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 In recent years, neural networks have contributed significantly to the advancement of 

machine learning, achieving state-of-the-art over a broad range of challenging tasks. The world 

right now is seeing a global artificial intelligence (AI) revolution involving academic and 

industry alike: tech giants like Google and Microsoft are applying machine learning in their 

commercial products, while professors from every discipline- computer science, engineering, 

mathematics, biology, transportation - scramble to apply these methods to advance their 

research. Stock analysts are using AI to analyze and predict stock prices, medical experts to 

diagnose and develop new drugs, while game developers create sophisticated, human-like 

behavior in characters. At the national level, all sponsored research agencies, both NSF and 

DARPA have identified AI as one of the major national research directions.  

Our research targets the advancement of next-generation AI from three vertical aspects 

along the computing hierarchy: At the algorithm level, we propose the use of application-
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specific, bio-inspired neural networks for information processing. We develop models of 

special signal-processing neurons that are compatible with today’s machine learning 

algorithms; and optimize neural architectures containing these neurons to understand their role 

in creating an efficient network. At the hardware level, we address the memory bottleneck in 

AI accelerators. We propose two schemes to overcome limitations caused by variations in 

critical paths and fabrication processes. At the single device level, we recognize the significant 

performance gain from devices that compose AI computation via physical mechanisms. We 

propose two spintronic structures capable of computing convolutions that achieve orders of 

magnitude higher efficiency than state-of-the-art technology. These innovations provide the 

foundation for higher performance and more efficient AI at different time scales throughout 

the coming decades: in the short term, algorithms that can be implemented immediately; in the 

mid-term, hardware designs that can be realized in a few years; and in the long term, new 

device technologies to be adopted as the fabrics of AI computation. 
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CHAPTER 1  

INTRODUCTION                        

In this research, we address the advancement of next-generation AI from three vertical 

perspectives: At the algorithm level, the development of bio-inspired neural networks with 

neurons specialized for information processing; at the hardware level, improved memory 

design for AI accelerators; and at the single device level, spintronic devices that compose AI 

computation via physical mechanisms. This dissertation is organized as follows:  

Chapter 1 gives an overview of the three perspectives. In Sec.1.1, We go over the historical 

development of AI where there were periods of booming interest and as well as times when 

there was lack of resources in the academia, industry, as well as the government. We review 

the historical reasons and events that lead to widespread AI enthusiasm, the challenges that 

lead to its temporary downfalls, and how prior developments affected AI as it is today. In 

Sec.1.2, We discuss the hardware accelerators for efficient, high-performance AI computation, 

from CPUs and GPUs to ASICs and memristive crossbars. In Sec.1.3, we review the history of 

spin-based mechanisms, recent discoveries, and their applications.    

Chapter 2 presents our algorithmic approach of adopting bio-inspired signal-processing 

neurons in machine learning. In Section 2.1, we discuss our motivation and show examples of 

neuronal behavior that are critical to information processing in the human brain. In Sec.2.2, we 

present a modelling algorithm that is used to create models of the the signal-processing neurons. 

To understand the role of these neurons, we propose three bio-inspired neural architecture 

search (NAS) algorithms in Sec.2.3, e.g. genetic mutation, neural growth, and neural pruning. 

These NAS algorithms allow us to study optimized network architectures containing the signal-

processing neurons as the amount of neurons in the network stays constant, increases, and 

decreases. Sec.2.4 describes the setup for our experiments, which include data perparation, the 

parameters for the NAS, and the parameters for training. Sec.2.5 presents analysis results on 
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the optimized network architectures, revealing general structures and the organization of the 

neurons. These results are used to create a new efficient and high-performance network.   

 Chapter 3 presents our approach for improving memory performance in AI accelerators. 

Section 3.1 discusses the importance of memory in AI accelerators and why they are the 

bottleneck in computation performance. In Section 3.2, we give an introduction on memory 

architecture, design, and challenges, with focus on sources of variability that limit memory 

performance. We then propose two approaches to overcome variation. Section 3.3 describes 

the 2D calibration scheme, in which an improved calibration grid compensate for variations 

across an array. Section 3.4 describes the dual dataline sensing scheme, in which the circuit’s 

tolerance of variability is enhanced though a higher sensing margin. In both schemes, we show 

the high-level desrciption, circuit implementation, and the simulated performance.  

 In chapter 4, we present our spintronic device capable of high-efficiency signal processing. 

Sec.4.1 outlines our motivation, which discusses the advantages of spintronics over electronics 

such as the flexibility in computing mechanism and nonvolatility. Sec.4.2 give a background 

on the problem that our device aims to solve (e.g. convolution) and the spin mechanisms that 

are used. In Section 4.3 and 4.4, we present two implementations of the spintronic signal 

processor, each based on a combination of various spin mechanisms. In both designs, we show 

the device structure, the theoretical performance, and the experiment or simulation results.  

Finally, we wrap up this dissertation with a conclusion and a discussion of future works in 

the direction of the presented research in Chapter 5. We also present our perspectives towards 

the future of AI.  

 

1.1 History of Neural Networks 
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The large number of recent breakthroughs make artificial neural networks seem like a recent 

discovery, yet its development actually dates far back with its fair share of ups and downs. The 

earliest artificial neurons can be traced back to 1943 when Walter Pitts and Warren McCulloch, 

a neuroscientist and a logician, teamed up to create a mathematical model of a neuron in the 

human nervous system [1]. This model, shown in Fig.1.1.1a, captured the operation of the 

neuron in two parts: (1) The integration of input signals coming from axons, weighted by the 

strength of synapses as the potential of the neuron body (Soma); (2) The response of the neuron 

potential, goingwhich goes through a rapid depolarization when it reaches a threshold. The 

McCulloch-Pitts neuron model can thus be described as a process with inputs 𝑥𝑖, each weighted 

by their respective weights 𝑤𝑖, integrated as the neuron potential 𝑚 = ∑ 𝑥𝑖𝑤𝑖; then passing the 

potential through a binary threshold function as the neuron’s output  (e.g. 𝑦 = 1 𝑖𝑓 𝑚 >

𝑣𝑡ℎ  𝑒𝑙𝑠𝑒 − 1 ). The authors further showed that the model is capable of modelling universal 

 

Fig.1.1.1 Biological neuron and the McCulloch-Pitts model. (a) In a neuron, the potential of the 

soma is the sum of the signals from its input axons weighted by synapses. When this potential 

exceeds a threshold, a pulse is sent to the output axon. This procedure is modelled in the 

McCulloch-Pitts neuron via integration of weighted inputs and a binary threshold function. (b) 

Weight and threshold design to implement the AND, OR, and NOT logical functions with a  

McCulloch-Pitts neuron. 
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logic functions AND, OR, and NOT by designing the neurons weights and threshold, as shown 

in Fig.1.1.1b. For example, consider binary imputs and outpus of ±1. A 3-input neuron with 

weights of all +1 and a firing threshold of −3 would output +1 if any input is +1, and only 

−1 if all its inputs are −1. This neuron thus implements a 3-input OR function. 

Later, Frank Rosenblatt combined the McCulloch-Pitts neuron with biological learning rules 

discovered to develop the perceptron [2]. By applying the learning rule  discovered by 

neuroscientist Donald Hebb: “Neurons that fire together, wire together” [3], the perceptron 

promised learning capabilities of achieving binary classification on its own. Rosenblatt 

optimistically predicted that the perceptron “may eventually be able to learn, make decisions, 

and translate languages”. Soon afterward, Alexey Grigoryevich Ivakhnenko and Valentin 

Grigorʹevich Lapa proposed a hierarchical representation now considered the first multi-layer 

network [4].  

Optimism in the bright future of AI led to a surge in funding, research interest, and, 

unfortunately, inflated promises on its abilities. When many of these claims failed to 

materialize, concerns soon arose across both funding agencies and the academia. The US 

government, initially interested in its ability to automatically translate Russian documents, 

became concerned about the lack of progress in automatic machine translation despite millions 

of investments. In 1964, the national research council (NRC) formed the automatic language 

processing advisory committee (ALPAC) to look into this issue; and concluded that machine 

translation was more expensive, less accurate, and slower than human translation [5]. Similarly, 

in the UK, Professor James Lighthill, tasked by the British Science Research Council to 

evaluate the state of AI research, concluded that “In no part of the field have the discoveries 

made so far produced the major impact that was then promised” [6]. These events led to a wide 

termination of funding support for AI. Academically, Marvin Minsky and Seymour Papert 

outlined the theoretical limitations of perceptrons in their book “Perceptrons”, resulting in a 



5 
 

sharp drop in AI interest [7]. The lack of funding and academic interest led to a period now 

known as the first AI winter [8]. 

Research in AI revived in the mid-80s with Paul Werbos's backpropagation algorithm [9], 

which enabled practical, efficient training of multi-layered networks by computing error 

gradients through the chain rule and modifying the weights at each node accordingly. This 

renewed interest led to new discoveries that compose the core of many of today’s AI algorithms. 

In 1979, Kunihiko Fukushima developed the Neocognitron based on the structure of the human 

primary visual cortex [10]. It demonstrated the ability to recognize visual patterns as the first 

convolutional neural network architecture. The Hopfield Network [11] developed by John 

Hopfield in 1982, made recurrent structures popular and showed promise as dynamic content-

addressable memory. Q-learning presented by Christopher Watkins [12] laid the groundwork 

for reinforcement learning via the introduction of states, actions, and delayed rewards.  

These new developments brought about the commercialization of a form of AI called the 

Expert system. The Expert system aims to emulate the decision-making process of a human 

expert to solve complex problems and make sequential decisions by reasoning through a 

knowledge database. In the early-mid 1980s, Expert systems such as XCON showed enormous 

commercial success and were adopted by companies around the world. Billions of dollars 

poured into the industry, supporting software companies like Techknoeldge, Intellicorp, and 

hardware companies such as Symbolics and LISP (List-Processing) machines.   

However, Expert systems proved to be too expensive to maintain and update. They were 

rigid and fragile, and competition from general purpose systems soon brought down their 

market. Workstations from Sun Microsystems provided alternatives just as powerful but much 

more flexible, while personal computers from Apple and IBM provided a simpler and (through 

development) architecture that achieved similar results. With the market share of Expert 
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systems taken away, their demand collapsed as quickly as it rose. By the early 1990s, nearly all 

commercial Expert system companies had failed.  

This commercial failure resulted in a second blow to the development of AI. In this second 

AI winter, many researchers deliberately avoided the term AI, using alternate terms like 

informatics, intelligent systems, and knowledge-based systems. Some believed that their works 

were fundamentally different from what was previously called AI, while some simply didn’t 

want the reputation that came with the name. Nevertheless, the data-driven approach of Expert 

systems significantly influenced AI algorithms built today.  

The recent revival of AI in the 2000s has much to do with the exponential increase in 

computing power from the scaling of silicon chips. Initially, brute-force approaches 

demonstrated superhuman performance across various tasks. Deep Blue, with the ability to 

compute 200 Million moves per second, became the first computer system to beat the world 

chess champion in 1997 [13]. Data became a driving force of AI with Yann LeCunn’s release 

of the MNIST handwritten digits database in 1998 [14]. MNIST provided a benchmark for 

evaluating the performance of AI algorithms and remains widely used even today. The 

Imagenet database developed by Fei Fei Li [15] and its associated ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) is considered by many the catalyst for the AI boom. Since 

2012, neural networks dominated the challenge with the Alexnet victory, significantly 

outperforming other competitors by over 10 percentage points [16]. Through data, AI systems 

began solving challenges that brute force could not: in 2016, Google's AlphaGo, a neural 

network trained using reinforcement learning, becomes the first program to beat an 

unhandicapped professional human player in Go [17]. This feat was previously thought 

impossible for another 30 years as a brute force approach would have to evaluate more 

possibilities than the number of atoms in the universe (1082).  
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Today, our progress has far exceeded the wildest claims that brought about the 1st AI winter. 

Discussions surrounding the abilities of AI have shifted from questioning whether it will be 

useful to whether we restrict its abilities. Nevertheless,  as we look towards the future, AI aims 

to be involved in everyday life; from tasks as small as recommending new songs to complex 

medical problems that trouble even top experts with decades of experience.  

 

1.2 Neural Network Hardware Accelerators 

The increasing demand for AI has led to the development of specialized accelerator 

hardware. Traditional central processing units (CPU) that were optimized for flexibility rather 

than parallelization did not perform well on AI tasks. On the other hand, graphic processing 

units (GPUs) have been able to massively parallelize AI tasks as they were built to process 

similar tensor (multi-dimensional vector) operations. Empirical studies show that GPUs 

provide over 30x speedup over state-of-the-art CPUs (Fig.1.2.1), making them the top choice 

for AI tasks [18]. In addition, GPU producers have also committed to developing specialized 

toolkits and modifying tensor cores to further accelerate AI computation [19]. These packages 

have been adopted by the majority of mainstream AI design platforms [20] [21].  

 

Fig.1.2.1 Speedup of various AI platforms on a GPU. Figure adapted from Nvidia’s Tesla P100 

White Paper [17]. 
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Compared to GPUs, application-specific integrated circuits (ASICs) can further boost the 

efficiency of AI computation. These accelerators discard generalized capabilities of GPUs and 

optimize their data flow, data format, and memory bandwidth purely for AI-related tensor 

processing. Many data centers today have adopted this approach with chips such as the Google 

TPU [22] and Baidu Kunlun processor [23] being developed; while Amazon and Facebook 

reportedly in the process of designing their own ASICs. Taking this approach further, designs 

for reduced bit counts [24]–[27], convolutional networks [28], [29], stochastic networks [30], 

generative adversarial networks [31], and recurrent networks [32] have also been developed. 

With the recent progress in new memory technologies, researchers have also targeted the 

physical implementation of matrix multiplication using memory devices [33]–[37]. This 

approach, shown in Fig.1.2.2, composes a crossbar array of memory units with wires running 

vertically on top of the array and horizontally beneath. When voltages 𝑉1 … 𝑉𝑖 are placed on 

the top wires, the currents 𝐼1 … 𝐼𝑗  flowing through the bottom wires can be computed via Ohm’s 

law and Kirchhoff’s current law, as the sum of 𝑉𝑘 times the conductance 𝐺𝑗𝑘 = 1/𝑅𝑗𝑘 of each 

 

Fig.1.2.2 Physical implementation of matrix multiplication via a crossbar of memory devices. 

Voltages 𝑉1. . 𝑉𝑖  are placed on vertical wires connected to the top electrode of memristors with 

resistances 𝑅11 … 𝑅1𝑖 . From the Ohm’s law, each device has a current of  𝑉𝑘/𝑅1𝑘 . The bottom 

horizontal wire sums the current flowing through the memristors upon it, e.g., 𝐼1 = ∑ 𝑉𝑘/𝑅1𝑘𝑖 . The 

full array entire array can be represented in matrix form as 𝐼 = 𝑅−1𝑉 = 𝐺𝑉. 
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memory unit, e.g. 𝐼𝑗 = ∑ 𝑉𝑘𝐺𝑗𝑘𝑖 . Considering the entire array, the bottom wire currents can be 

expressed as in matrix form as 𝐼 = 𝐺𝑉. This architecture allows efficient matrix multiplication 

in a single cycle and significantly reduces data access across memory hierarchies.  

In the advancement of AI hardware, the effect of the memory bottleneck on computing 

performance has become increasingly evident. As much as designs attempt to avoid the 

memory bottleneck (also known as the Von-Neumann Bottleneck), powerful algorithms and 

networks continue to demand more memory. Today’s networks are often orders of magnitude 

larger than those used a decade ago [38]. Hundreds of megabytes are needed for weight storage 

alone, and an order more for computing gradients and intermediate values during training. As 

a result, addressing memory limitations is a critical issue in further advancing AI. 

 

1.3 Spintronic Technology 

Spintronics is an emerging research field that relates to the study of the electron spin and its 

associated magnetic moment. The theoretical foundation of spintronics was developed by 

Wolfgang Pauli via Pauli matrices and quantum mechanics in the 1920s [39], which also 

described its relation to the quantized electron spin. Subsequently, a variety of spin-related 

theories have been proposed, including that of the Landau–Lifshitz–Gilbert dynamics [40] in 

1935 and the prediction of the spin Hall effect in 1971 [41].  

Spintronic applications took a huge step forward with the discovery of magnetoresistance 

effects in the 80s from tunneling experiments. Meservey and Tedrow’s experiments on a 

ferromagnet/superconductor stack [42] and Jullière’s experiments on Fe/Ge/Co stack [43]  

discovered the conservation of spin and the tunneling magnetoresistance effect  (TMR). With 

the development of thin-film fabrication tools, Peter Grünberg and Albert Fert showed the giant 

magnetoresistance (GMR) in 1988 [44]. Since then, there has been an explosion in the 

discovery of spintronic mechanisms, including the spin-transfer torque effect (STT) [45], [46], 
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Spin-Orbit Coupling (SOC) effects (voltage-controlled magnetic anisotropy effect (VCMA) 

[47]–[49] and spin-orbit torque (SOT) [50]–[52]); spin textures (skyrmions [53]–[55], spin 

fluid [56]–[58], spin glass [59]–[61], and magnetic domains[62]–[64]); spin dynamics 

(Dzyaloshinskii–Moriya interaction [65]–[67], spin waves [68]–[70]); spin-thermal effects 

(Spin Seebeck [71]–[73]); and spin-optical effects (Magneto-optical Kerr [74]–[76]).  

Today, spintronics is widely used in data storage and manipulation: spins provide an 

efficient, compact way of storing nonvolatile data in its orientation; and GMR/TMR-based 

sensors read out the magnetization as electrical signals. This technology brought about the 

development of hard drives and a drastic increase in the data storage density. In the 2000s, high 

tunneling magnetoresistance (TMR) magnetic tunneling junctions (MTJs) [77]–[79] have also 

received great interest as an integrable, nonvolatile random access memory element with high 

speed and endurance. Switching mechanisms have evolved from using magnetic fields to spin-

based mechanisms (Fig.1.3.1), with STT-MRAM currently being developed by major 

foundries worldwide [80]–[82], and VCMA [83]–[85], SOT [86], [87] as the next-generation 

memory. Current research on MTJs focuses on two aspects: (1) high TMR structures with 

improved readability through enhanced interface characteristics and stronger polarization; and 

(2) energy efficient switching through enhancement of spin mechanisms.  

The abundance of spin mechanisms has also led to proposals for unconventional, nonbinary 

computing schemes (Fig.1.3.2). For example, coupling between magnetic elements through 

dipolar interaction, the Dzyaloshinskii-Moriya interaction, as well as spin waves has been 

proposed for optimization by utilizing the energy minimization process of the interacting bits 

[88]–[93]. Nonlinear interactions between spintronic elements have been used for complex 

mapping reservoirs built upon skyrmions, MTJs, and oscillators [94]–[98]; for composing 
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filter-like functions using spin-wave sources, lenses, and mirrors [99], [100]. Neuromorphic 

computing such as physical crossbars and nonlinear activations have been composed using 

 

Fig.1.3.1 MRAM operation mechanisms: (a) STT Switching. Electrons passing through the free 

layer transfer their spin angular momentum to the moments of the magnetic free layer, thereby 

switching its state. (b) VCMA switching. A voltage placed across the MTJ modifies the anisotropy 

of the magnetic free layer, leading to a precessional (damped oscillation) motion of the free layer 

magnetization. (c) SOT switching. The MTJ is placed upon a bus with high spin-orbit coupling. As 

current passes through the bus, electrons with different spin orientations accumulate on the sides of 

the material, which then transfer their spin moment to the free layer to change its state. (d) 

Advantages of magnetic memory: scalable, low energy, sub-ns switching, and high endurance with 

no degradation over 1011 cycles. Subfigures adapted from [83]. 
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domains and MTJs [101]–[105]; skyrmions have been proposed to model neurotransmitters 

[106]; finally, spin-stochastics have been used in probabilistic computing [107], [108], 

thermodynamic computing [109], and many more. However, the majority of these methods 

were unable to provide a definite advantage over existing CMOS implementations, and many 

were difficult to realize at a scaled industrial level. Our research aims to address this gap.  

 

 

  

 

Fig.1.3.2 Illustration of spin-based nonvonventional computing methods. Energy minimization 

schemes compose a system of coupled spin elements so that the lowest energy state represents the 

solution. Complex mapping uses spin elements to map inputs to different signals, such as reserviors or 

high-dimensional computing. Neuromorphic devices such as synapses have been built upon spin 

elements, and likewise, Spin-based stochastics have utilized fluctuations in device states for 

computing. 
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CHAPTER 2 

SIGNAL-PROCESSING NEURAL NETWORKS       

  In this chapter, we present our work on utilizing special signal processing neurons to 

improve neural network performance. The chapter is outlined as follows: we first review 

different neuronal behavior and selected signal processing neurons to model. We then use 

neural architecture search (NAS) to optimize network architectures containing the neurons, and 

analyze the optimized architectures to extract characteristics of the networks. These results are 

then used to develop the signal-processing neural network.  

Section 2.1 describes our motivation and outlines how neurons with specialized functions 

play a crucial role in information processing within the human brain. Chapter 2.2 reviews the 

functions two neurons: that of the max neuron in the visual cortex (Sec.2.2a) and the 

coincidence neuron in the audio cortex (Sec.2.2b), along with how they associate with neural 

network design today. Then, in Sec.2.2c, we detail the step-by-step process to create the 

approximate piecewise-linear model of these two neurons.  

With the models, we then use neural architecture search (NAS) to find high-performing 

architectures. In Sec. 2.3, We describe the three NAS algorithms used in this study, based upon 

three biological pheonmena: neural growth, neural pruining, and genetic mutation. These three 

NAS schemes also correspond to how the network architure changes as the amount of neurons 

in the network stays constant, increases, or decreases. Sec.2.4 then details the setup of the 

experiments, e.g., the datasets we use, how they are preprocessed, and parameters of the search 

and training process. Analysis results of the optimized architectures is presneted in Sec.2.5, in 

which we illustrate how the network structure, amount of connections, and types of neurons 

change throughout the network. The analysis results are then used to design a compact, high-

performance signal processing neural network. 
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2.1 Motivation 

As described in Chapter 1, advancements in artificial neural networks have often taken 

inspiration from biology. For example, the McCulloch-Pitts neuron arose from modeling of the 

neuron’s integrate and fire behavior; convolutional network structures from the visual cortex; 

and network compression methods from neural pruning.  

In the past decade, a large variety of neuronal behavior has been discovered. Neurons have 

been shown to differ in signal transmission (bipolar, unipolar, and multi-polar), functionality 

(sensory, motor, and interneuron), structures (connection shapes and density), as well as the 

type of neurotransmitter and neuromodulators involved [110]. Specialized neurons form crucial 

functions in information processing systems that are shared throughout organisms rather than 

generated through learning. For example, grid cells in the entorhinal cortex play a major role 

in composing the brain’s cognitive spatial map [111]–[114]. They operate through the phase 

precession mechanism, in which the firing of a neuron is timed in relation to the phase of the 

neural oscillation in the surrounding cells [115]. At the behavioral level, these neurons fire 

when their host occupies a spatial grid in the environment (Fig.2.2.1). Grid cells have been 

 

Fig.2.1.1 Firing activity of grid cells. Grid cells fire regularly when its host organism occupies 

points on a spatial grid. Their firing activity contribute towards the spatial cognitive map in the 

brain by providing information about location and distance.  
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discovered across a variety of higher cognitive mammals including mice, monkeys, and 

humans.  

Exploring and utilizing neuronal functions provide a promising path to boost machine 

learning performance, and could eventually lead to an improved understanding of the biological 

information processing flow. However, today’s artificial neural networks (ANNs) have yet to 

take inspiration from these discoveries. Neuronal responses, often characterized by a neuron 

model’s activation function, have settled to a few nonlinear functions after a long process of 

numerical and empirical exploration (Fig.2.2.2). From the binary-thresholding function used 

in the McCulloch-Pitts neuron, activation functions first shifted to continuous functions like 

sigmoid and tanh that enable backpropagation. Piecewise linear units later took the center stage 

due to their non-saturating gradient and low computation complexity. Rectified Linear Units 

(ReLU) celebrated success in image recognition [116]–[118], while those with a nonzero 

negative slope (Parameterized ReLU (PReLU), Exponential ReLU (ELU), LeakyReLU [119], 

[120]) have been used in image generation. c  

2.2 Neuron Models 

 

Fig.2.1.2 Common activation functions used in today’s neural networks. (Left) the family of 

piecewise linear units: Rectified Linear Units (ReLU) rectifying negative signals to zero, leaky 

ReLU has a nonzero slope in the negative region, and Exponential Linear Units (ELU) has an 

exponential slope in the negative region. (Right) the family of step-like activation functions take 

forms of the binary step, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, and 𝑡𝑎𝑛ℎ. 
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2.2a Max Neurons 

Signal processing in the visual cortex is mainly composed of a hierarchical buildup of 

receptive fields, in which larger receptive fields of latter layers can be modeled by a linear 

combination of the smaller receptive fields in earlier layers. However, in some of the higher 

regions of the visual cortex, neuronal functions that cannot be modeled by linear combinations 

have also been discovered. One such function is the max function (Fig.2.2.1), in which a 

neuron’s output is determined by the input with the highest level of activity [122], [123]. The 

max function is able to identify the dominant signal in a large number of inputs, and its 

commutative property results in a response that is invariant to spatial shifts within its receptive 

field, and reduce the impact of noise in non-dominant signals [124], [125].  

Since their discovery, the adaptation of the max function has been abundant in image 

processing. Its most successful adaptation is perhaps feature pooling, in which a filter scans 

localized patches and outputs the maximum or average value within the region. Feature pooling 

is often inserted after convolutions to down-sample features and extract abstract, higher-level 

concepts from the applied region. They have demonstrated the same benefits as the max 

 

Fig.2.2.1 The distinct features and behavior of max and coincidence neurons. A max neuron outputs 

the maximum value among its inputs, and fires whenever any of its inputs fire (green box). A 

coincidence neuron detects coincidence in its inputs, and fires only when both inputs are 

simultaneously active (blue box)  
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neurons, e.g., dominant signal identification, invariance to image transformations, and 

robustness to noise. A detailed theoretical discussion on pooling can be found in [126].  

2.2b Coincidence Neurons 

Studies of human auditory processing have shown that temporal and frequency structures 

are crucial to the representation of audio events [127], [128]. In the human auditory system, 

signals picked up by auditory nerve fibers excite cells that detect the coincidence, or 

simultaneous activity, in a group of fibers. Coincidence neurons have extremely low time 

constants and input resistance, giving them the ability to compare timing cues with accuracy 

over 100x of neural firing [129], [130]. They respond maximally when multiple input synapses 

are simultaneously active, and significantly less otherwise (Fig.2.2.1).  

The success of gated networks and attention networks in audio processing is likely 

associated with the coincidence function. In a gated network, a neuron’s output is blocked 

unless its gating signal is high. In other words, its output is high only when both the gating 

signal and its input are high at the same time. This behavior is characteristic of the coincidence 

function. Examples of these networks include Long Short-Term Memories (LSTMs) and gated 

Recurrent Neural Networks (RNNs) [131]–[133].  

2.2c Model Algorithm 

Our first step towards modeling the signal processing neurons is to represent the response 

of the neurons in the form of a truth table. The truth table defines the regions of linearity and 

boundaries where nonlinearity occurs. Here, we consider a neuron with two inputs whose 

activies are either firing or silent. The max neuron’s response is the maximum value among its 

input synapses. In other words, its output fires whenever any of its inputs fire. On the other 

hand, the coincidence neurons only fires when all their inputs fire at the same time. The table 
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is shown in Fig.2.2.2a. Interestingly, the truth tables of the two neurons match that of logical 

functions “AND” and “OR”.  

After composing the truth tables, numerical ranges are assigned to define the signals that 

are considered as firing and silent (Fig.2.2.2b). Here, we follow the conventional definition of 

firing as a signal exceeding a threshold of 0 and silent otherwise.  

𝑥 𝑓𝑖𝑟𝑒𝑠 ↔ 𝑥 > 0;  𝑥 𝑠𝑖𝑙𝑒𝑛𝑡 ↔ 𝑥 ≤ 0    

𝑦 𝑓𝑖𝑟𝑒𝑠 ↔ 𝑦 > 0;  𝑦 𝑠𝑖𝑙𝑒𝑛𝑡 ↔ 𝑦 = 0      

We then define the input-output relationship within each entry of the truth table. Taking 

inspiration from piecewise linear functions, we set the 𝑦 to be linear to 𝑥1 with a unit slope 

when the output is 𝑓𝑖𝑟𝑖𝑛𝑔 and 0 otherwise: 

𝑦 = |𝑥1| if 𝑦 𝑖𝑠 𝑓𝑖𝑟𝑖𝑛𝑔  

𝑦 = 0 if 𝑦 𝑖𝑠 𝑠𝑖𝑙𝑒𝑛𝑡. 

 

Fig.2.2.2 Modelling algorithm of the specialized neurons. The models process cosists of  4 steps: (a) 

creating the truth table of the neuron’s response behavior, (b) assigning the numerical boundaries to 

regions based on the the truth table, (c) assigning numerical values to each region, and (d) smoothing 

boundaries with the 𝑡𝑎𝑛ℎ function. 
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The corresponding gradients are:  

|𝜕𝑦 𝜕𝑥1⁄ | = 1 if 𝑦 𝑖𝑠 𝑓𝑖𝑟𝑖𝑛𝑔  

|𝜕𝑦 𝜕𝑥1⁄ | = 0 if 𝑦 𝑖𝑠 𝑠𝑖𝑙𝑒𝑛𝑡 

Finally, as the table contains discontinuous, non-differentiable transitions, we smooth the 

transition between entries with 𝑡𝑎𝑛ℎ function on 𝑥2. With this, we arrive at the two models of 

the two neurons: 

𝑦𝑐𝑜 = 𝑅(𝑥1) ∗ 𝑅(𝑇(𝑥2))     … 𝐸𝑞. 2.2.1 

𝑦𝑚𝑎𝑥 = 𝑅(𝑥1) + 𝑅(−𝑥1) ∗ 𝑅(𝑇(𝑥2))      … 𝐸𝑞. 2.2.2 

Where 𝑦𝑐𝑜 is the coincidence neuron model, 𝑦𝑚𝑎𝑥  is the max neuron model, 𝑅 is the ReLU 

function, and 𝑇 is the 𝑡𝑎𝑛ℎ function.  

The max and the coincidence neuron models have two inputs that can come from different 

parts of a network architecture. Where only one input is available, we can let 𝑥2  be a 

manipulated or shifted version of 𝑥1. For example, we can create 𝑥2 by shifting 𝑥1 by 1 element 

in each feature map dimension, as shown in Fig.2.2.3. In this case, we can reduce the functions 

to  

𝑦𝑐𝑜_𝑠 = 𝑅(𝑥1) ∗ 𝑅(𝑇(𝑥1 ≪ 1))     … 𝐸𝑞. 2.2.1𝑎 

𝑦max_𝑠 = 𝑅(𝑥1) + 𝑅(−𝑥1) ∗ 𝑅(𝑇(𝑥1 ≪ 1))      … 𝐸𝑞. 2.2.2𝑎 

We use this reduction in our experiments in Sec.2.5. 

 

 

Fig.2.2.3 Obtaining a second input 𝑥2 from a single feature map 𝑥1. Here, we create 𝑥2 by shifting 

𝑥1 by one element in each dimension of the feature map.   
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2.3 Neural Architecture Search Algorithm 

Specialized neurons are not located uniformly in neural networks. For example, max 

neurons are located in the higher regions of the visual cortex, operating upon the outputs of 

linear neurons in earlier visual regions. A network composed entirely of max neurons, whether 

biological or artificial, provides poor functionality as the entire network essentially reduces to 

a single wide max. Therefore, we must base our analysis on suitable network architectures. 

Toward this goal, we use network architecture search (NAS) to obtain high-performing 

architectures.  

A NAS algorithm (Fig.2.3.1) optimizes a network by iteratively searching through an 

architecture space to find the best-performing architecture. It begins from a set of initial 

architectures; then, in each search iteration, new architectures are created and evaluated. If the 

new architectures perform well, they are used to update the current architectures. As a result, a 

high performing architecture can be obtained after multiple iterations.   

A NAS algorithm can be described in three components [134]: the search space, the search 

method, and the evaluation strategy. The search space defines the architecture space that the 

algorithm searches through, and is composed of an operation space and a structure space. The 

operation space defines the set of operations available to the architecture, and the structure 

space defines how the connections between operations are formed. The operation space can 

include different types of operations such as convolutions (2D, separable, depth-wise) and 

pooling (max, average); with various kernel dimensions (3x3, 5x5,7x7), strides (1,2,4), and 

dilation rates (1,2,3,4) [135]. The structure space could be sequential [136], [137], hierarchical 

[138], cell-based [135], [139], or memory-access-like topologies [140]. An example is shown 

in Fig.2.3.1b Search Space. In the example, the operation space includes “1x1 convolution 

(conv)”, “3x3 conv”, “5x5 conv”, and “pool”; and the structure space is “serial” and “parallel”. 

The search space design often involves certain amounts of human expertise and experience.  
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The search algorithm defines how the network architecture changes between each search 

iteration. This could be re-selecting a network architecture from the search space at random or 

a grid-search through its parameters [141]. It could involve modification upon a previous top-

performing network [138], [139]; or be determined by another neural network through a 

reinforcement-learning setting [136], [137]. If the architecture is differentiable, the architecture 

could also be trained [142]. An example of a search method is shown in Fig.2.3.1 Search 

Method. In the example, the search method replaces the second layer in the first iteration, and 

branches the third layer in the second iteration.  

The evaluation strategy provides a measure of the model’s performance. This determines 

the NAS optimization target and is usually a combination of various performance metrics, such 

as accuracy, the number of flops, required memory, operation energy, latency, etc. Different 

designs of the evaluation strategy allow the NAS algorithm to optimize the architecture for a 

 
Fig.2.3.1 Illustration of a Neural Architecture Search (NAS) algorithm. (a) Flow of a NAS algorithm. 

The algorithm iteratively creates and evaluates new architectures to find an optimized architecture. 

(b) components of a NAS algorithm. The search space defines the space of all architectures. For 

example, the architecture could be a serial connection of a 3x3 convolution (conv), a 5x5 

convolution, and another 3x3 convolution (top right in Search Space). It could branch from a 

3x3conv into a 1x1 conv and a pooling in parallel, then merge back before the final 3x3 conv (top 

left in search space); or it could start from a parallel architecture before merging into a serial one 

(bottom in search space). The search method defines how the network architecture changes between 

each search iteration. For example, starting from the 3x3conv-5x5conv-3x3conv in the first iteration, 

the second layer is changed to a 1x1conv in the second iteration, and the last layer branches out 

another 1x1 conv in the third iteration. The evaluation strategy provides a measure of the 

performance of each architecture. This includes metrics such as the accuracy of the network, the 

memory it consumes, as well as the time and energy it takes to run. 



22 
 

single metric or a trade-off between metrics under a given set of constraints. An example of an 

evaluation strategy is shown in Fig.2.3.1 Evaluation Strategy. In the example, we see that the 

accuracy, the network size (number of parameters), the delay on an iphone, and the energy are 

all components of the evaluation strategy. In most cases, the most important metric is an 

accuracy 𝛼. The traditional way to obtain 𝛼 is to train and evaluate a network [143]. However, 

a complete train-and-evaluation procedure is costly. As a result, accuracy extraction has been 

accelerated through shortened training schedules on reduced-size networks [136], [139], 

adopting pre-trained or shared weights [144], [145], or using proxy tasks with lower complexity 

[135]. Accuracy could also be estimated via another neural network [140], [146].  

In the remainder of this section, we present the three bio-inspired NAS algorithms used in 

this work. We describe the details of the search space, search algorithm, and the evaluation 

strategy of each algorithm. The mutation NAS algorithm is inspired by genetic mutation. 

During genetic mutation, the number of genes stays the same, but the genetic expressions 

change. Based on this observation, our mutation NAS maintains the same number of neurons, 

connections, and operations throughout the search process; while the architecture and the 

operations change. Our growth NAS is inspired by the growth of neural pathways during an 

organism’s learning process in which new neurons and connections are formed. Taking 

inspiration from this, the growth NAS continuously adds neurons to the network by splitting 

and branching existing connections. The pruning NAS is inspired by neural pruning. During 

neural pruning, less important neurons are gradually removed from the network, making it 

more compact, efficient, and representative. Our pruning NAS follows this principle: neurons 

deemed less important to the task (as evaluated by an importance measure 𝜑) are progressively 

removed during the search process. These three algorithms allow us study how the network 

architecture as its size (e.g. amount of neurons) is kept constant, increases, or reduces.  
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2.3a Mutation NAS Algorithm 

Our mutation NAS is based on the search space and search method of the evolutionary 

algorithm described in [139] combined with the differentiable search described in [142]. The 

evolutionary component primarily optimizes the network structure, while the differentiable 

conmponent finds the optimal neurons of the network. We detail this below. 

Mutation NAS Search Space 

At the top level, the network of our mutation NAS has a block-based architecture (Fig.2.3.2a) 

composing an initial 3x3 convolution followed by three repetitions of (𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 × 𝑁𝐵 − 

reduction layer) stacks and a classification layer, where 𝑁𝐵 is the number of 𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑙𝑜𝑐𝑘𝑠 in 

each stack. The NAS optimizes the network through manipulating the architecture of each 

search block. Connections and operations in the search block are modified during the NAS 

search process, but the number of nodes stay identical. 

Each 𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑙𝑜𝑐𝑘  (Fig.2.3.2b) has an independent architecture composed of 8 nodes: 

node0 and node1 are replicas of the previous block outputs, node2 to node6 are pairwise 

combinations, and node7 concatenates unused node outputs to create the search block output. 

A pairwise combination takes the output of two previous nodes, applies an operation to each, 

and sums the result. For example, in Fig.2.3.2b, node4 takes the output of node1 and node2 as 

its inputs, applies a 3 × 3 operation on node1 and a 5 × 5 operation on node2, and sums them. 

The available operations for a 𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑙𝑜𝑐𝑘  (e.g., operation space) include 1 × 1 , 3 × 3 , 

5 × 5, 7 × 7 operations and a 𝑁𝑜𝑛𝑒 operation.  

The architecture of a 𝐾 × 𝐾 operation is shown in Fig.2.3.2c, composing a convolution with 

kernel size 𝐾 followed by batch normalization and a trainable neuron layer. On the other hand, 

the 𝑁𝑜𝑛𝑒 operation passes the operation input to the operation output without applying any 

computation.  
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The trainable neuron layer (TL, Fig.2.3.2d) is a trainable layer that finds the optimal neuron 

type during training. It composes three weighted branches corresponding to the conventional 

ReLU neuron, the max neuron, and the coincidence neuron, respectively (e.g., the branch 

weights 𝑤𝑇𝐿 = [𝑤𝑅𝑒𝐿𝑈, 𝑤𝑚𝑎𝑥, 𝑤𝑐𝑜]  and the branch outputs 𝑏𝑇𝐿(𝑥) =

 [𝑅𝑒𝐿𝑈(𝑥), 𝑦max_𝑠(𝑥), 𝑦𝑐𝑜_𝑠(𝑥) ]). A higher branch weight indicates that the corresponding 

neuron type has a higher probability of being the optimal neuron type. The output of the 

trainable neuron layer 𝑦𝑇𝐿 is the sum of each branch output scaled by the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 of the 

branch weights, e.g.,  

𝑦𝑇𝐿(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑇𝐿) ∙ 𝑏𝑇𝐿(𝑥) … 𝐸𝑞. 2.3.2 

 
Fig.2.3.2 The network architecture of our mutation NAS. (a) The top-level schematic: a block-based 

architecture composing a 3x3 convolution, three (𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 × 𝑁𝐵 − reduction layer) stacks, and 

a classification layer. (b) The schematic of a search block: composing 8 nodes with node0 and node1 

as prior block inputs, node2 to node6 being pairwise combinations, and node7 concatenating all 

unused node outputs as the block output. Connections and operations in the search block are 

modified during the NAS search process, but the number of nodes stay identical. (c) The schematic 

of an Operation: a batch normalization, a trainable neuron layer, and a convolution with the 

corresponding kernel size. Note that a 1x1 Convolution is labelled as 1x1Conv while a 1x1 Operation 

is labelled as 1x1. The former refers to a single convolution with kernel size 1x1, while the latter 

also includes a batch normalization and a trainable neuron layer. (d) The trainable neuron layer 

contains three weighted paths, each corresponding to a neuron type: the conventional ReLU, the 

max, and the coincidence neurons. During training, the weights of the three paths are updated, and 

the path with the highest weight determines the neuron selected. 
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Where 𝑦𝑇𝐿(𝑥) is the output of the trainable neuron layer. The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 of a vector is the 

exponential of each element in the vector divided by the sum of the exponential of all elements 

in the vector, e.g.,  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
  𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
        … 𝐸𝑞. 2.3.1 

Every neuron in the trainable neuron layer is individually optimized. For a fully connected 

layer with 𝑁𝐹 neurons, there are a total of 3𝑁𝐹 weights (e.g. 3 weights corresponding to the 

three neuron types for every neuron). Likewise, for a convolution layer with 𝑁𝐹 neurons (e.g., 

number of output channels or feature maps), there are 3𝑁𝐹  weights.  

The reduction layer reduces feature dimensions to create a more compact representation. 

Following the common practice [139], the reduction layer composes three components in series: 

(1) a 3x3 convolution with a stride (amount of shift during convolution) of 2 and a number of 

output channels equal to twice the amount of input channels, followed by (2) batch 

normalization and (3) a trainable neuron layer.  

Mutation NAS Search Method 

The search method of the mutation NAS is inspired by the genetic mutation process in an 

evolutionary environment. Evolution can be roughly described as follows: there exists an initial 

population of organisms in an environment. When some organisms (e.g., a subset of the 

population) meet, they compete, and the best performing organisms generate offsprings that 

share features of their parenst. As time passes, old and poorly performing members of the 

population die off. As a result, many generations later, the population will be composed of 

members with the best suited features for the environment. An illustration of the evolution 

process is shown in Fig.2.3.3. 

Our search algorithm mimics this process. We keep an active population 𝑃 composed of 

𝑛(𝑃) architectures and their evaluation metrics 𝜖𝑖 = 𝑓(𝛼𝑖, 𝜂𝑖); 𝑖 ∈ [0, 𝑛(𝑃)], where 𝛼𝑖 is the 
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accuracy of architecture 𝑖 , 𝜂𝑖  is it’s number of parameters, and 𝜖𝑖  is its evaluation metric. 

During each search iteration, a sample 𝑆 is first sampled from 𝑃. Within 𝑆, the architecture 𝐴∗ 

with the highest evaluation metric is selected as the parent. A child 𝐴′ is then generated by 

mutating 𝐴∗. The child is then evaluated and added to 𝑃. Finally, the oldest member  (aging-

evolution) or worst performing member (competition-evolution) of 𝑃 is removed. The pseudo-

code for the search algorithm is shown in Fig.2.3.4. 

The mutation of an architecture is as follows: during each iteration, 𝑁𝐵_𝑆 search blocks are 

selected to mutate. For each search block, an operation mutation is applied to 𝑁𝑂_𝑆 nodes, and 

a connection mutation is applied to 𝑁𝐶_𝑆 nodes. In an operation mutation, one of the node’s 

operations is randomly reselected from the operation space, as illustrated in Fig.2.3.5a. In this 

example, we see that the None operation in node2 is mutated to a 7 × 7  operation. In a 

 

Fig.2.3.3 Illustration of the evolutionary process and the mutation NAS search method. During the 

search process, a population of architectures are kept. In each search iteration, architectures are 

sampled from the population, and the top performing architecture is selected as the parent. The 

parent is used to generate a child architecture by mutating its architecture. Afterwards, the child 

architecture is evaluated and added to the population. 
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connection mutation, one of the node’s input connections is randomly reconnected to another 

node, as illustrated in Fig.2.3.5b. Here, we see that the left connection of node3 is changed 

from node0 to node1.   

The parameters 𝑁𝐵_𝑆, 𝑁𝐶_𝑆, and 𝑁𝑂_𝑆 provide a tradeoff in exploration (e.g. trying out more 

diverse architectures in the search space with high 𝑁𝐵_𝑆 , 𝑁𝐶_𝑆 , and 𝑁𝑂_𝑆 ) vs. exploitation 

 

Fig.2.3.4 Pseudo code of the mutation NAS algorithm. First, an initial population of architectures is 

generated via randomly sampling from the search space. Each architecture is evaluated, and a 

tradeoff parameter 𝑘 is fitted on the accuracy 𝛼 and parameter count 𝜂 of the initial population. 

Afterwards, in each search iteration, we randomly sample from the population and pick the top 

performing architecture as the parent. The parent architecture generates a child architecture via 

mutation, and the child is evaluated and added to the population. The oldest member of the 

population is then removed. When the maximum amount of search iterations 𝑛𝑖𝑡𝑒𝑟 is reached, the 

algorithm returns the architecture with the highest performance metric 𝜖. 
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(conducting a more thorough evaluation of similar architectures in the adjacent search space 

with small 𝑁𝐵_𝑆, 𝑁𝐶_𝑆, and 𝑁𝑂_𝑆).  

Mutation NAS Evaluation Procedure  

In general, the accuracy 𝛼 of a neural network grows with the number of parameters 𝜂 in 

the network. If the evaluation metric 𝜖 is based purely upon 𝛼, a less efficient network with 

higher 𝜂 may outperform a more efficient network with lower 𝜂. However, under the same 

resource constraints, an efficient structure will have a higher 𝛼 . Therefore, the network 

performance should be evaluated in terms of both accuracy and cost (e.g. 𝜂, flops, latency, 

energy, etc.). We adopt the evaluation metric 𝜖 = 𝛼̅/𝜂̅𝑘 , where 𝛼̅ = 𝛼𝑚𝑜𝑑𝑒𝑙/𝛼𝑖𝑛𝑖𝑡  is the 

normalized accuracy of the model, computed as the model accuracy 𝛼𝑚𝑜𝑑𝑒𝑙 divided by the 

average accuracy of the initial population 𝛼𝑖𝑛𝑖𝑡; 𝜂̅ = 𝜂𝑚𝑜𝑑𝑒𝑙/𝜂𝑖𝑛𝑖𝑡 is the normalized number of 

parameters in the model, and 𝑘 is a hyperparameter for controlling the tradeoff between 𝛼 and 

𝜂 obtained by fitting the relation 𝑘 = − log 𝛼̅ / log 𝜂̅ on the initial population.  

2.3b Growth-based NAS Algorithm  

 

Fig.2.3.5 The mutation of an architecture. (a) The operation mutation that randomly changes one 

operation to another. For example, the None operation in node2 is changed to a 7x7 operation. (b) 

The connection mutation that randomly reconnects one input of the pairwise operation. For 

example, the left connection of node3 is changed from node0 to node1.    
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The growth NAS has a multi-branch search space [147], which is a generalized 

representation of modern feedforward CNN architectures [148] [149] [150]. The search method 

is similar to our NAS algorithm in Sec.2.3a. However, the procedure to generate a child 

architecture from a parent architecture from mutation process to a growth process.  

Growth NAS Search Space 

Similar to the mutation NAS, the growth NAS also has a block-based structure (Fig.2.3.6a) 

composing an initial 3x3 convolution, followed by three repetitions of (𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 × 𝑁𝐵 − 

reduction layer) stacks and a classification layer. Here, each search block (Fig.2.3.6b) is a 

multi-branch tree structure: neurons and paths in the block are formed via branching and 

splitting procedures. The branch procedure divides a path into two, applies an operation to each, 

and merges them back. The split procedure creates a duplicate path with a different operation. 

An example of a search block and an illustration of a branch and split procedures is shown in 

Fig.2.3.6b. In the example, the block begins from an initial 3 × 3 operation between the input 

 

Fig.2.3.6 The network architecture of our growth-based NAS. (a) The top-level schematic: a block-

based architecture composing a 3x3 convolution, three (𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 × 𝑁𝐵 − reduction layer) 

stacks, and a classification layer. (b) Schematic of a search block: paths are grown via branching 

and splitting procedures. For example, the original center path consists of only a 3 × 3 operation. 

The right path is created by splitting the center path with a 5 × 5 operation, then branching it with 

a 3 × 3 and a a 1 × 1 operation. (c) The growth procedure can be either a branch procedure or a 

split procedure. The branch procedure divides a path into two, applies an operation to each, and 

merges them back. The split procedure creates a second path with a different operation.  
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and output (center path). The right path is then created by (1) spliting the center path to create 

the right path with a 5 × 5 operation, then (2) branching the right path into a 3 × 3 operation 

and a 1 × 1 operation.  

Each operation has the same architecture as the mutation NAS in Fig.2.3.2c and Fig.2.3.2d, 

e.g., a convolution followed by batch normalization and a trainable neuron layer. 

Growth NAS Search Method 

 

Fig.2.3.7 Pseudocode of the growth  NAS algorithm. We adopt the same evolutionary backbone as 

the mutation NAS, e.g., keeping a population of architectures, sampling from the population, 

finding the top performing parent architecture, modifying the parent architecture to create a child 

architecture, and updating population. The main difference of the two algorithms lies in the method 

to generate the child architecture. Here, the child architecture is obtained by growing the parent 

architecture rather than mutating it. The initial population is also generated accordingly, e.g., by 

randomly growing an initial network.  
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The growth NAS is inspired by the growth of neural pathways: in the human brain, learning 

results in the creation and rearrangement of new neurons and neural connections. Upon the 

evolutionary backbone , we change the process to generate a child architecture from mutation 

to growth. From the parent architecture, 𝑁𝐵_𝑆 search blocks are randomly selected,  and 𝑁𝐺_𝑆 

random growth procedures, (e.g., random branch or split procedures) are applied to each block.  

For the initial population, we begin with a single 3 × 3 operation between the input and 

output of each search block. Each block then randomly grows (branches or splits) up to 𝑁𝐺_𝐼𝑛𝑖𝑡 

times. The pseudocode of the growth NAS search algorithm is shown in Fig.2.3.7.  

Growth NAS Evaluation Procedure  

The growth NAS optimizes for the same target as the mutation NAS, e.g., a tradeoff between 

the accuracy and the cost via the evaluation metric 𝜖 = 𝛼̅/𝜂̅𝑘, 

2.3c Pruning NAS Algorithm 

The pruning NAS begins with arguably the most widely benchmarked hand-crafted 

architecture: the ResNet [149]. ResNet introduced skip connections, enabling significantly 

deeper networks and marking a drastic improvement in deep learning performance across a 

large variety of tasks. We start with a ResNet that contains an equal amount of each neuron 

type, then consecutively remove low-importance neurons until we arrive at a high-accuracy, 

efficient network.  

Pruning NAS Search Space 

The top level architecture of a ResNet is shown in Fig.2.3.8a, composing a 3x3 convolution, 

three (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑏𝑙𝑜𝑐𝑘 × 𝑁𝐵 − reduction layer) stacks, a global average pooling layer, and a 

classification layer. The architecture of a residual block is illustrated in Fig.2.3.8b, composing 

two consecutive 3 × 3 operations and a skip connection from the block input to the block 

output. The skip connection provides a shortcut for signals and gradients between the block 

input and output.  
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 Instead of a trainable neuron layer, each operation is built upon a prunable neuron layer. 

A prunable neuron layer allocates 1/3 of it’s neurons to each neuron type. During pruning, the 

neurons in the prunable neuron layer will be gradually removed based on their importance.  

Pruning NAS Search Method 

The pruning NAS is clearly inspired by neural pruning: as the human brain is becoming 

more skilled at a task, neurons and connections are gradually removed to create a more mature 

and efficient network. Our pruning NAS (Fig.2.3.9) follows this procedure: we begin with a 

fully trained network composing an equal amount of each neuron type; then, in each iteration, 

we remove 𝑁𝑅_𝑆 neurons with the lowest importance metric 𝜑. The importance metric provides 

an estimation of how much the neuron contributes to the network’s operation. When neurons 

with low importance metric are removed, we expect that it does not significantly affect the 

network’s operation.  A neuron is removed by setting its weights and outputs to 0. Afterwards, 

 

Fig.2.3.8 The network architecture of our pruning NAS. (a) The top-level schematic of a ResNet, 

composing an initial 3x3 layer, three (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑏𝑙𝑜𝑐𝑘 × 𝑁𝐵 − reduction layer) stacks, a global 

pooling layer, and a classification layer. (b) The schematic of a residual block: two consecutive 

3 × 3 operations and a skip connection (shortcut) from the block’s input to its output. The 3 × 3 

operation follow a similar implementation as the mutation and growth NAS, but with a prunable 

neuron layer instead of a trainable neuron layer. e.g., batch normalization→prunable neuron layer 

→ 3x3 convolution. (c) A prunable neuron layer composes an identical amount of each neuron type 

(e.g., 1/3 being the ReLU, max, and coincidence neurons, respectively).  

 



33 
 

the network is fine-tuned via a shortened training procedure with a reduced learning rate. This 

process continues until the maximum number of iterations 𝑛𝑖𝑡𝑒𝑟  is reached or when the 

accuracy of the network drops by a predetermined amount.  

Several importance metrics have been previously proposed, such as considering neurons 

with low weights as less important [151]; measuring how much the neuron contributes to the 

loss function [152]; or how much it contributes to the creation of features in subsequent layers 

[153]. Here, we adopt the squared weight importance metric, e.g., the importance metric of a 

neuron is the average of the neuron’s squared weights (𝜑 = 𝑤2̅̅ ̅̅ ).  

2.4 Experiment Setup 

In this section, we describe the setup for the NAS experiments. We will first describe the 

datasets used along their data characteristics (i.e., dimensions, number of samples, classes, etc.) 

and how the data is prepared for training (i.e., normalizing, cropping, etc.). We will then 

describe the settings/parameters of the NAS algorithm (i.e., 𝑁𝐵_𝑆, 𝑁𝑂_𝑆, 𝑁𝐺_𝑆, 𝑛(𝑃), 𝑛(𝑆), etc.) 

 

Fig.2.3.9 Pseudocode of the pruning NAS. We first train a network that has an identical amount of 

each type of neuron. In each search iteration, the neuron with the lowest importance metric 𝜑 is 

removed. After a neuron is removed, the network is fine-tuned via a shortened training process. The 

search process ends when the maximum amount of iterations is reached.  
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as well as the training and evaluation of the networks (i.e. learning rate schedule, number of 

epochs, etc.).  

2.4a Data Preparation 

The hierarchy of datasets used in this work is shown in Fig.2.4.1. There are two categories 

of tasks, each with three subcategories, and each with two datasets. For visual recognition, the 

subcategories are pictures (CiFAR-10, CiFAR-100 [154]), handwritten characters (EMNIST 

[155], CROHME [156]), and artwork (Best Artworks [157], Wikiart [158]). For audio 

 

Fig.2.4.1 List of datasets used in this research. In the visual recognition category, the subcategories 

include pictures, handwritten characters, and artwork. In the audio  recognition category, the 

subcategories include speech, environmental sounds, and music. For  every subcategory, we select 

two datasets to experiment on. 
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recognition, the subcategories are speech (Speech Commands [159], Vocalset [160]), 

environmental sounds (ESC [161], Urbansounds8k [162]), and music (GTZAN [163], FMA 

[164]). In the remainder of this section, we describe in detail each dataset in terms of their 

content, data characteristics, and preprocessing steps for training.  

2.4a.1 Visual Recognition Datasets 

Pictures: CiFAR-10 and CiFAR-100 

The CiFAR datasets [154] named after the Canadian Institute For Advanced Research 

contain 60,000 colored, 32x32 images split into a training subset of 50,000 and an evaluation 

subset of 10,000. The CiFAR-10 dataset has 10 classes containing objects and animals like 

airplanes, trucks, cars, and dogs. On the other hand, CiFAR-100 has 100 classes that contain a 

larger variety of classes such as humans, plants, and natural/man-made objects. Some examples 

include cloud, boy, woman, roses, sunflowers, bottles, etc. 

For the CiFAR datasets, we follow the common practice of normalizing the image by the 

mean and average of each channel (e.g., red, green, and blue). We do not apply any other form 

of data augmentation (manipulating the images to improve generalization by flipping, cropping, 

rotation, brightness, and other means). 

Handwritten Characters: EMNIST 

The Extended MNIST (EMNIST) dataset [155] is an extension of the MNIST dataset 

derived from the NIST Handprinted Forms and Characters Database. There are ~700k training 

and ~100k testing images in the greyscale, 28x28 pixel format. The dataset contains a total of 

47 classes, including digits (0~9) and letters (A~Z).  

For the EMNIST dataset, we follow the standard greyscale-image preprocessing practice of 

standardizing the image to the [0,1] range. Again, we do not use any additional form of data 

augmentation. 

Handwritten Characters: CROHME 
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The Competition on Recognition of Online Handwritten Mathematical Expressions 

(CRHOME) dataset [156] contains ~300k training and 75k test images of hand-written 

mathematic symbols. The images are presented in a 45x45 pixel greyscale format. There are 

81 classes, which include numbers, Greek letters (ex. 𝛼, 𝛽, 𝛾 ), variables (ex. 𝑥, 𝑦, 𝑤, 𝑧 ), 

parenthesis (ex. (),[],{}), mathematical operators (ex. +, −,×,÷), and other expressions.  

Similar to the EMNIST dataset, we standardize the greyscale images to the [0,1] range. We 

do not use any additional form of data augmentation. 

Artwork: Best Artworks  

The Best Artworks of All Time dataset [157] is a challenge organized on Kaggle (an online 

machine learning competition platform) whose goal is to recognize paintings from influential 

artists. There is a total of ~9,000 color images with dimensions ranging from a few hundred to 

two thousand pixels. The 50 classes correspond to artists, including Vincent Van Goh, Pablo 

Picasso, Leonardo Da Vinci, etc.  

As there is no predefined training and evaluation subset, we divide the 9,000 images into 

training and evaluation subsets via an 80-20 split. In other words, 80% of the images are taken 

at random to be the training set and the remaining 20% of the images as the evaluation set. 

Also, since the images vary in resolution, we take 5 random 64x64 crops for every image and 

treat each as an individual example, resulting in a training set of 35,000 examples and 8,500 

evaluation examples. Otherwise, no additional form of augmentation is applied.  

Artwork: Wikiart 

The Wikiart dataset [158] contains artwork from a variety of genres, artists, and styles. There 

is a total of ~80,000 color images, each of which has dimensions between a few hundred to 

four thousand pixels. There are 27 classes that correspond to specific art styles such as 

Impressionism, Realism, Symbolism, Early Renaissance, etc. 
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Similar to the Best Artworks dataset, we split the images into training and evaluation subsets 

via an 80-20 split. 5 random 64x64 crops are taken from each image and treated as individual 

examples, resulting in a training set of 325k examples and 80k evaluation examples.  

2.4a.2 Speech Recognition Datasets 

Speech: Speech Commands 

The speech commands dataset [159] contains spoken keywords of robotic commands. There 

is a total of ~60k recordings split into a training set of ~50k and an evaluation set of ~10k. Each 

recording has a duration of ~1 second. There are 30 classes that include the commands Yes/No, 

up/down/left/right, on/off, numbers, and other phoneme-rich words. 

To process each recording, we first clip or zero-pad each recording to a 1-second duration. 

We then compute its Mel-frequency spectrogram, which is a short-term power spectrum 

computed on a nonlinear frequency scale that approximates the human auditory system’s 

response. The spectrogram is computed with 32 channels using a frame size of 512 points and 

a hop length (number of points between successive frames) of 256 points. A small value of 

0.00001 is then added to the spectrogram before taking the log of the spectrogram to avoid 

log(0) conditions. Finally, the log-spectrogram is linearly interpolated to a dimension of 32x32 

and normalized.  

All other audio datasets follow this log-Mel-spectrogram approach, with the number of 

channels and the final spectrogram dimensions scaled proportionally to the length of the 

recording.  

Speech: Vocalset 

The Vocalset [160] is a dataset composed of singing techniques performed by professional 

singers. There is a total of 3,500 recordings in the dataset, each up to 10 seconds long. The 17 

classes correspond to singing techniques like belting, vibrato, vocal fry, inhaled, etc. 
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We preprocess the Vocalset similar to that of Speech Commands: cropping or zero-padding 

each recording to 5 seconds length, computing a 128-channel log-Mel-spectrogram, then 

interpolating the spectrogram to 128x128 and normalizing it.  

Environmental Sounds: ESC 

The Environmental Sound Classification (ESC) dataset [161] is a collection of 

environmental sounds extracted from the Freesounds project. There are 2000 recordings, each 

5 seconds long. The dataset is prearranged into 5 folds. This means that every 20% of the data 

is organized into a group called a “fold”. This arrangement allows different users to cross-

validate their results using the same examples while allowing flexibility in the amount of 

examples in the test and evaluate split. Each recording is classified into one of 50 classes 

belonging to 5 major categories: Animals (dogs, cats, cows, etc.), Natural soundscapes (rain, 

sea waves, etc.), Human sounds (crying, coughing, etc.), Interior/domestic sounds (door creak, 

can opening, etc.), and Exterior/Urban sounds (helicopter, train, etc.).  

We use the first to fourth folds are for training and the fifth for evaluation. As previously 

mentioned, the recordings are processed by padding/clipping to 5s, computing the 128-channel 

log-Mel-spectrogram, interpolating to 128x128, and normalizing it.  

Environmental Sounds: UrbanSounds8k 

The Urbandsounds-8k dataset [162] contains 8732 excerpts of urban-environment sounds 

extracted from the Freesounds project. Each clip is up to 4 seconds long and labeled as one of 

10 classes that include car horns, dog barking, sirens, street music, etc. The dataset is 

prearranged into 10 folds. 

We use the first to eighth folds for training and the ninth to tenth folds for evaluation. The 

recordings are processed by padding/clipping to 3 seconds length, computing the 64-channel 

log-Mel-spectrogram, interpolating to 64x64, and normalizing it.  

Music: GTZAN 
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The GTZAN dataset [163] named after its organizer George Tzanetakis is a music genre 

dataset with a total of 1,000 recordings. Each recording is 30 seconds long, and there are 10 

classes corresponding to music genres including blues, classical, country, disco, rock, etc.  

We again divide the dataset into training and evaluation subsets via an 80-20 split. Afterward, 

each 30-second recording is divided into six 5-second clips, and each clip is processed by 

computing the 128-channel log-Mel-spectrogram, interpolating to 128x128, and normalizing 

it. This results in a training set of 4,800 and an evaluation set of 1,200. 

Music: FMA Medium 

The Free Music Archive (FMA) dataset [164] is a large-scale music dataset that contains 

tracks from creative-commons-licensed audio. Data is available as pre-computed features, 30-

second recordings, as well as full-length audio. For each recording, the title, artist, album, and 

genre are provided. The FMA medium subset has 25,000 30-second recordings; and is labeled 

as one of 16 music genres that include blues, jazz, pop, etc. 

Similar to the GTZAN dataset, we use an 80-20 train-eval split and divide each 30-second 

recording into six 5-second clips. Each clip is processed by computing the 128-channel log-

Mel-spectrogram, interpolating to 128x128, and normalizing it. This results in a training set of 

120,000 and an evaluation set of 30,000. 

2.4b NAS and Training Setup 

During NAS, it is important to adopt a suitable model size (i.e., layers, number of neurons 

per layer, etc.) and training setting to avoid overfitting and underfitting. When networks are 

overfitted, their performance becomes capped independent of the network architecture with 

random fluctuation between different iterations. When networks are underfitted significantly, 

the non-converged, large variation in accuracy also it difficult to compare architectures. Both 

overfitting and underfitting would misguide the search process. 
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In this section, we describe in detail the NAS search algorithm settings (i.e., search iterations, 

𝑁𝐺_𝑆, 𝑁𝐵_𝑆, 𝑁𝑂_𝑆, 𝑛(𝑃), etc.), network settings (number of filters 𝑛𝐹and blocks 𝑁𝐵), and the 

training/ evaluation settings (learning rate schedule, loss functions, number of epochs, etc.) 

during the search process.  

Mutation-based NAS 

Finding optimal NAS settings for every dataset would be extremely time-consuming. 

Thankfully, we can modify and build upon the setting of similar prior works as NAS on the 

CiFAR-10 dataset is well benchmarked. For this, we utilize theoretical and experimental 

studies on the scaling of network size and training settings with respect to the dataset size[165].  

The mutation-based NAS search algorithm requires determining the population size 𝑛(𝑃), 

sample size 𝑛(𝑆) , number of neurons/filters 𝑛𝑓  and blocks 𝑁𝐵  in the network, the search 

iterations 𝑛𝑖𝑡𝑒𝑟 , and the number of mutation blocks 𝑁𝐵_𝑆 , connections 𝑁𝐶_𝑆 , and operations 

𝑁𝑂_𝑆 in each search iteration. In a prior mutation-based NAS [139], the authors experimented 

with a variety of population 𝑛(𝑃)  and sample sizes 𝑛(𝑆)  and achieved best results via a 

population size 𝑛(𝑃) = 100 and sample size 𝑛(𝑆) = 25; using a network size of 𝑛𝑓 = 24. The 

NAS improvement was observed to plateau at 20𝑘 iterations, e.g., 𝑛𝑖𝑡𝑒𝑟 = 2 × 104. We keep 

the same 𝑛(𝑃) and 𝑛(𝑆); however, since our operation space is limited to convolutions of 

different sizes (while the reference includes 3 different types of convolutions), 𝑛𝑖𝑡𝑒𝑟 is reduced 

to 103 and 𝑛𝑓  is reduced to 16 to further avoid overfitting. Finally, as our goal is to study 

characteristics of high-performing networks containing specialized neurons rather than obtain 

a global optimized network, we focus on exploitation over exploration: 𝑁𝐵_𝑆, 𝑁𝐶_𝑆, and  𝑁𝑂_𝑆 

are all set to 1. The NAS search algorithm settings are summarized in Table2.4.1.   

The training settings for each search iteration include: the number of training epochs 𝑛𝑒 (or 

training steps 𝑛𝑠), the gradient descent method, the learning rate schedule, the batch size 𝑛𝑏𝑎𝑡𝑐ℎ, 
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and the weight decay. Following the previous work [139], we use stochastic gradient descent 

with a momentum of 0.9 as the gradient descent method. The initial learning rate is set to 0.01 

and decreased by 80% for every 30% of the total number of training steps (e.g., reduced to 

2 × 10−3 at the 30th percentile step, 4 × 10−4 at the 60th percentile step, and 8 × 10−5 at the 

90th percentile step). The batch size is 128 and weight decay is 5 × 10−4. However, we reduce 

the number of training epochs from 25 to 10 as our network is smaller. To accelerate the 

neuron-type search, we also increase the trainable neuron layer weights 𝑤𝑇𝐿 by 10 ×.   

Using CiFAR-10 as a baseline, we scale the training settings for each dataset based on the 

results reported in [165]. Empirically and theoretically, the authors suggested that network size 

and training steps should be proportional to the square root of the number of training samples 

in the dataset. In addition, we also consider the increase in input complexity that comes from 

the number of input channels:  

𝑛𝑓,𝐷𝑆 = 𝑛𝑓,𝐶𝑖𝑓𝑎𝑟√(𝑁𝐷𝑆/𝑁𝐶𝑖𝑓𝑎𝑟)
𝐶𝐷𝑆

𝐶𝐶𝑖𝑓𝑎𝑟
     … 𝐸𝑞. 2.4.1 

Table 2.4.1 Training settings for each dataset. 

 

 

Dataset CiFAR-10 CiFAR-100 EMNIST Crohme Paintings Wikiart

Input Dims. 32x32x3 32x32x3 28x28x1 40x40x1 64x64x3 64x64x3

Classes 10 100 10 81 50 27

Examples 50,000 50,000 700,000 300,000 7,000 64,000

Depth 9 9 9 9 9 9

Width 16 16 20 14 6 18

Epochs 10 10 3 4 26 8

Dataset Speech Vocalset ESC Urban GTZAN FMA

Input Dims. 32x32x1 128x128x1 128x128x1 64x64x1 128x128x1 128x128x1

Classes 30 17 50 10 10 16

Examples 85,000 4,000 2,000 8,000 1,000 25,000

Depth 9 9 9 9 9 9

Width 20 4 4 6 4 12

Epochs 8 38 50 25 70 14
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Where for a given dataset (𝐷𝑆), 𝑁𝐷𝑆 is the number of training samples in the dataset, 𝐶𝐷𝑆 is the 

number of channels of each sample, and 𝑛𝑓,𝐷𝑆 is the number of neurons/filters of the network 

used in NAS. The reference dataset, CiFAR-10, is denoted with subscript 𝐶𝑖𝑓𝑎𝑟, e.g., 𝑁𝐶𝑖𝑓𝑎𝑟, 

𝐶𝐶𝑖𝑓𝑎𝑟 , and 𝑛𝑓,𝐶𝑖𝑓𝑎𝑟. Likewise, 

𝑛𝑠,𝐷𝑆 = 𝑛𝑠,𝐶𝑖𝑓𝑎𝑟√(𝑁𝐷𝑆/𝑁𝐶𝑖𝑓𝑎𝑟)     … 𝐸𝑞. 2.4.2 

Where 𝑛𝑠,𝐷𝑆 denotes the number of training steps for a dataset and 𝑛𝑠,𝐶𝑖𝑓𝑎𝑟 is the number of 

training steps for the reference CiFAR-10 dataset. Note that 𝑛𝑠 is related to 𝑛𝑒 via the relation 

𝑛𝑠 = 𝑛𝑒 × 𝑁𝐷𝑆/𝑛𝑏𝑎𝑡𝑐ℎ. The training settings for each dataset are summarized in Table2.4.1.   

Growth-based NAS Algorithm 

Due to sharing the same evolutionary backbone, the growth-based NAS shares many of the 

search algorithm parameters as the mutation-based NAS. Specifically, 𝑛(𝑃) = 100, 𝑛(𝑆) =

25, 𝑛𝑖𝑡𝑒𝑟 = 1000 and 𝑛𝑓 = 16. The initial population is generated by randomly applying up 

to 𝑁𝐺_𝐼𝑛𝑖𝑡 = 10 growth operations to each block. In each search iteration, the number of blocks 

that grow 𝑁𝐵 and the number of growth operations per block 𝑁𝐺_𝑆 are both set to 1. In addition, 

to prevent networks from overgrowing, we also terminate the search algorithm when the total 

number of operations in the network exceeds 100.  

Pruning-based NAS Algorithm 

The search algorithm setting is as follows:  the number of neurons pruned 𝑁𝑅_𝑆 = 1, 𝑛𝑖𝑡𝑒𝑟 =

1000 , and 𝑛𝑓 = 16 × 3  (e.g., 𝑛𝑓 = 16  for each neuron type: conventional, max, and 

coincidence). In addition, as the network begins to fail when too many neurons are removed, 

we terminate the search algorithm when the network recognition rate drops by 2% 

The initial network is trained using the same settings as the mutation and growth NAS, but 

with 50 ×  the number of steps 𝑛𝑠 . This corresponds to 𝑛𝑒 = 500  epochs with stochastic 

gradient descent with a momentum of 0.9, an initial learning rate of 0.01 decreased by 80% for 
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every 30% of the total number of training steps, 𝑛𝑏𝑎𝑡𝑐ℎ = 128 and weight decay is 5 × 10−4. 

The fine-tuning process composes two epochs, each with the decayed learning rate (2 × 10−3) 

and the double-decayed learning rate (4 × 10−4), respectively.  

2.5 Experimental Results 

In this section, we analyze three characteristics of top-performing networks: (1) the 

structural organization of the network, e.g., the height (or depth) and width of the search blocks 

as the network progresses; (2) the structural composition of the network, e.g., the type and 

number of operations in the search blocks as the network progresses; and (3) the neural 

composition of networks, e.g., the amount of each type of neurons in the search blocks as the 

network progresses.  

We study the structural organization and structural composition on networks optimized via 

the mutation and growth NAS, as they have diverse operations and connections during the 

 

Fig.2.5.1 Scatter plot of network performance (𝜂̅ , 𝛼̅) of the initial (red) and final (green) population 

of the mutation NAS on the CiFAR-10 dataset. The line of tradeoff 𝛼̅ = 𝜂̅𝑘 is displayed in yellow. 

The NAS successfully searched and obtained high performance networks to the right-bottom of the 

tradeoff line; with the final population having 1% higher 𝛼̅ and 18% lower 𝜂̅. 
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search process. On the other hand, we study the neural composition on the pruning NAS; which 

removes the impact from different types of operations and connections.   

Fig.2.5.1 shows a scatter plot of the networks optimized by the mutation NAS on the 

CiFAR-10 dataset. The x and y axes represent the normalized accuracy 𝛼̅ and the normalized 

number of parameters 𝜂̅, respectively. The initial population is displayed in red and the final 

population in green. The 𝛼̅ − 𝑡𝑜 − 𝜂̅ tradeoff curve (𝛼̅ = 𝜂̅𝑘) is displayed in yellow. As the 

architecture search progresses, the NAS obtains networks at the bottom right corner below the 

tradeoff line, e.g., networks with higher performance but a lower number of parameters. Our 

NAS successfully achieves this goal with the final population (green star) displaying a 1% 

higher  𝛼̅ (72% →73%) and 18% lower 𝜂̅ (4.8M →4M) compared to the initial population.  

 Fig.2.5.2 shows the structural organization of top-performing networks found by the 

mutation NAS. Here, we report statistics for each stack in Fig.2.3.2a (e.g., every 𝑁𝐵 search 

blocks). The height H of an architecture is defined as the longest path from its input to output. 

For example, the search block in Fig.2.3.2b has a maximum height of 4, via the path through 

node0→node3→node5→node6→node7. The width W of an architecture is defined as the 

maximum number of operations of the same height (or equivalently, the maximum number of 

 

Fig.2.5.2 Structural organization of the top performing networks discovered by the mutation NAS. 

(a) stack height, and (b) stack width. Towards the end of the network (latter stacks), the height 

continues to increase while the width decreases. This is due to the cost tradeoff: by decreasing width, 

the network cost reduces. Under the constraint of fixed number of neurons, this squeezes the 

architecture to a greater height 
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neurons or filters). For example, the structure in Fig.2.3.2b has a width of 2, as node4 and 

node5 both share a height of 2.  

We observe the networks display increasing height and decreasing width as the network 

progresses towards the latter stacks in Fig.2.3.2a. This is due to the cost tradeoff: the cost (e.g., 

𝜂) of an operation is proportional 𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡 × 𝐾2, where 𝑛𝑖𝑛 is the number of input filters, 

𝑛𝑜𝑢𝑡 is the number of output filters, and 𝐾 is the kernel size. As a result, the cost of a network 

can be reduced by either (design.1) adopting a structure with a lower width, which reduces the 

overall 𝑛𝑖𝑛; (design.2) avoiding operations in the latter stacks which have both larger 𝑛𝑖𝑛 and 

𝑛𝑜𝑢𝑡; and (design.3) adopting operations with smaller kernel size 𝐾.  It is obvious that (design.1) 

is observed in 2.5.2(b). As the mutation NAS keeps a constant number of operations and 

connections, this results in a greater height as observed in 2.5.2(a). 

Fig.2.5.3 shows the structural composition of the top-performing networks. We observe that, 

in the first stack, the 1x1, 3x3, 5x5, and 7x7 operations occupy a similar percentage. Towards 

the end of the network, the number of operations with a small kernel size (K) increases while 

 

Fig.2.5.3 Structural composition of top performing networks found by the mutation-based NAS. 

The percentage of 1 × 1, 3 × 3, 5 × 5, and 7 × 7 operations in each stack are shown. In the first 

stack, the percentage of each operation is similar. Towards the end of the network, a significant 

decrease in the higher kernel size (K) operations is observed, as expected from the cost tradeoff. 
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the percentage of operations with large K reduces. This is a characteristic of (design.2). In 

earlier blocks, having a more diverse K provides an image-pyramid-like representation that can 

view the input image at different scales. However, operations with large K become too 

expensive at the latter blocks, and thus their presence reduces.  

 

2.5b Growth-based NAS  

While the mutation NAS has a fixed number of operations in each block, the growth NAS 

can grow indefinitely until the tradeoff between 𝛼 and 𝜂 is unfavorable. Fig.2.5.5 shows the 

structural organization of the top-performing networks found by the growth NAS. We observe 

that the stack height and width both drop drastically in the third block, characteristic of 

(design.1). The average width and height increase slightly from the 1st to 2nd block; however, 

cases of width/height decrease are also observed. This increase could be to compensate for the 

significantly smaller 3rd block, e.g., operations originally in the 3rd  block can be appended to 

the 2nd  instead, which, for the same operation, reduces 𝑛𝑖𝑛 and 𝑛𝑜𝑢𝑡. 

Fig.2.5.6 shows the structural composition of the top-performing networks found by the 

growth-based NAS. We observe that the 3 × 3  operation stands out with the highest 

 

Fig.2.5.4 Structural organization of the top performing networks discovered by the growth NAS. 

(a) stack height, and (b) stack width. Both the height and width drop significantly at the 3rd stack, 

as a result of the cost tradeoff: a small 3rd block reduces the network cost. From the 1st to 2nd stack, 

on the other hand, while the average height and width both increase, we observe cases both in the 

increase of height/width and the decrease of height/width.  This could be a compensation for the 

extreme reduction in 3rd block size.  
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percentage. This indicates that the 3 × 3 operation provides a very good cost-to-performance 

tradeoff, which agrees with prior hand-designed networks [38]. We also observe the same trend 

as the mutation NAS, where an image-pyramid representation was observed in the 1st stack and 

the percentage of high-K operations decreasing towards the end of the network.  

2.5c Pruning-based NAS  

The pruning-based NAS does not change the operations and the connections throughout its 

search process. While this impedes its ability to study network structure and network 

composition, it provides an advantage in studying the neural composition in terms of the 

importance, location dependency, and quantity as it takes out structural contributions.  

Fig.2.5.8 shows the importance of neurons in the network as pruning progresses. Network 

layers are represented in strips, from the earlier layers on the top to the latter layers on the 

bottom. In each strip, the conventional (ReLU), max, and coincidence neurons are represented 

by red, green, and blue, respectively, while neurons pruned are displayed in black. Neurons are 

ranked by their importance metric 𝜑 from the left (high 𝜑) of each strip to the right (low 𝜑).  

 

Fig.2.5.7 Structural composition of top performing networks found by the growth-based NAS. The 

percentage of 1 × 1, 3 × 3, 5 × 5, and 7 × 7 operations in each stack are shown. We observe that 

the percentage of 3 × 3 stands out with having a good cost-to-performance tradeoff. Otherwise, a 

similar trend to the mutation NAS is observed, e.g., a a significant decrease in the percentage of 

higher kernel size (K) operations towards the end of the network. 



48 
 

Based on the importance metric 𝜑, neurons in the 3rd  stacks were pruned first, after which 

neurons in the 1st, then the 2nd stacks were pruned. Neurons towards the latter layers of each 

block had a higher probability of being pruned, indicating a bottleneck structure helps 

summarize the features of each stack.  

 In terms of neural composition, Fig.2.5.8 suggests that (1) conventional neurons are 

important in the earlier layers (2) visual neurons are important in the middle layers, and (3) 

 

Fig.2.5.8 Importance of neurons in the network during pruning on the CiFAR-10 dataset. The 

network layers correspond to strips in the figure. In each strip, the conventional (ReLU), max, 

and coincidence neurons are by red, green, and blue, respectively, while neurons pruned 

are displayed in black. Neurons are ranked by their importance metric 𝜑 from the left (high 

𝜑) of each strip to the right (low 𝜑). The initial network had an 𝛼 of 88.5% and had 𝜂 = 2.1M 

parameters. As pruning progresses, 𝛼 and 𝜂 both decrease. We observe that neurons in the latter 

layers of the last stack were pruned first, after which neurons in the latter layers of every stack were 

pruned. Post pruning, we observe that conventional neurons are dominant in the early layers, max 

neurons in the middle layers, and coincidence neurons mainly show up in the latter layers.  
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audio neurons importance rise in the latter layers. We further quantify this in Fig.2.5.9, which 

shows the sum of the 𝜑 of each neuron type divided by the sum of the 𝜑 of all neurons.  

2.5d Specialized Network Design 

Summarizing the results in Sec.2.5a ~ Sec.2.5c, we propose design modifications to the 

ResNet for a more compact, high-performance architecture. Here, we take a ResNet (Fig.2.3.8 ) 

with 𝑁𝐵 = 3 and 𝑛𝑓 = 48  as an example and modify the design using the following methods:  

(1) Based on the structural organization in Fig.2.5.5, the network should have an increased 

second block height and a decreased last-block height. As a result, we change the 

number of layers in each stack from [6,6,6] to [6,8,4].  

(2) Based on the structural organization in Fig.2.5.5, the network should have a decreased 

width in the third stack. As a result, we change the number of filters in the original 

Resnet from [48,96,192] to [48,96,144].  

 

Fig.2.5.9 Pruning NAS results on the audio datasets. Most follow the same results as the CiFAR-10 

dataset: (1) conventional neurons favoring early layers, visual favoring middle layers, and audio 

favoring latter layers; and (2) pruning increases towards the end of each block as well as towards the 

end of the network. 
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(3) Based on the structural composition in Fig.2.5.6, we change the operations from entirely 

“3x3” operations to an equal amount of “1x1”, “5x5”, and “7x7” in the first stack and a 

slightly higher “3x3”, e.g., [20%, 40%, 20%, 20%].  

(4) Based on the structural composition in Fig.2.5.6,  the portion of high-K operations 

continuously decreases towards the end of the network. This results in a composition of 

in the second and third stack, the operations are changed to [20%, 50%, 20%,10%] and 

[30%, 70%, 0%, 0%] , respectively.  

(5) Based on the neural composition in Fig.2.5.7, we use a composition of [45%, 40%, 15%], 

[35%,40%,20%], and [30%,45%,25%] of conventional, max, and coincidence neurons 

for 1st, 2nd, and 3rd stacks respectively.  

 

 
Table. 2.5.2 Performance of various network architectures. For the reference ReNnet, we report 𝛼 

and 𝜂 for networks of different sizes from 𝑁𝐵 = 2~4 and 𝑛𝑓 = 32~64. To confirm the importance 

of specialized neurons, we also report : (a) only the network structural organization changes (1) and 

(2), labelled as (W,H) ; (b) only the network compositional changes (3) and (4), lablled as OP. The 

specialized network incorporating all changes (1)~(5) (bolded, labelled as specialized), achieves 

improved 𝛼 by an average of 2.7% over the baseline while reducing 𝜂 by ~25%..  
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 The performance of different designs are reported in Table 2.5.2 and Fig.2.5.11. We show 

the original ResNet architecture with 𝑁𝐵 = 3  and 𝑛𝑓 = 48  as the baseline, as well smaller 

Resnets with reduced blocks per stack 𝑁𝐵 = 2 and 𝑛𝑓 = 48 and reduced neurons 𝑁𝐵 = 3 and 

𝑛𝑓 = 32; larger Resnets with increased blocks per stack 𝑁𝐵 = 4  and 𝑛𝑓 = 48 and increased 

neurons 𝑁𝐵 = 3 and 𝑛𝑓 = 64. To verify the importance of the specialized neurons, we also show 

the structural organization modifications ((1) and (2) applied only, denoted as (W,H) ), the 

structural composition modifications only ((3) and (4), denoted as OP), and finally the full 

specialized network ((1)-(5) all applied). Without the specialized neurons, neither the change 

in the structural organization nor composition can outperform the baseline. On the other hand, 

 

Fig.2.5.10 Scatter plot of the normalized performance of various network architectures. The 

reference ResNet (𝑁𝐵 = 3 and 𝑛𝑓 = 48) has 𝛼̅ = 𝜂̅ = 1. Larger ResNets, (𝑁𝐵 = 3 and 𝑛𝑓 = 64, 

labelled W↑, and 𝑁𝐵 = 4 and 𝑛𝑓 = 48, labelled H↑) are also displayed. Network incorporating only 

the network structural organization changes (1) and (2) is labelled as (W,H) ; network incorporating 

only the network compositional changes (3) and (4) is labelled as OP. The specialized network 

incorporating all changes (1) ~ (5) is labelled as specialized. Overall, the specialized network 

achieves improved 𝛼 over the baseline (also bolded) on an average of 2.7% while reducing 𝜂 by 

~25% and even has higher average 𝛼̅ than W↑ and H↑.  
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once the specialized neurons are employed, we observe an improved average 𝛼̅ by 2.7% as 

well as a reduction in 𝜂̅ by 25%.  In many cases, the specialized network even outperforms 

networks with larger depth and width with ~2x the number of parameters. These results show 

the importance of specialized neurons in highly efficient signal processing.   
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CHAPTER 3 

Variation-Tolerant Memory Design                          

 

3.1 Motivation 

The ever-increasing demand for memory performance has given rise to a variety of new 

memristive technologies with orders of magnitude improvement in programming time and 

energy compared to the commercially available Flash. These devices behave as electrically 

programmable resistors, in which the device resistance changes based on the voltage or current 

bias. Different resistance states correspond to different memory values; for example, a high 

resistance state corresponds to a digital 1, and low resistance to a digital 0. Some memristor 

devices also support multiple resistance states, allowing storage of multi-bit per cell. 

Memristive devices are also a key enabler of physical matrix-multiplication architectures. 

Currently, the most popular memristor technologies include the magneto-resistive random 

access memory (MRAM) [80], [81], [166], the Resistive RAM (ReRAM)[167]–[169], and the 

Phase Change RAM (PCRAM) [37], [170], [171]. The MRAM device has a typical magnetic 

tunneling junction (MTJ) structure, which composes two magnetic layers separated by a 

tunneling barrier as shown in Fig.3.2.1. One magnetic layer (free layer) serves as storage, and 

the other (fixed layer) as a reference. Data is stored as the relative magnetic orientation of the 

free layer to the fixed layer: if the two layers have the same magnetic orientation, the MTJ is 

in its parallel (P), low resistive state (LRS); and if they have opposite orientation, the device is 

in its anti-parallel (AP), high resistive state (HRS). MRAMs can be programmed through a 

variety of spin-based phenomena, such as Spin-Transfer Torque (STT), Spin-Orbit Torque 

(SOT), and Voltage-Controlled Magnetic Anisotropy (VCMA) effects. They have high 

endurance, speed, and energy efficiency; but suffer from low distinguishability (e.g. resistance 
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ratio) between the two resistance states compared with other resistive memories. Thus, main 

application of MRAM is as a high-density, high-performance, nonvolatile embedded memory.  

The Resistive RAM (ReRAM) device in general has a metal-metal oxide structure, and 

stores data by forming a conductive filament between the device’s two electrodes, as shown in 

Fig.3.2.1. The resistance of the device is low if a conductive path is formed, and high otherwise. 

ReRAMs have the advantage of high distinguishability, multi-resistance states, and easiness to 

fabricate given their simple structure. However, they suffer from limited endurance and large 

variability due to the damaging, stochastic nature of ionic filament formation. Currently, 

ReRAMs find their main application in storage and neuromorphic/computing-in-memory 

designs where write is not frequent. 

The Phase-Change RAM (PCRAM) device composes of a phase-changing material and a 

heating element, as shown in Fig.3.2.1. It stores data as the crystalline structure of the phase-

changing material, which displays a low resistance when it is crystalline (as it allows electrons 

 

Fig.3.2.1 Structure of a 1T-1R memory cell, composing an access transistor and a memristive 

nonvolatile memory (NVM) device. There are various memristor technologies, such as MRAM, 

PCRAM, and ReRAM. A typical MRAM composes a magnetic layer-tunneling barrier-magnetic 

layer stack; a typical PCRAM composes a phase change material; and a typical ReRAM composes 

an insulating metal-oxide with a conducting metal path. The memristor is accessed by enabling the 

WL signal, which connects the memristor to the BL and SL.  
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to easily pass through); and a high resistance when it is amorphous. This phase change is 

achieved through different heating-cooling processes: rapid heating and cooling lead to an 

amorphous phase, while gradual heating/cooling results in a crystalline phase. PCRAM often 

has a high resistance ratio as ReRAM and the technology is production ready. It is believed to 

be the technology behind Intel and Micron’s 3D XPoint [172], currently available as an 

intermediate high-speed buffer between SSDs and the main memory. However, the heat-based 

write process means disturbance and gradual shifts in the device state due to thermal induced 

diffusion and migration.  

All memristive devices suffer from variation issues. In addition to that in device dimensions 

(width, length, height, shape, etc) and process nonidealities (re-deposition, smoothness, 

sidewall impact, etc), each technology has critical factors that impact its characteristics. 

MRAM resistance is exponential to small changes in its barrier thickness [173]; phase change 

to the dimensions in the heater [174], and ReRAM from traps in the device [175]. Variation 

issues worsen as device dimensions scale down since the same offset contributes to a higher 

percentage difference. At the same time, increasing the capacity of a memory array also causes 

the number of tail bits (the number of memory cells at the edge of distribution) to increase. Due 

to variation, a given read setting will experience reduced margins and read failure while fixed 

write conditions could lead to wasted energy, accumulative over-programming, and write 

failures from resistance shifts, endurance, and stuck-at faults [176]. It is thus evident that 

memory variations result in a critical challenge in AI accelerators. 

Here, we propose two methods to overcome the impact of variations: (1) the 2D calibration 

scheme, where a calibration grid is created to cancel fabrication and critical-path induced 

variations; and (2) the dual data line scheme, which mitigates the read challenges caused by 

the variations through enhancing the read signal.  

3.2 Background 
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3.2a Memory Array Architecture 

The structure of a memristor memory cell is shown in Fig.3.2.1, comprising an access 

transistor and a memristive device (1T-1R cell). One electrode of the memristive device is 

connected to the drain of the access transistor, and the other electrode to the bit line (BL). The 

gate and source of the transistor are connected to the word line (WL) and the source line (SL), 

respectively. The cell is selected by applying a voltage to WL, which turns on the access 

transistor, connecting the two terminals of the device to the BL and SL.  

The general structure of a memory macro is shown in Fig.3.2.2, which includes the main 

controller, an x- decoder (XDEC), a y-multiplexer (YMUX), Read/Write circuitry (RWD), and 

 

Fig.3.2.2 Structure of a memory macro, composing the main controller,  X-decoder, Y-multiplexer 

(YMUX), an array of memory cells, read and write (R/W) circuitry, and the input/output (I/O) 

drivers. The main controller generates control signals for each block. The X-decoder controls the 

row-wise WLs, and the YMUX connects the  column-wise BL and SLs to the R/W circuitry. The 

R/W circuitry drives the write conditions on the BL/SLs during the write operation and detects device 

states during the read operation. The IO /Drivers interface with the external circuitry. 
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an input/output interface (IO). The main controller decodes input commands such as “Read”, 

“Write”, and “Sleep”, to generate the individual control signals of each of the other blocks such 

as “Sense Amplifier Enable”, “Write Driver Enable”. The x-direction decoder selects the 

accessed row based on the address and generates the WL signals applied to the array. Likewise, 

the y-direction multiplexer selects accessed column based on the address and connects the 

selected BLs and SLs to the R/W circuitry. The R/W circuitry composes the circuitry to read 

and write the memory cells. This includes sense amplifiers that are used to detect BL and SL 

signals, thereby generating the output data during read; as well as write drivers that drives BL 

and SL to the suitable biases to overwrite the memory cells during write.  

The waveforms of a voltage-mode read operation are shown in Fig.3.2.3a. During the pre-

charge phase, the BL voltage 𝑉𝐵𝐿 is initially pre-charged to the read voltage (𝑉𝑅𝐸𝐴𝐷) and the 

 

Fig.3.2.3 Read and write waveforms of a memory array. (a) During read, the BL is pre-charged 

high and SL grounded. When the WL is turned on, the selected cell discharges the BL rapidly if 

the memristor has low resistance state (red) and slowly if the cell has high resistance (blue). The 

reference is set mid-point between the two voltage levels. (b) During write, the BL and SL signals 

are driven to provide write conditions on the selected memory cell based on the input data. For 

example, the device could be written to a low resistance state (W0) by setting BL=VDD and SL=0 

(blue); and to a high resistance state (W1) by setting BL=0 and SL=VDD (red). 
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SL/ WL are grounded. Afterward, the selected WL is asserted, turning on a discharge path from 

the floating BL through the memory cell to the grounded SL. If the selected cell is in LRS, a 

large discharge current results in a rapid dropping of the BL voltage (𝑉𝐵𝐿𝐿). In contrast, an HRS 

has a relatively small current and thus a slow decrease in the BL voltage (𝑉𝐵𝐿𝐻). 

As 𝑉𝐵𝐿 develops, the difference between 𝑉𝐵𝐿𝐿 and 𝑉𝐵𝐿𝐻 increases. When this difference is 

sufficient, a sense amplifier compares  𝑉𝐵𝐿 to a reference voltage (𝑉𝑅𝐸𝐹) to determine the output 

data. If 𝑉𝐵𝐿  is larger than 𝑉𝑅𝐸𝐹 , the output data is determined as 1, and 0 otherwise. The 

reference is often chosen to be (𝑉𝐵𝐿𝐿 +𝑉𝐵𝐿𝐻)/2 so that the maximum sensing margin (𝑉𝑀 =

𝑉𝐵𝐿 − 𝑉𝑅𝐸𝐹) can be achieved for both states. The 𝑉𝐵𝐿 development time needs to ensure that 

𝑉𝑀 can cover the offset of the sense amplifiers for a successful read operation. Normally, 𝑉𝑀 

is chosen to be at least 50mV or 100mV.  

Fig.3.2.3b shows the waveforms during a write operation. During a write operation, the WL 

of the selected row is first asserted by the x-decoder circuit. Subsequently, the BLs and SLs are 

driven by the write drivers to deliver the write conditions (e.g. write voltage, time, and current) 

to the selected cell based on the input data.  

 

3.2b Variation Sources 

 

Variation caused by Fabrication 

Nonidealities during fabrication often lead to a spatial distribution of device characteristics 

along the wafer. These spatial distributions form patterns related to specific processing steps, 

which include [177]–[179]: 

(1) Ring patterns (Fig.3.2.4a), where fabrication characteristics are proportional to its radial 

distance from the center of the wafer. These patterns are often caused by deposition, 

chemical-mechanical polishing (CMP), and their associated corrections.  
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(2) Edge patterns (Fig.3.2.4b), where characteristics shift towards the edge of the wafer. 

These patterns are often associated with batch cleaning or abnormal temperatures 

during annealing.  

(3) Checkerboard patterns (Fig.3.2.4c), where characteristics alternate between peaks. This 

is often caused by mask misalignment during lithography or pinned defects. 

(4) Random variations, caused by stochastic processes, fluctuations, defects, and particles 

during fabrication (not shown). 

Variation caused by Critical Path 

In the conventional layout of a memory macro (Fig.3.2.5a), word line (WL) drivers are 

located adjacent to the array, with the main control sitting below it. The read and write (R/W) 

circuitry is situated on the adjacent side of the array, perpendicular to the WL drivers. The 

delay of the critical path when accessing a memory cell consists of (a) the path from the main 

control to the selected WL driver, (b) the path from the selected WL driver to the addressed 

cell, and (c) the path from the addressed cell to the R/W circuitry.  

The delay from the main controller to the selected WL driver is proportional to the access 

row address. WL drivers closer to the main control will receive a faster, sharper pulse while 

 

Fig.3.2.4 Common wafer variation patterns, (a) ring patterns caused by deposition and chemical-

mechanical polishing, (b) Edge patterns associated with annealing, and (c) checkerboard patterns 

caused by misalignment. Blue colors indicate a characteristic (such as thickness of a material) shift 

towards lower values, while red colors indicate a shift towards higher values [177-179]. 

(a) Ring Pattern (c) Checkerboard Pattern(b) Edge Pattern a.u.
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drivers further from the controls will receive pulses that experience RC low-pass filtering. The 

delay from the WL driver to the addressed cell is proportional to the accessed column, as the 

WL pulse arriving at the cell is affected by its distance to the WL drivers. Due to the 

contributions from these two delays, the memory cell furthest from the main control (top right), 

experiences the longest delay for the WL signal. A heat map of the WL Elmore delay (a RC 

delay model) is shown in Fig.3.2.5b.  

 

Fig.3.2.5 Delay variations caused by critical path. (a) the memory access path during read and write 

operations. The WL pulse (blue) goes through the decoder and the driver before arriving at the cell. 

Cells closer to bottom left has lower delay. The BL access is dependent of the distance to the drivers, 

where cells closer to the bottom of the array has faster delay. (b) heatmap of the WL access path, 

and (c) heatmap of the BL access path 
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The delay from the addressed cell to the R/W circuitry is proportional to the accessed row: 

once the WL of the selected cell is enabled, the BLs are driven depending on the operation 

received. For a read operation, the BL discharge speed through the memory cell is proportional 

to the total resistance-capacitance path from the read circuitry to the ground. As a result, the 

read signal experiences additional delay when accessing cells on the top row. A heat map of 

the BL Elmore delay is shown in Fig.3.2.5c [180]. During a write operation, the write 

conditions received at the target cell are also proportional to the distance from the write 

circuitry to the cell. Write conditions received at cells furthest from the drivers experiences the 

most amount of degradation.  

Of course, the specific design and layout of the memory macro will also contribute to other 

critical-path delay components.  

 

3.3 The 2D Calibration Scheme 

Calibration is often used to compensate for different variations. In practice, slower chips 

can be compensated by allowing longer write times or higher write voltages. The calibration 

of individual sense amplifiers (ex. offsets, references) and write drivers (ex. driving current) 

provides a finer granularity and reduces local CMOS variation to a certain extent [181], [182]. 

Configurable replicas can be used to track the global variation, column capacitances, and 

control signal timing [183]–[185]. In a tangential approach, parallel drivers and shortcut 

routing reduce the parasitic effects along long buses [186]. Nevertheless, none of these methods 

fully address variations on the critical path and none address chip-level gradients. On the other 

hand, the proposed 2-dimensional (2D) calibration scheme can successfully address both 

variation sources by interjoining row and column level calibrations to form a correction grid at 

each cross-point in the memory array (as detailed in Sec.3.3a). Compared to previous 
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calibration schemes, the post-calibration variability can be reduced by up to 99% in common 

variation patterns.  

 

3.3a 2D Calibration Scheme 

Our 2D calibration scheme takes advantage of a design in which the signal at a crosspoint 

(𝑆𝑋,𝑌) is the sum or difference of the corresponding row signal (𝑆𝑌) and column signal (𝑆𝑋), i.e.   

𝑆𝑋,𝑌 = 𝑆𝑋 ± 𝑆𝑌. In this design, the calibration of the rows (𝑆𝑌
′ = 𝑆𝑌 + ∆𝑌) and columns (𝑆𝑋

′ =

 

Fig.3.3.1 Illustration of the 2D calibration scheme. (a) the 2D calibration scheme is based on a 

design in which a crosspoint signal is the sum of the row and column signals. (b) Calibration of the 

WL delay map where the pre-calibration delays, displayed in red, range between 0 to 4 time units 

(such as nanoseconds). The 2D calibration values are displayed adjacent to the array, and post-

calibration delays are displayed in each cell in blue. It can be observed that after calibration, the 

entire array is accessed with the same delay. If design allows, the calibration values can be shifted 

for a reduced delay in addition to uniformity, as displayed in green. (c) 2D calibration of an edge or 

ring pattern, with increasing values in the column and row directions. (d) 2D calibration of a 

checkerboard pattern, with alternating values between rows and columns. 



63 
 

𝑆𝑋 + ∆𝑋) composes a 2-dimensional grid in which the signal at each crosspoint is corrected by 

the joint contribution of the row and column calibration signals, i.e. 𝑆𝑋,𝑌
′ = 𝑆𝑋+𝑆𝑌 + ∆𝑋+∆𝑌. 

This is illustrated in Fig.3.3.1a.  

Such a calibration grid can cancel a large diversity of spatial patterns effectively. In 

Fig.3.3.1b, we show an example of canceling a WL Elmore delay pattern with variation 

between 0 time units (which could be nanoseconds) for the fastest cell on the bottom left to 4 

units for the slowest cell on the top right. WLs closer to the main control are calibrated with 

increasing delay (displayed in blue), from a +0 time unit delay at the furthest WL to an 

additional +2 time unit delay on the closest WL. Similarly, BLs closest to the main control are 

delayed by +2 time units and the furthest by +0 time units. The post-calibration results show a 

uniform delay of +4 time units across the entire array, demonstrating the effectiveness of the 

2D calibration scheme. If the design allows calibrating using negative values (such as designs 

in which WL pulses can arrive early), the calibration values can be linearly shifted to improve 

 

Fig.3.3.2 Algorithm to find calibration values. 1D calibration extracts read and write characteristics 

of each row and computes the calibration value from its distribution, usually by finding the max 

range or average of the values. 2D calibration repeats this process one additional time at each row 

after 1D calibration.  

Obtain Write/Read characteristics of each 
row

Calibrate with the max or average of 
characteristics

Obtain Write/Read characteristics of each 
column after row calibration

Calibrate with the max or average of 
characteristics

1D Calibration

2D Calibration
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the performance of the array, as displayed in green in Fig.3.3.1b. Rows are calibrated with 

values from -1 to +1 time units and columns from -1 to -3 time units, allowing all cells in the 

array to be accessed with 0 delay.  

Other common fabrication patterns of delay variation can be calibrated as follows: Edge and 

ring-like patterns can be calibrated with increasing/decreasing values in the direction of the 

gradient (Fig.3.3.1c). Checkerboard patterns can be calibrated via interleaving high and low 

values in both the column and row directions (Fig.3.3.1d). A combination of patterns can be 

achieved via a superposition of the calibration values corresponding to each pattern.  

The algorithm to find calibration values for the 2D calibration scheme is shown in Fig.3.3.2. 

It follows the same steps as conventional calibration algorithms: (1) detecting characteristics 

of cells, then (2) calibrating via the average or max amount of variability. The global calibration 

applies this at the macro level while the 1D calibration does this at the column level. The 2D 

calibration adds an additional row-level calibration step after the column-wise calibration, e.g., 

after the column-level calibration, the post-calibration characteristics of each row are obtained 

to compute the row-level calibration values. This overhead is necessary only once during each 

calibration, usually during chip testing.   

3.3b Circuit Implementation 

Traditional non-overlapping control signals do not necessarily allow a crosspoint signal to 

be the sum or difference of the row and column signals. In this section, we address the circuit 

implementation of the 2D calibration scheme. Specifically, we demonstrate the modifications 

to traditional designs necessary to enable 2D calibration of delay.  

The modification for write operation with 2D calibration is shown in Fig.3.3.3a. In the 

conventional write operation, the row WL and column BL signals are nonoverlapping. The 

write time of the device (𝑡𝑤) is determined purely by the BL pulse timing, e.g. the difference 

between the BL pulse start time (𝑡𝐵𝐿𝑆) and the BL pulse end time (𝑡𝐵𝐿𝐸). Adjusting the WL 
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timing does not affect the write time of the device. Therefore, the calibration of the write pulse 

can only be done by a change in the BL pulse by ∆𝑡𝐵𝐿. For 2D calibration, we intersect the BL 

and WL signals such that the write time is enabled by WL and ends through BL, e.g., the write 

time is the difference between the WL start time 𝑡𝑊𝐿𝑆 and the BL end time 𝑡𝐵𝐿𝐸. In this design, 

a change in the WL timing 𝑡𝑊𝐿𝑆 by ∆𝑡𝑊𝐿 and a change in the BL timing 𝑡𝐵𝐿𝐸 by ∆𝑡𝐵𝐿 will result 

in the write pulse being changed by (∆𝑡𝑊𝐿 + ∆𝑡𝐵𝐿). The values for each ∆𝑡𝑊𝐿 and ∆𝑡𝐵𝐿 can be 

obtained using the algorithm in Fig.3.3.2. 

 

Fig.3.3.3 Read and write design modifications for the 2D calibration. (a) The conventional write 

waveforms (top) and the 2D calibration write waveforms (bottom). The write pulse for traditional 

write is enabled entirely by the BL. As a result, the voltage pulse received at the cell, VCELL, is 

solely determined by the BL pulse. On the other hand, the write pulse of the 2D calibration scheme 

is enabled (started) by the WL and disabled (ended) by the BL. This allows the write pulse received 

at the cell to have the joint contribution of the BL and the WL calibrations. (b) The conventional 

read waveforms (top) and the 2D calibration read waveforms (bottom). The read time for the 

traditional read is enabled entirely by the WL. On the other hand, the read time of the 2D calibration 

scheme is enabled by the WL and disabled by the Sense Enable (SE) signal. This allows the read 

time of a cell to have the joint contribution of the WL and SE calibrations.  
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 The modification of a read operation with 2D calibration is shown in Fig.3.3.3b. In the 

conventional read operation, the row WL signal and the column sense amplifier enable (SE) 

signals are nonoverlapping. Therefore, the read development time is determined solely by the 

WL timing. To enable 2D calibration read, the read operation is enabled by the WL start time 

𝑡𝑊𝐿𝑆, and sampled at the SE start time 𝑡𝑆𝐸𝑆. In this setting, a change in 𝑡𝑊𝐿𝑆 by ∆𝑡𝑊𝐿 and a 

change in 𝑡𝑆𝐸𝑆 by ∆𝑡𝑆𝐸 will result in the read time being changed by ∆𝑡𝑊𝐿 +  ∆𝑡𝑆𝐸.  

These circuit modifications can be easily extended for voltage and current calibrations in a 

similar sense. The drawback is that the overhead for generating granulated voltage and current 

steps is usually much higher than generating temporal steps. Another challenge is that the 

voltage on each memory device is directly affected by the BL and SL voltage, but indirectly 

affected by the WL voltage. A nonlinear mapping or a horizontal-SL-vertical-BL array 

structure may be necessary for 2D calibration of voltage or current.  

 

3.3c Simulation Results 

We demonstrate the performance of the 2D calibration scheme on a 256x256 1T1R array in 

28nm technology. Parasitic capacitances and resistances are extracted via parasitic extraction 

(PEX) from the center cell of a 3x3 layout with WLs running on horizontal Metal3 and BLs/SLs 

running on the vertical Metal 2. For fabrication variations, we take the highest-varying regions 

in the ring, edge, and checkerboard patterns, and allow device resistance variation up to 10% 

across the array [187]. The gradient direction is selected such that the fabrication and access 

path contributions sum to create the worst-case variation condition, as shown in Fig.3.3.4a. For 

the global, 1D, and 2D calibration schemes, we plot the post-calibration Elmore delay in  

Fig.3.3.4b-d and report the post-calibration statistics (mean value of the variation 𝑣𝑎𝑟𝑚𝑒𝑎𝑛, 

maximum value of the variation 𝑣𝑎𝑟𝑚𝑎𝑥, and standard deviation of the variation 𝑣𝑎𝑟𝑠𝑡𝑑) of 

each calibration method in the corresponding figures.  
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 While global calibration can overcome wafer-level variations, it fails to address variations 

across the array. An obvious contribution of the WL and BL access path with additional shifts 

from fabrication gradients can be observed in all three patterns. The 1D calibration achieves a 

 

Fig.3.3.4 Performance of global, 1D, and 2D calibrations on various wafer patterns. (a) The three 

common wafer patterns: ring, edge, and checkerboard patterns. A resistance variation up to 10% is 

allowed across the array. (b) Post-calibration delay distribution of global calibration. Legend 

numbers show the max, mean, and standard deviation of the delay. Contributions of the WL access 

path and the wafer pattern remain visible. (c) Post-calibration delay of the 1D calibration. Most 

inter-column variations are cancelled, while row-wise variations remain. (d) Post-calibration delay 

of the 2D calibration, with >90% improvement over 1D calibration (a) and global calibration (b) 

across all patterns. 
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~20% reduction in 𝑣𝑎𝑟𝑚𝑎𝑥 compared to global calibration across different wafer patterns, but 

only a small improvement in 𝑣𝑎𝑟𝑚𝑒𝑎𝑛. The 1D calibration can greatly reduce column-wise 

variation, but row-wise variations remain. The 2D calibration successfully cancels the majority 

of variation patterns and significantly reduces the variation across the array. Compared to the 

global calibration, the 2D calibration reduces 𝑣𝑎𝑟𝑚𝑎𝑥 by 98%, 99%, and 94% for the ring, edge, 

and checkerboard patterns, respectively, and 𝑣𝑎𝑟𝑚𝑒𝑎𝑛 by 99%, 99%, and 98%. Compared to 

the 1D calibration, the 2D calibration reduces the 𝑣𝑎𝑟𝑚𝑎𝑥 by 97%, 98%, and 93%; and 𝑣𝑎𝑟𝑚𝑒𝑎𝑛 

by 99%, 99%, and 98%. 

 A drawback of the 2D calibration is that it requires twice the number of calibration bits as 

the 1D calibration. Therefore, a comparison of the calibration efficiency, e.g., calibration 

performance with respect to the number of calibration bits (𝑛𝑐𝑎𝑙) is necessary. Fig.3.3.5 shows 

the performance of each calibration scheme as a function of 𝑛𝑐𝑎𝑙.  We assume that the available 

calibration values are evenly distributed between the maximum and minimum delays 

(𝑑𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛), with a step size of (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)/2𝑛𝑐𝑎𝑙 . We observe that 𝑣𝑎𝑟𝑚𝑒𝑎𝑛 of the global 

calibration shows a small improvement with 𝑛𝑐𝑎𝑙 as it only uses a single calibration value. We 

also observe that the calibration settings for the lowest 𝑣𝑎𝑟𝑚𝑒𝑎𝑛  does not necessarily 

correspond to that for lowest 𝑣𝑎𝑟𝑚𝑎𝑥 , as 𝑣𝑎𝑟𝑚𝑒𝑎𝑛  depends on the entire distribution 

while𝑣𝑎𝑟𝑚𝑎𝑥  depends on the worst-case value. For 1D calibration, 𝑣𝑎𝑟𝑚𝑒𝑎𝑛  improves with 

𝑛𝑐𝑎𝑙, but saturates above 𝑛𝑐𝑎𝑙 = 4 with a post-calibration variation of 19ps. A similar effect is 

observed in 𝑣𝑎𝑟𝑚𝑎𝑥, where a small improvement is observed above 𝑛𝑐𝑎𝑙 =6.  

On the other hand, the 2D calibration steadily improves 𝑣𝑎𝑟𝑚𝑒𝑎𝑛  and 𝑣𝑎𝑟𝑚𝑎𝑥  with 

increasing 𝑛𝑐𝑎𝑙. Across different values of  𝑛𝑐𝑎𝑙, 𝑣𝑎𝑟𝑚𝑒𝑎𝑛 is reduced from 12.15ps at 𝑛𝑐𝑎𝑙 = 1 

down to 0.25ps at 𝑛𝑐𝑎𝑙 = 10. Comparing 1D and 2D calibration at the same 𝑛𝑐𝑎𝑙 = 1, the 2D  

calibration reduces 𝑣𝑎𝑟𝑚𝑎𝑥  by 35% and the 𝑣𝑎𝑟𝑚𝑒𝑎𝑛  by 41 %. Comparing the 1D and 2D 
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calibration schemes under the same overhead (i.e. 1D calibration with 𝑛𝑐𝑎𝑙 = 2  and 2D  

calibration with 𝑛𝑐𝑎𝑙 = 1), 2D calibration reduces the maximum variation by 27% and the 

average variation by 39%.  

As mentioned earlier, the 2D calibration forms a calibration “grid”, as compared to the 1D 

calibration which form column-wise  “lines”. This grid is more observable when there is a 

limited number of quantized calibration values. For example, Fig.3.3.6 shows the distribution 

of post-calibration delay in the array with 𝑛𝑐𝑎𝑙 = 4, where the 2D calibration grid is clearly 

visible. 

 

Fig.3.3.5 Performance of different calibration methods with respect to the number of calibration 

bits 𝑛𝑐𝑎𝑙. (top) the maximum variation 𝑣𝑎𝑟𝑚𝑎𝑥, and (bottom) the mean variation 𝑣𝑎𝑟𝑚𝑒𝑎𝑛. The 

performance of Global and 1D calibration both improve with 𝑛𝑐𝑎𝑙, but plateaus above a certain 

number of bits. 2D calibration outperforms both methods and continues to decrease variation across 

the array with higher 𝑛𝑐𝑎𝑙.  
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 The simulated BL voltage waveforms with and without 2D calibration are shown in 

Fig.3.3.7. We display the waveforms of memory cells with the largest variation in delay during 

access as waveforms of all other cells will reside between them, e.g. cells at the four corners of 

the 256x256 array: cell[0,0], cell[0,255], cell[255,0], and cell[255,255]. The memory cells have 

a low resistance of 2k and high resistance of 10k, and the access delay is calibrated at a target 

read time of 150ps. The 2D calibration significantly improves the read performance. For 

example, to reach a 50mV margin, the read time can be reduced by 40% from 250ps to 150ps 

while for the same read time of 250ps, the margin can be improved by over 50%.  

A summary of different calibration schemes is shown in Table 3.3.I. With 𝑛𝑐𝑎𝑙 = 4, the 1D 

calibration requires an overhead of 1.28% (e.g., 4 calibrations bits per column of 256 bits with 

an array efficiency of 80%) and provides a calibration improvement (characterized by the max,  

mean, and standard deviation in the delay variation) of ~10% compared to global calibration. 

The 2D calibration uses twice the amount of calibration bits as 1D calibration, resulting in a 

2.56% area overhead. However, it provides a significantly larger improvement in calibration 

performance by between 800%~1000%. 

 

Fig.3.3.6 A post-calibration heatmap of 2D calibration with  𝑛𝑐𝑎𝑙 = 4. Under a limited amount of 

calibration values, the 2D calibration grid acting upon the original variation pattern is observable. 

This grid is in contrast with the 1D calibration, where column-wise calibration forms “lines” instead. 

The 2D calibration results are often best in the center of each grid location.  

(6.53, 1.86, 1.31)

Cell Location

(MAX, MEAN, STD)
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Fig.3.3.7 BL waveforms of the worst-case cells during read (a) without calibration, and (b) with 2D 

calibration. The 2D calibration targets the read condition of 50mV read margin. For this amount of 

margin, the 2D calibration achieves a reduction in read time from 250ps to 150ps. Given the same 

read time, the 2D calibration improves the read margin by over 50%.  

Table 3.3.1. Performance and overhead of different calibration schemes 

. 
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3.4 The Dual-Dataline Sensing Scheme 

In contrast to compensating for variation, the dual-data line (DDL) sensing scheme 

alleviates variation-induced read challenges by improving the read signal (thereby improving 

the circuit tolerance to variation) instead. This is achieved by reusing read current from the bit 

line (BL) during read to create a differential voltage swing on the source line (SL) and 

combining the two to create a larger sensing signal. This increased signal provides several 

advantages: for the same amount of margin, the sensing time is reduced, allowing for lower 

energy and higher speed; while for the same sensing time, the margin is increased, improving 

the reliability of the read operation. We then show circuit modifications to the traditional and 

offset-canceling sense amplifiers to utilize the differential signals of DDL. Simulation results 

show that the sensing time and energy can be reduced by 47% and 48%, respectively, given 

the same sensing margin requirement; or under the same sensing time, the sensing margin can 

be increased by 86%.  

 

3.4a Dual-Dataline Sensing Scheme 

An illustration of the DDL sensing scheme is shown in Fig.3.4.1. Instead of grounding the 

SL during the read operation, the DDL scheme pre-discharges SL by connecting it to ground 

only during the pre-charge phase, then leaves it floating as the BL begins to develop. In this 

design, the current that is discharging the BL will charge the SL, resulting in a similar 

differential voltage swing on SL. The voltage difference between 𝑉𝐵𝐿 and 𝑉𝑆𝐿 (i.e. 𝑉𝐵𝐿−𝑉𝑆𝐿) is 

applied to a sense amplifier, which sums the contribution of the two voltage swings and 

compares it with a reference to generate the output. The waveforms during the read operation 

are shown in Fig.3.4.1b. If the selected cell is in LRS, a large cell current causes a rapid 

discharge of the BL and a fast charge of the SL (𝑉𝐵𝐿_𝐿𝑅𝑆 and 𝑉𝑆𝐿_𝐿𝑅𝑆). Conversely, a cell in an 
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HRS state results in a small cell current, and the BL/ SL voltages discharges/ charges slowly 

(𝑉𝐵𝐿_𝐻𝑅𝑆 and 𝑉𝑆𝐿_𝐻𝑅𝑆).  

The theoretical performance improvement of the DDL scheme can be obtained through 

passive circuit analysis. Without loss of generality, we make the following assumptions in the 

analysis: (1) the resistance of the memory cell selected is constant during the read operation, 

(2) the resistance of the access transistor is small (<0.1x) compared to that of the memristor, 

and (3) the BL/SL voltages do not saturate (i.e. approach a steady-state value) during the read 

process. These approximations are justified for a small voltage swing on the BL, which is 

usually desired during read.  

 

Fig.3.4.1. Illustration of the DDL scheme. (left) Read current path and (right) read waveforms. In 

the conventional design, the BL is pre-charged and SL grounded. During read, the floating BL 

discharges through the memory cell. Reading a memory cell with high resistance (HRS, blue) 

discharges the BL slower, while a cell with low resistance (LRS, red) would discharge the BL faster. 

A reference cell (REF, black) would create a reference signal with a discharge speed between HRS 

and LRS. The read margin (VM) is equal to the difference between the HRS or LRS signals and the 

REF signal. In the DDL scheme, the BL is pre-charged and SL pre-discharged. During read, the BL 

discharges through the memory cell while the SL charges by the discharge current, resulting in a 

differential swing on the BL and SL.  
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In the conventional voltage-mode read operation, the BL voltage follows an RC discharge 

with the memory cell resistance and the BL capacitance:  

𝑉𝐵𝐿_𝐶𝑂𝑁𝑉(𝑡) = 𝑉𝑅𝐸𝐴𝐷𝑒
−𝑡

𝑅𝐶𝐸𝐿𝐿𝐶𝐵𝐿    … 𝐸𝑞. 3.4.1      

Where 𝑉𝐵𝐿_𝐶𝑂𝑁𝑉 is the BL voltage during the conventional read operation, 𝑉𝑅𝐸𝐴𝐷 iis the BL 

precharge voltage, 𝑅𝐶𝐸𝐿𝐿  is the resistance of the accessed memory cell, and 𝐶𝐵𝐿  is the BL 

capacitance. The optimal read margin ( 𝑉𝑀_𝐶𝑂𝑁𝑉) is half of the BL voltage difference between 

reading an HRS cell and an LRS cell, i.e.  

  𝑉𝑀_𝐶𝑂𝑁𝑉(𝑡) = 0.5𝑉𝑅𝐸𝐴𝐷 (𝑒
−𝑡

𝑅𝐻𝐶𝐵𝐿 − 𝑒
−𝑡

𝑅𝐿𝐶𝐵𝐿) … 𝐸𝑞. 3.4.2  

Where 𝑅𝐿 is the resistance of a LRS cell, 𝑅𝐻 is the resistance of a high resistance cell, and 

𝑉𝑀_𝐶𝑂𝑁𝑉  is the read margin. In the DDL read operation, the BL and SL voltages can be 

described as an RC discharge and charge towards the equilibrium charge redistribution:  

 𝑉𝐵𝐿_𝐷𝐷𝐿(𝑡) = 𝑉𝑅𝐸𝐴𝐷 (
𝐶𝑋

𝐶𝑆𝐿
+

𝐶𝑋

𝐶𝐵𝐿
𝑒

−𝑡

𝑅𝐶𝐸𝐿𝐿𝐶𝑋)   … 𝐸𝑞. 3.4.3   

𝑉𝑆𝐿_𝐷𝐷𝐿(𝑡) = 𝑉𝑅𝐸𝐴𝐷
𝐶𝑋

𝐶𝑆𝐿
(1 − 𝑒

−𝑡

𝑅𝐶𝐸𝐿𝐿𝐶𝑋)     … 𝐸𝑞. 3.4.4   

where 𝐶𝑋 = 𝐶𝐵𝐿𝐶𝑆𝐿 (𝐶𝐵𝐿 + 𝐶𝑆𝐿)⁄  is the serial capacitance of 𝐶𝐵𝐿  and 𝐶𝑆𝐿 . When 𝐶𝐵𝐿 ≈ 𝐶𝑆𝐿, the 

optimal DDL margin  𝑉𝑀_𝐷𝐷𝐿, defined as half the difference in (𝑉𝐵𝐿 − 𝑉𝑆𝐿) between reading an 

HRS cell and an LRS cell, is given by  

𝑉𝑀_𝐷𝐷𝐿(𝑡) = 0.5𝑉𝑅𝐸𝐴𝐷 (𝑒
−2𝑡

𝑅𝐻𝐶𝐵𝐿 − 𝑒
−2𝑡

𝑅𝐿𝐶𝐵𝐿 )     … 𝐸𝑞. 3.4.5  

Comparing Eq.3.4.2 and Eq.3.4.5, we find that the DDL scheme can achieve the same amount 

of margin as the conventional method with half the BL development time.  

Eq.3.4.3 and Eq.3.4.4 show that the improvement from the DDL scheme will differ under 

different BL and SL loadings. If the SL has a relatively small loading compared to the BL, the 

voltage swing on SL will be larger than that of the BL. The improvement from the DDL scheme 
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improvement increases to above 2x compared to conventional sensing. On the other hand, if 

SL has a relatively large loading, the swing on the SL will be smaller than that on the BL, and 

the improvement of the DDL will reduce to between 1x~2x. Nevertheless, the DDL scheme 

will always outperform the conventional scheme.   

The energy consumed during a read operation is the energy necessary to pre-charge the BL 

voltage:  

𝐸𝑅𝐸𝐴𝐷 = 𝐶𝐵𝐿𝑉𝑅𝐸𝐴𝐷(𝑉𝑅𝐸𝐴𝐷 − 𝑉𝐵𝐿)     … 𝐸𝑞. 3.4.6    

 

Fig.3.4.2. Sense amplifier designs to utilize the DDL scheme. The original sense amplifier is 

displayed in black, and the modifications in red. (a) directly adding a pair of pull-down transistors 

as the second pair of inputs, (b) using initial values to nodes along the sensing path as the second 

pair of inputs, (c) adding a pull-up evaluation path in addition to the original pull-down path, and 

(d) storing the inputs in capacitors and using coupling to sum the signals. 
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Since the DDL only requires half the BL swing for the same amount of margin, a ~50% energy 

reduction is achieved for the same margin. These first-order approximations agree with the 

simulation results in Section 3.4c.  

3.4b Circuit Implementation 

Traditional sense amplifiers (SA) can only compare a single signal (e.g., 𝑉𝐵𝐿) to a single 

reference (e.g., 𝑉𝑅𝑒𝑓𝐵𝐿). To incorporate the DDL scheme, the sense amplifier (SA) needs to be 

able to take in the differential signals 𝑉𝐵𝐿 and 𝑉𝑆𝐿, and compare (𝑉𝐵𝐿 − 𝑉𝑆𝐿) with (𝑉𝑅𝑒𝑓𝐵𝐿 −

𝑉𝑅𝑒𝑓𝑆𝐿). We show several approaches to achieve this via modification of conventional SAs in 

Fig.3.4.2. The modified SAs have inputs N+, N-, P+, and P-, connected to 𝑉𝐵𝐿, 𝑉𝑆𝐿, 𝑉𝑅𝑒𝑓𝐵𝐿 and 

𝑉𝑅𝑒𝑓𝑆𝐿, respectively. The output of the SA is differential signals O and OB.  

Fig.3.4.2a shows an implementation of the sense amplifier by directly adding an additional 

input pair of NMOS inputs (displayed in red). The pull-down path for node OB is driven by 

N+ and P-, while that of node O is driven by N- and P+. The advantage of this design is its 

simplicity and matching input pairs. However, as 𝑉𝐵𝐿 and 𝑉𝑆𝐿 have different DC voltage levels 

(the former pre-charged to 𝑉𝐷𝐷 and the latter to 𝑉𝑆𝑆), their effects on the pull-down path are 

asymmetric. In particular, 𝑉𝑆𝐿  needs to exceed the threshold voltage of the NMOS input 

transistors to activate the input. 

Fig.3.4.2b shows an implementation where the output nodes are used as the second pair of 

inputs. In this design, the outputs O and OB are initially connected to N- and P-. The pulldown 

path of O is driven by P+, while that of OB is driven by N+. When the sense amplifier is 

enabled, the output is the result of comparing “N- discharged by P+” and “P- discharged by 

N+”. Compared to the design of Fig.3.4.2a, this method does not add additional transistors on 

the sensing path and thus has a smaller impact on the original design. However, the addition of 

switches in the SA necessitates additional control signals and suffers from dynamic coupling 
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noise. In addition, each input node also has voltage-level limitations. This concept can also be 

extended to other nodes on the sensing path, such as nodes X and XB for inputs. 

Fig.3.4.2c adds an additional pull-up path to evaluate P- and N-. The advantage of this 

configuration is that for the default DDL design in which 𝑉𝑆𝐿 is pre-discharged and 𝑉𝐵𝐿 pre-

charged, all input transistors are fully turned on. The drawback is that the PMOS inputs may 

have considerably different characteristics (variation, mobility, threshold, etc.) than the NMOS 

input.  

 

Fig.3.4.3. The RS-SA featuring offset cancellation and on-off boundary operation (Figure adopted 

from [190]). The read operation composes four phases: In phase 1, the BL develops and is sampled 

into capacitors via nodes DAG/DAGB. In phase 2, the offset of the amplifier is sampled into the 

capacitors. At the same time, the comparison transistors (M1, M2) are set to operate at the on-off 

boundary via nodes DC/DCB. In phase 3, DAG/DAGB are coupled to VSS, causing the input pair 

to operate in different regions: saturation and subthreshold for the higher and lower inputs, 

respectively. The difference is amplified to generate the sensing result. In phase 4, the output is 

latched. The DDL scheme can be adopted by connecting the negative boosters to SL and RefSL 

instead of VSS in phase 3 and 4, as displayed in red in the schematic. 

SLRefSL
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Fig.3.4.2d shows an adaptation of the DDL scheme by capacitively coupling the swings of 

N+ and P+ to that of N- and P- for summation. One pre-charge transistor, a capacitor, and two 

switches are added to each input of the original SA. One node of the capacitor (nodes x+ and 

x-) is connected to the input of the conventional sense amplifier, and the other node (node y+/y-) 

is switched between 𝑉𝐵𝐿 and 𝑉𝑆𝐿. Initially, node x is precharged to 𝑉𝐷𝐷, and node y is connected 

to BL. A voltage difference of (𝑉𝐷𝐷- 𝑉𝐵𝐿) is stored across the capacitor. When SAEN is enabled, 

node x becomes floating while node y is switched to 𝑉𝑆𝐿. Since the voltage across the capacitor 

stays constant, node x couples to (𝑉𝑆𝐿 + 𝑉𝐷𝐷 − 𝑉𝐵𝐿). This design has advantages including (1)  

𝑉𝑆𝐿  and 𝑉𝐵𝐿  have symmetric effects on the input, (2) the working input voltage range is 

significantly larger, and (3) The capacitors can further utilized to cancel offsets of the SA. The 

disadvantage of this approach is the large area and crosstalk issues during the coupling process.  

The design and optimization of the SA structure depend on the resistance characteristics of 

the employed device and the read voltage level. The tradeoff between the different designs in 

Fig.3.4.2 can be used in the development of a new SA to fully utilize the benefits of DDL. For 

example, the DDL scheme can be combined with offset canceling or margin enhancing 

amplifiers [80], [188], [189] to achieve additional improvement in performance. One particular 

SA that can directly incorporate and benefit from the DDL scheme is the Region-Splitter Sense 

Amplifier (RS-SA) shown in Fig.3.4.3 [190]. The RS-SA uses the mechanism of Fig.3.4.2d, 

and additionally features (1) storing the offset of the amplifier in the capacitor, and (2) operates 

at the on-off boundary of the pulldown transistors. The DDL scheme is incorporated by 

connecting the negative boosters (M3 and M4) to SL and RefSL instead of VSS. With this 

simple modification, the DDL scheme halves the sensing time of the RS-SA. 

 

3.4c Simulation Results 
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To verify the performance of the DDL scheme, we again compose the critical path of a 1T1R 

memory array with layout-extracted parasitics in 28nm. We adopt the sense amplifier of 

Fig.3.4.2d  and set 𝑉𝑅𝐸𝐴𝐷 to 1V.  

Fig.3.4.4 presents the sensing margin waveform of the DDL scheme and the conventional 

sensing scheme, using a device with 𝑅𝐿=50kΩ and a resistance ratio of 3 [85]. The sensing 

margin for successful sensing is set to 2𝑉𝑀_𝐶𝑂𝑁𝑉 = 100𝑚𝑉  for the conventional read 

operation. The time necessary for 𝑉𝐵𝐿 to develop such a margin is 𝑡𝐶𝑂𝑁𝑉_100𝑚𝑉. With the DDL 

scheme, a 75% larger sensing margin (175mV) is achieved at 𝑡𝐶𝑂𝑁𝑉. For the same target margin 

(2𝑉𝑀_𝐷𝐷𝐿 = 100𝑚𝑉), the DDL scheme reduces the BL development time by 47%.  

Fig.3.4.5(a) shows the margin improvement of the DDL scheme for various memory 

technologies, each with different low/high resistance values (𝑅𝐿, 𝑅𝐻) and resistance ratios (R-

ratio=𝑅𝐻/𝑅𝐿). MTJs typically have an R-Ratio between 2-3 and 𝑅𝐿 in the range of a few kΩ for 

STT-MRAMs and 50~100 kΩ for MeRAMs. ReRAM and PCRAM usually have 𝑅𝐿 resistance 

between 10 kΩ~100 kΩ and R-Ratios between 10~100. To compare sensing time and margins 

on the same scale, we rescale the BL loading of each 𝑅𝐿 value so that the time constants are 

 

Fig.3.4.4. Read margin as a function of BL development time. For the same 100mV margin target, 

the DDL scheme can reduce sensing time by 46% or increase margin by 75%. 
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identical. The DDL scheme achieves an average margin improvement of 69%, 89%, and 91% 

for R-ratios of 2, 10, and 100, respectively. For different 𝑅𝐿of 2k, 10k, and 100k, an average 

margin improvement of 92%, 88%, and 78% can be observed. The margin improvement of the 

 

Fig.3.4.5. (a) Read margin and (b) sensing time as a function of 𝑅𝐿 and R-Ratio. BL capacitances 

𝐶𝐵𝐿 are scaled so that the time constant for each resistance is the same. The margin improvement 

increases and approaches 2x for higher R-Ratios. On the other hand, the sensing time improvement 

is independent of resistance value or R-Ratio and shows a ~50% improvement. 
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DDL scheme approaches 2x with a higher R-ratio, in which the exponential decay in Eq.3.4.2 

and equation Eq.3.4.5 can be approximated by a linear function.  

Fig.3.4.5(b) presents the sensing time (i.e., the time to reach 𝑉𝑀 = 100𝑚𝑉) under different 

memory technologies. The sensing time shows an improvement with a higher R-ratio but 

saturates above R-ratio=10 as the 𝑅𝐿  and 𝑅𝐻  current difference stays relatively constant. 

Compared to Fig.3.4.5(a), where the margin improvement depends on the resistance and R-

ratio, the DDL achieves a technology-agnostic 50% reduction in sensing time as predicted by 

our theoretical analysis in section 3.4a.  

Fig.3.4.6 presents the sensing energy of the DDL scheme compared to the conventional 

scheme. The sensing energy is extracted as the total energy consumed from VDD which 

includes dissipation from the read discharge path, the pre-charge/pre-discharge circuitry, and 

the amplifiers. A slightly below 50% reduction in energy is observed across all cases, in line 

with the theoretical results predicted by Eq.3.4.6.  

 

Fig.3.4.6. Energy required for successful sensing of the DDL and conventional scheme. The DDL 

scheme reduces read energy by ~50% across all 𝑅𝐿 and R-Ratios   
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 To translate the DDL performance to reliability and yield 𝜂 under variation, we conducted 

Monte-Carlo analysis with local mismatch models. Fig.3.4.7 presents the read bit error rate 

(𝜀𝑅 = 1 − 𝜂 ) as a function of BL developing time. We observe that as the sensing time 

 

Fig.3.4.7. Sensing yield 𝜂 as a function of read time for the conventional and DDL schemes. For 

the same 3-sigma yield requirement (𝜂 >99.9%), the DDL scheme can reduce the sensing time by 

44%.  

 

Fig.3.4.8. Read error rate 𝜀𝑅 as a function of sensing time for (1) the conventional scheme, (2) the 

DDL scheme, (3) conventional sensing with RS-SA, and (4) DDL sensing with RS-SA. The RS-SA 

improves sensing time by 88%. With DDL, the sensing time is further reduced by an additional 42%. 
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increases, the yield improves for both sensing methods. For a target 𝜀𝑅 of <0.1% or 𝜂>99.9%, 

the conventional sensing method requires a sensing time of 0.9 time units, while DDL can 

achieve the same yield in 0.5units; representing a 44% reduction.  

Finally, as mentioned earlier, the DDL scheme benefits from new, advanced sense amplifier 

designs. Here, we show the performance of the application of DDL to the RS-SA described in 

Sec.3.4b. Fig.3.4.8 displays the 𝜀𝑅 of the following configurations: (1) conventional scheme 

with the conventional sense amplifier, (2) DDL scheme with the default DDL sense amplifier, 

(3) conventional scheme with the RS-SA, and (4) DDL scheme with the RS-SA. Comparing 

(1) and (3), the RS-SA shows a great reduction in sensing time by 88%, which matches the 

results presented in [190]. Comparing (3) and (4), we observe that the DDL scheme can further 

reduce the RS-SA sensing time by an additional 42%.  
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CHAPTER 4 

SPINTRONIC SIGNAL PROCESSOR 

 

4.1 Motivation 

Over the last 50 years, transistor technology has been the driving force behind an 

exponential increase in computation power. However, despite its success, transistors face 

several fundamental limits in computing efficiency: 

(1) Standby Energy: Transistors exhibit leakage that consumes power even when it’s not 

switching. This issue has become increasingly severe in advanced technology nodes as 

device dimensions scale [191]. 

(2) Structural Bottleneck: In transistor-based systems, computing and storage are 

physically separated, which leads to a data transmission bottleneck between the two. 

This bottleneck, known as the Von-Neumann bottleneck, limits the speed and 

throughput of the system even as devices scale. While emerging, integrated nonvolatile 

memories provide a platform to develop non-Von Neumann architectures [34], [105], 

[167], [192], computing and storage still do not occur in the same device. 

(3) Single operation mechanism: Transistors operate on the single mechanism of electron 

gating. There is only a single function per transistor and there is no correlated 

functionality among devices. As a result, complex functions are often built upon 

hierarchies of non-optimized structures. 

On the other hand, magnetic devices have no standby energy, and inherently couple storage 

within their operations. There exists an abundance of spin phenomena for manipulating 

magnetic states, and devices have been developed with high speed (GHz) and low energy (fJ) 

while preserving practically unlimited endurance (>1015) [82], [193], [194]. Therefore, there is 
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strong motivation to explore spintronics mechanisms and structures that can fundamentally 

outperform transistor-based computing. However, today’s research focuses primarily on 

spintronics’ application for storage, and few are able to exploit its computing potential as they 

often fail to outperform the fast scaling CMOS technology.  

In this thesis, a spintronic computing device is developed for signal processing that provides 

orders of magnitude improvement in area, energy, and throughput over state-of-the-art CMOS. 

Specifically, we realize a convolution engine, a core operation of all major forms of signal 

processing, including Fourier transforms, filtering, visual and audio processing, machine 

learning, and many more. However, this operation is extremely costly to compose in CMOS. 

Two approaches are proposed to realize the spintronic convolution engine, each by coupling a 

number of spin mechanisms in the device: (a) the Hall effect in combination with domain 

motion, which has an easy-to-fabricate structure; and (b) magnetic tunneling junctions (MTJs) 

with domain motion, which provides greater programming-time reconfigurability. All three 

mechanisms already have strong theoretical foundations and industrial-level fabrication 

techniques, allowing them to be easily adapted for large-scale production.  

In addition to its superior performance, the memory-processing architecture also (1) 

achieves zero standby power, (2) removes the need to store signal streams, and (3) omits the 

signal transmission between computing and storage components. Therefore, these devices not 

only provide high-performance accelerators but also enable efficient signal processing to be 

adopted in edge and Internet-Of-Things (IOT) devices where large amounts of signal 

processing were previously too costly to use. In the next section, a review on the background 

of convolution and the spin mechanisms utilized is presented first. 

 

4.2 Background 

4.2a Convolution Operation 
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A convolution is a mathematical operation on two functions 𝑓(𝑡), 𝑔(𝑡) to produce a third 

function (𝑓 ∗ 𝑔)(𝑡) that resembles the cross-correlation of the two. It is computed by (1) 

reversing one function: 𝑔(𝜏) → 𝑔(−𝜏); (2) shifting it: 𝑔(−𝜏)  → 𝑔(𝑡 − 𝜏); then (3) integrating 

the product of the shifted, reversed function 𝑔(𝑡 − 𝜏) with the other function 𝑓(𝜏), represented 

across all shift values, i.e. 

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

        . . . 𝐸𝑞. 4.2.1   

Or in discrete terms, 

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑚]𝑔[𝑛 − 𝑚]

∞

−∞

        . . . 𝐸𝑞. 4.2.2 

Convolutions are the core of many forms of signal processing. In signal filtering, the 

application of a filter involves the convolution of a kernel with the target signal (such as audio, 

images, radar, communication, etc). Convolutions are also the main computation for transforms 

between different domains, such as the Fourier transform and Z-transform, which convolves 

complex coefficients of phase multiples with a time-domain signal. In machine learning, 

convolutional layers apply convolution of weights with the layer’s input.  

 

4.2b Charge-based Convolution Devices 

The convolution operation involves three components: an element-wise multiplication, a 

summation, and a signal shift. Today, this is implemented digitally; but the prior state-of-the-

art hardware was built via charge-coupled devices (CCDs) [195], [196]. This convolution 

hardware, shown in Fig.4.2.1, composes a series of CCD devices with split electrodes. Signals 

are represented by the analog charge stored in capacitors. The signals are scaled by dividing 

the charge between the split electrodes; then summed via capacitive coupling to a shared bus. 

At the end of each cycle, the charge is shifted to the next stage.  
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 The derivation of the device operation follows. Fig.4.2.1a shows the structure of a CCD, 

which contains an array of linked depletion-region capacitors with electrodes that control the 

potential of the region underneath. When no voltage is applied to the electrodes, the charge 

remains in place. On the other hand, by pulsing each electrode consecutively, the charge can 

be shifted between the capacitors according to the phase of the electrodes. The CCD is 

electrically modeled by an oxide capacitor 𝐶𝑜𝑥 in series with the depletion capacitance 𝐶𝑑, and 

a charge 𝑄𝑑 stored in 𝐶𝑑. When a voltage step of 𝑉𝐶 is placed upon the electrode (via a clock 

line ∅), the charge flowing to the electrode 𝑄𝐶  is the sum of that necessary to provide the 

voltage step and that to balance 𝑄𝑑 [196]:  

𝑄𝐶 = 𝑉𝐶

𝐶𝑜𝑥𝐶𝑑

𝐶𝑜𝑥 + 𝐶𝑑
+ 𝑄𝑑

𝐶𝑜𝑥

𝐶𝑜𝑥 + 𝐶𝑑
            … 𝐸𝑞. 4.2.3 

 

Fig.4.2.1 CCD-based convolution hardware. (a) structure and operation of a CCD. A CCD is 

composed of depletion region capacitors with electrodes controlling the potential underneath. By 

consecutively pulsing the electrodes, charge can be moved between the capacitors. Electrically, this 

can be modelled as the oxide capacitor 𝐶𝑜𝑥 in series with the depletion capacitor 𝐶𝑑, and a charge 

𝑄𝑑 stored in 𝐶𝑑. (b) The CCD-based convolution engine composes a series of three-phase CCDs. 

Each stage has two isolation electrodes driven by ∅1 and ∅2, and split electrodes driven by ∅+ and 

∅−. The difference in the size of the two electrodes determines the scaling factor ℎ as described in 

Eq. 4.2.5. The stored charge 𝑄𝑑 of each stage is divided by the split electrodes and coupled to ∅+ 

and ∅− for summation. 

-
-

-
-

-

V 0

- -- --

V V

-
-

-
-

-

0 V

(a) (b) 



88 
 

In high resistivity substrate materials, 𝐶𝑜𝑥 ≫ 𝐶𝑑, and Eq.4.2.3 can be approximated as 

𝑄𝐶 = 𝑉𝐶𝐶𝑑 + 𝑄𝑑                 … 𝐸𝑞. 4.2.4 

Equation 4.2.4 provides a mechanism for readout: at the rising edge of the clock line ∅, the 

charge flowing on the clock lines is proportional to that stored in the depletion capacitors.  

The convolution device (Fig.4.2.1b) composes “stages” of three-phase CCDs, each with 

two electrodes for isolation and one split electrode for readout. The isolation electrodes are 

driven by clock lines ∅1 and  ∅2, and the split electrode by ∅+ and ∅−. The split electrode 

divides the electrode into two sub-electrodes with an area of  
1

2
(1 + ℎ)  and 

1

2
(1 − ℎ) , 

respectively; where ℎ is the scaling factor or multiplication coefficient. During readout, 𝑄𝐶 is 

divided between the sub-electrodes proportional to their area. The charge difference between 

∅+ and ∅− is, therefore[196]:  

𝑄𝐶+ − 𝑄𝐶− =
1

2
𝑄𝐶(1 + ℎ) −

1

2
𝑄𝐶(1 − ℎ) = (𝑉𝐶𝐶𝑑 + 𝑄𝑑)ℎ   … 𝐸𝑞. 4.2.5 

The first term 𝑉𝐶𝐶𝑑ℎ is an input-independent signal that can be removed via circuit techniques. 

The second term 𝑄𝑑ℎ computes a scaled multiplication of the and the CCD charge 𝑄𝑑, and 

provides the multiplication component of the convolution.  

The readout charge of all CCD devices connected to the same clock line will be summed 

via KCL, e.g. the total charge on the clock line is equal to the sum of the coupled charge of 

each connected CCD. The total differential charge in each cycle is thus: 

𝑄𝐶+,𝑡𝑜𝑡𝑎𝑙 − 𝑄𝐶,𝑡𝑜𝑡𝑎𝑙− = ∑ (𝑉𝐶𝐶𝑑 + 𝑄𝑑[𝑚])ℎ[𝑚] 

𝑛=1,.,𝑘

  … 𝐸𝑞. 4.2.6 

Where 𝑚 represents the CCD stage number and 𝑘 is the total number of CCD stages. At the 

end of each cycle, the charge in each stage is shifted to the next, resulting in the charge equation 

taking the form of a convolution: 

(𝑄𝐶+,𝑡𝑜𝑡𝑎𝑙 − 𝑄𝐶,𝑡𝑜𝑡𝑎𝑙−)[𝑛] = ∑(𝑉𝐶𝐶𝑑 + 𝑄𝑑[𝑚 − 𝑛])ℎ[𝑚] 

𝑘

   … 𝐸𝑞. 4.2.7 
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While charge-based convolution hardware outperformed other technologies in the 1980s, 

they eventually fell out of favor as they face the following limitations: (1) scalability limitations 

as the amount of stored charge 𝑄𝑑 decreases with device scaling; (2) maximum computing 

stage limitations due to incomplete charge transfer and leakage; and (3) speed limitations due 

to the capacitance-based computing mechanism.  

 

4.2c Spintronic Mechanisms for Computing 

Our magnetic signal processing engine overcomes the limitations of charge-based 

convolutions by controlling spin mechanisms to implement multiplication and shifting. In this 

section, we briefly introduce the spin mechanisms that we utilize.  

Magnetic Domains and their motion 

 

Fig.4.2.2 Spin-based mechanisms used to build the spintronics convolution engine. (a) Magnetic 

domains (DMs) are regions where magnetic moments are aligned. Domain walls (DWs) are formed 

between adjacent domains with different magnetization orientation. DW motion can be induced via 

a spin-transfer from a current through the DW. (b) The Hall effect, where a lateral electric field forms 

in a current-carry conductor placed in a magnetic field proportional to its strength. (c) The tunneling 

magnetoresistance effect: in a tunneling junction, carriers can tunnel through the barrier with a 

probability depending on the magnetic orientation of the two layers. 
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In a magnetic material, a magnetic domain (DM) (Fig.4.2.2a) is a region where the 

magnetization of the atoms is stable and aligned towards the same direction. This phenomenon 

was first formulated by Pierre-Ernest Weiss in 1906, who theorized that adjacent atoms 

experience a strong effective field from their neighbors in a magnetic material, causing their 

alignment.   

Adjacent domains have different, often opposite, magnetic orientations. In the transition 

region between the two domains, the magnetic moments rotate smoothly between the two 

orientations. This forms a spiral spin texture called a domain wall (DW). Consequently, DWs 

can be created by forming oppositely magnetized domains via switching mechanisms such as 

spin-orbit-torque (SOT) or magnetic field [197]–[200].  

When sufficient current flows through a domain wall, spin transfer from electrons to the 

DW can displace it [201], [202]. The amount of displacement depends on the total amount of 

spins transferred, and therefore proportional to the current density and the duration of the pulse. 

In a magnetic strip where there is only a single current path, all DWs in the strip will be 

displaced by the same amount, leading to a shifting of the entire magnetic pattern on the strip.  

DWs and DMs are the core characteristics to hard drives and racetrack memory [62], [203]. 

They are responsible for storing data in the orientation of domains and shifts domains to address 

individual bits. The former shifts domains mechanically via a rotating disk, while the latter 

shifts domains electrically via current-induced DW motion. 

Anomalous Hall effect 

The Hall effect (Fig.4.2.3b) refers to the phenomena in which a lateral electric field is 

created across a current-carrying conductor placed in a perpendicular applied magnetic field. 

First discovered by Edwin Hall in 1878 [204], this phenomenon comes from the balance of two 

forces acting on the moving charged particles: the Lorentz force and the Coulomb force. In a 

material with electrons as the dominant charge carrier; the Lorentz force is described by  
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𝐹𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝑞𝑣 × 𝐵     … 𝐸𝑞. 4.2.8 

where 𝑞 is the unit electron charge, 𝑣 is the speed of the electron, and 𝐵 is the magnetic field. 

Under the influence of this force, charge carriers are pushed towards the edges of the material. 

Without a discharge path, these carriers accumulate and create an electric field that exerts a 

Coulomb force on subsequent charge: 

𝐹𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = 𝑞𝐸     … 𝐸𝑞. 4.2.9 

, where 𝐸 is the generated electric field. The carriers will continue to accumulate until the two 

forces cancel out in the steady state: 

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑞(𝐸 + 𝑣 × 𝐵) = 0     … 𝐸𝑞. 4.2.10 

In a device where charge flows in the 𝑥 −direction with speed 𝑣𝑥 and the magnetic field is 

perpendicular 𝐵𝑧, the lateral electric field 𝐸𝑦 can be obtained as 

𝐸𝐻𝑎𝑙𝑙 = 𝐸𝑦 = 𝑣𝑥𝐵𝑧      … 𝐸𝑞. 4.2.11 

The Hall effect plays an important role in material characterization and is frequently used 

to measure carrier concentration in conductors and solid-state electronics. In 1881 [205], Hall 

further reported that this effect is ten times greater in a magnetized ferromagnetic iron than in 

non-magnetic conductors. Known as the Anomalous Hall Effect (AHE), this phenomenon 

depends on the magnetization 𝑀  of the material and is also used to study the magnetic 

properties of ferromagnetic materials.  

Tunneling Magnetoresistance effect 

A magnetic tunnel junction (MTJ) composes two ferromagnets separated by an insulating 

barrier. When the insulating layer is thin (in the single/sub-nanometer range), electrons can 

tunnel between the ferromagnet layers via the quantum tunneling effect (Fig.4.2.3c). First 

observed by Michel Jullière in 1975 [43], the tunneling probability is dependent of the relative 

orientation of the two ferromagnets. When the magnetic orientation of the two ferromagnetic 

layers are parallel to each other (P state), the tunneling probability is high, and when the 
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magnetic orientations are anti-parallel (AP state), the tunneling probability is low. The 

difference in tunneling probability gives rise to a change in the electrical resistance of the MTJ. 

One way to describe this effect is via the tunneling magnetoresistance ratio (TMR), defined as: 

𝑇𝑀𝑅 =  
𝑅𝑎𝑝 − 𝑅𝑝

𝑅𝑝
   … 𝐸𝑞. 4.2.12 

Where 𝑅𝑎𝑝 is the MTJ resistance in the anti-parallel state and 𝑅𝑝 is that of the parallel state. 

The ability to convert magnetic orientations to an electrically accessible resistance makes TMR 

a useful readout mechanism for magnetic sensors and magnetic random access memory 

(MRAM). 

 

4.3 Anomalous Hall -Domain Wall Motion(AHE-DWM) Convolution Engine  

4.3a Device Structure 

In this section, we describe the device structure and operation of the proposed spintronic 

convolution engine. We first show how multiplication is achieved through the combination of 

DMs and the Hall effect and magnetic domains, followed by the summation circuitry and DW 

motion to complete the convolution.    

Multiplication Unit 

The multiplication unit of the processor (Fig.4.3.1a) has the structure of a modified Hall bar 

device. The body of the device is a domain-hosting magnetic strip of width 𝑊𝑆 and length 𝐿𝑆. 

Two gold electrodes separated laterally by 𝐷𝐸  are placed on top of the strip. Each electrode has 

a width of 𝑊𝐸 and length of 𝐿𝐸.  

During computation, a domain is shifted within the electrode region. The domain has a 

length of 𝐿𝐷  pointing in the +𝑧  direction. As a result, a portion of the region within the 

electrode (𝐿𝐷 ) has magnetization pointing in the +𝑧  direction, and the remainder of the 
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electrode (𝐿𝐸 − 𝐿𝐷 ) pointing in the −𝑧  direction. To the first order, the net perpendicular 

magnetization in the electrode region 𝑀𝐸,𝑧 is the sum of the +𝑧 and −𝑧 pointing components:  

𝑀𝐸,𝑧 =  𝐿𝐷𝑀𝑠 − (𝐿𝐸 − 𝐿𝐷)𝑀𝑠      … 𝐸𝑞. 4.3.1 

Where 𝑀𝑠 is the magnetic strip’s saturation magnetization. Combining Eq.4.3.1 and Eq.4.2.11, 

the AHE electric field of the electrode region can be represented as  

𝐸𝐸,𝑦 = 𝐶𝐼𝑥𝑀𝐸,𝑧          … 𝐸𝑞. 4.3.2 

where the current through of the strip 𝐼𝑥 is proportional to 𝑞𝑣𝐻 and 𝐶 is a constant related to 

the AHE coefficients as well as material and device constants. The Hall voltage is the Hall 

electric field multiplied by the distance between the Hall electrodes: 

𝑉𝐸,𝑦 = 𝐷𝐸𝐸𝐸,𝑦        … 𝐸𝑞. 4.3.3 

 

Fig.4.3.1 AHE-DWM based convolution engine. (a) the computing unit, with the structure of a 

domain-hosting magnetic strip and electrodes placed on top. The computing unit outputs the Hall 

voltage as a product of the domain length 𝐿𝐷 and the distance between the hall electrodes 𝐷𝐸 . (b) the 

convolution engine composes a series of multiplication computing units that shift the domain signals 

between each computing unit. Multiplication results are summed using low power voltage summation 

circuitry such as switch capacitors. (c) material cross-section of the convolution engine. 
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Combining equations 4.3.1 to 4.3.3 and separating the input-independent components, we 

arrive at the following representation for the Hall voltage:  

𝑉𝐸,𝑦 = 𝐶1 + 𝐶2𝐽𝑥𝐿𝐷𝐷𝐸 … 𝐸𝑞. 4.3.4 

Where 𝐶1, 𝐶2  composes of design and material constants. 𝐸𝑞. 4.3.4  provides the desired 

multiplication function: under a given read current, the AHE voltage is the linear product of 

the domain length 𝑙𝐷 and the distance between the electrodes 𝑑𝐸. 

Convolution Engine 

The convolution engine (Fig.4.3.1b) composes a series of multiplication units, a summation 

circuit, and a domain write circuit. During each computing cycle, the AHE voltages of each 

multiplication unit are summed using a low-power analog summation circuitry. An example of 

the circuitry is the switch-capacitor circuit shown in Fig.4.3.2. It operates in two phases: In the 

Fig.4.3.2 Example of a switch-capacitor circuit used to sum voltages. (a) schematic and operation 

waveform. The circuit operations in two phases. (b) In the sampling phase, the capacitors are 

connected to the Hall electrodes, and the Hall voltages 𝑉𝐻𝑎𝑙𝑙 of each multiplication unit is sampled 

on the capacitors. (c) In the summation phase, the capacitors are connected in series to sum 𝑉𝐻𝑎𝑙𝑙. 

Sample Sum

(a) Schematic and Waveform (b) Sampling Phase: 

Summation Phase: 
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first phase, the two terminals of each sampling capacitor are connected to the Hall electrodes 

to sample the Hall voltages. In the second phase, the capacitors are switched to connect in series 

to sum the sampled voltages. The output of the summation circuitry in each cycle is:  

𝑉𝐸,𝑡𝑜𝑡𝑎𝑙 = 𝑁𝐶1 + 𝐶2 ∑ 𝐿𝐷[𝑛]𝐷𝐸[𝑛]      … 𝐸𝑞. 4.3.5

𝑁

𝑛=0

 

where 𝑛 is the stage of the multiplication unit and 𝑁 is the total number of multiplication units. 

Inverting the input signal sequence 𝐿𝐷[𝑛] to 𝐿𝐷[−𝑛] and shifting domains to the adjacent 

multiplication unit at the end of each cycle, the output voltage as a function of the cycle number 

𝑚 takes the exact form of a convolution: 

𝑉𝐸,𝑡𝑜𝑡𝑎𝑙[𝑚] = 𝑁𝐶1 + 𝐶2 ∑ 𝐿𝐷[𝑚 − 𝑛]𝐷𝐸[𝑛]    … 𝐸𝑞. 4.3.6

𝑁

𝑛=0

 

The write circuitry is used to program inputs to the strip. In our design, it composes a field-

generating wire, which switches the polarity of the domain beneath it. The field is controlled 

by a pulsed current that determines the length of the input domain.  

 

4.3b Performance Analysis 

In this section, we theoretically derive the performance of the proposed spintronic 

convolution engine. We show material limits and estimate the device area, throughput, and 

energy on a 28𝑛𝑚 process; then compare its performance with a CMOS implementation at the 

same technology node.  

Device dimensions 

 The length of the multiplication unit’s electrodes has to cover the domain signal 𝐿𝐷, which 

is bound by the minimum size of a magnetic domain. This size is limited by the free energy to 

nucleate a domain, which can be written as the domain wall energy under the influence of the 

demagnetization field and the external field:  
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𝐸 = 2𝑊𝐷𝜎𝑡 − 𝑢0𝑀𝑠
2𝑊𝐷𝐿𝐷𝑡 − 2𝑢0𝐻𝐶𝑀𝑠𝑊𝐷𝐿𝐷𝑡 … 𝐸𝑞. 4.3.6 

Where 𝑊𝐷 and 𝐿𝐷 are the domain width and length, 𝑡 is the film thickness, σ is the domain 

wall energy (𝐽/𝑚2), and 𝐻𝐶 is the coercivity (𝐴/𝑚) of the film. The condition for a domain to 

be stable is that a change in the domain state would result in higher energy. In other words, the 

partial derivative of the energy with respect to the domain width 
𝜕𝐸

𝜕𝑊𝐷
 should be smaller than or 

equal to 0. Applying this to Eq.4.3.6, we arrive at the minimum size for a domain to exist: 

  𝐿𝐷 ≥ 2
𝜎

𝑢0𝑀𝑠
2 + 2𝑢0𝐻𝐶𝑀𝑠

       … 𝐸𝑞. 4.3.7 

In addition, for the domain to be stable under thermal fluctuations, its thermal stability should 

exceed a target thermal stability: 

∆=
𝐸

𝐾𝑏𝑇
> ∆𝑡𝑎𝑟𝑔𝑒𝑡        … 𝐸𝑞. 4.3.8 

Where 𝐾𝑏 is the Boltzmann constant, 𝑇 is the temperature, and ∆ is the thermal stability. The 

requirement for ∆ is 30 for computing and 40 for storage applications. With the material 

parameters of a Ta/CoFeB/MgO system shown in Table 4.3.1 [55], [206]–[209], the minimum 

domain length 𝐿𝐷,𝑚𝑖𝑛 is 8.2𝑛𝑚.  

The exact length of a multiplication unit also depends on the resolution of the input signal. 

When 𝐿𝐷 = 𝐿𝐸, the magnetization of the region is fully in the +𝑧 direction, representing the 

maximum input value. When 𝐿𝐷 = 0 , the magnetization of the region is fully in the −𝑧 

direction, representing the minimum input value. To have 𝑛-bit input resolution within this 

range, each input step corresponds to an increase in domain length of ∆𝑙 = 𝐿𝐸 2𝑛⁄ . As a result, 

finding the physical limit to ∆𝑙 would give the requirement for the device length.  

In theory, ∆𝑙 can be a few atoms in length, while in devices it will depend on (1) the 

granularity of domain creation, and (2) pinning centers in the magnetic strip. When domains 
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are created by a current pulse (such as using a current induced field), ∆𝑙 is the product of the 

domain speed 𝛿 and the minimum pulse width 𝑝𝑚𝑖𝑛:  

∆𝑙 = 𝛿𝑝𝑚𝑖𝑛        … 𝐸𝑞. 4.3.9 

In a 28𝑛𝑚 technology, the minimum stable pulse-width 𝑝𝑚𝑖𝑛 is ~10ps, which corresponds to 

∆𝑙 of 0.2nm. Finally, the minimum length is limited by the fabrication feature size. Putting 

together the above limitations, the dimensions 𝐿𝐸 can be obtained as for a binary multiplication 

unit is 28𝑛𝑚, while that for an 8-bit unit is 53𝑛𝑚.  

Similarly, the constraint to the minimum width of the multiplication unit 𝑊𝑆 also follows 

the argument of domain stability and input granularity. The former requires 
𝜕𝐸

𝜕𝐿𝐷
 to be smaller 

than or equal to 0. On the other hand, the latter depends on the fabrication process of the 

distance between the electrodes. From the device structure in Fig.4.3.1, it is evident that 

𝑊𝑆  >  𝐷𝐸 + 2𝑊𝐸 + 2𝑛∆𝑊       … 𝐸𝑞. 4.3.10 

where 𝑊𝑆 is the width of the strip, 𝑊𝐸 is the width of the electrode, 𝐷𝐸  is the distance between 

the electrodes, 𝑛 is the input resolution, and ∆𝑤 is the minimum step of the fabrication process. 

In a 28nm technology, the minimum values for 𝐷𝐸  and 𝑊𝐸 are both the fabrication feature 𝐹 =

28𝑛𝑚, and the minimum change in distance ∆𝑊 is 1𝑛𝑚. This corresponds to 𝑊𝑆 = 84𝑛𝑚 for 

binary and 𝑊𝑆 = 340𝑛𝑚 for 8-bit multiplication. It should also be noted that in the AHE-

Table 4.3.1 Device and material parameters of a Ta/CoFeB/MgO system 

Symbol Definition Value 

𝝈 Domain Wall Energy 𝟓. 𝟑𝟒𝟐𝟕    𝒎𝑱/𝒎𝟐 

𝑴𝒔 Saturation Magnetization 𝟏𝟎𝟔              𝑨/𝒎 

𝑯𝑪 Magnetic Coercivity  𝟐. 𝟒 × 𝟏𝟎𝟒   𝑨/𝒎 

𝜹 
DW Speed  

(Min, Max) 

𝟓 × 𝟏𝟎−𝟒    𝒎/𝒔  

𝟐𝟎                 𝒎/𝒔 

𝑱𝑺𝒉𝒊𝒇𝒕 
DW Current Density  

(Min, Max) 

𝟏. 𝟓 × 𝟏𝟎𝟖    𝑨/𝒎𝟐 

𝟕. 𝟓 × 𝟏𝟎𝟏𝟎  𝑨/𝒎𝟐 

𝑱𝑯𝒂𝒍𝒍 Hall Current Density 𝟏. 𝟐 × 𝟏𝟎𝟖    𝑨/𝒎𝟐 

𝒍𝒎𝒊𝒏 Minimum Domain Length 𝟖. 𝟐                  𝒏𝒎 
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DWM processor, the area of the magnetic strip is not the dominating factor. Rather, the 

sampling circuitry takes up the majority of area with switches and capacitors.  

Operation Frequency 

The bottleneck to the convolution engine’s frequency is the larger delay of the two 

operations: (1) sampling and summing the AHE voltages of each multiplication unit, and (2) 

writing the next domain into the strip and shifting existing domains to the adjacent 

multiplication unit. Each operation corresponds to a different phase in the clock cycle.  

The delay of sampling and summation operation composes (a) the delay of charging the 

sampling capacitors and (b) the delay of the switch capacitor circuit for summation. The former 

can be computed via the relationship 𝑡𝑐 = 𝐶𝑉/𝐼 , where 𝑡𝑐  is the charge time, 𝐶 is the 

capacitance, 𝑉 is the voltage, and 𝐼 is the charging current. The latter is limited by the intrinsic 

switching delay of CMOS transistors on the order of a few to tens of 𝑝𝑠. With CMOS capacitors 

of ~1fF, Hall voltages on the order of tens of mV, and charging currents in the uA~mA range, 

the delay of this phase is in between ten to a few hundred 𝑝𝑠.  

The delay of the write and shift operation is the time necessary to drive domains from one 

computing unit to the next. This can be calculated as the length of each unit plus the minimum 

separation, divided by the speed of the domain wall 𝛿, e.g., (𝐿𝐸 + 𝐹)/ 𝛿. For Ta/CoFeB/MgO 

materials, this phase is the main limiting factor. With in the dimensions earlier, we can obtain 

that a binary convolution engine in 28𝑛𝑚 has a delay of 2.7𝑛𝑠 (183MHz) and that for an 8-bit 

system is 3.9𝑛𝑠 (128MHz).  

Energy Consumption 

During the sampling and summation phase, the energy includes: (1) the read current in the 

magnetic strip, (2) the charging of the sampling capacitor, and (3) the switching of four 

switches in the switch-capacitor circuitry. This can be expressed as  

𝐸𝑅𝑒𝑎𝑑 = 𝐼𝐻𝑎𝑙𝑙
2 𝑅𝑠𝑡1 + 𝐶𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝐸

2 + 4𝐶𝑠𝑤𝑉𝑠𝑤
2        … 𝐸𝑞. 4.3.11 
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Where 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 and 𝐶𝑠𝑤 are the capacitance of the sampling capacitors and switches, 𝑉𝐸  is the 

output Hall voltage,  𝑉𝑠𝑤 are the switches operating voltage, 𝐼𝐻𝑎𝑙𝑙  is the current in the magnetic 

strip, 𝑅𝑠 is the resistance of the strip, and 𝑡1 is the period of the sampling and summation phase. 

Using the dimensions derived in the previous section and the parameters in Table 4.3.1, we can 

obtain 𝐼𝐻𝑎𝑙𝑙 = 1𝑢𝐴 and 𝑅𝑠 = 200Ω. With 𝐶𝑠𝑎𝑚𝑝𝑙𝑒  and 𝐶𝑠𝑤  of 1fF and 𝑉𝑠𝑤 = 0.6𝑉 , we can 

obtain an energy of 2.4 × 10−17𝐽  for binary multiplication and 7.9 × 10−17𝐽  for 8-bit 

multiplication. 

 During the shift and input phase, the energy consumption includes: (1) the current to shift 

domains to the next computing unit, and (2) the current to write the next domain signal to the 

beginning of the strip. This can be expressed as:  

𝐸𝑠ℎ𝑖𝑓𝑡 = 𝐼𝑠ℎ𝑖𝑓𝑡
2 𝑅𝑠𝑡2 +  𝐼𝑓𝑖𝑒𝑙𝑑

2 𝑅𝑓𝑖𝑒𝑙𝑑𝑡2/𝑁     … 𝐸𝑞. 4.3.12 

where 𝐼𝑠ℎ𝑖𝑓𝑡  and 𝐼𝑓𝑖𝑒𝑙𝑑  are the current necessary for shifting domains and generating the 

switching field; 𝑅𝑓𝑖𝑒𝑙𝑑 is the resistance of the field-generating wire, and 𝑡2 is the period of the 

shift and input phase. Note that the energy for generating the switching field is divided by 𝑁, 

the number of multiplication units, as only one input is being written per cycle for the entire 

engine. Using the parameters in Table 4.3.1, we can obtain 𝐼𝑠ℎ𝑖𝑓𝑡 = 40𝑢𝐴. With a wire of 

𝑅𝑓𝑖𝑒𝑙𝑑 = 100Ω and 𝐼𝑓𝑖𝑒𝑙𝑑 = 100𝑢𝐴, we can obtain the energy of the shift and input phase to 

Table 4.3.2 Performance of the spintronic convolution engine (per multiplication unit). 

Metric Binary 8Bit 

𝒍𝑬 𝟐𝟖 𝐧𝐦  𝟓𝟑 𝐧𝐦  

𝒘𝒔 𝟖𝟒 𝐧𝐦  𝟑𝟒𝟎 𝐧𝐦  

𝒓𝒔𝒕𝒓𝒊𝒑 𝟐𝟎𝟎Ω   𝟕𝟑Ω   

𝒕𝑺𝒂𝒎𝒑𝒍𝒆 𝟐𝟎 𝐩𝐬  𝟐𝟎 𝐩𝐬  

𝒕𝑺𝒉𝒊𝒇𝒕 𝟐. 𝟕 𝐧𝐬  𝟑. 𝟗 𝐧𝐬  

𝑬𝑺𝒂𝒎𝒑𝒍𝒆 𝟑. 𝟔 × 𝟏𝟎−𝟏𝟔 𝐉  𝟑. 𝟔 × 𝟏𝟎−𝟏𝟔 𝐉  

𝑬𝑺𝒉𝒊𝒇𝒕 𝟖. 𝟎 × 𝟏𝟎−𝟏𝟔 𝐉  𝟔. 𝟕 × 𝟏𝟎−𝟏𝟓 𝐉  

𝑬𝑾𝒓𝒊𝒕𝒆 𝟐. 𝟕 × 𝟏𝟎−𝟏𝟓 𝐉  𝟑. 𝟗 × 𝟏𝟎−𝟏𝟓 𝐉  
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be 2.7 × 10−15𝐽  and 3.9 × 10−15𝐽  for binary and 8-bit multiplication, respectively. A 

summary of the device dimensions, speed, and energy is shown in Table 4.3.2.   

A comparison of the proposed spintronic convolution engine and the traditional CMOS-

based implementation is shown in Table 4.3.3. We compare the performance of a 1024-point 

convolution hardware with binary and 8-bit resolution. For the proposed design, the energy is 

1.2𝑝𝐽  per 1024-point binary convolution and 7.2𝑝𝐽  per 8-bit convolution. A CMOS 

implementation in the same technology would require 6.8𝑝𝐽 and 132𝑝𝐽 , respectively. The 

CMOS design would further necessitate storage and transmission of input data, leading to 

additional and area overheads not accounted for in this comparison. The throughput of the 

spintronic engine is lower than CMOS designs at binary resolution (183MOp/s vs 238MOp/s) 

but better at 8-bit resolution (128MOp/s vs 29MOp/s). The spintronic engine area is 

significantly smaller than the CMOS design, with an improvement around 100x and 1000x for 

binary and 8-bit convolutions. Note that the area for the spintronic convolution engine is 

dominated by the sampling circuitry (5T/cell or 200F2/cell), which accounts for over 90% of 

the area in a binary convolution engine and over 80% in the 8-bit design. Overall, the spintronic 

convolution engine presents 3 orders of magnitude improvement in the throughput/area-energy 

metric on binary convolution and 6 orders for 8-bit convolution.  

 

Table 4.3.3 Performance of an 1024-point convolution of the proposed and traditional approach. 

Quantity 

Proposed CMOS 

Binary 8Bit Binary 8Bit 

Area (A) 𝟏𝟔𝟕 𝛍𝐦𝟐  𝟏𝟗𝟏 𝛍𝐦𝟐  𝟐. 𝟎 × 𝟏𝟎𝟒𝛍𝐦𝟐 𝟒. 𝟓 × 𝟏𝟎𝟓𝛍𝐦𝟐 

Throughput (T) 𝟏𝟖𝟑 𝐌𝐎𝐩/𝐬  𝟏𝟐𝟖 𝐌𝐎𝐩/𝐬  𝟐𝟑𝟖 𝐌𝐎𝐩/𝐬  𝟐𝟗 𝐌𝐎𝐩/𝐬  

Energy (E) 𝟏. 𝟐 × 𝟏𝟎−𝟏𝟐𝐉  𝟕. 𝟐 × 𝟏𝟎−𝟏𝟐𝐉  𝟔. 𝟖 × 𝟏𝟎−𝟏𝟐𝐉  𝟏. 𝟑 × 𝟏𝟎−𝟏𝟎𝐉  

FOM = T/EA 𝟏. 𝟖 × 𝟏𝟎𝟑𝟎 𝟏. 𝟗 × 𝟏𝟎𝟐𝟗 𝟑. 𝟓 × 𝟏𝟎𝟐𝟕 𝟗. 𝟔 × 𝟏𝟎𝟐𝟑 
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4.3c Experiments 

Verification of the physical mechanism 

 In this section, we describe the experiments to verify the functionality of our proposed 

convolution device. To verify the multiplication unit, we need to experimentally confirm 

Eq.3.4.4. This requires obtaining the relationship of the AHE voltage 𝑉𝐴𝐻𝐸 to the read current 

𝐼𝑥  (Experiment-1); to the distance between the electrodes 𝐷𝐸  (Experiment-2); and to the 

domain length 𝐿𝑑  (Experiment-3). Subsequently, we need to ensure that the output each 

multiplication unit is not disturbed by the patterns in adjacent units (Experiment-4). In addition, 

to verify the write and shift operation, we confirm domain creation and domain shifting 

(Experiment-5).  

 

Fig.4.3.3 Experiment setup for extracting the relationship between 𝑉𝐴𝐻𝐸 and 𝐼𝑥 as well as 𝐷𝐸. We 

fabricate a convolution engine with 4 multiplication units using the Ta/CoFeB/MgO stack. The 

dashed-line box shows the magnetic strip and the solid-line box shows the convolution engine. (1) 

represents the current channel where 𝐼𝑥 is applied, (2) represents the Hall electrodes/channels where 

𝑉𝐴𝐻𝐸  is measured, and (3) represents the wire for switching magnetic domains. (Figure Credits: 

Bingqian Dai) 
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 Experiment-1 and Experiment-2 are conducted via the setup in Fig.4.3.3. Using a 

Ta/CoFeB/MgO magnetic film, we fabricate a number of convolution engines with different 

𝐷𝐸 . The magnetic strip is labelled by the dashed-line box and the convolution engine by the 

solid-line box. Components of the convolution engine are numerically labelled: (1) the current 

channel for the strip where 𝐼𝑥  is applied, (2) the Hall channel/electrodes where 𝑉𝐴𝐻𝐸  are 

measured, and (3) the wire for generating a local field to switching domains. By sweeping the 

injected current, we can obtain the relationship between the 𝑉𝐴𝐻𝐸  and 𝐼𝑥 . By comparing 

measurements with different the distance between the AHE probes, we obtain the relationship 

between the 𝑉𝐴𝐻𝐸 and 𝐷𝐸 .  

The 𝑉𝐴𝐻𝐸 − 𝐼𝑥  relationship is shown in Fig.4.3.4, where we observe that 𝑉𝐴𝐻𝐸  is almost 

perfectly linear to 𝐼𝑥 and the curve crosses the origin. We can thus characterize the  𝑉𝐴𝐻𝐸 −

𝐼𝑥 relationship via  𝑅𝐴𝐻𝐸, defined as 

𝑅𝐴𝐻𝐸 = 𝑉𝐴𝐻𝐸/𝐼𝑥  … 𝐸𝑞. 4.3.13  

 We then characterize the 𝑉𝐴𝐻𝐸 − 𝐷𝐸  relationship by plotting 𝑅𝐴𝐻𝐸  against 𝐷𝐸  in Fig.4.3.5. 

Similarly, the expected linear relationship is observed.  

 For Experiment-3, Experiment-4, and Experiment 5, we fabricate the magnetic film into a 

two-channel Hallbar structure as shown in Fig.4.3.6. The measured 𝑅𝐴𝐻𝐸 as a function of the 

number of shifting pulses is shown in Fig.4.3.7, and the domain location as a function of the 

number of pulses is shown in Fig.4.3.8. Before the domain is shifted into the Hall channel 

(pulse number between 0-5), 𝑅𝐴𝐻𝐸 is independent of the number of pulses, indicating that the 

Hall voltage is not affected by the region outside the channel. Afterward, around pulses 5-20, 

the portion of +z -direction domains within the Hall channel is near linear to the number of 

pulses. In this region, we al so observe a linear relationship between the 𝑅𝐴𝐻𝐸 and the number 

of pulses, confirming the linear 𝑅𝐴𝐻𝐸 − 𝑀 relationship necessary for multi-bit multiplication.  

In pulses 20~30 the domain shifts slower and slightly nonlinear due to pinning centers in the 
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device. Nevertheless, 𝑅𝐴𝐻𝐸 still shows the desired linear relationship to the total magnetization 

within the Hall region.  

 

Prototyping   

Fig.4.3.9 shows the fabrication process of our magnetic convolution engine: (a-b) On a 

Silicon substrate, magnetic layers Ta/CoFeB/MgO/Ta are first deposited. (c) Hall electrodes   

 

Fig.4.3.5 The 𝑅𝐴𝐻𝐸 − 𝐷𝐸  relationship. The linear relationship confirms the results of Eq.3.4.4 

(Credits: Bingqian Dai) 

 

Fig.4.3.4 The 𝑉𝐴𝐻𝐸 − 𝐼𝑥 relationship. Currents between 0.1mA to 1mA are applied in 0.1mA 

steps. We observe a linear relationship between 𝑉𝐴𝐻𝐸 and 𝐼𝑥, which can be characterized by 

𝑅𝐴𝐻𝐸. (Figure Credits: Bingqian Dai) 
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are then deposited via photolithography to create the photoresist pattern and evaporation to 

deposit 10nm Au and 5nm Cr. (d-e) The magnetic strip pattern is defined via photolithography 

 

Fig.4.3.7 Measured 𝑅𝐴𝐻𝐸  as a function of the number of domain-shifting pulses of amplitude 

12mA with a pulsewidth of 1ms. Initially, before the domain is shifted into the Hall channel (before 

pulse 5), the 𝑅𝐴𝐻𝐸  is constant. Afterwards (pulses 5~20), we observe a linear relationship between 

𝑅𝐴𝐻𝐸  and the number of pulses. At around pulse 20, pinning causes a slowdown in the domain 

portion, changing the slope between 𝑅𝐴𝐻𝐸  and pulse number. However, the 𝑅𝐴𝐻𝐸 − 𝑀 relationship 

stays the same.  
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Fig.4.3.6 Experiment setup for the 𝑉𝐴𝐻𝐸 − 𝑀 relationship, verification that there is no interference 

between adjacent devices, and domain shifting. The design consists of a series of two Hallbars, with 

the AHE voltage measured at the second Hall channel.    
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and dry etching, and insulation (SiO2) is deposited. (f) T  he stack is etched until the hall pads 

are exposed, and (g) photolithography is used to create vias to the hall electrodes and wiring to 

the external pads. The Completed devices are shown in Fig.4.3.10.   

  

 

Fig.4.3.8 Measured domain wall motion in the experiment design of Fig.4.3.6. Pulses are of 12mA 

amplitude and 1ms duration and 1s between subsequent pulses.  
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Fig.4.3.9 Fabrication steps of the spintronic convolution engine prototype. (a-b) on a substrate, (c) 

the magnetic films are deposited. Afterwards, (d) the Hall electrodes are placed on top of the stack, 

(e) the magnetic strip pattern is defined and SiO2 insulation is deposited. (f) The stack is etched until 

the electrodes are exposed, which are (g) connected to write line and pads.  
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4.4 Magnetic Tunneling Junction-Domain Wall Motion (MTJ-DWM) Convolution 

Engine  

4.4a Device Structure  

The Hall-domain convolution engine provides highly efficient, compact signal processing. 

However, it is limited to applications with predetermined coefficients such as filtering and 

transforms. This is because one input of the convolution engine maps to the physical distance 

between Hall electrodes, a parameter that is determined at fabrication time. After fabrication, 

the distance between the Hall electrodes cannot be modified. However, in generalized machine 

learning applications, it is desired that all signals in the convolution engine can be programmed.   

 

Fig.4.3.10 Completed convolution engine prototype, which include the core composing series of 

multiplication units, the current path for shifting domains, and the write wire to write the domains 

at the start of the device.  

Multiplication Units

Domain write wire

Domain shift pads
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Our MTJ-domain approach overcomes this limitation by utilizing a crossbar array of 

domain-hosting magnetic strips, all of which can be programmed at computation time. At each 

cross-point in the array, an MTJ is formed. The tunneling magnetoresistance effect is used for 

multiplication and readout, and summation is achieved using Kirchhoff’s current law (KCL). 

In addition, signals moving in both the vertical and horizontal strips provides flexible dataflow 

which further enables novel architectures and multi-dimensional convolutions.  

Multiplication Unit 

The multiplication unit is shown in Fig.4.4.1a, built via a tunneling barrier or a full MTJ 

placed at the intersection of two domain-hosting magnetic strips. The square-shaped MTJ has 

dimensions 𝑤𝑇𝐽. At the junction, the 𝑥 −direction strip has 𝑤𝛼 of its area pointing in the +𝑧 

direction and the remaining 𝑤𝑇𝐽 − 𝑤𝛼  length pointing in the −𝑧  direction. Likewise, the 

𝑦 −direction strip has 𝑤𝛽 of its area pointing in the +𝑧 magnetization and the remaining 𝑤𝑇𝐽 −

𝑤𝛽  pointing in the −𝑧 direction. The MTJ conductance has 4 components: (1) the overlap 

 
Fig.4.4.1 MTJ-domain based convolution engine. (a) the multiplication unit with the structure of an 

MTJ formed at the intersection of two magnetic strips. The conductance of the MTJ is proportional 

to the product of the magnetization of the two strips at the junction. (b) the convolution engine 

composes an array of multiplication units. During each cycle, the conductance of MTJs on each strip 

are summed via KCL; after which domains are shifted to the adjacent multiplication unit. 
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between 𝑤𝛼 and 𝑤𝛽 in the parallel (+𝑧, +𝑧) state; (2) the overlap of 𝑤𝛼 and 𝑤𝑇𝐽 − 𝑤𝛽 region 

in the anti-parallel (+𝑧, −𝑧) state; (3) the overlap of 𝑤𝑇𝐽 − 𝑤𝛼  and 𝑤𝛽  in the anti-parallel 

(−𝑧, +𝑧)  state, and (4) the overlap of 𝑤𝑇𝐽 − 𝑤𝛼 and 𝑤𝑇𝐽 − 𝑤𝛽  in the parallel state (−𝑧, −𝑧). 

The total conductance is therefore: 

                            𝐺𝑇𝐽 = 𝐺𝑃 (𝑤𝛼𝑤𝛽 + (𝑤𝑇𝐽 − 𝑤𝛼)(𝑤𝑇𝐽 − 𝑤𝛽))   

                      +𝐺𝐴𝑃(𝑤𝛼(𝑤𝑇𝐽 − 𝑤𝛽) + (𝑤𝑇𝐽 − 𝑤𝛼)𝑤𝛽)      . . . 𝐸𝑞. 4.4.1 

Where 𝐺𝐴𝑃 = 𝑅𝐴𝑃
−1 = 𝑇𝐺𝑃 is the AP state unit conductance, 𝐺𝑃 is the P state unit conductance, 

and 𝑇 = (1 + 𝑇𝑀𝑅)−1  is the conductance ratio between the two states. Eq.4.4.1 can be 

rewritten in terms of the net magnetization of the strips at the intersection, e.g.  the sum of the 

contribution from the up and down regions: 

𝑀𝑥 = 𝐶1(𝑤𝛼 − (𝑤𝑇𝐽 − 𝑤𝛼))      . . . 𝐸𝑞. 4.4.2 

𝑀𝑦 = 𝐶1(𝑤𝛽 − (𝑤𝑇𝐽 − 𝑤𝛽))      . . . 𝐸𝑞. 4.4.3 

Where 𝐶1  compose of material and device constants. Plugging Eq.4.4.2 and Eq.4.4.3 into 

Eq.4.4.1, we can rewrite the junction conductance as 

 𝐺𝑇𝐽 = 𝐶2(𝑇 − 1)𝐺𝐴𝑃𝑀𝑥𝑀𝑦 + 𝐶2(𝑇 + 1)𝐺𝐴𝑃𝑤𝑇𝐽
2      . . . 𝐸𝑞. 4.4.4 

As 𝑇 , 𝐺𝐴𝑃 , 𝑤𝑇𝐽
2 , and 𝐶2  are all material and design-time constants, Eq.4.4.4 provides the 

desired multiplication result: the MTJ conductance is the linear product of the net 

magnetization of the 𝑥 −direction strip at the junction 𝑀𝑥 and that of the y−direction strip  𝑀𝑦.  

Convolution Engine 

The convolution engine (Fig.4.4.1b) composes 𝑁 vertical strips running in the y−direction 

and 𝑀 horizontal strips running in the 𝑥 −direction, forming an array of 𝑁 × 𝑀 multiplication 

units. During the summation process, KCL is used to sum the results of each multiplication 

unit. This is achieved by clamping the top vertical strips to 𝑉𝑅𝑒𝑎𝑑 and the bottom to ground. 
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The current flowing through the 𝑗𝑡ℎ bottom strip 𝐼𝑥[𝑗] is the sum of the current flowing through 

each MTJ on the strip, i.e.  

𝐼𝑥[𝑗] = ∑ 𝐶3 +

𝑁

𝑘=1

𝐶4𝑀𝑥[𝑗, 𝑘]𝑀𝑦[𝑗, 𝑘]     . . . 𝐸𝑞. 4.4.5 

Where 𝐶3 and 𝐶4 are composed of design and material constants and 𝑉𝑅𝑒𝑎𝑑. For each strip (e.g. 

fixed 𝑗), shifting signals in the 𝑥 −direction results in a convolution: 

𝐼𝑥[𝑛] = ∑ 𝐶3 +

𝑁

𝑘=1

𝐶4𝑀𝑥[𝑘 − 𝑛]𝑀𝑦[𝑘]     . . . 𝐸𝑞. 4.4.6 

 

4.4b Performance Analysis 

Device dimensions 

The minimum dimensions of each computing unit follow the restrictions as Section 4.3b, 

i.e. (1) The domain should be stable and reach target thermal stability (Eq.4.3.7-4.3.8), and (2) 

it covers the input resolution (Eq.4.3.9). This results in the dimensions  𝑤𝑇𝐽 = 28𝑛𝑚 for a 

binary multiplication unit and 𝑤𝑇𝐽 = 53𝑛𝑚 for an 8-bit multiplication unit. Note that, the 

dimensions for the MTJ-DWM design are smaller than the AHE-DWM design, as there is no 

need for electrodes to be placed upon each multiplication unit. 

Operation Frequency 

Compared to the Hall-domain convolution engine, the MTJ approach requires no sampling 

during the summation process. Instead, the speed is limited by the total RC delay along the 

strip. This can be modeled as an 𝑁 −stage RC ladder, with the speed capped approximately by 

the delay of the worst-case cell. This cell has an RC constant of 

(𝑅𝑇𝐽 + 2𝑅𝑠𝑡𝑟𝑖𝑝)𝐶𝑢𝑛𝑖𝑡   … 𝐸𝑞. 4.4.7 
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Where 𝑅𝑇𝐽 is the MTJ resistance, 𝑅𝑠𝑡𝑟𝑖𝑝 is the resistance of the strip at the worst-case unit, and 

𝐶𝑢𝑛𝑖𝑡 is the capacitance of each computing unit. This results in a delay of 630ps for a binary 

1024-point convolution engine and 1.7ns for an 8-bit 1024-point convolution. 

During the write and shift phase, the speed is limited by the time necessary to drive domains 

from one computing unit to the next (𝑤𝑇𝐽 + 𝐹)/ 𝛿. With the dimensions computed above, we 

can obtain the delay of a binary convolution engine to be 2.7ns (183MHz), and that of an 8-bit 

engine is 3.9ns (128MHz).  

Energy Consumption 

Similar to the AHE-DWM processor, the MTJ-DWM processor has a shift and input phase 

and a summation phase. During the summation phase, the energy consumption includes: (1) 

the read current through the magnetic strip, (2) the read current through each MTJ device, and 

(3) the charging of the magnetic strip and MTJ capacitance. Due to the presence of an insulating 

barrier, the resistance and capacitance of the MTJ is significantly larger than that of the strip 

(about 10~100x). Thus, the energy consumption can be approximated as:  

𝐸𝑅𝑒𝑎𝑑 = 𝐶𝑀𝑇𝐽𝑉𝑅𝑒𝑎𝑑
2 + 𝑉𝑅𝑒𝑎𝑑

2 /𝑅𝑀𝑇𝐽𝑡1 +  𝐼𝑅𝑒𝑎𝑑
2 𝑅𝑆𝑡𝑟𝑖𝑝𝑡1       … 𝐸𝑞. 4.4.8 

Where 𝐶𝑀𝑇𝐽 and 𝑅𝑀𝑇𝐽 are the capacitance and resistance of the MTJ, 𝑉𝑅𝑒𝑎𝑑 is the read voltage, 

𝐼𝑅𝑒𝑎𝑑 is the read current (which is the sum of all MTJ currents on the strip), and 𝑡1 is the period 

of the summation phase. Using experimental values of 1fF and 200k Ω for a 50nm MTJ and a 

Table 4.4.1 Performance of the 1024-point MTJ-domain convolution engine. 

Quantity 

MTJ-domain 

Binary 8Bit 

Area (A) 3.2 μm2  6.6 μm2  

Throughput (T) 183 MOp/s  128 MOp/s  

Energy (E) 8.4 × 10−13J  6.3 × 10−12J  

FOM = T/EA 1.4 × 1032 6.1 × 1030 
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read voltage of 0.2V, this energy is 5.5 × 10−16𝐽 for binary convolution and 5.1 × 10−15𝐽 for 

an 8-bit convolution.  

During the shift and input phase, the energy consumption follows that Eq.4.3.12; e.g. the 

domain shift energy and the domain generation energy. This results in an energy of 

2.7 × 10−16𝐽 for binary convolution and 3.9 × 10−15𝐽 for an 8-bit convolution.  

From the above analysis, we obtain an energy, area, and operation frequency of 

3.2𝜇𝑚2, 841𝑓𝐽, 𝑎𝑛𝑑 183𝑀𝐻𝑧  for the binary 1024-point convolution engine, and 6.6𝜇𝑚2,

6.3𝑝𝐽, 𝑎𝑛𝑑 128𝑀𝐻𝑧  for the 8-bit convolution engine. A summary of the two spintronic 

approaches is shown in Table 4.4.1. Compared to the Hall-based approach, the MTJ-based 

convolution engine provides improved performance, area, and scalability. The is due to (1) a 

simpler multiplication unit structure (without electrodes), and (2) removal of sampling process 

and circuitry.  

 

4.4c Simulation  

While the MTJ-domain approach outperforms the Hall-domain approach, the fabrication of 

multiple layers of magnetic patterns (e.g. strip-barrier-strip or strip-MTJ-strip) is more 

challenging than placing electrodes on a magnetic strip. There is yet to be mature technology 

for such a process. Hence, we verify the functionality of the MTJ-domain approach via 

simulation.  

We compose an array that has 20 vertical strips, 20 horizontal strips, and a total of 400 MTJs. 

We set the dimension of each MTJ and their separation to be 10 units. An additional 40 units 

of magnetic strip is added outside of the array for signal input.  
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The spin orientation in each unit is represented as +1 or -1. The maximum signal, 𝑤𝛼 = 10, 

 

Fig.4.4.2 Simulation of the MTJ-domain convolution engine. In each image, we show the 

vertical/horizonal strips in red/green and their domains in bright red/green. Overlaps are shown in 

yellow. The patterns from top to bottom: positive step, negative step, constant max, constant min, 

interleaved max/min, and interleaved min/max. These patterns are convolved with a square wave. 

The convolution output is shown at the end of each horizontal strip. To the right of each image, the 

corresponding signals for each strip is displayed.   

-10

+10
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corresponds to a numerical value of  +10,  and the minimum signal 𝑤𝛼 = 0 to a numerical 

value of −10. Each step in 𝑤𝛼 corresponds to a change of 2 in the numerical value 

Fig.4.4.2 shows the simulation of the engine in computing the convolution of a square wave 

with the following patterns: (1)a positive step, (2)a negative step, (3)constant max-values, (4) 

constant min-values, (5)interleaved max-min patterns, and (5)interleaved min-max patterns. 

Vertical (horizontal) strips are displayed in green (red) and its +z magnetization domains in 

bright green (red). Overlaps of the strips and domains are displayed in yellow/bright yellow. 

The computation result is displayed at the end of each strip.  

On the top strip, the convolution of the square pulse with a positive step is initially at -800 

when there is no overlap between the pulse and the step. As the amount of overlap increases, 

the output signal gradually increases and caps at 800. The inverse case is observed for the 

negative step on the second strip, where the signal is initially at 800 and gradually decreases to 

-800 as the overlap amount reduces. For constant max and min values, the output is always -

1200 and 1200; and for interleaved max/mins the output is always 0. These results confirm the 

operation of the MTJ-based convolution engine.  
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CHAPTER 5 

Conclusion and Perspectives 

Neural networks and AI are becoming increasingly involved in everyday life. Advancing 

the technology involves innovation across the entire computing hierarchy, from the algorithm, 

hardware, down to the individual physical devices. New network structures, optimization 

methods, specialized hardware accelerators, and emerging devices all contribute to the ever-

expanding frontier of AI. In this dissertation, we present our perspectives towards each 

computing hierarchy.  

At the algorithm level, we take inspiration from special neurons in biological information 

processing systems to develop application-specific neural networks. In chapter 2, we first 

describe the behavior and response of audio and visual neurons and propose a method to 

compose their neuron models. Through neural architecture search (NAS), we optimize 

networks containing these neurons through three complementary NAS methods, each of which 

uses a different bio-inspired search mechanism: mutation, growth, and pruning. NAS is 

conducted on a hierarchy of datasets that include visual recognition on pictures, handwritten 

characters, and artwork; as well as audio recognition on speech, environmental sounds, and 

music. We then analyze the characteristics of high-performing networks to develop specialized 

networks and demonstrate their application on state-of-the-art networks.  

At the hardware level, we recognize the importance of memory in AI hardware and the 

challenges brought forth by memory scaling. We propose two schemes to overcome limitations 

caused by variation, based on compensation of variation and variation-tolerant designs. In 

chapter 3, after an introduction on the memory circuit architecture and variation sources, we 

describe our 2D calibration scheme, which composes a calibration grid to cancel out variations 

in fabrication and the access path efficiently. Next, we propose the dual-dataline read scheme, 
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which recycles sensing current to improve read margin, speed, and energy to offset the heavy 

read performance degradation caused by variation.   

Last but not least, utilizing physical mechanisms to create AI-computing devices provides 

the greatest boost in computing efficiency. In chapter 4, we propose two approaches to compose 

a spintronic processing engine, one through coupling the Hall effect with domain motion, and 

the other through coupling the tunneling magnetoresistance effect with domain motion. The 

former provides a simple, easy-to-fabricate process; while the latter provides higher flexibility 

and performance. We theoretically analyze the metrics of these devices and show their superior 

performance over state-of-the-art CMOS technology. Finally, we experimentally verify the 

mechanisms necessary for the Hall-domain spintronic processor and simulate the operation of 

the MTJ-domain processor. 

The approaches proposed in this dissertation present our perspective towards next-

generation AI. We stress that the advancement in AI involves innovation on the entire 

computing stack; the cooperation, inspiration, and integration of novel neuroscience, physics, 

designs, and algorithms are equally crucial to overcome the bottlenecks in computation today 

(Fig.5.1.1). This dissertation displays our efforts towards tackling the challenges in three 

computing hierarchies. Here, we further identify several future paths based on the proposed 

works. Towards our algorithmic perspective, the involvement of additional neuron types, 

neural behavior, and network structures beyond what was discussed in this dissertation could 

improve AI performance and provide insight into how human-like information processing 

could be achieved. Additionally, new sensing circuits that take advantage of the dual-data line 

read scheme, and robust systems that expand 2D calibration to N-Dimensional or machine-

learning-based calibrations on memory cubes may be enhanced and continue to expand the 

memory efficiency. Materials like antiferromagnets and magnetic insulators may provide 
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improved scalability, faster speeds (domain speeds can reach up to thousands of meters per 

second), and potentially remove the summation circuitry in the convolution engine (with 

insulating materials, AHE voltages can be directly connected in series rather than require 

sampling); while improving the summation circuitry and analog-digital converters can 

interface with digital components. The author holds an optimistic prospect about the future of 

AI.  

 

Fig.5.1.1 The path towards next generation AI: inspiration from neuroscience could lead to 

innovation across different layers of the computing hierarchy. Advancing AI involves parallel 

development of ideas in physics, devices, circuits, system architectures, and algorithms; as well as 

vertical integration involving multiple layers of the hierarchy.   
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