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Abstract 18 

Several studies have documented a global pattern of phenological advancement that is consistent with 19 

ongoing climate change. However, the magnitude of these phenological shifts is highly variable across 20 

taxa and locations. This variability of phenological responses has been difficult to explain 21 

mechanistically. To examine how the evolution of multi-trait cueing strategies could produce variable 22 

responses to climate change, we constructed a model in which organisms evolve strategies that 23 

integrate multiple environmental cues to inform anticipatory phenological decisions. We simulated the 24 

evolution of phenological cueing strategies in multiple environments, using historic climate data from 78 25 

locations in North America and Hawaii to capture features of climatic correlation structures in the real 26 

world. Organisms in our model evolved diverse strategies that were spatially autocorrelated across 27 

locations on a continental scale, showing that similar strategies tend to evolve in similar climates. Within 28 

locations, organisms often evolved a wide range of strategies that showed similar response phenotypes 29 

and fitness outcomes under historical conditions. However, these strategies responded differently to 30 

novel climatic conditions, with variable fitness consequences. Our model shows how the evolution of 31 

phenological cueing strategies can explain observed variation in phenological shifts and unexpected 32 

responses to climate change.  33 

  34 
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Introduction 35 

Recent years have seen increasing interest in the study of phenological shifts. While organisms around 36 

the world have generally shown a “global coherent fingerprint” of advancing phenology with climate 37 

change (Parmesan and Yohe 2003; Parmesan 2007; Thackeray et al. 2010), several studies also point to 38 

substantial unexplained variation in phenological shifts (Parmesan 2007; Thackeray et al. 2010; Pearse et 39 

al. 2017). This variation in responses to climate change is an important factor driving phenological 40 

mismatch and the disruption of species interactions (Parmesan 2006; Kharouba et al. 2018). It has 41 

become increasingly clear that understanding how organisms integrate multiple environmental cues will 42 

be necessary to anticipate phenological shifts (Forrest and Miller-Rushing 2010; Visser et al. 2010; Pau et 43 

al. 2011; Chmura et al. 2019).  44 

Although several studies have suggested factors that correlate with variation in phenological shifts (e.g., 45 

Parmesan 2007; Thackeray et al. 2010), relatively few studies have examined mechanistic explanations 46 

for this variation (Chmura et al. 2019). For example, while taxonomic groupings are often strong 47 

predictors of phenological shifts (Parmesan 2007; Davis et al. 2010; Thackeray et al. 2010, 2016; Davies 48 

et al. 2013), the mechanisms behind these groupings remain idiosyncratic or unclear (e.g., Parmesan 49 

2007; Thackeray et al. 2010). The situation is similar with other proposed explanatory factors. Chmura et 50 

al. (2019) reviewed nine factors that have been suggested to structure variation in phenological shifts 51 

(including latitude, elevation, habitat, trophic level, life history, specialization, seasonal timing, 52 

thermoregulation and generation time), and concluded that most studies either do not suggest specific 53 

underlying mechanisms or do not evaluate alternative mechanistic hypotheses. 54 

Our current study builds on previous modeling studies that explored phenological cueing strategies in a 55 

general context. These studies represent a progression from single-cue to multi-cue models, and 56 

towards more realistic environmental conditions. For example, Reed et al. (2010) used an individual-57 
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based model to examine plastic responses to simulated variation in a single cue and found that plasticity 58 

buffered fitness from environmental variation if the cue provided reliable information about 59 

environmental conditions, but had the opposite effect when the correlations between cues and 60 

conditions were weakened or when environmental variability was high. McNamara et al. (2011) 61 

developed a general analytical model based on a regression and correlation framework to explore the 62 

relationship between cues and optimal phenological timing under changing environments, and showed 63 

that environmental changes can affect the information value of cues in complex ways; as a result, they 64 

suggest that multiple cues could provide more robust predictive power than single cues. Chevin and 65 

Lande (2015) developed a multi-cue model to evaluate the evolution of multiple reaction norms in 66 

response to simulated environmental variation that included multiple correlated but fluctuating cues. 67 

This work showed that singular reaction norms can evolve to show plasticity that appears maladaptive 68 

when evaluated outside the multi-cue context, due to the correlated nature of environmental cues.  69 

Here we present a generalized model that demonstrates how the evolution of integrated multi-trait 70 

cueing strategies can yield variable phenological responses to climate change. This model advances key 71 

themes established in previous studies by allowing cue integration strategies to evolve in the context of 72 

more complex, real-world environmental conditions. While previous modeling studies show that optimal 73 

multi-cue integration strategies depend on correlations among environmental cues (e.g. Chevin and 74 

Lande 2015), those results were based on simulated environments with known correlations. Our model 75 

aims to examine general mechanisms that emerge when organisms evolve to use the predictive 76 

information within real-world climatic data from different locations.  Real-world climatic data are 77 

characterized by complex correlations among variables, and we assume that this correlation structure 78 

varies across locations, with relatively similar properties in nearby locations, and increasingly different 79 

properties in distant locations. Specifically, we examine how phenological cueing strategies could evolve 80 

to use correlations among climate variables to anticipate future events, and how these evolved 81 
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strategies could contribute to observed phenological variation when historical correlations among 82 

climatic variables are disrupted. 83 

We hypothesized that variation in cueing strategies could arise if organisms experiencing different 84 

environmental histories evolve different phenological strategies, caused by consistent differences in the 85 

reliability of predictive information provided by different kinds of environmental cues (Reed et al. 2010; 86 

McNamara et al. 2011; Chevin and Lande 2015). If the evolution of phenological cueing strategies was 87 

shaped by past environmental conditions in predictable ways, we expected that similar phenological 88 

strategies would evolve when organisms experienced similar historical climates. Conversely, variation 89 

among evolved strategies could persist under the same historical climate if different strategies were 90 

able to yield similar fitness outcomes. We further hypothesized that variation among evolved cueing 91 

strategies in their reliance on climatic and non-climatic cues could contribute to  observed variation in 92 

phenological responses to climate change (Bonamour et al. 2019; Chmura et al. 2019). 93 

Model and methods 94 

Our model simulates the evolution of a generalized, annual, asexually-reproducing organism in a 95 

simplified environment defined by daily maximum temperature, total daily precipitation, and day of the 96 

year (hereafter, temperature, precipitation and day). These conditions provide cues to anticipate future 97 

environmental conditions, and determine the fitness of individuals in the population (Fig. 1).  98 

Our model combines three key features: 1) organisms combine multiple environmental cues using a 99 

weighted sum, 2) organisms make a phenological decision in response to a threshold of this weighted 100 

sum and 3) organismal sensitivity to each environmental cue is an evolved trait. Each of these features 101 

has been described across a wide range of organisms in nature (Gu et al. 2008; Wilczek et al. 2010; 102 

Burghardt et al. 2014; Seeholzer et al. 2018).  103 
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We implemented the simulation model and all analyses in R (R Core Team 2019). 104 

Cue integration 105 

In our model, the set of environmental cues E is composed of cumulative annual daily maximum 106 

temperature (𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), cumulative annual daily precipitation (𝛾𝛾𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡), and day-of-year (𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑):  107 

𝐸𝐸 = �𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝛾𝛾𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡, 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑�          (1) 108 

The set of environmental cues begins to accumulate on the first day of each year, and the cues change 109 

each day in each year of each location based on historical climatic data (we omit daily, yearly and 110 

location subscripts for simplicity in this notation, see Environmental data below). The use of cumulative 111 

annual temperature and precipitation assumes that organisms are aware of and can be influenced by 112 

past environmental conditions, consistent with degree-day models of development and phenology. Day-113 

of-year provides a proxy for a consistent and non-climatic environmental cue, assuming that organisms 114 

are able to infer the day of the year (e.g., from photoperiod) with equal accuracy across all locations. 115 

Although the amplitude of seasonal photoperiodic changes is larger at higher latitudes, this assumption 116 

is supported by studies showing that tropical species are able to detect extremely small changes in 117 

photoperiod near the equator (Hau et al. 1998; Dawson 2007). More fundamentally, this assumption 118 

allows us to conservatively infer the relative information content of a climatically invariant cue across 119 

multiple locations, separate from the effect of increasing photoperiodic amplitude at higher latitudes. 120 

Using actual cumulative photoperiod produced qualitatively similar results (e.g., Fig. S1). 121 

Each individual in our model has a genotype (G) defined by three traits (𝜏𝜏), which reflect its phenological 122 

sensitivity (sensu Chmura et al. 2019) to the three environmental cues: 123 

𝐺𝐺 = �𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝜏𝜏𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡, 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑�          (2) 124 
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Each day of the simulation, each individual combines its cues and genotype into a weighted sum, which 125 

represents the response sum (S): 126 

𝑆𝑆 = 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
+ 𝛾𝛾𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡

𝜏𝜏𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡
+ 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑
          (3) 127 

On the first day of the year when this sum exceeds the response threshold S≥1, the organism makes an 128 

irreversible phenological decision in anticipation of future fitness conditions.  The genotype G thus 129 

represents the inverse weights of our weighted sum. We use 1
𝜏𝜏
 as the weights for the response sum for 130 

interpretability and consistency; genotypic traits are represented in the same units as the cue itself, and 131 

trait values indicate the critical cue value that would trigger a phenological response in the hypothetical 132 

absence of other cues. This also means that fixed increases or decreases to trait have the same effect 133 

regardless of trait value (e.g. increasing 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 by 1 means that in the absence of other cues the organism 134 

would respond one day later, regardless of whether 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 was previously 1 or 100). As a consequence, 135 

large trait values correspond to low sensitivity, and low trait values correspond to high sensitivity. 136 

Additive models of cue integration like this have been described in many organisms (Ernst and Banks 137 

2002; Gu et al. 2008; Seeholzer et al. 2018), and similar assumptions have been applied in previous 138 

models (e.g., Jong 1990; Scheiner 1993; Lande 2009; Chevin and Lande 2015). While many organisms are 139 

likely to use more complex phenological cueing strategies across their life history (i.e., using multiple 140 

cues sequentially, as with chilling requirements for germination), additive models of cue integration 141 

provide a simple, commonly used, and plausible representation of how multiple cues are combined to 142 

form complex phenological cueing strategies.  143 

Fitness 144 
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Individuals reproduce at a rate proportional to the sum of the daily fitness they accrue over a fixed 145 

window starting one day after exceeding their response threshold. The fitness gained on any given day is 146 

the product of two skew-normal function outputs – one based on temperature, the other on moisture 147 

(see Eq. 4). These two fitness functions are combined to yield a 2-dimensional fitness surface akin to a 148 

quantitative version of a 2-dimensional Hutchinsonian niche (e.g., Fig. S2, Hutchinson 1957). Our model 149 

assumes that these two fitness factors interact multiplicatively rather than additively, so that favorable 150 

conditions in both dimensions are non-substitutable requirements for fitness, consistent with the 151 

Hutchinsonian niche concept. We used a skew-normal distribution because the thermal performance 152 

curves of ectotherms are generally asymmetrical, where fitness increases gradually as temperature 153 

increases towards the optimum, and then declines sharply above the optimum (Huey and Stevenson 154 

1979; Sinclair et al. 2016). For simplicity, we used the same skew normal functional form (with a skew 155 

parameter of -10) for both temperature and moisture, though this model showed qualitatively similar 156 

results with alternative fitness functions (see Sensitivity analyses). Environmental moisture (m) was 157 

calculated based on daily precipitation totals (p) using a formula that includes a proportional retention 158 

constant (α) to represent the partial retention of moisture in the surrounding environment over time, as 159 

well as the input of new precipitation each day (p) (Eq. 4).  160 

𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1𝛼𝛼 + 𝑝𝑝𝑡𝑡          (4) 161 

We set the retention constant to 0.8 in our simulations (but see Sensitivity analyses). At its limits, α = 0 162 

represents daily precipitation, and α = 1 represents cumulative annual precipitation. We use α = 0.8 to 163 

reflect the assumption that organismal activity typically depends on moisture retained in the 164 

environment rather than daily precipitation. In contrast, cumulative annual precipitation was used in the 165 

cue integration model to reflect the assumption that organisms are aware of accumulated 166 
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environmental information throughout the year. Changing the retention constant for environmental 167 

moisture produced qualitatively similar results, even when α = 0.  168 

Temperature and moisture performance functions were parameterized separately for each location, 169 

such that the peak for each occurred at the 90th percentile of all daily observations for a given location, 170 

and each function had a value that was 10% of the peak when the cue was at the 10th percentile of all 171 

daily observations. This parameterization assumes that potential fitness values are maximized under 172 

relatively warm and moist conditions at each location, though this approach applies equally well to 173 

locations that are not characterized by these combined conditions because we simulate reproduction 174 

using a lottery model based on relative, realized fitness. Parameterizing by location without assuming 175 

performance constraints across sites (e.g., a universal minimum or maximum temperature across all 176 

locations) allows the interpretation of spatial patterns in evolved cue use without confounding 177 

differences in performance curves. This approach assumes that organisms are locally adapted to climatic 178 

conditions in a comparable way, so that evolved differences between locations are likely to be 179 

conservative, compared with a model in which universal constraints affect locations differently. To 180 

evaluate the robustness of observed results, we tested this model at a range of alternative fitness 181 

parameterizations, including different optimal quantiles, and observed qualitatively identical results (see 182 

Sensitivity analyses).   183 

The raw fitness of each individual (Wi) was calculated as the sum of these daily fitness payoffs over a 10-184 

day window beginning one day after the response sum exceeded the response threshold (e.g., Fig. S3). 185 

These raw fitness values combine the products of two probability densities and provide a relative 186 

measure of fitness; they have inherently small values and are not scaled to reflect expected numbers of 187 

offspring. Our model assumes a relatively short fitness accumulation window each year, where this 188 

window could represent any period when environmental conditions have a strong effect on fitness in 189 
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the life history of our model organism. For example, it could represent the entire active, non-diapause 190 

phase of an organism’s life history or a short period of establishment in a longer life history (i.e., a 191 

seasonal window of opportunity sensu Yang and Cenzer 2020); for simplicity, we assume that 192 

environmental conditions do not have fitness effects outside of this window. Varying the duration of this 193 

window produced qualitatively similar results (see Sensitivity analyses). We use the sum of daily fitness 194 

payoffs to represent systems where the fitness benefits of favorable conditions accumulate over a 195 

window of time; while this is likely to represent some systems well, it would not adequately represent 196 

systems where daily fitness effects are multiplicative (e.g., a system in which a single extreme frost 197 

event has the potential to persistently damage flowers). We set this fitness window to begin one day 198 

after the response threshold is exceeded in order to simulate a delayed developmental process that 199 

required minimal anticipatory forecasting. Functionally, this one-day lag reduced the overall correlation 200 

between observed cues and experienced conditions. Increasing this lag further makes it more difficult 201 

for strategies to anticipate future conditions, but did not qualitatively change the behavior of this model 202 

(see Sensitivity analyses). All organisms in this model were constrained to have annual life histories with 203 

one generation per year; organisms that did not respond by the end of the year received zero fitness. 204 

This constraint prevented the evolution of multiple generations per year or multi-annual life histories, 205 

allowing us to focus on the seasonal phenology of relatively short-lived, annual organisms.  206 

Individuals reproduced asexually with mutation (see Heritability and mutation), with population size 207 

held constant and expected realized fitness of each individual proportional to its calculated relative 208 

fitness. Reproduction was implemented as a lottery model to incorporate competition and allow for 209 

demographic stochasticity. With a constant population size each generation, individuals compete for 210 

representation in the next generation, with their probability of representation proportional to their raw 211 

fitness value (Wi). For each evolved strategy (genotype) in the final generation, we calculated the 212 
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geometric mean of its raw fitness across all years of environmental conditions. This fitness was 213 

proportional to its expected long-term relative fitness in that environment.  214 

Heritability and mutation 215 

Offspring were given the same genotypes as their parent, modified by mutation. We modeled mutation 216 

by adding small random numbers (drawn from a normal distribution with mean 0 and a small standard 217 

deviation) to the parental traits. We set the standard deviation of mutation for each trait to be 0.5 218 

percent of the overall cue range in order to produce mutation distributions with the same expected 219 

effect size in each location. In the case of the day cue, we used 360 as the maximum, leading to a 220 

standard deviation of 1.8 for mutation rate of the day trait in all locations. We assumed that each trait 221 

mutated for each individual in order to increase the overall rate of simulated evolution and improve 222 

computational efficiency.  223 

Environmental data 224 

All available years of daily maximum temperature (degrees Celsius) and daily precipitation (mm rainfall 225 

equivalent) data were obtained from the NOAA Climate Data Online portal (Climate Data Online 2018) 226 

for 82 locations in North America and Hawaii. Locations were chosen to ensure spatial representation 227 

across the range of available data.  After filtering for data quality and imputing missing daily values (see 228 

Appendix, “Environmental data”), we arrived at a climatic dataset of daily maximum temperatures and 229 

daily precipitation for 78 locations, with an average duration of 98 years (SD = 18.9 years, IQR = 114-84 230 

years) (see Supporting Data Table 1).  231 

To ensure that cue values were always non-negative, the temperatures for each location were shifted so 232 

that the minimum transformed temperature for that location was zero. Day of the year was represented 233 
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as an integer value reflecting the number of days since January 1 of each year inclusive. The 366th day 234 

was truncated from leap years in the dataset.  235 

Initialization and execution 236 

For each location, we ran 60 simulations with the same parameter set. Each simulation included 1000 237 

years (i.e., 1000 generations) of climatic data independently resampled from the historic dataset with 238 

replacement; as a result, the climatic history for each simulation was different, but drawn from the 239 

same historical climate distribution for that location (Fig. 1 and Supporting Table 1). Each simulation 240 

maintained a population of 500 individual organisms with individual genotypes. In the initial generation 241 

of each simulation, each individual was assigned uniform random trait values between 0 and 4 times the 242 

maximum cue value in that location (or 360 in the case of the day cue). This resulted in an initial 243 

population of individuals with a broad range of trait values (e.g., Figs. 1D and S4). Each simulation 244 

proceeded with the expression of a phenotype, the accumulation of resulting fitness payoffs, differential 245 

reproduction in a lottery model, and mutation in each generation. Thus, each simulation reflects a 246 

unique realization of the climatic history from a given location, with a randomly generated initial 247 

population. These simulations could be interpreted as replicates in an evolutionary experiment with 248 

systematic differences in the climatic means of locations, and stochastic variation in the specific 249 

sequence of climatic years and the specific genotypes of the initial population. Alternatively, each 250 

simulation could be interpreted as separate species that experience the same climate regime, and have 251 

the same temperature and moisture requirements.  252 

Assessing realized relative cue use 253 

Trait values represent cue sensitivity; in our model, these can be interpreted as threshold values that 254 

would trigger a phenological response in the absence of other cues. Thus, the same trait values produce 255 
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different behavior in different locations, depending on the environment. In order to compare strategies 256 

across locations, we define the “trait effect” (Τ) as a metric of proportional cue use. Each trait effect is a 257 

value from 0 to 1 that quantifies a strategy’s realized reliance on a given cue in a way that is comparable 258 

across locations. Specifically, this metric represents the proportion of the response sum S that is 259 

contributed by each 𝛾𝛾
𝜏𝜏
 term of Eq. 3 on the day the response threshold is exceeded. Together, the trait 260 

effects of all three cues form a mathematical composition (here, a vector that sums 1) that represents 261 

realized cueing strategies in a way that is comparable across locations. Thus, we calculate mean 262 

strategies within simulations and locations using Aitchison compositional means (Boogaart and 263 

Tolosana-Delgado 2013), and plot these compositional means on ternary plots to show the three 264 

components of each strategy.  265 

Climate change scenarios 266 

We examined how the individuals from the final generation of each simulation performed in novel 267 

climate regimes using two simple climate change scenarios. In the “shift” scenario, we advanced the 268 

historic temperature and precipitation regime in each year by 5 days. In the “warming” scenario, we 269 

increased all daily temperatures by 3 degrees, and left the precipitation regime unchanged. These two 270 

scenarios are not intended to represent detailed or realistic climate change scenarios; instead they 271 

reflect exposure to novel climates using a simple and systematic erosion of the key correlations in 272 

historical climatic data. In the shift scenario, the historical correlations between climatic conditions 273 

(temperature and moisture regime) and day-of-year are weakened, but the key correlation between the 274 

temperature and moisture regimes is maintained. Because of this, the seasonal fitness landscape (the 275 

timeline of potential daily fitness payoffs) in any given year remains unchanged, except that it is 276 

advanced by 5 days. In contrast, the warming scenario weakens historical correlations with temperature 277 

relative to the other two environmental cues, and also fundamentally changes the seasonal fitness 278 
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landscape in any given year. Thus, while these two novel climate scenarios both represent important 279 

departures from the historical climate regime, the warming scenario presents a more profound 280 

departure from historical seasonal fitness landscapes. In both scenarios, we calculated the response day 281 

and fitness that would have been realized for each individual of our final populations in each unique 282 

year of the modified climate regime for each of 30 simulations. This allowed us to assess how climate 283 

change affected the phenotype and fitness consequences of each genotype that evolved under historical 284 

conditions. 285 

For both climate change scenarios, we assessed correlations between each historic trait effect (Τ) and 286 

the change in response timing, and between each trait effect and the change in geometric mean fitness 287 

for each evolved genotype. We used linear mixed models with location as a random factor, allowing 288 

intercepts and slopes to vary. For these analyses, we report effect sizes (β) as the slope coefficient of 289 

each fixed explanatory factor; in these analyses, the effect size represents the expected change in 290 

response day or geometric mean fitness with a one unit change in the trait effect.  291 

Sensitivity analyses 292 

We tested several model structures, cues, and parameter values to assess the robustness of our results 293 

(see Appendix, “Sensitivity Analyses”).   294 

Results 295 

In many simulations, populations evolved to a region of successful trait combinations relatively quickly, 296 

with selection, mutation and drift leading to gradual shifts in the average population genotype, as well 297 

as the branching and pruning of lineages over time (e.g., Fig. S4). Some simulations experienced large 298 

shifts in trait use over time, often with concurrent changes ramifying across multiple traits. The 299 

individuals in the final generation typically emerged from the dominant evolved lineage, and showed 300 
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similar combinations of traits. Thus, individual variation within each simulation was well-represented by 301 

the mean strategy for that simulation.  302 

Variation within locations 303 

Mean evolved strategies often showed considerable variation between simulations, within locations. 304 

This variation in strategies can be observed in ternary plots (Figs. 2A-D and S5) and mapped to locations 305 

(Fig. S6). While some locations evolved tight clusters of similar strategies, most locations show a broad 306 

range of strategies using different sets of cues. These diverse strategies often showed geometric mean 307 

fitnesses that were similar to the most-fit mean genotype across all simulations (Figs. 2A-D S5, and S7). 308 

This occurred because most locations were characterized by high-performance fitness volumes that 309 

spanned a wide range of trait values, rather than a single clear optimal strategy. In 3-dimensional trait 310 

space, these high-performance fitness volumes resembled the hull of a boat or layers in a quartered 311 

onion (Figs. 2E-H and S8E-H), reflecting a wide range of evolved cueing strategies with similarly high 312 

geometric mean fitnesses (Figs. S7 and S9). These broad regions of trait space yielded similar fitness 313 

outcomes because they produced similar phenological behavior under historical conditions (Figs. 2I-L 314 

and S8I-L).  315 

Variation between locations 316 

We found considerable spatial variation in the mean evolved strategies across locations. Spatial patterns 317 

in mean cue use are visible when mapped (Fig. 3A), and showed strong positive autocorrelation on a 318 

continental scale (Fig. 3B-D). This result indicates that similar mean strategies evolved under similar 319 

climates, suggesting a degree of underlying predictability in the evolution of phenological cueing 320 

strategies, despite the variability of evolved strategies among simulations within each location.  321 
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We analyzed several climatic and location variables as potential correlates of evolved mean cue use at 322 

each location (Appendix “Analysis of explanatory factors”, Fig. S10 and Fig. S11). While several factors 323 

emerged as potentially meaningful predictors of phenological cue use in this analysis, most of the 324 

variation in cue use was unexplained even in models that combined all 17 factors (Τday: marginal 325 

R2=0.102; Τtemp: marginal R2=0.110; Τprecip: marginal R2=0.308).  326 

Responses to climate change scenarios 327 

In the shift climate change scenario, populations generally advanced their mean phenology, but showed 328 

highly variable changes in their realized fitness when comparing between (Fig. 4A) and within locations 329 

(Fig. 5A,C,E,G). These effects were non-random; as expected, organisms that relied more on day cues 330 

were less likely to advance their phenology on pace with the changed climate (β=4.6 days per unit Τ, 331 

SE=0.02, p<0.0001), while organisms that relied more on temperature or precipitation cues were more 332 

likely to advance their phenology (temperature, β=-2.5 days per unit Τ, SE=0.19, p<0.0001; precipitation, 333 

β=-2.2 days per unit Τ, SE=0.1, p<0.0001). Because the seasonal fitness landscape retained the same 334 

shape but advanced by 5 days in this scenario, organisms that relied more on day cues generally showed 335 

a weak pattern of more negative fitness consequences (β=-.00023 units Wi per unit  Τ, SE=0.00007, 336 

p=0.0009, Fig. 4A), while those that relied more heavily on temperature or precipitation cues showed 337 

weakly positive fitness consequences (temperature, β=0.00017 units Wi per unit  Τ, SE=0.00005, 338 

p=0.002; precipitation, β=0.00009 units Wi per unit  Τ, SE=0.00005, p=0.04). While most locations 339 

experienced a reduced mean fitness under the changed climate, some locations showed higher overall 340 

fitness (Fig. 4A). Simulations within locations showed similarly variable responses in both advancement 341 

and fitness (Fig. 5A,C,E,G). The behavior of individual genotypes within each location (Fig. S12A) shows 342 

how small changes in phenological response phenotype can drive large changes in mean fitness 343 

outcomes under the shift scenario.  344 



17 
 

Under the warming scenario, populations also advanced their mean phenology, both between (Fig. 4B) 345 

and within locations (Fig. 5B,D,F,H).  Mean strategies with greater reliance on day or precipitation cues 346 

showed reduced phenological advancement (day, β=8.1 days per unit Τ, SE=1.2, p<0.0001; precipitation, 347 

β=7.7 days per unit Τ, SE=1.0, p<0.00001), while those that relied more on temperature showed greater 348 

phenological advancement (temperature, β=-15.4 days per unit Τ, SE=1.5, p<0.00001). This effect of day 349 

was more apparent in the shift scenario than the warming scenario when comparing across locations 350 

(Fig. 4A vs. 4B), but is apparent in both scenarios when comparing within locations (Fig. 5). Organisms 351 

with greater reliance on day and precipitation showed higher fitness in the warming scenario (day, 352 

β=0.0006 units Wi per unit Τ, SE=0.0002, p=0.0026; precipitation, β=0.0007 units Wi per unit  Τ, 353 

SE=0.0003, p=0.01), while those that relied more on temperature showed reduced fitness (β=-0.001 354 

units Wi per unit  Τ, SE=0.0002, p<0.00001). Many locations showed larger and less predictable changes 355 

in mean fitness outcomes under the warming scenario than in the shift scenario (e.g., Figs. 4, 5 and S12).  356 

Sensitivity analyses 357 

Our findings were qualitatively robust across a wide range of model variants using different cues (daily 358 

precipitation, daily temperature, photoperiod, quadratic measures of cues), fitness functions, and 359 

fitness window durations (see Appendix, “Sensitivity analyses”).  Differences in historic dataset length 360 

did not explain a meaningful proportion of the climatic variation across locations (Appendix, “Sensitivity 361 

to dataset length”). 362 

Discussion 363 

This model suggests two key findings. First, we see that the evolution of phenological cueing strategies 364 

was shaped by environmental history in broadly predictable ways across locations (Fig. 3), despite 365 
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substantial variation in cueing strategies within locations (Figs. 2A-H and S5). Second, evolved cueing 366 

strategies showed highly variable responses to simulated climate change (Figs. 4 and 5).  367 

Predictability and variation in the evolution of phenological cueing strategies 368 

The observation that similar mean strategies evolved in locations with similar climates likely reflects 369 

continental scale spatial patterns in the relative reliability of temperature, precipitation and day cues 370 

(Fig. 3). The spatial autocorrelation of evolved strategies indicates that evolution tended to produce 371 

similar phenological cueing strategies under similar environmental histories. Our model assumes that 372 

selection will favor cues based on their ability to predict future environmental conditions that are 373 

relevant to fitness – both the ability to consistently trigger a phenological response ahead of favorable 374 

conditions, and the ability to avoid triggering a phenological response ahead of unfavorable conditions. 375 

Thus, this result suggests that broad patterns in phenological cue use may be predictable based on the 376 

relative information content of different cues.  377 

Across locations, we observed a broad and complex range of strategies evolving in response to real-378 

world climatic data. In some locations, this resulted in strategies that relied heavily on climatic cues to 379 

track factorable climatic cues across year-to-year variation (e.g., Figs. 2 and S5). In other locations, this 380 

resulted in the evolution of bet-hedging strategies with a greater reliance on climatically invariant day-381 

of-year cues (e.g., Figs. 2 and S5). While broad patterns of phenological cue use may be predictable 382 

based on the relative reliability of environmental cues in an organism’s evolutionary history, simple 383 

climatic or location variables were only marginally successful at characterizing the relevant differences 384 

between locations in our model, and the majority of observed variation in evolved cue use could not be 385 

explained by a model including all evaluated climatic and location variables (Appendix, “Analysis of 386 

explanatory factors”, Figs. S10 and S11). This likely reflects the fact that most of the a priori descriptive 387 

variables we used were too coarse, static or general to capture the aspects of climatic predictability that 388 
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are most relevant to our model organisms. For example, many of these descriptive variables were 389 

metrics of annual climatic variability averaged across years, and such general descriptors likely failed to 390 

capture the specific predictability of cues in most relevant part of the season for our model organisms.   391 

In addition to the variation we observed in mean cueing strategies between locations, we also observed 392 

substantial variation in evolved cueing strategies across simulations within locations (Figs. 2A-D and S5). 393 

This variation emerges because a wide range of trait value combinations (i.e., cueing strategies or 394 

genotypes, Fig. 2A-D) yield similar response phenotypes (e.g., Fig. 2I-J) with similar fitness outcomes 395 

(e.g., Fig. 2E-H). This is a fundamental consequence of multi-cue integration when there are correlations 396 

among climatic cues; when these conditions are met, changes in one component of a cueing strategy 397 

can often be compensated for through changes in another. This feature of cue integration can lead to a 398 

broad range of multi-cue strategies that can appear counterintuitive when singular cue responses are 399 

examined in isolation (c.f., Chevin and Lande 2015). This fundamental property of multi-cue integration 400 

predicts that organisms showing similar phenologies under historical climates could have widely 401 

divergent underlying phenological strategies that use different cues to different degrees. This prediction 402 

is consistent with the findings of empirical studies showing differences in cue use between interacting 403 

species that generally show phenological synchrony (e.g., Iler et al. 2013).  404 

This fundamental consequence of cue integration is further complicated by non-additive interactions 405 

among traits in our model. This is partly due to our response threshold model, which creates inherent 406 

non-linearities in the relationships between traits and the phenotype. It also reflects the variable nature 407 

of real-world climatic dynamics across each year, which cause the effects of one trait to depend on the 408 

effects of the other traits in an individual’s genotypic background in complex and non-additive ways. As 409 

an extreme example, a trait that confers a very high sensitivity to one cue can nullify the effects of other 410 

cues, because even a small value of one cue will cause the organism to exceed its response threshold. 411 
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More generally, the effects of any trait on both phenotype and fitness depend on the other traits in the 412 

organism’s strategy and the seasonal dynamics of its environment. These non-additive interactions 413 

between traits are akin to epistasis (Phillips 2008), and create the potential for a more diverse and 414 

complex range of cueing strategies with similar fitness outcomes in any given location (Fenster et al. 415 

1997).  416 

Novel climates result in ecological surprises 417 

Our second key finding is that phenological strategies which produced similar phenotypes under 418 

historical conditions showed strong phenotypic and fitness differences under simulated climate change 419 

(Figs. 4, 5 and S11). These effects depended on the degree to which our climate scenarios broke key 420 

correlations in the historic climate. In the shift scenario, temperature and precipitation regimes were 421 

advanced in unison, but the correlations between temperature and precipitation were unchanged. Thus, 422 

organisms that were more sensitive to climatic cues showed greater phenological advancement and 423 

more positive fitness consequences, while those that relied more heavily on climatically invariant day-424 

of-year cues showed reduced advancement and more negative fitness consequences (Figs. 4, 5 and S11). 425 

This result is consistent with expectations about the costs of using invariant day-of-year (e.g., 426 

photoperiodic) cues under climate change (Coppack and Pulido 2004; Way and Montgomery 2015). 427 

However, in the warming scenario, greater reliance on the invariant day-of-year cue was generally 428 

favorable, while organisms that relied more on temperature unexpectedly showed reduced fitness (Figs. 429 

4, 5 and S11). This result occurs because the warming scenario increased temperatures independently of 430 

precipitation, thus breaking historic correlations between temperature- and precipitation-based factors. 431 

Because fitness is a function of both temperature and precipitation in our model (Fig. S2), the warming 432 

scenario changed the seasonal fitness landscape in complex and novel ways. These changes to the 433 

seasonal fitness landscape made the fitness consequences of phenological advancement less 434 
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predictable. As a result, many locations showed large and counterintuitive changes in mean fitness 435 

outcomes under the warming scenario (Figs. 4, 5 and S11).  436 

A comparison of the shift and warming scenarios suggests some general insights. The specific ways in 437 

which these two scenarios differed had important consequences. The increased unpredictability of 438 

fitness responses under the warming scenario suggests that even a relatively small decoupling of the 439 

historical temperature and precipitation regimes could increase the likelihood and costs of maladaptive 440 

plasticity. These results are consistent with the hypothesis that organisms are more likely to show 441 

maladaptive and counterintuitive plasticity in environments that differ most from those in their 442 

evolutionary history (Ghalambor et al. 2007; Chevin et al. 2010; Reed et al. 2010; McNamara et al. 2011; 443 

Chevin and Lande 2015; Duputié et al. 2015). Thus, while intuition suggests that a greater reliance on 444 

climatic cues (as opposed to climatically invariant cues) would allow for more adaptively plastic 445 

responses to a changing climate, our findings suggest that this may not always be the case.  446 

At the intersection of our two key findings, a wide range of strategies which show predictable and 447 

consistent behavior under historical conditions can show unpredictable and counterintuitive behavior in 448 

a novel environment. This is consistent with the idea that multi-cue phenological strategies create the 449 

potential for cryptic genetic variation to be expressed under climate change.  Cryptic genetic variation is 450 

genetic variation that is not normally expressed, but which can yield phenotypic variation under 451 

changed conditions (Rutherford 2000; Gibson and Dworkin 2004; Gibson and Reed 2008; McGuigan and 452 

Sgrò 2009; Paaby and Rockman 2014). Cryptic genetic variation appears to be widespread in eukaryotes, 453 

and may be particularly characteristic of systems where response thresholds provide a mechanism of 454 

“genetic buffering” (Rutherford 2000). In the context of our model, the mechanisms that maintain 455 

genotypic variation while minimizing fitness differences under historic climate conditions could 456 
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contribute to the maintenance of cryptic genetic variation, increasing the potential for ecological 457 

surprises under novel climates.  458 

Context and broader implications 459 

Our model examines the evolution of multi-cue strategies and its implications for variation in 460 

phenological responses to climate change. Previous studies have identified important patterns of 461 

phenological shift in nature (e.g., Parmesan 2007; Thackeray et al. 2010), and examined the behavior of 462 

increasingly complex phenological cueing models under increasingly realistic simulated environments 463 

(e.g., Reed et al. 2010; McNamara et al. 2011; Chevin and Lande 2015). Our current study provides a 464 

complementary approach to examine how evolution and cue integration could affect patterns of 465 

variation in phenological shifts. We find that phenological cueing strategies that evolve in the context of 466 

real world climatic data show patterns of cue use that can be broadly understood in the context of cue 467 

reliability, consistent with previous modeling studies (Reed et al. 2010; McNamara et al. 2011). 468 

However, these evolved patterns of cue use can also show a great deal of complex and sometimes 469 

cryptic variability, consistent with our understanding of multi-cue integration from previous models 470 

(e.g., Chevin and Lande 2015).  This variability in evolved cue use can lead to high variability in 471 

phenological responses to climate change, with phenotypic and fitness consequences that are 472 

increasingly difficult to predict under increasingly novel climate regimes. This result is consistent with 473 

expectations about the limits of adaptive plasticity in novel environments (e.g,, Ghalambor et al. 2007; 474 

Chevin et al. 2010; Duputié et al. 2015), and suggests that the many organisms may show increasingly 475 

counterintuitive responses to climate change.  476 

Our model results suggest that we should expect to see substantial variation in phenological shifts, even 477 

if organisms experience similar environmental changes. Chmura et al. (2019) proposed a key distinction 478 

between organismal and environmental mechanisms of variation in phenological shift, with the former 479 
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driven by differences among organisms in their sensitivity to cues, while the latter is driven by 480 

differences in the environmental change that different organisms experience. In this context, our model 481 

is focused on the evolutionary origins of variation in organismal mechanisms. In our climate change 482 

scenarios, we control and hold constant the environmental change that each population experiences. As 483 

a result, the substantial variation in phenological responses to climate change observed in our 484 

simulations is driven by differences in cueing strategy. The results of our model suggest that even when 485 

we limit the potential mechanisms of variation in phenological shifts, evolved differences in cueing 486 

strategies would contribute to a great deal of observed variation in phenological responses to climate 487 

change.  488 

Scope, aims and limitations 489 

Our model was developed to explore general mechanisms for the variability of phenological shifts, and 490 

does not attempt to make quantitative predictions about the evolution of cueing strategies at specific 491 

locations for any specific organism. For example, the patterns of cue use shown on the map in Fig. 3A 492 

represent only one possible model outcome, generated under one set of model parameters and 493 

assumptions. In the absence of a specifically parameterized model, these results should not be 494 

interpreted as meaningful predictions for any given system. We present this figure as an example to 495 

illustrate a more general finding - that similar mean strategies tend to evolve in locations with similar 496 

climates, while different strategies tend evolve under different environmental histories. Unlike specific 497 

patterns of cue use in specific locations, this is a robust result that we see across a wide range of model 498 

parameters. Although more specific questions will require a more detailed models, we hope that this 499 

general theoretical framework will encourage more specific studies in the future.  500 

Future directions 501 
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Future studies could extend this model by increasing model complexity, or evaluating our general 502 

findings in specific systems. Potential extensions of this model include modeling organisms with 503 

alternative life histories, using a broader range of environmental cues, considering more complex cue 504 

integration mechanisms, allowing sexual recombination of traits to increase standing genetic variation, 505 

or allowing gene flow between locations. It would be particularly useful to study whether more complex 506 

cueing strategies could allow greater resilience or robustness in the face of climate change. However, 507 

our ability to apply models to make predictions relevant to specific systems is likely to be more limited 508 

by our current knowledge of key parameters in specific systems rather than our ability to develop more 509 

complex models. Future empirical and observational studies could build a groundwork for these studies 510 

by identifying key cues and cue integration mechanisms, and by documenting variation in phenological 511 

cueing strategies within and across populations.   512 

While we used different locations to represent different environmental conditions in this model, the 513 

general findings of this model could also potentially be extended to consider other factors that structure 514 

the availability of environmental cues, such as microhabitats or life histories. Two organisms in the same 515 

location may experience very different environmental conditions, potentially structured by their 516 

microhabitat, life history, trophic position, body size, or other factors. For example, the general findings 517 

of our model could potentially be applied to observed differences in phenological shifts correlated with 518 

phylogenetic groups (e.g., Parmesan 2007; Davis et al. 2010; Thackeray et al. 2010; Davies et al. 2013). 519 

Parmesan (2007) speculated that the particularly strong and variable phenological shifts of amphibians 520 

could be due to their particular reliance on precipitation-associated cues. Similarly, Davis et al. (2010) 521 

hypothesized that phylogenetic patterns in flowering time shifts could be caused by differences in cue 522 

use, potentially reflecting differences in the reliability of different cues in the evolutionary histories of 523 

different taxa. The results of our model are consistent with these hypotheses, and the expectation that 524 
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organisms exposed to different environments over their evolutionary history will evolve different 525 

phenological cueing strategies, with consequences for their phenological responses to climate change.  526 

Conclusion 527 

The two key findings we report here are robust across a range of model parameters, and appear to be 528 

rooted in fundamental mechanisms of multi-cue integration and the complexity of real-world climatic 529 

correlations. This suggests that similar mechanisms could potentially occur in a wide range of systems 530 

(e.g., Beshers and Fewell 2001; Wilczek et al. 2010; Seeholzer et al. 2018; Chmura et al. 2019), and that 531 

examining the reliability of cues in an organism’s evolutionary history could provide useful a starting 532 

place for understanding current phenological cueing strategies. Understanding current phenological 533 

cueing strategies could potentially improve our ability to predict and respond to future phenological 534 

shifts. However, these results also suggest that the nature of cue integration may put fundamental limits 535 

on our ability to predict the responses and fitness outcomes of organisms living under novel climatic 536 

regimes.  537 
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Figure legends 660 

Figure 1. Schematic diagram of model. A) Genotypes combined with environmental cues (including 661 

cumulative annual daily temperature maximums, cumulative annual daily precipitation totals and day-662 

of-year) result in expressed phenotypes (day of response). B) The trait effect (Τ), the proportional 663 

contribution of each trait to the response decision (a representation of the interaction between 664 

genotype and environment), can be expressed as a composition and presented on a ternary plot. C) The 665 

fitness of different phenotypes is determined by climatic (temperature and moisture) conditions during 666 

a 10-day window after the response threshold is crossed. A lottery model of reproduction determines 667 

the number of offspring produced by each individual, and mutation results in new genotypes for the 668 

next generation. D) Selection results in evolved phenological cueing strategies that anticipate favorable 669 

conditions and avoid unfavorable conditions. In this panel, the solid blue line represents the long-term 670 

expected fitness outcome for each day under historical conditions, while the dotted black lines 671 

represent the fitness outcomes for the first and last year of the simulation for the left and right panels 672 

respectively. The black arrows at the top of each panel represent the response day of each individual of 673 

the population. Initially the timing of phenological response is spread across the year, but after 1000 674 

generations of selection, most of the population shows similar phenological timing.  This example shows 675 

the results of one simulation using climatic data from Davis, CA, USA.  676 

Figure 2. A-D) Ternary plots illustrate proportional cue use at the time of response for four selected 677 

locations. Each point represents the mean strategy at the end of one simulation; each strategy is 678 

represented as a composition of the trait effects (Τ) in percentages, which represent relative cue use. 679 

Point color reflects geometric mean fitness of genotypes across all years of the climate as a percent of 680 

the maximum observed geometric mean fitness (𝑊𝑊� ) for each location. Simulations within 10% of the 681 

maximum observed geometric mean fitness in each location are represented as triangles and included in 682 
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a gray convex hull. All other points are represented as circles. Ternary plots for all 78 locations are 683 

presented in Fig. S5, locations are described in Appendix Table 1. E-H) Geometric fitness in the 3-684 

dimensional trait-space of our organisms, with each dimension representing phenological sensitivity to a 685 

different cue (where low trait values mean high sensitivity). For each location, the yellow region 686 

represents strategies that were at or near the highest observed fitness. This region generally spans a 687 

wide range of trait values, reflecting the breadth potentially successful trait combinations. These plots 688 

show that diverse genotypes can produce similarly high fitness phenotypes. To generate these plots, we 689 

evaluated a 100x100x100 grid spanning trait values ranging from the 10th through 90th percentiles of 690 

observed cues in each location for fitness and response day in each recorded year of climate. I-J) 691 

Response similarity is plotted for the same trait ranges in each location. Response similarity is a metric 692 

that quantifies the proportional similarity of phenological responses for each trait combination 693 

(genotype) compared with the phenological responses of the trait combination with the maximum 694 

geometric mean fitness across all available years. We calculate the response similarity as one minus the 695 

proportional response dissimilarity, which was defined as the mean distance (in days) between the 696 

response day of each genotype compared with that of the most fit genotype, divided by the greatest 697 

distance in each year. Bands of high similarity span most of the traitspace, demonstrating that many 698 

different combinations of traits can lead to similar response phenologies. Comparisons with panels E-H 699 

show that regions of high response similarity generally overlap with regions of high fitness, illustrating 700 

that the observed similarity in fitness between diverse strategies is generally due to the expression of 701 

similar phenological phenotypes, rather than alternative phenotypes with equivalent fitness. 702 

Figure 3. Evolved strategies show spatial autocorrelation in relative cue use (the trait effect, Τ); similar 703 

strategies evolve in nearby locations with similar climates, and different strategies evolve in distant 704 

locations with different climates. A) A map representing the mean evolved strategy for each of 78 705 

locations across all years. Evolved strategies show significant positive spatial autocorrelation (Moran's I) 706 
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in reliance on B) day, C) temperature, and D) precipitation cues up to at least 1000 km. Filled circles are 707 

significantly correlated, open circles are not. 708 

Figure 4. The variability of mean phenological responses to climate change scenarios and their fitness 709 

consequences across locations (see also Figure 5 for variation across simulations within locations). 710 

Changes in phenology and mean fitness A) under a shift scenario where both temperature and 711 

precipitation regimes advance by 5 days, and B) under a warming scenario where temperature are 712 

warmed by 3-degrees across the year. Under these two scenarios, organisms with different 713 

environmental histories generally respond earlier, but show variable degrees of advancement and highly 714 

variable fitness consequences. The position of each circle represents the mean change in the response 715 

date and the proportional change in geometric mean fitness averaged across all evolved genotypes of 30 716 

simulations for each of 78 locations, relative to the historical climate in that location, represented by a 717 

black triangle. Thus, this figure shows the variability of phenological responses and fitness consequences 718 

to climate change across locations (see Fig. S12 for plots of phenological responses and fitness changes 719 

across all locations). The color of each circle represents the historical trait effect of day (Τday), indicating 720 

the relative use of a climatically invariant cue. 721 

Figure 5. The variability of mean phenological responses to climate change scenarios and their fitness 722 

consequences across simulations within locations (see also Figure 4 for variation across locations). This 723 

figure is constructed as in Figure 4, but showing changes in phenology and mean fitness for each of 30 724 

simulations from four example locations (rows) under both the shift scenarios (left column, panels A, C, 725 

D, and G) and the warming scenario (right column, panels B, D, F, and H). Each colored circular point 726 

represents the mean response of a single simulation relative to the historical condition, represented by 727 

a black triangle. The color of each circle represents the historical trait effect of day (Τday), indicating the 728 

relative use of a climatically invariant cue.   729 
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Supporting figure legends 749 

Figure S1. A map of mean phenological strategies in different locations under an alternative model 750 

formulation using cumulative photoperiod as the cue for day-of-year an a developmental baseline 751 

temperature of 0 C across all locations below which organisms are insensitive to thermal cues. As in the 752 

primary model formulation, similar strategies evolve in similar climates.  753 

Figure S2. A visualization of the 2- dimensional fitness function and example seasonal fitness landscapes. 754 

Daily fitness function, parameterized for Ithaca, NY, USA showing the 2-dimensional skew-Gaussian 755 

shape; colors represent raw daily fitness. White points show daily measures from the first year of Ithaca 756 

data, 1893. Side panels show the 1-dimensional asymmetric fitness function associated with 757 

temperature and moisture at slices through the 2-dimensional surface, represented by the dashed lines.  758 

Figure S3. Examples of the seasonal fitness landscape for Ithaca, NY, USA in 2003-2008. The y-axis 759 

represents the total accumulated raw fitness payoff over a 10-day window as a function of phenological 760 

response timing (day-of-year).  The blue dashed line represents the expected fitness landscape for any 761 

given year, based on the long-term mean.  762 

Figure S4. Temperature, precipitation and day traits evolve over 1000 generations in this representative 763 

simulation from Davis, CA, USA. Each simulation begins with initial values for each trait drawn from 764 

broad uniform distributions; selection drives the evolution of specific strategies. The inset figure shows 765 

an expanded view of trait evolution in the final 100 generations. Each point represents the trait value of 766 

one individual; point colors show raw individual fitness proportional to the maximum value in this 767 

simulation. Populations commonly experienced “good” and “bad” years, and often showed coordinated 768 

changes in trait values across the three cues.  769 

 770 



43 
 

Figure S5. Evolved strategies for 60 simulations in each of 78 locations. Each point represents the mean 771 

strategy at the end of one simulation; each strategy is represented as a composition of the “trait effects” 772 

in percentages, which represent relative cue use (see “assessing realized relative cue use” in Methods). 773 

Point color reflects the mean geometric mean fitness for each simulation scaled by location. Simulations 774 

within 10% of the maximum observed geometric mean fitness in each location are represented as 775 

triangles and included in a gray convex hull. All other points are represented as circles.  776 

Figure S6. Strategy variation across locations. Strategy variation in each location is measured as the 777 

compositional metric standard deviation A) among all genotypes and B) among all genotypes within 10% 778 

of the most fit per location.  779 

Figure S7. Probability density distributions of geometric mean fitness for 60 simulations in each of 78 780 

locations, rescaled to the most fit simulation in each location. Rug plot marks along the horizontal axis 781 

represent individual simulations. Most simulations result in evolved strategies that have geometric 782 

mean fitnesses that are within 10% of the most fit simulation in each location.  783 

Figure S8. This figure provides an alternative view of the data shown in Fig. 2, where the ternary plots in 784 

panels A-D are unchanged, panels E-H show only the trait combinations within 10% of the most fit 785 

combination, and panels I-L show only those trait combinations with a response similarity within 10% of 786 

the most fit combination.   787 

Figure S9. In this figure, each point represents the maximum proportional range of trait effects (Τ) and 788 

the maximum proportional range of geometric mean fitness (𝑊𝑊� ) across 60 simulations for each of 78 789 

locations. The maximum proportional range of trait effects is the largest observed difference between 790 

the trait effects across simulations within a location, across all three trait dimensions. The color of each 791 

point depicts which of the three trait effect dimensions produced the maximum range. Likewise, the 792 
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maximum proportional geometric mean fitness range is the difference between fitness of the most-fit 793 

evolved strategy and the fitness of the least fit evolved strategy. Most locations show a wide range of 794 

trait effects with relatively small effects on mean geometric fitness.  795 

Figure S10. The effects of hypothesized explanatory factors on evolved cue use across all locations 796 

under historical conditions. These analyses examine A-C) simple location variables, D-F) metrics of 797 

within- and between-year climate variability, and G-I) published metrics of climatic variability, 798 

predictability and seasonality. Values indicate standardized fixed effect coefficient estimates, where the 799 

raw fixed effect coefficient is divided by the standard deviation of the predictor so that the resulting 800 

effect size represents the estimated change in trait effects with a change of one standard deviation in 801 

the predictor (see also Fig. S11). Error bars indicate 95% confidence limits. 802 

Figure S11. The effects of hypothesized explanatory factors on evolved cue use across all locations 803 

under historical conditions. These analyses examine A-C) simple location variables, D-F) metrics of 804 

within- and between-year climate variability, and G-I) published metrics of climatic variability, 805 

predictability and seasonality. Values indicate raw, unstandardized fixed effect coefficient estimates 806 

from linear models (see also Fig. S10). Error bars indicate 95% confidence limits. 807 

Figure S12. Location specific responses to A) a 5-day shift in temperature and precipitation regimes and 808 

B) 3-degree C warming. For each location, each of 30 genotypes is represented by a blue and red circle 809 

showing its day of response and proportional fitness under historical and changed conditions, 810 

respectively.  811 

Figure S13. Genotype x environment interactions mean that different genotypes have greater relative 812 

fitness advantages in different years; phenological cueing strategies interact with climatic variation to 813 

reduce consistent fitness advantages (see Appendix, “Genotype-by-environment interactions”). A) In this 814 
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example, each color represents an individual genotype from the final generation of a simulation using 815 

climatic data from Ithaca, NY, USA, evaluated in a random subset of 20 years. To facilitate 816 

interpretation, a random individual is highlighted as a black line. Fitness has been scaled by the 817 

maximum observed fitness across all years for this simulation. B) Across all locations, genotype x 818 

environment interactions account for 29% of fitness variation on average. The blue probability density 819 

function represents the distribution of mean fitness variance components due to genotype x 820 

environment interactions in each of 78 locations. The dashed line shows the mean proportion of 821 

variation attributable to genotype x environment interactions.  822 

Figure S14. Variation in mean annual temperature between years, within simulations for subsampled 823 

climatic datasets of length N, where N ranges from 56 to the full dataset length for each location. N did 824 

not have a meaningful effect on variation in mean annual temperature between years, within 825 

simulations (Appendix, “Sensitivity to dataset length”). Color reflects variation in mean annual 826 

temperature between years, within simulations. 827 

Figure S15. Variation in mean annual temperature between simulations, within locations for 828 

subsampled climatic datasets of length N, where N ranges from 56 to the full dataset length for each 829 

location. N did not have a meaningful effect on variation in mean annual temperature between 830 

simulations, within locations (Appendix, “Sensitivity to dataset length”). Color reflects variation in mean 831 

annual temperature between years, within simulations. 832 

Figure S16. Subsampling from the full dataset length to N=56 years did not meaningfully change the 833 

rank order (ranked by variation in mean annual temperature between years) of locations within 834 

simulations (Appendix, “Sensitivity to dataset length”). Color reflects the rank order of variation in mean 835 

annual temperature between years, within simulations for the full dataset. 836 
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Figure S17. Subsampling from the full dataset length to N=56 years did not meaningfully change the 837 

rank order (ranked by variation in mean annual temperature between years) of locations within 838 

locations (Appendix, “Sensitivity to dataset length”). Color reflects the rank order of variation in mean 839 

annual temperature between simulations, within locations for the full dataset.  840 
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Appendix. Supporting Methods and Analyses 

 

Environmental data 

Beginning with the raw climatic data from 82 locations in North America and Hawaii, we removed years 
with <325 daily temperature and precipitation observations, and subsequently excluded four locations 
with <50 years of data available. For each of the remaining locations, we calculated the interquartile 
range (IQR) of temperature as the difference between first quartile (Q1) and third quartile (Q3) 
observations. Temperature observations less than (Q1-4*IQR) and greater than (Q3+4*IQR) were 
identified as outliers likely resulting from measurement error, and were excluded; such outliers were 
generally climatically impossible, and represented a small proportion (0.0012%) of the overall dataset. 
Missing observations in the remaining dataset (less than 1% of observations) were imputed using an 
expectation-maximization with bootstrapping (EMB) algorithm. Imputation was conducted with the 
expectation-maximization with bootstrapping (EMB) algorithm implemented in the Amelia II1 package, 
with priors informed by long-term climatic daily means and standard deviations. Imputation was 
conducted with the script “enviro_data_imputation_final.R”. Imputed values for temperature and 
precipitation were bounded by the observed minimum and maximum values of each location, and 
informed by priors based on the means and standard deviations of each location.  

For each location, we calculated the minimum distance to a marine coastline using a high resolution 
coastal shapefile2 with the rdgal package3. Coastal distance was calculated with the script “distance-to-
coast.R”.  

Locations are listed in Supplementary Table 1 along with their ID for use in R data files.  

Sensitivity analyses 

We explored several alternative model structures, cues, and parameter values to assess the robustness 
of our key results. We ran the simulation with both linear and quadratic terms for each of our cues to 
assess the effects of model structure. We ran the simulation using (a) daily precipitation, daily 
temperature, and day-of-year, and (b) cumulative temperature, cumulative precipitation, and 
cumulative photoperiod to assess alternative cues. We ran the simulation on a subset of locations using 
a product of symmetrical Gaussian distributions, and a product of skew Gaussian distributions with 
other skew parameter values to test if our simulation was sensitive to the functional form of the fitness 
surface. We ran the simulation on a subset of locations using larger and smaller population sizes, longer 
and shorter simulation durations, larger and smaller mutation distances, reduced mutation rates, fitness 
windows of 5, 10, and 20 days, and higher and lower moisture retention coefficients to test if our 
simulation was sensitive to these parameter values. We calculated the geometric mean fitness across a 
broad range of trait values for each location using (a) base parameter values, (b) two alternate 
parameterizations for each location, each having randomly assigned fitness windows (5, 10, or 20 days), 
and randomly and independently assigned optimal temperature and moisture quantiles for the fitness 
function to assess the robustness of our finding that a broad range of genotypes can yield similar 
fitnesses.  

Our general findings were qualitatively robust across model variants that used different cues (daily 
precipitation, daily temperature, photoperiod, quadratic measures of cues), fitness functions, and 



fitness windows. Variants with alternative or additional cues also yielded qualitatively similar spatial 
variation in cue use (e.g, Fig. S1), but each additional cue has a multiplicative effect on potential trait 
space, and alternative models lacked a strong a priori basis. Different fitness window lengths produced 
qualitatively similar patterns, with longer windows creating more consistent fitness patterns between 
years (e.g., responding a day earlier or later had a smaller proportional impact on the sum of daily 
fitnesses). Changing mutation rates, distances, simulation duration, and population size influenced the 
total amount of trait change that occurred within each simulation (and in the case of duration and 
population size, dramatically changed computational runtime), but produced qualitatively similarly 
patterns. Changes to fitness parameters, including optimal temperature and moisture quantiles, did not 
change the shape of the high-fitness regions in Fig. 4.  

We also conducted a full simulation using a 50-day fitness accumulation window in all locations in order 
to represent a longer-lived organism or an organism with sensitivity to climatic conditions over a 
broader period of its annual life cycle. The results of this simulation were consistent with our general 
findings using a 10-day window and with previous sensitivity analyses – this simulation also showed 
spatial autocorrelation in mean strategies across locations, with substantial variation in cueing strategies 
within and between locations. This simulation showed two predictable, quantitative differences 
compared to simulations using a 10-day window. First, evolved strategies under the broader window 
showed a greater reliance on day-of-year cues. We believe this occurs because the broader window 
reduces fitness differences between response days and makes coarser seasonal patterns more reliable. 
Second, when comparing populations within locations, we still see considerable genotypic variation for 
many locations, but with almost no fitness differences. This further supports our interpretation that the 
variation we observed between simulations and within locations reflects effective alternate strategies. 
Thus, these results provide even stronger support for our key findings than the results we present in the 
main text, due to the relative simplicity of the seasonal fitness landscape under a substantially longer 
fitness accumulation window.  

Thorough exploration and examination of trait-space proved computationally prohibitive, but for each 
location we evaluated the geometric mean fitness of 5,000,000 genotypes generated from a Latin 
hypercube implemented in lhs4, constrained to the same “reasonable range” of traits we used for the 
population initialization in the simulations. During this evaluation, we examined how model results 
changed when we varied lag (the number of days between E≥1 and the organism emerging) between 1 
and 5, and the temperature and moisture that maximized fitness between 5th and 95th percentile of 
observed cue values for each location. Results for these sensitivity analysis were qualitatively similar, 
but trait values and cue use changed when organisms are rewarded for emerging in low temperatures 
and moisture. We carried out test simulations in which organisms had different windows (1 and 20 days) 
after emergence to collect fitness. These simulations showed qualitatively similar results, although 
simulations with shorter windows were more influenced by extreme weather events, while simulations 
with longer windows provided smaller benefits for emerging on exactly the optimal day. 

Sensitivity to dataset length 

The historical climate data we obtained for our 78 locations varied in length. To evaluate the effect of 
dataset length on the climatic variation experienced in our simulations, we conducted an additional 
analysis by repeatedly subsampling each historical dataset without replacement to generate 
hypothetical data sets with N years of data, where N varies from 56 (the shortest dataset we used) to 



the full length of the dataset for each location. From these, we replicated the process our simulations 
used to generate climates for populations: each of the newly generated data sets were sampled with 
replacement to create 1000-year sequences of climate data, and this process was repeated 60 times for 
each location. Using mean annual temperature as a representative climate variable, we considered the 
effects of dataset length on climatic variation at two levels: a) between years, within a simulation, and b) 
between simulations, within locations. We then plotted both measures of variation against N, where 
each line represents a different location (Fig.S14, S15). Dataset length had a negligible effect on both 
measures of climatic variation. We quantified this effect by fitting separate linear regressions for each of 
these two metrics of climatic variation using dataset length (N) as a fixed factor and location a random 
factor. The effect size associated with dataset length explained a negligible proportion of the variation a) 
between years, within a simulation (ΔR2 = 0.00004) and b) between simulations, within locations (ΔR2 = 
0.00003). We also compared the rank order of both variation metrics for all locations using our full 
dataset versus subsamples of N=56 years, and found that most rankings were unaffected by dataset 
length (Fig. S16, S17). These results support our assumption that variation in historical dataset length 
had very little effect on the climatic variation experienced by our simulated populations, and is unlikely 
to affect the findings of our study. 

Analysis of explanatory factors 

We conducted analyses to examine correlations between evolved strategies and three sets of potential 
explanatory variables at each location. The first set of analyses considered five location variables that 
provide a broad biogeographic description of each location: distance to coast, elevation, latitude, mean 
annual precipitation and mean annual temperature. The second set of analyses focused on six variables 
that quantify climatic variance and predictability: the mean annual coefficient of variation for daily 
maximum temperature, the mean annual coefficient of variation for daily precipitation total, the 
coefficient of variation for annual mean daily maximum temperatures, the coefficient of variation for 
annual mean daily precipitation totals, the lag=1 autocorrelation coefficient for daily maximum 
temperature, and the lag=1 autocorrelation coefficient for daily precipitation totals. The first two of 
these variables provide metrics of intra-annual climatic variation, the second two provide metrics of 
inter-annual climatic variation, and the last two provide metrics of short-term predictability. The third 
set of analyses used six published metrics of climatic predictability, variability and seasonality (Pau et al. 
2011; Lisovski et al. 2017): Lisovski et al.’s predictability and seasonal amplitude (hereafter seasonality) 
metrics for temperature and precipitation, and Pau et al.’s variance metrics for temperature and 
precipitation. Lisovski’s metric of predictability quantifies the ability of a model parameterized with a 
moving window of 4 years to predict climatic conditions in the following year across the time series. 
Pau’s metric of temperature variance is the standard deviation of mean monthly temperatures, and 
Pau’s metric of precipitation variance is the coefficient of variation for mean monthly precipitation (Pau 
et al. 2011). Lisovski’s metric of seasonality (i.e., seasonal amplitude) was the difference between the 
upper and lower 2.5th quantile of the annual distribution (Lisovski et al. 2017). Because the Pau et al. and 
Lisovski et al. metrics of seasonality were highly correlated, we did not also include the Pau et al. metrics 
of seasonality.   

These analyses used a dataset composed of the mean strategies that evolved in each simulation 
conducted in each location. For each analysis set, we used linear mixed models including all a priori 
explanatory variables as fixed factors for each trait effect dimension, with an additional random factor 
to allow intercepts to vary by location. For each analysis set, we ran the linear mixed model separately 



for each of the three cues. We find qualitatively identical results using logit-transformed trait effects, 
and primarily present analyses of untransformed data here so that the effect sizes are reported in 
interpretable units. Standardized effect sizes (B) are represented by the fixed effect slope coefficient 
divided by the standard deviation of each explanatory variable to allow for comparisons between 
explanatory factors (Fig. S9); these effects sizes reflect the change in trait effects across one standard 
deviation of the explanatory variable (Bring 1994). We also present non-standardized effect sizes for 
completeness (Fig. S10).  

Several location-based explanatory factors were associated with variation in phenological cueing 
strategies under our specific model (Figs. S8). For example, the evolved use of day cues (measured as 
the mean trait effects of the final generation) declined with distance from the coast (B=-0.112), and 
increased with elevation (B=0.103). The use of day cues may have been favored in more moderated 
coastal climates if these climates tend to show more predictable seasonal variation where climatically 
plastic cues are less relevant for identifying successful windows of opportunity. Conversely, the greater 
use of day cues may have evolved at high elevation locations if more variable day-to-day climatic 
conditions meant that climatic cues provided less predictive information than a climatically invariant day 
cue. In comparison, these two explanatory factors suggest that the evolution of phenological cues may 
reflect a key distinction between informative climatic variation and noise. In addition, locations with 
higher mean annual precipitation tended to rely on day cues less (B=-0.120), and generally showed a 
greater emphasis on precipitation cues (B=0.167). This pattern could result from the absence of 
informative cueing information provided by precipitation cues in relatively dry locations.  

Some metrics of climatic variation also explained the evolved use of phenological cues. Locations with 
high mean annual CVprecip (i.e., high within-year precipitation variability) tended to show a reduced use 
of day cues (B=-0.166), and an increased use of precipitation cues (B=0.307). In contrast, locations with 
high CV of mean annual precipitation (i.e., high between-year precipitation variability) tended to show a 
reduced use of precipitation cues (B=-0.167). These patterns suggest that the use of precipitation cues 
allows for adaptive plasticity in locations with variable within-year precipitation regimes, but a reliance 
on precipitation cues is not favored in locations with high between-year variation in precipitation, where 
precipitation cues may be lacking or uninformative in some years. Unexpectedly, locations with high lag 
1 autocorrelation in temperature (ACFtemp) actually tended to use temperature cues less (B=-0.164), 
while locations with high ACFprecip tended to use precipitation cues less (B=-0.130), and day cues more 
(B=-0.123). This result is counterintuitive, since it shows a negative correlation between a direct 
measure of (daily-scale) climatic predictability and evolved cue use. However, a similar pattern emerges 
from an independent published metric of predictability on a seasonal scale: locations with high Lisovski 
temperature predictability showed a reduced use of temperature cues (B=-0.173), and locations with 
high Lisovski precipitation predictability showed a reduced use of precipitation cues (B=-0.141). We 
speculate that these patterns occur because the use of day cues can compensate to some degree for the 
use of climatic cues in locations with highly predictable climatic conditions, and because maximizing the 
fitness outcomes of strategies in locations with one highly predictable climatic condition may depend 
more on identifying windows of opportunity constrained by the other climatic factor.  Pau’s metric of 
precipitation variance was associated with an increased use of day (B=0.137) and temperature (B=0.143) 
cues, and a reduced use of precipitation cues (B=-0.228), while Lisovski’s metric of precipitation 
seasonality was associated with a reduced use of day (B=-0.176) and temperature (B=-0.107) cues, and 
an increased use of precipitation cues (B=0.280). These patterns are in the opposite direction because 
the Pau measure of precipitation variance uses the coefficient of variation, and so is negatively 
correlated with mean annual precipitation (r=-0.54, p<0.0001)), while Lisovski’s metric of precipitation 
seasonality was highly positively correlated with mean annual precipitation (r=0.94, p<0.0001). The 



pattern with Lisovski’s measure of precipitation seasonality supports the previous observation that the 
use of precipitation cues is positively correlated with intra-annual precipitation variation. Overall, while 
several factors emerged as meaningful predictors of phenological cue use in these analyses, most of the 
variation in cue use was unexplained even in models that combined all 17 factors for each trait effect 
(Τday: marginal R2=0.102; Τtemp: marginal R2=0.110; Τprecip: marginal R2=0.308).   

We suggest that the limited success of these explanatory factors for predicting cue use occurs because 
they are too far removed from the specific selection criterion implicit in the model. For example, metrics 
that attempt to summarize inter- or intra-annual climatic variation are only distantly correlated with the 
predictability of cues in the most relevant period of the year when fitness is highest. Likewise, even 
metrics that specifically target climatic predictability (as opposed to variation) were generally unable to 
provide a strong explanation for evolved cues because they quantify mean predictability across the year, 
while selection favors strategies that are able to identify potential windows of opportunity in specific 
parts of each year.  In general, the evolved strategies in our model offers only partial support for 
conventional expectations based on location characteristics or standard metrics of  climatic variability 
(Sunday et al. 2010; Molina-Montenegro and Naya 2012); instead, they illustrated the complexity of the 
climatic regimes and seasonal fitness landscapes that affect organisms in this model. Further, the 
considerable variation in evolved strategies within many locations suggests that simple climatic and 
environmental factors alone are unlikely to adequately predict the evolution of phenological cueing 
strategies. 

The quantitative results of this analysis are specific to the model parameters we used, and shouldn’t be 
used to infer the drivers of phenological cue evolution more generally. However, the results of this 
analysis do suggest several potentially general patterns. Even when the specific relationships are 
complex or counterintuitive, the observation that some location and climatic variables are predictably 
associated with reliance on specific phenological cues suggests that these evolved phenological cueing 
strategies were a predictable outcome of their environmental histories. Moreover, evolution appeared 
to favor cues that were reliably present from year to year, but showed an intermediate level of variation 
within year – neither so predictable that they could be replaced by climatically invariant day of year 
cues, nor so variable that they diluted informative signal with uninformative noise.  Thus, the spatial 
autocorrelation of evolved strategies suggests that past environmental regimes shaped the evolution of 
phenological cueing strategies in fundamentally predictable ways, even if our ability to characterize the 
specific environmental factors that favor different cueing strategies is limited.  

Genotype-by-environment interactions 

The GxE interactions in our model reflect that the effects of different genotypes (i.e., combinations of 
three traits, or phenotypic cueing strategies) on phenotype (i.e. day of emergence) or fitness are 
different in different environments (i.e., years). Broadly, the GxE effect weakens the potential for 
consistent fitness differences among genotypes (i.e., phenological strategies), promoting the persistence 
of genotypic diversity (Falconer 1952; Gillespie and Turelli 1989). We quantified the GxE interaction 
effect by partitioning variation in the annual fitness of a non-evolving population (among individuals, 
within each simulation, with no mutation or selection) exposed to every year of climate data from that 
location using a linear regression with fitness as the response variable and individual and year as fixed 
effects. Because our model is deterministic (i.e., there is no measurement error), the proportion of 
variation that could not be explained by individual and year factors represents the GxE effect. We 



calculated the percent fitness variation explained by GxE effects for each simulation as (1 - r2) ×100, and 
report the average percent variation explained by GxE effects for all simulations for all locations. 

The genotypes in each simulation of our model show different reaction norms across years, driven by 
between-year differences in the historical climatic data (Fig. S13A). We estimated that the GxE effect 
would explain 29% of fitness variation on average across all simulations and locations (Fig. S13B).   

Alternative climate change scenarios 

We also tested a “warming + shift” climate change scenario in addition to the two scenarios presented 
in the main manuscript. This third scenario included a 3-degree increase in daily temperatures, and a 
shift in the precipitation regime that matched the median phenological advancement in cumulative 
temperatures. To do this, we calculated the median cumulative temperature value for each location. For 
each year, we determined the day the cumulative temperature matched or exceeded this value in the 
historic climate regime and in the shifted temperature scenario. The difference of those two days 
represented the effective temperature advancement, and we shifted the precipitation regime forward 
to match this advancement, treating each year as cyclical to accommodate the beginning and end of 
each year. This produced qualitatively similar responses in the organisms, but this “warming + shift” 
scenario was complicated by unpredictable shifts in precipitation which varied by location (e.g., warm 
locations had smaller shifts than cold locations, since the relative change in cumulative temperature 
from a 3 degree warming was smaller).  

Code guide 

The simulation code for this project is designed to work with the following file structure, which is 
necessary for the code to run. Files are italicized while folders are not. Exact file names are contained in 
quotes. A ZIP file with the scripts and data files in the appropriate file structure can be found on Dryad at 
https://doi.org/10.25338/B8TG95. 

• Project directory 
o Climate data 

 “location summary with distance to coast.csv” 
o data-years 

 all data files to be used 
 “location summary with photoperiod.Rdata” 

o data-years-lisovski 
 all data files to be used 

o fitcurve 
 “skewgauss.R” 

o parameters 
 Any parameter files to run. The following are the parameter files used to 

generate the results presented here: 
 “cu-ccshift-mut005-parameters.R” 
 “cu-cctemp-mut005-parameters.R” 
 “cu-cuphotoperiod-mut005-parameters.R” 
 “sensitivity-win50-mut005-parameters.R” 

o results 



o scripts 
 “master-script.R” 
 “rate-setup.R” 
 “simulation.R” 
 “windows-subs.R” 

o yearinds 

Code is initiated by running master-script.R. The “set_wrkdir()” function at the beginning of this file 
should be updated to point to the home folder you are using, and “prefix” and “suffix” should be 
updated to match the name of the parameter file to run (by default, set “prefix” to everything before 
the “.R” of the parameter file name, and set “suffix” to be an empty string). The “sum.merge.only” and 
“test.only” parameters are to analyze existing runs and test the code using the first two locations, 
respectively. These should be set to FALSE for a complete run. Outside of the parameter files, these are 
the only lines of code that may require modification to implement our model. 

After reading in parameter (below) and function files, “master-script.R” calls “simulation.R” script for 
every location. “simulation.R” reads in the imputed climate data files, and calculates derived climate 
measures (cumulative cues, fitness, etc). It then calls “rate-setups.R” to initialize mutation rates and 
starting trait ranges. “simulation.R” then uses the function year_var_analyze() to calculate climate 
metrics, which are saved in “…-stats.Rdata” in the data-years folder. The script then saves the current 
scripts (into the results folder), parameters (into the results folder), and the random order of years to be 
used (into the yearinds folder). These are useful for tracking changes to the model as well as making 
comparisons between model runs. Climate change scenarios are then generated, creating a changed 
version of the locations climate data, which is saved in the results folder. “simulation.R” then uses 
parallel processing (using between 1 and 7 clusters depending on the computer’s number of cores) to 
carry out the actual simulation, which is run through the run_sim() function. This and most other 
functions are defined in the “windows-subs.R” file. Results of each simulation run (along with 
intermediate objects and functions) are saved in the corresponding results folder in a file labeled 
“dat.Rdata”. The realized relative cue use is then calculated and saved in “finalpop-yrtest-acteff-
dat.Rdata” (see Methods for an explanation of this metric). As a reminder, this is calculated for each 
individual of the final population exposed to each year of the historic climate. The climate change 
scenario is then evaluated using the climate_master() function. This function takes the final 
population of the simulation and evaluates its emergence and performance on each year of the changed 
climate, saving the results in “temp.Rdata” in the climate folder within the corresponding results folder. 
Finally, fitness parameters used for this location are saved in “…_fitparms.Rdata” in the corresponding 
results folder. 

After each simulations for each location have been run, “master-script.R” uses 
trait_eff_summarize_small()to aggregate the realized relative cue use information to the 
individual (“acteff-agg-byindiv.Rdata”) and the simulation level (“acteff-agg-bysim.Rdata”) level in the 
corresponding results folder, and aggregates all simulation information to the simulation level in “all-
finalpop-yrtest-simlevel-….Rdata” in the appropriate results folder. After all simulations and 
aggregations have been carried out, “master-script.R” calls dat_sum_merge()  to summarize climate 
metrics, and then merge these metrics with location data, simulation results, and realized relative cue 
use in historic and changed climate regimes, which is saved in into a single data frame with simulation-



level summaries which is saved in “climateVsPops-….Rdata”. This file contains the majority of the 
information presented in this paper. Below is a description of each column’s contents.  

In these descriptions and in the parameter guide that follows, “simulation” refers to one of several 
identically parameterized instances of the model in a location; these are best imagined as alternate 
realities. The results we present had 30 simulations for each location for each set of parameters. “Runs” 
refers to different executions of the code (typically an execution of the code applies the parameters to 
every location, producing multiple simulations for each of 78 locations). Presumably these runs are 
carried out with the purpose of comparing consequences of differences in parameters; thus each run is 
likely to have a different parameter file. 

The results file has a row for each simulation. Each simulation in a location had a different random 
sequence of years (1000 by default) drawn from the same original collection of years of recorded daily 
climate data with missing values imputed (see Environmental Data in Methods and Supplements). 
Unless stated otherwise, climate metrics were calculated based on the sequence of years actually 
experienced, producing slightly different values between simulations. 

Results file column contents 

• name: Location ID (see supplements table 1) 
• sim: simulation number 
• eff.day: simulation day effect, averaged across all individuals and all years using the acomp 

function in the compositions package (see realized relative cue use in Methods) 
• eff.cutemp: as day, for cumulative temperature 
• eff.cuprecip: as day, for cumulative precipitation 
• emerge: emergence day of final population averaged across all years and all individuals 
• emerge.cc: emergence day of final population under climate change scenario averaged across all 

years and all individuals 
• geofit: raw units of “fitness” obtained by final generation (used to determine relative). Averaged 

across all individuals in all years 
• geofit.cc: as geofit, but using climate change climate data 
• lis.tpred: climate metric that represents the predictability of temperature5. This was calculated 

for the original sequence of years (for each location, the years were ordered chronologically and 
treated as sequential). As such, the same value was used for all simulations with the same 
location. 

• lis.ppred: as lis.tpred, but for precipitation 
• lis.mpred: as lis.tpred, but for moisture 
• lis.tseason: climate metric that represents the seasonality of temperature5 
• lis.pseason: as lis.tseason, but for precipitation 
• lis.mseason: as listseason, but for moisture 
• pau.tvar: climate metric that represents variability in temperature6 
• pau.mvar: as pau.tvar, but for moisture 
• pau.pvar: as pau.tvar, but for precipitation 
• pau.tseason: climate metric associated with each simulation. This metric represents seasonality 

of temperature6 



• pau.mseason: as pau.tseason, but for moisture 
• pau.pseason: as pau.tseason, but for precipitation 
• b.day.mn: day trait of final population, averaged across all individuals 
• b.cutemp.mn: as b.day.mn, but cumulative temperature 
• b.cuprecip.mn: as b.day.mn, but cumulative precipitation 
• med.cv: coefficient of variation in the “median day”. For each year of the climate data, we 

determined the first day the cumulative temperature reached or exceeded half the maximum 
cumulative temperature of the mean year for that location. Coefficient of variation was 
calculated from these median days 

• imput.temp.mn: fraction of the daily temperature values that originated form imputation 
• imput.prec.mn: as imput.temp.mn, but for precipitation 
• med.var: as med.cv, but variance instead of coefficieint of variation. 
• within.mn: The “within-year unpredictability” was calculated for each year by comparing the 

daily temperature to the daily temperatures of the mean year. Each year was allowed to 
advance or retreat by discrete days, and the temperatures could increase or decrease by a 
constant; using sum of squared errors, we found the daily shift and temperature change 
constant to make the current year best match the average year. The “within-year 
unpredictability” was then the mean of the square of the lag 1 difference (“diff”) of the residuals 
of this fit. This represents day-to-day inconsistencies that weren’t present in the average year. 
This metric was calculated for each year of the climate, and then averaged across all years. 

• within.nodiff.mn: as within.mn, but using the mean of the square of differences (skipping the 
“diff” step). This represents divergences between the current year and the average year. 

• Var.dailyfit.mn: For each year, we calculated the variance in the relative fitness available on 
each day. This was averaged across all years. 

• lr.var: The “left-right shift” for a year was the number of days advancement needed to best fit 
the current year’s daily temperatures to the average year of that location. For each location, the 
lr.var was the variance of these measures across all years for that location. 

• Updown.var: as lr.var, but using the temperature shift needed to best fit the current year’s daily 
temperatures to the average year for that location. 

• Temp.mn: mean of all yearly mean temps for the simulation (Note: this was calculated with the 
temperature values that had been shifted so that the minimum temperature in each location 
was 0) 

• Temp.orig.mn: mean of all yearly mean temps for the simulation using the original, unshifted 
temperatures 

• Temp.predtemp.mn: mean correlation of daily temperature on day n to sum of temperatures on 
days (n+1):(n+duration). As with all other X.predY.mn, this was a metric for how well X acted as 
a cue to predict the entire span of Y experienced by an individual that chose to emerge on day n. 

• Temp.predfit.mn: as temp.predtemp.mn, but how well temperature predicted sum of fitness 
• Temp.predmoist.mn: as temp.predtemp.mn, but how well temperature predicted sum of 

moisture 
• Moist.mn: mean moisture across all years 
• Moist.predmoist.mn: as temp.predtemp.mn, but how well moisture predicted sum of moisture 



• Moist.predfit.mn: as temp.predtemp.mn, but how well moisture predicted sum of fitness 
Moist.predtemp.mn: as temp.predtemp.mn, but how well moisture predicted sum of 
temperature 

• Moist.cv.mn: average across all years of the within-year coefficient of variation of daily moisture 
• Precip.mn: average across all years of within-year mean precipitation 
• Precip.var.btwn: between-year variance in the yearly mean precipitations 
• Precip.var.mn: average across all years of within-year variance in precipitation 
• Precip.cv.mn: as precip.var.mn, but using coefficient of variation 
• Temp.varbtwn: between-year variance in the yearly mean temperatures 
• Temp.cvbtwn: between-year coefficient of variation in the yearly mean temperatures 
• Precip.cvbtwn: between-year coefficient of variation in the yearly mean precipitation 
• Moist.varbtwn: between-year variance in the yearly mean moisture 
• Moist.cvbtwn: between-year coefficient of variation in the yearly mean moisture 
• Temp.lag1temp.mn: mean lag 1 autocorrelation of daily temperature. As with all X.lag1Y.mn 

metrics, this was a simple metric for how well X acted as cue to predict Y 
• Temp.lag1moist.mn: mean correlation between temperature of day n and moisture of day n+1 
• Precip.lag1precip.mn: mean lag 1 autocorrelation of precipitation 
• Moist.lag1temp.mn: mean correlation between moisture on day n and temperature on day n+1 
• Moist.lag1moist.mn: mean lag1 autocorrelation of moisture 
• Moist.mn.var: same as moist.varbtwn 
• Temp.cv.mn: mean across years of the within-year coefficient of variation of daily temperatures 
• Temp.varwin.mn: as temp.cv.mean, but variance instead of coefficient of variation 
• Moist.varwin.mn: as temp.varwin.mn, but moisture instead of temperature 
• Lat: latitude of location 
• Lon: longitude of location 
• Elev: elevation of location 
• Coast.dist: distance from location to nearest coast 
• Count.good: number of years of climate data available. 

Parameter file 

The specifics of any simulation run are controlled by the parameters defined in the parameter file. 
Below are descriptions of each parameter 

• runs.types: the name of each location file to use, in vector of characters 
• traits: used for sensitivity analysis. Changing from “day”, “cutemp”, and “cuprecip” may cause 

the current code to break 
• num.sims (default: 30): the number of simulations to run for each location. Each simulation has 

identical parameterizations, but the randomly generated starting genotypes, randomly 
generated sequence of years, and randomly generated mutations of each generation will differ. 

• N (default: 500): number of individuals per simulation 
• num.years (default 1000): number of years to simulate. 
• duration (default: 10): number of days organism gathers fitness 



• lag (default: 1): number of days after organism decides to emerge before it begins gathering 
fitness 

• mut.dist (default: .005): fraction of trait range to use as standard deviation of mutation rate 
• fattail (default: FALSE): indicator to determine whether to use a normal distribution or Cauchy 

distribution to generate mutation values. Early testing showed that the two distributions 
produced indistinguishable dynamics in the model, and subsequent simulations used the normal 
distribution. Setting this to TRUE may cause the current code to break. 

• base.temp (default: 0): threshold below which temperature isn’t added to cumulative 
temperature 

• decay (default: .8): decay parameter alpha for use when calculating moisture (see Methods) 
• fit.shape (default: “skewgauss”): defines which fitness shape script to use. The “skewgauss.R” is 

the only fitness shape script designed to work with the current code. 
• Other.name (default: “moist”): determines what daily environmental measure combines with 

temperature to define fitness.  
• shape.temp (default: 15): initial guess at shape parameter for the temperature fitness curve. 

The final shape parameter is determined by minimizing sum of squared errors. 
• shape.other (default: 15): as shape.temp, but for the other fitness-determining environmental 

measure (by default, moisture) 
• best.temp.quant (default: .9): Used to fit fitness curves. At  this quantile of temperatures for 

each location, the skew normal has its maximum value (see Methods) 
• best.other.quant (default: 0.9): as best.temp.quant, but for the other measure (by default, 

moisture) 
• min.quant (default: 0.1): Used to fit fitness curves. At this quantile of temperature and moisture, 

skew normal function has a value that is (ratio.min) of the peak. (see Methods) 
• ratio.min (default: 0.1): determines ratio of values at the min.quant value and best.*.quant 

value for each skew normal curve. 
• plot.extra (default: FALSE): If true, plot emergence of a subset of the generations of each 

simulation 
• plot.pheno (default: FALSE): If true, plot phenotype of a subset of the generations of each 

simulation 
• burnin (default: 100): Used for emergence and phenotype plots, defines how many of the initial 

generations to skip in the plots 
• year.label (default: “A”): When the simulation script is generating a random sequence of years 

for all simulations in a given location, it checks to see if there exists a file storing random 
sequences for this location with the same num.sims, num.years, year.set (below) and year.label; 
if it finds such a file, it uses those randomly generated year sequences. That is, no two 
simulations within a run will have the same sequence of years, but using the same year.label, 
num.sims, num.years, and year.set values when running two different parameter files will re-use 
the same num.sim (default: 30) randomly generated sequences of years for each of the separate 
parameter file runs. This allows for fair comparisons between different model structures or 
parameterizations (since ABERDEEN.MS run 1 of each parameterization will have the same 
sequence of years). Changing the year.label between parameter files causes each to have a 
separate sequence of years. 



• year.set (default: “all.years”): as year.label – shows up in a different part of the naming scheme 
but plays the same role. 

• temp.increase (default: 0 for “shift” climate change, 3 for “warming” climate change): how 
much should each daily temperature be increased in the climate change scenario? 

• precip.shift (default: 5 for “shift” climate change, 0 for “warming climate change”): how many 
days should precipitation be advanced in the climate change scenario? 

• Lockstep (default: TRUE): should temperature advance with precipitation in the climate change 
scenario? 

• tempsd.increase (default: 1.2): for use in deprecated climate change scenario 
• phensd.increase (default: 1.2): for use in deprecated climate change scenario 
• intra.increase (default: 1.2): for use in deprecated climate change scenario 
• scen.temp (default: TRUE): with change in climate change functions, this should always be TRUE 
• scen.tempsd (default: FALSE): with change in climate change functions, this should always be 

FALSE 
• scen.phensd (default: FALSE): with change in climate change functions, this should always be 

FALSE 
• scen.intra (default: FALSE): with change in climate change functions, this should always be FALSE 
• save.small (default: TRUE): If FALSE, saves information on every individual of every generation in 

each simulation. If TRUE, only saves information on every individual of the first and final 
generations. 

• photo.flag (default: FALSE): if TRUE, use cumulative photoperiod instead of day of year for the 
“day” cue. 

• do.lisovski (default: FALSE): if TRUE, calculates metrics based on Lisovski et al.5 , and saves them 
in separate data files in data-years-lisovski. As this is a lengthy calculation, it’s best to re-use 
existing calculations of this (and the data files of these calculations can be found in X). 

• stats.lisovski: if TRUE, uses the metrics associated with do.lisovski. This should be TRUE unless 
you (a) are missing the lisovski metric data files, (b) don’t want to wait the additional hours for 
the scripts to calculate them, and (c) don’t want to use those metrics. 
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