone C % Zone D % Zone E% RMSE 

C_KF_PAL_S_N 80.74 18.47 0 0.79 0 18.75 

C_EKF_CR_S_CB 85.22 14.00 0.01 0.77 0 16.12 

A_EKF_CR_S_CB 85.41 13.78 0.81 0.81 0 15.96 

A_EKF_CR_SP_CB 83.06 16.61 0.02 0.29 0.01 18.28 

C_EKF_CR_SP_CB 82.39 17.34 0.00 0.28 0.00 18.80 

IIR 75.89 23.34 0.51 0.23 0.03 26.29 

 

The CG_EGA for the A_EKF_CR_SP_CB scheme applied on the worst performing 

day in dataset 1 is shown in Figure 28 for a prediction horizon of 30 minutes. 

 

Figure 28: CG_EGA for a 30-minute prediction horizon - A_EKF_CR_SP_CB 

 



52 
 

7.4. Experiments with the Unscented Kalman filter 

The Unscented Kalman filter was expected to perform better as it does not make 

gaussian approximations to noise. A comparison between a C_UKF_CR_S_CB and 

C_EKF_CR_S_CB shows minimal differences on most metrics but a slight improvement 

in zone D predictions for a 30-minute prediction horizon. A Q/R of 5 was found to be the 

necessary condition for the C_UKF_CR_S_CB scheme to pass the consistency tests. A 

comparison between the two (for a Q/R=5 in C_EKF_CR_S_CB) is shown in Figure 29. 

An adaptive scheme is also attempted for an α of 0.9 however, this led to a 

decrease in performance in zone D predictions with a slight improvement in RMSE 

compared to the A_EKF_CR_S_CB scheme, the A_UKF_CR_S_CB scheme performed 

better on zone D predictions when both were initialized with the Q/R=1 and α=0.9. A 

comparison between the algorithms is presented in Table 8. The UKF scheme was also 

applied to simultaneous state and parameter estimation to gauge its effectiveness in 

reducing zone D errors. Both the A_UKF_CR_SP_CB and C_UKF_CR_SP_CB schemes 

were found to perform worse. 

Table 5: A comparison between EKF and UKF schemes on Dataset 1 at α=0.9 and PH=30 minutes. 

Scheme Zone A% Zone B % Zone C % Zone D % Zone E% RMSE 

C_EKF_CR_S_CB 85.22 14.00 0.01 0.77 0 16.12 

C_UKF_CR_S_CB 85.57 13.69 0.65 0.65 0.00 17.12 

A_EKF_CR_S_CB 85.41 13.78 0.00 0.81 0.00 15.96 

A_UKF_CR_S_CB 84.79 14.52 0.00 0.69 0.00 16.12 

C_UKF_CR_SP_CB 82.88 16.16 0.00 0.96 0.00 17.05 

A_UKF_CR_SP_CB 83.52 15.57 0.00 0.91 0.00 16.95 
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Figure 29: A comparison between the UKF AND EKF schemes at α=0.9 and PH=30 minutes 
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7.5. Experiments with a Mixed Algorithm 

 As evident from the sections above, no single scheme performs 

satisfactorily on all metrics. Adaptive noise schemes perform better in all cases when 

looking at RMSE results. Dual estimations schemes perform better on the zone D metric 

at the cost of other metrics. UKF schemes only perform better at state estimation. For the 

first experiment, the C_UKF_CR_S_CB scheme is taken as the baseline predictor and the 

C_EKF_CR_SP_CB scheme is taken as the failure-mode predictor. To better predict 

hypoglycemia episodes, a second mixed algorithm with a baseline C_EKF_CR_SP_CB 

scheme and an IIR scheme with a forgetting factor of 2 as the failure-mode was also tried. 

This algorithm is referred to as C_MIXED_IIR_EKF.  

Table 6: A comparison of the mixed scheme on Dataset 1 at PH=30 minutes 

Scheme Zone A% Zone B % Zone C % Zone D % Zone E% RMSE 

C_EKF_CR_SP_CB 82.39 17.34 0.00 0.28 0.00 18.8 

C_UKF_CR_S_CB 85.57 13.69 0.0.9 0.65 0.00 17.12 

C_MIXED_CR_SP_CB 84.45 15.09 0.09 0.37 0.00 17.93 

C_MIXED_IIR_EKF 83.70 16.05 0.00 0.23 0.01 18.39 

 

The C_MIXED_CR_SP_CB scheme performs better on all metrics with exception 

to zone D when compared to C_EKF_CR_SP_CB. When compared to the 

C_UKF_CR_S_CB, the mixed scheme performs better only on the zone D metric. A 

comparison is now performed with the baseline schemes C_KF_PAL_S_N and IIR. The 

p-values for each performance metric are presented in Table 11. The null hypothesis being 

that the mixed scheme is not significantly better than IIR and C_KF_PAL_S_N. The 

C_MIXED_CR_SP_CB scheme does not perform significantly better than IIR or 

C_KF_PAL_S_N schemes with exception to benign errors (zone B) predictions. A 
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comparison between the schemes a different prediction horizon on dataset 1 is shown in 

Table 12. A comparison of the mixed scheme and C_EKF_CR_SP_CB at a prediction 

horizon of 30 minutes is provided in Figure 30. The C_MIXED_IIR_EKF shows the ideal 

tradeoff between RMSE of EKF/UKF schemes and the zone D prediction potential of the 

IIR schemes. Moreover, it also has reduced computational overhead in comparison to the 

C_MIXED_CR_SP_CB scheme.  

Table 7: Testing the significance of results with the C_MIXED_EKF_IIR scheme on Dataset 1 at 
PH=30. 

Scheme Zone A% Zone B % Zone D % RMSE 

IIR 0.38 4.65e-6 0.99 1.8e-5 

C_KF_PAL_N 0.99 0.45 0.24 0.985 

 

When comparing overall performance, both the mixed schemes perform well 

similarly at prediction horizons of 25 minutes or less. The C_MIXED_EKF_IIR scheme is 

also more consistent at prediction horizons of 15 minutes or less.  

Table 8: A comparison of zone A performance at different prediction horizons- mean (SD). 

  
  

PREDICTION HORIZON (minutes) 

30 25 20 15 10 5 

C_MIXED_CR_SP_CB 84.45 
(3.73) 

87.73 
(3.49) 

91.97 
(2.92) 

95.58 
(2.20) 

98.10 
(1.40) 

99.55 
(0.45) 

C_KF_PAL_N 80.74 
(5.00) 

84.12 
(5.57) 

88.47 
(4.49) 

92.52 
(3.85) 

96.18 
(2.52) 

98.97 
(1.03) 

IIR 75.89 
(5.65) 

83.19 
(4.33) 

89.21 
(3.66) 

94.81 
(2.78) 

98.43 
(1.30) 

99.73 
(1.30) 

C_MIXED_EKF_IIR 83.7 
(4.8) 

87.78 
(4.18) 

91.75 
(3.06) 

95.47 
(2.08) 

98.48 
(1.27) 

99.77 
(0.23) 
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Figure 30: A comparison between the MIXED and C_EKF_CR_SP_CB schemes at a PH=30 
minutes. 
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Figure 31: The CEGA for a single day on the mixed scheme at PH=30 minutes 

7.6. Influence of Carbohydrate and Insulin Information.  

The non-linear model relies on basal, bolus and meal input. Experiments were 

performed to identify the impact of these variables on the prediction accuracy.  

1. Exclude Carb but include Insulin C_MIXED_CR_SP_B. 

2. Exclude Insulin but include Carb C_MIXED_CR_SP_C. 

3. Exclude both C_MIXED_CR_SP_N. 
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The results of the experiments are shown in Table 13. The scheme performed 

expectedly worse when no inputs were provided. When only the meal inputs were ignored, 

the zone D performance improved slightly. When basal insulin inputs were ignored, the 

scheme performed slightly better on all metrics with exception to zone D. While the trends 

in results were not surprising, overall, when only one input was ignored, the performance 

degraded by an insignificant amount. Exclusion of bolus inputs caused the UKF scheme 

to diverge. This exposes a weakness in the mixed scheme implementation. Further 

experiments relevant to this topic are covered in section 7.7. 

Table 9: Comparison of performance with various inputs on Dataset 1. PH=30 minutes 

Scheme Zone A% Zone B % Zone C % Zone D % Zone E% RMSE 

C_MIXED_CR_SP_CB 84.45 15.09 0.09 0.37 0.00 17.93 

C_MIXED_CR_SP_B 83.6 16.02 0.05 0.33 0.00 18.45 

C_MIXED_CR_SP_C 83.87 15.59 0.04 0.38 0.01 17.78 

C_MIXED_CR_SP_N 81.38 18.15 0.00 0.46 0.00 18.49 

 

7.7. Influence of Heart rate on the prediction system 

Dataset 1 contains heart rate information discretized to a 5-minute interval. To 

incorporate this input, the system Equation for insulin dependent utilization was modified 

to the form shown in Equation 50.  

 

Δ𝑑𝑒𝑝,𝑘+1 = −𝐼𝑐,𝑘𝛼𝑑𝑒𝑝1.
𝐻𝑅

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
+ (

𝑔𝑚𝑘

2.2𝑏𝑚
+ 𝛼𝑑𝑒𝑝2) (50) 

The baseline heartrate was kept constant at 70 bpm. The prediction algorithm also 

assumes that heart rate remains constant during the prediction horizon. A comparison is 
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provided in Table 14. Except for a slightly lower RMSE, the inclusion of heart rate in the 

prediction scheme did not have any significant effect.  

Table 10: A comparison of performance with heart rate in a mixed scheme. PH=30 minutes 

Scheme Zone A% Zone B % Zone C % Zone D % Zone E% RMSE 

C_MIXED_CR_SP_CB 84.45 15.09 0.09 0.37 0.00 17.93 

C_MIXED_CR_SP_CBH 84.05 15.42 0.08 0.43 0.01 17.83 

 

7.8. Experiments on Dataset 2 

Dataset 2 contains a larger pool subjects in free-living conditions. The dataset does 

contain missing bolus and carbohydrate information. The inputs were determined to be 

Missing Completely at Random and thus suiTable entries must be filtered out to ensure a 

balanced comparison between the schemes. The filtering algorithm sorted the data based 

on the following two criteria: 

  1. Continuous CGM data was available from 08:00 to 23:00. 

2. At least 2 meal and insulin inputs were recorded. 

  A total of 37,436 candidate days were identified based on condition 1 alone. This 

was further filtered down to 15,263 candidate days after applying condition 2. 1000 days 

were selected at random to perform the experiments. The results are shown in Table 15. 

Table 11; Performance of various schemes on Dataset 2 at PH=30 minutes. Mean (SD). 

Scheme Zone A% Zone B % Zone D % RMSE MAD % 

IIR 74.35 (13.90) 23.40 (11.83) 1.04 (1.72) 31.07 (13.14) 15.82 (6.61) 

C_EKF_CR_SP_CB 78.06 (11.08) 20.22 (9.86) 1.31 (1.73) 28.79 (10.60) 14.27 (4.70) 

A_EKF_CR_SP_CB 77.21 (12.74) 20.46 (10.52) 1.62 (2.80) 29.95 (15.78) 14.71 (6.01) 

C_MIXED_EKF_IIR 78.15 (11.28) 20.16 (10.13) 1.32 (1.8) 28.26 (10.53) 14.05 (4.65) 

C_KF_PAL_SP_CB 71.95 (14.80) 25.25 (12.91) 2.53 (2.89) 29.11 (11.52) 16.18 (6.00) 
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 Overall, all the prediction schemes performed lower on dataset 2 than on dataset 

1. Moreover, the C_KF_PAL_SP_CB performed worse. The IIR scheme still boasts the 

best hypoglycemia prediction potential. However, the high overall RMSE makes it 

unsuiTable as an aid in bolus calculations. The C_EKF_CR_SP_CB scheme performed 

best on all metrics with exception to zone D predictions. The improvement in performance 

over the C_KF_PAL_SP_CB scheme shows the utility of patient specific modelling. The 

adaptive scheme performed similar relative to other schemes. The C_MIXED_EKF_IIR 

scheme showed the best overall performance.  

Table 12: Tests of statistical significance on Dataset 2. PH=30 minutes. 

Scheme Zone A% RMSE MAD % 

IIR 1 2.19e-22 1 

C_EKF_CR_SP_CB 1 1 1 

A_EKF_CR_SP_CB 4.53e-05 3.08e-14 1 

C_KF_PAL_SP_CB 2.65e-30 1 1 
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8. SweetSpot 

8.1. Introduction 

The algorithm has been adapted to incorporate real-time visualization of data and 

predictions as shown in Figure 32. User-Interface testing and visualization was first 

performed in MATLAB. Both Medtronic and Dexcom have device specific applications on 

smartphones shown in Figure 33. To develop a similar application would impose costs on 

the developer to manage separate codebase's for Android, iOS and Windows. A 

reasonable approach would be to develop a web application capable of running in a web 

browser which handles device compatibility. 

The web application was developed using the Django framework for Python. 

Django is a high-level web API that is optimized for speed even on handheld phones. It 

automatically manages scaling and graphics vectors based on device version. To improve 

security, the website can be hosted behind the user's own personal firewall. Off the shelf 

wireless LAN routers already have this functionality. An internet-enabled monitoring 

system also enables the user's treatment specialists and caregivers to monitor their BG in 

real time. The web service can be easily installed on a raspberry pi through the Apache 

framework unlike existing systems like Nightscout (NightScout, 2019) which require 

intermediate to advanced skill to setup on a 3rd party host. 
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Figure 32: MATLAB UI testbed 

 

Figure 33: handheld CGM apps developed by Medtronic and Dexcom 
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Figure 34 provides an overview of how the prediction framework functions. Figure 

35 provides an overview of code organization and resource management for the 

SweetSpot website. Sections marked in blue run in their own virtual environment. Subject 

data is stored in a MySQLite database. The scripts to download Dexcom-share data and 

Kalman filtering run asynchronously. 

 

Figure 34: An overview of the prediction framework. 
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Figure 35: Code Organization for the SweetSpot system in the Django framework. 

8.2.  Functionality 

Each user is expected to setup the web service on a cloud based virtual linux 

machine or personal computer. To aid in installation, a bash script is provided which 

installs the source code, apache server and wsgi on the host machine. This leaves the 

user to only conFigure the Dexcom settings and SSL certificates which is trivial. During 

installation, the installer guides the user to setup the administrator account for the website. 

Once completed, the service is active on the <domain name>/SweetSpot address and the 

user is greeted with the login screen as shown in Figure 36. 

 

Figure 36: SweetSpot login screen. 
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Once logged in, the user can view the last 2 hours of BG behavior on the home 

page. Predictions are non-shaded circles. BG values above 180 appear orange and below 

70 (hypoglycemia) appear as red. The main page is shown in Figure 37. 

 

Figure 37: SweetSpot home page. 

The administrator page shown in Figure 38 allows the user to enter bodyweight, 

time zone and Dexcom settings. Figure 39 shows the Report page which provides a pie 

chart overview of the number of points in the Clarke error grid over past 12 hours. It also 

plots a bar chart plotting blood glucose levels across the two clinical levels 90, and 150. 

The user can enter meal and bolus details into the input form below the page.  
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Figure 38: SweetSpot admin page. 

 

Figure 39: SweetSpot Report page. 
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The system also allows the user to receive email alerts to selected users at pre-

determined thresholds. Moreover, the input forms are only available to the 

user/administrator of the site.  
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9. Concluding Notes 

Hypoglycemia prediction from CGM data has seen increased research 

participation around the world since the last decade. This study attempts to compare 

existing systems and find possible alternatives in the signal processing domain. the project 

shows the positive impact of physiological modelling on a prediction scheme and 

demonstrated that patient specific models perform better than a one-size-fits all scheme. 

Different filtering strategies, extended, robust, sigma point were attempted to arrive at a 

scheme that shows improvement across all performance metrics. It was noted, that no 

single scheme performs on every measure. Compromises must be made depending on 

the end-user application. An IIR works well if hypoglycemia prediction is the only goal. 

However patient specific modeling through Kalman filters can yield better long-term insight 

into how behavior and bolus patterns affect glycemic control.  The utility of sigma-point 

filters to this application was also noted. Moreover, having multiple datasets of varying 

veracity shows how robust the prediction schemes are and whether relative performance 

is consistent.  

SweetSpot can be used as a data-gathering and performance evaluation tool given 

its scalability. The primary roadblock in developing machine learning algorithms is the lack 

of accurate data. 

Finally, I must acknowledge the role and support of my advisor Dr. Thomas 

Stahovich through my graduate school journey at UC-Riverside. I also thank my 

colleagues working alongside at the Smart Tools Lab – Kevin Rawson, Amirali Darvisadeh 

and Justin Gyllen for support on navigating the grad-school life and some memorable 

moments.   
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