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ABSTRACT OF THE DISSERTATION 

 
Framework for Analyzing Compound and Inter-related Extremes 
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Professor Amir AghaKouchak, Chair 

 
 
 

      Extreme climatic events have significant impacts on society and the environment, especially 

when multiple hazards occur concurrently (e.g., drought and heat waves) or consecutively 

(wildfires and extreme temperatures). A large number of indicators have been developed to 

detect and study changes in extreme events across space and time. While the current climate 

extreme indicators provide useful information, most do not provide any information on 

compound/concurrent events. A compound event corresponds to a situation in which multiple 

(often interrelated) hazard drivers lead to an extreme outcome.  Therefore, current univariate 

methods used for frequency analysis and risk assessment may underestimate the risk or 

occurrence probability of extreme events. After a comprehensive review of the existing 

methods, this study outlines frameworks for detecting, modeling, and analyzing inter-related 

events and processes including compound extremes. 
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INTRODUCTION 

 Climate extremes can profoundly affect society, natural systems, and infrastructure 

[e.g., Handmer et al., 2012; Rocklöv and Forsberg, 2009; Easterling et al., 2000]. In many cases, 

extreme events are interconnected and their compounding effects intensify the impacts, as is 

the case with droughts and heatwaves [e.g., Aghakouchak et al., 2014, Mazdiyasni and 

AghaKouchak, 2015,  Zscheischler & Seneviratne, 2017], coastal and pluvial flooding [e.g., Zheng 

et al., 2014; Wahl et al., 2015], and coastal and fluvial flooding [e.g., Moftakhari et al., 2017, 

lamb et al., 2010]. For instance, the 2014 California, 2012 central United States, 2010 Russian, 

2003 European droughts and heat waves events are a few recent extreme events that were 

associated with a combination of extreme high temperatures and low precipitation. Another 

examples are the hurricanes/super-storms frequently hitting the east and gulf coast of United 

States (e.g. Katina 2005, Sandy 2012, and Harvey 2017) during which low atmospheric pressure 

events give rise to the coastal ocean water level and at the same time trigger intense rainfall in 

the coastal watershed.  

Concurrent extreme events can have a multiplier effect, often having a strong dependence, and 

intensifying the risk to society and the environment, while the individual variables may not 

necessarily pose a significant or severe threat. Therefore, historical/projected changes in 

concurrent extremes cannot be investigated without accounting for interdependence between 

multiple variables or successive occurrences of the same variable where temporal 

dependencies exist. If the same event (such as a storm surge) affects multiple sites at the same 

time (or with a short time lag) univariate analysis approaches fail to take the intersite-

dependencies into account for appropriate risk assessment and planning. Furthermore, large 
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impacts can also be driven by an unfortunate combination of non-extreme drivers, whose 

combined occurrence lead to system failure. This means, analyses based on one variable or 

event may not be sufficient to characterize and model extreme events that have multiple 

drivers with spatiotemporal dependencies.  

All the above examples can be summarized under the notion of compound events. Compound 

events refer to a combination of multiple drivers and/or hazards that contribute to societal or 

environmental risks [Zscheischler et al., 2018]. IPCC report defines compound events as [Field 

et al., 2012]: “(1) two or more extreme events occurring simultaneously or successively; (2) 

combinations of extreme events with underlying conditions that amplify the impact of the 

events; (3) combinations of events that are not themselves extremes but lead to an extreme 

event or impact when combined.” 

Following this definition, rather than quantifying extremes in drivers or a range of hazardous 

impacts of one driver, a set or combination of drivers that result in a specific hazardous 

situation should be identified. Idier et al. [2013] first proposed the idea of an inverse approach 

to start from a threshold level (referred to as risk acceptability) to finally obtain the return 

period of this threshold. Such approaches would allow identification of all of the drivers of a 

critical impact. Defining a critical threshold level, however, is often challenging. For example, 

flood height is an indicator used to integrate the effects of storm surge, precipitation extremes, 

soil moisture and others. In contrast, for hot and dry extremes, typically no indicators exists 

that integrates the adverse effects of dry and hot conditions on specific systems. It is therefore 

often unclear how to weigh the importance of temperature against dryness [Mazdyasni & 
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AghaKouchak, 2015] and strong assumptions have to be made with respect to which part of the 

temperature-precipitation distribution is to be studied [Zscheischler & Seneviratne, 2017].  

Current univariate indices and methods to detect extreme events can be mainly categorized 

into three types: (1) indices based on daily, monthly, and/or annual maxima/minima of a 

certain climate variable (i.e. temperature or precipitation); (2) indices based on duration of an 

extreme event (i.e. number of consecutive days in a year above a relative extreme threshold, 

such as temperatures above the 90th percentile of the long-term climatology), and (3) indices 

based on duration and/or frequency of an absolute extreme exceedance threshold (i.e. annual 

number of frost days (minimum temperature below 0 °C) or number of consecutive frost days 

per year). In the univariate case, extreme value analysis has been extensively used to study the 

magnitude of extreme events and the frequency of their occurrences based on either block 

maxima or peak over threshold approaches [e.g., Lang et al., 1999; Katz et al., 2002; Katz, 

2010]. Many software packages have been developed for the implementation of these 

practices [Gilleland et al., 2013; Cheng et al., 2014; Gilleland and Katz, 2016 ].  

However, modeling extreme events with multiple drivers (variables) is not as straightforward. 

Understanding the risks associated with compound extremes at present and estimating their 

future occurrences, requires more complicated, rigorous and robust methods. Such methods 

must be able to systematically take the correlation structures between variables into account 

and sufficiently deal with the inherently small number of extremes. In this study, we review 

statistical methods that may be used for modeling compound extremes. In the following 

chapters we first explore non-parametric empirical methods that have already proposed in the 

literature. Then moving onto the parametric category of methods we explain the theory and 
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implications of multivariate extreme approaches, copula analysis techniques, extremal 

dependence and conditional extreme methods, techniques for space-time extreme analysis, 

and finally the implication of Bayesian modeling. 

 

Empirical methods 

Empirical (also known as nonparametric) methods have been widely used in univariate extreme 

value analysis [Citation]. Empirical methods are often used to determine and identify data 

behavior. Most empirical univariate methods can be extended for multivariate analysis and 

studying compound events. In the following, we review empirical methods that can be used for 

studying compound extremes in hydrology and climate.  

Empirical counting methods 

Simultaneous extremes can be studied by empirically counting the simultaneous occurrence of 

two or more events at different periods. This approach requires an empirical threshold for 

defining extremes of each variable. The exceedances (or non-exceedances) above (or below) 

the predefined threshold will be used for studying compound extremes. However, defining the 

term “extreme” and characterizing a multivariate threshold above (or below) which events are 

considered to be extreme is not a straightforward task (Zheng et al., 2014). The following four 

definitions for defining extreme events have been proposed in literature, which are not 

necessarily specific to compound events: (1) component-wise block maxima (Tawn et al., 

1989)  that consider the maximum values in each block, (2) threshold-exceedances (Resnick, 

1987) that characterize an event as extreme if all of the contributing variables exceed a given 
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threshold, (3) point processes (Coles and Tawn, 1994) that transform data into radial and 

angular components and define the extremes as events beyond the radial threshold, and (4) 

conditional extreme events (Heffernan and Tawn, 2004), where the distribution of each 

variable is conditioned on threshold exceedances in other variables and vice versa. 

[Beniston, 2009] investigated the trends in joint quantiles of temperature (below 25th 

percentile) and precipitation (above 75th percentile) extremes in Europe by counting joint 

extremes in precipitation and temperature records. [Fischer and Knutti, 2012] studied 

combined humidity and temperature extremes in the future by considering global wet-bulb 

temperatures during the hottest  days (top 1%). [Hao et al., 2013] examined concurrent 

precipitation and temperature extremes globally based on the empirical occurrence of 

compound extremes. [Mazdiyasni and AghaKouchak, 2015] studied the changes in concurrent 

droughts and heatwaves from 1960 - 2010. Their results indicated that although there was a 

hiatus in rising temperatures, and drought occurrence did not have a statistically significant 

trend univariately, concurrent drought and heatwave events did experience a statistically 

significant increase across the United States. Figure 1 shows that for the heatwave threshold of 

7 consecutive days above the 95th percentile of daily summer temperatures and a drought 

threshold of D0  or higher (more than 0.5 standard deviations below the mean), there is nearly 

a 100% increase in concurrent drought and heatwave events across the majority of the 

contiguous United States (CONUS). For extreme thresholds, it is difficult to obtain a large 

sample of compound extremes which may affect reliability of the analysis. In this approach, it is 

important to check the sample size for different thresholds to ensure the data is sufficient for 
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reliable statistical analysis [Beniston, 2009; Hao et al., 2013; Mazdiyasni and AghaKouchak, 

2015]. 

 

 

Figure 1: This figure shows the percent change in concurrent drought and heat waves during 

1990 - 201 relative to 1960-1980. This figure shows the percent change of a 7-day heatwave 

above the 95th percentile of summer maximum temperatures occurring during 1-month D0 

droughts (on the D0-D4 scale).  

 

Multivariate Index  

The characteristics of multiple or compound extremes can be summarized by an indicator, 

which can be defined as a combination of two or more variables. Then, this index is studied 

with univariate statistical methods. One such example is the Climate Extreme Index (CEI), which 
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incorporates the average of many types of extremes [Karl et al., 1996; Gleason et al., 2008] 

including drought, precipitation, and temperature extremes. [Gallant and Karoly, 2010] 

proposed a combined climate extreme index to investigate concurrent temperature and rainfall 

extremes. The heat index, defined by [Steadman, 1979; Steadman, 1984], is based on 

temperature and relative humidity and might also be considered an example when studying 

concurrent extreme [Perkins and Alexander, 2012]. Similarly, the Multivariate Standardized 

Drought Index (MSDI) is an integrated drought index that can be used to characterize 

meteorological and agricultural droughts (extremes) [Hao and AghaKouchak, 2013]. This index 

combines precipitation and soil moisture information to account for both the onset and 

persistence of drought.  

Structure variable 

The structure variable method is similar to the multivariate index method, but it focuses on the 

system response/behavior to a certain combination of underlying variables of interest. The 

structure variable can be defined [Coles, 2001]:  

 

where, Φ is the response/behavior function and Mx and My are extremes of variables X and Y 

such as: max(Mx, My), min (Mx,My), Mx+My (sum of minima/maxima) and Mx×My (product of 

minima/maxima). The variable Z can then be modeled with the standard univariate extreme 

value distribution for inferences such as estimating the return level. However, with this 

method, the justification for the generalized extreme value (GEV) distribution is not strong, 

since other combinations of the variables X and Y may generate larger values from the function 
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Φ than that from the component maxima [Coles, 2001]. One example comparing structure 

variable and the bivariate/multivariate extremes based on the Fremantle and Port Pirie annual 

maxima sea-level data is given by [Coles, 2001]. Further limitations of this method are discussed 

in (Hawkes, 2008 and Neal et al, 2013). 

 

Influence diagram 

The influence diagram is a generalization of the Bayesian framework that addresses both 

probabilistic inference and decision making process. [Leonard et al., 2013] defined the 

compound event by extreme impacts and proposed the influence diagram as a general 

framework to define, map, analyze, model, and communicate the risk of such events. This 

approach formalizes the process of identifying the impact-dependence variables (and events) as 

well as the dependence structure between variables. It also describes the model structure 

necessary for risk evaluation.  

 

Multivariate Extreme Value Theory 

Multivariate extreme value theory is used to parametrically model the probability of an 

extreme event (i.e. coastal flooding) due to multiple drivers (i.e. surge and wave height). 

Parametric methods are used to model the behavior of variables, allowing to infer values not 

observed in the dataset.  

Extreme value distribution and extreme dependence 
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Consider X1,…,Xn to be independent and identically distributed (IID) random variables. Denote 

the maximum of the random variable as max(X1,…,Xn ) with marginal distribution function F. We 

seek suitable parameters an and bn such that as n→∞ so we have: 

 

It can be shown that the unique limiting distribution G for the block maxima is the Generalized 

Extreme Value (GEV) distribution: 

 ϛ≠0 

where u, σ, and ς are the location, scale, and shape parameters.  

An alternative method to modeling extremes is to focus on the extremes above a certain 

threshold u (peak over threshold or POT). In this case, the unique limiting distribution G’ of the 

random variable exceeding the large threshold u is the Generalized Pareto Distribution (GPD): 

 x>u 

Unlike the univariate extreme values modeling in which the asymptotic form of the distribution 

of the block maxima or the peak over threshold can be derived theoretically, there is no finite 

dimension class of multivariate extreme value distribution G.  

In the multivariate case, the dependence structure centers the modeling of the extremes. For 

the random variables X and Y with the transformed marginal U and V, the dependence between 

the extremes can be expressed as [Coles et al., 1999]: 
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After mathematical manipulation, we can obtain: 

, and   

where χ(u) ranges from 0 (perfectly independent) to 1 (perfectly dependent), inclusive.  

When χ=0, it means that the measure is not able to provide the relative dependence 

information. To overcome such a limitation, a second dependence measure of extremes is 

defined as [Coles et al., 1999]: 

, and   

where -1≤ ≤1 and -1≤  ≤1. 

To summarize, the pair (χ , ) provides the summary of the extremal dependence with (χ >0, 

=1) signifying the asymptotic dependence, in which case χ determines the dependence 

strength, and (χ =0, <1) signifies asymptotic dependence, in which case  determines the 

dependence strength [Coles et al., 1999]. 

Max-stable process and parametric model 

A distribution G is called max-stable for every positive integer k if one can find vectors αk and βk 

such that the following equation holds [Beirlant et al., 2006]: 
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The class of the max-stable distribution function coincides with the extreme value distribution 

function and is in its own domain of attraction. The max-stable process is the stochastic process 

that all finite dimensional distribution functions are multivariate extreme value (MEV) 

distribution functions, which can be viewed as the infinite-dimensional generalization of the 

extreme value distribution and has been commonly used for modeling spatial extremes with 

finite dimensions [Beirlant et al., 2006]. 

Many types of the parametric subfamily have been proposed to provide a simpler 

representation of the MEV distribution and cover a wide range of dependence at the same time 

[Bortot and Gaetan, 2013]. Some parametric models for extremes include the logistic 

distribution [Tawn, 1988], negative logistic distribution [Joe, 1990], Gaussian [Smith, 1990], 

bilogistic [Joe et al., 1992], polynomial [Nadarajah, 1999] and Dirichlet models [Coles and Tawn, 

1991]. A variety of parametric models for bivariate and multivariate extreme value distributions 

have been reviewed by [Kotz et al., 2000] and [Beirlant et al., 2006]. Generally these models are 

limited to low dimensions. [Cooley et al., 2010] proposed a pairwise beta distribution that is 

flexible to describe the extremes of random vectors of dimensions greater than two.  

Component-wise maxima  

In this section, we try to define the simultaneous extremes with the method of block maxima, 

which is commonly used in univariate extreme value analysis. We restrict our discussion to the 

bivariate case. In this context, it differs from the univariate extreme since the variable of 

interest is a vector. Extension of the univariate extreme value theory is not immediately 

straightforward since there is no natural ordering in higher dimension [Barnett, 1976; Tawn, 

1988].  



12 
 

Generally, multivariate extreme value analysis is based on component-wise ordering. Consider 

Zi (Xi, Yi) (1≤ i ≤ n) to be IID vector and define: , where M1n=max Xi 

and M2n=max Yi. Denote the joint distribution of the random vector (X,Y) as F. We seek 

constraints an1, bn1, an2 and bn2 , such that: 

 

If this holds for suitable choices of the constraints an and bn, G is said to follow a multivariate 

extreme value distribution and F is in the domain of attraction of G. To isolate the dependence 

from marginal distributional features and for technical convenience, the marginal distribution is 

standardly described by the unit Frechet distribution Ф: 

 for y>0 

Consider the general case where the multivariate extreme value distribution (MEVD), denoted 

as G, can be expressed as: 

 

where l is the stable tail dependence function.  

The Pickands dependence function has been commonly used to describe the dependence 

structure in the bivariate case, which can be defined as [Pickands, 1981; Beirlant et al., 2006]: 

 or  
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It can be viewed as the stable tail dependence function restricted to the unit simplex. The 

Pickands dependence function uniquely determines the stable tail dependence function as 

follows: 

 

A max-stable distribution G can be determined by the marginal G1 and G2 and also the 

Pickands dependence function A as [Beirlant et al., 2006]: 

 

Threshold exceedance 

For the block maxima method, data are “wasted” for estimation of the multivariate distribution 

function. In addition, the component-wise maxima may not correspond to actual observations. 

The exceedance threshold method can be used to define and model the multivariate extreme 

with a relatively larger sample. In the exceedance method, we assume that F is in the domain of 

attraction of a multivariate extreme value distribution function G, with a dependence structure 

described by the stable tail dependence function l [Beirlant et al., 2006].  

With marginal tails estimated with the GPD or GEV distribution, a parametric form of the tail 

dependence function l can be assumed, which can be estimated with the point-process method 

or censored-likelihood method [Beirlant et al., 2006]. For the nonparametric estimation, the 

empirical version of the approximation is used [Beirlant et al., 2006]: 
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Another way to model exceedance is with the multivariate regular variation method, for which 

the basic idea is that the joint tail decays as a power function [Resnick, 2002; Cooley et al., 

2010; Ballani and Schlather, 2011]. For the bivariate case with a random vector Z=(Z1,Z2), it is 

said to vary regularly if there is a sequence an, n=1,…,∞ such that on the Borel subset of 

C=[0,∞]\0:[Weller et al., 2012],  

  

where  denote the vague convergence. The measure v(.) has the scaling property: 

 

where α is the tail index. By defining R=||Z|| and W=Z||Z||-1, where ||.|| is any norm on C, we 

can get the polar coordinate representation of the regular variation condition: 

 

where H is the spectral measure that characterizes the tail dependence. Note that the stable 

tail dependence function in the previous sections can be linked to the spectral measure via 

[Guillotte et al., 2011]: 

 

Copulas 
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Copulas are one of the most common methods for modeling the joint distribution of multiple 

variables because they have the advantage of describing the correlation structure 

independently of the marginal distribution. Based on Sklar’s theorem, the d - dimensional joint 

distribution function F of the random vector X1, X2,…,Xd can be expressed with the copula C as 

[Sklar, 1959; Joe, 1997]: 

 

 

 

where F1(x1),…,Fd(xd) are the marginal distributions. The copula C is unique when the marginal 

distributions are continuous.  

A variety of copula families, such as the Archimedean copula, have been commonly used in 

hydrology and water resources for frequency analysis [Kao and Govindaraju, 2008; 

Vandenberghe et al., 2011] , precipitation simulation [Bárdossy and Pegram, 2009; 

AghaKouchak et al., 2010a], and geo-statistical interpolation [Bárdossy, 2006]. Copulas have 

also been widely used for coastal flood modeling and prediction for to compounding effects of 

coastal ocean water level and freshwater discharge (Bevacqua et al., 2017; Moftakhari et al., 

2017), coastal water level and waves (Serafin and Ruggiero, 2014; Wahl et al., 2016), storm 

surge and precipitation (Wahl et al., 2015), and wave/surge characteristics (Corbella and 

Stretch, 2012, 2013; De Michele et al., 2007; Salvadori et al., 2014, 2015; Wahl et al., 2012). 

 

Sadegh et. al, 2017 recently developed the Multivariate Copula Analysis Toolbox (MvCAT) for 

the comprehensive analysis of the dependence structure between multiple variables. MvCAT 
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uses 26 different copula functions, with model complexities ranging from one to three 

parameters, allowing for the simulation of both symmetric and asymmetric dependence 

structures. Model parameters in MvCAT are tuned against observed/empirical joint 

probabilities using either (1) a gradient-based ‘‘interior-point’’ optimization algorithm which 

estimates Hessian through a dense quasi-Newton approximation for a rapid search of the 

feasible space to derive the optimal parameter set; or (2) a state-of-the-art hybrid-evolution 

Markov Chain Monte Carlo (MCMC) simulation algorithm that not only estimates the global 

optimum parameter set. The second method also approximates the posterior distribution of 

copula parameters for uncertainty analysis in a Bayesian framework. The latter approach not 

only avoids converging to the local optima (i.e. it identifies the global optima), but it also 

characterizes uncertainties with regard to the length of record. In fact, [Sadegh et. al, 2017] 

showed that relatively short observation periods, among others, translate into large 

uncertainties in the design/prediction/modeling outcomes that often render the 

management/policy inaccurate or insufficient.   

There are a variety of parametric copula models and some such as the extreme value copula 

might be more appropriate for handling extremes [Salvadori et al., 2007; Salvadori and De 

Michele, 2010]. The extreme copula satisfies this condition [Galambos, 1987; Joe, 1997; 

Gudendorf and Segers, 2010; Davison et al., 2012]: 
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In the bivariate case, the extreme value copula can be represented by the Pickands dependence 

function [Pickands, 1981]. The bivariate copula C is an extreme value copula if there exists a 

Pickands function A such that: 

 

where u and v are the marginal probabilities.  

Conditional extremes modeling 

The extremal dependence method in the previous section enables the modeling of the 

asymptotic independence, but it is subject to limitations such as difficulty in identifying a 

suitable parameterization L. Furthermore, under asymptotic independence, the simultaneously 

large, observed components become increasingly unlikely as the dimension increases [Bortot 

and Gaetan, 2013]. However, in meteorology cases, extreme phenomenon also occurs when 

one variable is extreme while the other is not. In this section, we will introduce the conditional 

extreme modeling that is capable of resolving this problem [Heffernan and Tawn, 2004] and 

[Heffernan and Resnick, 2007] .  

The conditional extreme mode is a semi-parametric regression model of the form [Heffernan 

and Tawn, 2004; Heffernan and Resnick, 2007]: 

 for Yi>uyi 
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where a|i (yi) and b|i (yi) are the location and scale parameters to be estimated with aЄ(0,1) and 

bЄ(-∞,1). Z|i is a random variable independent of Y for Yi>uyi. As Y increases, Z converges to a 

distribution G. The estimation of a, b and G is based on regression.  

The advantage of this conditional extreme model is that it can be applied whether the variables 

are asymptotically dependent or asymptotically independent. In other words, it provides 

flexibility that many of the above-described methods do not. It can also be employed to 

estimate the probability for any extreme set.  

For climate events, even if one is around the mean while another is extreme, it may be 

considered a concurrent extreme event. In this case, the conditional extreme model may be 

appropriate and can be applied. Examples of the development and application of the 

conditional extreme analysis can be found in [Keef et al., 2009; Jonathan et al., 2010; Das and 

Resnick, 2011; Jonathan et al., 2012; Keef et al., 2012; Gilleland et al., 2013].  

Spatial extremes  

Spatial extremes modeling is relevant to studying compound extremes involving one variable at 

different locations (e.g., extreme rainfall or flooding at multiple locations) [Bacro and Gaetan, 

2012; Cooley et al., 2012; Davison et al., 2012]. Most spatial extremes are based on max-stable 

distributions with block maxima data [Cooley et al., 2012]. For this problem, three models 

including the latent variables, the extreme copula, and the max-stable process have been 

introduced with a practical example of extreme rainfall at 51 locations in Switzerland [Davison 

et al., 2012]. In addition, [Gaume et al., 2013] studied extreme snowfall at different locations 

with the max-stable process.  
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Space-Time extremes 

Multivariate extremes in a space-time setting have recently attracted a great deal of attention 

[Davis and Mikosch, 2008; Kabluchko et al., 2009; Huser and Davison, 2012; Davis et al., 2013 

(2011)]. [Huser and Davison, 2012] proposed a framework for the space-time modeling of 

extreme events based on the max-stable process for hourly precipitation. Since the finite 

dimensional distribution functions are intractable, standard maximum likelihood procedures do 

not work and pairwise likelihood methods based only on the pairwise density can be 

implemented [Davis et al., 2013]. Following the approach described by [Davis et al., 2013 

(2011)], in which the max-stable process introduced in [Kabluchko et al., 2009] is extended to a 

space–time setting, [Davis et al., 2013] investigated the statistical inference for max-stable 

space–time processes. [Chailan et al., 2017] employed a semiparametric approach to 

investigate extreme wave climate in the space-time domain by exploiting max-stable processes.  

Conditional Extremes  

We can analyze the impacts of a change in one variable on a covariate using a multivariate 

distribution function. [Madiyasni et al., 2017] utilized the copula functions to define the 

conditional probability of the impact of an event (i.e., heat-related mortality) given a covariate 

(i.e., heat wave) using the joint probability distribution (Grimaldi et al., 2016; Graler et al., 2013; 

Salvadori et al., 2013, Mazdiyasni et al., 2017).  



20 
 

To determine the conditional probabilities of Y > y (mortality rates exceeding a threshold)  at 

different (X = x1, x2,….), (i.e. FY|X(Y>y|X), one can develop the conditional probability density 

function: 

 fY|X(y|x) = c[FX(x),FY(y)]*fY(y) 

 

where c is the probability density function (PDF) and FY(y) is the mortality marginal distribution. 

Once we choose a certain x (i.e. summer mean temperature) conditional PDF from Eq. 6, the 

probability of Y (the mortality rates) exceeding a particular threshold (y) is given by the area 

under the curve: fY|X(y|x). This allows calculating conditional PDF fY|X(y|x) for different values 

of x (e.g., summer mean temperatures=27 °C or heatwave days=6 in Figure XX).  
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Figure 2: Probabilities of heatwave-caused mass-mortality events. Parametric conditional 
probability density functions for yearly mortality given certain thresholds for summer mean 
temperatures (a) and heatwave days (b). With 0.5 °C warmer mean temperatures or two more 
heatwave days per year, the probability of >100 heat-related deaths increase dramatically. The 
relationship between the two variables and probability of mass mortality events is shown in 
panel (c). 
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Figure 2 presents the results of a conditional probability density analysis of annual mortality 

given certain thresholds for summer mean temperatures and heatwaves. The shaded region 

represents the probability of mass heat-related mortality (i.e. heat-related deaths of more than 

100 people), given different summer temperature values. For example, the Figure 3a shows 

that there is 13% probability that years with summer mean temperatures equal to 27 °C will 

have mass heat-related mortality. However, with an increase in summer mean temperatures of 

just 0.5 °C (to 27.5 °C), the probability of such levels of heat-related deaths jumps by a factor of 

2.5 to 32%. Similarly, Figures 3b shows that the probability of heat-related mass mortality 

events increases from 46% to 82% (78% increase) where the average number of heatwave days 

across India shift from 6 days to 8 days, respectively. The substantial increase in mortality rates 

due to either a 0.5 °C increase in summer mean temperature or two more heatwave days 

suggests that future climate warming could have a relatively drastic human toll in India and 

similarly in developing tropical and subtropical countries. 

Discussion and concluding remarks 

Extreme climate events have significant effects on society, infrastructure, the economy, and the 

environment. Many extreme events have multiple drivers such as droughts and heatwaves, and 

cannot be analyzed or detected using common univariate indices. These concurrent or 

compounding events often have significant ramifications due to their multivariate nature.  

Compound events may be separated into three categories: (1) two or more extreme events 

occurring simultaneously or consecutively, (2) combinations of extreme events that exacerbate 

the impact of the events, (3) combination of events that are not extreme themselves, but have 
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extreme impacts when combined. However, analyzing and modeling such events is not as 

straightforward as univariate analyses. Robust statistical tools must be used to account for the 

interdependence between multiple drivers or successive occurrences of the same variable 

where temporal dependencies exist, to avoid significant biases. 

Historical and projected changes in concurrent extremes cannot be investigated without 

accounting for interdependence between drivers. In this study, we review statistical methods 

that have been used to identify, analyze, and model compound extremes. We first explore 

empirical non-parametric methods, such as the counting method, multivariate indices, and 

structure variables. We then move onto theory and application of parametric methods, 

including copula analysis techniques, extremal dependence and conditional extreme methods, 

and techniques for space-time extreme analyses. 
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Chapter 1 

Understanding Changes in Concurrent Extremes: Focus on Droughts and 

Heatwaves 
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A combination of climate events (e.g., low precipitation and high temperatures) may cause a 

significant impact on the ecosystem and society, though individual events involved may not 

be severe extremes themselves. Analyzing historical changes in concurrent climate extremes 

is critical to preparing for and mitigating the negative effects of climatic change and 

variability. This study focuses on the changes in concurrences of heatwaves and 

meteorological droughts from 1960 – 2010. Despite an apparent hiatus in rising temperature 

and no significant trend in droughts, I show a substantial increase in concurrent droughts and 

heatwaves across most parts of the United States, and a statistically significant shift in the 

distribution of concurrent extremes. While commonly used trend analysis methods do not 

show any trend in concurrent droughts and heatwaves, a unique statistical approach 

discussed in this study exhibits a statistically significant change in the distribution of the data.   

Heatwaves cause severe damage to society and the environment [Easterling et al., 2000], with 

impacts on human health, air quality, and vegetation [Ciais et al., 2005; Vautard et al., 2005]. In 

2003, for example, European countries faced an unprecedented heatwave, which in turn 

caused unusually high ozone concentrations Error! Reference source not found. and severe health 

problems, particularly in France where 15,000 extra deaths occurred Error! Reference source 

not found.[Beniston, 2004; Seneviratne et al., 2012]. UNEP considers the European heatwave 

the world’s most costly weather related disaster in 2003. Impacts were exacerbated because 

the region was in a drought[Poumadere et al., 2005].  

Heatwaves have a variety of direct, indirect, immediate, and delayed impacts, including higher 

water loss via evapotranspiration, lower yields of grains and other agricultural products[Zaitchik 

et al., 2006], increased energy consumption, a decrease in efficiency of power plants[Zamuda 
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et al., 2013], air pollution, and adverse effects on human health Error! Reference source not 

found.Error! Reference source not found.. Heatwaves have also contributed to an increase in the 

duration, size, and intensity of wildfires, causing economic losses and catastrophic 

environmental impacts Error! Reference source not found..  

Droughts also have pronounced impacts on society and the environment, such as significant 

reductions in gross primary productivity, leading to shortages in food production and increases 

in global food prices Error! Reference source not found.. The annual economic damage caused by 

droughts is estimated to be approximately $7 billion globally, with potential impacts on 

livestock, transportation by river, hydropower production, bioenergy, and energy consumption 

Error! Reference source not found.[Greve et al., 2014; Hao et al., 2014] [Hao and AghaKouchak, 2013] 

[Wehner et al., 2011]Error! Reference source not found..  

Extreme climatic events can occur simultaneously, exacerbating environmental and societal 

impacts. Environmental hazards often result from a combination of climatic events Error! 

Reference source not found.[AghaKouchak et al., 2014; Seneviratne et al., 2006] over a range 

of spatial and temporal scales [Hegerl et al., 2011; Leonard et al., 2014]. A wildfire, for example, 

may occur on a hot, dry and windy day, although each of these individual conditions may not 

necessarily be extreme by themselves Error! Reference source not found.. In the Intergovernmental 

Panel on Climate Change (IPCC) special report on managing the risks of extreme events and 

disasters, the combination of multiple climate extreme events is termed a compound event 

Error! Reference source not found.Error! Reference source not found.. Most analyses of climate and 

weather extremes typically tend to focus on a single climatic condition; however, this univariate 
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approach may underestimate the effects of concurrent and compound extremes Error! Reference 

source not found..   

Sustained precipitation deficit in summer can be a contributory factor to hot summer days 

[Mueller and Seneviratne, 2012]. Heatwaves reduce the total energy transfer to the 

atmosphere, resulting in a decrease in convective precipitation Error! Reference source not found.. 

This in turn causes a soil-precipitation feedback loop that tends to extend or intensify drought 

conditions Error! Reference source not found.. The interaction between precipitation and 

temperature has been widely recognized in numerous studies[Hao et al., 2013; Shukla et al., 

2015]. Heatwaves concurrent with droughts can intensify individual impacts of heatwaves or 

drought on society, the environment, and the global economy [Perkins et al., 2012; Shukla et 

al., 2015]. Studies suggest that changes in the relationship between precipitation and 

temperature may be more important than the changes in each of the variables individually 

Error! Reference source not found.[Trenberth et al., 2014]. This study investigates changes in 

concurrent droughts and heatwaves in the United States using several different statistical 

techniques.  

A heatwave is typically defined as a period of consecutive extremely hot days [Perkins and 

Alexander, 2013]Error! Reference source not found., such as five consecutive days with temperature 

above the 90th percentile.  Here, I use the 85th, 90th, and 95th percentiles of the warm season 

(May – October) temperature as extreme thresholds, and three heatwave durations (3, 5, and 7 

days). A 5-day heatwave with a 90th percentile threshold is defined as five consecutive days 

with the maximum temperature exceeding the 90th percentile of the long-term climatology for 

that month.  In this study, meteorological droughts are defined as precipitation deficits relative 
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to the climatology using the Standardized Precipitation Index (SPI)[McKee et al., 1993]. 

Throughout this study, a drought is defined as an event that leads to SPI < -0.8 (approximately 

the 20th percentile precipitation). I use daily temperature and monthly precipitation 

information to identify historical droughts and heatwaves in the United States (see Data 

Section). 

 

Results 

We evaluated the changes in concurrent droughts and heatwaves during 1990-2010 relative to 

the baseline period 1960-1980. Figure 1 displays percent change in the occurrences of 

concurrent drought and heatwave events in each gridbox. Here, the percent change is based on 

the difference in the number of events in 1990-2010 relative to 1960-1980, divided by the total 

number of events. I present results for different durations (3-, 5-, and 7-day heatwaves) and 

extreme temperature thresholds (85th, 90th, and 95th percentiles). Figure 1 shows that the 

concurrence of all combinations of drought and heatwave intensities and durations have 

increased substantially in the south, southeast and parts of the western United States, and have 

decreased in parts of the Mid-West and northern United States. Notably, the longer and more 

severe (7-day 95th percentile) drought and heatwave concurrences have increased more than 

shorter, less severe concurrences (e.g., compare 7-day 95th percentile with the 3-day 85th 

percentile panels). This indicates that longer heatwaves (i.e., 7-day) have become more 

frequent in 1990-2010 compared to the shorter heatwaves (i.e., 3-day).  
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Figure 1| Percent (%) change in concurrent droughts and heatwaves during 1990 – 2010 relative to 1960 – 1980 
for each grid box. The rows change in heatwave severity (85th percentile, 90th percentile, and 95th percentile), and 
the columns change in heatwave duration (3 d, 5 d, and 7 d).  

 

Investigating the empirical cumulative distribution function (CDF) of the concurrent droughts 

and heatwaves reveals that a substantial change in extremes in from 1990 – 2010 relative to 

1960 – 1980 (Figure 2). The x-axes represent the percent (%) of the contiguous United States in 

concurrent drought and heatwave. The y-axes show the corresponding cumulative probability. 

In each panel, the blue line is the CDF for the baseline period and the red line represents the 

CDF for 1990 – 2010. The CDF is based on data from the continental United States.  As shown, 

for all intensities and durations during 1990 – 2010, the upper tail of the CDF has shifted to the 

right, indicating more extreme events in 1990-2010 relative to the baseline period (compare 

the red and blue lines in Figure 2). Notice that the shift is far more pronounced in the more 

extreme 7-day 95th percentile drought and heatwave concurrence as compared to other 

combinations. The two-sample Kolmogorov Smirnov test (Methods Section) confirms that the 



30 
 

CDFs of the concurrent droughts and heatwaves in the second period (1990-2010) are 

substantially different than those in the baseline period (1960-1980) at 0.05 significance level 

(95% confidence) for all heatwave durations and intensities except for 3-day, 85th percentile 

heatwaves (Table 1).  

 

Figure 2| The empirical CDF of drought and heatwave concurrences from 1960 to 1980 (blue) and 1990 to 2010 
(red). The x axes represent the percent (%) of CONUS in concurrent drought and heatwave (See Appendix 1 Data 
Sources and Processing for more information on percent of CONUS). The rows change in heatwave severity (85th 
percentile, 90th percentile, and 95th percentile), and the columns change in heatwave duration (3 d, 5 d, and 7 d).  

 

Past studies focused on changes in drought trends report conflicting results [Damberg and 

AghaKouchak, 2014; Sheffield et al., 2012] Error! Reference source not found.[Trenberth et al., 2014].  

Here, I investigate the percent of the continental United States in concurrent droughts and 

heatwaves for different durations and intensities from 1960 – 2010 (Figure 3; see also Figure S1 

in Appendix 1). For the 90th percentile threshold, the percent of the country in drought and 

heatwave can range between 6% (7-day heatwave) to 9.6% (3-day heatwave) – see the 

boxplots of the percent CONUS in concurrent drought and heatwave for all durations and 
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severities in Figure S4 in Appendix 1.  While the CDFs clearly indicate changes in concurrent 

droughts and heatwaves, the commonly used Mann-Kendall trend test (see Methods Section) 

does not show a statistically significant trend (95% confidence) in the fraction of the continental 

United States under concurrent drought and heatwave (Table S1 in Appendix 1 provides the 

test statistics results). This can be attributed to limitations of statistical trend tests discussed in 

previous studies [Clarke, 2010] or lack of sensitive tools for change detection.   

 

Figure 3| Percent (%) of CONUS in concurrent drought and heatwave. Percent (%) of CONUS in concurrent 
drought and heatwave from 1960 to 2010.  

 

Here, I explore an approach based on the Cramér–von Mises change point detection test 

statistic (see Methods Section and Appendix 1) to investigate changes in concurrent droughts 

and heatwaves. I argue that this method is more sensitive to potential changes in time series 

and is well suited to investigate climate time series. This method, primarily used in economics 

and finance, evaluates different periods of data and determines statistically significant changes 

throughout time series. Figure 4 shows the Cramér–von Mises statistics for drought and 

http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
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heatwave concurrences during 1960 –2010. The y-axes indicate a dimensionless measure of 

divergence between the empirical distributions of data before and after any given year as a 

continuous function (see Methods Section). For all plots, the maximum divergence occurs 

between 1998 and 1999, indicating substantial departure of the drought and heatwave CDFs 

before and after the red line in Figure 4. This information cannot be achieved from the 

commonly used trend analysis method or distribution change evaluation approaches.  

Recent reports suggest an apparent hiatus or so-called pause in global warming since 1999-

2000.  

 

Figure 4| The Cramer-von Mises (CvM) change point statistic from 1960 - 2010. The rows change in heatwave 
severity (85th percentile, 90th percentile, and 95th percentile), and the columns change in heatwave duration (3 d, 5 
d, and 7 d). The red lines indicate the point of maximum divergence between the distributions of concurrent 
drought and heatwave events.  

 

Possible explanations include a long-lasting solar energy output minimum, low stratospheric 

water vapor, an increase in early 21st century volcanic activity, and a more frequent La Niña 

phase since the major El Niño event of 1997-1998[Held, 2013]. However, analyses show no 

pause in the occurrence of hot extremes over land since 1997 [Seneviratne et al., 2014] or even 
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the mean global temperature[Karl et al., 2015]. Rather, during the hiatus, exceedances of 30 

extreme warm days per year have increased[Seneviratne et al., 2014]. The results in Figures 2 

and 4 indicate a statistically significant (at the 0.05 significance level) change in concurrent 

drought and heatwave events across many regions. Figure 2 indicates more extreme drought 

and heatwave concurrences in the latter two decades. This is consistent with the increase in 

extreme warm days during this period [Seneviratne et al., 2014]Error! Reference source not found.. 

However, this conclusion cannot be reached using the commonly used statistical trend analysis 

techniques (e.g., Mann-Kendall trend test) used in hydrology and climate literature. Unlike the 

Mann-Kendall trend test, which investigates monotonic changes in the ranks of variables over 

time, the Cramér–von Mises test focuses on changes in the distributions of subsamples of the 

data. Typically, climatologists evaluate a certain period against a baseline. The Cramér–von 

Mises test is a flexible approach that allows investigators to examine different subsamples (e.g., 

projected and baseline periods) for potential distributional changes. The methodology outlined 

in this paper shows statistical changes in extremes beyond those achieved with commonly used 

methods.  

 

Data 

Both precipitation and temperature data sets are from the observation-based forcings 

developed for the North American Land Data Assimilation System (NLDAS) Variable Infiltration 

Capacity simulations over the contiguous United States [Livneh et al., 2013; Maurer et al., 

2002]. Daily temperature and monthly precipitation data with a spatial resolution of 1/8° are 

used for detecting droughts and heatwaves (see Appendix 1 for more information on the data).    

http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
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Methods 

Here, the two-sample Kolmogorov Smirnov (KS) test assesses differences between the CDFs of 

the concurrent drought and heatwave events. KS is a nonparametric test that can evaluate two 

distribution functions (two-sample) based on the distance between their empirical distribution 

functions. The null hypothesis is that the two distribution functions are drawn from the same 

distribution at a certain significance level (here, α = 0.05). I use the two-sample KS test to 

compare different types of droughts and heatwaves (e.g., 3-day 85th percentile, 5-day 90th 

percentile) in 1990-2010 relative to 1960-1980. The test indicates whether the data from the 

two periods come from the same distribution at a 0.05 significance level.  

The Mann-Kendall (MK) trend test [M Kendall, 1975] Error! Reference source not found. here 

assesses the presence of a statistically significant (0.05 significance level) trend in the time 

series of the fraction of CONUS in concurrent drought and heatwave. The MK test is a 

nonparametric approach based on the empirical ranks of time series widely used in hydrology 

and climatology.  

We use a framework based on the Cramér–von Mises change point detection to evaluate 

temporal changes in the concurrent drought and heatwave events [Holmes et al., 2013] [Bücher 

and Kojadinovic, 2016; Cramér, 1928; Kojadinovic, 2013; Sharkey and Killick, 2014]. This 

approach detects changes in the empirical cumulative distribution functions by comparing two 

subsamples (F̂S(x) and F̂T(x)) of the original time series: 

F̂S(x) =
1

τ
∑ I(Xi ≤ x)

τ

i=1

 

http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
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F̂T(x) =
1

n − τ
∑ I(Xi ≤ x)

n

i=τ+1

 

where F̂S(x) and F̂T(x) are the empirical CDF of the two subsamples, I is the indicator function, 

n denotes sample size, and the terms 
1

τ
  and 

1

n−τ
  are adjustment factors for the length of each 

subsample. The test measures the divergence between the empirical distributions as: 

Wτ,n = ∫ |F̂S − F̂T|
2

dFt(x)
∞

−∞

 

where  Wτ,n can be computed as the square of the mean distance between the empirical 

distributions [Bücher and Kojadinovic, 2016; Sharkey and Killick, 2014]: 

       Wτ,n   = ∑|F̂S(Xi) − F̂T(Xi)|
2

n

i=1

 

Larger divergence values, W, indicate greater changes in the cumulative distributions.  Here, 

the null hypothesis is that there is no change in the data over time and the two subsamples 

come from the same distribution. The null hypothesis is rejected if at an unspecified point τ,  

F̂S(x) and F̂T(x) come from statistically different distributions. Since, I do not have any prior 

information on the position of τ in the time series, the test involves computing Wτ,n for all  1 <

τ < 𝑛 [Ross and Adams, 2012] however, for different values of τ, the variance of the two 

subsamples will be different. For this reason, the Wτ,n statistics are adjusted so that both 

periods exhibit equal mean and variance for all values of τ [Maurer et al., 2002] (see Appendix 1 

for more). The methods in this study should be applied to independent and identically 

distributed time series. Appendix 1 provide more information on the sampling approach and 

temporal autocorrelation of the data (see Figure S5 in Appendix 1 and the corresponding 

discussion).   
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Appendix 1 

 

Data Sources and Processing 

We used daily temperature and monthly precipitation data from a unique long-term and 

observation-based data set that provides forcings for land-surface models [Livneh et al., 2013; 

Maurer et al., 2002]. In this data set, daily precipitation is based on data from more than 10,000 

precipitation gauges available from the National Oceanic and Atmospheric Administration 

(NOAA) Cooperative Observer Program (COOP). Using the synergraphic mapping system (SYMAP) 

approach[Shepard, 1984; Widmann and Bretherton, 2000], the precipitation observations are 

gridded to 1/8o resolution. Monthly precipitation fields are daily precipitation accumulations. 

Maximum daily temperature data are also from the NOAA’s COOP stations and regridded using 

the same approach.  

Information about the NOAA COOP data can be found here:  

http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-

datasets/cooperative-observer-network-coop 

The 1/8o gridded daily temperature data are available: 

http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles/ 

The 1/8o gridded monthly precipitation data are available: 

http://hydro.engr.scu.edu/files/gridded_obs/monthly/ncfiles/ 

This study focuses on warm season (May – October) temperature extremes (i.e., 85th, 90th, and 

95th percentiles of the maximum temperature) and the corresponding monthly precipitation. I 

derive the percent (%) of the contiguous United States (CONUS) in concurrent drought and 

http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop
http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles/
http://hydro.engr.scu.edu/files/gridded_obs/monthly/ncfiles/
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heatwave by summing the number of concurrent events in the warm season normalized by 

CONUS’s area (sum of the pixels in concurrent drought and heatwave in each year’s May-

October, divided by the total number of pixels in CONUS). More than one heatwave can occur 

during a warm season and by using this approach, I can account for multiple concurrent drought 

and heatwave events in any given pixel. 

 

Results and Discussion 

Figure 1 in the main paper shows percent change in concurrent drought and heatwave events 

during 1990-2010 relative to 1960-1980. I present the results for 1-month SPI<-0.8 

(approximately, 20th percentile precipitation), different heatwave durations (3-, 5-, and 7-day) 

and extreme temperature thresholds (85th, 90th, and 95th percentiles). To show consistent 

patterns of percent change in concurrent drought and heatwave events, I show similar figures 

for SPI<-0.5 (Figure S1) and 3-month SPI<-0.8 (Figure S2). The general patterns remain similar to 

Figure 1 for different drought definitions. For better visualization, the percent change values are 

smoothed using a 3×3-pixel running mean.  

 

Figure S1: Percent (%) change in concurrent droughts (SPI<-0.5) and heatwaves during 1990-2010 

relative to 1960-1980 for each gridbox. The rows change in heatwave severity (85th percentile, 90th 

percentile, and 95th percentile) while the columns change in heatwave duration (3-day, 5-day, and 7-

day). 

 



39 
 

 

Figure S2: Percent (%) change in concurrent droughts (3-month SPI<-0.8) and heatwaves during 1990-

2010 relative to 1960-1980 for each gridbox. The rows change in heatwave severity (85th percentile, 

90th percentile, and 95th percentile) while the columns change in heatwave duration (3-day, 5-day, and 

7-day). 

 

Figure 3 in the main paper displays the percent of the Continental United States (CONUS) in 

concurrent drought and heatwave for different duration and intensities from 1960 – 2010. For a 

better visualization, Figure S3 shows the percent (%) of CONUS in concurrent drought and 

heatwave from 1960-1980 (bottom x-axes) relative to 1990-2010 (top x-axes) for three different 

heatwave durations and severity thresholds. The results show more concurrent drought and 

heatwaves during 1990-2010 (top x-axes), consistent with the findings of Figure 2. However, the 

Mann-Kendall Trend test does not indicate any statistically significant change in the concurrent 

drought and heatwave time series in Figure 3.  
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Figure S3: Percent (%) of the contiguous United States (CONUS) in concurrent drought and heatwave 

from 1960-1980 (bottom x-axes) relative to 1990-2010 (top x-axes) for three different heatwave 

durations and severity thresholds. 
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Figure S4: Boxplots of the percent (%) of the contiguous United States (CONUS) in concurrent drought 

and heatwave from 1960 to 2010 (based on data presented in Figure 3) for three different heatwave 

durations (3-,5-,7-day) and severity thresholds (85th, 90th, 95th percentiles). The central marks (red lines) 

are the medians and the edges of the boxes are the 25th and 75th percentiles. The whiskers show the 

most extreme values not identified as outliers. 

 

 

Both droughts and heatwave events exhibit dependence across space (see Figure 1). However, 

the statistical tests in this paper require independent and identically distributed time 

series[Clarke, 2010]. Basically, multiple pixels that belong to one event should not be counted 

as multiple independent occurrences. To address this issue, at any given time step, I extracted 

one value: the fraction of CONUS in concurrent drought and heatwave. In other words, I 

identify all concurrent droughts and heatwaves. Then, instead of using the count of the events 

(or pixels), I evaluate the fraction of the country. As shown in Figure S5, the values extracted at 
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each time step, used in Figures 2-4, do not exhibit any statistically significant temporal 

correlation at 0.05 significance level. 

 

 

Figure S5: Autocorrelation Function (ACF) of the time series used in Figure 3. The dashed lines represent 

the 95% confidence intervals (0.05 significance level).   
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Drought and Heatwave H p-value 

3-Day, 85 Percentile 0 0.530908 

5-day, 85 Percentile 1 0.00108 

7-day, 85 Percentile 1 1.57E-05 

3-day, 90 Percentile 1 3.10E-06 

5-day, 90 Percentile 1 3.10E-06 

7-day, 90 Percentile 1 3.10E-06 

3-day, 95 Percentile 1 1.68E-09 

5-day, 95 Percentile 1 1.68E-09 

7-day, 95 Percentile 1 1.68E-09 

 

 

 

 

Table S1: Trends in drought and heatwave concurrence from 1960-2010 based on the Mann-

Kendall trend test. A p-value > 0.05 indicates that the null-hypothesis of no trend cannot be 

rejected at a significance level of 0.05 (95% confidence). Column 2 shows the corresponding p-

values, and column 3 shows the trend line slope for the best linear fit.  

 

Method 

In the Cramér–von Mises change point detection method, the Wτ,n statistics are adjusted to 

ensure the two subsamples (F̂S(x) and F̂T(x)) have equal mean and variance for all values of τ 

[Clarke, 2010]. This can be achieved using a standardization approach as [Anderson, 1962]: 

 

http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
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𝜎Wτ,n
=

√
(𝑛 + 1) ((1 −

3
4  τ) 𝑛2 + (1 − 𝜏)𝑛 − 𝜏)

45𝑛2(𝑛 − 𝜏)
 

 

𝜇Wτ,n
=

(𝑛 + 1)

6𝑛
 

 

where 𝜇Wτ,n
 and 𝜎Wτ,n

 are the mean and standard deviation of Wτ,n . The so-called maximized 

test statistic can then be defined as [45]:  

 

Wn = max
τ

 Wτ,n − 𝜇Wτ,n

𝜎Wτ,n

 

This method of standardizing  Wτ,n  and maximizing Wn for all values of τ gives a single test 

statistic for significance analysis and hypothesis testing.  A bootstrap sampling approach 

outlined inreferences [Anderson, 1962; Bücher and Kojadinovic, 2016; Bücher et al., 2014; 

Gombay and Horváth, 1999; Hawkins and Deng, 2010]can determine the p-value and 

hypothesis testing. The approximate p-value is computed using a multiplier approach as: 

(0.5 +  ∑ 1{𝑊𝑖≥𝑊})𝑁
𝑖=1

𝑁 + 1
 

where W and Wi are the test statistic and a multiplier replication, respectively. In a bootstrap 

process with N=1000 replications, if the result falls in the α-tail (α=0.05) of the N simulations, 

the test is statistically significant at a 0.05 significance level. The bootstrapping approach is 

known as the sequential block bootstrapping procedure, and can be used for both independent 

and serially dependent variables [Bücher and Kojadinovic, 2016; Politis and White, 2004]. Given 
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that my data is independent and identically distributed (Figure S5), I use a unit block length, 

which leads to independent and identically distributed multiplier sequences. In addition to the 

above approximate p-value, the so-called two-sample Cramer-von Mises test (CMTest2) can 

compare two different periods (data records). This test evaluates whether independent 

samples from two periods (here, 1960-1980 and 1990-2010) are drawn from the same 

population[Anderson, 1962; Anderson and Darling, 1952]. In this test, the p-value can be 

derived similar to the two-sample Kolmogorov Smirnov test.  Table S2 summarizes the p-values 

of CMTest2 for drought and heatwaves during 1990-2010 relative to 1960-1980. The table 

confirms a statistically significant change in the distribution of concurrent drought and 

heatwaves at 0.05 significance level (95% confidence) for all heatwave durations and intensities 

except for 3-day, 85th percentile heatwaves. For more information on the procedure and 

statistical significance analysis and bootstrapping approach, refer to the “cpm” (http://cran.r-

project.org/src/contrib/Archive/cpm/) and “npcp” (http://cran.r-

project.org/web/packages/npcp/index.html) R packages. 
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Drought and Heatwave H p-value 

3-Day, 85 Percentile 0 0.9095 

5-day, 85 Percentile 0 0.871 

7-day, 85 Percentile 0 0.5919 

3-day, 90 Percentile 0 0.7576 

5-day, 90 Percentile 0 0.6492 

7-day, 90 Percentile 0 0.4355 

3-day, 95 Percentile 0 0.6728 

5-day, 95 Percentile 0 0.4452 

7-day, 95 Percentile 0 0.4452 

 

Table S2: p-values of the Cramer von-Mises test for concurrent drought and heatwaves in 1990-

2010 relative to 1960-1980. A p-value < 0.05 indicates that the null-hypothesis of no change can 

be rejected at a 0.05 significance level (95% confidence).   
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Chapter 2a 

Generalized Conditional Probability Approach for Studying Inter-related 

Extremes: Heat wave impact on mortality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of Chapter 2a are published in Science Advances.  

Citation: Mazdiyasni, Omid, et al. "Increasing probability of mortality during Indian heat waves." 

Science advances 3.6 (2017): e1700066.  
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Rising global temperatures are causing increases in the frequency and severity of extreme 

climatic events such as floods, droughts, and heatwaves. Here, I analyze changes in summer 

temperatures, the frequency, severity and duration of heatwaves, and heat-related mortality 

in India between 1960 and 2009, using data from the India Meteorological Department. Mean 

temperatures across India have risen by more than 0.5 °C over this period, with statistically 

significant increases in heatwaves. Using a novel probabilistic model, I further show that the 

increase in summer mean temperatures in India over this period corresponds to a 146% 

increase in the probability of heat-related mortality events of more than 100 people. In turn, 

my results suggest that future climate warming will lead to substantial increases in heat-

related mortality, particularly in developing, low-latitude countries such as India where 

heatwaves will become more frequent and populations are especially vulnerable to these 

extreme temperatures. My findings indicate that even moderate increases in mean 

temperatures may cause great increases in heat-related mortality, and support efforts of 

governments and international organizations to build-up the resilience of these vulnerable 

regions to more and more severe heatwaves. 

 

Global mean temperatures are expected to increase by as much as 5.5 °C by the end of this 

century[Stocker et al., 2013], which is in turn expected to increase the intensity of heatwaves 

around the world[Hansen et al., 2012; G A Meehl and Tebaldi, 2004; Shi et al., 2015], with the 

largest relative effects on summer temperatures in developing regions such as Africa, South 

America, the Middle East and south Asia[Diffenbaugh and Scherer, 2011]. The impacts of such 

heatwaves on human and natural systems include decreased air quality, diminished crop yields, 
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increased energy consumption, increased evapotranspiration, intensification of droughts, and—

perhaps most concerning of all—direct effects on human health[Basu, 2009; Mazdiyasni and 

AghaKouchak, 2015]. Heat stress during periods of high temperatures may also exacerbate 

health problems such as cardiovascular and respiratory disease and cause life-threatening 

crises[Hajat et al., 2007; Wilker et al., 2012]. Certain segments of the population such as the 

young, elderly, and poor may therefore be especially susceptible to these health impacts due to 

existing health conditions as well as lack of basic resources such as clean drinking water, 

shelter, access to air conditioning and healthcare[Bouchama and Knochel, 2002]. Populations 

without central air conditioning tend to have higher heat-related mortality rates[O’Neill et al., 

2005].  

In light of geographical patterns of warming and vulnerable populations, here I present an 

analysis of a half-century (1960-2009) of temperature, heatwaves, and related mortality in 

India. Previous studies report that between 1971 and 2007, there was an increase of over 0.5 °C 

in mean temperatures across India[Kothawale et al., 2010], and the projected annual spatial 

warming in India will be between 2.2 – 5.5 °C by the end of the 21st Century, with higher 

projections over north, central, and west India[Dholakia et al., 2015; Kumar et al., 2013].  Based 

on data from the World Bank, of the 1.24 billion people living in India in 2011 (18% of global 

population), an estimated 23.6% earned <$1.25 per day and ~25% did not have any access to 

electricity, making them especially vulnerable to the impacts of heatwaves[Murari et al., 2015]. 

This vulnerability has been made clear by events in recent years: heatwaves in 2010 killed over 

1300 people in the city of Ahmedabad alone, prompting the start of efforts to develop 

coordinated Heat Action Plans[Knowlton et al., 2014]. However, these efforts remain limited 
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and localized, and in 2013 and 2015 the country experienced another bout of intense 

heatwaves that killed over 1500 and 2500 people across the country, respectively. Since then, 

there have been several more deadly heatwaves, including the most intense Indian heatwave in 

recorded history in May of 2016 when maximum temperatures in Jaisalmer reached 52.4 °C.  

Heatwaves are usually described as successive hot days[G A Meehl and Tebaldi, 2004; Perkins 

and Alexander, 2013], and are often defined on a percentile basis[Mazdiyasni and 

AghaKouchak, 2015]. Here, I consider heatwaves to be three or more consecutive days of 

temperatures above the 85th percentile of the hottest month for each specific location. Figure 

S1 shows the heatwave threshold values across India (85th percentile of hottest month’s mean 

temperature °C). For each warm season in India (April-September) from 1960 to 2009, I assess 

four different heatwave properties: (1) accumulated heatwave intensity, (2) annual heatwave 

count, (3) mean heatwave duration, and (4) heatwave days. The annual heatwave count and 

mean duration are simply the number of heatwave events that occur each year and their 

average duration in days, respectively. Heatwave days is the product of heatwave count and 

heatwave duration, and represents the number of days under heatwave condition. I evaluate 

accumulated heatwave intensity as the cumulative cooling degree-day (CDD), or the sum of the 

daily mean temperature during a heatwave subtracted by 22 °C, over the entire heatwave 

event [i.e. (daily temperature °C – 22 °C) x duration in days]. I perform my heatwave analyses 

based on summer mean temperatures (i.e. the average of mean daily temperatures during the 

summer), because I believe this to be a better indicator of accumulated heat stress. However, I 

also provide analyses based on summer maximum temperatures in the Appendix 2 section. 

These analyses are performed using 1° x 1° daily temperature records from the India 
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Meteorological Department. Finally, I use the results from these retrospective analyses to 

develop a conditional probabilistic model of the relationships among summer mean 

temperatures, heatwave days, and heat-related mortality that I apply to estimate the 

probability distribution of heat-related mortality related to mean climate warming in the 

future. Further details of my analytic approach are provided in the Methods section. 
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Figure 1| Temperature and heatwave increases in India 1960-2009. Summer mean temperatures in India have 

increased 1960-2009 as indicated by the Mann-Kendall Trend Test (a). The (b) accumulated heatwave intensity, (c) 

number of heatwave events, (d) heatwave duration, and (e) heatwave days during the latter period (1985-2009) has 

also increased over most areas of India relative to the preceding period of 1960-1984.  

 

Figure 1a shows that summer mean temperatures have increased substantially from 1960 to 

2009. The time series exhibits a statistically significant (95% confidence interval) upward trend 

confirmed using the Mann-Kendall trend test.  The accumulated intensity, count, duration, and 

heatwave days of Indian heatwaves have also increased over the analyzed time period over 

most of the country, and especially in northern, southern, and western parts of India (Figure 

1b-e). 

The red shading that dominates most of the maps in Figure 1 indicates that the observed 

increases are widespread and strong: southern and western India experienced 50% more 

heatwave events during the period 1985-2009 than during the previous 25-year period 

(calculated by dividing the difference in the number of events from 1985-2009 relative to 1960-

1984 by the total number of events). Similarly, heatwave days and the mean duration of 

heatwaves have increased by approximately 25% in the majority of India. Appendix 2 Figure S2 

shows the same analysis for heatwaves calculated by using summer maximum temperatures. 

Appendix 2 Figure S3 shows mean values for each heatwave characteristic from 1960 – 1984 

and 1985 – 2009, separately. Appendix 2 Figure S4 shows the areas where there was a 

statistically significant trend confirmed by the Mann-Kendall Trend Test.  
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Figure 2 | Standardized number of heatwave days, summer mean temperatures, and heat-related mortality. 

Standardized trends show the correspondence among the three variables. In years where heatwaves days (yellow) 

and summer mean temperature (red) are above-average, heat-related deaths also spike upwards. 

 

Figure 2a shows the relationships among standardized values of summer mean temperatures, 

heatwave days, and annual heat-related mortality occurring over the period 1967-2007 (the 

period for which reliable mortality data were available; see Appendix 2 for details). Although 

high summer mean temperatures often correspond to spikes in deaths, the correlation of 

temperatures to deaths is weaker (Pearson’s linear correlation=63%, r2=0.38; Fig. 2b) than the 

correlation with the number of heatwave days each year (Pearson’s linear correlation=77%, 

r2=0.58; Fig. 2c), especially in the years when there were high mortality rates. 
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In an effort to understand the underlying mechanisms of heatwave mortality, I further 

explored its relationship with population and income-levels in India. Figure 3 shows that the 

relationship between population-weighted heatwave days and mortality rates is only slightly 

better than that between mortality and summer mean temperatures (Pearson’s linear 

correlation 67%, r2=0.44; Fig. 3b). However, the correlation between income-weighted 

heatwave days and mortality rates is better (Pearson’s linear correlation 77%, r2=0.58; Fig. 3c).  

Based on these correlations, I infer that the relationship between income and human health is 

stronger than that of physical conditions and health, perhaps as the result of access to air 

conditioning or medical care.  It is known that some highly populated regions have low income 

per capita (e.g., northern India) and also many rural, low populated regions also have low 

income per capita (i.e. central and eastern India), which I show in Figure S5. 
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Figure 3 | Standardized population-weighted heatwave days, income-weighted heatwave days, and heat-

related mortality. Standardized trends show the correspondence among the three variables. In most years where 

income-weighted heatwaves (red) and population-weighted heatwaves (yellow) are above-average, heat-related 

deaths also increase dramatically. 

 

Figure 2a highlights several years—1972, 1988, 1998, and 2003—in which there were more 

than ten heatwave days on average across India, with corresponding spikes in heat-related 

mass-mortality of between 650 and 1500 people. However, there are a few years, such as 1973, 

1983, 1984, and 1995, in which there were an above-average number of income-weighted 

heatwave days, but a low number of deaths. A possible explanation is that the areas where 

these latter heatwaves occurred tended to be less populous and/or wealthier regions (see 
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Appendix 2 Figure S5). Such observations reinforce previous work that has highlighted poverty 

as a significant factor in climate-induced mortality, such as heatwave deaths[Hamoudi and 

Sachs, 1999]. 
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Figure 4 | Probabilities of heatwave-caused mass-mortality events. Parametric conditional probability 

density functions for yearly mortality given certain thresholds for summer mean temperatures (a) and 

heatwave days (b). With 0.5 C warmer mean temperatures or 2 more heatwave days per year, the 

probability of >100 heat-related deaths increase dramatically.  The relationship between the two variables 

and probability of mass mortality events is shown in panel c. 

 

Figure 4 presents the results of a conditional probability density analysis (see Methods) of 

annual mortality given certain thresholds for summer mean temperatures and heatwave days. 

The shaded region represents the probability of mass heat-related mortality (i.e. heat-related 

deaths of more than 100 people), given different summer temperature values. For example, the 

Figure 4a shows that there is 13% probability that years with summer mean temperatures 

equal to 27 °C will have mass heat-related mortality. However, with an increase in summer 

mean temperatures of just 0.5 °C (to 27.5 °C), the probability of such levels of heat-related 

deaths jumps by a factor of 2.5 to 32%. Figure S6 shows a similar relationship with summer 

maximum temperatures. Similarly, Figures 3b shows that the probability of heat-related mass 

mortality events increases from 46% to 82% (78% increase) where the average number of 

heatwave days across India shift from 6 days to 8 days, respectively. The substantial increase in 

mortality rates due to either a 0.5 C increase in summer mean temperature or 2 more 

heatwave days suggests that future climate warming could have a relatively drastic human toll 

in India and similarly in developing tropical and subtropical countries.  Meanwhile, some 

experts expect India’s temperature to rise 2.2 – 5.5 degrees Celsius[Dholakia et al., 2015; 

Kumar et al., 2013] . 

By almost all measures, heatwaves have increased dramatically across India over the past half-

century and with them the incidence of heat-related mortality. Projected increases in global 

mean temperatures under a range of climate change scenarios can be expected to extend these 
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trends.  Although India is particularly susceptible to heatwaves given its geography and current 

state of human development, there are many countries that are similarly vulnerable to the 

extreme heat events in the ever-warming world. My results suggest that even moderate and 

practically unavoidable increases in mean temperatures, such as 0.5 C, may lead to large 

increases in heat-related mortality unless measures are taken to substantially improve the 

resilience of vulnerable populations.  

Methods 

Temperature and Mortality Data 

Daily temperature data based on 395 weather stations and interpolated at 1° x 1°spatial 

resolution was obtained from the India Meteorological Department[Srivastava et al., 2009].  

Mortality data was also obtained from the India Meteorological Department and based on 

mortality data from annual reports which compiled information from newspaper and other 

sources about mortality during specific extreme heat events[IMD, 2009] . 

Statistical Methods 

This paper uses the Kolmogorov-Smirnov test to test changes in distribution functions of 

heatwaves in different periods. I use the two-sample Kolmogorov-Smirnov (KS) test to analyze 

the differences between the cumulative distribution functions (CDFs) for the number of 

heatwaves. This study compares the different types of heatwaves that occurred in 1985 – 2009 

relative to those in 1960 – 1984. The KS test is a nonparametric test that evaluates whether 

there is a statistically significant change between two distributions by calculating the largest 

distance between their empirical distributions. The null hypothesis is that the data sets come 
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from the same distribution at a certain confidence interval (95% confidence interval in this 

study).  

The KS test determines changes in empirical distribution functions by comparing pre-change 

and post-change samples, defined as: 

𝐹̂𝑆(𝑥) =
1

𝜏
∑ 𝐼(𝑋𝑖 ≤ 𝑥)𝜏

𝑖=1 ; 

𝐹̂𝑇(𝑥) =
1

𝑛−𝜏
∑ 𝐼(𝑋𝑖 ≤ 𝑥)𝑛

𝑖=𝜏+1 . 

where 𝐹̂𝑆(𝑥) and 𝐹̂𝑇(𝑥) are the empirical CDF of the two subsamples, I is the indicator function, 

n denotes sample size, and the terms 
1

𝜏
 and 

1

𝑛−𝜏
 are adjustment factors for the length of each 

subsample. The KS test statistic is the maximum difference between two empirical 

distributions: 

𝐷𝜏,𝑛 = sup 𝑥 |𝐹̂𝑆(𝑥) − 𝐹̂𝑇(𝑥)|, 

Larger divergence values (𝐷𝜏,𝑛 and 𝑊𝜏,𝑛) represent greater changes in the cumulative 

distributions[Ross and Adams, 2012; Sharkey and Killick, 2014].  

The Mann-Kendall (MK) trend test analyzes whether there is a statistically significant trend 

(95% confidence interval) in the number of heatwaves per year time series. The MK test is a 

nonparametric test that uses the empirical ranks of time series, and is widely used in hydrology 

and climatology[M G Kendall, 1948].  

In this paper, I use R-squared measure to determine how close the mortality and heatwave 

characteristics’ data are to the respective fitted regression lines. The R-squared statistic 

measures the proportion of variance in the dependent variable that is predictable from the 

independent variable. Lower R-squared values depict the dependent variable (mortality) cannot 
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be predicted from the independent variable (heatwave days), and higher values portray the 

dependent variable can be predicted with little to no error from the independent 

variable[Wright, 1921].  

Calculation of Conditional Probabilities 

To derive the conditional probabilities presented in Figure 4, this paper utilizes the multivariate 

copula functions[Gräler et al., 2013; Grimaldi et al., 2016; Salvadori et al., 2011; Salvadori et al., 

2013] to find the joint probability distribution of mortality and summer mean temperatures 

across India. I fit the Frank copula and t-copula families to the summer mean temperatures and 

mortality, and heatwave days and mortality data, respectively, because they have the highest 

statistically significant (95% confidence interval) maximum likelihood out of all the copula 

families. Maximum Likelihood values and p-values for five major copula families with respect to 

summer mean temperatures and heatwave days relative to mortality are in the Appendix 2 

Table S1. A copula function is defined as the multivariate distribution function[Nelsen, 1999; 

Salvadori and De Michele, 2007]: 

FX1…Xn
(x1, … , xi, … , xn) = C[FX1

(x1), … , FXi
(xi), … , FXn

(xn)] = C(U1, … , Ui, … , Un) (1) 

where C is the cumulative distribution function (CDF) of the copula and FXi
(xi) is the non-

exceedance probability of xi (marginal distribution). Here I use the bivariate form to estimate 

the joint probability distribution of mortality rates and summer mean temperatures as well as 

mortality rates and heatwave days in India: 

FXY(x, y) = C[FX(x), FY(y)] (2) 
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To determine the conditional probabilities of mortality rates exceeding a threshold (Y > y) at 

different summer mean temperatures (X = x1, x2,….), i.e. FY|X(Y > y | X), I develop the 

conditional probability density function[Madadgar and Moradkhani, 2013]: 

fY|X(y | x) = c[FX(x), FY(y)] . fY(y) (3) 

where c is the probability density function (PDF) and fY(y) is the mortality marginal 

distribution. Once I choose a certain summer mean temperature conditional PDF from Eq. 3, 

the probability of the mortality rates (Y) exceeding a particular threshold (y) is given by the area 

under the curve: 𝑓𝑌|𝑋(𝑦 | 𝑥). This allows calculating conditional PDF fY|X(y | x) for different 

values of x (e.g., summer mean temperatures=27 °C or heatwave days=6 in Figure 4).  
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Appendix 2a 

 

 

Figure S1 shows the heatwave thresholds across India. I calculate these thresholds by obtaining 

the 85th percentile of the daily mean temperatures of the hottest month in each grixbox. I show 

that the threshold of heatwaves are extremely high (>36 °C) for the majority of India.  
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Figure S2a shows that summer mean temperatures have increased substantially from 1960 –to 

2009. The time series exhibits a statistically significant (p=0.05) upward trend confirmed using 

the Mann-Kendall trend test.  
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In turn, the accumulated intensity, count, duration, and heatwave days of Indian heatwaves 

have also increased over the analyzed time period over most of the country, and especially in 

northern, southern, and western parts of India (Figure S2b).  
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Figure S3 shows the mean heatwave characteristic value for two 25-year periods (1960 – 1984 

and 1985 – 2009). Column 1 represents mean heatwave values for 1960 – 1984 and column 2 

represents mean values for 1985 – 2009. Row ‘A’ represents accumulated intensity (°C), row ‘B’ 

represents count (Number of Events), row ‘C’ represents duration (days), and row ‘D’ 

represents heatwave days (days). For example, B1 represents the mean heatwave count during 

1960 – 1984, and C2 represents the mean heatwave duration during 1985 – 2009.  
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Figure S4 shows the trend in the accumulated intensity, count, duration, and heatwave days of 

Indian heatwaves’ distribution functions from 1960 – 2009 based on the Mann-Kendall trend 

test. Subplot ‘A’ represents accumulated intensity, subplot ‘B’ represents count, subplot ‘C’ 

represents duration, and subplot ‘D’ represents heatwave days. The green pixels show locations 

where there is a statistically significant (significance level 0.05) positive trend, and the blue 

pixels show locations where there is a statistically significant negative trend. South and western 

India show that there is a significant increase in heatwave duration, frequency, and severity.  
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Figure S5 shows the population and income spatial distribution in India, and the number of 

heatwave days that occurred in 1973, 1983, 1984, and 1995. This figure shows that although 

many heatwaves occurred during those years, they occurred in less populous and/or wealthier 

regions, and therefore caused a low heat-related mortality rate.  
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Figure S6 shows the results of a conditional probability density analysis of mortality given 

certain thresholds for summer maximum temperatures. This figure shows that there is 15% 

probability that years with summer maximum temperatures equal to 27° C will have mass heat-
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related mortality. However, with an increase of only 0.5 °C in summer maximum temperatures, 

the probability of mass heat-related mortality jumps by a factor of 2.4.  

 

Figure S7 shows that cooling degree days have increased substantially from 1960 –to 2009. The 

time series exhibits a statistically significant (p=0.05) upward trend confirmed using the Mann-

Kendall trend test.  
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Table S1: Maximum Likelihood and p-values for mean summer mean temperature (MST 

Mean)/mortality and heatwave days (HW Days)/mortality for different copula families. Columns 

2 and 4 show Maximum Likelihood values and columns 3 and 5 show their corresponding p-

values. The copula family with the highest maximum likelihood value with a p-value below 0.05 

was chosen to be used for Figure 4.  

 

Copula Family MST Mean MLV MST Mean p-val HW Days MLV HW Days p-val 

Gumbel 11.6 0.080 14.2 0.149 

Clayton 6.5 0.001 10.0 0.004 

Frank 7.9 0.004 10.6 0.016 

Normal 9.8 0.018 13.5 0.090 

t 10.0 0.027 13.5 0.102 
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Table S2: Values of mortality, heatwave days, and summer mean temperatures. I obtained the 

datasets from the India Meteorological Department. The mortality data is from 1967 – 2006, 

while the heatwave days and summer mean temperature data is from 1960 – 2009.  

 

Year Mortality HW Days Summer Mean 

Temperatures 

1960   9.050739 27.8521519 

1961   5.754764 27.4080983 

1962   5.930383 27.51762347 

1963   4.150327 27.49037859 

1964   6.845197 27.42619596 

1965   6.960335 27.62023659 

1966   7.707924 27.80948661 

1967 0 7.401298 27.52937173 

1968 0 4.352241 27.68388849 

1969 0 6.658364 27.76147249 

1970 500 6.013894 27.62789409 

1971 0 3.595238 27.04596265 

1972 1200 10.61896 28.03449524 

1973 317 12.34712 27.9105063 

1974 11 4.621805 27.68548921 

1975 43 6.398347 27.3842219 

1976 34 4.960204 27.42377627 

1977 0 4.33396 27.30842847 

1978 368 8.435231 27.63775698 
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1979 361 7.516383 27.88949626 

1980 156 7.535881 27.91779152 

1981 75 6.17398 27.75313802 

1982 0 6.224471 27.71969241 

1983 185 10.95383 27.78297578 

1984 58 8.298676 27.74795401 

1985 284 5.653175 27.64714428 

1986 156 6.512237 27.58309827 

1987 91 8.188689 28.26588249 

1988 627 9.663396 28.01920181 

1989 42 6.89859 27.59048017 

1990 2 4.103175 27.33463379 

1991 252 6.455109 27.84021383 

1992 114 6.826083 27.69787413 

1993 42 8.6519 27.90152599 

1994 234 7.829858 27.62782151 

1995 413 11.53829 28.03556385 

1996 26 6.818267 27.64455423 

1997 21 7.587665 27.70257507 

1998 1655 18.17089 28.30480507 

1999 126 4.680534 27.57711712 

2000 55 4.672401 27.54351233 

2001 70 6.206297 27.81637593 

2002 909 8.443608 28.17109168 

2003 1494 13.15832 28.05730882 

2004 237 5.69694 27.63898922 
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2005 326 9.186835 27.97736915 

2006 135 5.959325 27.75310397 

2007   7.791435 27.86753166 

2008   4.220098 27.56406295 

2009   9.273163 28.36352389 
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In Figure 3, the annual number of heatwaves and annual mortality rates are standardized for 

better visualization using the following formula: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥̅

𝜎
 

where 𝑥̅ is the dataset mean and 𝜎 is the dataset standard deviation.  
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Chapter 2b 

Generalized Conditional Probability Approach for Studying Inter-related 

Extremes: Tropopause Level Pressure impact on California Precipitation 
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Sea surface temperatures and teleconnection patterns such as El Nino/La Nina are considered 

the main culprits behind major California droughts. However, the underlying relationship 

between sea surface temperatures (SSTs) and precipitation anomalies is relatively weak. In 

2015-2016 the most extreme El Nino did not lead to a wet season as expected, which 

triggered a series of studies on this topic. Here I show that tropopause level pressure in a 

region in the northeastern Pacific Ocean (dubbed the PARS-NEP region) plays a major role in 

whether California will experience a wet or dry year and often dominates the role of SST-

based teleconnections. My results indicate that pressure in the PARS-NEP region Granger-

Causes precipitation in California during the wet season. I show that when pressure in the 

PARS-NEP region is in the lower (upper) tertile, 85% of wet seasons across California have a 

positive (negative) precipitation anomaly. The observed relationship between PARS-NEP and 

California precipitation is stronger than all the commonly used SST-based climatic indictors 

frequently used for understanding causes of droughts.  

Meteorological droughts are by far one of the most expensive natural disasters, and can lead to 

pervasive impacts, including energy, water, and food deficiencies, as well as wildfires [Wilhite, 

2005]. Many regions are subject to water stress due to high populations and relatively low 

annual rainfall, but proactive drought management is possible with reliable seasonal 

precipitation prediction systems. Through satellite observations, reanalysis products, and 

macro-scale hydrologic models, drought monitoring capabilities have been rapidly growing. 

However, drought prediction at a seasonal and semi-annual scale remains a great challenge due 

to limited precipitation forecast skills [M Hoerling et al., 2014; S D Schubert et al., 2008], which 

may be a result of an inadequate understanding behind the physics of rainfall events.  
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Most studies that focus on the cause of California droughts relate droughts to sea surface 

temperatures and climatic teleconnections [Bradley et al., 1987; DeFlorio et al., 2013; M P 

Hoerling et al., 1997; Kurtzman and Scanlon, 2007; McCABE and Dettinger, 1999; Rasmusson 

and Wallace, 1983; Ropelewski and Halpert, 1986; Trenberth, 1984; 1997]. Although 

teleconnections provide valuable information on California precipitation, they are not the only 

factors in determining dry or wet conditions. While the Pacific Decadal Oscillation (PDO), 

Multivariate ENSO Index (MEI), and Atlantic Multi-decadal Oscillation (AMO) are related to 

California precipitation, they exhibit a weak relationship and low predictability [S Schubert et 

al., 2016].  

Current models often result into a strong response in precipitation simulation when there is a 

sizable anomaly in sea surface temperatures in the equatorial Pacific Ocean [Kam et al., 2014]. I 

believe that a key limitation in determining drought conditions is too much emphasis on 

climatic teleconnections, and a lack of understanding on the impacts of other climatic variables 

affecting drought. For example, the third most extreme El Nino event on record occurred in the 

winter of 2015-2016, forcing extreme rainfall forecasts in California; however, California 

remained mostly dry [Kintisch, 2016]. 

Recent studies highlight the inverse correlation of geopotential height on precipitation 

anomalies in California [Swain et al., 2016; Swain et al., 2014; Teng and Branstator, 2016]. Here 

I show that there is a strong relationship between California precipitation and tropopause level 

pressure in a region in the northeastern Pacific Ocean, dubbed the PARS-NEP (Pressure of 

Atmosphere in tRopopauSe-North-Eastern Pacific) Region. Using causality assessment 

techniques, I explore the role PARS-NEP in wet and dry conditions in California.  



79 
 

Data and Methods 

Data 

We obtained the global tropopause level pressure dataset from the Earth System Research 

Laboratory’s NCEP/NCAR Reanalysis 1 project. The data is provided by the NOAA/OAR/ESRL 

PSD, Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. The 

dataset’s temporal resolution is monthly, and the spatial resolution is 2.5 x 2.5 degrees. I 

obtained the monthly precipitation dataset from the National Oceanic and Atmospheric 

Administration’s (NOAA) National Climate Data Center (NCDC).  

Statistical Analysis 

We determine PARSI by standardizing the 6-month moving average of monthly pressure in the 

PARS-NEP region, to compare with wet season precipitation. For purposes of comparability, I 

perform a similar moving average with the other teleconnections.  

We similarly standardize the mean monthly values of well-known teleconnections (Multivariate 

Enso Index (MEI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), 

Pacific/North American teleconnection pattern (PNA), and Arctic Oscillation (AO)). I define the 

conditional probability as 

Pr(𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 > 𝑃𝑇|𝑣𝑎𝑟𝑚 > 𝑣𝑎𝑟𝑇) =
Pr (𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 > 𝑃𝑇 ∩ 𝑣𝑎𝑟𝑚 > 𝑣𝑎𝑟𝑇)

Pr (𝑣𝑎𝑟𝑚 > 𝑣𝑎𝑟𝑇)
𝑚 = {5 − 11} 

and 

Pr(𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 < 𝑃𝑇|𝑣𝑎𝑟𝑚 < 𝑣𝑎𝑟𝑇) =
Pr (𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 < 𝑃𝑇 ∩ 𝑣𝑎𝑟𝑚 < 𝑣𝑎𝑟𝑇)

Pr (𝑣𝑎𝑟𝑚 < 𝑣𝑎𝑟𝑇)
𝑚 = {5 − 11} 
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where Precipwet is the sum of precipitation during the wet season (NDJFMA), PT is the threshold 

for precipitation, var is the standardized mean monthly values of my variable, varT is the 

threshold for var, and m is the first month of the 6 month moving average.  

 

Results 

In my study, I compare prediction capabilities of the Pressure of Atmosphere in tRopopauSe 

Index (PARSI) to commonly used teleconnections and climate indices (i.e., Multivariate Enso 

Index (MEI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), Pacific/North 

American teleconnection pattern (PNA), and Arctic Oscillation (AO)). I calculate PARSI by 

standardizing the 6-month moving average of the mean monthly pressure in the PARS-NEP 

region, shown in Figure 1a.  
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Figure 1| Precipitation and PARSI timeseries and PARS-NEP location. The location of the PARS-NEP Region 

is between latitude: 42.5 – 47.5, longitude: -124.6 - -134.7 (a). California wet season precipitation closely follows 

PARSI (b) with a correlation coefficient of 0.72.  

 
Standardization transforms the datasets to have a mean of zero, and a standard deviation of 

one. The reason I standardize the datasets is to improve comparability between the variables; 

that all variables transform to being on the same scale, both in terms of mean and variance. 

Therefore, PARSIApr is the standardized mean monthly pressure of November – April and 

PARSIOct is the standardized mean monthly pressure of May – October.  Throughout this paper, I 

compare averages of all variables across a six-month period for purposes of comparability, so 
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ENSO SOIApr is the standardized average ENSO SOI of November – April and ENSO SOIOct is the 

standardized average ENSO SOI of May – October. My results show a significantly greater 

correlation coefficient (+0.72) between PARSIApr and California NDJFMA precipitation than with 

any other climate index or teleconnection with any 6-month window (highest correlation: ENSO 

SOIFeb, (SONDJF): -0.31). Figures S2 and S3 compare the relationship of ENSO SOIFeb and PARSIApr 

with California NDJFMA precipitation. I also show that PARSIApr statistically significantly Granger 

Causes [Granger, 1969] precipitation throughout the wet period (significance level = 0.05), as 

can be seen in Table S1. Figure 1b shows standardized average precipitation strongly follows 

PARSIApr during the wet season, especially during extreme precipitation events, such as 1977, 

1978, 1982, 1983, 1995, 1998, and the 2013 – 2015 drought years.  

Figure 2 shows that PARSI exhibits significantly higher predictability relative to the commonly 

used climate indices. Here, I define predictability by using a simple empirical conditional 

probability approach. I assess the wet and dry signal of NDJFMA based on the sign of PARSI, 

MEI, SOI, etc. (i.e., Pr(SPI<-0.5 | PARSI<-0.5), Pr(SPI>0.5 | PARSI>0.5), Pr(SPI<-0.5 | MEI<-0.5), 

Pr(SPI>0.5 | MEI>0.5), etc.) using observed precipitation and climate indices from 1951 – 2015. 

The results indicate that PARSI exhibits higher predictability relative to the other climate 

indices, and can potentially serve as a skillful predictor of precipitation in California.  

Figure 2 shows the predictability of dry NDJFMA conditioned under different climate indices 

(MEI, SOI, PDO, PNA, and AO) relative to PARSI. I changed the sign of the variables with 

negative correlations so that all variables had a positive correlation. I did this to improve 

comparability between the different variables. Figure 2a shows that the probability of below 

average precipitation is 80% when PARSI is below -0.5 standard deviations from its mean, and  
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Figure 2 | Probability of dry NDJFMA conditioned under different climate indices (PARSI, MEI, SOI, PDO, 

PNA, and AO) relative to PARSI. Probability of below average precipitation conditioned on PARSI and climate 

indices being in the lower tertile (a), and probability of precipitation in the lower tertile conditioned on PARSI and 

climate indices being in the lower tertile (b) for 6 month periods beginning from May - November.  

 

Figure 2b shows the probability of precipitation being in the lower tertile is 71% when PARSI is 

below -0.5 standard deviations from its mean. Figure S1 shows predictability of wet NDJFMA 

conditioned under PARSI and the different climate indices, and shows that PARSI has a 

significantly higher predictability compared with the climate indices (MEI, SOI, PDO, PNA, and 

AO).   

Figure 3 portrays the timeseries of November – February California precipitation and pressure 

in the PARS-NEP region. This figure shows that the PARSI values strongly correspond with the 

2012-2016 California drought. However, in 2017, PARSI shows a significant positive anomaly, 

corresponding to the third wettest NDJF in my record. The majority of precipitation events in 
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California occur between November and April, mainly due to the wintertime polar jet stream 

and prevailing North Pacific storm track [Swain et al., 2016]. I argue that PARSI has a direct 

relationship with wet season California precipitation because the high pressure in the PARS-NEP 

region diverts the higher latitude atmospheric rivers from California. When there is low 

pressure in the PARS-NEP region, the polar jet streams continue on their path in higher 

latitudes, across Oregon, Washington, and British Columbia.  

 

Figure 3 | Probability of dry NDJFMA conditioned under different climate indices (PARSI, MEI, SOI, PDO, 

PNA, and AO) relative to PARSI. Probability of below average precipitation conditioned on PARSI and climate 

indices being in the lower tertile (a), and probability of precipitation in the lower tertile conditioned on PARSI and 

climate indices being in the lower tertile (b) for 6-month periods beginning from May - November.  

 

SSTs and teleconnection patterns are currently known as the main cause of California droughts 

and wet periods. Although they are a major force in affecting precipitation in California, SSTs 

portray a weak statistical relationship, while PARSI dominates the role in explaining 

precipitation anomalies. It is important for climate scientists and policymakers to make 

informed decisions by including all variables that may cause precipitation anomalies, such as 

pressure in the PARS-NEP region.  

 

Discussion and Conclusions 
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Although sea surface temperatures and teleconnection patterns play an important role in 

producing precipitation in California, my results show that pressure anomalies in the PARS-NEP 

region plays an even greater role and can dominate the role of established teleconnections. I 

show that pressure in the PARS-NEP region has a strong relationship (correlation: 0.72) with 

California precipitation, especially during extreme dry and wet years, such as 1983, 1998, and 

the 2013-2015 drought. The fact that California remained mostly dry in 2015-2016 during the 

third most extreme El Nino event may be explained by a below average PARSI. I show that over 

85 percent of wet-season precipitation events were above (below) average when PARSI was in 

the upper (lower) tertile. My results indicate that PARSI can dominate precipitation and can 

affect the impacts of well-known teleconnections such as ENSO. My results can provide 

explanations as to why some extreme teleconnection events do not necessarily lead the 

expected impacts (e.g., wet or dry condition) on California precipitation. I believe that by 

incorporating PARS-NEP information can improve explaining precipitation anomalies in 

California. 
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Appendix 2b 

 

Figure S1 | Probability of wet NDJFMA conditioned under different climate indices (PARSI, 

MEI, SOI, PDO, PNA, and AO) relative to PARSI. Probability of above average precipitation 

conditioned on PARSI and climate indices being in the upper tertile (a), and probability of 

precipitation in the upper tertile conditioned on PARSI and climate indices being in the upper 

tertile (b) for 6 month periods beginning from May – November.  
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Figure S2 | PARSI (NDJFMA) and ENSO SOI (SONDJF) timeseries imposed on wet season 

(NDJFMA) precipitation. The ENSO SOI timeseries has the highest correlation with California 

precipitation during the wet season compared to the other teleconnections with any lead time. 

I switched the sign of SOI for better visualization. The correlation of wet season precipitation 

with (a) ENSO SOI is -0.31 and (b) PARSI is 0.72.  
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Figure S3 | PARSI (NDJFMA) and ENSO SOI (SONDJF) scatter plot against wet season 

(NDJFMA) precipitation. The ENSO SOI timeseries has the highest correlation with California 

precipitation during the wet season compared to the other teleconnections with any lead time. 

The correlation of wet season precipitation with (a) ENSO SOI is -0.31 and (b) PARSI is 0.72.  
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Table S1: F-Statistic, F-Distribution Critical Value, and p-value for November – April PARSI 

Granger Causing California precipitation during the wet period (NDJFMA). If the F-Statistic is 

greater than the F-Distribution Critical Value, I reject the null hypothesis that y does not 

Granger Cause x. I show that the F statistic is greater than the F-Distribution Critical Value, and 

thus wet season PARSI does Granger Cause wet season precipitation. Furthermore, I show that 

the p-value is below the significance level (0.05), also indicating a statistically significant granger 

causality.  

F-Statistic F-Distribution Critical Value p-value 

66.6418 2.7911 2.8e-11 
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We standardize the climatic indices for better visualization and comparability using the 

following formula: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥̅

𝜎
 

where 𝑥̅ is the dataset mean and 𝜎 is the dataset standard deviation.  
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Chapter 3 

Empirical Teleconnections: Compounding Oceanic-Atmospheric Variables 

impact on Precipitation 
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Atmospheric teleconnections such as the El Niño Southern Oscillation (ENSO) are thought 

to be important drivers of dry and wet periods around the globe. Yet, even well-studied 

teleconnections like ENSO have weak statistical relationships with dry/wet periods in most 

regions and offer limited predictive skill. Here, I demonstrate an exhaustive, bottom-up, 

brute-force search algorithm for discovering predictive relationships between specific ocean-

land regions. Based on 32 years of reanalysis data (1983-2015), I discover linkages that are 

distinct from known teleconnections, but which better predict precipitation with 4-12 months 

lead-time. I further evaluate my empirical approach by reversing the analysis, demonstrating 

that the predictive skill I observe is not mere coincidence; the results have strong spatial 

coherence. The teleconnections revealed here may have immediate practical value in 

anticipating seasonal weather events, and also help to focus future research on the physical 

mechanisms underlying the planet’s strongest and most important teleconnections.  

 

Introduction 

Meteorological droughts are especially costly and disruptive natural disasters that often lead 

to crop failures, water shortages, wildfires, and increased energy use[Harto et al., 2012; Saini 

and Westgate, 1999; Westerling and Swetnam, 2003; Wilhite, 2005] . Periods of above average 

precipitation can be equally destructive, often causing damage to crops, flooding, and 

landslides. Efforts to avoid these negative impacts depend upon reliable seasonal predictions of 

precipitation that enable water managers and policy makers to plan and prepare. 
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Although satellite observations, reanalysis products, and hydrological models have improved 

in recent years (and now support advanced drought monitoring), seasonal forecasts of 

precipitation have little skill [Cayan and Roads, 1984; Cayan et al., 1999; Cayan et al., 2009; 

Martin Hoerling and Kumar, 2003; Martin Hoerling et al., 2013; M P Hoerling et al., 1997; 

Kirtman et al., 2014; Tebaldi and Knutti, 2007; White et al., 2003]. This is because well-known 

teleconnections such as El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation 

(PDO), Pacific/North American pattern (PNA), and Arctic Oscillation (AO)—which are the 

primary basis for such seasonal forecasts[Bradley et al., 1987; DeFlorio et al., 2013; M P 

Hoerling et al., 1997; Khalil et al., 2007; Kurtzman and Scanlon, 2007; McCABE and Dettinger, 

1999; Rasmusson and Wallace, 1983; Ropelewski and Halpert, 1986; Steinschneider and Lall, 

2016; Trenberth, 1984; 1997; Wolter and Timlin, 1998; 2011]—display weak predictive 

capabilities[S Schubert et al., 2016]. For example, my results show that ENSO only predicts 

approximately 40% of wet and dry years across California, while other teleconnections show 

even weaker relationships.  

Here, I present results from an exhaustive, brute-force search algorithm that leads to better 

predictions of seasonal precipitation (specifically, whether a rainy-season will be dry, wet, or 

normal). Details of my methodology are in the Methods section. In short, my search algorithm 

determines all possible combinations of a predictor variable (e.g., sea surface temperature) 

with different lead times (e.g., 4-month to 12-month) which result in a certain outcome (e.g., 

dry or wet conditions). As demonstrated here, the search first defines the rainy season for ten 

regions of interest based on a long-term climatology (using monthly data from the Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks – Climate Data 
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Record) then categorizes each year in the record of each location as either wet, dry, or normal 

(defined as precipitation in the upper 33rd or lower 33rd percentile or between, respectively), 

and finally evaluates sea surface temperatures (SSTs) at different lead times in all grid cells to 

identify the best correlations with rainy-season precipitation in each region of interest. The 

result is a standardized index that forecasts seasonal precipitation based only on SSTs that 

consistently outperforms models which rely on established teleconnections. In this paper, I 

refer to the empirical teleconnection as MAZDAK. I use a brute force methodology to determine 

the empirical teleconnection, using data from the Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks – Climate Data Record (See Methods 

Section) 

Results 

Our results indicate that using the proposed bottom up approach greatly improves seasonal 

precipitation prediction. In this paper, I refer to the empirically derived teleconnection indicator 

as MAZDAK. Figure 1a shows a bar graph depicting how well MAZDAK predicts California 

(hereafter, MAZDAK-CA) rainy season precipitation (Nov – Apr), compared to several well-

known teleconnections, such as ENSO-MEI, ENSO-SOI, PDO, PNA, and AO for the historical 

period 1983 - 2015. I inversed the signs of teleconnections that exhibit negative relationship 

with precipitation for better visualization and easier comparison. This figure shows that 

MAZDAK-CA captures wet-, normal-, and dry-years significantly better than commonly used 

teleconnections, with a much lower false alarm ratio. The MAZDAK-CA index (using only SSTs) 

was able to capture 80% of dry and wet hits, with below 10% false alarm ratios, with a 7-month 

lead-time (Feb – Apr of previous year). I note that the existing dynamical and statistical models 
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do not offer much predictive skill beyond 3 months [Kirtman et al., 2014; Tebaldi and Knutti, 

2007].  This index shows considerably better predictability with respect to the other 

teleconnections with the same lead-time. For example, of the teleconnections I used for 

comparison, SOI has the best predictability, with 60% dry-, and 30% wet-hit rate, and 30% dry 

and wet false alarm ratio.  

 
Figure 1| California Precipitation, MAZDAK-CA, and the existing teleconnections. The bar graph of MAZDAK-CA 
hit and false alarm rates compared to five well-known teleconnections (a). California wet season precipitation 
closely follows MAZDAK-CA (b) with a correlation coefficient of 0.86. The locations that provide predictive 
information are highlighted with red dots in the global map in panel b.  

 



97 
 

The empirical teleconnection indicates that sea surface temperatures from four seemingly 

independent locations (see the red dots in the global map in Figure 1b) provide predictive 

information for California.  I note that the predictive points are not located in places where the 

well-known teleconnections are defined. The output of the model exhibits a strong 

interdependence with California’s wet season precipitation with a correlation coefficient of 

0.86 (see Figure). In this figure, I have standardized precipitation values for better comparability 

with MAZDAK. The model captures California’s significant wet and dry years, such as the 

1997/1998 precipitation event and the 2011 – 2014 drought (Figure 1b). To examine the 

robustness of the approach I have conducted similar analysis in nine other locations (political 

divisions) from around the world with different climate conditions, including: Iran, Hubei 

(China), Liaoning (China), Ethiopia, New South Wales (Australia), Goias (Brazil), Greece, Odisha 

(India), Stockholm (Sweden). Figures S1-S30 show the same charts as Figure 1 for the other nine 

locations. Figures S1-S30 show the top three combinations of SSTs that produce the highest 

correlation value. These charts similarly show the MAZDAK has significantly higher correlation 

and hit rate values than the well-known teleconnections. To show that MAZDAK provides 

predictive information beyond the period I used to determine the SST locations (calibration 

period), I determine the SST locations using only part of the precipitation data (1983 – 2010). I 

then extended the timeseries through 2015 to show how well MAZDAK captured precipitation 

outside of the calibration period. Figures S31 – S60 show the bar graph, line graph, and SST 

location map of all 10 locations, using precipitation data 1983 – 2010 to determine the 

locations. The results indicate there is only a slight decrease in correlation of MAZDAK with wet-

season precipitation, (e.g., in the case of California, MAZDAK-CA changes from 0.86 to 0.83).  
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Figure 2| MAZDAK hit rate radar chart. The radar chart portrays a summary of hit rates of MAZDAK for ten 
locations across the globe. Dry hit rates (a) and wet hit rates (b) are relatively high. The red line represents the 
probability (33%) that you will obtain a hit based on long-term climatology. MAZDAK improves the hit ratio for nine 
of the ten locations.  

 

Figures S61 – S90 show the bar graph and line graph for all 10 locations, using the method of 

leave one out for calibration. This means that there was no information used to determine the 
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SST locations for each target year. This is a commonly used metric to determine the reliability 

and robustness of wet-season precipitation prediction, as there is no precipitation information 

used to determine the MAZDAK value of each year. The results of leave one out shows that 

MAZDAK-CA can capture over 70% of dry periods with 15% false alarm, and over 75% of wet 

periods, with 20% false alarm ratio. Figure 2 shows the summary of dry and wet hits for the ten 

political divisions I tested, using the method of leave one out. The red line represents the 

probability (33%) that you will obtain a hit based on persistence-based climatology. MAZDAK 

produces a dry hit ratio of over 50% in eight of the ten locations and a wet hit ratio of over 60% 

in seven of the ten locations. This shows that I can create indices based on sea surface 

temperatures that have significantly improved predictability than current teleconnections as 

well as persistence based predictions, through MAZDAK. I show that although this method may 

not be universal for all political divisions (i.e. Goias, Brazil), it does improve precipitation 

predictability in most regions.  
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Figure 3| MAZDAK-CA significant correlation map. This map shows the grids that MAZDAK-CA has a statistically 
significant (significance level = 0.01) correlation with global precipitation. I show that MAZDAK-CA has a statistically 
significant correlation with precipitation across California, as well as parts of the ENSO region and the Middle East. 

 

We acknowledge that a strong correlation between two variables does not necessarily prove 

causality. I attempted to show causality using a backward analysis approach. Here I determine 

the precipitation grid boxes that have a statistically significant correlation, for example, with 

the SST locations that provide predictive information for California. In other words, I determine 

the predictability of MAZDAK across all grid cells and determine the grid boxes that 

precipitation has a statistically significant correlation with the MAZDAK index. If the area that 

shows a significant correlation with the predictive points show some consistent spatial pattern, 

I can infer that the relationship is related to physical processes across coherent geographic 

regions. Figure 3 shows the regions where wet season precipitation has a statistically significant 

(significance level = 0.01) correlation with the locations that provide predictive information. I 

show that MAZDAK-CA has a statistically significant correlation with precipitation across 

California and southwestern US, demonstrating a striking coherent spatial pattern. This 

indicates that the observed relationship is not random and involves a data-driven 

teleconnection that cannot be explained with the well-known teleconnection, moisture 

transport patterns, etc. It is interesting to note that there is also a significant relationship with 

MAZDAK-CA and the ENSO region in the Pacific Ocean. This figure portrays that the relationship 

between MAZDAK-CA and California wet-season precipitation is not a mere coincidence, but 

rather that there is a strong correspondence to the entire region. Figures S91 – S100 portray 

similar maps for all the political divisions I tested in this study, and show that the regions in 
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question have a statistically significant correlation (significance level = 0.01) with their 

corresponding MAZDAK Index.  

Discussion 

We hypothesize that there are an infinite number of teleconnections (combinations of sea 

surface temperatures (SST), sea level pressure, ocean current velocity, near-surface ocean 

temperatures, wind speed, and other oceanic-atmospheric variables) that may serve as 

predictor variables to droughts and wet periods in many regions across the globe, with several 

months lead-time. Relationships between precipitation events and their drivers may be hidden 

and go unseen due to their significant distances in time and space. By using an empirical 

approach, I can determine the relationship between precipitation events at a specific location, 

and the oceanic-atmospheric variables across each gridbox around the world. This bottom-up 

approach identifies the drivers through the resulting impacts, rather than attributing impacts to 

oceanic-atmospheric patterns (i.e. ENSO) that may or may not be a significant driver. This 

complete, brute-force search method can highlight teleconnection patterns associated with 

wet-season precipitation for certain regions and may provide an improvement to current 

seasonal precipitation prediction models.   

In this paper, I show the results of empirically derived teleconnections using only sea surface 

temperature; however, other oceanic-atmospheric variables may also provide information for 

seasonal precipitation prediction. To demonstrate potential applications to other variables, 

Figures S101-S109 show the locations where ocean current velocity has a statistically significant 

correlation with California wet-season precipitation with 4 – 12 month lead. I show that ocean 

current velocity in the mid-Pacific Ocean have a statistically significant relationship with 
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California precipitation for lead times of 6 – 8 months, which can be incorporated into the 

empirically derived teleconnection. However, it is also possible for some variables to have no 

predictive power, as is the case for tropopause level pressure portrayed in Figures S110-S118. 

These figures shows that tropopause level pressure does not show a strong pattern of high 

correlation with California wet-season precipitation. This is expected as pressure is a more 

short-term weather phenomenon. While it is significantly related to local precipitation, it does 

not offer long-term memory and seasonal predictive power. This means that the results of the 

search for different variables is consistent with the expected persistence. For different case 

study or basins, it is important to investigate all possible climatic variables’ predictive 

capabilities using the proposed brute-force methodology, and combine their predictive powers 

to create a robust model.  

This paper suggests that seasonal prediction of climatic events, such as wet-season 

precipitation can be advanced using data driven models that do not appear to have a physical 

explanation (at least not at this time). Further research is required to investigate the physical 

mechanisms behind the relationship between the identified points and the target variable (e.g., 

seasonal precipitation). In fact, I attempted to explore this by investigating not only sea surface 

temperatures, but also ocean currents and tropopause level pressure patterns (see Figures 101-

118).  However, the results did not point us to a specific physical explanation of the predictive 

skill of the model. I are hoping that future work through future work by scientists with different 

background (e.g., climatology, oceanography, statistics) lead to a better understanding of the 

underlying physics of the predictive power of the model. 

Methods 
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Data. I obtained the sea surface temperature datsaset from the NOAA Optimum Interpolation 

(OI) Sea Surface Temperature (SST) V2, provided by the NOAA/OAR/ESRL PSD, Boulder, CO, 

USA, from their website at http://www.esrl.noaa.gov/psd/. The sea surface temperature 

dataset has a temporal resolution of one month, and a spatial resolution of 1° x 1° [Reynolds et 

al., 2002].  

We use the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks – Climate Data Record (PERSIANN-CDR) obtained from the Center for 

Hydrometeorology and Remote Sensing at the University of California, Irvine. PERSIANN-CDR is 

a newly developed satellite-based precipitation product that covers more than three decades 

(January 1, 1983 – present) of daily precipitation estimations at 0.25° x 0.25° spatial resolution 

for the 60°S – 60°N latitude band [Ashouri et al., 2015]. The data can be obtained from: 

http://chrsdata.eng.uci.edu.  

We obtained the global tropopause level pressure dataset from the Earth System Research 

Laboratory’s NCEP/NCAR Reanalysis 1 project. The data is provided by the NOAA/OAR/ESRL 

PSD, Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. The 

dataset’s temporal resolution is monthly, and the spatial resolution is 2.5 x 2.5 degrees. I 

obtained the monthly precipitation dataset from the National Oceanic and Atmospheric 

Administration’s (NOAA) National Climate Data Center (NCDC) [Kalnay et al., 1996].  

We used zonal ocean current velocities in my evaluation of the relationship between ocean 

currents and precipitation (available for download at ftp://podaac-ftp.jpl.nasa.gov/). The 

velocity estimates are calculated by Earth Space Research (ESR), using a number of satellites 

http://chrsdata.eng.uci.edu/
ftp://podaac-ftp.jpl.nasa.gov/
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and in situ observations available through NASA and NOAA. The dataset has a spatial resolution 

of 1 degree and a temporal resolution of 5 days, which I averaged to the monthly scale.  

Statistical Analysis. I determine the empirical teleconnection by finding the two to five 

locations where the 3-month average of SSTs have the highest correlation with each political 

division’s wet-season (6 months), using a brute-force (exhaustive) search algorithm [Korf, 

1985]. I put a temporal constraint where the SSTs must have a lead-time of between 4 to 12 

months. Once I have the SST locations, I determine MAZDAKR
  (Raw Empirical Teleconnection): 

𝑀𝐴𝑍𝐷𝐴𝐾𝑅 = (± 𝑆𝑆𝑇1) + (±𝑆𝑆𝑇2) +  (±1 𝑆𝑆𝑇3) +  (±1 𝑆𝑆𝑇4) +  (±1 𝑆𝑆𝑇5) 

where SST1, SST2, SST3, SST4, and SST5 are the 3-month averaged SST values. I multiply the SST 

value by +1 if the correlation with wet-season precipitation is positive, and by -1 if the 

correlation is negative. I use between 2 and 5 locations to find the empirical teleconnection. 

The number of points is determined based on which combination of SSTs has the highest 

correlation. Then I standardize TeleR to find Tele (Empirical Teleconnection Index):  

𝑀𝐴𝑍𝐷𝐴𝐾 =
𝑀𝐴𝑍𝐷𝐴𝐾𝑅 − 𝑚𝑒𝑎𝑛(𝑀𝐴𝑍𝐷𝐴𝐾𝑅)

𝑠𝑡𝑑𝑒𝑣(𝑀𝐴𝑍𝐷𝐴𝐾𝑅)
 

We similarly standardize the mean monthly values of well-known teleconnections (Multivariate 

Enso Index (MEI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), 

Pacific/North American teleconnection pattern (PNA), and Arctic Oscillation (AO)). I define the 

conditional probability of wet hit as 

Pr(𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 > 𝑃𝑇|𝑣𝑎𝑟𝑚 > 𝑣𝑎𝑟𝑇) =
Pr (𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 > 𝑃𝑇 ∩ 𝑣𝑎𝑟𝑤𝑒𝑡−𝑚 > 𝑣𝑎𝑟𝑇)

Pr (𝑣𝑎𝑟𝑤𝑒𝑡−𝑚 > 𝑣𝑎𝑟𝑇)
𝑚 = 4 − 12 

dry hit as 

Pr(𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 < 𝑃𝑇|𝑣𝑎𝑟𝑚 < 𝑣𝑎𝑟𝑇) =
Pr (𝑃𝑟𝑒𝑐𝑖𝑝𝑤𝑒𝑡 < 𝑃𝑇 ∩ 𝑣𝑎𝑟𝑤𝑒𝑡−𝑚 < 𝑣𝑎𝑟𝑇)

Pr (𝑣𝑎𝑟𝑤𝑒𝑡−𝑚 < 𝑣𝑎𝑟𝑇)
𝑚 = 4 − 12 
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where Precipwet is the sum of precipitation during the wet season (e.g., NDJFMA), PT is the 

threshold for (wet or dry) precipitation, var is the standardized mean monthly values of my 

variable, varT is the threshold for (wet or dry) var, and m the best 3 months to calculate the 

empirical teleconnection with a lead-time of 4 – 12 months from the first month of the wet 

season.  
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Appendix 3 

Section 1:  
In this section the results are presented based on analysis of record over 1983-2015 to find the locations that 
best estimate the precipitation. 

 
Figure S1| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S2| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S3| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S4| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S5| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the Second highest correlation coefficient. 
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Figure S6| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S7| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S8| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 



114 
 

 
Figure S9| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S10| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S11| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S12| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S13| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S14| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 



120 
 

 
Figure S15| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S16| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the highest correlation coefficient. 



122 
 

 
Figure S17| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the second highest correlation coefficient. 
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Figure S18| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the third highest correlation coefficient. 
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Figure S19| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S20| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S21| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S22| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the highest correlation coefficient. 
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Figure S23| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the second highest correlation coefficient. 



129 
 

 
Figure S24| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the third highest correlation coefficient. 
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Figure S25| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S26| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S27| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S28| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S29| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S30| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Section 2:  
In this section the results are presented based on analysis of record over 1983-2010 to find the locations that 
best estimate the precipitation. 

 
Figure S31| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S32| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S33| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S34| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S35| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the Second highest correlation coefficient. 



141 
 

 
Figure S36| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S37| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S38| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S39| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S40| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S41| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S42| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S43| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S44| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S45| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S46| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the highest correlation coefficient. 



152 
 

 
Figure S47| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the second highest correlation coefficient. 
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Figure S48| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the third highest correlation coefficient. 
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Figure S49| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S50| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S51| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S52| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the highest correlation coefficient. 
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Figure S53| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the second highest correlation coefficient. 
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Figure S54| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the third highest correlation coefficient. 
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Figure S55| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S56| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S57| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S58| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S59| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S60| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Section 3:  
In this section the results are presented based on analysis of record over 1983-2015 and to find the locations 
that best estimate the precipitation and leave-one-out technique is used to evaluate the performance. 

 
Figure S61| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S62| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S63| California-USA Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S64| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S65| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the Second highest correlation coefficient. 
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Figure S66| Ethiopia Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S67| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S68| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S69| Goias-Brazil Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S70| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S71| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S72| Greece Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S73| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S74| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S75| Hubei-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S76| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the highest correlation coefficient. 
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Figure S77| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the second highest correlation coefficient. 
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Figure S78| Iran Precipitation and MAZDAK bar graph, timeseries and location, for the location combination 
with the third highest correlation coefficient. 
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Figure S79| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S80| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S81| Liaoning-China Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S82| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the highest correlation coefficient. 
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Figure S83| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the second highest correlation coefficient. 
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Figure S84| New South Wales-Australia Precipitation and MAZDAK bar graph, timeseries and location, for the 
location combination with the third highest correlation coefficient. 
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Figure S85| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S86| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S87| Odisha-India Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Figure S88| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the highest correlation coefficient. 
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Figure S89| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the second highest correlation coefficient. 
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Figure S90| Stockholm-Sweden Precipitation and MAZDAK bar graph, timeseries and location, for the location 
combination with the third highest correlation coefficient. 
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Section 4: Correlation Maps 

 
Figure S91| MAZDAK significant correlation map for California-USA. 

 
Figure S92| MAZDAK significant correlation map for Ethiopia. 

 
Figure S93| MAZDAK significant correlation map for Goias-Brazil. 
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Figure S94| MAZDAK significant correlation map for Greece. 

 
Figure S95| MAZDAK significant correlation map for Hubei-China. 
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Figure S96| MAZDAK significant correlation map for Iran. 

 
Figure S97| MAZDAK significant correlation map for Liaoning-China. 
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Figure S98| MAZDAK significant correlation map for New South Wales-Australia. 

 
Figure S99| MAZDAK significant correlation map for Odisha-India. 
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Figure S100| MAZDAK significant correlation map for Stockholm-Sweden. 
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Section 5:  
In this section we show the locations where ocean current velocity has a statistically significant correlation 
with California wet-season precipitation with different lead-times. 

 
Figure S101| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 4 months lead-time. 

 
Figure S102| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 5 months lead-time. 

 
Figure S103| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 6 months lead-time. 
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Figure S104| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 7 months lead-time. 

 
Figure S105| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 8 months lead-time. 

 
Figure S106| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 9 months lead-time. 
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Figure S107| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 10 months lead-time. 

 
Figure S108| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 11 months lead-time. 

 
Figure S109| locations where ocean current velocity has a statistically significant correlation with California 
wet-season precipitation with 12 months lead-time. 
 
 
Section 6:  
In this section we show that tropopause level pressure at different locations  show no statistically significant 
correlation with California wet-season precipitation with different lead-times. 
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Figure S110| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 4 months lead-time. 

 
Figure S111| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 5 months lead-time. 

 
Figure S112| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 6 months lead-time. 
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Figure S113| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 7 months lead-time. 

 
Figure S114| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 8 months lead-time. 

 
Figure S115| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 9 months lead-time. 
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Figure S116| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 10 months lead-time. 

 
Figure S117| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 11 months lead-time. 

 
Figure S118| Correlation between tropopause level pressure at different locations and California wet-season 
precipitation with 12 months lead-time. 
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Chapter 4 

Multivariate Indices for Climate Extremes: Heat Wave Intensity, Duration, 

Frequency Curve 
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Atmospheric warming is projected to increase the frequency and severity of heat wave 

events. Heat waves can be quantified using multiple descriptors, including intensity, duration, 

frequency. However, most studies investigate one feature at a time using univariate analyses 

and consequentially lack a comprehensive measure to compare all heat wave characteristics 

simultaneously. I propose a multivariate approach to construct heat wave intensity, duration, 

frequency (HIDF) curves, which enables the concurrent analysis of all heat wave properties. 

As heat wave features (e.g., duration and intensity) are interdependent, ignoring the 

relationship between heat wave features can lead to substantial biases in frequency (risk) 

analyses. Here I show how HIDF curves can be used to describe the occurrence probability of 

heat waves with different duration and severity. I then show how HIDF curves can be used for 

attribution analysis of heat waves to anthropogenic warming through comparing historical 

climate model simulations (including anthropogenic emissions) with natural-only historical 

simulations. For example, in the city of Los Angeles, the HIDF shows that the likelihood of a 

four-day heat wave (temperature > 31 °C) has increased by 21% because of anthropogenic 

emissions. I also show that a six-day heat wave (temperature > 31 °C) has a 26% higher 

likelihood under the anthropogenic emission scenario relative to the natural-only scenario. 

The proposed approach can be applied in various locations to quantitatively describe the 

likelihood of heatwaves with different intensities and durations. 

 

Introduction 

Heat waves have significant negative implications on human health, urban air quality, ecological 

and environmental conditions, and agricultural and energy sectors [Allen et al., 2010; Jones et 
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al., 2018; Santer et al., 2017; Tebaldi and Lobell, 2018; Zampieri et al., 2017]. In addition, 

heatwaves have been connected to the increased risk of forest fires [Koutsias et al., 2012]. 

Heatwaves are also considered to be one of the deadliest natural hazards, and cause high 

mortality rates in both developed and developing countries. For example, the 2003 European 

heat wave and 2010 Russian heat wave killed over 70,000 and 56,000 people, respectively 

[Beniston, 2004; Grumm, 2011; Hauser et al., 2016; Otto et al., 2012; Rahmstorf and Coumou, 

2011]. The 2003 European heat wave also caused electricity demand to soar and energy 

efficiency to plummet [Añel et al., 2017]. France, Europe’s main electricity exporter, was forced 

to cut power exports by more than half during the heat wave, because power plants were 

operating at significantly reduced capacity [Auffhammer et al., 2017; De Bono et al., 2004]. 

Extreme temperatures and heatwave events have also caused problems in the transportation 

sector. Phoenix Sky Harbor Airport was forced to cancel nearly 50 flights due to extreme 

temperatures in the summer of 2017, when temperatures soared as high as 120 °F [Magill, 

2017]. These cancellations produced a domino effect on the entire air transportation system, 

which demonstrate how impacts of regional heat waves can expand to a national or even global 

level.  

Rising global temperatures are expected to increase the intensity, duration, and frequency of 

heat waves around the world [Eltahir, 2017; Im et al., 2017; Im et al., 2018; G Meehl et al., 

2018; Perkins et al., 2012; Shi et al., 2015], and are projected to further increase by the end of 

the century [Alexander et al., 2006; Perkins and Alexander, 2013; Sun et al., 2016]. Most studies 

investigate different features of heat waves independently, and ignore their relationships [Kim 

et al., 2018; Tebaldi and Wehner, 2018; Wehner et al., 2018a; Wehner et al., 2018b]. Although 
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there is no universal definition, heat waves are typically described as a consecutive period of 

hot days with temperatures above a given threshold [Mazdiyasni and AghaKouchak, 2015; 

Mazdiyasni et al., 2017]. The threshold is often based on a percentile of each month’s daily 

temperatures or a fixed value [Huynen et al., 2001; G A Meehl and Tebaldi, 2004]. Current 

metrics evaluate individual heat wave characteristics, such as the hottest day of each year or 

longest duration of consecutive hot days [Mazdiyasni and AghaKouchak, 2015; Mazdiyasni et 

al., 2017; G A Meehl and Tebaldi, 2004; Perkins and Alexander, 2013; Perkins et al., 2012; Sun et 

al., 2017]. However, current univariate indicators often underestimate the impacts of heat 

waves because they fail to characterize the extreme event in a comprehensive manner [Sun et 

al., 2016]. The risks from individual heat wave characteristics can be amplified when considered 

concurrently (e.g. high intensity and long duration heat wave events vs high intensity, short 

duration heat wave events). The significant impacts and increasing intensity and duration of 

extreme heat wave events highlight the need for a comprehensive metric, accounting for all 

heat wave characteristics simultaneously.  

In this paper, I propose a heat wave intensity-duration-frequency (HIDF) model. I use 

multivariate copula functions to link heat wave durations and intensities. The use of these 

functions allows for the presentation of heat wave frequency information with different 

combinations of intensity and severity. Copulas have been used for linking different features of 

drought and precipitation extremes such as duration and severity [Kao and Govindaraju, 2010; 

J-T Shiau and Modarres, 2009; J Shiau, 2006; Singh and Zhang, 2007]. In this paper, I consider 

heat wave intensity as the average of mean daily temperature throughout the duration of heat 

wave. My results portray and compare HIDF curves for six cities in the United States, using daily 
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mean temperature data from 1979 – 2016. I also compare HIDF curves for historical model 

simulations (including anthropogenic emissions) against natural-only historical (i.e. pre-

industrial) model simulations to investigate the impacts of anthropogenic emissions on extreme 

heat events, using daily mean temperature data from 1850 - 2005. Using this novel approach, I 

concurrently compare the differences in heat wave intensity, duration, and frequency for a 

more comprehensive analysis of anthropogenic climate change impacts on heat waves.  

 

Methods 

We create the HIDF curves by determining the non-exceedance probability of heat wave 

duration and intensity. I define heat wave intensity as the average daily temperature 

throughout the duration of the event. Similar to traditional precipitation IDF curves, I use the 

block maxima method to produce the HIDF curves. I determine the hottest heat wave events in 

each year with durations ranging from one to ten consecutive days. I then calculate the 

intensity of each event using,  

∀𝑦     𝐼𝑦 = max {
∑ 𝑡𝑖

𝑦𝑖+𝐷−1
𝑖

𝐷
} , 

    (1) 

∀𝐷    𝐷 = 1: 10, 

where y is the year, i is the first day in the moving calculating window that ranges between one 

and the number of days in the year, 𝑡𝑖
𝑦

 is the average daily temperature at day i of year y, and D 

is the length of the running window (i.e. heat wave duration).  

To model the HIDF curves, I determine the average temperature of the one to ten hottest 

consecutive days in each year. I then use the multivariate copula functions to find the non-
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exceedance joint probability cumulative distribution function of heat wave duration and heat 

wave intensity [Gräler et al., 2013; Madadgar et al., 2016; Nelsen, 2007; Salvadori and De 

Michele, 2007; Salvadori et al., 2011; Salvadori et al., 2013]. I determine the best fitting copula 

family out of the 26 families of the Multivariate Copula Analysis Toolbox [Sadegh et al., 2017] 

based on the Bayesian Information Criterion. Refer to Table 1 of [Sadegh et al., 2017] for more 

information regarding the copula families.  

A copula function is defined as the multivariate distribution function  

FX1…Xn
(x1, … , xi, … , xn) = C[FX1

(x1), … , FXi
(xi), … , FXn

(xn)] = C(U1, … , Ui, … , Un) (2) 

where C is the cumulative distribution function (CDF) of the copula and FXi
(xi) is the non-

exceedance probability of xi (marginal distribution). For the study, I use the bivariate copula to 

estimate the joint probability distribution of heat wave duration (𝑋), and heat wave intensity 

(𝑌),  

FXY(x, y) = C[FX(x), FY(y)]         (3) 

 

We then calculate the joint return periods for different duration and frequency following 

Salvadori et al. (2013). I also determine the conditional probability of intensity exceeding a 

threshold (Y>y) at a certain duration (X=x), that is fY|X(Y > y | X) through the conditional 

marginal PDF [Madadgar and Moradkhani, 2013]: 

fY|X(y | x) = c[FX(x), FY(y)] . fY(y)  (4) 

where c is the copula probability density function (PDF) and fY(y) is the heat wave intensity 

marginal distribution. Once I choose a conditional PDF from Eq. 3, I calculate the probability of 

intensity (Y) exceeding a particular threshold (y) from the area under the curve, delineated by: 
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𝑓𝑌|𝑋(𝑌 > 𝑦 | 𝑥). I apply this technique to calculate 𝑓𝑌|𝑋(𝑦 | 𝑥) for different values of x (e.g., 

duration=5 days).  

 

Data 

The proposed methodology is generalized and can be applied to different locations. Here, I 

used daily average temperatures for Atlanta (33.7490° N, 84.3880° W), Chicago (41.8781° N, 

87.6298° W), Denver (39.7392° N, 104.9903° W), Houston (29.7604° N, 95.3698° W), Los 

Angeles (34.0522° N, 118.2437° W), and Phoenix (33.4484° N, 112.0740° W) from the Climate 

Prediction Center (CPC) global air temperature dataset provided by NOAA/OAR/ESRL PSD, 

Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/). This dataset includes near surface air 

temperature with a 0.5 degree spatial resolution and daily temporal resolution. I interpret 

observed temperature data from the grid encompassing each city to be representative of that 

particular city. 

For attribution analysis, I use the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

historical and natural-only historical simulations from 1850-2005 to quantify the impact of 

anthropogenic climate change on daily average temperature values [Taylor et al., 2012]. CMIP5 

is an ensemble of climate model experiments intended to improve my understanding of my 

pre-industrial, historical, and projected climate [Taylor et al., 2009/2011]; the spatial resolution 

of the models used in my study are listed in Table S1. The historical experiment imposes 

conditions – such as anthropogenic and natural trends and variability – that reflect what has 

been seen in the observations, including changes in atmosphere due to human and volcanic 

emissions, solar forcing, aerosols, and human land use [Taylor et al., 2009/2011]. The natural-

http://www.esrl.noaa.gov/psd/
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only historical simulations capture natural trends and variability without anthropogenic forcing 

[Taylor et al., 2012]. With the climate simulations, I could attribute differences between the 

two simulations to anthropogenic climate change. I show an example application for the city of 

Los Angeles, California (34.0522, -118.2437). 

Results 

Figure 1 shows the heat wave IDF curves for Atlanta, Chicago, Denver, Houston, Los Angeles, 

and Phoenix. Each subplot depicts the joint probabilities for different combinations of heat 

wave duration and heat wave intensity. In addition to providing heat wave risk information, 

HIDF curves can be used for comparing the risk of heat waves in different locations. For 

example, I observe that a six-day heat wave with an average temperature of 38 °C in Chicago 

corresponds to a 2-year event (probability = 0.5), while a similar six-day heat wave with a 2-year 

return period in Phoenix would have a much higher intensity of 47.5 °C. Similar comparisons 

can be made based on the durations or frequency of events in different regions.  Figure 1 

demonstrates the flexibility of the proposed HIDF curves for describing the probability of 

occurrence of different combinations of heat wave duration and intensity. The figure also 

shows different combinations of heat wave duration and intensity that lead to the same return 

period. For example, Figure 1 shows that an 7-day heat wave with an intensity of 47 °C is 

equally likely as a 10-day heat wave with an intensity of 45 °C (here, both are 2.5 year events), 

in Phoenix, AZ.  
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Figure 1 | Heat wave intensity, duration, frequency (HIDF) curves for six major cities across the United States 

(Atlanta, Chicago, Denver, Houston, Los Angeles, and Phoneix.  

 

Figure 2 compares HIDF curves in Los Angeles, CA using the mean of the historical (black) vs 

historical natural-only (red) CMIP5 simulations. Fig. 2 shows differences in the joint probability 

of heat wave duration and intensity between historical and natural-only historical simulations. 
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This figure demonstrates that heat wave events are generally shorter and less intense under 

natural-only forcings (without anthropogenic forcing) in relation to historical conditions. In 

other words, a heat wave with the same intensity and duration under natural-only historical 

conditions has a lower frequency (and probability of occurrence) than a heat wave occurring 

under historical conditions perturbed by anthropogenic emissions. For example, this figure 

shows that an extreme ten-year, ten-day heat wave event would be classified as an intensity of 

31.8 °C under natural-only conditions, while the event would be classified as an intensity of 

32.1 °C under historical conditions. This average difference of 0.3 °C over a period of ten days 

can have significant implications on human health, agriculture, the environment, and the 

electric grid [Mazdiyasni et al., 2017]. Figure S1 portrays the HIDF curves of the individual 

models.  
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Figure 2 | Mean heat wave intensity-duration-frequency (HIDF) curves for historical (including anthropogenic 

forcings) vs natural-only historical simulations from selected CMIP5 models.  

 

Figure 3 displays the difference in heat wave intensity given heat wave duration between 

historical vs natural-only historical conditions, using the mean of the four models. Figure S2 

shows the conditional probability of each individual model. I show that the probability of heat 

wave intensity being greater than 30 °C given a duration of four days is six percent greater 

under historical conditions in comparison to historical natural-only conditions (81% vs 75%). I 

also show that the probability of intensity being greater than 31 °C given a heat wave duration 
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of four days is eight percent greater under historical conditions vs historical natural-only 

conditions (41% vs 33%, respectively). Figure 3 displays that an 8% increase in the likelihood of 

a four-day heat wave (temperature > 30 °C) and a 24% increase in a four-day, more intense 

heat wave (temperature > 31 °C) can be attributed to anthropogenic warming. Figure S3 shows 

similar results for six-day heat waves; anthropogenic warming has increased the likelihood of a 

six-day heat wave (temperature > 30 °C) by 10%, and a six-day heat wave (temperature > 31 °C) 

by 29%. From Figure 3 and S3, I also observed greater increases in the likelihood of longer and 

more intense heat waves in the historical simulations relative to the historical natural-only.  

Therefore, I can conclude that greater increases in the likelihood of extreme (in intensity and 

duration) heat wave events have been driven by anthropogenic warming.  
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Figure 3 | Comparison between historical (including anthropogenic forcings) vs natural-only historical 

parametric conditional probability density functions (PDFs) using the mean of CMIP5 simulations for heat wave 

intensity given heat wave duration equal to four days.  

 

Discussion and Conclusion 

Global warming is causing an increase in the frequency and severity of heat wave events, which 

increases the importance of using a robust model in understanding heat waves and quantifying 

heat wave properties. I propose a multivariate approach to construct heat wave intensity, 

duration, frequency (HIDF) curves, which allows for the frequency (risk) analysis of extreme 

heat events, while concurrently accounting for both the intensity and duration of heat waves. 

Since these heat wave features are interdependent, it is important to model the relationship in 

a manner that avoids biases in the frequency analyses. The main objective of this paper is to 

present the HIDF methodology and show different types of applications including describing 
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heat waves features and attribution analysis. An attribution analysis using the proposed HIDF 

curves shows that the anthropogenic emissions have increased the likelihood of a four-day heat 

wave (temperature > 31 °C) by 21%. I further show a six-day heat wave (temperature > 31 °C) 

has a 26% higher likelihood under the anthropogenic emission scenario relative to the natural-

only scenario. The proposed method is general and can be used for similar analysis in different 

locations and different combinations for heat wave durations and intensities.  

The HIDF curve can potentially be used by for design of infrastructure systems such as electric 

grids and power plants. An electric grid, for example, is designed for peak demand and it is 

important to consider both duration and intensity of heat wave events simultaneously; similar 

to the use of precipitation IDF curves for highway culvert design. Although analyzing heat waves 

with univariate indices have provided useful information in the past, my proposed metric can 

change how I view the extremeness of a heat wave event moving forward.  

 

  



222 
 

Appendix 4 

Table S1: List of climate models, their spatial resolutions, and Modeling Centers. 
 

Modeling Center Institute ID Model Name Spatial resolution 

(lat, lon) 

National Center for 

Atmospheric Research 

NCAR CCSM4  0.9424, 1.25 

Commonwealth Scientific 

and Industrial Research 

Organization in 

collaboration with 

Queensland Climate 

Change Centre of 

Excellence 

CSIRO-QCCCE CSIRO-Mk3.6.0 1.8653, 1.875 

Japan Agency for Marine-

Earth Science and 

Technology, Atmosphere 

and Ocean Research 

Institute (The University of 

Tokyo), and National 

Institute for Environmental 

Studies 

MIROC MIROC-ESM 

 

2.7906, 2.8125 

Norwegian Climate Centre NCC NorESM1-M 1.8947, 2.5 
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Figure S1: Heat wave intensity-duration-frequency (HIDF) curves for historical (including anthropogenic forcings) vs natural-
only historical simulations from selected CMIP5 models.  
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Figure S2: Comparison between historical (including anthropogenic forcings) vs natural-only historical parametric conditional 
probability density functions (PDFs) for heat wave intensity given heat wave duration equal to four days. 
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Figure S3: Comparison between historical (including anthropogenic forcings) vs natural-only historical parametric conditional 
probability density functions (PDFs) using the mean of CMIP5 simulations for heat wave intensity given heat wave duration 
equal to six days.  
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Summary and Conclusion 

Climate change and variability are likely to affect physical and hydrometeorological conditions 

and to interact with and possibly exacerbate ongoing environmental change. Numerous studies 

have demonstrated that climate and weather extremes are sensitive to climate change and 

thus, climate assessment activities are fundamental for understanding climate change and its 

impacts. Thus far, a myriad of indices have been developed mainly to investigate trends and 

changes to individual climate variables.  

Current extremes detection indices can be categorized into three types: (a) indices based on 

daily, monthly, and/or annual maxima or minima of a certain climate variable (i.e. temperature 

or precipitation amounts); (b) indices based on duration of an extreme condition (i.e. number 

of consecutive days in a year above a relative extreme threshold, such as the long-term 90th 

percentile); and (c) indices based on duration and/or frequency of an absolute extreme 

exceedance threshold (i.e. annual number of frost days (minimum temperature below 0 °C) or 

number of consecutive frost days in a year). While all three types of indicators are important 

and informative, they do not provide any information on compound and inter-related 

(concurrent, simultaneous or joint) extremes such as droughts and heatwaves. As such, one 

cannot investigate historical and projected changes in compound extremes using current 

climate indicators. The main reason is that current indicators are univariate and do not account 

for interdependence between multiple climate variables (e.g., temperature and precipitation). 

The combination or sequence of climate extreme events may cause a significant impact on the 

ecosystem and society though individual events involved may not be severe themselves.  
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The notion of compound extremes  (also referred to as simultaneous extremes, or concurrent 

extremes) as defined by the IPCC report is [Field et al., 2012]: “(1) two or more extreme events 

occurring simultaneously or successively; (2) combinations of extreme events with underlying 

conditions that amplify the impact of the events; (3) combinations of events that are not 

themselves extremes but lead to an extreme event or impact when combined.” Extreme events 

that contribute to compound extremes can be of the same type (clustered multiple events such 

as simultaneous flooding over a large spatial scale) or different types such as droughts and 

heatwaves. Understanding the risk these compound extremes present and estimating their 

occurrence in the future requires rigorous methods due to the small number of samples of 

extremes. This dissertation addresses these research gaps and outlines methods and indicators 

to investigate and model compound extremes.  

One method to analyze changes in concurrent climatic events is the empirical counting method. 

The first chapter of this dissertation focuses on the changes in concurrences of heatwaves and 

meteorological droughts from 1960 – 2010. Despite an apparent hiatus in rising temperature 

and no significant trend in droughts, the results show a substantial increase in concurrent 

droughts and heatwaves across most parts of the United States, and a statistically significant 

shift in the distribution of concurrent extremes. While commonly used trend analysis methods 

do not show any trend in concurrent droughts and heatwaves, a unique statistical approach 

discussed in this study exhibits a statistically significant change in the distribution of the data.   

The analysis in Chapter 2a investigates the change in the probability of an extreme event (i.e. 

mortality) under the condition of another extreme event (heat waves) using a parametric 

apporach. In this chapter, I show the changes in summer temperatures, the frequency, severity 
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and duration of heatwaves, and heat-related mortality in India between 1960 and 2009, using 

data from the India Meteorological Department. Mean temperatures across India have risen by 

more than 0.5 °C over this period, with statistically significant increases in heatwaves. Using a 

novel probabilistic model, I show that the increase in summer mean temperatures in India over 

this period corresponds to a 146% increase in the probability of heat-related mortality events of 

more than 100 people. In turn, my results suggest that future climate warming will lead to 

substantial increases in heat-related mortality, particularly in developing, low-latitude countries 

such as India where heatwaves will become more frequent and populations are especially 

vulnerable to these extreme temperatures. My findings indicate that even moderate increases 

in mean temperatures may cause great increases in heat-related mortality, and support efforts 

of governments and international organizations to build-up the resilience of these vulnerable 

regions to more and more severe heatwaves. 

Chapter 2b of this dissertation portrays the probability of a climatic event (precipitation) given 

certain climatic condition (pressure) using an empirical approach. This chapter shows impacts 

of tropopause level pressure in the Northeastern Pacific Ocean on California precipitation using 

an empirical conditional probability methodology. Sea surface temperatures and 

teleconnection patterns such as El Nino/La Nina are considered the main culprits behind major 

California droughts. However, the underlying relationship between sea surface temperatures 

(SSTs) and precipitation anomalies is relatively weak. Here I show that tropopause level 

pressure in a region in the northeastern Pacific Ocean (dubbed the PARS-NEP region) plays a 

major role in whether California will experience a wet or dry year and often dominates the role 

of SST-based teleconnections. My results indicate that pressure in the PARS-NEP region 
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Granger-Causes precipitation in California during the wet season. I show that when pressure in 

the PARS-NEP region is in the lower (upper) tertile, 85% of wet seasons across California have a 

positive (negative) precipitation anomaly. The observed relationship between PARS-NEP and 

California precipitation is stronger than all the commonly used SST-based climatic indictors 

frequently used for understanding causes of droughts.  

Chapter 3 demonstrates how multiple co-occurring drivers (i.e. sea surface temperatures) have 

a cascading impact on a climatic phenomenon (i.e. precipitation). I use an exhaustive, bottom-

up, brute-force search algorithm for discovering predictive relationships between specific 

ocean-land regions. Based on 32 years of reanalysis data (1983-2015), I discover linkages that 

are distinct from known teleconnections, but which better predict precipitation with 4-12 

months lead-time. I further evaluate my empirical approach by reversing the analysis, 

demonstrating that the predictive skill I observe is not mere coincidence; the results have 

strong spatial coherence. The teleconnections revealed here may have immediate practical 

value in anticipating seasonal weather events, and also help to focus future research on the 

physical mechanisms underlying the planet’s strongest and most important teleconnections.  

Finally, I use a multivariate approach to analyze the return period (frequency or risk) of a 

climatic event with multiple dimensions (i.e. heat waves), simultaneously. Heat waves can be 

quantified using multiple descriptors, including intensity, duration, frequency. However, most 

studies investigate one feature at a time using univariate analyses and consequentially lack a 

comprehensive measure to compare all heat wave characteristics simultaneously. I propose a 

multivariate approach to construct heat wave intensity, duration, frequency (HIDF) curves, 

which enables the concurrent analysis of all heat wave properties. As heat wave features (e.g., 
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duration and intensity) are interdependent, ignoring the relationship between heat wave 

features can lead to substantial biases in frequency (risk) analyses. Here I show how HIDF 

curves can be used to describe the occurrence probability of heat waves with different duration 

and severity. I then show how HIDF curves can be used for attribution analysis of heat waves to 

anthropogenic warming through comparing historical climate model simulations (including 

anthropogenic emissions) with natural-only historical simulations. For example, in the city of 

Los Angeles, the HIDF shows that the likelihood of a four-day heat wave (temperature > 31 °C) 

has increased by 21% because of anthropogenic emissions. I also show that a six-day heat wave 

(temperature > 31 °C) has a 26% higher likelihood under the anthropogenic emission scenario 

relative to the natural-only scenario. The proposed approach can be applied in various locations 

to quantitatively describe the likelihood of heatwaves with different intensities and durations. 
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