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1 Interdisciplinary Program in Cognitive Science, Seoul National University,

2 Department of Computer Science and Engineering, Seoul National University,
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Abstract

In mathematical cognition, problem difficulty is a central vari-
able. In the present study, problem difficulty was operational-
ized through five arithmetic operators — addition, subtrac-
tion, multiplication, division, and modulo — and through the
number of carries required to correctly solve a problem. The
present study collected data from human participants solving
arithmetic problems, and from multilayer perceptrons (MLPs)
that learn arithmetic problems. Binary numeral problems were
chosen in order to minimize other criteria that may affect prob-
lem difficulty, such as problem familiarity and the problem
size effect. In both humans and MLPs, problem difficulty was
highest for multiplication, followed by modulo and then sub-
traction. The human study found that problem difficulty was
monotonically increasing with respect to the number of car-
ries, across all five operators. Furthermore, a strict increase
was also observed for addition in the MLP study.

Keywords: problem difficulty; arithmetic cognition; binary
numeral system; connectionist model; multilayer perceptron

Introduction

Mathematical cognition is the field of research concerned

with the cognitive processes that underlie mathematical abili-

ties (Campbell, 2005). Mathematical cognition involves com-

plex mental activities, such as identification of relevant quan-

tities, encoding those quantities into an internal representa-

tion, mental comparisons, and cognitive arithmetic. Most no-

tably, cognitive arithmetic is concerned with the mental rep-

resentation of numbers and arithmetic, and the processes that

access and use this knowledge (Ashcraft, 1992).

In cognitive arithmetic, problem difficulty is a central vari-

able (Ashcraft, 1992, 1995). There are at least three crite-

ria for operationalizing problem difficulty: (a) operand mag-

nitude (e.g., 1 + 1 vs. 8 + 8); (b) number of digits in the

operands (e.g., 3 + 7 vs. 34 + 78); and (c) the presence or ab-

sence of carry1 operations (e.g., 15 + 31 vs. 19 + 37). In par-

ticular, criterion (c) has been further investigated with regard

to the number of carries required to correctly solve a problem

(Fürst & Hitch, 2000; Imbo, Vandierendonck, & Vergauwe,

2007). In the present study, we investigated how the num-

ber of carries affected problem difficulty. Response time (RT)

1A carry in binary addition is the leading digit 1 shifted from
one column to a more significant column when the sum of the less
significant column exceeds a single digit. A borrow in binary sub-
traction is the digit 10(2) = 2 shifted to a less significant column in

order to obtain a positive difference in that column. This paper refers
to borrows as carries.
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0011 Result

10100 Carries

1011

+ 1010

10101 Result

+

Figure 1: Guiding examples of the five operators with carries.

from the time a participant sees a problem to the time the par-

ticipant answers the problem was used in the present study to

measure problem difficulty.

Previous studies that examine the ways humans process

numbers are mostly based on the highly familiar decimal

numeral system. Instead, the present study used the binary

numeral system, which may offer a novel way to mitigate

against the effect of previous experience with conventional

mathematical operations. Moreover, since the binary system

uses only 0 or 1 digits, it may reduce the problem size effect;

criterion (a): problems with smaller operands (e.g., 5 + 2,

4−1) are solved more quickly and accurately than problems

with larger operands (e.g., 7 + 6, 9 − 6) (Campbell, 1994;

LeFevre et al., 1996; Miller, Perlmutter, & Keating, 1984).

Therefore, to observe the effect of carries on problem diffi-

culty, the present study employed the binary system to control

for familiarity with the decimal system and criterion (a).

Extending the connectionist approach (Rumelhart & Mc-

clelland, 1986) to address problems of mathematical cogni-

tion may help us understand in detail why mathematics is

hard (McClelland, Mickey, Hansen, Yuan, & Lu, 2016). This

approach is effective because connectionist models are able

to learn many aspects of mathematical cognition. Also, these

models offer the possibility to provide concrete instantiations

of the mechanisms that grasp the nature of human knowledge

and learning within the domain of mathematics.

Previous research has demonstrated how the connection-

ist model can simulate arithmetic operations. For instance,

McCloskey and Lindemann (1992) simulated associative-

memory neural networks that learn single-digit multiplication

operations. However, these networks were unable to learn all

the given arithmetic operations. Utilizing recent advances in
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deep learning, Kaiser and Sutskever (2016) implemented a

recurrent network capable of learning either addition or mul-

tiplication of two long binary numbers. This model achieved

100% test accuracy. Franco and Cannas (1998) designed mul-

tilayer perceptrons (MLPs) that computed either the addition

or multiplication of two binary numbers. The MLPs were

constructed with at least one hidden layer and binary step

functions as activations. Instead of being learned from data,

the weights of the MLPs above were analytically designed.

Hoshen and Peleg (2016) made MLPs that learned arithmetic

addition, subtraction and multiplication from images of two

7-digit decimal integers through a numerical method.

The MLP was chosen as the connectionist model for the

present study due to its strong learning ability, owing to the

universal approximation theorem. According to the theo-

rem, an MLP can learn any function if its hidden layers

are large enough and its activation functions are squash-

ing functions like sigmoid (Hornik, Stinchcombe, & White,

1989). This implies that MLPs should be capable of learn-

ing arithmetic/modulo operations including addition, subtrac-

tion, multiplication, division, and modulo2. Also, MLPs are

a general type of neural networks capable of learning through

backpropagation (Rumelhart, Hinton, & Williams, 1986).

Based on these properties, we applied the MLP model to help

better understand problem difficulty in arithmetic/modulo op-

erations. In order to measure MLP’s problem difficulty, we

used conquest epoch, which is the number of epochs taken

by a model to correctly learn a given problem set. We pro-

pose this empirical measure since complex nonlinear map-

pings from harder problems to their correct answers tend to

require more epochs than easier problems. In this regard, the

conquest epoch can be used to measure the difficulty of learn-

ing and solving a particular problem set by MLPs.

Previous studies used one or two arithmetic operators to

study problem difficulty. In contrast, the present study inves-

tigated problem difficulty across five arithmetic operators3 —

addition, subtraction, multiplication, division, and modulo.

The present study also examined problem difficulty across

the number of carries for each operator. This provides a more

complete view of the impact of both arithmetic operators and

carries on problem difficulty. Furthermore, as far as we know,

the present study is the first to investigate the impact of oper-

ators and carries on problem difficulty in the context of both

humans and connectionist models.

Datasets

Operation Datasets For each operator, we constructed an

operation dataset, containing all possible operations between

two 4-digit binary nonnegative integers (ranging [0,24 − 1])
that generate nonnegative results. The dataset consists of

(x,y) where x is an 8-dimensional input vector that is a con-

catenation of the two operands, and y is an 8-dimensional out-

2The present study refers to the modulo operation as modulo.
3Strictly speaking, modulo is not an arithmetic operator; how-

ever, for simplicity, the present study assumes there are five arith-
metic operators including modulo.

Table 1: Operation and carry datasets. One operation dataset

exists for each operator, and this dataset is subdivided into

carry datasets.

Operation datasets

# Carries (n) + − × ÷, mod

0 81 81 161 214
1 54 27 11 13
2 52 19 17 9
3 42 9 20 4
4 27 29
5 5
6 4
8 8
12 1

Total 256 136 256 240

Carry datasets 5 4 9 4

put vector that is the result of computing the operands. In Ta-

ble 1, ‘Total’ is the number of pairs in each operation dataset.

Let us simply refer to, for example, the operation dataset of

subtraction as the subtraction dataset, and problems from the

subtraction dataset as subtraction problems. The subtraction

dataset is nearly half the size of any other dataset because

only problems satisfying a−b ≥ 0 were included. In the case

of division and modulo, the dataset size is 240 = 28 −24 be-

cause a÷b where b = 0 were excluded. The entirety of these

operation datasets was used to train MLPs.

Carry Datasets Operation datasets were further subdivided

into carry datasets. A carry dataset refers to the total set of

problems requiring a specific number of carries to solve cor-

rectly, for a given operator. With n denoting the number of

carries required to correctly solve a problem, multiplication

has 9 possible n. Hence, multiplication has 9 carry datat-

sets. The number of carry datasets for the other operators are

shown in Table 1. Let us simply refer to the carry dataset in-

volving n carries as the n-carry dataset, and problems from

the n-carry dataset as n-carry problems.

Experiment 1: Humans

Participants

153 undergraduate students (89 men, 64 women) from vari-

ous departments completed the experiment for course credit.

The average age of participants was 21.3 (SD = 1.8).

Materials

Problem Sets A problem set for a specific operator was

given to participants. Problems in a problem set were evenly

distributed across carry datasets so that participants answered

equal numbers of questions from each carry dataset. Question

distributions per problem set were as follows: addition – 50

problems across 5 carry datasets; subtraction – 40 problems

across 4 carry datasets; multiplication – 45 problems across 9

carry datasets; division – 40 problems across 4 carry datasets;

1507



modulo – 40 problems across 4 carry datasets. Arithmetic

problems were randomly sampled from each carry dataset

without replacement; let us refer to a set of problems sam-

pled from an n-carry dataset as an n-carry problem set. Sam-

pling without replacement prevented participants from an-

swering previously seen problems. However, in rare cases

where the number of problems in a specific carry problem

set were insufficient4, participants were presented with the

same problem multiple times. Each participant was given a

unique randomly sampled problem set. In a given problem,

two operands were given in a fixed 4-digit format (Figure 2).

This was done in order to control for the extraneous influence

of the number of operand digits on problem difficulty, as out-

lined by criterion (b) in the introduction.

Calculation Guidelines Calculation guidelines were pre-

pared for participants because of their unfamiliarity with the

binary system. The guidelines first explained the concept of

binary numbers, followed by guiding examples with detailed

step-by-step calculations, based on the right-to-left standard

algorithm (Wu, 2011). Guiding examples (Figure 1) for each

operator were organized as follows: addition – 2 addition

problems; subtraction – 2 subtraction problems; multiplica-

tion – 1 multiplication problem with 2 addition problems; di-

vision – 1 division problems with 2 subtraction problems;

modulo – 1 modulo problem with 2 subtraction problems.

More than one carry was involved in all guiding examples so

that participants grasped the mechanism of carry operations.

Procedure

Participants were randomly assigned to a subset of problems

pertaining to one of the five operators; 30 students were as-

signed to addition, 30 to subtraction, 33 to multiplication, 30

to division, and 30 to modulo. Participants studied detailed

calculation guidelines containing one or two guiding exam-

ples (Figure 1) for a given operator until they fully under-

stood the given operator. Participants then began the experi-

ment, solving problems through the command line interface

(Figure 2). The use of pen and paper was permitted to as-

sist in problem solving. After solving each problem, the true

answer was displayed (Figure 2) in order to help participants

understand their mistakes and perform more accurately for

subsequent problems.

Figure 2: Sample program output.

4This was the case for the multiplication 6-carry and 12-carry
problem sets, the subtraction 3-carry problem set, and the divi-
sion/modulo 2-carry and 3-carry problem sets.

Results

If a participant provided a correct answer for a problem, it is

reasonable to assume that this participant performed the cor-

rect number of carries to arrive at that answer. As such, only

RTs for correct answers were used in Experiment 1. Data

and detailed analytical results are available in the footnoted

repository5.

Response Time by Operator Each participant’s mean RTs

across all five operators were analyzed. Let us denote the

mean RT for a problem set of operator ∗ as RT ∗. Anal-

ysis of Variance (ANOVA) was used to investigate differ-

ences in RT ∗ across the five operators ∗ ∈ {+,−,×,÷,mod}.
ANOVA showed significant differences between all RT ∗

[F(4,148) = 78.65, p < .001, η2 = .68]. Further, a post

hoc analysis was performed to analyze comparisons between

all RT ∗. The results of the Games-Howell post hoc test can

be denoted by using the following notation6: RT× > RT+,

RT× > RT−, RT× > RT÷, RT× > RTmod , RTmod > RT+,

RTmod > RT÷ [p < .001], RTmod > RT− [p < .05], RT+ <
RT− [p < .01], but RT+ ≈ RT÷, RT− ≈ RT÷ [p > .05].
These results can be summarized as: RT+ � RT÷ � RT− <
RTmod < RT× (Figure 3a).

(a) Humans: Mean RT. (b) MLPs: Conquest epoch.

Figure 3: Problem difficulty by operator. The error bars are

±1SD.

Response Time by Carries Each participant’s mean RTs

across carry problem sets were analyzed. Let us denote the

mean RT for an n-carry problem set of operator ∗ as RT ∗
n .

Addition had 5 types of n-carry problems, n ∈
{0,1,2,3,4}. ANOVA showed significant differences be-

tween all RT+
n [F(4,145) = 43.45, p< .001, η2 = .55]. The

Games-Howell post hoc test revealed that RT+
0 < RT+

1 <
RT+

2 , RT+
0 < RT+

3 , RT+
0 < RT+

4 , RT+
1 < RT+

3 , RT+
1 <

RT+
4 [p < .001], RT+

2 < RT+
4 [p < .05], but RT+

2 ≈ RT+
3 ,

RT+
3 ≈ RT+

4 [p> .05]. These results can be summarized as:

RT+
0 < RT+

1 < RT+
2 � RT+

3 � RT+
4 (Figure 4a). As such, for

5https://github.com/sungjae-cho/cogsci2019
-appendix/tree/master/human

6A ≈ B denotes E[A] and E[B] are not significantly different [p>
.05]. A < B and B > A denote A and B are significantly different
[p < .05] and their expectations hold E[A] < E[B]. A � B �C � D
represents A ≈ B but A is less than any other right-hand operand (C,
D); namely, A<C and A< D. Likewise, concerning D, it indicates
C ≈ D, A< D and B< D.
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(a) Addition. (b) Subtraction. (c) Multiplication. (d) Division. (e) Modulo.

Figure 4: Humans: Mean RT by carries. The error bars are ±1SD.

(a) Addition. (b) Subtraction. (c) Multiplication. (d) Division. (e) Modulo.

Figure 5: MLPs: Conquest epoch by carries. The error bars are ±1SD.

n ∈ [0,2], RT+
n was strictly increasing7, but for all n, RT+

n

was monotonically increasing8.

Subtraction had 4 types of n-carry problems, n ∈
{0,1,2,3}. ANOVA showed significant differences between

all RT−
n [F(3,116) = 46.07, p< .001, η2 = .54]. The Games-

Howell post hoc test revealed all pairs of RT−
n had significant

differences. More specifically, RT−
0 < RT−

1 < RT−
2 , RT−

0 <
RT−

1 < RT−
3 [p < .001], RT−

2 < RT−
3 [p < .05]. The results

can be summarized as follows: RT−
0 < RT−

1 < RT−
2 < RT−

3

(Figure 4b). Therefore, RT−
n was strictly increasing with re-

spect to the number of carries n.

Multiplication had 9 types of n-carry problems, n ∈
{0,1,2,3,4,5,6,8,12}. ANOVA showed significant differ-

ences between all RT×
n [F(8,284) = 9.24, p < .001, η2 =

.21]. The results of the Games-Howell post hoc test can be

summarized as follows: RT×
0 < RT×

3 [p< .05], RT×
0 < RT×

6

[p < .01], RT×
0 < RT×

4 , RT×
0 < RT×

5 , RT×
0 < RT×

8 [p <
.001], RT×

1 < RT×
8 [p < .05], RT×

2 < RT×
5 , RT×

2 < RT×
8

[p < .01], RT×
3 < RT×

8 [p < .05]; there were no significant

difference between the remaining pairs RT×
n , and only RT×

12

was not significantly different from any other RT×
n . These

results can be summarized as: for n ∈ [0,8], RT×
n was mono-

tonically increasing (Figure 4c).

Division had 4 types of n-carry problems, n ∈ {0,1,2,3}.
ANOVA showed no significant differences between all RT÷

n

[F(3,116) = 1.20, p > .05, η2 = .03]. These results can be

summarized as: RT÷
0 ≈ RT÷

1 ≈ RT÷
2 ≈ RT÷

3 . Despite no sig-

nificant difference between any RT÷
n , a weak monotonically

7For every x and x� such that x< x�, if f (x) < f (x�), then we say
f is strictly increasing.

8For every x and x� such that x< x�, if f (x) ≤ f (x�), then we say
f is monotonically increasing.

increasing trend in mean RT was observable (Figure 4d).

Modulo had 4 types of n-carry problems, n ∈ {0,1,2,3}.
ANOVA showed significant differences between all RTmod

n

[F(3,116) = 7.78, p< .001, η2 = .17]. The Tukey HSD post

hoc test revealed that only RTmod
0 had significant differences

from any other RTmod
n . Specifically, RTmod

0 < RTmod
1 [p <

.05], RTmod
0 < RTmod

2 , RTmod
0 < RTmod

3 [p < .001]. These

results can be summarized as: RTmod
0 < RTmod

1 ≈ RTmod
2 ≈

RTmod
3 (Figure 4e). RTmod

n was monotonically increasing.

Experiment 2: Connectionist Models

Model

3000 MLPs (Figure 6) were trained for each operator. An

8-dimensional input vector comprised of two concatenated 4-

digit operands was fed to the MLP. The MLPs had only one

26-unit hidden layer with sigmoid. An 8-dimensional output

Hidden layer 

Output layer 𝐩

(sigmoid, 8 units)

64 units, sigmoid

Input layer 𝐱

(8 units) 

Operand 1 Operand 2

0 1 1 0 1 1 0 1

.1 .1 .3 .6 .4 .1 .8 .9

Prediction result ො𝐳

(TLU, 8 units)
0 0 0 1 0 0 1 1

Figure 6: The structure of the multilayer perceptron. The

model above predicts that 110+1101 is equal to 10011.
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vector with sigmoid was used in order to match the maximum

digit output of the arithmetic results. The predicted result is

acquired by processing the output layer through the threshold

logic unit (TLU), which transforms output numbers to 1 if

they are greater than 0.5, and to 0 otherwise.

Training Settings

MLPs learned arithmetic operations by using backpropaga-

tion (Rumelhart et al., 1986) and a stochastic gradient method

(Bottou, 1998) called Adam optimization (Kingma & Ba,

2015) with settings: α= .001, β1 = .9, β2 = .999, ε= 10−8.

An entire operation dataset was utilized as a training set to

train an MLP. For each epoch, a 32-sized mini-batch was ran-

domly sampled without replacement (Shamir, 2016) from the

training set. The weight matrix W [l] in layer l was initial-

ized to samples from the truncated normal distribution rang-

ing [−1/
√
n[l−1],1/

√
n[l−1]] where n[l] is the number of units

in the l-th layer; all bias vectors b[l] were initialized to 0. The

objective function was the sum of the cross-entropy H be-

tween the true result z(x) and output activation vector p(x)
where x is an input vector from a mini-batch: ∑xH(z,p) =

∑x [−z(x) · log(p(x)) − (1− z(x)) · {1− log(p(x))}].
For every epoch, accuracy was evaluated on the total op-

eration dataset and each carry dataset (Table 1). When 100%

accuracy for a carry or operation dataset was attained, the cur-

rent number of epochs was recorded as the conquest epoch of

the dataset. Training was stopped when 100% accuracy for

the operation dataset was reached.

Results

Data and detailed analytical results are available in the foot-

noted repository9.

Conquest Epoch by Operator The conquest epochs of

MLPs across operation datasets were analyzed. Let us de-

note the conquest epoch for the operation dataset of oper-

ator ∗ ∈ {+,−,×,÷,mod} as e∗. ANOVA showed signif-

icant differences between all e∗ [F(4,14995) = 92838.78,
p < .001, η2 = .96]. The Games-Howell post hoc test re-

vealed that the differences between all pairs of e∗ were sig-

nificant [p < .001]. More specifically, these results can be

summarized as: e÷ < e+ < e− < emod < e× (Figure 3b). This

mirrors the ordering of the three highest mean RT in humans,

as seen in Experiment 1.

Conquest Epoch by Carries The conquest epochs of

MLPs across carry datasets were analyzed for each operator.

Let us denote the conquest epoch of the n-carry dataset for

operator ∗ as e∗
n.

Addition had 5 carry datasets, n ∈ {0,1,2,3,4}. ANOVA
showed significant differences between all e+

n [F(4,14995) =
11835.66, p< .001, η2 = .76]. The Games-Howell post hoc

test revealed that all pairs of e+
n were significantly different

[p < .001]. These results can be summarized as: e+
0 < e+

1 <

9https://github.com/sungjae-cho/cogsci2019
-appendix/tree/master/mlp

e+
2 < e+

3 < e+
4 (Figure 5a). As such, the conquest epoch e+

n

was strictly increasing with respect to n. Again, this mirrors

results of RT+
n from Experiment 1.

Subtraction had 4 carry datasets, n ∈ {0,1,2,3}. ANOVA
showed significant differences among all e−

n [F(3,11996) =
2831.77, p < .001, η2 = .41]. The Games-Howell post hoc

test revealed that all pairs of e−
n were significantly different

[p < .001]. These results can be summarized as: e−
0 < e−

1 <
e−
3 < e−

2 (Figure 5b). Therefore, the conquest epoch e−
n was

strictly increasing for both n ∈ {0,1,2} and n ∈ {0,1,3}.
Multiplication had 9 carry datasets, n ∈

{0,1,2,3,4,5,6,8,12}. ANOVA showed significant differ-

ences between all e×
n [F(8,26991) = 5024.17, p < .001,

η2 = .60]. The Games-Howell post hoc test revealed

that differences between all pairs of e×
n were significant

[p < .001]. Specifically, the results can be summarized as:

e×
8 < e×

12 < e×
6 < e×

0 < e×
5 < e×

3 < e×
2 < e×

1 < e×
4 (Figure 5c).

Division had 4 carry datasets, n ∈ {0,1,2,3}. ANOVA

showed significant differences between all e÷
n [F(3,11996) =

17788.62, p< .001, η2 = .82]. The Games-Howell post hoc

test revealed that all pairs of e÷
n had significant differences

[p< .001]. More specifically, the results can be summarized

as follows: e÷
1 < e÷

3 < e÷
2 < e÷

0 (Figure 5d). Thus, the con-

quest epoch e÷
n was not increasing with respect to n.

Modulo had 4 carry datasets, n ∈ {0,1,2,3}.
ANOVA showed significant differences between all emod

n

[F(3,11996) = 7281.45, p < .001, η2 = .65]. The Games-

Howell post hoc test revealed that all pairs of e÷
n had

significant differences [p < .001]. The results can be

summarized as follows: emod
0 > emod

1 > emod
2 > emod

3 (Figure

5e). Hence, the conquest epoch emod
n was strictly decreasing

with respect to n.

Discussion and Conclusion

Experiment 1 Results of the present study demonstrate

how problem difficulty varies depending on the five arith-

metic operators and the number of carries. In Experiment

1, results showed that for the five operators, problem diffi-

culty was monotonically increasing with respect to the num-

ber of carries (Figure 4). Notably, for subtraction, RT was

strictly increasing (Figure 4b). Another notable result was

that RT for multiplication was the highest among the five op-

erators (Figure 3a). In order to successfully perform multi-

plication, several sub-multiplication steps must first be com-

pleted (e.g. 1011× 1 = 1011, 1011× 0 = 0, see Figure 1).

A participant may have to complete as many as 4-operand

addition steps in order to correctly solve a single multiplica-

tion problem (Figure 1). It has been shown that the number

of steps (DeStefano & LeFevre, 2004) and operands (Seitz

& Schumann-Hengsteler, 2000, 2002) involved in arithmetic

problems increases working memory demands. As such, the

additional arithmetic steps involved in multiplication prob-

lems may have led to multiplication having the highest RT

among the five operators. It is worth highlighting that par-

ticipants solved the same 12-carry problem five times, due to
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there being only one problem in the 12-carry dataset (Table

1). This problem repetition may be responsible for the de-

creased RTs seen in the 12-carry problem set, relative to the

8-carry problem set (Figure 4c). As such, it is not valid to

compare RT of the 12-carry problem set to other carry prob-

lem sets. Like multiplication, modulo problems also require

many sub-operations to solve correctly. This may explain

why modulo had substantially higher RT than addition, sub-

traction, and division (Figure 3a). Within the modulo prob-

lem set, RT for the 0-carry problems was significantly less

than RT for problems involving carries (Figure 4e). However,

no significant difference was found in RT between any pair

of problem sets involving carries. Modulo involves the use of

arithmetic sub-operations in order to correctly answer prob-

lems (Figure 1). However, unlike in multiplication, the sub-

traction sub-operations involved in modulo problems showed

consistent patterns. The second operand of the sub-operations

was always equivalent to either 0 or the denominator (e.g.

11, see Figure 1). These patterns may have lowered RT for

higher n-carry datasets (Figure 4e). For division, even if a

given problem was an n-carry problem, it did not necessar-

ily involve n carries, as the final subtraction sub-operation

may have been unnecessary in solving the problem (Figure

1). This may have meant that the number of carries in a divi-

sion problem did not always impact on RT (Figure 4d).

Experiment 2 Experiment 2 found that problem difficulty

(conquest epoch) for addition, subtraction, and division was

substantially less than problem difficulty for multiplication

and modulo. Addition, subtraction, and division may have

been easier for MLPs to learn than the other two operators,

due to the repeated occurrence of digit patterns in these prob-

lems. This implies MLPs learned multiplication and modulo

problems by memorizing each problem, rather than by find-

ing digit patterns. This experiment also found that addition

problem difficulty for MLPs was strictly increasing with re-

spect to the number of carries involved in a problem (Figure

5a). However, no such increase was seen in the other opera-

tors (Figure 5b, 5c, 5d, 5e). Generally, MLPs are sensitive to

statistical properties of experience, such as the frequency and

typicality of patterns they meet while they learn (Rumelhart

& McClelland, 1986). In this regard, MLPs appear to re-

quire more epochs to conquer datasets that contain lots of in-

frequent and atypical patterns. However, the frequency and

typicality of patterns in our datasets does not offer a satisfac-

tory explanation as to why an increasing relationship between

problem difficulty and carries was observed in addition, but

not for the other operators.

Experiments 1 & 2 Comparing Experiment 1 with Exper-

iment 2, humans and the MLPs showed partial similarities

in their solving of binary arithmetic problems. For both hu-

mans and the MLPs, problem difficulty was highest for mul-

tiplication, followed by modulo and then subtraction. (Figure

3). Addition problem difficulty for both humans and MLPs

showed increasing trends as a function of the number of car-

ries (Figure 4a, 5a). However, the trajectories of these in-

creases followed notably different paths (Figure 4a, 5a).

Contributions The present study makes four notable con-

tributions to the current literature on mathematical cognition

and cognitive science: Firstly, the present study compares

problem difficulty across the five operators. This contrasts

with preceding work, which has generally dealt with three or

fewer operators. Furthermore, to the best of our knowledge,

the present study is the first to investigate problem difficulty

with regards to the modulo operation. Secondly, the present

study for humans showed that the number of carries had a

discernible effect on problem difficulty across four of the five

arithmetic operators: addition, subtraction, multiplication,

and modulo. Thirdly, the use of the binary numeral system

allowed the present study to somewhat control for other crite-

ria that may have impacted problem difficulty. These criteria

include the problem size effect and over-familiarity with the

decimal numeral system. This allowed for a targeted investi-

gation into the effect of carries on problem difficulty. Finally,

the present study found that MLPs experienced problem dif-

ficulty for some operators similarly to humans: For both hu-

mans and MLPs, problem difficulty was highest for multipli-

cation, followed by modulo and then subtraction (Figure 3a,

3b). Also, the effect of carries on problem difficulty in addi-

tion problems showed increasing trajectories for both agents

(Figure 4a, 5a). This supports previous research (McClelland

et al., 2016) suggesting that there may be some similar cog-

nitive processes underlying mathematical cognition in both

humans and connectionist models.

Future Study Future studies should aim to uncover what

underlying mechanisms caused the MLPs to experience rela-

tive problem difficulty similarly to humans across the five op-

erators. Also, the internal representations MLPs use to per-

form arithmetic operations could be investigated. However,

MLPs do not have the innate ability to dynamically process

information as humans do. MLPs always take a fixed num-

ber of computational steps to produce answers, while humans

take a variable amount of time to produce answers. One direc-

tion for future work could introduce a new dynamic connec-

tionist model to learn arithmetic, namely, a recurrent network

such as the Elman network (Elman, 1990) or the Jordan net-

work (Jordan, 1997). Such recurrent networks can produce

answers through variable computational steps depending on

the problem. These variable steps can be directly compared

to humans’ RT, providing a more valid comparison to human

arithmetic cognition.
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