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A probabilistic deep learning approach to automate the interpretation of 

multi-phase diffraction spectra 
Nathan J. Szymanski1,2, Christopher J. Bartel1,2, Yan Zeng2, Qingsong Tu2, and Gerbrand 

Ceder1,2* 

Abstract 

Autonomous synthesis and characterization of inorganic materials requires the automatic and 

accurate analysis of X-ray diffraction spectra. For this task, we designed a probabilistic deep 

learning algorithm to identify complex multi-phase mixtures.  At the core of this algorithm lies an 

ensemble convolutional neural network trained on simulated diffraction spectra, which are 

systematically augmented with physics-informed perturbations to account for artifacts that can 

arise during experimental sample preparation and synthesis. Larger perturbations associated with 

off-stoichiometry are also captured by supplementing the training set with hypothetical solid 

solutions. Spectra containing mixtures of materials are analyzed with a newly developed branching 

algorithm that utilizes the probabilistic nature of the neural network to explore suspected mixtures 

and identify the set of phases that maximize confidence in the prediction. Our model is 

benchmarked on simulated and experimentally measured diffraction spectra, showing exceptional 

performance with accuracies exceeding those given by previously reported methods based on 

profile matching and deep learning. We envision that the algorithm presented here may be 

integrated in experimental workflows to facilitate the high-throughput and autonomous discovery 

of inorganic materials.  
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Introduction 
The development of high-throughput and automated experimentation has ignited rapid growth in 

the amount of data available for materials science and chemistry1,2. Unlocking the physical 

implications of resulting datasets, however, requires detailed analyses that are traditionally 

conducted by human experts. In the synthesis of inorganic materials, this often entails the manual 

interpretation of X-ray diffraction (XRD) spectra to identify the phases present in each sample. 

Past attempts to automate this procedure using peak indexing3,4 and full profile matching5,6 

algorithms have been limited by modest accuracy, in large part because measured spectra usually 

deviate from their ideal reference patterns (e.g., due to defects or impurities). Consequently, the 

analysis of XRD spectra widely remains a manual task, impeding rapid materials discovery and 

design. To alleviate this bottleneck, deep learning based on convolutional neural networks (CNNs) 

has recently emerged as a potential tool for automating the interpretation of diffraction spectra 

with improved speed and accuracy7,8.  

Previous work has demonstrated that CNNs can be used to perform symmetry 

classification9-11 and phase identification12,13 from XRD spectra of single-phase samples. Given 

the lack of well-curated diffraction data obtained experimentally, training is most commonly 

performed on labeled sets of simulated spectra derived from known crystalline materials, e.g., in 

the Inorganic Crystal Structure Database (ICSD)14. However, because many factors can cause 

cause differences between observed and simulated diffraction peaks, this approach can be 

problematic for extension to experimentally measured XRD spectra. Vecsei et al. demonstrated 

that a neural network trained on simulated spectra produced an accuracy of only 54% for the 

classification of experimentally measured diffraction spectra extracted from the RRUFF 

database10. To overcome this limitation, simulated spectra can be augmented with perturbations 

designed to emulate possible artifacts. For example, Oviedo et al. trained a CNN using simulated 

spectra augmented with random changes in their peak positions and intensities, which were chosen 

to account for texture and epitaxial strain in the thin films being studied. The resulting model 

correctly classified the space group for 84% of diffraction spectra measured from 115 metal halide 

samples7. We propose that generalization of existing methods to handle complex XRD spectra 

requires a more complete data augmentation procedure that properly accounts for all the artifacts 

that frequently arise during sample preparation and synthesis.  
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 To extend the application of CNNs to mixtures of materials, Lee et al. constructed a 

training set of multi-phase spectra that were simulated using linear combinations of single-phase 

diffraction spectra from 38 phases in the quaternary Sr-Li-Al-O space8. Their model performed 

well in the identification of high-purity samples, with 98% of all phases correctly labeled based on 

100 three-phase spectra. However, the combinatorial nature of their technique requires an 

exceptionally high number of training samples (nearly two million spectra from 38 phases), which 

restricts the inclusion of experimental artifacts via data augmentation. Moreover, because the 

number of training samples increases exponentially with the number of reference phases, the 

breadth of the composition space that can be efficiently considered is limited. Proposing an 

alternative approach, Maffettone et al. designed an ensemble model trained on simulated single-

phase spectra to yield a probability distribution of suspected phases for a given spectrum12. From 

this distribution, the authors infer that high probabilities suggest that the corresponding phases are 

present in the mixture. While this method avoids combinatorial explosion and thus allows many 

experimental artifacts to be included during training, it sometimes leads to confusion as obtaining 

comparable probabilities for two phases does not necessarily imply that both are present. Rather, 

it may simply mean that the algorithm has difficulty distinguishing between the two phases. An 

improved treatment of multi-phase spectra therefore necessitates an approach that (i) allows 

artifacts to be incorporated across many phases and (ii) distinguishes between probabilities 

associated with mixtures of phases as opposed to similarities between single-phase reference 

spectra. 

 In this work, we introduce a novel deep learning technique to automate the identification 

of inorganic materials from XRD spectra of single- and multi-phase samples. In our approach, 

training spectra are generated with physics-informed data augmentation whereby experimental 

artifacts (strain, texture, and domain size) are used to perturb diffraction peaks. The training set is 

built not only from experimentally reported stoichiometric phases, but also from hypothetical solid 

solutions that account for potential off-stoichiometries. An ensemble CNN is trained to yield a 

distribution of probabilities associated with suspected phases, which is shown to be a surrogate for 

prediction confidence. We extend this probabilistic model to the analysis of multi-phase mixtures 

by developing an intelligent branching algorithm that iterates between phase identification and 

profile subtraction to maximize the probability over all phases in the predicted mixture. To 

demonstrate the effectiveness of our CNN, training and testing were conducted using diffraction 
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spectra derived from materials in the broad Li-Mn-Ti-O-F composition space given their structural 

diversity and technological relevance (e.g., for Mn-based battery cathodes)15. By also 

systematically testing on a dataset of experimentally measured XRD spectra designed to sample 

complexities that often arise during synthesis, we show that our algorithm achieves considerably 

higher accuracy than state-of-the-art profile matching techniques as well as previously developed 

deep learning-based methods.  

 

Methods 
Stoichiometric reference phases 

The identification of inorganic materials from their XRD spectra relies on the availability of 

suitable reference phases that can be compared to samples of interest. In this work, we focus on 

the Li-Mn-Ti-O-F chemical space (and subspaces) and retrieved all 1,216 corresponding entries 

from the ICSD14. For the identification of stoichiometric materials, we excluded 386 entries with 

partial occupancies from this set. To remove duplicate structures from the remaining 830 entries, 

all unique structural frameworks were identified using the pymatgen structure matcher16. For each 

set of duplicates, the entry measured most recently at conditions nearest ambient (20 °C and 1 atm) 

were retained. Based on these selection criteria, 140 unique stoichiometric materials listed in 

Supplementary Table S1 were tabulated and used as reference phases. 

 

Non-stoichiometric reference phases 

Although many solid solutions are available in the ICSD, they generally cover a narrow 

composition range while leaving others sparse. We therefore designed an algorithm to extend the 

space of non-stoichiometric reference phases by using empirical rules to construct hypothetical 

solid solutions between the available stoichiometric materials. To determine which phases may be 

soluble with one another, all combinations of the 140 stoichiometric references phases in the Li-

Mn-Ti-O-F space were enumerated and two criteria were considered for each pair. First, solubility 

requires that the two phases adopt similar structural frameworks, which was verified using the 

pymatgen structure matcher16. Second, based on the Hume-Rothery rules17, the size mismatch 

between any ions being substituted with one another should be ≤ 15%. To estimate the ionic radii 

of all species comprising each phase, oxidation states were assigned using the composition-based 

oxidation state prediction tool in pymatgen16. In cases where mixed oxidation states are present 
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(e.g., Mn3+/4+), we chose to focus on the state(s) that minimizes the difference between the radii of 

the ions being substituted and therefore increases the likelihood for solubility. As will be shown 

by our test results, including more reference phases does not lead to a substantial decrease in 

accuracy; hence, it is preferable to overestimate solubility such that more structures are created as 

potential references.  

 Based on the 140 stoichiometric reference phases in the Li-Mn-Ti-O-F space, 43 pairs of 

phases were found to satisfy both solubility criteria described above. The phases in each pair were 

treated as end-members, from which interpolation was used to generate a uniform grid of three 

intermediate solid solution compositions. For example, between spinel LiMn2O4 and LiTi2O4, 

intermediate compositions take the form LiMn2-xTixO4 with 𝑥 ∈ {0.5, 1.0, 1.5}. The lattice 

parameters of hypothetical solid solutions were linearly interpolated between those of the 

corresponding end-members in accordance with Vegard’s law18. Atomic positions and site 

occupancies were similarly obtained by interpolating between equivalent sites in the end-members. 

This procedure gave a total of 129 hypothetical solid solution states from the 43 pairs of soluble 

phases. Excluding 14 duplicates resulted in 115 distinct solid solutions, listed in Supplementary 

Table S2. The code for generating hypothetical solid solutions for an arbitrary group of reference 

phases is available at https://github.com/njszym/XRD-AutoAnalyzer. 

 

Data augmentation 

From the reference phases in the Li-Mn-Ti-O-F space, we built an augmented dataset of simulated 

XRD spectra with the goal of accurately representing experimentally measured diffraction data. 

Physics-informed data augmentation was applied to produce spectra that sample possible changes 

in peak positions, intensities, and widths. Shifts in peak positions (2𝜃) were derived using strain 

tensors that preserve the space group of the structure. Modified unit cells were created with up to 

±4% strain applied to each lattice parameter. Peak widths were broadened by simulating domain 

sizes ranging from 1 nm (broad) to 100 nm (narrow) through the Scherrer equation19. Peak 

intensities were varied to mimic texture along preferred crystallographic planes. This was done by 

performing scalar products between the peak indices and randomly selected Miller indices (ℎ𝑘𝑙), 

followed by a normalization that scaled peak intensities by as much as ±50% of their initial values. 

The bounds chosen here are designed to reflect the range of artifacts that can occur during 

inorganic synthesis. We note that larger variations may arise when substantial off-stoichiometry is 
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present; however, this situation was treated separately by the addition of non-stoichiometric solid 

solutions as reference phases. In Fig. 1a, we illustrate the effect of each of the three experimental 

artifacts on the XRD spectrum of spinel Mn3O4 as an example. Each artifact was applied separately 

to the simulated spectrum by taking 50 random samples from a normal distribution (e.g., between 

−5% and +5%), resulting in 150 augmented spectra per reference phase (50 samples for each of 

the three artifacts). Applying this procedure to all 255 references phases, including both 

experimentally reported stoichiometric materials and hypothetical solid solutions, resulted in 

38,250 simulated diffraction spectra. Further details regarding data augmentation and spectrum 

simulation are provided in Supplementary Note 1. The code for performing data augmentation 

for an arbitrary group of reference phases is available at https://github.com/njszym/XRD-

AutoAnalyzer. 

 

 

 
  

Figure 1: (a) An illustration of the data augmentation procedure designed to sample possible 

experimental artifacts including peak shift associated with cell strain, peak broadening related to 

small domain size, and peak intensity variation caused by texture. (b) A schematic of the deep 

learning pipeline used to map XRD spectra onto a probability distribution of suspected phases.  
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Convolutional neural network 

The workflow used to classify a given XRD spectrum is displayed in Fig. 1b. Similar to previous 

work8, diffraction spectra are treated as one-dimensional vectors that contain 4,501 values for 

intensity as a function of 2𝜃. The range of 2𝜃 is set from 10° to 80°, which is commonly used for 

scans with Cu 𝐾! radiation (𝜆 = 1.5406	Å). The intensities (represented as 4,501-valued vectors) 

serve as input to a CNN that consists of six convolutional layers, six pooling layers, and three fully 

connected layers. Training was carried out with five-fold cross-validation using 80% of the 

simulated diffraction spectra, with the remaining 20% reserved for testing (i.e., excluded from 

training and validation). Details regarding the architecture of the CNN and the hyperparameters 

used during training are given in Supplementary Note 2. The code used for training is also 

available at https://github.com/njszym/XRD-AutoAnalyzer. To classify spectra outside of the 

training set, an ensemble approach was used whereby 1,000 individual predictions are made with 

60% of connections between the fully connected layers randomly excluded (i.e., using dropout) 

during each iteration. The probability that a given phase represents the spectrum is then defined as 

the fraction of the 1,000 iterations where it is predicted by the CNN. The resulting distribution 

may be treated as a ranking of suspected phases in the sample, with corresponding probabilities 

providing measures of confidence.  

 

Intelligent branching algorithm 

Given that the CNN was trained only on single-phase XRD spectra, additional methods were 

developed to automate the identification of materials in multi-phase mixtures. In our workflow, 

we use an iterative procedure where phase identification is followed by profile fitting and 

subtraction. Once a phase is identified by the CNN, its diffraction peaks are simulated and fit to 

the spectrum in question using dynamic time warping (DTW), a well-known technique for 

correlating features in time series20. The resulting profile of the identified phase is then subtracted 

to produce a modified spectrum that is representative of the mixture minus the phase that has 

already been identified. This process is repeated until all significant peaks are attributed to a 

reference phase; i.e., the cycle is halted once all intensities fall below 5% of the initially measured 

maximum intensity. Further details regarding the techniques used to perform profile fitting and 
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subtraction are described in Supplementary Note 3, and the corresponding code is available at 

https://github.com/njszym/XRD-AutoAnalyzer. 

 Following the iterative procedure outlined above, one could identify a multi-phase mixture 

by using the collection of most probable phases given by the model at each step. However, because 

the spectrum is affected by all prior phases that have been identified, such a method over-prioritizes 

the first iteration of phase identification. In cases where the first phase predicted by the CNN is 

incorrect, the spectrum resulting from profile fitting and subtraction will contain diffraction peaks 

that do not accurately represent the remaining phases in the sample. All subsequent analyses will 

therefore be less likely to identify these phases. To improve upon this approach, we developed an 

intelligent branching algorithm that gives equal importance to each iteration of phase 

identification. In Fig. 2, we illustrate how the algorithm evaluates several possible sets of phases 

to classify a diffraction spectrum derived from a mixture of Li2TiO3, Mn3O4, and Li2O. At each 

step, the CNN generates a list of suspected phases along with their associated probabilities. As 

opposed to considering only the most probable phase at each iteration, the branching algorithm 

investigates all phases with non-trivial probabilities (≥ 10%). By following the spectrum 

associated with the subtraction of each suspected phase, a “tree” is constructed to describe all 

combinations of phases predicted by the model. Once each route has been fully exhausted, the 

branch with the highest average probability is chosen as the final set of predicted phases (e.g., the 

green phases highlighted in Fig. 2). In this way, the algorithm maximizes the likelihood that 

predictions are representative of all phases contained in the actual mixture, as opposed to over-

prioritizing the first iteration of phase identification. We found that this is an essential feature to 

predict multi-phase spectra correctly. 
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Figure 2: A schematic illustrating possible pathways enumerated by the branching algorithm for 

multi-phase identification. This method iteratively performs single-phase predictions followed by 

profile-stripping, at each step tabulating the probability associated with each phase. This process 

is repeated until all intensities fall below 5% of the original maximum value. From all branches 

developed, the one with the highest average probability (highlighted green above) across all levels 

is chosen as the most likely set of phases present in the mixture. 

 

 

Experimental measurements 

To further validate our model, we built an experimental dataset from a series of measurements 

designed to sample complexities that often arise during synthesis. Ten materials, listed in 

Supplementary Note 4 with details regarding the experimental procedures, were chosen to span 

a range of structures and compositions in the Li-Mn-Ti-O-F space. For a benchmark on pristine 

single-phase spectra with no intended artifacts, we conducted precise diffraction measurements on 

each of the ten materials using carefully prepared, high-purity samples. The following 

modifications were then separately introduced such that each batch of samples contained one 

anticipated artifact: (i) samples were overlaid with Kapton tape during characterization to produce 

a diffuse background signal with a magnitude as large as 200% of the highest diffraction peak 

intensity; (ii) rapid scan rates (30°/minute) were used to generate noisy baseline signals with 

magnitudes reaching 5% of the maximum diffraction peak intensity; (iii) peak shifts as large as 

0.4° were imposed by preparing thick pellets such that specimens were leveled slightly above the 
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sample holder; (iv) broad peaks with full widths at half maxima as large as 1.5° were obtained by 

ball milling. Several additional materials were also made to sample changes in composition and 

site occupancy. Six samples of spinel LiMnTiO4 were synthesized at temperatures of 900 °C, 950 

°C, and 1000 °C followed by quenching or slow cooling based on previously reported procedures21. 

These samples were intended to contain differences in relative diffraction peak intensities owing 

to varied distributions of cation site occupancies. Non-stoichiometry was studied using four 

disordered rocksalt phases, each with a different composition made via solid-state synthesis. For 

the classification of multi-phase XRD spectra, ten two- and three-phase mixtures (listed in the 

Supplementary Note 4) were prepared from combinations of materials in the Li-Mn-Ti-O-F space 

that were chosen to include spectra with a substantial amount of peak overlap. The mixtures 

contained equal weight fractions of all constituent phases. To isolate the effects of multiple phases, 

these measurements were conducted on samples for which no experimental artifacts were 

purposefully incorporated. 

 

Results 

Identification of stoichiometric phases 

As a first test case, we evaluated the performance of our model on simulated single-phase XRD 

spectra derived from the 140 stoichiometric reference phases in the Li-Mn-Ti-O-F space. 

Accordingly, the CNN was trained on 80% of the 21,000 generated spectra (140 materials × 150 

augmentations) that were augmented to include physics-informed perturbations to their diffraction 

peak positions, widths, and intensities. The remaining 4,200 spectra were reserved for testing. To 

assess the ability of the CNN to handle artifacts not considered during training, the test set was 

also supplemented with spectra having diffuse and noisy background signals. A diffuse 

background was simulated by adding an XRD spectrum measured from amorphous silica to the 

diffraction peaks of the stoichiometric materials. Ten spectra were created for each phase (1,400 

spectra total), with the maximum intensity produced by silica ranging from 100-300% of the 

maximum peak intensity of the reference phase. Another 1,400 spectra were simulated by adding 

Gaussian noise with magnitudes ranging from 1-5% of the maximum diffraction peak intensity. 

Before being passed to the CNN, these 2,800 spectra were pre-processed using the baseline 

correction and noise filtering algorithms described in Supplementary Note 5. This procedure is 

designed to replicate artifacts formed when imperfect corrections are made during pre-processing, 
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which occasionally leads to the disappearance of minor peaks or leaves behind residual intensities 

related to amorphous impurities. Previous work has dealt with diffuse and noisy background 

signals by training on spectra with added baseline functions (e.g., polynomials)9,12. However, 

because these functions are randomly selected rather than derived from possible impurities or 

defects, they are unlikely to accurately represent experimental measurements13. With this in mind, 

our current approach relies only on physics-informed data augmentation to improve the match 

between simulated and experimentally measured spectra.  

The performance of our model is compared to a known standard, the JADE software 

package from MDI22. JADE is a widely used program that can automate phase identification with 

conventional profile matching techniques5. During testing, JADE was employed without any 

manual intervention to ensure a consistent comparison with the CNN, as we are assessing the 

capability of our approach to perform phase identification as part of an autonomous platform. We 

emphasize that our model is not designed to replace manual techniques such as Rietveld 

refinement, but rather to provide more rapid and reliable predictions regarding phase identities. 

For this task, we applied both the trained CNN and JADE to the test set of simulated diffraction 

spectra that sample possible experimental artifacts separately as discussed in the Methods. In Fig. 

3a, we compare the resulting accuracy of each method quantified as the fraction of phases correctly 

identified. Across the simulated test spectra, the CNN achieves a high accuracy of 94%. In contrast, 

JADE correctly identifies only 78% of phases when applied to the same set of spectra. To further 

verify the effectiveness of the CNN, an additional 1,400 spectra were simulated with mixed 

artifacts such that each spectrum contains all aforementioned perturbations to its diffraction peaks 

(shifting, broadening, and texture) as well as a diffuse and noisy background signal. This 

incorporates an additional level of complexity not included in the training set, where each spectrum 

contained just one type of perturbation. When applied to the new test set with mixed artifacts, the 

accuracy of the CNN decreases only 2% (from 94% to 92%), whereas the accuracy of JADE 

decreases 10% (from 78% to 68%).  

 The tests show promising results for the CNN, though its performance is not without error. 

We look to the underlying causes of the occasional misclassifications that occur by dividing the 

simulated test spectra into four major categories: those augmented via the individual application 

of peak shifts, peak broadening, peak intensity change, and background effects (including diffuse 

and noisy baselines). The training set remains unchanged from the previous paragraph. In Fig. 3b, 
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we show the fraction of misclassifications that arise from each perturbation category. Of the 7,000 

total test spectra, 418 are misclassified by the CNN. The largest portion (48%) of misclassifications 

occur for spectra containing peak shifts, which we attribute to the overlapping of diffraction peaks 

between similar phases. This most commonly occurs between isomorphic phases and, as a result, 

the CNN gives a higher accuracy for the identification of structure (96%) as opposed to 

composition (92%). We investigated the effects of increasing the bounds on strain that were used 

during training (beyond ±4%); however, a decrease in accuracy was observed as larger strains 

were incorporated. For example, training on spectra derived from structures with strain as large as 

±6% led to a lower accuracy of 86% when applied to the test set containing spectra with as much 

as ±4% strain. More details regarding the effects of strain are illustrated in Fig. S1. Relative to 

peak shifts caused by strain, spectra with broad peaks lead to fewer misclassifications, comprising 

27% of errors. For this effect, misclassification occurs more frequently in low-symmetry structures 

as they contain many diffraction peaks that tend to overlap with one another upon broadening. Of 

the 113 spectra that are incorrectly classified by the CNN due to peak broadening, 82 are from 

phases with monoclinic or triclinic symmetry. The remaining artifacts, including texture and 

background effects, show a relatively weak influence on the accuracy of the CNN. Because both 

of these artifacts cause changes in relative peak intensities, the distribution of misclassifications 

suggest that peak intensities have a more subtle role in the identification of stoichiometric single 

phases. 

 To assess the reliability of predictions made by our model, we examined the probability 

distributions given by the ensemble CNN. In Fig. 3c, we compare the probabilities of correct and 

incorrect classifications made when the CNN is applied to simulated spectra containing mixed 

artifacts. All correct classifications are accompanied by a probability greater than 70%, with an 

average of 93%, whereas incorrect classifications show a wide range of probabilities with a much 

lower average of 46%. This dichotomy suggests that probabilities are akin to confidence in the 

prediction and may be used as a reliable metric to gauge the likelihood that a classification is 

correct. If, for example, predictions are constrained to those with a probability above 70% (which 

comprise 84% of all spectra in the test set), then the accuracy increases from 92% to 96%. On the 

other hand, when the probability is lower than 70%, we propose that the model should raise a “red 

flag,” signifying that manual intervention is needed to clarify the identity of the underlying phase. 

Interestingly, even when an incorrect classification is made regarding the most probable phase, the 
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correct phase is present within the top three suspected phases for 99% of all test spectra. Therefore, 

though manual intervention may occasionally be required to handle complex spectra, the problem 

is greatly simplified by allowing the user to choose from a small set of probable phases. 

 

 

 
Figure 3: (a) The accuracies given by the CNN and JADE when applied to simulated spectra 

containing (i) individual artifacts applied separately and (ii) mixed artifacts applied altogether. (b) 

Sources of error in the CNN are illustrated by calculating the fraction of misclassifications that 

occur for spectra containing each separate artifact. (c) Distributions of probabilities given by the 

CNN when correct and incorrect classification are made during testing on spectra containing mixed 

artifacts. Violins plots illustrate the density of probabilities, whereas embedded boxes extend from 

the lower to upper quartiles. Black dots are used to denote the average probability in each case. 

 

 

Incorporating non-stoichiometry 

To determine whether the accuracy of our model extends to non-stoichiometric materials, we built 

a test set of XRD spectra simulated from 20 experimentally reported solid solutions in the Li-Mn-

Ti-O-F chemical space. These materials, listed in Supplementary Table S3, were manually 

selected from the ICSD to ensure that their compositions are different (greater than 0.05 mole 

fraction) than those of the stoichiometric phases already considered in the previous section. To 
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isolate the effects of non-stoichiometry, diffraction spectra were simulated without including any 

experimental artifacts. We first restricted the training set to include only diffraction spectra derived 

from stoichiometric materials to illustrate the necessity of including additional reference phases 

with non-stoichiometry (i.e., from hypothetical solid solutions). Similarly, JADE was applied to 

the new test set containing solid solutions while restricting its reference database to contain only 

stoichiometric phases. In doing so, neither method can be used to predict the exact compositions 

of the solid solutions. Instead, their prediction accuracy can be resolved into two components: (i) 

Is the predicted structure isomorphic to the true structure? (ii) How similar are the predicted and 

true compositions? Isomorphism was verified using the pymatgen structure matcher16. Differences 

in compositions were quantified using the mole fraction distance between the barycentric 

coordinates of each phase in the Li-Mn-Ti-O-F chemical space (i.e., with each constituent element 

representing a vertex). For example, the compositional difference between LiMnO2 and 

LiMn0.5Ti0.5O2 is quantified as 0.125 mole fraction since 0.5 out of 4 elements are interchanged in 

the formula unit.  

 In Fig. 4a, we show the fraction of non-stoichiometric materials with structures correctly 

identified by the CNN and JADE when only stoichiometric reference spectra are used for training 

or profile matching. This case is labeled “Without NS” where NS denotes non-stoichiometry. The 

CNN correctly classifies the structures of 11/20 spectra, whereas JADE gives only 7/20 correct 

structural classifications. For the same set of spectra, we illustrate the differences between true 

compositions and those predicted by the CNN in Fig. 4b. Errors in the predicted compositions 

range from 0.05 to 0.82 mole fraction, with an average value of 0.38. Therefore, when only 

stoichiometric reference phases are used, neither the deep learning algorithm nor conventional 

profile matching techniques can be utilized to reliably predict the structure or composition of non-

stoichiometric materials from their diffraction spectra. This conclusion supports our initial 

expectations given that substantial off-stoichiometry is known to cause large changes in the 

positions and intensities of diffraction peaks. Although data augmentation is useful (and necessary) 

to account for relatively weak deviations from ideality, it is not capable of extrapolating to larger 

changes well beyond those included in the training set. 

A proper treatment of non-stoichiometry necessitates additional reference phases with 

compositions that more closely match experimentally observed solid solutions. To this end, we 

introduced XRD spectra simulated from hypothetical solid solutions spanning the Li-Mn-Ti-O-F 
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space into the training set. In addition to the 21,000 spectra obtained from the 140 stoichiometric 

materials, 17,250 new spectra were derived from 115 hypothetical solid solutions (115 materials 

× 150 augmentations). Perturbations were applied via the data augmentation procedure described 

in the Methods, and 80% of the resulting diffraction spectra were used to re-train the CNN. For 

comparison, the same set of hypothetical solid solutions were also added to the reference database 

used by JADE. Both updated models were then applied to the test set containing 20 diffraction 

spectra simulated from the experimentally reported non-stoichiometric materials. The fraction of 

structures correctly identified by each method is displayed in Fig. 4a, labeled “With NS”. In 

contrast to earlier results, the CNN and JADE achieve much higher accuracies of 95% and 70%, 

respectively. These improvements in performance are realized without sacrificing much accuracy 

in the classification of stoichiometric materials – our updated model correctly identifies 89% of 

phases across the test set containing simulated diffraction spectra with mixed artifacts, a decrease 

of only 3% compared to the CNN trained only on stoichiometric phases (Fig. 3a). In Fig. 4b, we 

present the updated distribution of errors in compositions given by the CNN trained with non-

stoichiometric phases. Differences between the predicted and true compositions now range from 

0.02 to 0.54 mole fraction, with an average value of 0.18. Hence, these results highlight the 

advantages of including non-stoichiometric reference phases, which nearly doubles the number of 

correctly identified structures and reduces compositional errors by ~50% when classifying 

experimentally reported solid solutions. 
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Figure 4: (a) For a set of diffraction spectra derived from 20 experimentally reported solid 

solutions, the fractions of structures correctly identified by the CNN and JADE are shown in two 

cases: (i) when the training set includes only stoichiometric reference phases (Without NS), and 

(ii) when the training set is augmented with hypothetical solid solutions (With NS). (b) For the 

same set of spectra, differences between true compositions and those predicted by the CNN are 

quantified by their mole fraction difference. Violin plots illustrate the full distribution of errors, 

whereas embedded boxes range from lower to upper quartiles. Black dots are used to denote the 

average probability given in each case. 

 

 

Multi-phase classification 

Extending the CNN to characterize mixtures of materials, we constructed three new test sets, each 

containing 1,000 simulated multi-phase diffraction spectra. These tests were designed to mimic 

samples with multiple phases by creating linear combinations of single-phase diffraction peaks 

derived from 140 stoichiometric reference phases in the Li-Mn-Ti-O-F chemical space. The first 

two sets consider mixtures generated from randomly selected two- and three-phase combinations 

with equal weight fractions of the reference phases. In the last set, we probe the effects of impurity 

phases by simulating two-phase spectra where the weight fractions of the majority and minority 

phases are randomly set to constitute 70-90% and 10-30% of the mixture, respectively. In all three 

test cases, data augmentation is applied using mixed artifacts (peak shifting, broadening, and 
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texture as well as a diffuse and noisy background signal) so that the resulting spectra provide an 

realistic representation of experimental measurements. 

 In addition to our newly developed branching algorithm (denoted B-CNN hereafter), multi-

phase identification was performed using three other techniques for comparison: (i) based on the 

work of Maffettone et al.12, a “single-shot” approach (S-CNN) was employed such that the two or 

three materials with the highest probabilities are chosen for each two- or three-phase mixture, 

respectively; (ii) by training the CNN explicitly on simulated multi-phase spectra (M-CNN) as 

described in the work of Lee et al.8, entire mixtures of phases are directly predicted as opposed to 

separately identifying individual phases; (iii) using JADE to obtain a list of suspected phases for 

each mixture based on profile matching, the two or three highest-ranked materials are chosen for 

two- and three-phase spectra, respectively. Given that method (ii) requires many possible linear 

combinations of single-phase spectra to produce a sufficient number of multi-phase spectra for 

training, only ideal diffraction spectra were used without applying any data augmentation. Further 

details regarding this technique are supplied in Supplementary Note 6. 

 In Fig. 5a, we show the fraction of phases correctly identified by each of the four methods 

when tested on two- and three-phase mixtures with equally distributed weight fractions. Among 

all of the techniques considered here, our newly developed B-CNN algorithm achieves by far the 

highest accuracy, correctly identifying 87% and 78% of all materials from two- and three-phase 

spectra, respectively. This outperforms previously reported methods based on deep learning, with 

the S-CNN12 and M-CNN8 giving accuracies of 70% (54%) and 65% (58%) in the classification 

of two-phase (three-phase) mixtures. Despite their similarity in performance, these two approaches 

highlight separate limitations. Recall that the M-CNN does not utilize data augmentation to expand 

the diversity of its training set, and therefore often fails when applied to diffraction spectra 

containing large perturbations arising from experimental artifacts. In contrast, the S-CNN accounts 

for possible artifacts through physics-informed augmentation (as in our approach) and 

consequently is more robust against changes in the diffraction spectra. However, since the S-CNN 

identifies all phases in a “single shot” without subtracting known diffraction peaks, it leads to 

misclassifications when similar reference phases produce comparable probabilities for a given 

spectrum. The B-CNN improves upon both shortcomings using an iterative process of single-phase 

identification and profile subtraction to achieve higher accuracy. Furthermore, by maximizing the 

probability over all phases in the predicted mixture, the B-CNN ensures that the first iteration of 
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phase identification is not over-prioritized. If only the most probable phase is evaluated at each 

step without maximizing probability over the entire mixture, lower accuracies of 78% and 69% 

are given across two- and three-phase mixtures, respectively. 

 In Fig. 5b, we compare the accuracy of each approach for the classification of 

majority/minority two-phase mixtures. The B-CNN again outperforms all other evaluated 

approaches. However, the reliability of our model varies substantially in the identification of 

majority versus minority phases. The B-CNN correctly classifies 92% of all majority phases, 

matching its performance across single-phase spectra and therefore suggesting the presence of 

impurity phases has little to no effect on majority phase identification. Identifying minority phases, 

on the other hand, presents a greater challenge, as reflected by a lower accuracy of 64% given by 

the B-CNN. We note that most misclassifications occur due to imperfect applications of profile 

subtraction that occasionally leave behind residual intensities or subtract some diffraction peaks 

associated with the minority phase of interest. Despite this limitation in the identification of 

minority phases, the model generally performs reliably in their detection. Recall that the number 

of phases in a mixture is determined by halting the B-CNN when all diffraction intensities fall 

below 5% of the initially measured maximum intensity. With this cutoff, the B-CNN correctly 

reports the presence of a second phase in 93% of the two-phase mixtures with unequally distributed 

weight fractions. For comparison, when the B-CNN is applied to simulated single-phase spectra 

with mixed artifacts (Fig. 3a) using the same cutoff intensity of 5%, the number of phases is 

overestimated in only 9% of the samples. The key component enabling a reliable prediction for 

the number of phases is the approach to profile subtraction. Here, known diffraction peaks are fit 

to the spectrum through DTW so that their subtraction yields a new spectrum that accurately 

represents the mixture minus the phase(s) that has already been identified. This capability is 

particularly useful in the optimization of synthesis procedures, where it is of interest to know 

whether the formation of a targeted product is accompanied by some impurity phase. 

 



 19 

 
Figure 5: (a) The fractions of phases correctly identified by the B-CNN (*introduced in this work) 

when applied to simulated diffraction spectra of two- and three-phase mixtures with equally 

distributed weight fractions. For comparison, accuracies obtained using two methods based on 

previous work (S-CNN12 and M-CNN8)  are shown, in addition to results from JADE. (b) These 

same techniques are applied to diffraction spectra of two-phase mixtures with unequally 

distributed weight fractions of 10-30% and 70-90%. Accuracies are divided into the identification 

of majority and minority phases. 

 

 

Application to experimental spectra 

As a final demonstration of the generalizability of our approach, the B-CNN was applied to 

experimentally measured spectra in the Li-Mn-Ti-O-F chemical space. In Table 1, we list the 

fraction of phases correctly identified by the CNN versus JADE, with results categorized by the 

artifacts and number of phases included for each class of spectra (previously described in 

Experimental measurements). For the classification of pristine diffraction spectra, the CNN 

correctly identifies all ten phases considered. Interestingly, JADE incorrectly classifies one 

material (Li2TiO3) from this category. Upon further inspection, the error is attributed to large 

deviations in the relative peak intensities between the measured and ideal spectra of Li2TiO3 

(shown in Fig. S2), possibly caused by stacking faults in the sample23. In the analysis of spectra 

with diffuse and noisy background signals, the CNN correctly identifies all but one material 
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(anatase TiO2), likely due to the fact that it exhibits significant diffraction peaks at low values of 

2𝜃 where the amorphous background is strong. JADE is found to be more sensitive to background 

effects as it yields five misclassifications across these 20 spectra. These misclassifications occur 

because JADE fails to index peaks that blend in with the background signal and have low 

intensities or broad widths after a baseline correction is applied. The CNN is more robust against 

these perturbations since it is trained on spectra having diffraction peaks with varied intensities 

and widths.  

 For spectra containing peak shifts, the CNN correctly identifies five out of six phases. In 

contrast, JADE struggles to handle changes in peak positions, identifying only two phases from 

this category. This highlights a key weakness of profile matching techniques, which fail when 

there is weak overlap between measured and simulated diffraction peaks owing to a shift in 2𝜃. 

Fortunately, because the CNN can handle these changes through data augmentation, its 

performance remains reliable in the classification of spectra with peak shifts. When diffraction 

peaks are broadened, the CNN and JADE correctly identify five and four phases, respectively, 

from the five measured spectra. The single misclassification from JADE occurs for Li2MnO3 

owing to a strong overlapping of its neighboring diffraction peaks, an effect which is accounted 

for by the CNN during training. For the six spectra with changes in their peak intensities, the CNN 

correctly classifies five phases while JADE identifies four. The misclassification made by the CNN 

occurs because the varied peak intensities closely resemble those of a hypothetical solid solution 

(Li0.5Mn1.5TiO4) that is isomorphic to the true phase (LiMnTiO4). Across non-stoichiometric 

materials, the CNN correctly predicts all four materials to adopt the rocksalt structure, whereas 

JADE finds only three phases to be rocksalt. For both methods, the predictions are facilitated by 

the introduction of hypothetical solids solutions; without including these additional reference 

phases, neither the CNN nor JADE predicts any of the four samples to be rocksalt-structured. 

 For the classification of multi-phase mixtures, JADE provides limited accuracy. Only 7/10 

and 9/15 phases are correctly identified from two- and three-phase spectra, respectively. Such 

limitations in accuracy can be attributed to the inability of profile matching techniques to 

distinguish between diffraction peaks produced by several phases, which often overlap with one 

another. The B-CNN adeptly overcomes these limitations and correctly identifies 10/10 and 13/15 

phases in the two- and three-phase mixtures, respectively. Hence, the benefits provided by deep 

learning are highlighted by the noticeable disparity between the performance of the CNN versus 
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JADE, especially when applied to multi-phase spectra. This advantage is vital to assist in targeted 

synthesis, considering that attempts to produce novel inorganic materials are frequently impeded 

by the appearance of multiple impurity phases. Our deep learning approach can therefore be used 

to identify not only desired products, but also impurity phases, which provide insight into why a 

given synthesis procedure failed and inform future attempts.  

 The results from testing the CNN on experimentally measured spectra (Table 1) closely 

match the performance on simulated spectra (Figs. 3-5). For example, in spectra where we include 

a single type of artifact, the CNN correctly identifies 94% of phases from both simulated and 

experimentally measured single-phase spectra. This lends credence to the simulation-based test 

cases that are rich in data (e.g., a total of 4,200 single-phase test spectra were derived from 

stoichiometric materials) and suggests that the simulated spectra used for training and testing 

provide a realistic representation of experimental measurements.  
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Table 1: Fractions of materials correctly identified by the CNN and JADE when applied to 

experimentally measured XRD spectra designed to sample possible artifacts arising during sample 

preparation and synthesis. For diffraction spectra of non-stoichiometric materials, a classification 

is considered correct if the predicted structure is isomorphic to the true structure. 

        
    

Experimental procedure Anticipated artifact CNN JADE 

Single-phase    

    Pristine samples None 10/10 9/10 

    Kapton tape overlaid Diffuse baseline 9/10 8/10 

    Rapid XRD scan Noisy baseline 10/10 7/10 

    Thick samples Shifts in 2θ 5/6 2/6 

    Ball milled Broadening 5/5 4/5 

    Partially disordered Intensity variation 5/6 4/6 

    Solid solutions Non-stoichiometry 4/4 3/4 
    

Multi-phase    

    Two-phase mixtures None 10/10 7/10 

    Three-phase mixtures None 13/15 9/15 
    

 Overall accuracy: 71/76 (93.4%) 53/76 (71.4%) 
        

    
 

Discussion 
In summary, we developed an improved deep learning technique that can reliably automate the 

identification of inorganic materials from XRD spectra. A key advantage of our approach is the 

physics-informed data augmentation procedure that accounts for several experimental artifacts 

commonly observed after sample preparation and synthesis. Conventional profile matching 

techniques often fail when materials variations cause large differences between observed and 

simulated diffraction peaks, requiring manual intervention to analyze any irregularities and 

identify the samples of interest. In contrast, our CNN learns these differences during training, and 

therefore can autonomously perform phase identification from complex spectra. These benefits are 
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highlighted by the test results presented in this work, which show that the performance of profile 

matching quickly deteriorates as larger perturbations are applied to the diffraction spectra, whereas 

the CNN remains reliable in the presence of such perturbations. Furthermore, even though our 

model is trained only on spectra that account for three types of artifacts (strain, texture, and domain 

size), it is demonstrated to successfully generalize to spectra outside of the training set. For 

example, our algorithm achieves a high accuracy for the identification of spectra with diffuse and 

noisy baseline signals, as well as for samples containing unexpected artifacts (e.g., possible 

stacking faults in Li2TiO3). 

 Of the artifacts considered in our work, changes in peak positions are shown to be the most 

challenging to deal with, comprising nearly half of all misclassifications made by the CNN when 

applied to the simulated diffraction spectra of single-phase stoichiometric materials. Because peak 

positions are derived from the spacings between crystallographic planes, and therefore the lattice 

parameters of the material, it is difficult to distinguish between isomorphic phases when their 

structures have a significant degree of strain. We find that our model provides an optimal treatment 

of changes in peak positions by including samples with as much as ±4% strain in the training set, 

which is unlikely to be exceeded in experiment unless the materials contain substantial off-

stoichiometry. Indeed, tests involving an increased magnitude of strain in the training set led to 

decreased accuracy during testing owing to degeneracies between the diffraction spectra of similar 

phases. In general, the bounds used for data augmentation should reflect the experimental system 

at hand; for example, larger perturbations may be beneficial in cases where certain artifacts are 

expected to dominate (e.g., epitaxial strain in thin films). To avoid degeneracy of spectra in the 

training set, the number of reference phases should be constrained to include only those that are 

expected to arise in experiment – for synthesis, these can be chosen to reflect the composition 

space spanned by the precursors used and the possibility of reactions with oxygen, water, or CO2 

in air. 

 The importance of peak positions is further highlighted by our tests involving non-

stoichiometric materials. Varying the composition of a material typically leads to changes in its 

lattice parameters, which in turn shifts the positions of its diffraction peaks. As a result, when the 

CNN is trained only with stoichiometric reference phases, it frequently fails to identify the 

structures of non-stoichiometric materials. Because the model is trained to identify individual 

phases, rather than their symmetry, it does not necessarily learn the subtle relationships between 
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peak positions imposed by the space group of each structure. Instead, it considers the positions of 

all peaks and makes a comparison with known phases in the training set. Therefore, when non-

stoichiometry causes large shifts in the positions of diffraction peaks, the CNN will struggle if it 

has no reference phase available with comparable peak positions. With this in mind, we improved 

the treatment of non-stoichiometric materials by building a library of hypothetical solid solutions 

following Vegard’s law. After adding their diffraction spectra to the training set, the CNN correctly 

identifies the structures for 95% of the non-stoichiometric materials considered during testing. We 

note that this approach is successful because the lattice parameters of most solid solutions follow 

Vegard’s law with only minor deviations24. When deviations do occur, data augmentation ensures 

that the match between hypothetical and experimentally observed phases need not be exact for the 

model to maintain a high level of accuracy for the identification of the material’s structure.  

Despite the improved prediction of structure enabled by introducing hypothetical solid 

solutions to the training set, predicting the compositions of non-stoichiometric materials remains 

challenging. This limitation can be understood by considering the effects of non-stoichiometry on 

diffraction peak intensities, which are influenced by the structure’s internal cell coordinates and 

site occupancies. Given the similarity of structural frameworks between materials forming solid 

solutions, changes in cell coordinates are usually small and therefore do not contribute 

significantly to differences in peak intensities. Changes in site occupancies, however, strongly 

influence peak intensities owing to the distinct scattering factors of substituted species. As opposed 

to changes in lattice parameters that can be described by Vegard’s law, an automatic prediction of 

site occupancy is more difficult to achieve because site occupancies can redistribute in solid 

solutions. For example, partial inversion (i.e., swapping Wyckoff positions) between lithium and 

transition metal ions has been observed in spinel LiMn2-xTixO425. Such differences give rise to 

errors in predicted compositions, not structures, because site occupancies control peak intensities 

while leaving peak positions relatively unaffected. Hence, we reiterate that our approach is not 

designed to give precise refinements of composition, but rather to provide a reliable prediction of 

structure and an estimate of composition. Beyond the scope of this work, future efforts may be 

conducted to design a more accurate prediction of site occupancies so that refinement can be 

carried out autonomously. A recent report by Mattei et al. has shown some progress toward this 

end, providing an approach to enumerate many possible distributions of site occupancies with the 

goal of identifying the best match with experimental measurements26. As their approach requires 
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that the structural framework of the suspected phase be known prior to refinement, our model may 

prove useful in coordination with their algorithm. 

When samples contain more than one material, new challenges arise as diffraction peaks 

often overlap and can be difficult to distinguish. To handle multi-phase spectra, we designed a 

branching algorithm that iterates between phase identification and profile subtraction to identify 

the combination of phases that maximizes the average probability given by the CNN. This 

approach yields exceptionally high accuracy across simulated and experimentally measured multi-

phase XRD spectra, exceeding the performance of profile matching techniques and recently 

published methods based on deep learning. The advantages of our branching algorithm can be 

summarized by two main points. First, by training only on single-phase spectra, we avoid the 

combinatorial explosion of training samples that would arise if multi-phase spectra were instead 

used. Because the number of pristine reference spectra is kept low, many experimental artifacts 

can be included through physics-informed data augmentation, which ensures the model is robust 

against perturbations in diffraction spectra caused by defects or impurities. Second, our algorithm 

avoids confusion between phases with similar reference spectra by identifying phases in a one-by-

one manner and iteratively subtracting their diffraction peaks from the spectrum until all non-

negligible intensities have been accounted for. The removal of known peaks prevents the algorithm 

from overestimating the number of phases in a sample, which would otherwise occur if the 

probability distribution given by the CNN was assumed to represent a mixture of phases (e.g., 

assuming all phases with a probability ≥ 50% exist in a given sample).  

 

Conclusion 
We have demonstrated that a deep learning algorithm based on a CNN can be trained to identify 

inorganic materials from complex diffraction spectra. Physics-informed data augmentation was 

shown to accurately account possible experimental artifacts in measured diffraction spectra, 

therefore improving the generalizability of the CNN. Simulated spectra derived from hypothetical 

solid solutions were also added to the training set, which improves the performance of the model 

when dealing with off-stoichiometric samples. For samples containing multiple phases, an iterative 

process of phase identification and profile subtraction was designed to maximize the probability 

given by the CNN over all phases in the predicted mixture, which performs well when applied to 
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multi-phase spectra. The proposed accuracy of our deep learning approach was validated with 

respect to simulated and experimentally measured diffraction spectra.  

Although our current tests focus on materials in the Li-Mn-Ti-O-F space, the algorithm 

developed here (provided below in Code Availability) can be applied to any arbitrary composition 

space given a set of reference phases, which can be extracted from existing crystallographic 

databases. Because the number of training samples required by our method scales linearly with the 

number of reference phases, and only 150 spectra are generated for each phase, the entire process 

of spectrum simulation and CNN training can be extended to broad composition spaces without 

requiring excessive resource use. For example, based on the 140 reference phases in the Li-Mn-

Ti-O-F space, a completely new model can be built from scratch in about one day using 16 CPUs. 

Therefore, given the efficiency of our approach and the promising results illustrated throughout 

this work, we suggest that the algorithm developed here may be used to effectively accelerate 

materials discovery by incorporating automatic phase identification to support high-throughput 

and autonomous experimental workflows. 

 

Code availability 
A public repository containing the methods discussed in this work can be found at 

https://github.com/njszym/XRD-AutoAnalyzer. This includes the code used to perform data 

augmentation, generation of hypothetical solid solutions, training of the CNN, and application of 

the CNN to classify XRD spectra using the probabilistic branching algorithm. A pre-trained model 

is available for the Li-Mn-Ti-O-F chemical space. 

 

Data availability 
All XRD spectra used for testing can be found on Figshare. Reported accuracies can be reproduced 

by applying our pre-trained model to these spectra.  
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Supplementary Table S1: Stoichiometric reference phases from the Li-Mn-Ti-O-F composition 

space that are reported in the ICSD. 

      
   

Formula Space group no. ICSD ID 

   

Li2TiF6 136 256029 

Ti4O7 2 6098 

LiTiMnF6 150 69047 

Mn 141 163245 

TiOF5 15 32676 

Ti6O11 2 9039 

LiMnF4 14 62655 
Li3Ti4O8 3 151917 

MnO 225 643192 

MnF2 136 68736 

MnO2 164 53991 
Ti 229 76165 

Ti7O13 2 9040 

MnO 186 262928 

MnO3 74 173645 

Li2MnF5 15 202394 

TiO2 205 189326 

Mn 225 675395 

LiMnO2 59 84642 

Ti 72 672745 

LiTi2O4 58 182579 

TiO2 189 41056 

Mn 191 673020 

TiO2 35 97008 

Li3TiF6 15 405346 

TiO 225 670890 

Li2O2 129 26892 
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LiMn2O4 70 54701 

Li4TiO4 63 75164 

Mn2O5 55 63642 

LiF 225 674429 

Ti3O 149 36055 

Li 229 674846 

MnF3 15 73113 

Li2MnO3 15 21022 

TiO2 139 671268 

Ti3O 162 23575 

LiMnO4 63 89505 

Ti3O 163 24082 

TiMnO3 148 184649 

Ti 139 671047 

MnO2 84 163598 

Mn3O4 74 672421 

Li2Ti6O13 12 182966 

LiTi2O4 12 180011 

Li2TiO3 15 257005 

MnF2 225 672195 

Li 213 161377 

Li2Ti3O7 11 193803 

TiMnO3 161 184650 

TiMnO3 62 158732 

Mn5O8 12 16956 

Ti4O5 87 174033 

MnO2 87 20227 

Ti2O 164 99784 

TiF2 225 68400 

LiTi2O4 11 182580 

Li 166 426951 

Li2O 225 671967 
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TiF3 221 28783 

Li2MnO3 12 187500 

LiTi2O4 227 154982 

Li 194 671115 

Ti6O 162 20042 

LiMnO2 141 40486 

Mn3O4 141 77478 

Ti6O 163 17009 

MnF2 62 672705 

Li 220 109012 

Ti2O3 167 9646 

TiMn2 194 197772 

TiF3 167 52164 

Ti3O5 12 647543 

Ti3Mn3O 227 29052 

MnF2 60 672197 

LiTiO2 141 164158 

MnF2 61 672706 

Mn2O7 14 60821 

LiO2 58 180561 

MnO2 62 171866 

Mn2O3 148 236254 

Ti3O5 13 194465 

TiO2 62 671269 

Li2MnF6 164 15791 

LiTiO2 227 48128 

Ti2O3 62 187466 

Mn2O3 206 290637 

Li2O2 14 671295 

Ti3O7 12 5455 

MnF2 205 672196 

TiO 12 56694 



 33 

Li2Ti(OF3)2 12 2558 

MnO2 136 670366 

Mn2O3 61 290641 

LiMn4O8 198 252035 

TiO2 61 77693 

TiO2 136 168138 

Li2O2 194 180557 

LiTi2O4 31 182581 

Mn3O4 57 188903 

Li 225 76948 

MnO2 58 27789 

Mn2O3 199 33647 

Li2O 166 108886 

Ti3O5 15 35148 

TiO2 60 189320 

LiMn2O4 227 192369 

Ti5O9 1 653560 

Mn 216 187036 

TiO 189 196273 

TiMn2O4 95 22313 

Mn 217 426954 

Li2MnO2 164 37327 

TiO2 12 41056 

LiO3 44 180565 

TiO2 225 189325 

MnO2 227 193445 

Ti6O11 12 90958 

Ti5O9 2 31401 

Mn 229 5392 

MnO2 14 40486 

LiO2 12 159510 

TiO2 152 24073 
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Ti 194 672692 

MnF4 88 62068 

Mn2O2F9 15 26399 

Li 64 182499 

Ti 225 671773 

Ti9O17 2 9042 

Ti 191 675189 

MnF2 111 12167 

MnO2 10 99593 

TiF4 62 78737 

Ti3O5 63 50984 

Mn 213 163414 

MnO2 12 150462 

TiO2 141 673140 

Ti8O15 2 9041 

Ti21Mn25 167 600102 

Ti2MnO4 227 22383 
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Supplementary Table S2: Hypothetical solid solutions in the Li-Mn-Ti-O-F composition space. 

    
  

Formula Space group no. 

  

Ti1.5Mn0.5 139 

Li3Ti1.5Mn1.5F12 136 

Li4Ti3MnO8 141 

Li3TiOF3 225 

Ti10.5Mn1.5O18 148 

Li0.5Mn3.5F8 14 

TiMn 139 
Li0.5Ti1.5 194 

Ti0.5Mn1.5 229 

Ti10.5Mn1.5O18 161 

Li2Ti9Mn(O3F)5 15 
Li2Ti3MnO8 227 

LiTi 139 

Li2Ti3MnO8 70 

Li3Ti(OF)2 227 

Ti3Mn(O3F)2 60 

TiMn3(OF3)2 60 

LiTi3 122 

TiMn3(OF3)2 205 

LiTiMn6O8 141 

Li3Ti(OF)2 141 

Li2Ti9Mn(O3F)5 13 

TiMn3F12 15 

Li6Ti3Mn3(OF3)5 15 

LiTi3Mn2O8 95 

TiMn(OF)2 136 

Li3MnOF3 225 

LiTi3 225 
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Ti1.5Mn0.5O4 136 

LiMn3F8 14 

Li5Ti3(O3F)2 141 

Ti3Mn 72 

Ti0.5Mn1.5O4 58 

LiTi8Mn3O16 227 

Ti3Mn(O3F)2 205 

LiTi3O3F 225 

Ti7.5Mn4.5O18 161 

Ti7.5Mn4.5O18 148 

Ti3Mn3O8 227 

Ti3MnO4 225 

TiMn5O8 141 

Li3Ti 225 

LiTi2Mn3O8 74 

LiTi 229 

Ti3Mn 225 

LiTiMn2O4 141 

LiTi2Mn9O16 141 

LiMnOF 225 

Li1Ti0.5Mn4.5F12 136 

Li2TiMnO4 141 

Li3Ti3Mn2O8 141 

Ti1.5Mn0.5O3F1 136 

Li3Ti 220 

Ti3MnF12 167 

Li5Ti3(O3F)2 227 

Li2TiMn3O8 70 

TiMn 229 

LiTi3 220 

Ti1.5Mn0.5 229 

Li1.5Ti0.5 194 
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TiMn5O8 74 

LiTiOF 225 

LiTi2Mn3O8 141 

TiMnO4 136 

TiMn 225 

Ti7Mn5O16 95 

Ti0.5Mn1.5O1F3 136 

Li7Ti(OF3)2 141 

TiMn3 225 

Li3Ti6Mn3O16 141 

Ti0.75Mn2.25 191 

Ti3Mn3O8 95 

TiMnO4 58 

LiTi 225 

TiMn(OF)2 205 

LiMn3O3F 225 

Ti3MnF12 221 

LiTi 15 

LiTi5Mn6O16 95 

LiTi 220 

LiTi3 72 

Li3Ti7Mn2O16 95 

LiTi 194 

TiMn 15 

Ti0.5Mn1.5O4 136 

Li2TiMn3F12 136 

Li1.5Ti0.5 229 

TiMn3 72 

TiMnO2 225 

Li0.5Ti1.5 139 

Li7Ti(OF3)2 227 

Li3Ti6Mn3O16 227 
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TiMn3O4 225 

Li1.5Mn2.5F8 14 

LiTiMnO4 70 

TiMn3 15 

Ti1.5Mn1.5 191 

Li3Ti 15 

LiTiMnO4 227 

TiMnF6 15 

Li0.5Ti1.5 229 

TiMn(OF)2 60 

TiMn 72 

LiTi2Mn9O16 74 

Ti3MnO6 161 

Ti3MnO6 148 

Li3Ti8MnO16 227 

TiMn2O4 141 

Li2Ti3Mn(OF)5 15 

LiTi4MnO8 227 

Li4TiMn3O8 141 

Ti5Mn7O16 95 

Ti2.25Mn0.75 191 

Li2TiMn3O8 227 

Li2Ti3Mn(OF)5 13 

    

  
 

  



 39 

Supplementary Table S3: A list of the 20 experimentally reported solid solutions in the Li-Mn-

Ti-O-F chemical space that are taken from the ICSD and used during testing. 

      
   

Formula Space group no. ICSD ID 

   

Li0.5Mn0.5O 225 163493 

Li0.05Mn0.95O 225 98165 

Mn0.15Ti0.85 229 104991 

Mn1.67Ti1.33 194 101107 

Mn3.6Ti2.4 194 104990 

Mn1.8Ti1.2 194 198909 

Li1.41Mn1.49O4 227 88138 
Li1.16Mn0.84O4 227 84756 

LiMn1.9Ti0.1O4 227 50429 

LiMn1.8Ti0.2O4 227 50431 

LiMn1.6Ti0.4O4 227 50432 
LiMnTiO4 227 166742 

Li1.06Mn1.75Ti0.28O4 227 155560 

Li0.94Mn1.5Ti0.5O4 227 155561 

Li1.33Mn1.33Ti0.33O4 227 180027 

Li1.23Mn0.3Ti1.47O4 227 192988 

Li1.3Mn0.1Ti1.6O4 227 192987 

LiMn0.5Ti1.5O4 212 154145 

LiMn0.7Ti1.3O4 212 154416 

LiMn0.8Ti1.2O4 212 154417 

LiMnTiO4 212 238492 
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Figure S1: The percentage of phases correctly identified by the CNN when applied to test spectra 

containing strain as large as ±4%. Each blue dot represents the accuracy reported by a distinct 

model, which was trained on spectra derived from structures with strain as large as the value 

indicated by the x-axis. The red line shows the optimum accuracy (92%) that was achieved using 

a maximum strain of ±4% in the training set. 

  



 41 

 
 
 
 
 

 
Figure S2: Experimentally measured (top panel) and simulated (bottom panel) spectra for Li2TiO3, 

showing clear differences in relative peak intensities that lead to a misclassification by JADE.  
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Supplementary Note 1: Spectrum simulation and data augmentation 

 

Ideal XRD spectra: For each phase, the structure factor and Lorentz polarization factor were 

simulated using the XRDCalculator module from pymatgen assuming Cu 𝐾! radiation. This yields 

a discrete list of peak positions and intensities that represent the ideal XRD spectrum. To obtain a 

continuous spectrum from this list, Gaussian functions were fit to the diffraction peaks such that 

the maximum value of each function matches the corresponding peak intensity. The full width at 

half maximum (FWHM) of the Gaussian was set to 0.015° to reflect narrow diffraction peaks 

measured from high-purity samples. The highest diffraction peak produced by any given phase 

was set to 100 so that all spectra display comparable intensities. Stochastic noise ranging from 0 

to 1 was added to the spectrum to emulate measurements obtained experimentally.  

 

Data augmentation: Three changes to the simulated spectra were considered: 

1) Shifts in peak positions: Prior to calculating the XRD spectrum as described above, strain 

was applied to through the application of a strain tensor taking the form: 

A
1 + ∆𝑐"" ∆𝑐"# ∆𝑐"$
∆𝑐#" 1 + ∆𝑐## ∆𝑐#$
∆𝑐$" ∆𝑐$# 1 + ∆𝑐$$

D 

Deviations from the identity matrix were obtained by randomly sampling the coefficients 

such that ∆𝑐%& ∈ [−0.04, 0.04]. In all cases, the relative values of the coefficients were 

restricted such that the symmetry of the structure was preserved upon the application of 

strain. In a cubic structure, for example, the following relations must hold: 

∆𝑐"" = ∆𝑐## = ∆𝑐$$ 

∆𝑐%& = 0	for	𝑖 ≠ 𝑗 

2) Varied peak intensities: To replicate texture along a preferred crystallographic plane, the 

indices of each diffraction peak were scaled by taking a scalar product with randomly 

chosen Miller indices (ℎ𝑘𝑙) where ℎ, 𝑘, 𝑙 ∈ {0, 1}. Normalization was applied such that 

peak intensities were scaled by as much as ±50% of their original values. In other words, 

when peak indices are completely out of phase with the preferred direction, the associated 

intensity is multiplied by 0.5, whereas peaks with indices completely in phase with the 

preferred direction have intensities multiplied by 1.5. 
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3) Broadening of peak widths: The FWHM (𝛽) was modified for all peaks according to the 

Scherrer equation: 

𝜏 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃 

The domain size (𝜏) was randomly sampled between 1 nm and 100 nm. The form factor 

(𝐾) was chosen to be equal to one. The wavelength 𝜆 was set to 1.5406 Å to reflect Cu 𝐾! 

radiation. The diffraction angle (𝜃) is pre-defined by each peak position. 
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Supplementary Note 2: Convolutional neural network architecture and training 

 

Architecture: The input layer of the CNN is one-dimensional and contains 4,501 values 

associated with the intensity of the XRD spectrum as a function of 2𝜃. Six convolutional layers 

are employed with kernel sizes of 35, 30, 25, 20, 15, and 10. The stride and filter size are both kept 

fixed at 1 and 64, respectively, for all layers. ReLU activation is used throughout. Between each 

convolutional layer, pooling is carried out with a stride of 2. The pool sizes are chosen as 3, 3, 2, 

2, 1, and 1. After the final pooling layer, flattening is applied to obtain a one-dimensional vector 

that is then fed to a fully connected neural network containing two hidden layers with sizes 3,100 

and 1,200. The final output layer contains either 140 (255) nodes when dealing with stoichiometric 

(and non-stoichiometric) phases. Between all layers in the fully connected neural network, a 

dropout rate of 60% is applied to maintain regularization.  

 

Training: The CNN yields one-hot vectors [0, 0, 1, 0, …, 0] where each index represents a 

reference phase. Accordingly, the loss function is defined as the cross entropy between the true 

and predicted vectors. An Adam optimizer is utilized to minimize the loss. Training was conducted 

across 2 epochs using a batch size of 32 and five-fold cross-validation.   
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Supplementary Note 3: Profile fitting and subtraction 

 

Fitting: Once a phase has been identified, its diffraction peaks are simulated as described in the 

Supplementary Note 1. Dynamic time warping (DTW) is carried out between these peaks and the 

measured spectrum by using the DTW package for Python1. As warping aims to match correlated 

indices between two times series within a given window, it requires a maximum bound to be 

chosen such that peaks can only be matched with one another if their positions are with ∆2𝜃 of 

one another. Here, we chose ∆2𝜃 = 1.5° to reflect the extreme magnitude of peak shifts that may 

arise in experiment, e.g., from strain or off-stoichiometry. Once the indices have been mapped by 

DTW to provide a fitting along the x-direction (2𝜃), fitting is performed along the y-direction (𝐼). 

For this, the simulated spectrum is scaled as to minimize the average difference between the 

intensities of its diffraction peaks and those of the measured spectrum. All peaks with intensities 

greater than 5% of the maximum peak intensity are identified using the signal processing module 

from SciPy2. The minimal difference is found by sampling 100 scaling constants that range from 

0% and 100% of the maximum intensity from the measured spectrum.  

 

Subtraction: After the simulated spectrum of the identified phase has been fit, its intensities are 

subtracted from the measured spectrum. As the fitting is not always perfect, subtraction 

occasionally produced negative intensities in the resulting spectrum. To avoid any associated 

issues, all negative values are set to zero. 
 

 

 

 

 

 

 

 

 

[1] T. Giorgino, Computing and visualizing dynamic time warping alignments in R: The DTW 

package. Journal of Statistical Software 31(7), 1-24 (2009). 

[2] V. Pauli et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature 

methods 17, 261-272 (2020).  
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Supplementary Note 4: Experimental methods 
 
 

Single-phase samples: LiF, TiO2 (anatase), MnO, Mn2O3, LiMnO2, LiMn2O4, Li2TiO3, MnF2, 

and MnO2 powders were supplied by Sigma-Aldrich and used as pristine materials. Li2MnO3 was 

synthesized via solid-state reaction by mixing stoichiometric Li2CO3 (Sigma-Aldrich) and MnO2 

followed by heating at 800 °C in the air for 12 hours with natural cooling. To sample non-

stoichiometry, four disordered rocksalts were synthesized with compositions Li1.2Mn0.4Ti0.4O2, 

Li1.3Mn0.1Ti0.6O2, Li1.3Mn0.3Ti0.4O1.8F0.2, and Li1.25Mn0.45Ti0.3O1.8F0.2 by mixing stoichiometric 

amounts of Li2CO3, Mn2O3, TiO2, and LiF and heating at 1000 °C under a flowing argon 

atmosphere for two hours followed by natural cooling. To reduce the particle size for broadening 

diffraction peaks, each of LiF, LiMnO2, MnF2, MnO2, and Li2TiO3 was ball-milled in a high-

energy SPEX 800M shaker mill at 1725 rpm for 15-30 minutes.  

 

Multi-phase mixtures: To prepare multi-phase mixtures, equivalent masses of two or three 

pristine materials were mixed with a pestle and mortar for 15 minutes. The following combinations 

of materials were considered: MnF2 + TiO2, Mn2O3 + LiF, TiO2 + MnO, LiMn2O4 + Li2MnO3, 

LiMnO2 + Li2MnO3, Li2TiO3 + MnF2 + LiMn2O4, Mn2O3 + TiO2 + LiMnO2, Li2MnO3 + MnO + 

TiO2, Mn2O3 + Li2TiO3 + TiO2, LiMn2O4 + LiF + Li2MnO3. 

 

X-ray diffraction measurement: XRD spectra were measured with a Rigaku MiniFlex 600 using 

Cu 𝐾! radiation. 2θ was scanned between 10o and 100o using a step size of 0.01o. A scan rate of 

3o/minute was applied for all measurements, except when generating noisy signals (in which case 

a scan rate of 30o/minute was used). 
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Supplementary Note 5: Baseline correction and noise filtering 

 

Baseline correction: To identify and subtract the background signal from a given spectrum, we 

employed the rolling ball algorithm as implemented in the OpenCV package for Python1. In one-

dimension, this approach may be visualized by imagining the translation of a circle along 2𝜃, with 

at least one point on the edge of the circle constantly touching the spectrum. Then, any intensity 

where the circle and spectrum are in contact is assumed to be a part of the background. Here, we 

choose the radius of the circle as 4° so that diffuse features are attributed to the background while 

still retaining some allowance for broad peaks. After the background spectrum has been identified, 

it is subtracted from the measured spectrum.  

 

Noise filtering: Noise is removed from measured spectra using an infinite impulse response filter 

it implemented in the signal processing module from SciPy2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] G. Bradski, The OpenCV library. Journal of software tools 27 (2000). 

[2] V. Pauli et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature 

methods 17, 261-272 (2020).  
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Supplementary Note 6: Training on multi-phase spectra 

 

Spectrum simulation: To provide a comparison with our newly developed approach to phase 

identification from multi-phase spectra based on an iterative procedure of phase identification and 

profile subtraction, we designed a separate model based on the work of Lee et al.1 Accordingly, 

single-phase diffraction spectra were simulated (without data augmentation) from the 140 

stoichiometric reference phases spanning the Li-Mn-Ti-O-F composition space. In total, 140,420 

and 273,819 spectra were constructed to represent two- and three-phase mixture, respectively. This 

was done by enumerating all possible combinations of the stoichiometric reference phases, from 

which diffraction peaks were added together through a linear combination where the coefficients 

are randomly selected to scale each individual spectrum from 0% to 100% of its initial intensity. 

Normalization was conducted after performing each linear combination such that maximum 

intensity is set to 100.  

 

Training: A similar CNN architecture was utilized as discussed in the Supplementary Note 2. The 

only difference lies in the output layer, which was designed to follow a three-hot vector approach 

whereby each reference phase has three associated indices representing a low, moderate, and high 

weight fraction. For example, if two phases are present with a low and high weight fraction, then 

its representation would appear as ([1, 0, 0], [0, 0, 1]). Further details regarding this method can 

be found in Ref. [1] listed below. Based on this procedure, the output layer of the CNN now 

contains 420 nodes: 3 weight fractions × 120 reference phases. Training was conducted as 

previously described. 

 

 

 

 

 

 

[1] J. W. Lee, W. B. Park, J. H. Lee, S. P. Singh, and K. S. Sohn. A deep-learning technique for 

phase identification in multiphase inorganic compounds using synthetic XRD powder patterns. 

Nature communications 11 (2020). 




