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Abstract

Actions can speak more clearly than words

by

Pulkit Grover

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Anant Sahai, Chair

Shannon theory tells us how to communicate explicit sources across explicit channels. How-
ever, systems in nature and human society are rife with examples where neither the source
nor channel is explicit, and actions, not words, appear to “speak.” This phenomena of what
we can call implicit communication is little understood in the theory of control, and little
explored in theory of communication. Consequently, almost no engineering systems system-
atically exploit implicit communication. In this dissertation, using toy models, we first argue
that dramatic improvements could be possible in control precision and control costs with
proper use of actions that communicate.

Theoretically, implicit communication has proven to be a hard nut to crack. From a
control stand-point, implicit communication makes problems hard because the same actions
that are traditionally used exclusively for control can now communicate as well. From a
communications view, there is often another conceptual difficulty: since the source is not
specified explicitly, the message can be altered by control actions!

Consequently, even the minimalist toy problem that distills these two difficulties — the
infamous Witsenhausen counterexample — has remained unsolved for the past four decades.
Worse, it is known to be NP-complete, ruling out the possibility of an algorithmic solution.
Since the problem is hard as well as minimalist, it is a bottleneck in understanding implicit
communication in particular and decentralized control in general.

The main contribution of this dissertation is two-fold. First, using a sequence of three sim-
plifications of the counterexample, we release this bottleneck by providing the first provably
approximately-optimal solutions to the Witsenhausen counterexample. Second, we gener-
alize this sequence of simplifications and propose them as a program for addressing more
complicated problems of decentralized control. As an indication of the potential success of
this program, we provide approximately-optimal solutions to various problems where implicit
communication is possible. Using our refined understanding of implicit communication, we
also identify a few practical situations where the phenomena may prove useful.
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Chapter 1

Introduction

1.1 Communication for decentralized control
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Figure 1.1: (a) An example of explicit communication. The source (voice) and the channel (wire-
less) are explicitly specified. Shannon’s model of point-to-point communication is a good approxi-
mation of the problem. (b) A decentralized control system. Multiple agents act on a control system.
Is Shannon’s model still a good approximation to “communication” in this system?

Fig. 1.1(a) shows an example of what we call problems of explicit communication. These
are the traditional problems of communication where the goal is to have the encoders commu-
nicate given messages across communication channels to the decoders. The modern theory
of explicit communication started with Shannon’s seminal work [1], where he says,

“Frequently the messages have meaning; that is they refer to or are correlated ac-
cording to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem.”
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In other words, Shannon’s intent was to address problems where communication could be
viewed as a goal in itself. As communication systems get better integrated in our daily
lives and activities (see “cyber-physical systems” [2]), of increasing engineering interest are
problems where communication is a means to a goal. For instance, consider the problem of
facilitating coordination among agents in a decentralized control system (e.g. a set of robots
assembling a car, sets of sensors/actuators keeping a building temperature comfortable and
uniform, nanobots detecting or killing a tumor etc.). Does the theory of explicit communi-
cation allow us to facilitate this coordination? Fig. 1.1(b) illustrates one possible way: if the
designer has the engineering freedom of attaching external channels between agents, one can
hope to simulate a centralized system by disseminating the observations of various agents
quickly and reliably over these external channels. The theory of explicit communication tells
us how to engineer this communication so that this hope can be realized.

Practically, one cannot always engineer external channels of arbitrarily high capacity
to connect these controllers. In the extreme case of nanobots, for instance, electromagnetic
communication can be extremely expensive to engineer and run because the size of a nanobot
(smaller than a micrometer) would require an extremely high frequency1 thereby consuming
more power. Not surprisingly, chemical communication techniques that use existing chem-
icals in the body have been proposed2 for communicating implicitly between nanobots [3].
Even when an external channel is feasible, the use of these channels assumes a conceptual
“separation” that is reflected best in Witsenhausen’s words [4]:

“[the information transmission theory] deals with an essentially simple problem,
because the transmission of information is considered independently of its use”

By taking away the meaning of the message, explicit communication separates it from
the act of communication, thereby potentially over-simplifying the problem3. Natural (and
human) interactions suggest an alternative way to forge this coordination without necessarily
resorting to external channels.

1.2 When actions speak: implicit communication

While explicit communication is used commonly in engineered systems, natural systems of-
ten appear to develop coordination without explicit communication. Consider the rather

1To stick a dipole antenna on a nanobot would require a frequency of about 1014 Hz, which lies in the
visible spectrum!

2This is discussed at greater length in Chapter 1.4.2.
3Shannon’s intent was to separate the semantic content of the source (which can be subjective to the

observer for whom the message is intended) from the engineering problem of communication. In case when the
meaning is measured by per-letter distortion, Shannon’s source-channel separation theorem [1] in information
theory shows that this separation of semantic content and communication does not have any performance
penalty and thus can be viewed as an optimal strategy. More precisely, lossy-compression of the source
(which is done, for instance, in JPEG images) followed by reliable communication across the channel can
attain the same asymptotic end-to-end distortion as would any other optimal scheme.



3

Figure 1.2: Examples of interactions in nature, economics, and human society that do not fit the
mold of explicit communication. (a) the waggle dance of bees that indicates location of food and
quantity, (b) the slime-trails of myxobacteria that help other bacteria glide, (c) An example from
economics where the seller communicates cost through the price to the consumer, and (d) two
dancers communicate implicitly using body contact and motion. (e) an engineered system where
nanobots are flowing in the bloodstream. Literature on nanobots proposes chemical communication
between them [3].

fanciful example of ballroom dancing (Fig. 1.2(d)). Even though the dancers do not use the
verbal channel, they are coordinated while dancing. Evidently, the dancers are communicat-
ing to each other in some fashion. Looking at this communication closely, it is apparent that
the leader in the dance communicates to the follower using the ‘channel’ of body contact
and motion, and the follower responds with movements while simultaneously signaling back
through the contact. But what are these agents communicating? The ‘message’ itself can
evolve as the dance proceeds with the moods of the dancers. It is therefore possible that
the communication ‘message’ can be affected by the control actions themselves. Clearly,
communication in dancing cannot be cast in the mold of explicit communication: the mes-
sage source and the communication channel are specified only implicitly. Similar implicit
specification of sources and/or channels can be observed in many examples of natural and
human interactions (see Fig. 1.2; these are discussed in greater detail in the next section).

Taking inspiration from these examples, we informally define implicit communication,
or communicating using actions, by contrasting it with explicit communication. Problems
of implicit communication are those problems that possess any one of the following two
features (a) implicit sources/messages : where control agents use actions to generate messages
endogenously, and/or (b) implicit channels : where agents use control actions to communicate
through the plant (i.e. the implicit channel) while simultaneously using these actions to
control the same plant.

1.2.1 Implicit communication in natural systems

Although our definition of implicit communication is at the moment mathematically im-
precise, it helps classify and distinguish the nature of implicit communication in examples
of natural and human interactions. For instance, when ants crawl, they leave trails of
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pheromone along their path. These trails are strengthened by other ants following the
pheromone trail [5]. The chosen path is an implicit message because it is generated by an
agent (i.e. the ant).

Similarly, honey bees (see Fig. 1.2(a)) are known to perform wiggly motions4 with their
abdomen, and walk in semi-circles, to communicate5 the location of the food to the other bees
at the hive [7]. Even though it appears that the interaction of bees in this waggle dance is a
form of implicit communication, the communication message, namely the food location, is not
implicit because it corresponds to the actual location of food which is specified exogenously,
and cannot be modified by the bees. Even so, the “channel inputs” are determined by the
control actions of the bees: the act of moving in semi-circles and dancing with their abdomen.
Since the same “control plant,” namely the feet (and to a lesser extent, the abdomen), are
used for locomotion in general, the channel can be thought of as implicit6.

Is there any example of a natural system which exhibits both of these notions of implicit
signaling? Sure enough! Bacteria that live in cultivated soils, called myxobacteria, provide
a ready example [8]. Much like pheromones for ants, slime secreted by a myxobacterium
signals its path to other bacteria. The mode of signaling works differently — the slime that
these bacteria secrete aids the motion of the other bacteria by allowing them to glide over it.
Just as for ants, these bacteria communicate an endogenous, implicit message. Since slime,
which is meant to aid other bacteria for gliding, is also serving the purpose of signaling to
them the chosen path, it acts as an implicit channel.

1.2.2 Implicit communication in human society

Natural systems are not the only ones exhibiting implicit communication. Our day-to-
day life is rife with examples of implicit communication. Games of cards often involve
implicit communication between partners, where the implicit channel is the cards being
played and the act of viewing these cards. In the game of contract bridge, the act of bidding
can also be viewed as implicit communication between the players. Even though the bids
are made verbally, they help determine the cost (winning or losing) while simultaneously
communicating messages about the bidder’s cards to other players.

We all know that the textbook way of signaling while driving is signaling explicitly. An
indicator indicates a lane-change or a turn, brake-lights indicate slow-downs, explicit hand
signals can be used to indicate intent, etc. Even so, real-world traffic uses implicit commu-

4See [6] for a beautiful video!
5Karl von Frisch was one of the first to translate the meaning of the waggle dance, and he received a

Nobel prize for this work in 1973.
6This example also brings out the fact that while identifying implicit messages is straightforward, identify-

ing implicit channels can sometimes be a matter of interpretation. Conceptually, however, the identification
of channels as implicit is important. The fact that the same actions serve a dual purpose: that of control and
determining the input to the implicit communication channel, is one of the features that is widely believed
to make decentralized control hard. The issue is discussed at length in Chapter 3.
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nication extensively: a gentle movement to your right indicates a desire to change lanes,
tailgating urges the driver in front to be faster, tapping brakes suggests a traffic slow-down
(through decreased velocity, or through flashing of brake-lights), perhaps even an accident7.
These are valuable pieces of information that are available that perhaps semi-automated sys-
tems, or even completely automated ones, may make use of. Similar possibilities for implicit
communication exist in all decentralized systems where the agents have partial observations
of the state. For instance, submarines used in coordinated search missions [9], robots moving
articles in a warehouse [10], ship-maneuvering [11], etc., all have the potential for implicit
communication.

Mathematical modeling of implicit communication in human interactions can be difficult
because the goal of the interacting agents may not be readily quantifiable. However, simplis-
tic situations in economics offer us platforms where the modeling of implicit communication
may be easier. Not surprisingly, implicit communication has received significant attention in
the economics literature, most notably in the Nobel-prize-winning [12] work of Spence [13],
where it is referred to as ‘signaling.’ The problem addressed by Spence is that of job-market
signaling, where the candidate signals his or her ability using, for example, the level of educa-
tion that the candidate has received. The implicit channel is the level of education. One can
think of the ability as an implicit message, because it can be enhanced (and hence modified)
by the action of getting education8. One such problem of implicit communication inspired
by signaling in economics is addressed in Chapter 5.5.

In the control-theoretic literature, the term ‘signaling’ was first used9 by Ho, Kastner
and Wong [16,17]. Ho and Kastner [17] also connect the control-theoretic notion to Spence’s
signaling model in a game-theoretic formulation, where they consider a toy stochastic version
of Spence’s job-market signaling problem.

1.3 Exploring implicit communication through toy prob-

lems

What should be our starting point for exploring implicit communication? We take inspiration
from the history of the modern theory of explicit communication which started with a simple

7The language and the extent of such implicit communication depends on the place and the traffic-culture!
8This idea of ‘enhancement’ in job-market signaling came out of discussions with Prof. Varaiya and

is a simplification of Spence’s original model. Spence’s model instead takes an approach that we can call
behaviorist. It also allows for enhancement of ‘signals’, that is, the alterable quantities such as education-
level (as opposed to ‘indices’, e.g. race, gender, etc. — the unalterable ones). But the correlation between
signals (and indices) and ‘productivity’ is based on the experience of the employer. The tussle between the
signaling job-candidates and the observing employer becomes a dynamic game where beliefs of the employer
change with their consistency with the actual productivity of the hired candidate.

9Signaling as a role of control actions seems to have first appeared in works of Witsenhausen [14, 15].
In [15], Witsenhausen thinks of the entire system as a “communication channel” with control inputs and the
state as the inputs to the channel, and observations as the output.
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toy problem — that of communicating a message from one point to another [1]. Emulating
the beginnings of explicit-communication theory, in this dissertation we focus on toy problems
that will help us study one or more aspects of implicit communication in isolation. A
fortuitous advantage of looking at toy problems is the following: in simple problems such
as these, it is possible to compare the costs for implicit communication with those attained
using an explicit communication-based architecture. These problems can thus be used as
experiments that provide hints about when implicit communication might offer a useful
engineering alternative in practical situations. This comparison is done in Chapter 2.
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Figure 1.3: The Witsenhausen counterexample and an equivalent implicit communication
interpretation.

Our first toy problem is the minimalist problem that exhibits both an implicit source and
an implicit channel: the Witsenhausen counterexample [14]. An implicit communication
interpretation of the counterexample is shown in Fig. 1.3, which brings out the implicit
source and the implicit channel in the counterexample.

In Chapter 2, for an estimate of the performance of implicit communication, we use a
strategy where the control input is used to quantize the initial state at the first controller
(this strategy was developed by Witsenhausen [14] and extended by Mitter and Sahai [18]).
Using this strategy, in Chapter 2, we compare the engineering alternatives of implicit and
explicit communication. It turns out that when high precision is required in estimation, this
quantization-based implicit communication strategy can significantly outperform the optimal
explicit communication strategy. Naturally, one would want to know an optimal implicit
communication strategy for the counterexample and for problems in its neighborhood. This
desire motivates a deeper investigation of the phenomena of implicit communication, which
forms the core of the dissertation.

Unfortunately, despite its minimalist simplicity, finding an optimal strategy for the Wit-
senhausen counterexample is an infamously hard problem [19]. At the same time, its mini-
malist nature demands that any satisfactory theory of implicit communication must have a
good understanding of the counterexample. Figuratively, the problem is located just outside
the boundary of what is thought to be the set of “tractable” control problems. Significant
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research effort has been invested into understanding what makes the problem hard [20–24]10,
and into obtaining brute-force solutions to the problem [25–27]. In fact, we argue in Chap-
ter 3 that the hardness of the problem influenced the development of decentralized control11

— problem formulations carefully avoided the possibility of implicit communication. This
motivates our exploration of the Witsenhausen counterexample in Chapter 4, culminating
in the first approximately-optimal solutions for the problem.

Building on this understanding, we explore quite a few other problems of implicit com-
munication which are detailed in Chapter 1.5.

1.4 How can these toy problems give insights into prac-

tical system design?

Suppose a designer wants to design a decentralized control network. Why does exploring toy
problems help? While toy problems may not be directly applicable to the real-world, they
allow us to distill aspects of real-world problems and study them in isolation. The ‘toyness’ of
the problem is really just a proposed separation of the “grain from the chaff,” i.e. the essence
of the problem from the details (that needs to be tested by taking the insights back into
real-world). When faced with the problem of designing a large system, the designer breaks
down the problem into sub-problems each of which is inspired by one or more toy problems.
For instance, once the idealized point-to-point toy problem of explicit communication was
well understood, it was natural to ask if one could make larger communication systems work.
Interference is a consequence of having a larger system, and one needs to know how to deal
with interference. An initial justification for treating this interference as merely “chaff”
(i.e. detail) came from the observation that the worst-case interference distribution is the
familiar Gaussian noise [28].

Subsequent refined understanding has shown that this strategy that ignores interference
as a mere detail can lead to arbitrarily large gaps from the optimal attainable rate [29].
Nevertheless, the toy model of point-to-point communication found its utility in practice
(e.g. in early CDMA systems), and laid the foundation for studying the more complex
interference problem.

In order to integrate the point-to-point solution into a network, there are still many
details that are unresolved. For instance, which transmitter is the message coming from,
which receiver is it intended for, what is the packet size, etc. For simplicity of design, the
network is split into various ‘layers.’ A layered structure helps because it abstracts away
details of, for instance, addressing from the designers of information theoretic strategies12.

10A detailed historical survey of the problem and its hardness is provided in Chapter 3.
11This historical perspective is based on discussions with Prof. Anant Sahai on his own involvement with

the development of the field.
12This separation is a conceptual simplification, and theoretical justifications [30] are few and unsatis-

factory. These abstractions are useful even when such a separation is suboptimal because they provide a
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In the same spirit, a layered architecture for decentralized control networks was proposed
by Varaiya in [31]. The architecture abstracts previous approaches for highway traffic [32],
traffic surveillance [33], etc., and tacitly uses explicit communication for coordination. Could
implicit communication suggest an alternative architecture?

Consider the concrete problem of controlling traffic flow by designing an automated
highway traffic systems (see, for example, Varaiya’s proposal for smart cars [32]). Varaiya’s
proposed layered architecture is shown in Fig. 1.4.
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Figure 1.4: Varaiya’s layered approach to decentralized control [31] exemplified in the architecture
of automated traffic control using ‘smart cars’ on ‘smart roads’ [32].

What do these layers do? Of our interest are Layers 0, 1 and 2 that deal with the car and
its neighbors. The lowermost Layer 0 is open loop: it receives control signals from Layer 1,
the regulation layer, and implements the dynamics. It also ‘senses’ the environment, which
is a broad term that could include sensing the relative position and the velocity of each car
in the neighborhood. It also passes these observations to Layer 1. The regulation layer,
Layer 1, is responsible for completing maneuvers successfully for which it uses feedback of
sensor observations from Layer 0.

Layer 1 receives its maneuver commands from Layer 2, the coordination layer. This co-
ordination layer communicates with its peers in neighborhood to determine which maneuver
(e.g. lane change, exit/entry into highway) to execute to fulfill its goal, which is reaching an
exit.

yardstick to compare cross-layer strategies with.
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1.4.1 Coordination using explicit communication

One way to build coordination in the coordination layer is to connect the cars using external
wireless channels. Results from the theory of explicit communication, suitably adapted, can
be used to exchange information (e.g. location, velocity, intent of lane-change etc.) at the
coordination layer. For instance, consider the case of transmitting location of one car to
another. How can we model the movement of a car? In the moving frame of reference
of our car, other cars can be modeled as performing one dimensional random walks along
the highway (possibly with a drift), with occasional perpendicular motion for lane changes.
The lane-changes can be communicated easily using traditional techniques, and the small
frequency also requires only low rates of communication. The random-walk in the direction
of motion is harder to communicate, but communicating a random walk to within a bounded
moment is precisely the problem addressed by Sahai [34].

As we noted, explicit communication inspires the architecture shown in Fig. 1.4. The
coordination layer uses explicit communication to help coordinate with the neighboring cars.
Based on messages from neighboring cars, it orders maneuvers to the regulation layer, tacitly
separating communication from control.

1.4.2 Coordination using implicit communication: a modified lay-
ered architecture

Is the separation between communication and control assumed by explicit communication
strategy necessary? We noted earlier that the examples from real-life traffic: sideways move-
ment while changing lanes, tapping breaks for a slowdown, etc. are all arguably examples
of implicit communication. Taking inspiration from these examples, let us first speculate if
we can make the channel implicit. Since sensors could replace eyes in automated systems, a
natural way of making the channel implicit is to use the sensors to communicate messages.

Can the cars communicate implicitly in the architecture shown in Fig. 1.4? As noted, the
separation between control and communication aspects of explicit communication is reflected
in the layered architecture: the sensors are used by the regulation layer for completing the
maneuvers ordered by at the coordination layer. However, because the regulation layer sends
only the one bit message: “maneuver complete,” to the coordination layer, the coordination
layer receives no message about the other cars from the regulation layer. Consequently, the
cars cannot coordinate using the sensors-based implicit channel in the layered architecture
of Fig. 1.4, even though our human experience from driving suggests that sensors can likely
be used for implicit communication.

A modification to the layered architecture of Fig. 1.4 that allows for the use of the implicit
channel through these sensors is shown in Fig. 1.5. If the sensor observation noise is small,
the cars can exchange more information to attain improved coordination. On the other hand,
a large sensor noise (for instance, when the conditions are foggy) will reduce the influence
of the implicit channel (which is also what happens in current non-automated traffic).



10

speed,
density, incidents

Network

link

coordination

regulation

vehicle
dynamics, 

sensing
Leader NeighborNeighbor

coordination
messages

order
maneuver

maneuver
complete

sensor
signals

control
signals

speed,
platoon size

travel timesroute Roadside
system

Vehicle
system

Layer 0

Layer 1

Layer 2

Layer 3

can be used 
for manipulating
implicit sources

the required
architectural
modification

extra info
from implicit

channel

implicit communication flow

sensing sensing
sensing
location/
speed of 

neighbors

Figure 1.5: The required architectural modifications to the layered structure of Fig. 1.4 that allow
for the actuator-sensor implicit communication. The higher the “SNR” on the implicit channel, the
more the “extra” information (about an implicit or explicit source) that a car can communicate
to its neighbor using the implicit channel. Even though the architecture of [31] tacitly assumed
explicit communication for coordination, no architectural change is required for making the source
(e.g. location of the car) implicit as long as it is available at the coordination layer.



11

What can the cars communicate through this implicit channel? The coordination mes-
sages of lane-change or slowing down can be communicated just as in real-world driving
today. Let us speculate if we can make the sources implicit as well. Can the controller,
i.e. a car, affect the sources? Coming back to the example of communicating the location
of the car, it is clear that the source (in this case the location itself) can be modified by
the maneuvers at the coordination layer. When could such source-modification be useful?
One possibility utility is “source-simplification,” i.e. simplifying the source so that the error
in source-estimation is smaller. Looking at real-world driving, lane-driving can be thought
of as a form of source-simplification where the source is the location of the car, and it is
simplified by forcing it to exist in “quantized” lanes. This simplified source can be estimated
more easily by other drivers. A source-simplification such as this could also be performed
in automated systems. Even if explicit communication channels are available, the source-
simplification can help reduce the required rate across these channels.

Indeed, recent automated robotic systems for warehouse management (see Fig. 1.6) ac-
tually use source-simplification to communicate implicitly to the neighboring robots. Conse-
quently, the explicit communication overhead13 is quite small (about 50 bits-per-second [35]).
At what point is there value to using implicit communication along with explicit communi-
cation? This question is explored in Chapter 2.

1.5 Main contributions

1.5.1 Substitutes for certainty-equivalence: semi-deterministic ab-
stractions

The dominant conceptual framework for designing control strategies in the face of uncertainty
is the theory of “certainty-equivalence.” What is certainty-equivalence theory? At its core,
this theory suggests separating estimation and control14 by splitting each agent into an
estimator followed by a controller. The controllers first arrive at a strategy by pretending
that the observations is noiseless and the system state is known perfectly (i.e. and hence
with “certainty”). The estimators use the observations to estimate the state and feed the
estimates into the controllers. The controllers use these estimates as inputs to the strategy
obtained from the fictional noiseless version of the system.

This conceptually simpler design based on separation of estimation and control is optimal
in quite a few interesting centralized cases [4, 36], including centralized LQ systems [4, As-
sertion 7]. What strategy does certainty-equivalence suggest for a decentralized system?
If unobserved states are thought of as partial observations with extremely large observa-

13We believe that the goal is to reduce communication as well as computational overhead. Path-planning
for robots could become algorithmically simpler to implement if the robots move on a grid rather than
everywhere in the space.

14See [4] for an excellent survey on the separation of estimation and control.



12

Tracks formed by 
movement of robots

Figure 1.6: A warehouse (of Kiva systems) where mobile robots move packages for delivery (used
with the permission of Prof. D’Andrea of ETH Zurich). The cost of collision is huge, and therefore
it is very important accurate estimation of the location of neighboring robots is a must. The chosen
strategy, that of having the robots move on a grid in the space, can be thought of as making the
source implicit. The robots are also equipped with sensors which together with movement of other
robots can be thought of as creating implicit channels for the implicit location-source. Indeed,
the movement of robots on the grid is so precise that they leave tell-tale tracks on the warehouse
floor. We will see in Chapter 2 that implicit communication is specially useful when the required
precision in estimation is high, thus substantiating the source-simplification used here.
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tion noise, then a noiseless version of the system corresponds to all the controllers having
complete knowledge of the state. This certainty-equivalence strategy will therefore be no
different than what would be suggested if the system were a centralized one.

Suboptimality of certainty-equivalence for decentralized LQG problems

Agents in a decentralized system usually have different observations. There is therefore
a strong temptation for the controllers to communicate among one another in order to
simulate a centralized system. A certainty-equivalence approach suggests connecting these
controllers using external channels: the controllers can now communicate over this channel
and thereafter simulate a centralized system. However, real-world channels are imperfect,
and simulating a centralized system may come at a very high communication cost. In order to
understand the impact of imperfect external channels, we need to step back and understand
the limiting case when external channels are absent.

Even though certainty-equivalence-based strategies are optimal for centralized LQG sys-
tems, the Witsenhausen counterexample shows that these strategies can be far from optimal
for decentralized LQG systems15. There is a philosophical and pedagogical value to un-
derstanding why this suboptimality is present — the cause is intimately tied to implicit
communication. Bar-Shalom and Tse [36] showed that certainty-equivalence-based strate-
gies are suboptimal whenever control actions have a dual role: that of minimizing immediate
costs, and reducing uncertainty in future estimation.

For instance, for linear systems, what difference can the inputs make in the posterior
distribution of the state? If the system is centralized, the inputs can only affect the mean
of the distribution, so the intuitive uncertainty in the state does not change. However,
in decentralized systems, it is plausible that a controller with less noisy observations can
reduce the uncertainty in the observations of the controllers that follow. Witsenhausen’s
counterexample demonstrates not only that this reduction in uncertainty is possible, but that
it can really help. While certainty-equivalence suggests linear strategies for the problem16,
Mitter and Sahai [18] showed that nonlinear strategies that reduce uncertainty in state
estimation can outperform linear strategies by an arbitrarily large factor.

A semi-deterministic model

While the appeal of the theory of certainty-equivalence is its simplicity, the Witsenhausen
counterexample exposes the fact that it is not always applicable to decentralized control
problems. There is essentially no theory to guide the design of decentralized control poli-

15For the counterexample, quantization-based strategies can outperform certainty-equivalence-based
strategies by an arbitrarily large factor (an observation that was first made by Mitter and Sahai [18])

16We shall see in Chapter 2 that certainty-equivalence does not even suggest the best linear strategy for
the counterexample.
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cies when ‘signaling’ or the dual role of control is a possibility17. Therefore, we propose a
substitute for certainty-equivalence theory in Chapter 4 and Chapter 5. The substitute the-
ory is one of semi-deterministic abstractions that are based on the recently proposed binary
deterministic models for Gaussian network-communication problems [37–39]. Just as the de-
terministic model in information theory captures the flow of information in communication
networks, our model might be able to capture the flow of information in networks of implicit
communication as well.

Our abstractions have one notable modification: to capture the dual effect of control,
we include influence of noise18 which is why the abstractions are semi -deterministic. To
demonstrate the applicability of these models, we show that they are useful in finding the first
provably-approximately-optimal solution to the Witsenhausen counterexample and many
other problems of implicit communication.

1.5.2 Witsenhausen’s counterexample: a provably-approximately-
optimal solution

Based on our proposed semi-deterministic model, a fundamentally new approach to address-
ing Witsenhausen’s counterexample forms the core of Chapter 4. Accepting that finding
the optimal strategy is too hard, we instead ask for an approximate solution. However, an
approximate solution is a meaningful solution only if it is known how far it could be from the
optimal cost. Inspired by the approximation results obtained using the information-theoretic
deterministic model (see [37]), we seek a similar approximation that is provably uniform over
all problem parameters. Our approximate-optimality results thus have the following flavor:
we characterize the control costs to within a constant factor that is uniform over all the
choices of problem parameters19. The reason for considering a constant factor, instead of the
other natural comparison using constant differences, is simple: the “costs” for most of these
problems (as traditionally normalized) are bounded, and decrease to zero in certain limits.

Our approximate solution to Witsenhausen’s counterexample is uniform over k and σ0,
the parameters of the counterexample, and the vector length m. The solution is obtained in
a sequence of four steps:

1. The semi-deterministic abstraction of the problem is posed and addressed first. The op-

17An optimization perspective does not work for these problems: as we will see in Chapter 3, even the
simplest of these problems, Witsenhausen’s counterexample, is NP-complete.

18In the original model of [37,39], the part of the signal below the noise level was ignored: in communication,
these least-significant bits are indeed unimportant because they are mangled by noise. In control systems,
however, these bits can be affected by controllers with better observations. Removing them from the model
will bring us back to certainty-equivalence-based strategies.

19The counterpart of this approximation in information theory is to obtain capacity within a constant
number of bits (an additive approximation), which is equivalent to obtaining the required power within a
constant factor at high SNR for most problems. Constant-factor approximations are also used for approxi-
mating solutions to NP-hard problems [40].
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timal strategies for the semi-deterministic abstraction (which are based on quantization-
based strategies complemented by linear strategies) are hypothesized to be good strate-
gies for the LQG problem as well. The next three steps bring us to the original LQG
problem.

2. As a first test experiment for our hypothesis, the strategies for the deterministic version
are lifted to a variation on Witsenhausen’s counterexample where the noise is uniform
(instead of the Gaussian noise in the original LQG formulation). Quantization-based
strategies (complemented by linear strategies) are shown to attain within a constant
factor of the optimal cost for all problem parameters, thus completing the first experi-
ment.

3. Our second experimental setup is an asymptotically infinite-length vector version of
Witsenhausen’s counterexample. The techniques developed for the uniform-noise coun-
terexample extend naturally to this setup, proving approximate-optimality of natural
extensions of the same strategies.

4. Arriving finally at the experimental setup of the original (scalar) counterexample, tech-
niques from large-deviation theory are used to prove approximate optimality of these
strategies for the scalar case and all finite-length vector extensions.

A few points of our approach and the approximately-optimal strategies themselves are no-
table:

• In contrast with the problem of tracking over an explicit communication channel [34,41,
42], the problem formulations here have two crucial differences. The observer is now not
merely an observer, it can control too. The controller is not merely a controller either;
it has noisy observations of the channel itself. The advantage of these increased abilities
can be tremendous.

• Quantization-based strategies (complemented by linear strategies) are shown to be
approximately-optimal for the counterexample. This quantifies and proves the intu-
ition of Witsenhausen [14] and Mitter and Sahai [18] on the goodness of quantization
strategies.

• Many heuristic search-based techniques have yielded strategies that appear to be like
quantization, only they have some slope in the flat parts of the quantization curve.
These strategies are believed to attain the optimal cost (albeit without proof) because
of the feeling of exhaustiveness in the search procedure. In Chapter 4.3.3, we show
that these strategies can be arrived at using the procedure of dirty-paper coding in
information theory. Further, at least in the limit of infinite-lengths, these strategies use
the optimum required power for attaining zero distortion costs. Our results thus provide
the first theoretical evidence for the believed optimality of these strategies.
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• Nonlinear strategies can in general be extremely complicated functions. Prior to our
work, there was no guarantee that a class of good nonlinear strategies for the counterex-
ample would have any nice structure. The surprising simplicity of quantization-based
strategies, or even dirty-paper coding based strategies, suggests that good strategies
for decentralized control problems may not look extremely complicated. This is further
substantiated by similarly simple structures of approximately-optimal solutions to a few
other problems of implicit communication that we discuss below.

Our structured approach to understanding the counterexample extends to other problems
in decentralized control as well. In the rest of the dissertation, we choose three problems
each of which brings out phenomena of importance in decentralized control that the coun-
terexample itself does not. These examples can also be thought of as the first few building
blocks for a theory of implicit communication.

1.5.3 A problem of implicit and explicit channels

Is communicating implicitly at all useful when controllers are connected using external chan-
nels? We saw earlier that if the external channels are assumed to be perfect and instanta-
neous, then the system is effectively centralized and certainty-equivalence theory is applicable
in many cases. But not only are the real-world channels imperfect, even for single controller
(and hence seemingly centralized) systems, certainty-equivalence may not be applicable!
Which single-controller systems are these? To understand this, let us consider the case of a
single memoryless controller. Because the controller is memoryless, the situation is equiva-
lent to one where the controller is replaced by its perfect copy at the next time-step. Coming
back to non-memoryless controllers, realistically, any controller has only finite memory, and
so it can be thought of as a decentralized system with rate-limited channels connecting it to
its future self20! Is there any advantage, then, for the controller to communicate implicitly to
its future self? In general, if a decentralized system has imperfect external channels connect-
ing the controllers, is implicit communication between agents still useful? What strategies
are good for these problems?

To investigate these questions we construct the following toy problem: we consider an ex-
tension of Witsenhausen’s counterexample where a finite capacity external channel connects
the two controllers (see Fig. 1.7). What strategies would the theory of certainty-equivalence
suggest? These strategies turn out to be those of inaction: the first controller does not use
any control input on the external channel or the implicit channel. A more interesting strategy
based on the certainty-equivalence philosophy is where the first controller communicates the
state as well as possible on the external channel, and uses a linear strategy on the implicit
channel.

20The same happens in movie ‘Memento’ [43] where the protagonist, suffering from short-term memory
loss, uses notes and tattoos to communicate with his future self.
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Figure 1.7: A problem of implicit and explicit channels. An external channel connects the two
controllers. Should a linear scheme be used on the external channel? The answer is no: a linear
scheme is good at communicating the most significant bits of the state. But these bits are already
known at the decoder through the implicit channel. We propose a binning-based strategy that
transmits finer information on the external channel. This strategy attains within a constant factor
of the optimal cost.

From an implicit communication perspective, certainty-equivalence-inspired strategies
lose performance because of redundancy: the implicit and explicit channel are essentially
being used to send the same information. In Chapter 5.2, we use a deterministic abstraction
of the problem to guide the strategy design for the LQG problem. In our strategy, the
information of the state is split “orthogonally” on the two channels: the implicit channel
is relied upon to communicate coarse information about the state, and finer information is
communicated over the external channel. These strategies outperform certainty-equivalence-
inspired strategies by a factor that can diverge to infinity. A proof of the asymptotic-
approximately-optimality of these strategies is also provided.

1.5.4 A problem exhibiting the triple nature of control laws

Varaiya calls the possibility of a single control action having three roles to play — control,
improving the estimability of the state, and signaling — as the ‘triple aspect’ of control
laws21, or ‘triple control’ in decentralized control systems [45]. This triple aspect does not
show up in Witsenhausen’s counterexample: the first controller wants to communicate the
state itself to the second controller. For the counterexample, therefore, the goals of improving
state estimability and signaling collapse into one.

We need a toy problem where the three roles are not aligned. What will force the
controllers to signal to other controllers beyond merely improving state estimability? We are

21In adaptive control, control actions have a fourth role to play — that of enabling the learning of system
parameters [44]. This was explored first by Feldbaum in a series of papers starting with [44]. Similar to issues
arise there: certainty-equivalence-based strategies are also suboptimal for problems where control actions
have to learn as well as control [44].
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Figure 1.8: A problem that brings out the triple role of control actions in decentralized control.
The control actions are used to reduce the immediate control costs, communicate a message, and
improve state estimability at the second controller.

looking for a situation where the controller embeds information into the state for other other
controllers to observe. Can one controller have information that the other needs? This can
happen if the latter controller does not observe a part of the state which the former does.

Based on this observation, in Chapter 5.3 we formulate a new toy problem (shown in
Fig. 1.8) by extending Witsenhausen’s counterexample. In this problem, the initial state
is denoted by the two-dimensional vector [x0,M ]T . The first controller observes the state
noiselessly, and the second controller only observes the state x1 through noise. The goal is
to have the second controller reconstruct x1 and M . Clearly, not only is improving state
estimability the goal, the first controller also wants to communicate the “message” M to the
second controller. Again, a semi-deterministic abstraction provides guidance for obtaining
approximately-optimal strategies for the problem. These approximately-optimal strategies
show that there is an overhead cost associated with signaling beyond the cost required for
mere state-estimability, thereby demonstrating that the goals of signaling and improving
state-estimability do not collapse into one for this problem.

1.5.5 An economics-inspired problem of rational inattention

In any social system, economic modeling often assumes that the participating agents are
maximizing either individual or joint utility. It is commonly observed (for instance, in
prisoner’s dilemma [46]) that the game-theoretic conclusions are not followed by players in
practice [47]. In the last two decades, a number of formulations have shown that at least in
part, this might be a consequence of bounded rationality of the participating agents. There
is no unanimity on what model of bounded rationality suits all problems. For instance,
for a game of repeated Prisoner’s dilemma, Papadimitriou and Yannakakis [46] model the
participating agents as finite-state automata. They show that the Nash equilibrium is for
the prisoners to use a tit-for-tat strategy (which entails returning favors as well), rather than
relentlessly (and unrealistically) back-stab each other. Models of noisy observation have also
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been considered (e.g. [48]).

Seller

sets the price 
of the product

observes cost 
of the product

Buyer

buys some units 
of the product

(rationally-inattentive)

observes the price 
of the product

Figure 1.9: A toy model for a tiny market: a single seller sets the price that a rationally-inattentive
consumer observes. The consumer selects the number of units to buy based on this observation.

Sims observed that sometimes it is not the noise in our observations, but it is the amount
of attention we choose to allocate: if we choose to, we can focus obsessively on a particular
problem and optimize it, but we will likely not pay attention on the others. To model this
element of choice in how we allocate our attention, Sims [49] proposes what he calls the
“rational-inattention” model. The rationally-inattentive agents can have arbitrary functions
to map their observations to their decisions (control inputs), except for an information-
processing constraint. In the hope of analytical tractability (inspired from the success of
information theory), Sims assumes a mutual information between the observation and the
control input is bounded by a constant I.

These ideas are closely connected to implicit communication. For instance, the concept
of ‘price signaling,’ i.e. using price of an item to signal an aspect (e.g. quality) of the product
to the consumer is quite useful in explaining pricing strategies [50]. What would be good
pricing strategies to signal to a rationally-inattentive consumer?

Unfortunately, it turns out that these models are hard to analyze analytically. Even a
simple two agent problem of seller and consumer (see Fig. 1.9), where each agent operates
just once — the seller fixes the price, and the consumer buys some units of the object —
is hard. What are the “partial observations” of the consumer? in the rational-inattention
model, the observations are a priori “noisy,” but under a mutual-information constraint,
they can be chosen by of the second agent.

Computer calculations of Matejka [51,52] provide evidence that for a toy model of a seller
and a rationally-inattentive consumer, the numerically-optimal pricing strategies are discrete.
This discreteness is consistent with what we observe in practice22, and is reasoned in [51,52]
as follows. Because the consumer has only a limited attention to allocate to observing the
prices, the seller makes it easy for her by making the prices discrete. A discretization of prices
makes it easy for the consumer to decide quickly on the price-changes, thereby stimulating
her to consume more.

22The prices are often pegged at round figures, e.g. 10.00, or for psychological reasons at figures such as 9.99.
This is the tacit code that the sellers and consumers understand, but is harder to capture mathematically.
The more general phenomena of discretization can, however, be captured.
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This interpretation is very similar to our “source-simplification” interpretation of the
counterexample (Chapter 1.4.2): in both cases, good solutions to a continuous state-space
problem are discrete. In Chapter 5.5, we show that this is not a mere coincidence. We
consider a control-theoretic version of the Matejka’s problem of rationally-inattentive con-
sumer, and show that quantization-based strategies (complemented by linear strategies) are
approximately optimal for this problem as well.

There are a few other problems that are addressed in Chapter 5, including a dynamic
extension of the Witsenhausen counterexample. We refer the reader to the beginning of
Chapter 5 for a description of these problems.

Publications in which some of this work has appeared

Some results in this dissertation have appeared in various journals and conferences, and
a few others were developed in the course of finalizing this dissertation. The following
articles helped develop the perspective and the results in Chapter 4: in [53,54], we proposed
the vector version of Witsenhausen’s counterexample and provided approximately optimal
solutions to the asymptotically infinite length problem. An improved bound on the infinite-
length problem appeared in [55] which characterizes the optimal power for zero MMSE
for the asymptotic problem. In [56, 57], we provided approximately optimal solutions to
finite-length Witsenhausen counterexample, including the scalar version of the problem.
The perspective that we adopt in this dissertation evolved over time. An early perspective
appeared in [58].

The extensions of the counterexample (some of which appear in Chapter 5) have appeared
in the following papers. In [59] and [60], we obtained approximate-optimality results for an
extension of the counterexample with costs on all states and inputs, and noise in all state evo-
lutions, inputs and observations, respectively. In [61], we show that the proofs simplify con-
siderably for a version of the counterexample where the noise is non-Gaussian and bounded,
and even considered an adversarial robust-control formulation. Using a semi-deterministic
abstraction of an extension of the problem, we obtain asymptotically-approximately-optimal
strategies for an extension of the problem with an external channel in [62]. The other ex-
tensions that appear in this dissertation have not appeared yet in print.
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Chapter 2

Why communicate implicitly: Actions
can speak more clearly than words

Actions can speak: they can be used to communicate implicitly (see Chapter 1). But
when should we use actions to speak? Clearly, when attaching external channels that connect
various agents is infeasible (e.g. some economic systems and human interactions), actions
are the only possible way to speak.

But is it still useful to communicate using actions when one can communicate using
words, i.e. an external channel can be attached? This chapter investigates this question
using simple toy models. Our main conclusion is that even when an external channel can
be attached, communicating implicitly can significantly outperform explicit communication.
While this does not conclusively imply that implicit communication will be useful in practice,
it identifies the nature of problems where there might be a substantial reason to explore it
as an alternative to explicit communication.

2.1 A toy problem for comparing implicit and explicit

communication

How can we compare implicit and explicit communication? We need a problem where the
designer can use any of these two options. Let us construct a simple setting: a two controller
system where two controllers want to operate sequentially in order to force a state to be
small. The first controller observes the state perfectly but has limited power, so it wants
to communicate the state to the second controller. To emphasize the communication aspect
of the system, the input of the second controller is assumed to be free and is allowed to be
unboundedly large. Thus the second controller only needs to have a good state estimate in
order to force the final state to be close to zero.

We impose quadratic costs on the input of the first controller, and quadratic costs on
the state after the action of the second controller. A weighted sum of these costs yields
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function for both of these problems is a weighted sum of power and MMSE costs, k2P +MMSE,
where power P is the power of the (channel or control) input. Fig. 2.2 shows that actions, used
wisely, can “beat” words handsomely.

a total average cost of k2P + E [x2
2], where P is the power of the input (u1,ex or u1,im,

depending on whether the communication is explicit or implicit) and E [x2
2] is the mean-

squared reconstruction error in estimating x1.
If the designer chooses explicit communication, then the resulting block-diagram is shown

in Fig. 2.1(a). On the other hand, a choice of implicit communication yields the block-
diagram in Fig. 2.1(b). Which option — (a) or (b) — should the designer choose?

Naturally, the two options have different architectural costs1. For simplicity, we only
compare their running costs.

Alternative architectures are also possible. Also, it is also possible (and indeed likely)
that the weight on the input cost and the “bandwidth” (i.e. the number of control inputs
for each observation) can be different for the particular implicit and explicit communication
setups. These differences are important, but we will see in the next section that these two
architectures capture the essence of the difference between implicit and explicit communica-
tion

2.1.1 Costs using explicit communication: an optimal strategy

The explicit communication option (Fig. 2.1(a)) is a problem of communicating a Gaus-
sian “source” across a Gaussian channel. There is exactly one source symbol, and exactly

1The explicit-communication option requires the controllers to be equipped with an external link con-
necting the first controller to the second2. The second controller does not observe the state directly, and
only estimates the state from the channel output. In the implicit-communication option, the first controller
is equipped with an actuator as well, using which it can change the system state. The second controller has
a sensor to sense the state. But no external link connects the two controllers.
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one channel use (in information-theoretic lexicon, the source and channel are “bandwidth-
matched”). The optimal solution for this problem was first found by Goblick [63], and is

well known to be linear [63], i.e. u1 = αx0 for α =
√
P
σ0

.

The resulting MMSE error is
σ2
0

P+1
. The total cost can be calculated easily

J x0,comm = k2P +
σ2

0

P + 1
, (2.1)

2.1.2 Costs using implicit communication: a quantization-based
strategy

As we shall see later, the problem resulting from adopting the implicit communication option
(Fig. 2.1(b)) is the Witsenhausen counterexample. The optimal strategy for the problem
is unknown. We therefore use a strategy which has been observed in the literature3 to
be reasonably good: a quantization-based strategy. In fact, this is also the strategy that
the semi-deterministic model suggests, and will be proved to be approximately-optimal in
Chapter 4. The strategy is described next.

The controllers agree on uniformly spaced quantization points with bin size B. The first
controller uses its input to force x0 to the quantization point nearest to x0. The second
controller now performs a maximum-likelihood estimation for x1 based on its observation
yim. That is, it decodes to the quantization point closest (in Euclidean distance) to the
received yim = x1 + z. We numerically optimize over the choice of bin-sizes to obtain the
minimum total cost using quantization. The resulting cost is plotted in Fig. 2.2, which is
what we discuss next.

2.2 The tipping point: when should one use actions to

speak?

2.2.1 Comparison of explicit and implicit communication of 2.1.1
and 2.1.2

A comparison of costs attained attained using the optimal strategy of Chapter 2.1.1 for
explicit communication and using quantization-based strategy of Chapter 2.1.2 for implicit
communication is shown in Fig. 2.2. The figure shows that in all cases, implicit communi-
cation outperforms explicit communication. Although surprising, in part this is because the
weight k2 on the costs of the inputs for the two options is assumed to be the same. At large

3In [14], Witsenhausen proposed a two-point quantization strategy. Bansal and Başar optimized Wit-
senhausen’s strategy in [23]. In [18], Mitter and Sahai used a multipoint quantization strategy which is the
strategy we use here.
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communication outperforms explicit communication in “most” of the parameter-space (for fixed
ζ).
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values of k, this happens in part because the implicit communication is helped somewhat
unfairly by the implicit channel: even if the first controller uses zero input, i.e. u1,im ≡ 0,

the second controller can perform an estimation on the observation, and the MMSE is
σ2
0

σ2
0+1

.

For the explicit-communication problem, if the first controller uses u1,ex ≡ 0, the second
controller receives no information about the state, and the corresponding MMSE is σ2

0.
The next section shows that these reasons do not provide a sufficient explanation for why

implicit communication can outperform explicit communication. The fact that the source is
implicit is very important as well.

2.2.2 When control and communication inputs have different costs

What does the weight k2 signify? This weight measures the relative importance of the input
power and the reconstruction error. In situations where high precision in state estimation
(at the second controller) is not required, the input is relatively more important and k2 is
large. On the other hand, when high precision is required, k2 is small.

Realistically, the cost of communication input can be different from the cost of control
input, so we should assign different weights to the input costs for implicit and explicit
communication. How do we choose the different weights? In this section, we assume a
weight of k2

ex on input power on the explicit channel, and k2
im for power on the implicit

channel. In order to emphasize on the effect of relative importance of power and MMSE, we

fix the ratio ζ = k2ex
k2im

, and let one of them vary. The resulting plots are shown in Fig. 2.3.

2.2.3 Comparisons with other architectural options

(c) Explicit source, implicit channel

x1

+

++
-
x2

z

C1 C2

x0

u2

+

∼ N (0, 1)

Implicit channel
x0 ∼ N (0, σ2

0)

yim

k2E
�
u2

1,im

�
+ E

�
(x1 − �x1)

2
�

u2
1,ex x0 �x0

u1,exExplicit source

Figure 2.4: A problem with an explicit source (x0) that needs to be communicated across the
implicit channel X1 − Yim.

Comparing problems in Fig. 2.1, there are two major differences in the toy problems of
implicit and explicit communication. The first difference is that we noted as one of implicit
sources: the first controller can modify the state x1 that is to be communicated. There
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Figure 2.5: The (log of) ratio of the costs required by the problem of explicit source, implicit
channel shown in Fig. 2.4 with the implicit communication problem of Fig. 2.1(b). The ratio is
observed to diverge to infinity whenever k → 0.

is a second, and a more subtle, difference too: the power on communication channel in
implicit communication problem (Fig. 2.1(b)) can be much larger than that on the explicit
communication problem. This is because the power in the initial state x0 can be used to
boost the power on the implicit channel (because the channel input is a sum of x0 and u1),
but the power on the explicit channel is determined solely by the input u1. Where is the
advantage of implicit communication coming from?

To investigate this, we consider the problem shown in Fig. 2.4. In this problem, an
explicit source x0 is to be communicated across a channel whose power is boosted by the
source itself in the same way as that in Fig 2.1(b). As a sanity check, with u1,ex ≡ 0, the
cost for this problem is the same as that for u1,im ≡ 0 the problem in Fig. 2.1(b), because in
that case, x1 ≡ x0. Fig 2.5 shows that even in comparison to this problem, the costs for the
implicit communication problem (b) are better by a factor that diverges to infinity in the
limit k → 0.

Because the distinguishing feature between the two problems considered here is the im-
plicit nature of the source, it has to be the case that the implicit source, and not the implicit
channel, brings about the gains in implicit communication. What is so special about an
implicit source?

Conclusions: what aspect of implicit communication makes it bet-
ter?

From results in Chapter 2.2.1, even if explicit communication inputs cost much less than the
same real-number inputs for implicit communication, the total costs using implicit commu-
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nication can still be significantly smaller than that for explicit communication. But implicit
communication has two aspects: an implicit source (a source that can be “simplified”) and
an implicit channel. The literature in ‘signaling’ in control emphasizes on the aspect of
communicating through the plant (e.g. [4]), i.e. the implicit-channel aspect of implicit com-
munication. Chapter 2.2.3 attempts to isolate the effect that makes implicit communication
powerful by allowing for the same power on the explicit and implicit channels. The fact that
implicit communication is still a superior strategy in some cases shows that the “source-
simplification” (e.g. price-signaling in economics) i.e. the implicit-source aspect of implicit
communication might even be more important.

So when can implicit communication be useful? It is clearly useful when it is the only
alternative, i.e. when the engineering freedom of attaching external channels does not exist
(e.g. some economic and human interactions). It also could be useful when the cost of
communicating over an external channel is comparable to the control costs, and/or when
extremely high precision control is required.

In this dissertation, we use this potential advantage of implicit communication in toy
problems to motivate a deeper understanding of Witsenhausen’s counterexample, which is
the same as problem (d) in Fig. 2.1. There are likely other situations where implicit commu-
nication can be advantageous. The next chapter discusses historical reasons why understand-
ing the counterexample and understanding implicit communication using the counterexample
has been of immense interest.
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Chapter 3

The historical importance of the
minimalist implicit communication
problem: Witsenhausen’s
counterexample

In Chapter 2, in a toy setting, we compared the costs of implicit and explicit communi-
cation, and noted that implicit communication can be a useful alternative in some cases. We
observed that the implicit communication problem we compared with is the Witsenhausen
counterexample, which is also the minimalist problem that exhibits aspects of both implicit
sources and implicit channels. Studying the counterexample is therefore important in order
to understand implicit communication.

Historically, the counterexample has been studied for many other (though not unrelated)
intellectual reasons. This chapter discusses these reasons, and looks at how the counterex-
ample has influenced the development of the theory of decentralized control. We also talk
about the literature related to signaling in the counterexample, and observe how in the sig-
naling context, the counterexample sits naturally within a set of related information theory
problems. To set up the notation for this discussion, we begin with a formal statement of
a vector version of the counterexample. Witsenhausen’s original counterexample, which is
scalar, is just the one-dimensional case of this problem. Why look at a vector version of the
counterexample? As we will see in Chapter 4, much like in traditional information-theoretic
problems, the vector version provides conceptual simplification: large vector lengths allow us
to use laws of large numbers and side-step the complications associated with the geometry
of finite-dimensional spaces.
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3.1 Notation and a formal statement of the vector Wit-

senhausen counterexample
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Figure 3.1: Block-diagram for Witsenhausen’s counterexample of dimension m.

Vectors are denoted in bold. Upper case tends to be used for random variables, while
lower case symbols represent their realizations. W (m, k2, σ2

0) denotes the dimension-m vector
version of Witsenhausen’s problem, which is a time-horizon-2 problem of stochastic control
described as follows.

• The initial state Xm
0 is Gaussian, distributed N (0, σ2

0Im) (i.e. the elements of the state
are iid), where Im is the identity matrix of size m×m.

• The states are denoted using vectors Xm
t , t = 0, 1, 2. The first controller C1 acts at

t = 1 and uses control input um1 . Similarly, the second controller acts at t = 2, and uses
input um2 . The state transition functions describe the state evolution with time. The
state transitions are linear:

Xm
1 = Xm

0 + Um
1 , and

Xm
2 = Xm

1 −Um
2 .

• The outputs Ym
t are observed by the controllers:

Ym
1 = Xm

0 , and

Ym
2 = Xm

1 + Zm, (3.1)

where Zm ∼ N (0, σ2
ZIm) is Gaussian observation noise. Without loss of generality, we

assume that σ2
Z = 1.
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• The objective is to choose a control strategy that minimizes the expected cost, averaged
over the random realizations of Xm

0 and Zm. The total cost is a quadratic function of
the states and the inputs given by the sum of two terms:

J1(xm1 ,u
m
1 ) =

1

m
k2‖um1 ‖2, and

J2(xm2 ,u
m
2 ) =

1

m
‖xm2 ‖2

where ‖ · ‖ denotes the usual Euclidean 2-norm. The cost expressions are normalized
by the dimension m to allow natural comparisons between different dimensions. A
control strategy is denoted by γ = (γ1, γ2), where γi is the function that maps the
observation ymi at Ci to the control input umi . For a fixed γ, the time-1 state xm1 =
xm0 + γ1(xm0 ) is a function of xm0 . Thus the first stage cost can instead be written as a

function J
(γ)
1 (xm0 ) = J1(xm0 + γ1(xm0 ), γ1(xm0 )) and the second stage cost can be written

as J
(γ)
2 (xm0 , z

m) = J2(xm0 + γ1(xm0 )− γ2(xm0 + γ1(xm0 ) + zm), γ2(xm0 + γ1(xm0 ) + zm)).

For given γ, the expected costs (averaged over xm0 and zm) are denoted by J (γ)(m, k2, σ2
0)

and J (γ)
i (m, k2, σ2

0) for i = 1, 2. We define J (γ)
min(m, k2, σ2

0) as follows

J min(m, k2, σ2
0) := inf

γ
J (γ)(m, k2, σ2

0). (3.2)

Because of the diagonal dynamics and diagonal covariance matrices, the optimal linear
strategies act on a component-by-component basis. Therefore, even if m > 1, the
relevant linear strategies are still essentially scalar in nature.

What happens if the initial state is not distributed iid across its elements? The problem
does not change much because the correlation across various elements can be zeroed out
by simply rotating the axes. This rotation of axes does not affect the noise because it
is white. What if the noise is also not white? This case, though potentially interesting,
is not discussed in this dissertation.

3.2 What conjecture is refuted by the counterexam-

ple?

We saw in Chapter 1.5.1 that strategies based on the theory of certainty-equivalence are
optimal for linear-quadratic (LQ) problems with classical information patterns [4, Assertion
7]. The optimal solution can be obtained by splitting each agent into an estimator followed by
a controller. What happens when the system is not just LQ, but Linear-Quadratic-Gaussian
(LQG)? Using dynamic-programming, one can show that at each step of “backtracking” in
the program, the optimization problem is convex. The resulting optimal strategy is that
predicted by certainty-equivalence, and turns out to be linear! Further, it can be found
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recursively using Riccatti equations [64]. Because of this simplicity and the generality of the
formulation, LQG control strategies have found applicability in diverse practical problems
(many such examples are talked about in [65]).

A natural conjecture is that the optimality of certainty-equivalence strategies extends
to decentralized LQ problems. In particular, for decentralized LQG systems, this would
imply that linear strategies are optimal. Indeed, this belief was widespread at the time
Witsenhausen came up with his counterexample (e.g. see abstract of [14]). Witsenhausen’s
counterexample explicitly demonstrated that linear laws can indeed be suboptimal for decen-
tralized LQG problems. To show this, Witsenhausen constructed a two-point quantization
strategy which can outperform all linear strategies for the counterexample. Even today,
many formulations in decentralized LQG control restrict their attention to linear strategies
(e.g. [66]) without a proof of their optimality in the larger set of all possible strategies. How
much can this approach hurt? The answer, surprisingly, is it can hurt a lot: by constructing
multi-point quantization strategies, and by choosing an appropriate sequence of problem
parameters in Witsenhausen’s formulation, Mitter and Sahai [18] showed that nonlinear
strategies can outperform linear strategies by a factor that diverges to infinity. A designer
of decentralized control systems ignores nonlinear strategies at her own peril.

What makes linear strategies suboptimal for the counterexample? We saw in Chap-
ter 1.5.1 that certainty-equivalence based strategies are suboptimal for centralized systems
when control actions can perform a dual role1: that of control and signaling (explored more
deeply in Chapter 3.4.2).

3.3 The counterexample as an optimization problem

3.3.1 Nonconvexity of the counterexample

In the last section, we saw that the theory of certainty-equivalence yields strategies that
are optimal for centralized LQG problems, and these strategies can be found efficiently.
We also saw that the Witsenhausen counterexample demonstrates that the theory does not
extend to decentralized control. Staying within the framework of solving control problems
by minimizing costs, can numerical optimization techniques help solve the counterexample?
If so, there is some hope that good strategies for larger problems can be obtained through
optimization as well.

Convex optimization is a commonly-used framework that provides efficient algorithms
for finding numerical solutions to many optimization problems. Finding whether a problem
is convex (and can therefore be solved using convex optimization) is therefore the often
first approach to take when addressing an optimization problem. When is an optimization

1Close parallels exist in the literature of adaptive control. There, the control actions play a dual role as
well, that of control and learning the system. It turns out that certainty-equivalence-based strategies are
suboptimal there as well.
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problem said to be convex? It is convex when it can be cast into the following form:

min f0(γ)

subject to fi(γ) ≤ bi, i = 1, . . . , n,

where the functions f0, f1, . . . , fn are convex-∪. Equivalently, if the objective function being
minimized is convex-∪ and the set of feasible solutions is also convex2, the problem is said to
be convex [67]. Convex problems are considered easy because algorithms such as the interior-
point method, gradient-descent, etc. efficiently solve these optimization problems [67].
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Figure 3.2: A centralized LQG problem. If the controller is memoryless, and noise z1 is removed,
the problem becomes the Witsenhausen counterexample.

As an example, let us consider a centralized problem whose illustration (Fig 3.2) resembles
that of Witsenhausen’s counterexample. Let us verify if this problem is convex. Given γ1,
the choice of γ2 is clear: the MMSE estimate of X1. Is the problem convex in γ1? It is well
known that for any centralized LQG problem, calculation of cost-to-go at any step in dynamic
programming is a convex optimization problem (of minimizing a quadratic function). In order
to later show the nonconvexity of Witsenhausen’s counterexample, let us design a test using
the centralized problem. We choose two strategies γ

(a)
1 = 0 (the zero-input strategy), and

γ
(b)
1 = −x1 (the zero-forcing strategy). The MMSE estimation of X1 based on observations3

Y1 and Y2 yields a cost of J (a) =
σ2
0

2σ2
0+1

for γ
(a)
1 and J (b) = k2σ2

0 for γ
(b)
2 .

Now let us consider a strategy γ
(c)
1 = 0.5γ

(a)
1 + 0.5γ

(b)
1 = −x1

2
. The cost for this strategy

(with MMSE estimation at time 2) turns out to be J (c) =
k2σ2

0

4
+

5σ2
0

5σ2
0+4

. This is also the

cost-to-go at time 1 because we have chosen the optimal γ2 based on our choice of γ1. If
the problem is convex, the cost J (c) should be smaller than 0.5J (a) + 0.5J (b), where J (a)
and J (b) are the costs attained using strategies a and b respectively. What is this sum?

0.5J (a) + 0.5J (b) =
k2σ2

0

2
+

σ2
0

4σ2
0+2

. Each of the two terms is larger than the corresponding

2A set A ⊂ Rm is said to be convex if for any γ(a), γ(b) ∈ A, αγ(a) + (1− α)γ(b) ∈ A for any α ∈ [0, 1].
3This MMSE estimation depends on the strategy. For γ

(a)
1 , the MMSE choice is γ

(a)
2 =

σ2
0

2σ2
0+1

(Y1 + Y2),

and for γ
(b)
1 , the choice is γ

(b)
2 = 0.



33

term in J (c), the cost with γ
(c)
1 . This centralized LQG problem therefore passes our simple

convexity test.
Now let us run the same test for the Witsenhausen counterexample. Again, we use the

same two strategies, γ
(a)
1 and γ

(b)
1 . The strategies at second stage are again MMSE strategies

based now on observing only Y = X1 + Z. What are the attained costs? With γ
(a)
1 , the

zero-input strategy, the cost is J (a) =
σ2
0

σ2
0+1

. With γ
(b)
1 , the cost is J (b) = k2σ2

0. What

is the cost using γ
(c)
1 ? It is

k2σ2
0

4
+

σ20
4

σ20
4

+1
=

k2σ2
0

4
+

σ2
0

σ2
0+4

. Again, if the counterexample is

convex, then J (c) must be smaller than the average of J (a) and J (b). This average is

0.5J (a) + 0.5J (b) =
k2σ2

0

2
+

σ2
0

2(σ2
0+1)

≈ 0.505 for k2 = 0.01, σ2
0 = 10. In comparison, for

the same parameter choice, J (c) ≈ 0.739, which is larger than 0.5J (a) + 0.5J (b)! The
Witsenhausen counterexample, therefore, is not convex in γ1.

An alternative proof of nonconvexity of the problem was provided by Witsenhausen
himself in [14], where he notes that the cost function can be written down as:

J = k2E
[
(x0 − f(x0))2

]
+ 1− I(Df ), (3.3)

where f(x0) = x0 +γ(x0), and I(Df ) is the Fisher information of the observation Y = f(X0).
The nonconvexity of the problem results from the negative sign in front of the term I(Df ):
the function I(Df ) itself is a convex-∪ function of f , and therefore −I(Df ) is concave-∩ in
f .

Is it possible that the problem is convex jointly in (γ1, γ2)? We show in Appendix A.1
that even this convexity does not hold. As far as we are aware, this result, while simple, is
not discussed in the existing literature4.

3.3.2 Hardness of the discrete counterpart of the counterexample

A convex-optimization approach may not work, but can we just quantize the problem and
hope to use some other computational approach to solve it? A discretization can be per-
formed as follows. First discretize the Gaussian distributions of x0 and z. Next, constrain
the domains of γ1 and γ2 to be finite. An exhaustive search in this discrete space for optimal
γ1 and γ2 will yield the optimal solution for this discretized problem, which will hopefully
be “close” to the optimal solution of the original problem. However, notice that the total
number of possible γ1 and γ2 mappings is exponential in the size of their domain-spaces.
Nevertheless, this approach was explored by Ho and Chang [20]. They provided a discussion
on why such approaches can fail. However, the discussion was unsatisfactory5.

4As an interesting aside, it may seem surprising that even the centralized LQG problem is nonconvex in
(γ1, γ2). The trick to show this is to choose strategies that pretend as if the problem is decentralized even
when it is not.

5Ho and Chang attributed the failure partly to the lack of “partial-nestedness:” a concept we discuss in
the next section. They further claimed that the lack of partial-nestedness means that the problem cannot be
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Papdimitriou and Tsitsiklis [19] provide a concrete reason for this failure. Consider the
algorithm that takes the discretized distributions of x0 and z as inputs. The sizes of the
supports of these discretized distributions are the sizes of the inputs to this algorithm. The
algorithm is meant to check if there exists a strategy γ for which the cost J (γ) < β for
a given β. If this problem is solved, Witsenhausen’s counterexample can be solved to any
approximation-fidelity using a simple binary search. However, Papadimitriou and Tsitsik-
lis show a reduction of a problem of three-dimensional matching6 to this discrete version
of the counterexample by moving away from the Gaussian distribution, and allowing for
arbitrary discrete distributions (that obey the cardinality constraints). Since their prob-
lem of three-dimensional matching is NP-complete [19], so also is this discrete version of
the counterexample. The implicit philosophical argument is that since there is per-se no
special structure of the discretized Gaussian distributions (as compared to any other distri-
bution), the Gaussian problem is likely as hard as any other. Therefore, any algorithmic
approach for finding the optimal cost of this discrete version of the counterexample will be
computationally complex.

A version of three-dimensional matching was also used in information theory to show
that the problem of decoding general linear codes is NP-complete (Berlekamp, McEliece
and Tilborg [69]). Nevertheless, we know of suboptimal solutions for appropriately chosen
structured codes that are “good enough” [70]. Even in the theoretical computer science
literature, approximation algorithms are known for NP-complete problems such as the trav-
eling salesman problem [40], and even the problem of 3-D mapping [71] (both to within a
factor of 1.5). Even though the problem of 3-D mapping reduces to the Witsenhausen coun-
terexample, approximate solutions to one may not yield approximate solution to another7.
Finding approximation algorithms for the counterexample and other intractable problems in
control [19] is therefore an open problem, and as we will see in Chapter 4, one that has had
a philosophical influence on the results in this dissertation.

Two reasonable approaches — convex programming and discretization — do not work
for the counterexample. What makes the counterexample so hard? We will see in the next
section that there is a possibility of signaling in the counterexample which makes it hard.

reduced to a static one (where all the controllers act simultaneously and just once), which makes the problem
hard. This claim was later proved to be wrong by Witsenhausen [15]: in a surprising result, Witsenhausen
showed that many dynamic problems (including the counterexample and the problem of communicating a
Gaussian source across a Gaussian average-power-constrained channel) can be reduced to static problems
through a coupling introduced in the cost function.

6The 3-D matching problem of Papadimitriou and Tsitsiklis [19] is slightly different from the conventional
one. The problem can be described as follows: Given a set S and a family F of subsets of S that have
cardinality 3, can we subdivide F into three sub-families C0, C1 and C2 such that subsets in each of the Ci
are disjoint, and the union of subsets of C0 equals S. The constraint of disjointness of Ci is not present in
the usual problem of 3-D matching [68]. Nevertheless, this variation on 3-D matching is still NP-complete.

7A stronger notion of reduction, called L-reduction, introduced by Papadimitriou and Yannakakis [72], is
required to preserve approximability with constants.



35

Will an optimization solution be sufficient?

But will a designer be satisfied with merely an algorithmic solution, approximate or not?
To answer this question, we bring our attention back to the problem of system design. A
purely algorithmic solution may not reveal the connection between good strategies and the
structure of the problem — the solution may appear to be magical, rather than intuitive.
For instance, the optimization solutions of Baglietto, Parisini and Zoppoli [25], Lee, Lau and
Ho [26], Li, Marden and Shamma [27], Karlsson et al. [73] etc. offer little justification as to
why the solutions suggested are optimal (we shall see in Chapter 4.3.3 that a justification
can be arrived at using information-theoretic arguments8). The only reason that they are
thought to be optimal is because different heuristic approaches all arrive at strategies that
are very similar to each other. But how do we know that the goodness of the strategies
provided by these approaches extends to other problems? Without guarantees on the gap
from optimality, an algorithmic/optimization solution is insufficient.

3.4 How the difficulty of the counterexample shaped

the understanding of decentralized control

Observing the difficulties in designing signaling strategies for Witsenhausen’s counterexample
(and larger problems of decentralized control), a survey paper in 1978 of Sandell et al [75]
argues for a problem reformulation:

“Determination of these signaling strategies has been shown to be equivalent to
an infinite-dimensional, nonconvex optimal control problem with neither analytical
nor computational solution likely to be forthcoming in the foreseeable future. This
fact of life forces one to re-evaluate the problem formulation.”

That is, at least as early as 1978, the community had starting taking steps towards refor-
mulation of problems in order to avoid the difficulties brought to their attention by Witsen-
hausen’s counterexample. How would the development of the field of decentralized control
have been different if the counterexample were understood much earlier? This question is
too hard and open-ended to even speculate on. Instead, we take a path down the history
of decentralized control examining how the counterexample influenced problem formulation
and solution approaches.

8More precisely, we will see in Chapter 4 that the strategies proposed in [25–27] graphically resemble a
strategy based on dirty-paper coding [74] in information theory. Further, the dirty-paper coding strategy is
shown to be optimal at least in the limit of zero second stage cost for the asymptotic vector Witsenhausen
counterexample.



36

3.4.1 Classifying problems as tractable and intractable

What aspect of the counterexample makes it intractable? The question has been of active
interest for the last 40 years, and has motivated a sequence of problem formulations that
can be identified as tractable. An early work of Ho and Chu [76] (1972) proposes the
following sufficient condition for the problem to be easy: “if a decision-maker’s action affects
our information, then knowing what he knows [when he took the decision] will yield linear
optimal solutions.” [76, Pg. 21]. If this condition is satisfied, the problem is said to have a
“partially-nested” information structure.9 If the information-structure of the problem lacks
partial-nestedness, the problem is said to have a “nonclassical” information structure. In
Witsenhausen’s counterexample, C2 does not know x0, which C1 knows. Yet, the actions of
C1 affect x1, which is observed noisily by C2. The information structure of the problem is
therefore nonclassical. From the perspective of Bar-Shalom and Tse [36] (1974), when the
information structure is nonclassical, there can be an incentive to ‘signal’ to other controllers
using the plant itself. This is precisely the dual role (as discussed in Chapter 1.5.1) of control
actions — signaling and control — that blocks certainty-equivalence-theory and makes the
counterexample hard.

Since it is this possibility of signaling that seems to be making problems hard, can we
remove the incentive to signal? For instance, if the controllers can communicate perfectly
and fast enough, they can send what they know to the subsequent controllers, resulting
in a partially-nested information structure. In particular, an architectural change — that
of connecting the controllers with an external channel — could possibly be used for this
communication. Using this understanding, Rotkowitz and Lall arrive at an alternative char-
acterization of the partial-nestedness condition [21]. They show that when propagation delays
in system dynamics are slower than transmission delays on an external channel, there is no
incentive to signal through the plant. Further, in such cases, the resulting problem can be
formulated as a convex optimization problem. Their result is a special case of their own
general criterion of quadratic-invariance: a condition which, if satisfied, ensures that the
problem can be solved using convex optimization.

In the absence of a theory to complement certainty-equivalence for decentralized prob-
lems, a natural approach is to artificially restrict the search for the optimal strategy to the
set of linear strategies. Although computational difficulties can exist even with this simpli-
fication [75], in some cases [66, 77, 78], the best linear strategy is efficient to compute. But
is sticking with linear strategies reasonable? Again, the results of Mitter and Sahai [18]
show that the loss associated with restricting attention to linear strategies can be arbitrarily
large10. It is therefore imperative to study the use of nonlinear strategies for signaling.

9In some cases, even if this condition is satisfied only probabilistically, certainty-equivalence strategies
are still sufficient (a condition known as “stochastic nestedness” discovered by Yüksel [24]).

10It is sometimes suggested that restricting to linear strategies is justified because they can be easy to
implement. From a system perspective, the implementation complexity also results in some extra costs
at installation and at run-time. A fair comparison would be to understand the costs associated with this
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3.4.2 ‘Signaling’ and the counterexample

Figure 3.3: Fig. 1 from the work of Ho, Kastner, and Wong [16]. They seem to be the first to
identify the correspondence between Witsenhausen’s counterexample and Shannon’s point-to-point
explicit communication problem.

The field of information theory is dedicated to understanding communication, which is a
pure form of signaling. So why is the signaling in the counterexample so hard to understand?
To explore this question, Ho, Kastner and Wong [16] view the Witsenhausen problem in
relation to two other signaling problems: Shannon’s problem of explicit communication [1]
and Spence’s problem of job-market signaling [12, 13] (see Fig. 3.3). They observe that the
Gaussian version of Shannon’s problem is one where the initial state is to be communicated.
The problem turns out to be easy: Goblick [63] showed that linear strategies are optimal.
They also formulate game-theoretic problems based on Spence’s signaling problem (these
problems are explored in greater detail in [80]), and observe that when the goal of the first
agent is to signal the initial state, the Nash equilibrium can be provided explicitly.

Bansal and Başar perform another exploration of the problem space that is complemen-
tary to that by Ho, Kastner and Wong [16]. They consider modifications of Witsenhausen’s
counterexample with parameterized cost functions that contain Witsenhausen’s counterex-
ample as a special case. Their main observation is that whenever the cost function does

complexity (using models such as those in [79]) and then making a judicious decision on what strategy to
use.
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not contain a product of two decision variables, the problem can essentially be reduced to a
variant of the problem of communicating a Gaussian source across a Gaussian channel, for
which affine laws are optimal [63].

These results showed that the signaling in the counterexample is somehow different from
that in Shannon’s problem, and therefore unaddressed and potentially hard (the connection
with information theory problems is brought out explicitly in Chapter 3.5). The results cited
in the previous section suggest that the addressing the hardness introduced by signaling is
easy in an engineering sense: just connect all the controllers using perfect channels. But
realistic channels are never perfect, and even good channels can be costly (to install as
well as run, i.e. will require high SNR). What happens when we take into account the
fact that channels connecting the controllers are not perfect? Martins [22] points out that
even in the presence of a non-perfect (but still pretty good) explicit communication link,
nonlinear signaling strategies continue to outperform linear ones (we tackle this problem in
Chapter 5.2). The incentive of signaling is present as long as the external communication
links are imperfect! The impact of imperfect channels in control is interesting in greater
generality, and a body of literature in the burgeoning field at the intersection of control
and communication is intellectually motivated towards understanding control over imperfect
channels.

3.4.3 Control under communication constraints

How can we understand control over imperfect communication channels when we cannot even
understand signaling through the plant itself11? In order to rule out the option of signaling,
many formulations (e.g. those in [34, 41, 42, 81]) do not allow the controller any direct
observations of the plant. Instead, the system has an “observer” who can see the state, and
has to communicate12 the state to a “controller” who only observes the signal transmitted
by the observer. Fig 3.4 takes a closer look at the observer-controller architecture. It
illustrates how these formulations for control under communication constraints were inspired
by the certainty-equivalence-based separation of estimation and control. The estimator (now
the observer) observes the state, and communicates it (now through a noisy channel) to a
controller.

But does this observer-controller architecture eliminate the possibility of signaling? It
was observed by Sahai and Mitter in [82] that since the observer no longer knows the chan-
nel outputs seen by the controller, the controller can signal these outputs to the observer
through the plant. The specter of signaling rose again! However, since the observer has
noiseless observations of other control inputs, Sahai and Mitter notice that this signal can
be embedded in the state. In order to do so, they embed the signal in the bits of the state

11The historical perspective in this section is largely based on discussions with Prof. Anant Sahai as he
witnessed the development of this field.

12As we will see in Chapter 3.5, ruling out the possibility of observer affecting the state also removes a
difficulty associated with the counterexample: that of implicit sources.
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Figure 3.4: The problems of control under communication constraints have often been inspired
from the certainty-equivalence architecture which may not be the optimal architecture for the
problem under consideration.

that are just higher than those that would be affected by perturbation noise. The controller
is thus forced to balance between signaling and control — the very issue that the observer-
controller formulation was trying to avoid! Sahai and Mitter therefore step back from the
goal of reducing costs, and instead find conditions for attaining stability, a coarser metric
than minimizing costs. Their strategy of embedding information in the state is therefore
reasonable: a stability formulation is not affected by gap from optimal costs.

What if a separate perfect feedback channel from controller to observer is available?
Tatikonda [42] observed that the problem of minimizing costs is still hard because the notion
of causality is not well understood within information theory. Thus the formulation was again
forced to be driven away from an optimization perspective, and the goal was relaxed to that
of merely attaining stability. For the perfect-feedback problem, Tatikonda showed that it is
necessary and sufficient for the controller to track the state within a bounded-moment error
in order to stabilize the system.

In [34], Sahai shows that the traditional information-theoretic formulation of capacity
is not sufficient for stabilization. A new notion of anytime capacity, where constraints on
delay emerge organically from the requirement of tracking, is needed in order to accomplish
this. In order to bring out the difference between anytime capacity and Shannon capacity, he
considered a version of the problem where the channel suffers from probabilistic erasures, but
is otherwise noiseless and hence has infinite Shannon capacity (the “real-erasure channel”).
Sahai shows that the anytime reliability of this problem is still finite.

In order to simplify the problem further and get rid of the possibility of signaling com-
pletely, Sinopoli et al. [83] disallow any encoding at the observer. They also require the
controller to only estimate the state, stripping away any ability to modify the state by either
agent. They focus on the real-erasure channel, thinking of the erasures as packet-drops on
networks intended for control. For a Gaussian version of this problem, they note that when
a packet is not dropped, the optimal estimation strategy is the usual Kalman filtering. The
problem is therefore called “intermittent Kalman-filtering13.” The focus of [83] and the en-

13Elia’s term for the problem of control over real-erasure channel was “indelible control,” a name suggested
by John Doyle [84]. He used the real-erasure channel to understand the idea of anytime reliability from a
purely control-theoretic perspective.
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suing work is to quantify the erasure probabilities that allow the system to be stabilized in
this setup.
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Figure 3.5: (a) The problem of filtering with a helper can be thought of as an extension of
Witsenhausen’s counterexample to multiple time-steps. (b) communicating an evolving source, the
problem of [34], can now be understood in an “active” context where a helper now assists the
encoder by modifying the source. This can be thought of as an extension of the problem with
implicit source and explicit channel, considered in Chapter 5.1.

New problem formulations

We saw that one of the core difficulties in understanding control under communication con-
straints was the lack of understanding of the aspect of signaling. This difficulty forced
simplifications of problem formulations which limit the questions they can address. For in-
stance, a question of central importance is that of partitioning the tasks: how should we
allocate effort on the part of the agents? For two agents who are attempting to control a
system, how much effort should we put in locally and how much should be put in by the
agent farther away? The stability formulation considered commonly in the literature only
allows the “controller” to invest the effort. Further, the goal of attaining stability is a coarse
metric, and even when the goal is relaxed to merely attaining stability, the results are pri-
marily negative: Sahai [34] shows that in order to have all moments of error bounded, the
channel needs to have positive zero-error capacity14. Even when stabilization is possible, it is
necessary to ensure that the total cost is also small for results to have practical applications.

14Zero-error capacity is the maximum rate that can be achieved with exactly zero error probability [85].
Zero-error capacity of many practical channels is zero.
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With the understanding of signaling that we develop using the Witsenhausen counterex-
ample (in Chapter 4), we believe that some problems of effort allocation can be begun to be
addressed. Moreover, we can stay in the cost framework, thus potentially obtaining more
relevant insights. Let us look at the problem of filtering to speculate how this could be
done. An example of a filtering problem is shown in Fig. 3.5(a). The formulation avoids the
possibility of signaling by disallowing the observer to encode or influence the state. What
if the observer could put in a little effort, i.e. had a little power to change the state? The
resulting problem is shown in Fig. 3.5(a). Does the problem allow for the possibility of
signaling? Indeed, the controller C1 can modify the state in order to signal to C2. Is Wit-
senhausen’s counterexample needed to understand signaling in this problem? Fig. 3.5(a)
shows that a single time-step version of the problem (with Gaussian observation noise) is the
information-theoretic interpretation (discussed in next section) of the Witsenhausen coun-
terexample itself! It is clear that the while the formulation of filtering successfully avoided
the difficulties introduced by signaling, the modified formulation that allows for signaling
cannot be addressed (at least in the optimization framework of minimizing system costs)
without addressing the counterexample.

We also notice that with this modification, we observe that the system is always stabi-
lizable: the empowered “observer” can simply force the state all the way to zero. Of course,
this will incur high costs, which is why it is important to find low-cost strategies for this
problem. In Chapter 5.4, using our understanding for the counterexample (in Chapter 4),
we provide strategies that attain within a constant factor of the optimal cost for a version
of this filtering problem.

Let us turn our attention now to the more general problem of control under communi-
cation constraints. For the formulations that we discussed in the last section, can we make
similar modifications? Indeed, Fig. 3.5(b) shows the resulting problem. The possibility of
observer zero-forcing the state again makes the problem is stabilizable. The important ques-
tion is how low a cost can be attained. In Chapter 5.1, we address a single time-step version
of this problem.

Understanding the counterexample therefore opens up the possibility of addressing such
“active” versions of the problems of control under communication constraints15. Further,
dramatic reductions total cost may now be possible (as suggested by results in Chapter 2),
and thus studying this alternative architecture is practically important.
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Figure 3.6: The Witsenhausen counterexample can be interpreted as a problem of communicating
xm1 to the second controller. The first controller is interpreted as an encoder E , and the second
controller as a decoder D. An equivalent problem is that of having the decoder estimate xm1 which
is the result of a state-modification by an encoder operating under a power constraint.

3.5 Related problems in information theory

The implicit-communication interpretation of the counterexample yields the block-diagram,
shown in Fig. 3.6, that resembles block diagrams for problems in communications. The first
controller is interpreted as an encoder, with an average power constraint P . The second
controller can be interpreted as a decoder who wants to estimate xm1 to within the smallest
MMSE error16. The problem of obtaining the optimal tradeoff curve between P and MMSE
is equivalent17 to characterizing the optimal cost k2P +MMSE for all k and σ0.

We now examine the intellectual motivations for information-theoretic formulations that
look similar to the Witsenhausen counterexample. This helps us view the counterexample
as one among many related information theory problems while at the same time it helps us
isolate the main difficulty.

Figure 3.7 shows the block-diagram of three related problems in information theory.
These problems are inspired from the formulation of Gel’fand-Pinsker [90]. In their for-
mulation, the encoder modifies the noiselessly observed state in order to communicate an
independent message to the decoder. They characterize the achievable rates (in the asymp-
totic limit of zero error probability) in the form of an optimization problem, which can be

15The usage of the term “active” is inspired from the active-vision literature [86], where a camera is fitted
with a controller and that chooses what part of the entire scene the camera should point to. This perspective
introduces new problems in information theory even without the control objective: the source statistics into
the encoder now change with the movement of the camera. What is the optimal compression that can be
attained [87]?

16The second controller chooses um2 in order to minimize E
[
‖Xm

2 ‖2
]

= E
[
‖Xm

1 −Um
2 ‖2

]
. Equivalently,

the controller chooses um2 as the MMSE estimate of Xm
1 given Ym

2 .
17A rigorous proof of this statement appears in [54]. Despite the equivalence of finding optimal solutions

to these two problems, we will see in Chapter 4 that an approximately-optimal solution to one does not
yield an approximately-optimal solution to another. This is analogous to approximations in computational-
complexity theory: approximate solutions to an NP-complete problem may not yield an approximate solution
to another [72].
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Figure 3.7: A block-diagram that can represent the Witsenhausen counterexample (where there is
no message), our formulation for a triple role of control in Chapter 5.3 (where we have a message),
dirty-paper coding [74] (where the state does not need to be communicated), state amplification [88]
(where the goal is to communicate x0 and message M) and state-masking [89] (where the goal is
to hide x0 and communicate message M).

solved using brute-force search in a finite-dimensional state-space. The “LQG version” of the
problem was addressed by Costa in [74]. The block-diagram of Costa’s problem, which he
called “Dirty-Paper Coding18,” is shown in Fig. 3.7. The objective here is the maximization
of the communication rate of message M under a constraint on the input power E [u2

1] ≤ P .
Costa’s formulation does not care about communicating anything pertaining to the initial

state, x0. However, it ends up conveying a part of this initial state19. This raises issues of
technical and intellectual interest: what if conveying information about the initial state
is a part of the objective? This leads to the formulation of Kim, Sutivong, and Cover,
called “State Amplification” [88], where the authors characterize the tradeoff between the
deliverable information about x0 and the achievable rate for communicating the message
under a power constraint on the control input. A counterpart of this problem is the “State
Masking” problem considered by Merhav and Shamai [89]. They consider a problem of
hiding x0 (i.e. revealing as little information about x0 as possible) while maximizing the rate
of communicating the message.

One interesting aspect shows up in this comparison: unlike in the rest of the problems,
the goal in the counterexample to communicate a modified source, or what we called an
implicit source in Chapter 1. In DPC, state-amplification, and state-masking, the source
— the message M and/or the state x0 — is explicit in that it cannot be modified by the
controllers. As we saw in Chapter 1, for the counterexample, the source x1 depends on the
choice of control strategy.

18The initial state is thought of “dirt” on a paper. The goal is to write on this dirty-paper (thus changing
the state) in order to communicate the message. One way to write on a dirty-paper is to erase the dirt
(force the state to zero) and then write the message (appropriately coded) on it. Costa’s result suggests
a power-efficient strategy where existing dirt is modified to communicate the message. The result has
turned out to be very important and powerful in addressing problems of watermarking [91], broadcast [92],
etc. As we will see in Chapter 4, it also provides an understanding of the best-known strategies for the
Witsenhausen counterexample, and provides asymptotically-optimal strategies in the limit of zero distortion
for the counterexample.

19What the decoder is able to decode is not the initial state x0, but a linear combination of input and the
initial state, u1 + αx0.
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Is there any instance in information theory where the goal is to communicate a modified
source? Lossy transmission of a source across a channel suggests one such instance. As
suggested by the source-channel separation theorem [1], after lossy compression, the goal is
to transmit reliably a distorted (i.e. modified) version of the source. It may therefore seem
that that the source can be thought of as implicit. However, the performance-measure is
the error in reconstructing the original source. This is unlike the counterexample, where
the performance is measured using the error in reconstructing the modified source. What
if we artificially force a separation architecture to the problem? That is, the source is first
compressed using lossy-source coding, and then transmitted reliably across the channel. In
that case, communicating the lossy-source-codewords is indeed a problem of a communicating
modified source.

This artificial separation constraint can therefore be abstracted as having the encoder
know in advance the eventual reconstruction (which need not be the actual source) at the
decoder. In a surprising result, Steinberg [93] noticed that this added constraint made the
distributed source-coding problem solvable even though in its traditional form, the problem
famously remains open except for the two-user Gaussian case [94]. Following this lead,
in [95], Sumszyk and Steinberg consider the setup of dirty-paper coding (in a discrete state-
space), and impose the constraint of the encoder knowing perfectly the reconstruction of
the modified state (x1) at the decoder. They are able to solve this problem as well (in an
asymptotic setting). However, a lossy version of this problem (of which Witsenhausen’s
counterexample is a special case), where x1 only needs to be reconstructed within some
distortion, remains unsolved20.
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Figure 3.8: The distributed dirty-paper coding problem of Kotagiri and Laneman [96]. The encoder
helps the transmitter Tx send its message to the decoder by polishing the “dirt” (i.e. the state).

Although this constraint of having the encoder know the reconstruction at the decoder
seems artificial, it may arise naturally out of an explicit communication problem. The
problem addressed by Kotagiri and Laneman [96] brings out this aspect. Motivated towards

20A Gaussian version is addressed in Chapter 5.3.
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understanding a distributed implementation of dirty-paper coding, they investigate the prob-
lem of communicating across a multiple access channel with partial state information at some
encoders. A special case of this problem is the distributed dirty-paper-coding, where one
encoder knows the state, and the other (called the transmitter) knows the message to be
communicated (see Fig. 3.8). In order to help the transmitter send its message reliably to
the receiver, the encoder can simplify the estimation of xm1 at the decoder. The problem
therefore incentivizes signaling with an implicit “source:” xm1 . Kotagiri and Laneman only
provide upper and lower bounds to the rate region. A complete solution to the problem is
still elusive.

What aspect of these problems makes them solvable (or not)? The problems of dirty-
paper coding, state-amplification, and state-masking are completely solved at least in the
asymptotic case. These are also the problems where the sources/messages M and xm0 are
explicitly specified and do not depend on the choice of the control policy. On the other hand,
for the problems that are not solved, i.e. the Witsenhausen counterexample, Sumszyk and
Steinberg’s problem in a lossy-reconstruction setting, and distributed dirty-paper coding, the
controllers have the ability to modify what is being estimated. It therefore seems to us that
the implicit-source aspect of the problem (combined with lossy reconstruction of the implicit
source) is what makes these problems hard from an information-theoretic perspective.
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Chapter 4

An approximately optimal solution to
Witsenhausen’s counterexample

In Chapter 3, we saw that the lack of understanding of implicit communication (i.e. sig-
naling) is one of the core reasons why problem formulations in decentralized control were
forced to back-off from minimizing system costs to just attaining stability. How do we even
begin to understand implicit communication? We noted in Chapter 1 that Witsenhausen’s
counterexample is the minimalist problem of implicit communication, and therefore is the
right place to start.

We also noted why the counterexample is a hard problem from complexity-theoretic
(because the problem is nonconvex, and its discrete version is NP-complete; Chapter 3.3),
control-theoretic (because of the dual role of control actions: control and signaling; Chap-
ter 3.4.2), and information-theoretic (because it is a problem of implicit source reconstruction
in a distortion setting; Chapter 3.5) perspectives.

In this chapter, we develop an understanding of the signaling inherent in the Witsen-
hausen counterexample in a sequence of four steps. In the first step, we formulate a semi-
deterministic abstraction of the problem that is much easier to analyze. It lets us understand
the flow of information within signal interactions in the problem and provides us with optimal
strategies that are intuitive and interpretable. The interpreted strategies are hypothesized
to also be good for the original problem. However, the abstraction is an oversimplification of
the Witsenhausen counterexample, and proving this hypothesis requires constructing models
that bring us closer to the counterexample. These strategies may not be optimal for the orig-
inal problem (and in fact, in most cases they are not optimal), but they capture the essence
— the conceptual “most-significant bits” — of the information-flow and signal interactions.
To show that these strategies indeed capture the essence, we need to provide guarantees on
their proximity to optimality. To that end, in Step 2, we consider an LQ version of the Wit-
senhausen counterexample where the noise-distribution has a bounded support. We obtain
a lower bound on the total costs for this problem. Using this lower bound, we show that the
strategies intuited from the deterministic model attain within a uniform constant factor of
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the optimal cost for all problem parameters.
It remains to see whether this non-Gaussian nature of the noise fundamentally alters

the essence of the problem. In Step 3, we investigate the asymptotic LQG vector Wit-
senhausen problem and observe that the natural counterparts of the strategies that were
approximately optimal for the bounded-noise counterexample continue to be approximately-
optimal for this asymptotic LQG problem. This is not surprising: at asymptotically infinite
vector-lengths, the Gaussian concentrates like every well-behaved distribution (including
bounded-noise distributions). In particular, Gaussian distribution also asymptotically con-
centrates onto a bounded compact set: the same shell onto which all random variables of
same variance concentrate. What happens in the scalar case, when the Gaussian distribution
has a finite probability of falling far outside the typical sphere? By deriving lower bounds on
the minimum possible costs, we show that the fact that Gaussian noise distribution can push
the noise outside a comfort-zone is something even an optimal controller cannot deal with!
This is done in Step 4 where we consider the finite-length vector Witsenhausen problem and
prove that the same strategies attain within a constant factor of the optimal cost for any
finite-length. In particular, this yields the first provably approximately-optimal solution to
the original Witsenhausen counterexample. This solution characterizes the optimal costs of
the counterexample to within a (numerically evaluated) constant factor of 8 for all problem
parameters.

We propose this four-step process as a program for obtaining approximately-optimal
solutions to more general decentralized LQG problems with or without external channels
connecting the controllers. In order to demonstrate the applicability of this process, we will
consider several example problems in Chapter 5.

4.1 Step 1: A semi-deterministic abstraction of Wit-

senhausen’s counterexample

Deterministic models of network information theory problems were recently proposed by
Avestimehr, Diggavi and Tse [37–39]. These models abstract the structural layout of a
wireless communication network and the available SNR at each agent in order to gain insights
into the flow of information within the signal interactions of these networks.

Just as the deterministic models capture the flow of information in explicit communica-
tion networks, is it possible that these models, after suitable modifications, might be able
to capture the flow of information in LQG control networks of implicit communication? If
this approach succeeds (as we will see, it does), then the strategies obtained from under-
standing the flow of information may help us design control strategies for the Witsenhausen
counterexample.

In this section we provide semi-deterministic models inspired from the information-
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theoretic deterministic models for decentralized scalar1 LQG networks. What aspect of
the original Linear-Quadratic-Gaussian models do these semi-deterministic models abstract?
These models of course retain the physical structure (i.e. the connectivity) and the temporal
ordering of actions of the controllers. They preserve a simple yet crucial aspect of linear
models: that the effect of small signals on interactions with larger signals is small, and hence
limited to only the least-significant bits. This aspect preserves the flow of information in the
original problem. Because of their binary alphabet, the semi-deterministic models do not
retain the quadratic costs or the Gaussian priors.

The semi-deterministic model for LQG decentralized control problems is introduced below
using Witsenhausen’s counterexample as an example:
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Figure 4.1: A semi-deterministic model for Witsenhausen’s counterexample. The expansion
b1b2b3.b4b5 . . . runs until infinity. Figure (a) assumes that the power of the input u1 is chosen
such that the encoder can affect only the least-significant bits b4, b5, . . .. Figure (b) assumes that
the encoder can affect b3, b4, b5, . . .. If the power is chosen as in (b), then the encoder can force the
bit b3 and the ensuing bits in the expansion of x1 to zero. The decoder then has a perfect estimate
of x1. Even though the model has an infinite-bit expansion of the state (unlike its information-
theoretic counterpart in [37–39]), it can be truncated in visual representation once it is clear that
further expansion does not aid intuition.

• Each real-valued system variable is represented in binary. For instance, in Fig. 4.1,

1Vector control problems where the initial state or noise is correlated across the vector elements (i.e. has
non-diagonal covariance matrix) turn out to be the counterparts of Gaussian MIMO networks. The proposed
deterministic models for MIMO networks, for instance by Anand and Kumar [97], do not appear to be as
intuitive as those for SISO (i.e. scalar) networks. In the special case where one of the covariances is identity
(“white”), the other axes can be rotated to attain a diagonal covariance matrix for both.
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the state is represented by b1b2b3.b4b5 . . ., where b1 is the most significant bit, and the
expansion can run for infinitely many bits after the decimal point.2

• The location of the decimal point is determined by the signal-to-noise ratio (SNR),
where signal refers to the state or input to which noise is added. It is given by
blog2 (SNR)c − 1. Noise can only affect the bit just before the decimal point (i.e. bit
b3), and the bits following it (bits b4, b5, . . .).

• The power3 of a random variable A, denoted by max(A) is defined as the most significant
bit that is 1 among all the possible (binary-represented) values that A can take4. For
instance, if A ∈ {0.01, 0.11, 0.1, 0.001}, then A has the power max(A) = 0.1.

• Additions/subtractions in the original control model are replaced by XORs. Noise is
assumed to be Ber(0.5), i.e. it takes value 1 with probability 0.5 and probability 0 with
probability 0.5.

• In addition to being LQG, if the original control model has an external channel con-
necting the controllers, then an external channel connects the controllers in its semi-
deterministic version as well. The capacity of the external channel in the semi-deterministic
version is the integer part (floor) of capacity of the actual external channel.

In the information-theoretic deterministic model [37], the binary expansions are limited to
those above the noise-level. The bits below the noise-level are corrupted by noise, and hence
are insignificant for communication at high SNR. These bits can therefore safely be ignored
while communicating. Can we ignore these bits in control as well? Let us take the example
of the Witsenhausen counterexample to see this. If the semi-deterministic version of the
counterexample (shown in Fig. 4.1) is made deterministic, then the bits below the noise-
level at each controller are removed. Therefore, the decoder does not observe or estimate
the bits below the noise level, and there is no reason why the encoder should spend any
power for modifying them. However, in this control problem there is interest in estimating
these bits at the decoder because the goal is to reduce costs. Thus the binary expansions in
our models are valuable even after the decimal point (below the noise level), and in fact we
assume that these binary expansions are not truncated and can run until infinity. Because
random noise is also modeled, these models are also not completely deterministic.

Alternatively, we can keep the models deterministic, but introduce erasures on links.
This model is shown in Fig. 4.2. These models are equivalent to our semi-deterministic

2Though intuition can be gained from just a finite bit-expansion, but not by simply truncating the
expansion below the observation noise level, as we will see soon.

3This power is really the log of the power of the original random variable, and is only a constant factor
away from decibels (dBs) used to measure power in communications.

4We note that our definition of max(A) is for clarity and convenience, and is far from unique amongst
the good choices.
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Figure 4.2: (a) A deterministic model of the counterexample based on the modeling in [39]. The
model does not suffice because it does not allow the encoder to modify the least-significant bits.
This is the reason we move to semi-deterministic models in Fig. 4.1. (b) An alternative to semi-
deterministic models: an erasure-based deterministic model. These erasure-based models yield the
same strategies as the semi-deterministic models. We prefer the semi-deterministic model with
XORs with Ber(0.5) representing noise purely because we feel they are better at illustrating the
possibility of improving state-estimability.

models, and therefore will yield the same strategies. We do not use it merely because the
semi-deterministic model brings out the aspect of control — that it can be used to improve
state-estimability — more explicitly and intuitively5.

4.1.1 Optimal strategies for the semi-deterministic abstraction

The semi-deterministic abstraction introduced in last section is easy to solve. In this section,
we provide a solution by characterizing the optimal tradeoff between the input powermax(u1)
and the power in the reconstruction error max(x2). The minimum total cost problem is a
convex dual of this problem, and can be obtained easily. Let the power of x0, max(x0) be
σ2

0. The noise power is assumed to be 1.
Case 1 : σ2

0 > 1. This problem is shown in Fig. 4.1.
Achievable strategies : If max(u1) < 1, we use the zero-input strategy, i.e. use u1 = 0.

Because we still recover bits b1 and b2, we only have a reconstruction error of power 1.
On the other hand, for max(u1) ≥ 1, the encoder can affect the last three bits or more.

But the decoder already knows bits b1 and b2 because these are not affected by noise. A
good strategy is therefore to force the last three bits, b3, b4 and b5, to zero, and the required
power is just max(u1) = 1.6 The decoder now has a perfect estimate of x̂1: the two most
significant bits are received noiselessly, and the three lowest order bits are known to be zeros.

Outer bound on the achievable region: For σ2
0 > 1, can one do any better? For power

max(u1) ≥ 1, we already have a zero-reconstruction error, and hence cannot do any better!

5The model also helps in visualizing atypical behavior of noise, when it creeps up to corrupt more bits.
This interpretation is useful in deriving lower bounds in Step 4.

6More bits can be forced to zero if one wants to use max(u1) > 1, but it cannot lower the reconstruction
error since the error is already zero.
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Figure 4.3: Optimal tradeoff between max(u1) and the max(x2), the reconstruction error, for the
semi-deterministic version of Witsenhausen’s counterexample. The figure on left is for σ2

0 > 1, that
is, the noise power is smaller than that of the initial state. The one on right is for σ2

0 = 0.01 < 1.

If power max(u1) < 1, as shown in Fig. 4.1(a), the bit b3 of x0 cannot be reconstructed at the
decoder: the encoder has no ability to affect it, and the decoder only receives a completely
noisy observation of it. The encoder cannot even hope to communicate b3 because the bits
that it can affect in order to signal b3 are already mangled by noise. The reconstruction
error is thus dominated by b3, and has a power 1, the same if the encoder chose to affect no
bits at all.

The matching of the achievable region and the outer bounds yields the optimal tradeoff
curve shown in Fig. 4.3(a).

Case 2 : σ2
0 < 1.

Achievable strategy : If max(u1) < σ2
0, we use the zero input strategy, incurring an error-

power-cost of σ2
0. If max(u1) ≥ σ2

0, we use the zero-forcing strategy where the encoder forces
the state to zero. The decoder estimates the state to be zero, and the reconstruction error
is also zero.

Outer bound on the achievable region: If max(u1) ≥ σ2
0, we cannot hope to improve on

error because it is already zero. If max(u1) < σ2
0, we cannot signal anything about the state

to the decoder, so it is best to use no power at all.
Again, the achievable region and the outer bounds match, and the resulting tradeoff

curves are shown in Fig. 4.3(b).
Interpretation of the strategy : How can we interpret the strategy suggested by this semi-

deterministic abstraction? Clearly, the strategy depends on how large the observation noise is
relative to the initial state. If initial state has power σ2

0 smaller than noise power (i.e. σ2
0 < 1),

then the encoder should either force the entire state to zero (to force reconstruction error to
zero), or use no input at all (because the power in reconstruction error does not change with
input power smaller than noise power).

If the σ2
0 > 1, and the input power P < 1, then the encoder should use no input at

all, i.e. u1 = 0. But if P > 1, then the encoder should force the bits that are affected by
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noise to zero. As shown in Figure 4.4, on a real line, this truncation operation is really just

0.01 0.100-0.01

x0

u1

real-line
(binary representation)

x1

0.010110

bits forced to zero
by   u1

Figure 4.4: Scalar quantization can be thought of as truncation of bits — exactly the strategy
suggested by the deterministic model.

quantization. This suggests a natural strategy for the counterexample — quantize the initial
state x0 onto a set of regularly-spaced quantization points. This is the strategy adopted by
Mitter and Sahai [18], which is an extension of Witsenhausen’s strategy [14] that uses just
two quantization points.

Our hypothesis from the semi-deterministic model is therefore that the strategies of zero-
input, zero-forcing, and quantization (depending on problem parameters) are good strategies
for the counterexample. The three remaining steps prove this hypothesis.

4.2 Step 2: The uniform-noise counterexample

The benefit of the semi-deterministic model lies in its simplicity: the binary alphabet lays
the problem structure bare, and helps see the possible information flows. However, the
binary alphabet also contributes to a feel of extreme toyness: how can we be sure that the
simplification offered by this binary alphabet is not an over-simplification?

In this section, we test the hypothesis of goodness of the strategies obtained from the
semi-deterministic model on a model that has a continuous state-space. Notice that the noise
is assumed to affect only the last few bits of the state in the semi-deterministic model. In
order to keep the problem reasonably close to the semi-deterministic version, we retain this
property by assuming that the noise takes values in a bounded support (−a, a). At this point,
we could continue with a power model that measures power of a variable by the maximum
value it can take. But this feels too conservative because it allows for an adversarial choice
of the noise7. In order to get away from this conservative model, we impose quadratic costs
on power and error. As we will see, quadratic costs are easier to analyze. Fortuitously, they
also bring us closer to the LQG formulation. The resulting model is shown in Fig. 4.5.

In this section, we will focus on the case when the noise Z is distributed uniformly in
the interval (−

√
3,
√

3) (so that the variance of Z is 1). For clarity of exposition as well as

7The flavor of our results does not change even if the noise is adversarial and bounded. The proof appears
in [61].
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Figure 4.5: A version of Witsenhausen’s counterexample with uniform noise distribution Z ∼
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3), which has variance 1.

generality, our theorems only assume that Z ∈ (−a, a) for some a, has variance 1, and the
distribution of Z has a finite differential entropy [28] h(Z).

4.2.1 Upper bounds on the costs based on the strategies obtained
from the semi-deterministic model

We hypothesized in the last section that the strategies of zero-input, zero-forcing, and quan-
tization (depending on problem parameters) are good strategies for the counterexample. The
following theorem tests this for this uniform-noise counterexample.

Theorem 1. An upper bound on the costs for Witsenhausen’s formulation with bounded
noise Z ∈ (−a, a) with V ar(Z) = 1, is given by

J opt ≤ min

{
k2a2,

σ2
0

σ2
0 + 1

, k2σ2
0

}
. (4.1)

Proof. We consider the following three strategies 1) an essentially scalar quantization strat-
egy that quantizes the entire real line with bins of sizes 2a in each dimension, 2) the zero-
input strategy, followed by LLSE estimation at the second controller, and 3) the zero-forcing
strategy. For a given (k, σ)-pair, the strategy with minimum cost is chosen.

For the quantization strategy, the input forces the state to the nearest quantization point.
The magnitude of the input is therefore bounded by a. Since the bins are disjoint, there are
never any errors at the second controller (because the noise is smaller than a). The cost is
therefore upper bounded by k2a2. For the zero-input strategy with LLSE estimation, the

cost is given by σ2
0 − σ2

0σ
2
0

σ2
0+1

=
σ2
0

σ2
0+1

. For zero-forcing, the input is forced to zero, and thus the

cost is k2σ2
0. This completes the proof.
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4.2.2 A signaling-based lower bound on the costs

How well can any strategy do? For the semi-deterministic model, the bound on the perfor-
mance of any strategy was rather easy to obtain: there were only finitely many possibilities!
For the uniform-noise counterexample, however, we are forced to find limits on how well we
can signal through the implicit channel. The derivation of the following theorem obtains
these limits and exploits them to obtain a lower bound to the bounded noise problem.

Theorem 2. A lower bound on the costs for Witsenhausen’s formulation with noise Z dis-
tributed such that the differential entropy of Z, given by h(Z), is finite, is given by

J opt ≥ inf
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2

, (4.2)

where (x)+ = max{x, 0},

κ(P ) =
σ2

022h(Z)

2πe

((
σ0 +

√
P
)2

+ 1

) . (4.3)

Proof. For a fixed P := 1
m
E [‖Um

1 ‖2], we will obtain a lower bound on the MMSE. First, we
need the following lemma (which is a straightforward consequence of the triangle inequality):

Lemma 1. For any three vector random variables A, B and C,

√
E [‖B − C‖2] ≥

∣∣∣
√

E [‖A− C‖2]−
√

E [‖A−B‖2]
∣∣∣ . (4.4)

Proof. See Appendix A.2.

Substituting Xm
0 for A, Xm

1 for B, and Um
2 for C in Lemma 1, we get

√
E [‖Xm

1 −Um
2 ‖2] ≥

√
E [‖Xm

0 −Um
2 ‖2]−

√
E [‖Xm

0 −Xm
1 ‖2]. (4.5)

We wish to lower bound E [‖Xm
1 −Um

2 ‖2]. The second term in the RHS is smaller than√
mP . Therefore, it suffices to lower bound the first term on the RHS of (4.5). To that end,

we will interpret Um
2 as an estimate for Xm

0 .
How can we lower bound this distortion term? The total power input to the implicit

channel X1 − Y2 is bounded. Using information theory, we can find how many bits of
information can be signaled through this channel. This is given by the channel capacity,
which is the maximum possible mutual information I(Xm

1 ; Ym
2 ) across the channel. This
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mutual information can be bounded as follows

I(Xm
1 ; Ym

2 ) = h(Ym
2 )− h(Ym

2 |Xm
1 )

≤
∑

i

h(Y2,i)− h(Ym
2 |Xm

1 )

=
∑

i

(h(Y2,i)− h(Y2,i|X1,i))

=
∑

i

I(X1,i;Y2,i)

(a)
= mI(X1;Y2|Q)

= m (h(Y2|Q)− h(Y2|X1, Q))

= m (h(Y2|Q)− h(Y2|X1))

≤ m (h(Y2)− h(Y2|X1))

≤ mI(X1;Y2).

In (a), the random variables X1, Y2 and Q are defined as follows: X1 = X1,i if Q = i (and Y2

is defined similarly), and Q is distributed uniformly on the discrete set {1, 2, . . . ,m}. Now,

Y2 = X1 + Z

= X0 + U1 + Z.

The variance of Y2 is maximized when X0 and U1 are aligned, and it equals
(
σ0 +

√
P
)2

+1.

Thus,

I(X1;Y2) = h(Y2)− h(Y2|X1)

= h(Y2)− h(Z)
(a)

≤ 1

2
log2

(
2πe

((
σ0 +

√
P
)2

+ 1

))
− h(Z)

=
1

2
log2




2πe

((
σ0 +

√
P
)2

+ 1

)

22h(Z)


 , (4.6)

where (a) follows from the observation that for given second moment of the random variable,
the distribution that maximizes the differential entropy is Gaussian.

Pretending we wish to communicate Xm
0 across the X1 − Y2 channel (instead of Xm

1 ),
we can obtain a lower bound on the distortion in reconstructing Xm

0 as follows: Xm
0 is a

Gaussian source that needs to be communicated across a channel of mutual information
(and hence also the capacity) upper bounded by the expression in (4.6). The distortion in
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reconstructing Xm
0 is therefore lower bounded by Dσ2

0
(CX1−Y2) where Dσ2

0
(R) := σ2

02−2R is
the distortion-rate function [28, Ch. 13] of a Gaussian source, and CX1−Y2 is the capacity
across the X1 − Y2 channel.

Thus, the mean-squared distortion in reconstructing Xm
0 is lower bounded by

1

m
E
[
‖Xm

0 −Um
2 ‖2
]
≥ Dσ2

0
(CX1−Y2)

≥ σ2
022h(Z)

2πe

((
σ0 +

√
P
)2

+ 1

) . (4.7)

A lower bound on the MMSE follows from (4.5) and (4.7). The theorem follows from the
minimizing the sum of k2P and MMSE over non-negative values of P .

We note that the theorem only makes use of finite differential entropy of Z, and not the
bounded nature of its distribution. Thus the theorem is also valid for Gaussian distributions
of noise.

4.2.3 Quantization-based strategies are approximately optimal for
the uniform-noise counterexample

For the semi-deterministic version in Chapter 4.1, we could prove the optimality of the pro-
posed strategies essentially by exhaustive search. We then hypothesized that these strategies
will be good for more realistic problems as well. Can we hope that these strategies are ex-
actly optimal? Even in information theory, the deterministic models of Avestimehr, Diggavi
and Tse [37–39] only provide approximately optimal strategies: the strategies attain within
a constant gap of the optimal rates where the gap is uniform for all problem parameters. So
the deterministic model there does not capture all the modeling details.

Can we hope for similar approximation results here? What will be the right way to ap-
proximate the costs? In information theory, the capacity is approximated to within a finite
number of bits. At high SNR, capacity is usually logarithmic in power, so these approxima-
tions can be thought of as multiplicative approximations to the optimal power. Since we are
dealing with power (and error) here, could the right approximation be multiplicative here as
well? Indeed, because the costs themselves converge to zero as k or σ2

0 converge to zero, an
additive approximation is not useful. Further, the problem itself is normalized by assuming
the noise variance σ2

z = 1. What if σ2
z 6= 1? If the strategies are also scaled by σz, the

total costs are also multiplied by σ2
z . Thus this assumption of σ2

z = 1 retains validity with a
multiplicative approximation: even if σ2

z 6= 1, the multiplicative factor of the approximation
will remain the same.

The following theorem shows that the strategies hypothesized using the semi-deterministic
model (in Chapter 4.1), namely the quantization-based strategies complemented by linear
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strategies of zero-forcing and zero-input, are approximately-optimal in this constant-factor
sense for the uniform-noise counterexample.

Theorem 3. For Witsenhausen’s formulation with non-Gaussian bounded noise Z ∈ (−a, a),

inf
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2

≤ J opt

≤ µ

(
inf
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2
)
,

where µ ≤ 200a2

22h(Z) , and the upper bound is achieved by quantization-based strategies, comple-

mented by linear strategies. For example, for Z ∼ U(−
√

3,
√

3), the uniform distribution of
variance 1, µ ≤ 50.

Proof. See Appendix A.3.

Note that the result is not asymptotic: the constant factor is uniform over all dimensions8.
Remark: The constant factor of 200a2

22h(Z) is not really uniform over all problem parameters,
since it is a function of h(Z) and a. However, scaling the distribution by a factor of β
would increase both the numerator and the denominator by a factor of β2, keeping the
ratio constant. Thus, fixing the shape of noise distribution and the initial state distribution
(allowing them to be scaled), scaling either of them is not going to alter the constant factor.
We also note that tighter bounds on the constant factor, that depend only on the variance
of the noise (and not on a), can be derived in the limit of large dimensions using laws of
large numbers. A demonstration of this derivation is the Gaussian case, which is discussed
next.

4.3 Step 3: The Gaussian counterexample: asymptot-

ically infinite-length case

How do we conceptually move from a uniform distribution to a Gaussian one? One important
aspect of uniform distribution is its bounded support. How can we generate a bounded
support for a Gaussian distribution? One option is that we can truncate it, but this direct
truncation yields very loose bounds [98]. An alternative is to consider a vector of iid Gaussian
variables. If the Gaussian and the uniform distribution have the same variance σ2, the laws
of large-numbers ensure that the Gaussian vector falls very likely in a bounded shell of radius
close to mσ2.

8We note that the ratio improves as the number of dimensions increases to infinity because both upper
and lower bounds improve due to concentration.
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This observation inspires us to consider the vector Witsenhausen counterexample (intro-
duced in Chapter 3.1) in the asymptotic limit of infinite vector length. In this limit, we
characterize the asymptotically optimal costs for the problem to within a constant factor
for all values of problem parameters k and σ2

0. In the next section, we will use the under-
standing gained from this analysis to obtain approximate-optimality for the original (scalar)
counterexample as well.

The following theorem provides the asymptotic characterization.

Theorem 4. For the vector version of Witsenhausen’s counterexample, in the limit of di-
mension m→∞, the optimal expected cost J min(k2) satisfies

1

µ1

min

{
k2, k2σ2

0,
σ2

0

σ2
0 + 1

}
≤ J min(k2) ≤ min

{
k2, k2σ2

0,
σ2

0

σ2
0 + 1

}
. (4.8)

Alternatively, J min(k2) satisfies

inf
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2

≤ J min(k2) ≤ µ2 inf
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2

, (4.9)

where (·)+ is shorthand for max(·, 0) and

κ(P ) =
σ2

0

σ2
0 + 2σ0

√
P + P + 1

. (4.10)

The factors µ1 and µ2 are no more than 11 (numerical evaluation shows that µ1 < 4.45, and
µ2 < 2).

Proof. As with the uniform-noise counterexample, the proof here proceeds in three steps.
Chapter 4.3.1 provides a lower bound on the expected cost that is valid for all dimensions.
This provides the expressions on the two sides of (4.9). An upper bound is then derived
in Chapter 4.3.2 by providing three schemes, and taking the best performance among the
three. This provides the expressions in (4.8).

Fig. 4.6 partitions the (k2, σ2
0) parameter space into three different regions, showing which

of the three upper bounds is the tightest for various values of k2 and σ2
0. It is interesting to

note that the nonlinear VQ scheme is required only in the small-k large-σ2
0 regime. A similar

figure in [25, Fig. 1] for the scalar problem shows that the same regime is interesting there
as well.

A 3-D plot of the ratio between the upper and lower bounds for varying k2 and σ2
0 is

shown in Fig. 4.7. The figure shows that the ratio is bounded by a constant µ1, numerically
evaluated to be 4.45, and attained at k2 = 0.5 and σ2

0 = 1. The figure also shows that for
most of the (k2, σ2

0) parameter space, the ratio is in fact close to 1 so the upper and lower
bounds are almost equal there.
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This asymptotic characterization is tightened by improving the upper bound in Chap-
ter 4.3.3. The new strategy uses a balanced combination of the information-theoretic strategy
of Dirty-Paper Coding (DPC) and linear control described. Numerical evaluation of this ratio
leads us to conclude that µ2 < 2, as is illustrated in Fig. 4.12. This yields (4.9).

Finally, Appendix A.5 complements the plots by giving an explicit proof that the ratio
of the upper and lower bounds is always smaller than 11.
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Figure 4.6: The plot maps the regions where each of the three schemes (VQ, zero-forcing xm0 , and
zero input) perform better than the other two. For large k, zero input performs best. For small k
and small σ2

0, the cost of zero-forcing the state is small, and hence the zero-forcing scheme performs
better than the other two. For small k but large σ2

0, the nonlinear VQ cost is the smallest amongst
the three.

4.3.1 A lower bound on the expected cost

Witsenhausen [14, Chapter 6] derived a lower bound on the costs for the counterexample.
We first state his lower bound, and then provide our lower bound for the Gaussian case.

Witsenhausen’s existing lower bound

Witsenhausen [14, Chapter 6] derived the following lower bound on the optimal costs for the
scalar problem.
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Figure 4.7: The plot shows the ratio of the upper bound in (4.8) to the lower bound in (4.9) for
varying σ0 and k. The ratio is upper bounded by 4.45. This shows that the proposed schemes
achieve performance within a constant factor of optimal for the vector Witsenhausen problem in
the limit of large number of dimensions. Notice the ridges along the parameter values where we
switch from one control strategy to another in Fig. 4.6.

Theorem 5 (Witsenhausen’s lower bound). The optimal cost for the scalar Witsenhausen
counterexample is lower bounded by

J scalar

min (k2) ≥ 1

σ0

∫ +∞

−∞
φ

(
ξ

σ0

)
Vk(ξ)dξ, (4.11)

where φ(t) = 1√
2π

exp(− t2

2
) is the standard Gaussian density and

Vk(ξ) := min
a

[k2(a− ξ)2 + h(a)], (4.12)

where

h(a) :=
√

2πa2φ(a)

∫ +∞

−∞

φ(y)

cosh(ay)
dy. (4.13)

However, Witsenhausen’s scalar-specific proof of this lower bound does not generalize to
the vector case. The following theorem provides a newer, better, and simpler (to work with)
lower bound that is valid for all vector lengths.

Our lower bound

Corollary 1 (Lower bound to the vector Witsenhausen counterexample). For all m ≥ 1,
and all strategies S, given an average power P of um1 , the second stage cost, J 2(S) is lower
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bounded by

J 2(S) ≥ J 2,min(P ) ≥
((√

κ(P )−
√
P
)+
)2

, (4.14)

where κ(P ) is the function of P given by (4.10). Equivalently, the optimal total cost is lower
bounded by

J min(k2) ≥ inf
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2

. (4.15)

Proof. Follows directly from Theorem 2 with substitution of h(Z) by 1
2

log2 (2πe), the differ-
ential entropy of a N (0, 1) random variable.

Fig. 4.8 plots Witsenhausen’s lower bound from [14] and compares it with the lower
bound of Corollary 1. A particular sequence of k = 100

n2 and σ2
0 = 0.01n2 is chosen to visually

demonstrate that for this sequence of problem parameters, in the limit of n→∞, the ratio
of the bounds diverges to infinity. Thus, we conclude that prior to this work, it was not
possible to provide a uniform (over problem parameters) characterization of the optimal
cost to within a constant factor for the scalar problem. Such a characterization needs a
tightening of the lower bound in Corollary 1 as well, and is provided in Chapter 4.4.
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Figure 4.8: Plot of the two lower bounds on the optimal cost as a function of n, with kn = 100
n2 ,

σ0,n = 0.01n2 on a log-log scale for comparing the two lower bounds. The figure shows that the
vector lower bound derived here is tighter than Witsenhausen’s scalar lower bound in certain cases.

4.3.2 A vector-quantization upper bound on the asymptotic ex-
pected cost

In Theorem 4, the upper bound is a minimum of three terms. This section describes a
nonlinear strategy that asymptotically (in the number of dimensions) attains the cost of
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k2 given by the first term of (4.8). We call the strategy the Vector Quantization (VQ)
scheme. The proof uses a randomized code that exploits common randomness. For clarity of
exposition, we only outline the proof here. For a rigorous proof, we refer the reader to [54].
Alternatively, an upper bound on the asymptotic cost for a quantization strategy can also
be obtained by taking limits of our upper bound in Chapter 4.4 for the finite-dimensional
problem. This alternative route yields a bound that is looser, but suffices to obtain constant-
factor results.

√
mσ2

0

Quantization points

Noise 
spheres

Sphere of typical
noise realizations

x0

x1

u1

Figure 4.9: An illustration of the vector quantization scheme. The decoding is asymptotically
error free as long as the noise-spheres do not intersect. This condition requires that the power P
of the first controller exceed the noise variance σ2

z = 1.

This is a quantization-based control strategy and is illustrated in Fig. 4.9, where ‘+’s
denote the VQ quantization points. The quantization points are generated randomly ac-
cording to the distribution N (0, (σ2

0 − P )I). This set of quantization points is referred to as
the codebook, denoted by Q. Given a particular realization of the initial state xm0 , the first
controller finds the point xm1 in the codebook closest to xm0 . The input um1 = xm1 − xm0 then
drives the state to this point. The number of quantization points is chosen carefully — there
are sufficiently many of them to ensure that the required average power of um1 is close to P ,
but not so many that there could be confusion at the second controller.

More precisely, a codebook Q of 2mR quantization points {xmq (1), . . . ,xmq (2mR)} is chosen
by drawing the quantization points iid in Rm randomly from the distribution N (0, (σ2

0−P )I),
where the operating “rate” R and the power P satisfy the pair of equalities

R = R(P ) +
δ

2
=

1

2
log2

(
σ2

0

P

)
+
δ

2
(4.16)

C(P ) =
1

2
log2

(
1 +

σ2
0 − P
σ2
z

)
= R +

δ

2
, (4.17)
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for small δ > 0 where R(·) is the rate-distortion function for a Gaussian source of variance
σ2

0 [28, Pg. 345], and C(·) is the capacity of an AWGN channel with input power constraint
σ2

0 − P .
With this careful choice, the state xm1 can be recovered perfectly in the limit m → ∞

because the capacity C(P ) . Intuitively, we require the power to be large enough so that
the noise-spheres in Fig. 4.9 do not intersect. We show in Appendix A.4 that the two
conditions (4.16) and (4.17) are satisfied, and hence the noise-spheres do not intersect, when
average the input power P > σ2

z = 1. Thus, asymptotically, J 2 = 0, J 1 = P and the total
cost approaches k2.

4.3.3 An improved upper bound using dirty-paper coding, and a
conjecture on the optimal strategy

DPC quantization
points

x1

x1

√

mα
2
σ

2
0

√

m(P + α2σ2
0
)

α = 1

continuum of possible     values 
for the same quantization point

x1

√

m(σ2
0

+ P )

√

mσ
2
0

values whose shadows 
are attracted to the same

quantization point

α < 1

αx0

x0

u1

x0

u1

x0

DPC with

DPC with

Figure 4.10: A geometric representation of the dirty-paper coding scheme (on left with the DPC-
parameter α = 1, and on right for α < 1) of Chapter 4.3.3. The grey shell contains the typical xm0
realizations. The VQ scheme (see Fig. 4.9) quantizes to points inside this shell. The DPC scheme
quantizes the state to points outside this shell. For the same power in the input um1 , the distances
between the quantization points of the DPC scheme is larger than those for the VQ scheme, making
it robust to larger observation noise variances.

We saw in Chapter 3.5 that the vector Witsenhausen counterexample is deeply connected
to Costa’s problem of dirty-paper coding (DPC) [74]. Dirty-paper coding techniques [74] can
also be thought of as performing a (possibly soft) quantization. The quantization points are
chosen randomly in the space of realizations of xm1 according to the distribution N (0, (P +
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α2σ2
0)I). For α = 1 the quantization is hard and a pictorial representation is given in

Fig. 4.10, with ‘◦’ denoting the DPC quantization points. Given the vector xm0 , the first
controller finds the quantization point xm1 closest to xm0 and again uses um1 = xm1 − xm0 to
drive the state to the closest point. For σ2

0 > σ2
z = 1, we show9 in Appendix A.6 that

asymptotically, J 2 = 0, and that this scheme performs better than VQ.

u1

x0

αx0 Intervals in which 
can lie

u1

x0

x1

x1

αx0

u1

is the required input to quantize 
the shadow state

When added to x0
this      yields       as a 
slopey-quantization of

u1
x0

x1
x0

x1

The believed-optimal strategy
of [Baglietto, Parisini, Zoppoli]

Figure 4.11: If the sequence of operations in the dirty-paper-coding strategy shown in Fig. 4.10
are followed for the scalar case, the resulting strategies look exactly like the slopey-quantization
strategies of [25–27,73].

For α 6= 1, the transmitter does not drive the state all the way to a quantization point.
Instead, the state xm1 = xm0 + um1 is merely correlated with the quantization point, given by
vm = xm0 + αum1 . With high probability, the second controller can decode the underlying
quantization point, and using the two observations ym = xm0 +um1 +zm and vm = xm0 +αum1 ,
it can estimate xm1 = xm0 + um1 . This scheme has J 2 6= 0, but when k is moderate, the total
cost can be lower than that for DPC with α = 1. Appendix A.6 describes this strategy
and analyzes its performance in detail. Fig. 4.11 shows that for α 6= 1, the DPC scheme is
conceptually similar to the “neural schemes” numerically explored in [25] in that they are
“soft quantization” schemes that tolerate some residual cost at stage 2 in order to reduce the
cost at stage 1. Minor further improvements can be obtained by using a combination scheme
that divides its power into two parts: a linear part and a part dedicated to dirty-paper
coding. The linear component is used first to reduce the variance in xm0 by scaling it down
in a manner reminiscent of state-masking [89]. The remaining power is used to dirty-paper
code against the resulting reduced interference. Appendix A.6 provides the details of this
combination strategy. As shown in Fig. 4.12, using the combination scheme, the value of µ2

is 2.
This combination strategy is shown to be optimal in the limit of asymptotically zero-

reconstruction error using an improved lower bound in the next section.

9Only an outline of the proof is included in this dissertation. The full proof appears in [54].
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Figure 4.12: The plot shows the ratio of the performance of the combined DPC/linear scheme of
Chapter 4.3.3 (analyzed in Appendix A.6) to the lower bound of (4.9) as σ0 and k vary. Relative

to Fig. 4.7, this new scheme has a maximum ratio of 2 attained on the ridge of σ2
0 =

√
5−1
2 and

small k. Also, the ridge along k = 1 is reduced as compared to Fig. (4.7). It is eliminated for small
σ2

0, while its asymptotic peak value of about 1.29 is attained at k ≈ 1.68 and large σ2
0.

4.3.4 Improved lower bounds, and improved ratios

The lower bound in Theorem 2 (and that in Corollary 1) allows for alignment of the input
with the initial state when calculating the power input into the implicit channel. While this
alignment maximizes the potential capacity of the channel, in reality this will also make the
implicit source Xm

1 Gaussian10, the hardest source to estimate (in a rate-distortion sense [28])
with the worst possible (i.e. largest) variance. What this lower bound is ignoring is the fact
that any correlation between Xm

0 and Um
1 induces a different distribution (in particular, a

different variance) on Xm
1 . We exploit this fact to obtain a tighter bound in this section.

Theorem 6. For the vector Witsenhausen problem with E [‖Um
1 ‖2] ≤ mP , the following is

a lower bound on the MMSE in the estimation of Xm
1 .

MMSE ≥

inf
σX0,U1

sup
γ>0

1

γ2



(√

σ2
0

1 + σ2
0 + P + 2σX0,U1

−
√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1

)+



2

.

where σX0,U1 ∈ [−σ0

√
P , σ0

√
P ]. Further, the required power predicted by this lower bound

turns out to be achievable in the limit of asymptotically zero reconstruction error.

10A complete alignment corresponds to a scalar strategy where the input amplifies the initial state. This
obviously retains the Gaussianity of the state as well.
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Proof. See Appendix A.10.

It is insightful to see how the lower bound in Theorem 6 is an improvement over that in
Corollary 1. The lower bound in Corollary 1 is

MMSE ≥



(√

σ2
0

σ2
0 + P + 2σ0

√
P + 1

−
√
P

)+



2

, (4.18)

which again holds for all m. Because any γ provides a valid lower bound in Theorem 6,
choosing γ = 1 in Theorem 6 provides the following (loosened) bound,

MMSE ≥ inf
|σX0,U1

|≤σ0
√
P



(√

σ2
0

σ2
0 + P + 2σX0,U1 + 1

−
√
P

)+



2

, (4.19)

which is minimized for σX0,U1 = σ0

√
P . This immediately yields the lower bound (4.18) of

Corollary 1.

Figure 4.13: The ratio of upper and lower bounds on the total asymptotic cost for the vector
Witsenhausen counterexample with the improved lower bound of Theorem 6. As compared to the
maximum ratio of 2 using the lower bound of Corollary 1 (in Fig. 4.12), the ratio here is smaller

than 1.3. Further, an infinitely long ridge along σ2
0 =

√
5−1
2 and small k that is present in Fig. 4.12

is no longer present here. This is a consequence of the tightness lower bound at MMSE = 0, and
hence for small k. A ridge remains along k ≈ 1.67 (log10(k) ≈ 0.22) and large σ0, and this can be
understood by observing Fig. 4.14 for σ0 = 10.
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Figure 4.14: Upper and lower bounds on asymptotic MMSE vs P for σ0 =

√√
5−1
2 (square-root of

the Golden ratio; Fig. (a)) and σ0 = 10 (b) for zero-rate (the vector Witsenhausen counterexample).

Tangents are drawn to evaluate the total cost for k =
√

0.1 for σ0 =

√√
5−1
2 , and for k = 1.67 for

σ0 = 10 (slope = −k2). The intercept on the MMSE axis of the tangent provides the respective
bound on the total cost. The tangents to the upper bound and the new lower bound almost coincide
for small values of k. At k ≈ 1.67 and σ0 = 10, however, this bound is not significantly better than
that in Corollary 1 and hence the ridge along k ≈ 1.67 remains in the new ratio plot in Fig. 4.13.

Figure 4.15: Ratio of upper and lower bounds on MMSE vs P and σ0. Whereas the ratio diverges
to infinity in (a) with the lower bound of Corollary 1, it is bounded in (b) by 1.5 for the new bound.
This is a consequence of the improved tightness of the new bound at small MMSE.
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Figure 4.16: Ratio of upper and lower bounds on P vs MMSE and σ0. Interestingly, the ratio
diverges to infinity as σ0 →∞ along the path where P is close to zero (corresponding to MMSE =
σ2
0

σ2
0+1

).

Improved ratios, and a discussion of approximate optimality

Fig. 4.13 shows that asymptotically, the ratio of upper and new lower bounds (from The-
orem 6) on the total weighted cost is bounded by 1.3, an improvement over the ratio of 2
obtained with the lower bound of Corollary 1. Comparing Fig. 4.7 and Fig. 4.13, the ridge
of ratio 2 along σ2

0 =
√

5−1
2

present in Fig. 4.7 does not exist anymore with the new lower
bound. This is because the small-k regime corresponds to target MMSEs close to zero –
where the new lower bound is tight. This point is further elucidated in Fig. 4.14(a). Also
shown in Fig. 4.14(b) is the lack of tightness in the bounds at small P . The figure explains
how this looseness results in the ridge along k ≈ 1.67 still surviving in the new ratio plot.

Fig. 4.15 shows the ratio of upper and lower bounds on MMSE versus P and σ0. This
figure brings out an important aspect of approximate-optimality results: while approximate-
optimality may hold in one formulation of the problem (namely, minimizing weighted sum-
cost), it may not hold in another equivalent formulation (namely, characterizing the optimal
tradeoff between P and MMSE)11. Thus, while Fig. 4.13 shows that the optimal total cost
can be characterized to within a constant factor, Fig. 4.15(a) shows that the ratio of upper
and lower bounds on MMSE versus P and σ0 diverges to infinity. Our improved lower
bound in this section rectifies the problem: with the new bound of Corollary 2, the ratio is
bounded by a factor of 1.5 (Fig. 4.15, right). This is again a reflection of the tightness of
the bound at small MMSE.

11As noted earlier, this phenomena is similar to approximation-algorithms in complexity theory where
having an approximation algorithm for an NP-complete problem does not necessarily lead to an approxi-
mation algorithm for another, even though all NP-complete problems are computationally equivalent when
solving exactly.
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However, a flipped perspective shown in Fig. 4.16 shows that the tradeoff curve is not
yet completely understood. In this figure, we compute the ratio of upper and lower bounds
on the required power to attain a specified MMSE. The ratio diverges to infinity along the

path MMSE =
σ2
0

σ2
0+1

. This path is precisely the path corresponding to zero-input-power.

Thus the question we do not completely understand is: how low a power is required when
MMSE is so bad that it is close to its maximum?

4.4 Step 4: The Gaussian counterexample: finite num-

ber of dimensions (including the original scalar

counterexample)

Now that we have approximate-optimality results for the asymptotically infinite-length ver-
sion of the counterexample, can we use these to understand the original scalar counterex-
ample? Using an asymptotic analysis to obtain results for finite-lengths is often a stan-
dard procedure in the theory of large-deviations [99]. Even in information theory, Shannon
first addressed an asymptotic formulation of capacity, before dealing with error probability
at finite-lengths12 [100]. Although Shannon’s bounds in [100] were derived for the power-
constrained AWGN channel, the approach has been generalized and refined. Most of these
bounds characterize the exponential rate of decay of error-probability with block-length.
Recently, Polyanskiy, Poor, and Verdu [101,102] use a central limit theorem-based approach
to find bounds on the gap from capacity as a function of error probability and block-length
based on a “dispersion” term. This yields fairly tight bounds on the error probability for
what are traditionally considered small block-lengths (on the order of a hundred).

The challenge we face is two fold. The first challenge is obvious: we require results for
the tiniest of block-lengths: the scalar case. Second, the bounds we require our bounds on a
symbol-by-symbol distortion metric (the MMSE error), and not a block-metric such as the
block error probability. Most of the literature in information theory focuses on block-error
probability. Our results in [79,103] for understanding the tradeoff of the size of the decoding
neighborhood with the bit-error probability and the gap from capacity helps us in developing
this understanding.

This section develops the theory that addresses these challenges. We first needs some
definitions in order to provide the quantization strategy at finite dimensions.

12Indeed, our step of addressing the asymptotic limit of the counterexample was very much inspired from
Shannon’s.
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Notation and definitions

Vectors are denoted in bold font, random variables in upper case, and their realizations in
lower case. We use A ⊥⊥ B to imply that the random variables A and B are independent. B
is used to denote the unit ball in L2-norm in Rm.

Definition 1 (Packing and packing radius). Given an m-dimensional lattice Λ and a radius
r, the set Λ + rB = {xm + rym : x ∈ Λ,ym ∈ B} is a packing of Euclidean m-space if for
all points xm,ym ∈ Λ, (xm + rB)

⋂
(ym + rB) = ∅. The packing radius rp is defined as

rp := sup{r : Λ + rB is a packing}.

Definition 2 (Covering and covering radius). Given an m-dimensional lattice Λ and a radius
r, the set Λ + rB is a covering of Euclidean m-space if Rm ⊂ Λ + rB. The covering radius
rc is defined as rc := inf{r : Λ + rB is a covering}.

Definition 3 (Packing-covering ratio). The packing-covering ratio (denoted by ξ) of a lattice
Λ is the ratio of its covering radius to its packing radius, ξ = rc

rp
.

For this section, we denote the pdf of the elements of noise Zm by fZ(·). In our proof
techniques, we also consider a hypothetical observation noise Zm

G ∼ N (0, σ2
G) with variance

σ2
G ≥ 1. The pdf of this test noise is denoted by fG(·). We use ψ(m, r) to denote Pr(‖Zm‖ ≥
r) for Zm ∼ N (0, I). Subscripts in expectation expressions denote the random variable being
averaged over (e.g. EXm

0 ,Z
m
G

[·] denotes averaging over the initial state Xm
0 and the test noise

Zm
G ).

4.4.1 Upper and lower bounds on costs

An upper bound on costs

What will be a good strategy for a vector extension, say of dimension 2? One can break the
problem down into two scalar problems, and operate separately on the two elements of the
vector. But we know from information theory that strategies that perform vector operations
commonly outperform strategies that treat vectors merely as a collection of scalars. Is there
a possible improvement over a simple scalar quantization strategy?

The use of scalar quantization strategy in a problem of dimension 2 amounts to quan-
tizing to a grid lattice shown in Fig. 4.17. The “error probability” of decoding to a wrong
quantization point in either dimension is governed by the nearest lattice point, in Euclidean
sense, that the noise can push the x1 quantization point to. Euclidean distance between
quantization points thus emerges as a proxy for the error probability. One can reduce the
cost at the first stage by using an improved lattice, for example, a triangular lattice13 (shown
in Figure 4.17) while keeping the minimum distance between the lattice points the same.

13Often also called ‘hexagonal’ lattice for its hexagonal Voronoi regions.
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Analyzing the last term,
�

zm∈SG
L

cm(L)fG(zm)
�zm�2

2σ2
G

log2 (e) dzm

using (19)
=

log2 (e)

2σ2
G

EG

�
�Zm

L �2
�

using (24)
=

m log2 (e)

2
dm(L). (26)

The expression C
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G can now be upper bounded us-

ing (22), (25) and (26) as follows.
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Now, recall that the Gaussian rate-distortion function Dm(R)
is defined as follows

Dm(R) := inf
p(�Xm

L |Xm
0 )

1
mI(Xm

0 ; �Xm
L ) ≤ R

1

m
E
�
�Xm

0 − �Xm
L �2

�

(28)
Since I(Xm

0 ; �Xm
L ) ≤ mC

(m)
G , using the converse to the rate

distortion theorem [43, Pg. 349] and the upper bound on the
mutual information,

1

m
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�
�Xm

0 − �Xm
L �2

�
≥ Dm(C

(m)
G ). (29)

Since the Gaussian source is iid, Dm(R) = D(R), where
D(R) = σ2

02−2R is the distortion-rate function for a Gaussian
source of variance σ2

0 [43, Pg. 346]. Thus, using (18), (20)
and (29),
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Substituting the bound on C
(m)
G from (27),

D(C
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(m)
G

=
σ2
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2
G

c
2
m
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Using (18), this completes the proof of the lemma. Notice that
cm(L) → 1 and dm(L) → 1 for fixed m as L → ∞, as well as
for fixed L > 1 as m → ∞. So the lower bound on D(C

(m)
G )

approaches κ of Theorem 2 in both of these two limits.

rp (30)
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G , using the converse to the rate

distortion theorem [43, Pg. 349] and the upper bound on the
mutual information,
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Since the Gaussian source is iid, Dm(R) = D(R), where
D(R) = σ2

02−2R is the distortion-rate function for a Gaussian
source of variance σ2

0 [43, Pg. 346]. Thus, using (18), (20)
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Using (18), this completes the proof of the lemma. Notice that
cm(L) → 1 and dm(L) → 1 for fixed m as L → ∞, as well as
for fixed L > 1 as m → ∞. So the lower bound on D(C
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approaches κ of Theorem 2 in both of these two limits.
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Figure 4.17: The most obvious generalization of the scalar-quantization strategy to the vector
case is a square-grid, that quantizes each dimension of the vector problem separately. A triangular
lattice attains a smaller error probability for the same average power costs because of an improved
packing-covering ratio. On the right side is an illustration of packing radius rp and covering radius
rc.

Since the error probability is dominated by this minimum distance, the second stage cost is
also dominated by the term that corresponds to the error of decoding to the nearest neigh-
bors. Thus one needs a lattice that performs a good packing, keeping the nearest lattice
points far enough for small second stage costs, as well as a good covering so that no point in
the space is too far – yielding small first stage-costs. These lattices thus correspond to ones
that have a good packing-covering ratio — the ratio of covering radii to the packing radius
of the lattice.

This lattice-quantization strategy yields the following upper bound on the cost forW (m, k2, σ2
0),

the dimension-m vector Witsenhausen problem.

Theorem 7. Using a lattice-based strategy (as described above) for W (m, k2, σ2
0) with rc and

rp the covering and the packing radius for the lattice, the total average cost is upper bounded
by

J (γ)(m, k2, σ2
0) ≤ inf

P≥0
k2P +

(√
ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

,

where ξ = rc
rp

is the packing-covering ratio for the lattice, and ψ(m, r) = Pr(‖Zm‖ ≥ r). The

following looser bound also holds

J (γ)(m, k2, σ2
0) ≤ inf

P>ξ2
k2P +

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2
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1+ln

(
P
ξ2
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.
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Remark : The latter loose bound is useful for analytical manipulations when proving
explicit bounds on the ratio of the upper and lower bounds in Chapter 4.4.2.

Proof. Note that because Λ has a covering radius of rc, ‖xm1 − xm0 ‖2 ≤ r2
c . Thus the first

stage cost is bounded above by 1
m
k2r2

c . A tighter bound can be provided for a specific lattice

and finite m (for example, for m = 1, the first stage cost is approximately k2 r
2
c

3
if r2

c � σ2
0

because the distribution of xm0 conditioned on it lying in any of the quantization bins is
approximately uniform at least for the most likely bins). For the second stage, observe that

EXm
1 ,Z

m

[
‖Xm

1 − X̂m
1 ‖2
]

= EXm
1

[
EZm

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]]
. (4.20)

Denote by Em the event {‖Zm‖2 ≥ r2
p}. Observe that under the event Ecm, X̂m

1 = Xm
1 ,

resulting in a zero second-stage cost. Thus,

EZm

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]
= EZm

[
‖Xm

1 − X̂m
1 ‖211{Em}|Xm

1

]
+ EZm

[
‖Xm

1 − X̂m
1 ‖211{Ecm}|Xm

1

]

= EZm

[
‖Xm

1 − X̂m
1 ‖211{Em}|Xm

1

]
.

We now bound the squared-error under the error event Em, when either xm1 is decoded
erroneously, or there is a decoding failure. If xm1 is decoded erroneously to a lattice point
x̃m1 6= xm1 , the squared-error can be bounded as follows

‖xm1 − x̃m1 ‖2 = ‖xm1 − ym2 + ym2 − x̃m1 ‖2 ≤ (‖xm1 − ym2 ‖+ ‖ym2 − x̃m1 ‖)2 ≤ (‖zm‖+ rp)
2 .

If xm1 is decoded as ym2 , the squared-error is simply ‖zm‖2, which we also upper bound by
(‖zm‖+ rp)

2. Thus, under event Em, the squared error ‖xm1 − x̂m1 ‖2 is bounded above by
(‖zm‖+ rp)

2, and hence

EZm

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]
≤ EZm

[
(‖Zm‖+ rp)

2 11{Em}|Xm
1

]

(a)
= EZm

[
(‖Zm‖+ rp)

2 11{Em}
]
, (4.21)

where (a) uses the fact that the pair (Zm, 11{Em}) is independent of Xm
1 . Now, let P = r2c

m
,

so that the first stage cost is at most k2P . The following lemma helps us derive the upper
bound.

Lemma 2. For a given lattice with r2
p = r2c

ξ2
= mP

ξ2
, the following bound holds
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The following (looser) bound also holds as long as P > ξ2,
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Proof. See Appendix A.7.

The theorem now follows from (4.20), (4.21) and Lemma 2.

Lower bound on costs
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Figure 4.18: A pictorial representation of the proof for the lower bound assuming σ2
0 = 30.

The solid curves show the vector lower bound of Corollary 1 for various values of observation noise
variances, denoted by σ2

G. Conceptually, multiplying these curves by the probability of that channel
behavior yields the shadow curves for the particular σ2

G, shown by dashed curves. The scalar lower
bound is then obtained by taking the maximum of these shadow curves. The circles at points along
the scalar bound curve indicate the optimizing value of σG for obtaining that point on the bound.

Observe that the lower bound expression of Corollary 1 is the same for all vector lengths.
In the following, large-deviation arguments [104,105] (called sphere-packing style arguments
in information theory for historical reasons14) are extended following [103,106,107] to a joint
source-channel setting where the distortion measure is unbounded.

The main technical difficulty is posed by the unbounded support of the Gaussian distri-
bution. Because the lower bounds discussed so far are valid asymptotically, they implicitly
assume that the noise behavior is within a bounded sphere. In the scalar case, the noise
can be extremely large, even though there is a small probability associated with it. How
can we account for this? We use the technique of change-of-measure from large-deviation

14The first bounds in this style were derived by Shannon in [100] by finding the number of spheres of
a given size that can be packed in a given volume assuming a maximum allowed intersection between the
spheres. This argument was used in Park, Grover and Sahai [98] to obtain the first constant-factor optimality
result on the counterexample, albeit the constant factor there was quite large.
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theory [99]. Heuristically, the idea is this: an atypically large behavior of (Gaussian) noise
is typical for another (Gaussian) distribution (of larger variance). Using this, there can be
a probability associated with an atypical behavior. Conditioned on this atypical behavior, a
lower bound on the distortion is known from Theorem 2 (by bringing the new noise variance
out explicitly). Multiplying this lower bound with the associated probability will bring us
to an actual lower bound on the distortion. The resulting bounds are tighter than those in
Corollary 1 and depend explicitly on the vector length m.

Theorem 8. For W (m, k2, σ2
0), if for a strategy γ(·) the average power 1

m
EXm

0
[‖Um

1 ‖2] = P ,
the following lower bound holds on the second stage cost for any choice of σ2

G ≥ 1 and L > 0

J (γ)
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0, σ

2
G, L).
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,
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2
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0σ

2
G

c
2
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) ,
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= (1− ψ(m,L
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,

0 < dm(L) < 1, and ψ(m, r) = Pr(‖Zm‖ ≥ r). Thus the following lower bound holds on the
total cost

J min(m, k2, σ2
0) ≥ inf

P≥0
k2P + η(P, σ2

0, σ
2
G, L), (4.22)

for any choice of σ2
G ≥ 1 and L > 0 (the choice can depend on P ). Further, these bounds

are at least as tight as those of Corollary 1 for all values of k and σ2
0.

Proof. From Corollary 1, for a given P , a lower bound on the average second stage cost

is

((√
κ−
√
P
)+
)2

. We derive another lower bound that is equal to the expression for

η(P, σ2
0, σ

2
G, L). The high-level intuition behind this lower bound is presented in Fig. 4.18.

Define SGL := {zm : ‖zm‖2 ≤ mL2σ2
G} and use subscripts to denote which probability model

is being used for the second stage observation noise. Z denotes white Gaussian of variance
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1 while G denotes white Gaussian of variance σ2
G ≥ 1.
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The ratio of the two probability density functions is given by
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Using (4.23) and (4.24),

EXm
0 ,Z

m

[
J

(γ)
2 (Xm

0 ,Z
m)
]
≥ σmG e

−mL
2(σ2G−1)

2

∫

zm∈SGL

(∫

xm0

J
(γ)
2 (xm0 , z

m)f0(xm0 )dxm0

)
fG(zm)dzm

= σmG e
−mL

2(σ2G−1)

2 EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )11{ZmG∈SGL}

]

= σmG e
−mL

2(σ2G−1)

2 EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )|Zm

G ∈ SGL
]

Pr(Zm
G ∈ SGL ).(4.25)

Analyzing the probability term in (4.25),
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because
ZmG
σG
∼ N (0, Im). From (4.25) and (4.26),
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We now need the following lemma, which connects the new finite-dimensional lower bound
to the infinite-dimensional lower bound of Corollary 1.

Lemma 3.
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0 ,Z
m
G )|Zm

G ∈ SGL
]
≥
((√

κ2(P, σ2
0, σ

2
G, L)−

√
P

)+
)2

,

for any L > 0.

Proof. See Appendix A.8.

The lower bound on the total average cost now follows from (4.27) and Lemma 3. We
now verify that dm(L) ∈ (0, 1). That dm(L) > 0 is clear from definition. dm(L) < 1 because
{zm+2 : ‖zm+2‖2 ≤ mL2σ2

G} ⊂ {zm+2 : ‖zm‖2 ≤ mL2σ2
G}, i.e., a sphere sits inside a cylinder.

Finally we verify that this new lower bound is at least as tight as the one in Corollary 1.
Choosing σ2

G = 1 in the expression for η(P, σ2
0, σ

2
G, L),

η(P, σ2
0, σ

2
G, L) ≥ sup

L>0

1

cm(L)

((√
κ2(P, σ2

0, 1, L)−
√
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)+
)2

.

Now notice that cm(L) and dm(L) converge to 1 as L→∞. Thus κ2(P, σ2
0, 1, L)

L→∞−→ κ(P, σ2
0)

and therefore, η(P, σ2
0, σ

2
G, L) is lower bounded by

((√
κ−
√
P
)+
)2

, the lower bound in

Corollary 1.

4.4.2 Combination of linear and lattice-based strategies attain
within a constant factor of the optimal cost

Theorem 9 (Constant-factor optimality). The costs for W (m, k2, σ2
0) are bounded as follows

inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ2
0, σ

2
G, L) ≤ Jmin(m, k2, σ2

0) ≤ µ

(
inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ2
0, σ

2
G, L)

)
,

where µ = 100ξ2, ξ is the packing-covering ratio of any lattice in Rm, and η(·) is as defined
in Theorem 8. For any m, µ < 1600. Further, depending on the (m, k2, σ2

0) values, the upper
bound can be attained by lattice-based quantization strategies or linear strategies. For m = 1,
a numerical calculation (MATLAB code available at [108]) shows that µ < 8 (see Fig. 4.20).

Proof. See Appendix A.9.
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Figure 4.19: The ratio of the upper and the lower bounds for the scalar Witsenhausen problem
(left), and the 2-D Witsenhausen problem (right, using triangular lattice of ξ = 2√

3
) for a range of

values of k and σ0. The ratio is bounded above by 17 for the scalar problem, and by 14.75 for the
2-D problem.
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Figure 4.20: An exact calculation of the first and second stage costs yields an improved maximum
ratio smaller than 8 for the scalar Witsenhausen problem.
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Although the proof in Appendix A.9 succeeds in showing that the ratio is uniformly
bounded by a constant, it is not very insightful and the constant is large. Of importance here
is that such a constant exists. The value of the constant can now be evaluated numerically.
Such a numerical evaluation (using Theorem 7 and 8 for upper and lower bounds respectively)
shows that the ratio is smaller than 17 for m = 1 (see Fig. 4.19). A precise calculation of
the cost of the quantization strategy improves the upper bound (by calculating the cost of
the quantization strategy to a greater precision for m = 1) to yield a maximum ratio smaller
than 8 (see Fig. 4.20). A simple grid lattice has a packing-covering ratio ξ =

√
m. Therefore,

while the grid lattice has the best possible packing-covering ratio of 1 in the scalar case, it
has a rather large packing covering ratio of

√
2 (≈ 1.41) for m = 2. On the other hand,

a triangular lattice (for m = 2) has an improved packing-covering ratio of 2√
3
≈ 1.15. In

contrast with m = 1, where the ratio of upper and lower bounds of Theorem 7 and 8 is
approximately 17, a triangular lattice yields a ratio smaller than 14.75, despite having a
larger packing-covering ratio. This is a consequence of the tightening of the sphere-packing
lower bound (Theorem 8) as m gets large15.

15Indeed, in the limit m→∞, the ratio of the asymptotic average costs attained by a vector-quantization
strategy and the vector lower bound of Corollary 1 is bounded by 4.45.
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Chapter 5

Beyond the counterexample: towards
a theory of implicit communication
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cannot
affect the system

An "observer-controller" architecture
limits what the agents can do

Figure 5.1: (a) A set of agents operating dynamically in order to attain a control goal. The
controllers can communicate implicitly through the plant, and may also communicate to each other
using external channels. We are interested in designing cost-efficient strategies for such a general
system. (b) Many current formulations, which we call “observer-controller” formulations, limit the
ability of the agents to either observing the system state, or taking actions to alter the state (using
messages received across a channel), but not both.

One of our grand goals is to address the system shown in Fig. 5.1: how should we design
cost-efficient strategies for such a general decentralized control system? Notice that the
controllers can communicate through the implicit channel of the system as well as external
channels that may connect them. This chapter aims at building and addressing toy problems
that can help us design efficient strategies for such larger systems.

Most of the results in the existing literature ( [34, 42, 83, 109–111] etc.) focus on an
“observer-controller” architecture where the observer is connected to the controller through a
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communication channel. These results and formulations are unsatisfactory for three reasons.
First, they are designed to disallow implicit communication. This is done in two steps: the
“observer” is stripped of its ability to modify the state (making the “source” unmodifiable),
and the “controller” cannot observe the state directly, and only estimates it from the channel
output. Second, the difficulty of the optimal cost formulation forces the formulation away
from that of minimizing costs to a coarse measure of attaining stability (see Chapter 3.4.3).
Third, the overall flavor of results is negative: they suggest that even stabilizing a system
across a channel can be really hard to accomplish! Our goal in this chapter is to show that
an understanding of the counterexample that we developed in Chapter 4 can help make some
progress in addressing these issues.

In Chapter 4, we provided an approximately-optimal solution to the Witsenhausen coun-
terexample, and proposed a program of using semi-deterministic abstractions for gaining
insights into provably-good strategy-design for more general problems of decentralized con-
trol. While the solutions obtained are not exactly optimal, they bring us closer to the
problem of minimizing costs because they perform within a uniform constant factor of the
minimum possible cost for all problem parameters. While the jump from a stability formu-
lation to an approximate-optimality formulation is qualitative, arriving at the optimal cost
from an approximately-optimal cost would be more of a quantitative improvement. These
results thus also allow us to operate in a cost-framework, which is of much greater practical
interest than the stability framework.

The question of interest in this chapter is: can we now investigate problems of con-
trol under communication constraints from a cost perspective? It was partly the lack of
understanding of signaling1 that forced us into stability formulations. If Witsenhausen’s
counterexample indeed distills some important aspects of signaling in decentralized control,
and if our semi-deterministic abstractions indeed capture the essence of signaling within the
counterexample, we should now be able to extend our proposed program to toy versions
of the problem shown in Fig. 5.1. In this chapter, we use simplistic toy versions to show
that this extension might indeed by possible. For each of these toy problems, we use the
semi-deterministic model to gain insight into strategy design. To show that the model cap-
tures the most significant aspects (the “most significant bits”) of the problem, we prove
asymptotic-approximate-optimality (the counterpart of Step 3 in Chapter 4) of the strategy
obtained from the semi-deterministic model for each of these problems.

We begin with a problem in which an external channel connects two agents who are
jointly trying to force the system state close to zero (Chapter 5.1; see Fig. 5.2). As in other
formulations of control under communication constraints, the first agent, the “observer,”
has perfect observations of the state. The observer wants to communicate the state to the
second agent, the “controller,” through an external channel (the controller has no direct
observations of the state). The controller is allowed to use large control inputs to force the

1The other technical difficulty arises from the difficulty in understanding causality in information theory.
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state close to zero. In a departure from most other models, we use an “enhanced” observer
who can modify the state so that the possibility of implicit communication exists. Unlike
for the counterexample, we assume that the controller still has no direct observations of
the state. The role of control actions in the counterexample is often thought to be that of
signaling (see, for example, [16]). If actions could be used to simply signal the state (very
much akin to explicit communication), then in this problem the observer should not take any
control action at all: there is no possibility of signaling through the plant! Instead, by this
hypothesis, it should merely communicate its observations over the external channel (as well
as possible). Our analysis shows that the controller should take an action: it should modify
the state in order to simplify it, so that it can be estimated better across the channel. In
particular, quantization-based strategies can be shown to be asymptotically approximately-
optimal for this problem.

What if the controller in the problem of Chapter 5.1 is also enhanced by allowing it to
see the state directly? This problem is addressed in Chapter 5.2. Using a semi-deterministic
abstraction of the problem, we arrive at a strategy that essentially uses the plant along with
the external channel for communication, treating it as a problem of parallel channels. The
control input is used to simplify the source in order to communicate it over these parallel
channels. These strategies are connected to the notion of “binning” in information theory,
and they outperform the best known strategies for this problem (obtained in [22]) by a factor
that can diverge to infinity.

In Chapter 5.3 we formulate a complementary problem to that in Chapter 5.2. Again,
the first agent has complete observations of the (vector) state. However, there is no external
channel connecting the agents. Further, the second agent does not observe some state
dimensions at all (and only has partial observations of other state dimensions). The first
agent is thus forced to signal the state in the hidden dimensions using the dimensions that are
observed at the second agent. This problem also highlights the triple role of control actions,
namely control, communication, and improving state estimability. For the Witsenhausen
counterexample, as we noted in Chapter 1.5.4, the roles of communication and improving
state estimability are aligned. But here control actions are forced to balance between all
three roles.

So far, all the problems addressed in this dissertation have time horizon two. However,
almost all realistic control problems have a larger time horizon, where controllers repeatedly
act on the system as it evolves. Does our understanding of signaling extend to such problems?
In Chapter 5.4 we address a problem of decentralized filtering where the time-horizon can
be larger than 2. The first agent has perfect observations of an evolving system state,
but it “actively” participates in helping the second agent estimate the state: it implicitly
communicates the state through the plant. The problem turns out to be an extension of
Witsenhausen’s counterexample to multiple time-steps, and surprisingly, can be analyzed for
a restricted parameter space using the results from the counterexample in a straightforward
manner.

Does our understanding of signaling extend to problems beyond the LQG setup? At
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one level, our problems in of uniform noise in Chapter 4.2 and problems with rate-limited
external channels in Chapter 5.2 are not LQG. But a more stark example comes from agents
in an economic system. In these systems, observations are often not noise limited, but
instead they are limited by the bounded processing ability, or “bounded rationality” (as
it is often called in game-theoretic literature [46]) of agents. The key difference of these
problems is that even though the observations are partial, the agent has some freedom in
choosing what the observations are. For instance, a common model of such agents assumes
that they are finite-state machines [46]. Another recent model of Sims [49], called the
“rational-inattention mode,” assumes that there is a mutual-information constraint between
what a controller observes and the actions that it takes. In Chapter 5.5, we consider a toy
version of the problem of pricing by a seller in order to capture the attention of a rationally-
inattentive consumer. Numerical studies (for a slightly different formulation) show that the
chosen prices should occupy only a finite set of discrete points, rather than the entire real-
line [51, 52]. We prove that for our closely-related problem, a discrete pricing strategy is
indeed asymptotically-approximately optimal.

Finally, in Chapter 5.6, we consider a problem where the observations of all the controllers
are noisy. The goal is to attain a deeper understanding of the goodness of approximately-
optimal solutions. Many problems in the field of control under communication constraints,
and also in this dissertation, assume that the first controller has perfect observations of the
state. This leads to a convenient interpretation of the controllers as encoders and decoders.
Are the suggested solutions robust to observation noise at the first controller? We use the
semi-deterministic model to suggest that modifications of existing strategies should suffice
for these new formulations as well. The claim is substantiated by showing that these mod-
ified strategies are asymptotically approximately-optimal. The problem also helps raise the
question of when approximate-optimality captures the essence of the problem, which we
discuss in Chapter 6.

For simplicity, we only analyze the asymptotic infinite-dimensional versions of these prob-
lems. As is standard in this dissertation, for each problem, we will provide an approximately
optimal solution that attains within a constant factor of the optimal cost for all problem
parameters (except for the problem in Chapter 5.4 where we provide approximately-optimal
strategies for a large subset of the parameter space). It is not a given, however, that the
solutions will be approximately-optimal at finite lengths as well. We make observations in
this regard for each problem.

5.1 A problem of an implicit source with an explicit

channel

In Witsenhausen’s counterexample, the first controller injects power into the system to mod-
ify x1 in order to communicate it to the second controller. We noted that the counterexample
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Figure 5.2: A problem of an implicit source, and an explicit channel: actions are used to modify
the source and communicate the modified source x1 across an explicit channel. On the right, an
information-theoretic interpretation of the problem is shown.

differs from problems of explicit communication in two ways: it has an implicit (modifiable)
source, and an implicit channel, i.e. the plant itself is used as a channel. An additional
difficulty introduced by the implicit channel is that the message and the messenger coincide:
both are x1. In particular, the capacity of the channel changes with the choice of distribution
of x1. What if we isolated the aspects of implicit source and implicit channel? Could we
arrive at a problem that is conceptually simpler than the counterexample? Fig 5.2 shows
one such formulation where the source is implicit but the channel is explicit. From this
perspective, the counterexample may not be simplest problem of implicit communication:
the problem in Fig. 5.2 may even be simpler!

In this problem, the controller C1 uses a control input u1 to modify the state x0. The
controller has an AWGN channel of power constraint Pch and noise Z ∼ N (0, 1) connecting
it to the controller C2. The resulting state x1 needs to be estimated by C2, who only observes
the channel output y = s+ z, where s is the channel input chosen by C1. The goal is again
to minimize the average cost k2E [U2

1 ] + E [X2
2 ].

This problem also brings out one of the oversimplifications in the “observer-controller”
architecture for problems of control under communication constraints: the observer there
cannot modify the state, making the state an explicit source. Our problem here enhances
the observer by allowing it to modify the source, and considers a problem of just one-shot
communication. The problem with a dynamically evolving state can be addressed in a way
similar to the problem in Chapter 5.4.

Can this problem be understood using the program we propose? Let us first formulate a
semi-deterministic abstraction of the problem.

A semi-deterministic abstraction

A semi-deterministic abstraction of the problem is shown in Fig. 5.3. A minor technical
difficulty is that the state is not observed at the decoder, and hence it is unclear where the
decimal point in the binary expansion of the state should be placed. For sake of convenience,



84

b1
b2
b3
b4b5

x1

x0

D x̂1

u1

E

Figure 5.3: A semi-deterministic abstraction of the problem shown in Fig. 5.2.

let us assume that the decimal point is before bit b1. The SNR on the external channel limits
the capacity of this channel. How much power should the encoder use? In the example shown,
only two bits can be communicated over the external channel. The encoder should clearly
communicate the most significant two bits, b1 and b2, on the external channel. The strategy
for control input u1 is also obvious: if enough power is available, the input u1 should be used
to force all least-significant bits to zero (i.e. bits b3 and bits of lower significance). If such
power is not available, a zero-input strategy should be used.

What do these strategies look like on the real-line? If the input u1 has enough power,
it forces the state to a quantization point. The resulting quantization-point is sent over the
(external) channel, and is easily estimated at the decoder.

Asymptotic-approximate-optimality

The following theorem proves that the strategy obtained from the semi-deterministic ab-
straction is indeed approximately-optimal.

Theorem 10. For the problem of implicit messages, but explicit communication, the follow-
ing lower bound holds on costs.

inf
P≥0

k2P +

((√
κsimpler −

√
P
)+
)2

≤ J opt ≤ µ inf
P≥0

((√
κsimpler −

√
P
)+
)2

,

where µ ≤ 4, κsimpler =
σ2
0

Pch+1
, and the upper bound is achieved by quantization-based strate-

gies, complemented by linear strategies. Further, quantization-based strategies require the
optimal power for forcing MMSE to zero.

Proof. A lower bound on the minimum achievable costs by any strategy

Following the triangle-inequality argument used in proof of Theorem 2, a lower bound
on distortion in reproducing Xm

1 is given by
√
E
[
‖Xm

1 − X̂m
1 ‖2
]
≥
√

E
[
‖Xm

0 − X̂m
1 ‖2
]
−
√

E [‖Xm
0 −Xm

1 ‖2]. (5.1)
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We wish to lower bound E
[
‖Xm

1 − X̂m
1 ‖2
]
. The second term in the RHS is smaller than

√
mP . Therefore, it suffices to lower bound the first term on the RHS of (5.1). To that end,

we will interpret X̂m
1 as an estimate for Xm

0 .
The input power constraint Pch limits the channel capacity to Cch = 1

2
log2 (1 + Pch).

This in turn determines the amount of power required for source-simplification. A lower
bound on the mean-square reconstruction error of xm0 is given by

E
[
‖Xm

0 − X̂m
1 ‖2
]
≥ D(Cch)

≥ σ2
0

Pch + 1
.

Thus,

MMSE(P ) ≥
((√

σ2
0

Pch+1
−
√
P

)+
)2

,

and a lower bound on the average cost for the problem is

J min ≥ infP≥0 k
2P +

((√
σ2
0

Pch+1
−
√
P

)+
)2

.

Upper bounds (achieved by quantization and linear strategies)
The upper bounds we use are those of quantization and zero-input. If the quantization
strategy uses a power P , then the resulting modified state Xm

1 can be communicated across
the channel reliably (error probability converging to zero as m → ∞) as long as the rate-
distortion function of the Gaussian source evaluated at the ‘distortion’ P is smaller than the
channel capacity. That is,

1

2
log2

(
σ2

0

P

)
<

1

2
log2 (1 + Pch) .

Thus asymptotically, the required power P to have MMSE = 0 with this quantization-based
strategy is

P =
σ2

0

1 + Pch
. (5.2)

Thus the asymptotic average achievable cost is upper bounded by

J V Q = k2 σ2
0

1 + Pch
. (5.3)
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For zero-input strategy, the cost is upper bounded by how well the encoder can represent
Xm

0 across a channel of capacity Cch. This is asymptotically the distortion-rate function of
a N (0, σ2

0) source evaluated at Cch, which is

J ZI = 0 +D(Cch) =
σ2

0

Pch + 1
.

Thus, we obtain the following upper bound

J min ≤ min
{
k2, 1

} σ2
0

Pch + 1
.

Bounded ratios
In the lower bound, if the optimizing P ∗ < σ2

0

4(Pch+1)
, then the MMSE, and hence the cost

itself, is lower bounded by

Jmin ≥





√

σ2
0

Pch + 1
−
√
P




+


2

>





√

σ2
0

Pch + 1
−
√

σ2
0

4(Pch + 1)




+


2

=
σ2

0

4(Pch + 1)
.

Thus the ratio of upper and lower bounds is smaller than 4.

If P ∗ ≥ σ2
0

4(Pch+1)
, the lower bound is larger than k2P ∗ ≥ σ2

0

4(Pch+1)
. Using the quantization-

upper-bound of k2 σ2
0

1+Pch
from (5.3), the ratio is again no larger than than 4.

We observe that the quantization strategy used in our upper bound is also the optimal
strategy used for a different problem: that of lossy-reconstruction of the source xm0 across a
channel. This is a well-known consequence of Shannon’s result on the optimality of separating
source and channel coding for point-to-point communication. The source is first quantized to
a “source-codeword” xm1 . This codeword is then communicated reliably across the channel.
Since in our upper bound, the quantization strategy recovers xm1 exactly, it is mathematically
equivalent to the separation strategy for source-channel coding. What is different is the goal.

Our goal is to minimize the distortion E
[
‖Xm

1 − X̂m
1 ‖2
]
, whereas the goal in point-to-point

communication is to minimize the distortion E
[
‖Xm

0 − X̂m
0 ‖2
]
.

For the Witsenhausen counterexample, in the asymptotic limit of zero-reconstruction
error, the question is: what is the power that needs to be injected into the system so that
the state can be reconstructed (asymptotically) perfectly across an implicit channel? A
complication is that the power injected into the system can not only affect the “information
content” of the state, but it can also affect the channel capacity by changing the average
power input to the channel, as well as the input distribution. Our problem here gets rid
of this added complication by making removing the dependance between the channel input
and the system state that was forced by the problem structure. A “verification” of this
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simplification is in the results: while simple quantization is optimal for the problem here,
one needs to use dirty-paper coding (which historically came [74] much after quantization [1])
for the Witsenhausen counterexample (as shown in Chapter 4.3.3.

This suggests a natural discrete-alphabet problem: a source Xm
0 can be modified Xm

1

under a distortion constraint E [d(Xm
0 ,X

m
1 )] ≤ P , for a given P . What is the minimum

distortion with which Xm
1 can be communicated across a channel? While the limiting case

of zero-distortion (in reconstructing Xm
1 ) can be solved easily using the separation theorem,

the non-zero distortion case is open.

5.2 Witsenhausen with an external channel: control

across implicit and explicit channels
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Figure 5.4: A problem of implicit and explicit channels. An external channel connects the two
controllers. In a manner similar to the Witsenhausen counterexample, the agents in this problem
also lend themselves to an encoder-decoder interpretation.

Witsenhausen’s counterexample contains an implicit (modifiable) source and an implicit
channel. Our problem in last section contains the aspects of an implicit source and an explicit
(external) channel. In this section, we put the two together: we consider a problem where
the the source is implicit, and both implicit and explicit channels connect the agents.

The block-diagram for the problem is shown in Fig. 5.4. The formulation is the same as
that for Witsenhausen’s counterexample except that an explicit channel of finite rate Rex

connects the two controllers2. The goal is again to minimize the average cost k2E [U2
1 ] +

E [X2
2 ].

A similar formulation — one where the external channel has Gaussian noise — was con-
sidered by Shoarinejad et al. [112] and Martins in [22]. Martins used nonlinear quantization-
based strategies that outperform linear strategies even without using an external channel.
Here, we use a semi-deterministic abstraction of the problem to obtain improved strategies

2A shared finite memory between the controllers can be thought of as a rate-limited channel connecting
the two.
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based on the concept of binning in information theory. These strategies outperform Mar-
tins’s strategies by a factor that can diverge to infinity and are shown to be asymptotically-
approximately optimal. We first use a semi-deterministic abstraction to obtain intuition into
strategy design.

A semi-deterministic abstraction

b1
b2
b3
b4b5

x1

E

x0

D x̂1

u1

Rex= 2

z

(a)

b1
b2
b3
b4

x1

E

x0

D x̂1

u1

Rex= 2

0

z

(b)

Figure 5.5: A semi-deterministic model for the toy problem of implicit and explicit channels. An
external channel (for this example, of capacity Rex = 2 bits) connects the two controllers. (a)
and (b) show different levels of noise (as compared to initial state variance), and therefore require
different strategies.

We characterize the optimal tradeoff between the input power max(u1) and the power in
the reconstruction error max(x2). Let the power of x0, max(x0) be σ2

0. The noise power is
assumed to be 1.

Case 1 : σ2
0 > 1.

This case is shown in Fig. 5.5(a). The bits b1, b2 are communicated noiselessly to the decoder,
so the encoder does not need to communicate them explicitly. The external channel has a
capacity of two bits, so it can be used to communicate two of the bits b3, b4 and b5. Clearly,
we should communicate the more significant bits among those corrupted by noise, i.e., bits
b3 and b4. If the power max(u1) of the control input u1 is large enough, u1 should be used to
modify the least-significant bits (bit b5 in Fig. 5.5). Else it is best not to spend any power on
u1 and use a zero-input strategy. In the example shown, if max(u1) < 0.01, MMSE = 0.01,
else MMSE = 0.

Case 2 : σ2
0 ≤ 1.

In this case (shown in Fig. 5.5(b)), the signal power is smaller than noise power. All the
bits are therefore corrupted by noise, and nothing can be communicated across the implicit
channel. In order for the decoder to be able to decode any bit in the representation of x1, it
must either a) know the bit in advance (for instance, encoder can force the bit to 0), or b)
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be communicated the bit on the external channel. Since the encoder should use minimum
power, it is clear that the most significant bits of the state (bits b1, b2 in Fig. 5.5(b)) should
be communicated on the external channel. The encoder, if it has sufficient power, can then
force the least-significant bits (b3, b4 in Fig. 5.5(b)) of x1 to zero. In the example shown in
Fig. 5.5(b), if P < 0.001, MMSE = 0.001, else MMSE = 0.

What scheme does the semi-deterministic model suggest over the reals?

The inefficiency of linear strategies becomes clear once we look at the semi-deterministic
model in Fig. 5.5(a). A linear strategy would communicate the most significant bits of the
state on the implicit as well as external channels3, thereby communicating the same informa-
tion on two parallel channels. A similar problem, where both the channels are explicit, was
considered by Ho, Kastner, and Wong [16], where they also show that nonlinear strategies
outperform linear strategies.

For our problem, the scheme obtained from the semi-deterministic abstraction (Case
1) also suggests using a nonlinear strategy that communicates different bits on different
channels. The implicit channel is used to communicate the most significant bits. The
external channel is used to communicate bits in the middle — bits b3 and b4 in Fig. 5.5(a)
— which are the most significant bits remaining once the bits above the noise level are taken
out. The lowest order bits are zeroed out by control input (or cause a reconstruction error,
depending on the available power).

How do we port this scheme to the reals? Fig. 5.6 illustrates this. The encoder forces least-
significant bits of the state to zero, thereby truncating the binary expansion, or effectively
quantizing the state into bins. Unlike for the counterexample, however, the implicit channel
by itself does not help us distinguish in which bin the state lies: the channel noise is too
large.

The more significant bits among those that are corrupted by noise (b3, b4 in Fig. 5.5(a))
are communicated via the external channel. These bits can be thought of as representing the
color, i.e. the bin index, of quantization bins, where set of 2Rex consecutive quantization-bins
are labelled with 2Rex colors with a fixed order (with zero, for instance, colored blue). The
bin-index associated with the color of the bin is sent across the external channel. The decoder
finds the quantization point nearest to y2 that has the same bin-index as that received across
the external channel.

The scheme is very similar to the binning scheme used for Wyner-Ziv coding of a Gaus-
sian source with side information [113], which is not surprising because of the similarity
of our problem with the Wyner-Ziv formulation. The implicit channel provides the “side-
information” to the decoder. The external channel is the coding problem. The main differ-
ence from the Wyner-Ziv formulation is that the source here is modifiable.

3A linear strategy simply scales the observations. The least-significant bits of the signal are therefore the
ones mangled by noise.
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bin-index sent on the external channel

Maximum tolerable noise
amplitude for error-free estimation of state

worst-case required 
input amplitude

Figure 5.6: The strategy intuited from the semi-deterministic model naturally yields a binning-
based strategy for reals that leads to a synergistic use of implicit and explicit channels. The external
channel get the decoder the bin-index (in this example, the index is 1). The more significant bits
(coarse bin) are received on the implicit channel.

Gaussian external channel

In order to compare the performance of our strategy with that of Martins [22], we consider the
Gaussian external channel model used in his work. There, the channel is a power constrained
additive Gaussian noise channel. Without loss of generality, we assume that the noise in the
external channel is also of variance 1 (the same as the variance of observation noise Z).

Martins’s strategy suggests using the control action to quantize on the implicit channel,
and communicate the resulting x1 linearly over the external channel. With strategically
chosen problem parameters, our binning-strategy can outperform Martins’s strategy in [22].
The key is to choose the set of problems where the initial state variance σ2

0 and the power
on the external channel, denoted by Pex, are almost equal. In this case, Martins’s strategy
is extremely inefficient since it uses both implicit and explicit channels to communicate the
state when the fidelity across both the channels is almost the same. Fig. 5.7 shows that
fixing the relation Pex = σ2

0, as σ2
0 →∞, the ratio of costs attained by the binning strategy

to that attained by Martins’s strategy diverges to infinity.

Asymptotic version of the problem

We now show that the binning strategy of Chapter 5.2 is approximately-optimal in the limit
of infinitely many dimensions.

Theorem 11. For the extension of Witsenhausen’s counterexample with an external channel
connecting the two controllers,

inf
P≥0

k2P +

((√
κnew −

√
P
)+
)2

≤ J opt ≤ µ inf
P≥0

((√
κnew −

√
P
)+
)2

,
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Figure 5.7: If the SNR on the external channel is made to scale with SNR of the initial state, then
our binning-based strategy outperforms strategy in [22] by a factor that diverges to infinity.

where µ ≤ 64, κnew =
σ2
02−2Rex

P+1
, where P =

(
σ0 +

√
P
)2

and the upper bound is achieved by

binning-based quantization strategies. Numerical evaluation shows that µ < 8.

Proof. Lower bound
As before, we wish to lower bound E [‖Xm

1 −Um
2 ‖]. The second term on the RHS is smaller

than
√
mP . Therefore, it suffices to lower bound the first term on the RHS of (4.5).

With what distortion can xm0 be communicated to the decoder? The capacity of the
parallel channel is the sum of the two capacities Csum = Rex + Cimplicit. The capacity

Cimplicit is upper bounded by 1
2

log2

(
1 + P

)
where P :=

(
σ0 +

√
P
)2

. Using Lemma 1, the

distortion in reconstructing xm0 is lower bounded by

D(Csum) = σ2
02−2Csum = σ2

02−2Rex−2Cimplicit

≥ σ2
02−2Rex

P + 1
= κnew.

Thus the distortion in reconstructing xm1 is lower bounded by
((√

κnew −
√
P
)+
)2

.

This proves the lower bound in Theorem 11.
Upper bound
Quantization: This strategy is used for σ2

0 > 1. Quantize xm0 at rate Csum = Rex+Cimplicit.
Bin the codewords randomly into 2nRex bins, and send the bin index on the external channel.
On the implicit channel, send the codeword closest to the vector xm0 .

The decoder looks at the bin-index on the external channel, and keeps only the codewords
that correspond to the bin index. This subset of the codebook, which now corresponds to
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the set of valid codewords, has rate Cimplicit. The required power P (which is the same as
the distortion introduced in the source xm0 ) is thus given by

1

2
log2

(
σ2

0

P

)
≤ Rex +

1

2
log2

(
1 + σ2

0 − P
)
,

which yields the solution P =
(1+σ2

0)−
√

(1+σ2
0)2−4σ2

02−2Rex

2
which is smaller than 1. Thus,

P =
(1 + σ2

0)−
√

(1 + σ2
0)2 − 4σ2

02−2Rex

2

=
1

2
(1 + σ2

0)

(
1−

√
1− 4

σ2
0

(1 + σ2
0)2

2−2Rex

)
.

Now note that
σ2
0

(1+σ2
0)2

is a decreasing function of σ2
0 for σ2

0 > 1. Thus,
σ2
0

(1+σ2
0)2

< 1
4

for σ2
0 > 1,

and 1− 4
σ2
0

(1+σ2
0)2

2−2Rex > 0. Because 0 < 1− 4
σ2
0

(1+σ2
0)2

2−2Rex < 1,

√
1− 4

σ2
0

(1 + σ2
0)2

2−2Rex ≥ 1− 4
σ2

0

(1 + σ2
0)2

2−2Rex ,

and therefore

P ≤ 1

2
(1 + σ2

0)

(
1−

(
1− 4

σ2
0

(1 + σ2
0)2

2−2Rex

))

=
1

2
(1 + σ2

0)

(
4

σ2
0

(1 + σ2
0)2

2−2Rex

)

=
2σ2

0

1 + σ2
0

2−2Rex ≤ 2× 2−2Rex .

The other strategies that complement this binning strategy are the analogs of zero-forcing
and zero-input.

Analog of the zero-forcing strategy
The state xm0 is quantized using a rate-distortion codebook of 2mRex points. The encoder
sends the bin-index of the nearest quantization-point on the external channel. Instead of
forcing the state all the way to zero, the input is used to force the state to the nearest
quantization point. The required power is given by the distortion σ2

02−2Rex . The decoder
knows exactly which quantization point was used, so the second stage cost is zero. The total
cost is therefore k2σ2

02−2Rex .
Analog of the zero-input strategy
Case 1 : σ2

0 ≤ 4.
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Quantize the space of initial state realizations using a random codebook of rate Rex,
with the codeword elements chosen i.i.d N (0, σ2

0(1− 2−2Rex)). Send the index of the nearest
codeword on the external channel, and ignore the implicit channel. The asymptotic achieved
distortion is given by the distortion-rate function of the Gaussian source σ2

02−2Rex .
Case 2 : Rex ≤ 2. Do not use the external channel. Perform an MMSE operation at the

decoder on the state xm0 . The resulting error is
σ2
0

σ2
0+1

.

Case 3 : σ2
0 > 4, Rex > 2.

Our proofs in this part follow those in [114]. Let Rcode = Rex+ 1
2

log2

(
σ2
0

3

)
−ε. A codebook

of rate Rcode is designed as follows. Each codeword is chosen randomly and uniformly inside a
sphere centered at the origin and of radiusm

√
σ2

0 −D, whereD = σ2
02−2Rcode = 3×2−2(Rex−ε).

This is the attained asymptotic distortion when the codebook is used to represent4 xm0 .
Distribute the 2mRcode points randomly into 2mRex bins that are indexed {1, 2, . . . , 2mRex}.

The encoder chooses the codeword xmcode that is closest to the initial state. It sends the bin-
index (say i) of the codeword across the external channel.

Let zmcode = xm0 −xmcode. The received signal ym2 = xm0 +zm = xmcode +zmcode +zm, which can
be thought of as receiving a noisy version of codeword xmcode with a total noise of variance
D + 1, since zmcode ⊥⊥ zm.

The decoder receives the bin-index i on the external channel. Its goal is to find xmcode. It
looks for a codeword from bin-index i in a sphere of radius D + 1 + ε around ym2 . We now
show that it can find xmcode with probability converging to 1 as m → ∞. A rigorous proof
that MMSE also converges to zero can be obtained along the lines of proof in [54].

To prove that the error probability converges to zero, consider the total number of code-
words that lie in the decoding sphere. This, on average, is bounded by

2mRcode

V ol
(
Sm
(
m
√

(σ2
0−D+ε)

))V ol (Sm (m√D + 1 + ε
))

= 2
m

(
Rex−ε+1

2 log2

(
σ20
3

))

V ol
(
Sm
(
m
√

(σ2
0−D+ε)

))V ol (Sm (m√D + 1 + ε
))

= 2
m

(
Rex−ε+1

2 log2

(
σ20
3

))
(
m
√
σ2
0−D+ε

)m (
m
√
D + 1 + ε

)m

= 2m(Rex−ε)2

(
m
2

log2

(
σ20(D+1+ε)

3(σ20−D+ε)

))
.

Let us pick another codeword in the decoding sphere. Probability that this codeword has
index i is 2−mRex . Using union bound, the probability that there exists another codeword in

4In the limit of infinite block-lengths, average distortion attained by a uniform-distributed random-
codebook and a Gaussian random-codebook of the same variance is the same [114].
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the decoding sphere of index i is bounded by

2−mRex2m(Rex−ε)2

(
m
2

log2

(
σ20(D+1+ε)

3(σ20−D+ε)

))

= 2−mε2

(
m
2

log2

(
σ20(D+1+ε)

3(σ20−D+ε)

))
.

It now suffices to show that the second term converges to zero as m → ∞. Since D =
3 × 2−2(Rex−ε). Since Rex > 2, D < 3

4
× 2ε < 5

6
− ε for small enough ε. Since σ2

0 > 4,

D < 5
6

σ2
0

4
<

σ2
0

4
+ ε,

σ2
0(D + 1 + ε)

3(σ2
0 −D + ε)

<
σ2

0 ×
(

5
6

+ 1
)

3
3σ2

0

4

=
11
6
9
4

=
22

27
< 1.

Thus the cost here is bounded by 3 × 2−2(Rex−ε) which is bounded by 4 × 2−2Rex for small
enough ε.

Bounded ratios for the asymptotic problem

The upper bound is the best of the vector-quantization bound, 2k22−2Rex , zero-forcing
k2σ2

02−2Rex , and zero-input bounds of σ2
02−2Rex and 4× 2−2Rex .

Case 1 : P ∗ > 2−2Rex

16
.

In this case, the lower bound is larger than k2 2−2Rex

16
. Using the upper bound of 4× 2−2Rex ,

the ratio is smaller than 64.
Case 2 : P ∗ ≤ 2−2Rex

16
, σ2

0 ≥ 1.
Since Rex ≥ 0, P ∗ ≤ 1

16
. Thus,

κnew =
σ2

02−2Rex

(σ0 +
√
P ∗)2 + 1

>
1

(
1 + 1

4

)2
+ 1

=
16

41
2−2Rex .

Thus, the lower bound is greater than the MMSE which is larger than
(√

16

41
−
√

1

16

)2

2−2Rex ≈ 0.14× 2−2Rex . (5.4)

Using the upper bound of 4× 2−2Rex , the ratio is smaller than 29.
Case 3 : P ∗ ≤ 2−2Rex

16
, σ2

0 < 1.

If P ∗ > σ2
02−2Rex

25
, using the upper bound of σ2

02−2Rex , the ratio is smaller than 25.

If P ∗ ≤ σ2
02−2Rex

25
< 1

25
,

κnew =
σ2

02−2Rex

(σ0 +
√
P ∗)2 + 1

≥ σ2
02−2Rex

(
1 + 1

5

)2
+ 1

σ2
02−2Rex =

25

61
σ2

02−2Rex .
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Thus, a lower bound on MMSE, and hence also on the total costs, is
(√

25

61
−
√

1

25

)2

σ2
02−2Rex ≈ 0.19σ2

02−2Rex .

Using the upper bound of σ2
02−2Rex , the ratio is smaller than 1

0.19
< 6.

Finite-vector length problem

Are the proposed binning strategies approximately-optimal for finite vector lengths? Follow-
ing the lead from Chapter 4 for the Witsenhausen counterexample, we can consider lattice-
based strategies. In [62] we investigate the problem for the scalar case. Our lower bounds
for the original counterexample extend naturally to this problem. While the ratio of upper
and lower bounds is bounded uniformly for each Rex, it diverges to infinity as Rex → ∞.
We believe that a tightening of the upper bound (i.e. a better achievable strategy) in the
regime of large-k, large-σ0 is required to attain within a constant factor of the optimal cost,
and to not have the constant depend on Rex.

5.3 A problem exhibiting the triple role of control ac-

tions
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Figure 5.8: A problem that brings out the triple role of control actions in decentralized control.
The control actions are used to reduce the immediate control costs, communicate a message, and
improve state estimability at the second controller.

As discussed in Chapter 1.5.4, control actions in decentralized systems can play a triple
role: control, communication and improving estimability5. In Witsenhausen’s counterexam-

5As noted earlier, in adaptive control, control actions have a fourth role to play — that of enabling
the learning of system parameters [44]. This was explored first by Feldbaum in a series of papers starting
with [44]. Similar issues arise there: certainty-equivalence-based strategies are also suboptimal for problems
where control actions have to learn as well as control [44].
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ple, the two roles of communication and improving state estimability are aligned: the state
x1 is both the message and the messenger, so improving estimability of x1 also communicates
the message, which is also x1. In more general problems, such an alignment need not be
present. Are such problems much harder than the counterexample? After all, the dual role
in the counterexample made the problem much harder than the problems where all three
roles are aligned.

Our toy problem to test this question is a simple extension on the vector Witsenhausen
counterexample. Not only does the first controller want to improve the state estimability at
the second controller (thus keeping the weighted sum of power and MMSE costs low), it also
wants to communicate an independent message at rate R.

A semi-deterministic model

b1
b2
b3
b4b5

x1

E

x0

D

zu1

�x1

M

M̂

bm1

�.bm1

bm2

�.bm2

Figure 5.9: A semi-deterministic model for the problem shown in Fig. 5.8. The encoder wants to
communicate a two-bit message bm1, bm2 to the decoder, as well as minimize the system costs.

Based on the semi-deterministic model for the counterexample, the optimal strategy for
the semi-deterministic model shown in Fig. 5.9 is obvious. In order to communicate one bit
across the channel, the encoder must encode this information in bits that are not affected
by noise. In the particular example of Fig. 5.9, a two-bit message is encoded in bit b2, b3.
At the same time, because the most significant bit to be modified is already determined by
the number of message bits, the least-significant bits b4 and b5 can be forced to zero for free
(This is an artifact of our choice of cost function in Chapter 4.1. The chosen power function
depends only on the most-significant bit that is modified.).

What strategies does this semi-deterministic version suggest for the actual problem?
These strategies, shown in Fig. 5.10, are conceptually dual (see Fig. 5.6 for comparison) to
the strategies for the problem in last section of signaling the implicit source x1 across an
implicit and explicit channels. This is not surprising: the problem in Chapter 5.2 is one
where two channels are used to communicate one (implicit) source. In this case, a single
channel is being to communicate two sources.

Indeed, the following theorem shows that the attained strategies are approximately op-
timal for all rates.
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Figure 5.10: Strategies for the problem of triple role of control shown in Fig. 5.8. Comparison
with Fig. 5.6 reveals an interesting duality of this problem with that of Chapter 5.2.

Theorem 12. For the problem exhibiting triple role of control,

inf
P≥22R−1

k2P +

((√
κtriple −

√
P
)+
)2

≤ J opt

≤ µ inf
P≥22R−1

k2P +

((√
κtriple −

√
P
)+
)2

,

where µ ≤ 21, and κtriple =
σ2
022R

σ2
0+P+2σ0

√
P+1

. The upper bound is achieved by quantization-based

strategies, complemented by linear strategies.

Upper bound
DPC with α = 1.
In [74], the DPC parameter is chosen to be α = αmmse = P

P+1
to achieve the maximum

rate of 1
2

log2 (1 + P ). Since the cost here is not merely that of input power (an additional
MMSE term is also present), same α may no longer be the optimizing one. For general α,
as shown in [74], the achievable rate is

R(α) =
1

2
log2

(
P (P + σ2

0 + 1)

Pσ2
0(1− α)2 + P + α2σ2

0

)
. (5.5)

With α = 1 the decoder decodes Xm
1 perfectly (in the limit m → ∞), thereby attaining

asymptotically zero MMSE. The attained rate is

R(1) =
1

2
log2

(
P (P + σ2

0 + 1)

P + σ2
0

)
=

1

2
log2

(
P

(
1 +

1

P + σ2
0

))
≥ 1

2
log2 (P ) . (5.6)

Thus, to attain a rate R, the cost is upper bounded by the cost attained by DPC(1) strategy,
yielding

J min ≤ k222R + 0 = k222R. (5.7)

DPC with α = αCosta = P
P+1

.
For this choice of α, the achievable rate is well known to equal the channel capacity for
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interference-free version of the channel [74]

R(αCosta) =
1

2
log2 (1 + P ) , (5.8)

and the required power is, therefore, P = 22R − 1. The expression for MMSE-error in
estimation of Xm

1 = Xm
0 +Um

1 can be unwieldy because it is estimated using Vm = Um
1 +αXm

0

as well as Ym
2 = Xm

1 + Zm. For analytical simplicity, we use two upper bounds. Instead of
estimating Xm

1 using both Ym
2 and Vm, we use just Ym

2 , or just Vm. In the first case, using

just Ym
2 , the MMSE error is

σ2
0+P

σ2
0+P+1

. In the second case, assuming asymptotically perfect

decoding, the MMSE error is

MMSE = E
[
X2

1

]
− (E [X1V ])2

E [V 2]
= P + σ2

0 −
(P + ασ2

0)2

P + α2σ2
0

=
P 2 + α2σ4

0 + Pσ2
0(1 + α2)− P 2 − α2σ4

0 − 2αPσ2
0

P + α2σ2
0

=
Pσ2

0(1− α)2

P + α2σ2
0

(α= P
P+1)
=

Pσ2
0

(
1

P+1

)2

P + P 2

(P+1)2
σ2

0

=
σ2

0

(P + 1)2 + Pσ2
0

(P=22R−1)
=

σ2
0

24R + (22R − 1)σ2
0

. (5.9)

Straight coding
In this strategy, we first force the initial state to zero, and then add a codeword to commu-
nicate across the channel. Since the message (and hence the codeword) is independent of
the initial state Xm

0 , the total power required is the sum of the powers of the codeword and
the initial state. Using Costa’s result [74], the required codebook power is 22R− 1. Thus the
required total power is P = σ2

0 + 22R − 1, and the required cost is

J min ≤ k2(σ2
0 + 22R − 1). (5.10)

Lower bounds on MMSE(P,R)

Theorem 13. For the problem stated above, for communicating reliably at rate R with input
power P , the asymptotic average mean-square error in recovering Xm

1 is lower bounded as
follows. For P ≥ 22R − 1,

MMSE(P,R) ≥

inf
σX0,U1

sup
γ>0

1

γ2



(√

σ2
022R

1 + σ2
0 + P + 2σX0,U1

−
√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1

)+



2

,
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where max
{
−σ0

√
P ,

22R−1−P−σ2
0

2

}
≤ σX0,U1 ≤ σ0

√
P . For P < 22R − 1, reliable communica-

tion at rate R is not possible. Further, in the asymptotic limit of zero MMSE, the strategy
that attains the optimal tradeoff between power P and rate R is a dirty-paper coding-based
strategy.

Proof. See Appendix A.10.

For analytical ease in proving approximate optimality, we simplify the above bound.
Choosing γ = 1 in (5.11) we can obtain the following (loosened) bound.

MMSE(P,R) ≥ inf
|σX0,U1

|≤σ0
√
P



(√

σ2
022R

σ2
0 + P + 2σX0,U1 + 1

−
√
P

)+



2

, (5.11)

which is minimized for σX0,U1 = σ0

√
P , yielding

MMSE(P,R) ≥



(√

σ2
022R

σ2
0 + P + 2σ0

√
P + 1

−
√
P

)+



2

, (5.12)

Thus a lower bound on the total cost is given by

J min ≥ inf
P≥22R−1

k2P +



(√

σ2
022R

σ2
0 + P + 2σ0

√
P + 1

−
√
P

)+



2

. (5.13)

Proof that the ratio of upper and lower bounds is bounded

Case 1 : R ≥ 1
4
.

We use the DPC(α = 1) upper bound from (5.7) of 22Rk2. The lower bound is clearly larger
than k2(22R − 1), since P ≥ 22R − 1 in (5.13). The ratio of upper and lower bounds is
therefore smaller than

k222R

k2(22R − 1)

R≤ 1
4≤
√

2√
2− 1

≈ 3.4 < 4.

Case 2 : P ∗ ≥ 22R

8
√

2
.

Again, we use the DPC(α = 1) upper bound of 22Rk2. The lower bound is larger than

k2P ∗ ≥ k2 22R

8
√

2
. Thus, the ratio is smaller than 8

√
2 ≈ 11.3 < 12.
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Case 3 : R < 1
4
, P ∗ < 22R

8
√

2
, σ2

0 > 1.
For the lower bound, note that

κtriple =
σ2

022R

(σ0 +
√
P ∗)2 + 1

σ2
0≥1

≥ 22R

(1 +
√
P ∗)2 + 1

P ∗< 22R
8
√
2

≥ 22R

(1 + 2R

2
)2 + 1

R< 1
4≥

√
2

(
1 +

√
1
8

)2

+ 1

≥ 0.49.

Thus,

J min ≥ k2(22R − 1) +MMSE ≥ k2(22R − 1) +

((√
κtriple −

√
P ∗
)+
)2

≥ k2(22R − 1) +

(
0.7−

√
1

8

)2

≥ k2(22R − 1) + 0.12.

Upper bound of DPC(α = αCosta) is smaller than k2(22R − 1) + 1. Thus the ratio is smaller
than 1

0.12
< 9.

Case 4 : R < 1
4
, P ∗ < 22R

8
√

2
, σ2

0 ≤ 1.

Case 4a: If σ2
0 < 20(22R − 1), using the straight coding upper bound, the cost is smaller

than

J min ≤ k2(σ2
0 + 22R − 1) ≤ 21k2(22R − 1).

Since the lower bound is larger than k2(22R − 1), the ratio is smaller than 21.
Case 4b: If 20(22R − 1) < σ0 ≤ 1, then the straight coding upper bound yields

J min ≤ k2(σ2
0 + 22R − 1) ≤ 21

20
k2σ2

0. (5.14)

For the lower bound, if P ∗ > σ2
0

20
, the ratio is smaller than 21.

If P ∗ ≤ σ2
0

20
, P ∗ ≤ 1

20
. Thus,

κtriple =
σ2

022R

(
σ0 +

√
P
)2

+ 1

R≥0

≥ σ2
0(

σ0 +
√
P
)2

+ 1

σ0≤1,P ∗≤ 1
20≥ σ2

0

1.052 + 1
≥ σ2

0

3
.
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Thus the lower bound is larger than

J min ≥ k2(22R − 1) +

((
σ2

0

3
− σ2

0

20

)+
)2

≥ k2(22R − 1) + 0.1251σ2
0.

Upper bound is based on DPC(α = αCosta). Using (5.9), the upper bound is smaller than

J min ≤ k2(22R − 1) +
σ2

0

24R + (22R − 1)σ2
0

R≥0

≤ k2(22R − 1) + σ2
0.

The ratio is smaller6 than 1
0.1251

< 8.

5.4 Introducing feedback: dynamic version of the Wit-

senhausen counterexample

In this section, we extend the results for the counterexample to a dynamic setting. The
setting is as follows. Fig. 5.11(a) shows a system that is perturbed at each time instant by
an independent perturbation νmt . The resulting state evolution is

xmt+1 = xmt + νmt . (5.15)

The state is observed noisily by a controller C2 (suggestively named because we will soon
modify the problem to have another controller C1). The problem is one of simple filtering:
the controller C2 wants to minimize the mean-square error in estimation of xt. The optimal
strategy is well known to be linear, and can be obtained using simple Kalman filtering [64].

A modified “active” version of the problem is shown in Fig. 5.11(b). Here, a controller
C1 has the ability to modify the state xt before it is (partially) observed by C2. The state
evolution is, therefore,

xmt+1 = x′
m
t + νmt , x′

m
t = xmt + umt . (5.16)

As in the counterexample, the observations of C1 are assumed to be perfect, and the
the observations of C2 are given by ymt = x′mt + zmt . The time-horizon is assumed to be n.
Extending the cost function of the counterexample to larger time-horizon, the cost here is
a weighted sum of the average power of control input umt and the mean-square estimation
error over the entire time, i.e.

J =
n∑

t=1

(
k2 1

m
E
[
‖Um

t ‖2
]

+
1

m
E
[
‖X′mt − X̂′

m

t ‖2
])

. (5.17)

6Figures illustrating this bounded ratio can be found in [55,115].
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Figure 5.11: (a) A simplistic filtering problem. (b) The problem of filtering with a helper, which
is a dynamic version of Witsenhausen’s counterexample (unrolled to multiple time-steps).
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The LQG version that we address is a special case where Xm
0 and νmt are iid distributed

N (0, σ2
0I), and the observation noise zmt ∼ N (0, I).

A strategy and achievable costs: For k2 < 1, σ2
0 > 1, we use the Vector Quantization

strategy developed for the counterexample. At time 0, the first controller quantizes the
state xm0 , and the second controller estimates the state to be the nearest quantization point.
The error probability at this time is close to zero as long as the input power at the first
controller, P > 1. For any t > 0, the controller shifts the origin to x′mt−1, and uses the same
quantization-codebook in these shifted coordinates to quantize x′mt . As long as C2 estimates
the state perfectly, the asymptotic total cost using this strategy is nk2 (at each time-step,
the cost is k2P + 0, where P can be made as close to 1 as desired). Thus J opt ≤ nk2.

A lower bound on the minimum possible cost: The lower bound simulates the
shifting of axes in the upper bound by giving C2 the side-information of x′mt−1 at time t. This
new problem with side-information effectively decouples the state-evolution across different
time-steps. Therefore, a lower bound to this problem is simply the lower bound for the
counterexample (Theorem 2) multiplied by the time-horizon n:

J opt ≥ n

(
inf
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2
)
. (5.18)

Bounded ratios: We focus on the region k2 ≤ 1, σ2
0 > 1. In this region, both the

upper bound and the lower bound for the problem are simply the time-horizon n multiplied
with the corresponding bounds for the Witsenhausen counterexample in Theorem 2. The
ratio is again bounded by a factor of 4.45 for this quadrant in the (k, σ) parameter space for
all time-horizons n. However, we do not have a result for approximate optimality over the
entire space because the ratio of the costs attained by linear strategies and the lower bound
in (5.18) diverges to infinity as n→∞ (even though it is bounded for each n).

5.5 A problem of rational inattention

The problem is motivated by signaling in economics literature. Here, control actions are
often the only way of speaking because external channels are either unavailable, or signals
sent across these channels are not trustworthy7.

A model proposed by Sims [49] allows for an arbitrary function to map observations of
various economic agents to inputs. In order to bound this function with an information-
processing constraint, this rational-inattention model assumes that the mutual information
between the observation and the control input is bounded by a constant I. The justification
is that the information-processing ability of each agent is limited, even though the agent has
a choice in how to allocate that ability.

7A case when a jammer acts on the signals on an external channels has been addressed recently in [116].
It will be interesting to see if an implicit channel can be used to counter the jammer.
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Computer calculations of Matejka [51, 52] provide evidence that for a toy model of a
seller and a rationally-inattentive consumer, the numerically-optimal pricing strategies that
“catch the consumer’s attention” are discrete. A discretization of prices makes it easy for
the consumer (who has a limited attention) to decide quickly on the price-changes, thereby
stimulating her to consume more. The discreteness here arises out of reasons that are quite
similar to our understanding of using actions for source-simplification: a simplified source is
more easily estimated. Can we obtain theoretical guarantees on the goodness of Matejka’s
numerically-optimal strategies?

In order to obtain such guarantees, we simplify focus on Matejka’s formulation in [52],
where he addresses a problem of information-constrained tracking. The goal is to understand
how well a pricing strategy can help the consumer track the prices. Here we address a version
of the problem with quadratic cost function8.

++ +
-

x1 x2x0

u1
C1 C2 u2

I(X1; U2) ≤ I

min
{
k2E

[
u2

w

]
+ E

[
x2

2

]}
x2

2u2
1

Figure 5.12: A problem of rational inattention. The second controller has perfect observations of
the state X1, but is limited by an information-processing constraint I(X1;U2) ≤ I.

The block-diagram (shown in Fig. 5.12) is the same as that for Witsenhausen’s counterex-
ample except that the second controller no longer has noise in its observations. Instead, it
is limited by the following mutual-information constraint

I(X1;U2) ≤ I. (5.19)

Theorem 14. For the problem of rational-inattention,

inf
P≥0

k2P +

((√
κRI −

√
P
)+
)2

≤ J opt ≤ µ inf
P≥0

((√
κRI −

√
P
)+
)2

,

where µ ≤ 4, κRI = σ2
02−2I , and the upper bound is achieved by quantization-based strategies,

complemented by linear strategies.

8The translation from utility function of [52] to cost function here is often simple: the negative of the
utility can be thought of as the cost incurred.
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Proof. A lower bound

Following the lines of proof of Theorem 2,

E
[(
X0 − X̂1

)2
]
≥ D(I) = σ2

02−2I .

Using the triangle-inequality argument (Lemma 1), this immediately yields the following
lower bound on the total cost

J ≥ inf
P
k2P +

((√
σ2

02−2I −
√
P

)+
)2

. (5.20)

We now provide two upper bounds. Remember that under the mutual-information constraint
of (5.19), we are free to choose the mapping from X1 → Y2 as we like. In either case, we
will choose Y2 = X1 + Z for additive Gaussian noise Z ∼ N (0, N) of some variance N and
independent of X1.

Zero-input upper bound

For zero-input, X1 = X0. The mutual information I(X1;Y2) is therefore given by

I(X1;Y2) = I(X0;X0 + Z) =
1

2
log2

(
1 +

σ2
0

N

)
≤ I. (5.21)

Thus we choose N =
σ2
0

22I−1
. Correspondingly, the MMSE is given by

MMSE =
σ2

0
σ2
0

22I−1

σ2
0 +

σ2
0

22I−1

=
σ2

0

22I
. (5.22)

Thus we get the following upper bound on the costs

J RI ≤
σ2

0

22I
. (5.23)

Quantization upper bound

Using quantization strategy with power P , and choosing a noise variance of N , the mutual
information condition becomes

1

2
log2

(
1 +

σ2
0 − P
N

)
≤ I. (5.24)
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We know from vector-quantization results for the vector Witsenhausen counterexample that
any choice of P > N suffices in the asymptotic limit of large dimensions. Thus, in the limit
m→∞, the required condition is

1

2
log2

(
1 +

σ2
0 −N
N

)
< I

i.e.
σ2

0

N
< 22I

⇒ N > σ2
02−2I .

With this condition satisfied, the second stage costs can be made to converge to zero as
m→∞. Thus, an achievable cost, in the limit m→∞ is

J RI ≤ k2σ2
02−2I . (5.25)

Proof of approximate-optimality

Case 1 : If P ∗ ≥ σ2
02−2I

4
.

In this case, the lower bound is larger than k2 σ
2
02−2I

4
. Using the quantization upper bound,

the upper bound is smaller than k2σ2
02−2I . The ratio of upper and lower bounds is therefore

smaller than 4.
Case 2 : If P ∗ < σ2

02−2I

4
.

In this case, in the lower bound, MMSE >
σ2
02−2I

4
. The zero-input upper bound is smaller

than σ2
02−2I . Thus the ratio is again smaller than 4.

5.6 A noisy version of Witsenhausen’s counterexam-

ple, and viewing the counterexample as a corner

case

In Chapter 3.5, we argued that the counterexample is an information-theoretic problem where
the controllers can be interpreted as encoders and decoders. Thus, in hindsight, it is not
surprising that information-theoretic techniques provide insights, and even approximately
optimal solutions to the problem. This leads to a natural question: is the counterexample
too idealistic and therefore impractical? After all, the counterexample is a corner case (see
Fig. 5.13) where there is no noise in observations at the first controller, much like an encoder,
and no cost on the input of the second, much like a decoder. The resemblance is too obvious
for comfort: a priori, it is unclear whether this understanding extends to more complicated
problems when these controllers are less caricatured.
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Noise on states, inputs [Grover, Sahai. ISIT '10]

Costs on states, inputs [Grover, Park, Sahai. Allerton '09]

Non-Gaussian stochastic/adversarial noise
 [Grover, Sahai. CDC '10]

multi-stage [This thesis], network extensions [Ranade, Sahai. unpublished '10]

Witsenhausen's
counterexample

Problems of implicit and explicit communication
 [Grover, Sahai Allerton'10, This thesis]

 
[Chapter 3, this thesis,
Grover, Sahai. CDC '08, IJSCC '10
Grover, Sahai, Park, WiOpt ConComm '09]

triple role of control
[Grover, Wagner, Sahai ITW'10, this thesis]

Figure 5.13: Witsenhausen’s counterexample as a corner case in an investigation of implicit com-
munication. Is the problem too idealistic for it to be useful?

In this section, we shall demonstrate that the understanding and the techniques built
for Witsenhausen’s counterexample also extend to problems where the encoder/decoder in-
terpretation of the controllers is not strictly valid. We will consider a noisy version of the
counterexample where there are noises not only in the observation of the first controller, but
also in the state evolution and inputs of the controller. We shall see that approximately
optimal solutions can be derived for this problem as well, even though the first controller
is no longer quite like an encoder. Later we will see that the approximate-solution to this
problem also addresses a version of the counterexample with noises in all observations, state-
evolutions, and inputs.

A complementary problem is one in which costs are imposed on the input of the second
controller, as well as all the states. This costlier counterexample does not naturally allow
for the second controller to be interpreted as a decoder. Approximately optimal solutions
to the problem are not included in this dissertation to keep it relatively focused, and can be
found in [59].
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+
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+

Figure 5.14: A noisy version of Witsenhausen’s counterexample where there is noise in the obser-
vation of the first controller as well.
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Equivalence of the two problems

In this section we show that the problem of Fig. 5.14 is equivalent to a problem with noise
in evolution of state Xm

1 , but noiseless observation at the encoder, shown in Fig. 5.15(c).

++E D =

x0

u1 x1

z2 ∼ N (0, 1)

u2 �x1

+

z1 ∼ N (0, N1)

(a)
++E D

=u1 x1

z2 ∼ N (0, 1)

u2 �x1

+�x0

�z1 ∼ N (0, �N1)

(b)
++E D

=u1 x1

z2 ∼ N (0, 1)

u2 �x1+

�x0

(c)

�z1

�x1

Figure 5.15: These figures show how the signal cancelation problem shown in Fig. 5.14 is equivalent
to a problem with noise in the evolution of state Xm

1 , instead of noise in the observation at the

encoder. From (c), it is clear that the encoder cannot help much in the reconstruction of Z̃m1 since

its observations are independent of Z̃m1 .

In Fig. 5.14, the encoder takes an action based on its observation of Xm
0 + Zm

1 . Define

X̃m
0 := α(Xm

0 +Zm
1 ), the MMSE estimate of Xm

0 given Xm
0 +Zm

1 , where α =
σ2
0

σ2
0+N1

. Since X̃m
0

can be obtained from Xm
0 +Zm

1 with an invertible mapping, we can equivalently assume that

the encoder observes X̃m
0 . The initial state can be written as Xm

0 = X̃m
0 + Z̃m

1 , where X̃m
0 ⊥⊥

Z̃m
1 (orthogonality principle), and Z̃m

1 ∼ N
(

0,
σ2
0N1

σ2
0+N1

)
. The resulting block diagram (which

represents an equivalent problem) is shown in Fig. 5.15(b). By commutativity of addition,

we get the equivalent problem with noise Z̃m
1 in state evolution, as shown in Fig. 5.15(c).

An intermediate state X̃m
1 = X̃m

0 + Um
1 is also introduced.

In summary, the equivalent noisy-state evolution problem is the following: the initial

state X̃m
0 ∼ N (0, σ̃2

0I) is observed noiselessly by the encoder E , where σ̃2
0 =

σ4
0

σ2
0+N1

. The

encoder modifies the state using an input Um
1 , resulting in the system state Xm

1 . State

evolution noise Z̃m
1 ∼ N (0, Ñ1I) is added to the state X̃m

1 resulting in state Xm
1 . Here,

Ñ1 =
σ2
0N1

σ2
0+N1

. The objective, as before, is to minimize

J =
1

m
k2E

[
‖Um

1 ‖2
]

+
1

m
E
[
‖Xm

1 − X̂m
1 ‖2
]
, (5.26)

where X̂m
1 is the estimate of Xm

1 at the decoder based on noisy observations of Xm
1 .

A lower bound on the average costs

A coarse lower bound on the average cost is given in the following.
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Theorem 15. For the noisy version of Witsenhausen’s counterexample,

J opt ≥ max

{
σ2

0N1

σ2
0N1 + σ2

0 +N1

, inf
P≥0

k2P +

((√
κ̃(P )−

√
P
)+
)2}

,

where κ̃(P ) =
σ̃2
0

(σ̃0+
√
P )2+1

, and σ̃2
0 =

σ4
0

σ2
0+N1

.

Proof. Consider the equivalent problem of noise in state evolution of Chapter 5.6. A lower
bound can be derived as follows.

If the decoder is given side information X̃m
0 , it can simulate the encoder, reconstructing

Um
1 perfectly. Thus the decoder only has to estimate Z̃m

1 , which is independent of X̃m
0 . The

resulting MMSE is therefore given by Ñ1

Ñ1+1
=

σ2
0N1

σ2
0N1+σ2

0+N1
, yielding the first term in the lower

bound.
Alternatively, if side-information Z̃m

1 is given to the decoder, the problem reduces to the

vector Witsenhausen counterexample, where the encoder observes the source X̃m
0 noiselessly

and there is no noise Z̃m
1 in state evolution. A lower bound can now be obtained from [54,

Theorem 1] (using σ̃0 in place of σ0), yielding the second term in the lower bound.

An upper bound on the average costs

Theorem 16. For the noisy extension of Witsenhausen’s counterexample an upper bound
on the optimal costs is

J opt ≤ min
{
J Z̃I ,J Z̃F ,J Ṽ Q

}
,

where J Z̃I = σ2

σ2+1
, J Z̃F = k2 σ4

σ2+N1
+ σ2N1

σ2+N1+σ2N1
, and J Ṽ Q ≤ k2(Ñ1 + 1) + Ñ1.

Proof. As usual, we provide three strategies. The strategies are defined on the equivalent
problem of noise in the state evolution (of Chapter 5.6).

The first strategy is the Zero-Input (Z̃I) strategy, where the input Um
1 = 0. The decoder

merely estimates X̃m
0 + Z̃m

1 = Xm
0 from the noisy observation Xm

0 +Zm
2 . Since Zm

2 ∼ N (0, I),
the LLSE error is given by

MMSE =
σ2

0

σ2
0 + 1

, (5.27)

which is also the attained cost since P = 0.
Our second strategy is a Zero-Forcing (Z̃F ) strategy, applied to the equivalent noisy state-

evolution problem. The first input forces the state X̃m
0 to zero, requiring an average power

of P = σ̃0
2 =

σ4
0

σ2
0+N1

. The decoder merely performs an LLSE estimation for Z̃m
1 ∼ N (0, Ñ1).

The MMSE error is therefore given by

MMSEZ̃F =
Ñ1

Ñ1 + 1
=

σ2
0N1

σ2
0 +N1 + σ2

0N1

. (5.28)
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The cost for Z̃F is, therefore, J Z̃F = k2 σ4
0

σ2
0+N1

+
σ2
0N1

σ2
0+N1+σ2

0N1
.

The third strategy is the Vector Quantization (Ṽ Q) strategy, but with a difference. The

encoder quantizes assuming the two noises (Z̃m
1 and Zm

2 ) add up in the observation at the

decoder. The decoder thus has an asymptotically error-free estimate of X̃m
1 as long as

P > Ñ1 + 1.
the decoder’s input. The resulting MMSE error is the variance of noise Z̃m

1 , which is given

by Ñ1 =
σ2
0N1

σ2
0+N1

. The total cost for this strategy is therefore given by J Ṽ Q = k2(Ñ1 +1)+Ñ1.

The upper bound can now be obtained by using the best of Z̃I, Z̃F , and Ṽ Q strategies
depending on the values of k and σ.

Proof of approximate asymptotic optimality

Theorem 17 (Approximate asymptotic optimality). For the noisy version of vector Wit-
senhausen counterexample (with noise in the observations of the two controllers), in the limit
of m→∞,

max

{
σ2
0N1

σ2
0N1+σ2

0+N1
, infP≥0 k

2P +

((√
κ̃(P )−

√
P
)+
)2}

≤ J opt ≤ γmax

{
σ2
0N1

σ2
0N1+σ2

0+N1
, infP≥0 k

2P +

((√
κ̃(P )−

√
P
)+
)2}

,

where γ ≤ 41.

Proof. See Appendix B.
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Chapter 6

Discussions and concluding remarks

Constant-factor approximate-optimality: what is it good

for?

In this dissertation, we investigate an intersection of control and communication from an
optimization perspective. Our goal is to obtain provable guarantees on the gap from opti-
mality of approximately-optimal strategies. Such provable guarantees have been explored
previously in each of the fields that this dissertation has connections with. Theoretical com-
puter science has such guarantees on approximation algorithms [40] for many NP-complete
problems. Information theory has explored the concept of degrees of freedom of a wireless
channel [114] as a form of asymptotic approximate optimality, and more recently, the de-
terministic approach [37, 39] has helped solve many problems to within a constant number
of bits [29, 38, 39]. At high SNR, a constant additive gap in capacity is equivalent to a
multiplicative gap in required power to achieve a specified rate. Thus the constant differ-
ence approximation results in information theory can also be interpreted as constant factor
results in this high SNR regime. Even in decentralized control, Cogill and Lall [117, 118]
provide provably approximately-optimal solutions that also use a constant-factor optimality
criterion.

What good is approximate-optimality? The coarsest answer to the question is that in the
absence of an optimal solution, it is the next best alternative. While correct, this answer does
not help us understand which approximations are good, and which are not. For instance,
why do we need provable guarantees on approximate-optimality of solutions? The results of
Baglietto, Parisini and Zoppoli [25], Lee, Lau and Ho [26], Lee, Marden and Shamma [27],
and Karlsson et al. [73] provide us with solutions that are believed to be extremely close to
optimal for the Witsenhausen counterexample. In this particular case, provable guarantees
provide us the satisfaction that we have not missed any significantly better strategies.

But there is another more powerful motivation to obtain such guarantees: approaches
based on approximate optimality often capture the most significant aspects of the problem.
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The second-order details may often be left out. In practice, as long as the approximations
are not too loose, the second-order details may be of little or no significance. Mathematical
models themselves are inaccurate, and one needs to question if the second-order details
indeed capture an aspect of the core problem, or merely a detail of the model. For instance,
capturing the implicit communication in the counterexample helps design strategies that
work for the original Gaussian problem as well as a bounded noise version (in Chapter 4.2),
and even an adversarial version where the the bounded noise has no distribution on it
(see [61]). It is the same quantization strategies that attain within a constant factor, a
stronger justification for the goodness of these strategies even in the presence of modeling
errors.

Does constant-factor optimality capture the most significant aspects of the problem when
the solutions are not uniform over the entire parameter space, but only a subset of it? For
instance, consider the noisy version of Witsenhausen’s counterexample (Chapter 5.6), where
the first controller has noise of variance N1 in its observations. This variance is an additional
problem parameter. Restricting our space to N1 > ε (for any ε > 0), it can be shown
that even linear strategies attain within a constant factor of the optimal (uniform over all
k, σ0), with a factor that depends on ε. The Mitter and Sahai’s result [18] for Witsenhausen
counterexample tells us that this factor must diverge to infinity as ε→ 0. But approximate-
optimality seems to suggest that linear strategies are good for N1 > ε! It is clear therefore
that such restrictions of parameter-space can yield misleading results. Does this mean that
we must have a solution that is uniformly approximately-optimal over the entire space? We
go back to our problem in Chapter 5.6: notice that for N1 > 1, our results in Appendix B
show that linear strategies attain within a reasonably small factor of 2 of the optimal. Indeed,
for N1 > 1, this result captures the most significant aspect of the problem: when the noise
variance of the first controller is larger than that of the second, there is little incentive to
signal. The key to obtaining insightful results within such restrictions is therefore to ensure
that the constant factor is reasonably small.

Where do we go from here?

The intersection of control and communication is an area fertile in intellectually stimulat-
ing and practically relevant problems. In this dissertation, we explored the possibility of
communication using control actions and provided a program that can address quite a few
problems of control of a system under communication constraints. The potential success of
the program is suggested by obtaining approximately-optimal solutions to some toy prob-
lems in decentralized control, including the celebrated Witsenhausen counterexample. The
goal of addressing these toy problems is to develop an understanding of the multiple roles of
control actions: control, signaling, source-simplification, and improving state estimability in
various static and dynamic settings.

A comprehensive theory of decentralized control will need to have a good understanding
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of many other issues, some of which we outline here. It is well known [44] that in adaptive
control, control actions can play another role: that of helping us learn the system. We
therefore need toy problems to help understand role of learning in conjunction these other
roles. While a finite-memory controller can be thought of as different controllers connected
using rate-limited channels, modeling finite-computational ability of controllers is probably
harder, but needs to be understood, possibly in restricted settings.

Some other issues are being considered concurrently in the literature. In this dissertation,
one of our main interests is to understand the following question: how do we use communi-
cation to facilitate coordination among decentralized agents? Here, communication is not an
end in itself, but a means to an end of creating coordination. Our focus is on the possibility
of implicit communication: where the source can be simplified before transmission, and the
plant itself can be used as a channel. Work of Cuff [119] investigates the same question from
a different perspective that measures coordination by the dependance that can be created
at different agents. He characterizes the joint distributions that can be achieved given the
rate-limitations on the external channels connecting the control agents. This dependance
can be used, for instance, to generate mixed strategies in cooperative games.

In this dissertation, we assume that the sensor noise at each controller is fixed (except
for the formulation in Chapter 5.5). What happens when sensing itself is expensive, and
improved sensing comes at a higher cost? Weissman et al. [120–122] consider the cost of
sensing and its tradeoffs with rate of communication. An improved sensing can increase
the channel capacity, but comes at an improved cost. We need to understand this issue in
a control setting so that one can understand how to divide resources among sensing and
communication in order to minimize control costs.

Just as sensing the output can cost, computation of the control input can also be ex-
pensive. For instance, for agents that operate at short distances from each other, the cost
of communication can be comparable to the cost of computation [79]. It is unclear what
problems can help us understand control, communication and computation together. We
suggest possible formulations in [53], but the question needs a deeper investigation.

Our proposed strategies assume that each agent knows the strategies of other agents. For
instance, if the approximately-optimal strategies are known to be based on quantization, we
assume that the quantization bin-size for each controller is known at every other controller.
How can this information be communicated? In particular, what if there is no established
protocol for the controllers to talk to each other? Recent work of Juba and Sudan [123]
develops some understanding of this extremely difficult problem. The hope is that in re-
stricted settings, computationally efficient methods of arriving at agreement on strategies
will be possible.
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Appendix A

Proofs for Witsenhausen’s
counterexample

A.1 Nonconvexity of the counterexample in (γ1, γ2).

Consider two strategies, γ(a) and γ(b). The first strategy is γ
(a)
1 = |x0|, and γ

(a)
2 =

4σ2
0

4σ2
0+1

y.

For the second strategy, we use γ
(b)
1 = −|x0|, and γ

(b)
2 =

4σ2
0

4σ2
0+1

y. To check for convexity, we

will consider a convex combination γ(c) = 0.5γ(a) +0.5γ(b) of these strategies and check if the
resulting strategy has lower costs.

By the symmetry of the counterexample about zero, the attained total cost using γ(a)

and γ(b) is the same. Focusing on γ(a), the first-stage cost is k2E [|x0|2] = k2σ2
0. The second

stage cost needs to be understood in two (equally-likely) cases: conditioned on X0 < 0, the

cost is E
[(
Z − 4σ2

0

4σ2
0+1

Z
)2
]

= E
[(

Z
4σ2

0+1

)2
]

= 1
(4σ2

0+1)2
because E [Z2] = 1. Conditioned on

X0 > 0, the second-stage cost is

E

[(
2X0 −

4σ2
0

4σ2
0 + 1

(2X0 + Z)

)2 ∣∣∣∣X0 > 0

]
= E

[(
2X0

4σ2
0 + 1

+
4σ2

0Z

4σ2
0 + 1

)2
]

=
4σ2

0

(4σ2
0 + 1)2

+

(
4σ2

0

4σ2
0 + 1

)2

=
4σ2

0(4σ2
0 + 1)

(4σ2
0 + 1)2

=
4σ2

0

4σ2
0 + 1

.
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The total cost for γ(a) (and by symmetry so also for γ(b)) is, therefore,

J (γ(i)) = k2σ2
0 +

1

2

4σ2
0

4σ2
0 + 1

+
1

2

1

(4σ2
0 + 1)2

= k2σ2
0 +

16σ4
0 + 4σ2

0 + 1

2(4σ2
0 + 1)2

. (A.1)

Now consider the third strategy, γ(c) = 0.5γ(a) + 0.5γ(b), a convex combination of the first
two strategies. If the counterexample were convex, then J (γ(c)) would be no larger than
0.5J (γ(a)) + 0.5J (γ(b)) = J (γ(a)).

Now, γ
(c)
1 = 0, and γ(c)(2) =

4σ2
0

4σ2
0+1

Y . The total cost for this strategy is

J (γ(c)) = k2 × 0 + E
[
X0 −

4σ2
0

4σ2
0 + 1

(X0 + Z)

]

= σ2
0

1

(4σ2
0 + 1)2

+
(4σ2

0)2

(4σ2
0 + 1)2

=
16σ4

0 + σ2
0

(4σ2
0 + 1)2

. (A.2)

Now let us compare costs for γ(a) and γ(b) (see (A.1)) with the cost for γ(c) (see (A.2)). Choos-
ing k2 = 0.01, and σ2

0 = 10, the cost J (γ(a)) = J (γ(b)) ≈ 0.59, whereas the cost J (γ(c)) =
J
(
0.5γ(a) + 0.5γ(b)

)
≈ 0.95. That is, J

(
0.5γ(a) + 0.5γ(b)

)
≥ 0.5J

(
γ(a)
)

+ 0.5J
(
γ(b)
)
.

Clearly for the counterexample, the objective function (i.e. the total cost) is not convex in
the choice of strategy γ = (γ1, γ2).

A.2 Derivation of Lemma 1

Proof. Using the triangle inequality on Euclidian distance,

√
d(B,C) ≥

√
d(A,C)−

√
d(A,B). (A.3)

Similarly, √
d(B,C) ≥

√
d(A,B)−

√
d(A,C). (A.4)

Thus, √
d(B,C) ≥ |

√
d(A,C)−

√
d(A,B)|, (A.5)

Squaring both sides,

d(B,C) ≥ d(A,C) + d(A,B)− 2
√
d(A,C)

√
d(A,B). (A.6)
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Taking the expectation on both sides,

E [d(B,C)] ≥ E [d(A,C)] + E [d(A,B)]− 2E
[√

d(A,C)
√
d(A,B)

]
.

Now, using the Cauchy-Schwartz inequality [124, Pg. 13],

(
E
[√

d(A,C)
√
d(A,B)

])2

≤ E [d(A,C)]E [d(A,B)] . (A.7)

Using (A.7) and (A.7),

E [d(B,C)] ≥ E [d(A,C)] + E [d(A,B)]− 2
√
E [d(A,C)]

√
E [d(A,B)]

=
(√

E [d(A,C)]−
√

E [d(A,B)]
)2

.

Taking square-roots on both the sides completes the proof.

A.3 Proof of Theorem 3: bounded ratios for the uniform-

noise counterexample

We consider two cases:
Case 1: σ2

0 < 1.

If P >
σ2
022h(Z)

200
, using the zero-forcing upper bound of k2σ2

0, the ratio is smaller than
200

22h(Z) .

If P ≤ σ2
022h(Z)

200
,

κ(P ) =
σ2

022h(Z)

2πe

((
σ0 +

√
P
)2

+ 1

)

σ2
0≤1,P≤σ

2
02

2h(Z)

200≥ σ2
022h(Z)

2πe

(
(1 +

√
22h(Z)

200
)2 + 1

)

(a)

≥ σ2
022h(Z)

2πe
(
(1 +

√
πe
100

)2 + 1
)

≥ σ2
022h(Z)

46
,

where (a) follows from the fact that h(Z) ≤ 1
2

log2 (2πe), the differential entropy for the



117

N (0, 1) random variable. Thus,

((
κ−
√
P
)+
)2

≥ σ2
022h(Z)

(
1√
46
− 1√

200

)2

≥ σ2
022h(Z)

173
>
σ2

022h(Z)

200
.

Using the zero-input upper bound of
σ2
0

σ2
0+1

< 1, the ratio in this case is bounded by 200
22h(Z) .

Case 2: σ2
0 ≥ 1.

If P > 22h(Z)

200
, using the upper bound of k2a2, the ratio of upper and lower bounds is

smaller than k2a2

k2 22h(Z)

200

= 200a2

22h(Z) .

If P ≤ 22h(Z)

200
≤ 2πe

200
(again, because Gaussian distribution maximizes the differential

entropy for given variance),

κ(P ) =
σ2

022h(Z)

2πe

((
σ0 +

√
P
)2

+ 1

)

≥ 22h(Z)

2πe
(

(1 +
√
P )2 + 1

)

≥ 22h(Z)

2πe
(
(1 + πe

100
)2 + 1

) ≥ 22h(Z)

46
.

Thus, the following lower bound holds for the MMSE error

MMSE ≥ 22h(Z)

(
1

46
− 1

200

)2

≥ 22h(Z)0.0058.

Using the zero-input upper bound, the ratio is smaller than 1
22h(Z)0.0058

< 173
22h(Z)

Using the fact that a > 1, we get the theorem.
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A.4 Required P for error probability converging to

zero using the vector quantization scheme

We now derive the required power P that satisfies (4.16) and (4.17). Let ξ satisfy 1
2

log2 (1 + ξ) =
δ. Then (4.16) and (4.17) are satisfied whenever

1

2
log2

(
σ2
z + σ2

0 − P
σ2
z

)
=

1

2
log2

(
σ2

0

P

)
+

1

2
log2 (1 + ξ) ,

i.e.
σ2
z + σ2

0 − P
σ2
z

=
σ2

0

P
(1 + ξ)

i.e. P 2 − P (σ2
0 + σ2

z) + σ2
zσ

2
0(1 + ξ) = 0. (A.8)

Now, some algebra reveals that (A.8) is satisfied if

P =
σ2

0 + σ2
z −

√
(σ2

0 − σ2
z)

2 − 4σ2
0σ

2
zξ

2

2

= σ2
0




1−
√

1− 4σ2
0σ

2
zξ

2

(σ2
0−σ2

z)2

2


+ σ2

z




1 +
√

1− 4σ2
0σ

2
zξ

2

(σ2
0−σ2

z)2

2


 ,

which is along the line segment joining σ2
z and σ2

0, and is hence smaller than σ2
0. For this

P to exist, ξ <
σ2
0−σ2

z

2σ0σz
, and therefore δ < 1

2
log2

(
1 +

σ2
0−σ2

z

2σ0σz

)
. Also, in the limit ξ → 0 (or

equivalently, δ → 0), P converges to σ2
z = 1.

A.5 Proof of bounded ratios for the asymptotic vector

Witsenhausen counterexample

The performance of the scheme that zero-forces xm0 and the JSCC scheme is identical for
σ2

0 = 1, as is evident from Fig. 4.6. Therefore, we consider two different cases: σ2
0 ≤ 1 and

σ2
0 ≥ 1. In either case, we show that the ratio is bounded by 11. The result can be tightened

by a more detailed analysis by dividing the (k, σ2
0) space into finer partitions. However, we

do not present the detailed analysis here for ease of exposition.
Region 1 : σ2

0 ≤ 1.

We consider the upper bound as the minimum of k2σ2
0 and

σ2
0

σ2
0+1

. Consider the lower

bound

J ≥ min
P≥0

k2P +

((√
κ(P )−

√
P
)+
)2

. (A.9)

Now if the optimizing power P is greater than σ2
0/11, then the first term of the lower bound

is greater than k2σ2
0/11. Thus the ratio of the upper bound k2σ2

0 and the lower bound is
smaller than 11.
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If the optimizing P ≤ σ2
0

11
,

κ(P ) =
σ2

0(
σ0 +

√
P
)2

+ 1

≥ σ2
0(

σ0 + σ0√
11

)2

+ 1

(σ2
0≤1)

≥ σ2
0(

1 + 1√
11

)2

+ 1
≥ 0.37σ2

0

which is greater than σ2
0/11 > P . Thus,

((√
κ(P )−

√
P
)+
)2

≥
(√

0.37σ2
0 −

√
σ2

0

11

)2

> 0.094σ2
0 >

σ2
0

11
.

The lower bound is no smaller than

((√
κ(P )−

√
P
)+
)2

. Thus, even for P ≤ σ2
0

11
the ratio

of the upper bound
σ2
0

σ2
0+1

and the lower bound is smaller than 11.

Region 2 : σ2
0 ≥ 1.

The upper bound relevant here is the minimum of k2 and
σ2
0

σ2
0+1

. Again, looking at (A.9),

if P > 1
11

, the ratio of the upper bound k2 to the lower bound is no more than 11.
Now, if P ≤ 1

11
,

κ(P ) ≥ σ2
0

(σ0 + 1/
√

11)2 + 1
.

Therefore,

((√
κ(P )−

√
P
)+
)2

=






√√√√

σ2
0(

σ0 + 1√
11

)2

+ 1
− 1√

11




+


2

.

For σ2
0 ≥ 1, the first term on the RHS attains its minima at σ2

0 = 1. Evaluated at this point,
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the term is larger than 1√
11

. Therefore, a bound on the ratio for P < 1
11

is

σ2
0/(σ

2
0 + 1)

(√
σ2
0(

σ0+ 1√
11

)2
+1
− 1√

11

)2 ≤ 1
(√

σ2
0(

σ0+ 1√
11

)2
+1
− 1√

11

)2

≤ 1
(√

1(
1+ 1√

11

)2
+1
− 1√

11

)2

≈ 10.56 < 11.

Thus, for σ2
0 ≥ 1, the ratio is bounded by 11 as well. Therefore, γ1 and γ2 are both smaller

than 11.

A.6 Dirty-paper coding and tightness at MMSE = 0

We summarize the strategy briefly, and refer the interested reader to [54] for a detailed
description and analysis of the achievability. The encoder divides its input into two parts
Um
lin and Um

dpc of powers Plin and Pdpc respectively, such that P = Plin+Pdpc (by construction,
Um
lin and Um

dpc turn out to be orthogonal in the limit). We refer to Plin as the linear part
of the power, and Pdpc the dirty-paper coding part of the power. The linear part is used to
scale the host signal down by a factor β (using Um

lin = −βXm
0 ) so that the scaled down host

signal has variance σ̃2
0 = σ2

0(1−β)2, where β2σ2
0 = Plin. Using the remaining Pdpc power, the

transmitter dirty-paper codes against the scaled-down host signal (1− β)Xm
0 with the DPC

parameter α [74] allowed to be arbitrary (unlike in [74], where it is eventually chosen to be
the MMSE parameter). A plain DPC strategy achieves the following rate [74, Eq. (6)]

R =
1

2
log2

(
P (P + σ2

0 + 1)

Pσ2
0(1− α)2 + P + α2σ2

0

)
, (A.10)

The strategy recovers Um+αXm
0 at the decoder with high probability. Because we also have

a linear part here, the achieved rate is

R =
1

2
log2

(
Pdpc(Pdpc + σ̃2

0 + 1)

Pdpcσ̃2
0(1− α)2 + Pdpc + α2σ̃2

0

)
. (A.11)

The decoder now decodes the codeword Um
dpc + α(1 − β)Xm

0 . It then performs an MMSE
estimation for estimating Xm = Xm

0 + Um = (1 − β)Xm
0 + Um

dpc using the channel output
Ym

2 = (1−β)Xm
0 + Um

dpc + Zm and the decoded codeword α(1−β)Xm
0 + Um

dpc. The obtained
MMSE can now be minimized over the choice of α and β under the constraint (A.11).
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Corollary 2. For a given power P , a combination of linear and DPC-based strategies
achieves the maximum rate C(P ) in the perfect recovery limit MMSE(P,R) = 0, where
C(P ) is given by

C(P ) = sup
σX0,U1

∈[−σ0
√
P ,0]

1

2
log2

(
(Pσ2

0 − σ2
X0,U1

)(1 + σ2
0 + P + 2σX0,U1)

σ2
0(σ2

0 + P + 2σX0,U1)

)
. (A.12)

Proof. See Appendix A.11.

DPC strategy performs better than vector-quantization

For α = 1, P needs to satisfy C(1, P ) > ε, where

C(1, P ) =
1

2
log2

(
P (P + σ2

0 + σ2
z)

(P + σ2
0)σ2

z

)
. (A.13)

Let ξ be such that ε = 1
2

log2 (1 + ξ). Then,

1

2
log2

(
P (P + σ2

0 + σ2
z)

(P + σ2
0)σ2

z

)
=

1

2
log2 (1 + ξ)

i.e. P 2 + (σ2
0 − ξσ2

z)P − (1 + ξ)σ2
0σ

2
z = 0

Taking the positive root of the quadratic equation,

P = (σ2
0 − ξσ2

z)

√
1 +

4(1+ξ)2σ2
zσ

2
0

(σ2
0−ξσ2

z)2
− 1

2
. (A.14)

Now letting ε go to zero (and thus ξ → 0) by increasing m to infinity, the required

P approaches σ2
0

√
1+

4σ2z
σ20
−1

2
. The asymptotic expected cost for the scheme is, therefore,

k2σ2
0

√
1+

4σ2z
σ20
−1

2
. This expression turns out to be an increasing function in σ2

0 which is bounded
above by k2σ2

z , the cost for the JSCC scheme. Thus even in the special case of α = 1, the
DPC scheme asymptotically outperforms the VQ scheme.

Costs for DPC with α 6= 1

The total asymptotic costs (assuming no errors in decoding the auxiliary codeword) are given
by

k2(P + (1 + |α|)2) +MMSE(α, P ), (A.15)
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where P satisfies

C(α, P ) = I(v; y2)− I(v;x0) =
1

2
log2

(
P (P + σ2

0 + σ2
z)

Pσ2
0(1− α)2 + σ2

z(P + α2σ2
0)

)
= ε. (A.16)

Concentrating on the case of interest of ε → 0 by letting m → ∞, the condition (A.16) is
equivalent to

P (P + σ2
0 + σ2

z) = Pσ2
0(1− α)2 + σ2

z(P + α2σ2
0).

Taking the positive root,

P =

√
σ2

0α(2− α)

2

(√
1 +

4σ2
z

σ2
0(2− α)2

− 1

)
(A.17)

By letting m → ∞, we can have ε1 → 0 and also ε → 0. Optimizing the total cost over
α, the asymptotic total cost achieved is

min
α
k2P +MMSE(α, P ), (A.18)

where P is given by (A.17).

A.7 Proof of Lemma 2

EZm
[
(‖Zm‖+ rp)

2 11{Em}
]

= EZm
[
‖Zm‖211{Em}

]
+ r2

p Pr(Em) + 2rpEZm
[(

11{Em}
) (
‖Zm‖11{Em}

)]

(a)

≤ EZm
[
‖Zm‖211{Em}

]
+ r2

p Pr(Em) + 2rp

√
EZm

[
11{Em}

]√
EZm

[
‖Zm‖211{Em}

]

=

(√
EZm

[
‖Zm‖211{Em}

]
+ rp

√
Pr(Em)

)2

, (A.19)

where (a) uses the Cauchy-Schwartz inequality [124, Pg. 13].

We wish to express EZm
[
‖Zm‖211{Em}

]
in terms of ψ(m, rp) := Pr(‖Zm‖ ≥ rp) =

∫
‖zm‖≥rp

e−
‖zm‖2

2

(
√

2π)
m dzm.

Denote by Am(r) := 2π
m
2 rm−1

Γ(m2 )
the surface area of a sphere of radius r in Rm [125, Pg. 458],

where Γ(·) is the Gamma-function satisfying Γ(m) = (m − 1)Γ(m − 1), Γ(1) = 1, and
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Γ(1
2
) =
√
π. Dividing the space Rm into shells of thickness dr and radii r,

EZm
[
‖Zm‖211{Em}

]
=

∫

‖zm‖≥rp
‖zm‖2 e

− ‖z
m‖2
2

(√
2π
)mdzm =

∫

r≥rp
r2 e−

r2

2

(√
2π
)mAm(r)dr

=

∫

r≥rp
r2 e−

r2

2

(√
2π
)m

2π
m
2 rm−1

Γ
(
m
2

) dr

=

∫

r≥rp

e−
r2

2 2π
(√

2π
)m+2

2π
m+2

2 rm+1

π 2
m

Γ
(
m+2

2

)dr = mψ(m+ 2, rp). (A.20)

Using (A.19), (A.20), and rp =
√

mP
ξ2

EZm
[
(‖Zm‖+ rp)

2 11{Em}
]
≤ m

(√
ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

,

which yields the first part of Lemma 2. To obtain a closed-form upper bound we consider
P > ξ2. It suffices to bound ψ(·, ·).

ψ(m, rp) = Pr(‖Zm‖2 ≥ r2
p) = Pr(exp(ρ

m∑

i=1

Z2
i ) ≥ exp(ρr2

p))

(a)

≤ EZm

[
exp(ρ

m∑

i=1

Z2
i )

]
e−ρr

2
p = EZ1

[
exp(ρZ2

1)
]m
e−ρr

2
p

(for 0<ρ<0.5)
=

1

(1− 2ρ)
m
2

e−ρr
2
p ,

where (a) follows from the Markov inequality, and the last inequality follows from the fact
that the moment generating function of a standard χ2

2 random variable is 1

(1−2ρ)
1
2

for ρ ∈
(0, 0.5) [126, Pg. 375]. Since this bound holds for any ρ ∈ (0, 0.5), we choose the minimizing

ρ∗ = 1
2

(
1− m

r2p

)
. Since r2

p = mP
ξ2

, ρ∗ is indeed in (0, 0.5) as long as P > ξ2. Thus,

ψ(m, rp) ≤
1

(1− 2ρ∗)
m
2

e−ρ
∗r2p =

(
r2
p

m

)m
2

e
− 1

2

(
1−m

r2p

)
r2p

= e
− r

2
p
2

+m
2

+m
2

ln

(
r2p
m

)
.

Using the substitutions r2
c = mP , ξ = rc

rp
and r2

p = mP
ξ2

,

Pr(Em) = ψ(m, rp) = ψ

(
m,

√
mP

ξ2

)
≤ e

−mP
2ξ2

+m
2

+m
2

ln
(
P
ξ2

)
, and (A.21)

EZm
[
‖Zm‖211{Em}

]
≤ mψ

(
m+ 2,

√
mP

ξ2

)
≤ me

−mP
2ξ2

+m+2
2

+m+2
2

ln
(

mP
(m+2)ξ2

)
. (A.22)
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From (A.19), (A.21) and (A.22),

EZm
[
(‖Zm‖+ rp)

2 11{Em}
]

≤
(√

me
−mP

4ξ2
+m+2

4
+m+2

4
ln
(

mP
(m+2)ξ2

)√
mP

ξ2
e
−mP

4ξ2
+m

4
+m

4
ln
(
P
ξ2

))2

(since P>ξ2)
<

(
√
m

(
1 +

√
P

ξ2

)
e
−mP

4ξ2
+m+2

4
+m+2

4
ln
(
P
ξ2

))2

= m

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2
+m+2

2
+m+2

2
ln
(
P
ξ2

)
.

A.8 Proof of Lemma 3

Choosing A = Xm
0 , B = Xm

1 and C = X̂m
1 in Lemma 1,

EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )|Zm

G ∈ SGL
]

=
1

m
EXm

0 ,Z
m
G

[
‖Xm

1 − X̂m
1 ‖2|Zm

G ∈ SGL
]

≥
((√

1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
1 ‖2|Zm

G ∈ SGL
]
−
√

1

m
EXm

0 ,Z
m
G

[‖Xm
0 −Xm

1 ‖2|Zm
G ∈ SGL ]

)+)2

=

((√
1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
1 ‖2|Zm

G ∈ SGL
]
−
√
P

)+)2

, (A.23)

since Xm
0 −Xm

1 = Um
1 is independent of Zm

G and E [‖Um
1 ‖2] = mP . Define Ym

L := Xm
1 + Zm

L

to be the output when the observation noise Zm
L is distributed as a truncated Gaussian

distribution:

fZL(zmL ) =





cm(L) e
−
‖zmL ‖

2

2σ2
G(√

2πσ2
G

)m zmL ∈ SGL
0 otherwise.

(A.24)

Let the estimate at the second controller on observing ymL be denoted by X̂m
L . Then, by the

definition of conditional expectations,

EXm
0 ,Z

m
G

[
‖Xm

0 − X̂m
1 ‖2|Zm

G ∈ SGL
]

= EXm
0 ,Z

m
G

[
‖Xm

0 − X̂m
L ‖2
]
. (A.25)

To get a lower bound, we now allow the controllers to optimize themselves with the additional
knowledge that the observation noise zm must fall in SGL . In order to prevent the first
controller from “cheating” and allocating different powers to the two events (i.e. zm falling
or not falling in SGL ), we enforce the constraint that the power P must not change with
this additional knowledge. Since the controller’s observation Xm

0 is independent of Zm, this
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constraint is satisfied by the original controller (without the additional knowledge) as well,
and hence the cost for the system with the additional knowledge is still a valid lower bound
to that of the original system. The rest of the proof uses ideas from channel coding and
the rate-distortion theorem [28, Ch. 13] from information theory. We view the problem as
a problem of implicit communication from the first controller to the second. Notice that for
a given γ(·), Xm

1 is a function of Xm
0 , Ym

L = Xm
1 + Zm

L is conditionally independent of Xm
0

given Xm
1 (since the noise Zm

L is additive and independent of Xm
1 and Xm

0 ). Further, X̂m
L is a

function of Ym
L . Thus Xm

0 −Xm
1 −Ym

L −X̂m
L form a Markov chain. Using the data-processing

inequality [28, Pg. 33],

I(Xm
0 ; X̂m

L ) ≤ I(Xm
1 ; Ym

L ), (A.26)

where I(A,B) is the expression for mutual information expression between two random
variables A and B (see, for example, [28, Pg. 18, Pg. 231]). To estimate the distortion to
which Xm

0 can be communicated across this truncated Gaussian channel (which, in turn,
helps us lower bound the MMSE in estimating Xm

1 ), we need to upper bound the term on
the RHS of (A.26).

Lemma 4.

1

m
I(Xm

1 ; Ym
L ) ≤ 1

2
log2

(
e1−dm(L)(P + dm(L)σ2

G)c
2
m
m (L)

σ2
G

)
.

Proof. We first obtain an upper bound to the power of Xm
1 (this bound is the same as that

used in Corollary 1):

EXm
0

[
‖Xm

1 ‖2
]

= EXm
0

[
‖Xm

0 + Um
1 ‖2
]

= EXm
0

[
‖Xm

0 ‖2
]

+ EXm
0

[
‖Um

1 ‖2
]

+ 2EXm
0

[
Xm

0
TUm

1

]

(a)

≤ EXm
0

[
‖Xm

0 ‖2
]

+ EXm
0

[
‖Um

1 ‖2
]

+ 2
√

EXm
0

[‖Xm
0 ‖2]

√
EXm

0
[‖Um

1 ‖2]

≤ m
(
σ0 +

√
P
)2

,

where (a) follows from the Cauchy-Schwartz inequality. We use the following definition of
differential entropy h(A) of a continuous random variable A [28, Pg. 224]:

h(A) = −
∫

S
fA(a) log2 (fA(a)) da, (A.27)

where fA(a) is the pdf of A, and S is the support set of A. Conditional differential entropy

is defined similarly [28, Pg. 229]. Let P :=
(
σ0 +

√
P
)2

. Now, E
[
Y 2
L,i

]
= E

[
X2

1,i

]
+E

[
Z2
L,i

]

(since X1,i is independent of ZL,i and by symmetry, ZL,i are zero mean random variables).

Denote P i = E
[
X2

1,i

]
and σ2

G,i = E
[
Z2
L,i

]
. In the following, we derive an upper bound C

(m)
G,L
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on 1
m
I(Xm

1 ; Ym
L ).

C
(m)
G,L := sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP

1

m
I(Xm

1 ; Ym
L )

(a)
= sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP

1

m
h(Ym

L )− 1

m
h(Ym

L |Xm
1 )

= sup
p(Xm

1 ):E[‖Xm
1 ‖2]≤mP

1

m
h(Ym

L )− 1

m
h(Xm

1 + Zm
L |Xm

1 )

(b)
= sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP

1

m
h(Ym

L )− 1

m
h(Zm

L |Xm
1 )

(c)
= sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP

1

m
h(Ym

L )− 1

m
h(Zm

L )

(d)

≤ sup
p(Xm

1 ):E[‖Xm
1 ‖2]≤mP

1

m

m∑

i=1

h(YL,i)−
1

m
h(Zm

L )

(e)

≤ sup
P i:
∑m
i=1 P i≤mP

1

m

m∑

i=1

1

2
log2

(
2πe(P i + σ2

G,i)
)
− 1

m
h(Zm

L )

(f)

≤ 1

2
log2

(
2πe(P + dm(L)σ2

G)
)
− 1

m
h(Zm

L ). (A.28)

Here, (a) follows from the definition of mutual information [28, Pg. 231], (b) follows from
the fact that translation does not change the differential entropy [28, Pg. 233], (c) uses
independence of Zm

L and Xm
1 , and (d) uses the chain rule for differential entropy [28, Pg.

232] and the fact that conditioning reduces entropy [28, Pg. 232]. In (e), we used the fact
that Gaussian random variables maximize differential entropy. The inequality (f) follows
from the concavity-∩ of the log(·) function and an application of Jensen’s inequality [28, Pg.
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25]. We also use the fact that 1
m

∑m
i=1 σ

2
G,i = dm(L)σ2

G, which can be proven as follows

1

m
E

[
m∑

i=1

Z2
L,i

]
(using (A.24))

=
σ2
G

m

∫

zm∈SGL

‖zm‖2

σ2
G

cm(L)
exp

(
−‖zmG ‖2

2σ2
G

)

(√
2πσ2

G

)m dzmG

=
cm(L)σ2

G

m
E
[
‖Zm

G‖211{‖ZmG ‖≤√mL2σ2
G

}]

(Z̃m:=
ZmG
σG

)

=
cm(L)σ2

G

m
E
[
‖Z̃m‖211{‖Z̃m‖≤√mL2}

]

=
cm(L)σ2

G

m

(
E
[
‖Z̃m‖2

]
− E

[
‖Z̃m‖211{‖Z̃m‖>√mL2}

])

(using (A.20))
=

cm(L)σ2
G

m

(
m−mψ(m+ 2,

√
mL2)

)

= cm(L)
(
1− ψ(m+ 2, L

√
m)
)
σ2
G = dm(L)σ2

G. (A.29)

We now compute h(Zm
L )

h(Zm
L ) =

∫

zm∈SGL
fZL(zm) log2

(
1

fZL(zm)

)
dzm =

∫

zm∈SGL
fZL(zm) log2




(√
2πσ2

G

)m

cm(L)e
− ‖zm‖2

2σ2
G


 dzm

= − log2 (cm(L)) +
m

2
log2

(
2πσ2

G

)
+

∫

zm∈SGL
cm(L)fG(zm)

‖zm‖2

2σ2
G

log2 (e) dzm. (A.30)

Analyzing the last term of (A.30),

∫

zm∈SGL
cm(L)fG(zm)

‖zm‖2

2σ2
G

log2 (e) dzm

=
log2 (e)

2σ2
G

∫

zm∈SGL
cm(L)

e
− ‖z

m‖2

2σ2
G(√

2πσ2
G

)m‖zm‖2dzm =
log2 (e)

2σ2
G

∫

zm
fZL(zm)‖zm‖2dzm

(using (A.24))
=

log2 (e)

2σ2
G

EG
[
‖Zm

L ‖2
]

=
log2 (e)

2σ2
G

EG

[
m∑

i=1

Z2
L,i

]

(using (A.29))
=

log2 (e)

2σ2
G

mdm(L)σ2
G =

m log2

(
edm(L)

)

2
. (A.31)
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The expression C
(m)
G,L can now be upper bounded using (A.28), (A.30) and (A.31) as follows.

C
(m)
G,L ≤ 1

2
log2

(
2πe(P + dm(L)σ2

G)
)

+
1

m
log2 (cm(L))− 1

2
log2

(
2πσ2

G

)
− 1

2
log2

(
edm(L)

)

=
1

2
log2

(
2πe(P + dm(L)σ2

G)
)

+
1

2
log2

(
c

2
m
m (L)

)
− 1

2
log2

(
2πσ2

G

)
− 1

2
log2

(
edm(L)

)

=
1

2
log2

(
2πe(P + dm(L)σ2

G)c
2
m
m (L)

2πσ2
Ge

dm(L)

)

=
1

2
log2

(
e1−dm(L)(P + dm(L)σ2

G)c
2
m
m (L)

σ2
G

)
. (A.32)

Now, recall that the rate-distortion function Dm(R) for squared error distortion for source

Xm
0 and reconstruction X̂m

L is,

Dm(R) := inf
p(X̂m

L |Xm
0 )

1
m
I(Xm

0 ; X̂m
L ) ≤ R

1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
L ‖2
]
, (A.33)

which is the dual of the rate-distortion function [28, Pg. 341]. Since I(Xm
0 ; X̂m

L ) ≤ mC
(m)
G,L,

using the converse to the rate distortion theorem [28, Pg. 349] and the upper bound on the

mutual information represented by C
(m)
G,L,

1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
L ‖2
]
≥ Dm(C

(m)
G,L). (A.34)

Since the Gaussian source is iid, Dm(R) = D(R), where D(R) = σ2
02−2R is the distortion-

rate function for a Gaussian source of variance σ2
0 [28, Pg. 346]. Thus, using (A.23), (A.25)

and (A.34),

EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m)|Zm ∈ SGL

]
≥
((√

D(C
(m)
G,L)−

√
P

)+
)2

.

Substituting the bound on C
(m)
G,L from (A.32),

D(C
(m)
G,L) = σ2

02−2C
(m)
G,L =

σ2
0σ

2
G

c
2
m
m (L)e1−dm(L)(P + dm(L)σ2

G)
.

Using (A.23), this completes the proof of the lemma. Notice that cm(L)→ 1 and dm(L)→ 1

for fixed m as L→∞, as well as for fixed L > 1 as m→∞. So the lower bound on D(C
(m)
G,L)

approaches κ of Corollary 1 in both of these two limits.
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A.9 Proof for bounded ratios for the finite-dimensional

Witsenhausen counterexample

Let P ∗ denote the power P in the lower bound in Theorem 8. We show here that for any
choice of P ∗, the ratio of the upper and the lower bound is bounded. Consider the two
simple linear strategies of zero-forcing (um1 = −xm0 ) and zero-input (um1 = 0) followed by
LLSE estimation at C2. The average cost attained using these two strategies is k2σ2

0 and
σ2
0

σ2
0+1

< 1 respectively. An upper bound is obtained using the best amongst the two linear

strategies and the lattice-based quantization strategy.

Case 1 : P ∗ ≥ σ2
0

100
.

The first stage cost is larger than k2 σ2
0

100
. Consider the upper bound of k2σ2

0 obtained by
zero-forcing. The ratio of the upper bound and the lower bound is no larger than 100. Case

2 : P ∗ < σ2
0

100
and σ2

0 < 16.
Using the bound from Corollary 1 (which is a special case of the bound in Theorem 8),

κ =
σ2

0

(σ0 +
√
P ∗)2 + 1

(
P ∗<

σ20
100

)
≥ σ2

0

σ2
0

(
1 + 1√

100

)2

+ 1

(σ2
0<16)

≥ σ2
0

16
(

1 + 1√
100

)2

+ 1
=

σ2
0

20.36
≥ σ2

0

21
.

Thus, for σ2
0 < 16 and P ∗ ≤ σ2

0

100
,

Jmin ≥
((√

κ−
√
P ∗
)+
)2

≥ σ2
0

(
1√
21
− 1√

100

)2

≈ 0.014σ2
0 ≥

σ2
0

72
.

Using the zero-input upper bound of
σ2
0

σ2
0+1

, the ratio of the upper and lower bounds is at

most 72
σ2
0+1
≤ 72.

Case 3 : P ∗ ≤ σ2
0

100
, σ2

0 ≥ 16, P ∗ ≤ 1
2
.

In this case,

κ =
σ2

0

(σ0 +
√
P ∗)2 + 1

(P ∗≤ 1
2

)

≥ σ2
0

(σ0 +
√

0.5)2 + 1
(a)

≥ 16

(
√

16 +
√

0.5)2 + 1
≈ 0.6909 ≥ 0.69,

where (a) uses σ2
0 ≥ 16 and the observation that x2

(x+b)2+1
= 1

(1+ b
x)

2
+ 1
x2

is an increasing
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function of x for x, b > 0. Thus,

((√
κ−
√
P
)+
)2

≥ ((
√

0.69−
√

0.5)+)2 ≈ 0.0153 ≥ 0.015.

Using the upper bound of
σ2
0

σ2
0+1

< 1, the ratio of the upper and the lower bounds is smaller

than 1
0.015

< 67.

Case 4 : σ2
0 > 16, 1

2
< P ∗ ≤ σ2

0

100
Using L = 2 in the lower bound,

cm(L) =
1

Pr(‖Zm‖2 ≤ mL2)
=

1

1− Pr(‖Zm‖2 > mL2)
(Markov’s ineq.)

≤ 1

1− m
mL2

(L=2)
=

4

3
,

Similarly,

dm(2) =
Pr(‖Zm+2‖2 ≤ mL2)

Pr(‖Zm‖2 ≤ mL2)

≥ Pr(‖Zm+2‖2 ≤ mL2) = 1− Pr(‖Zm+2‖2 > mL2)
(Markov’s ineq.)

≥ 1− m+ 2

mL2
= 1− 1 + 2

m

4

(m≥1)

≥ 1− 3

4
=

1

4
.

In the bound, we are free to use any σ2
G ≥ 1. Using σ2

G = 6P ∗ > 1,

κ2 =
σ2
Gσ

2
0(

(σ0 +
√
P ∗)2 + dm(2)σ2

G

)
c

2
m
m (2)e1−dm(2)

(a)

≥ 6P ∗σ2
0(

(σ0 + σ0
10

)2 +
6σ2

0

100

) (
4
3

) 2
m e

3
4

(m≥1)

≥ 1.255P ∗.

where (a) uses σ2
G = 6P ∗, P ∗ < σ2

0

100
, cm(2) ≤ 4

3
and 1 > dm(2) ≥ 1

4
. Thus,

((√
κ2 −

√
P ∗
)+
)2

≥ P ∗(
√

1.255− 1)2 ≥ P ∗

70
. (A.35)
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Now, using the lower bound on the total cost from Theorem 8, and substituting L = 2,

Jmin(m, k2, σ2
0) ≥ k2P ∗ +

σmG
cm(2)

exp

(
−mL

2(σ2
G − 1)

2

)((√
κ2 −

√
P ∗
)+
)2

(σ2
G=6P ∗)

≥ k2P ∗ +
(6P ∗)m

cm(2)
exp

(
−4m(6P ∗ − 1)

2

)
P ∗

70
(a)

≥ k2P ∗ +
3m

4
3

e2me−12P ∗m 1

70× 2

(m≥1)

≥ k2P ∗ +
3× 3× e2

4× 70× 2
e−12mP ∗

> k2P ∗ +
1

9
e−12mP ∗ , (A.36)

where (a) uses cm(2) ≤ 4
3

and P ∗ ≥ 1
2
. We loosen the lattice-based upper bound from

Theorem 7 and bring it into a form similar to (A.36). Here, P is a part of the optimization:

Jmin(m, k2, σ2
0)

≤ inf
P>ξ2

k2P +

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2
+m+2

2

(
1+ln

(
P
ξ2

))

≤ inf
P>ξ2

k2P +
1

9
e
− 0.5mP

ξ2
+m+2

2

(
1+ln

(
P
ξ2

))
+2 ln

(
1+
√

P
ξ2

)
+ln(9)

≤ inf
P>ξ2

k2P +
1

9
e
−m

(
0.5P
ξ2
−m+2

2m

(
1+ln

(
P
ξ2

))
− 2
m

ln
(

1+
√

P
ξ2

)
− ln(9)

m

)

= inf
P>ξ2

k2P +
1

9
e
− 0.12mP

ξ2 × e−m
(

0.38P
ξ2
− 1+ 2

m
2

(
1+ln

(
P
ξ2

))
− 2
m

ln
(

1+
√

P
ξ2

)
− ln(9)

m

)

(m≥1)

≤ inf
P>ξ2

k2P +
1

9
e
− 0.12mP

ξ2 e
−m

(
0.38P
ξ2
− 3

2

(
1+ln

(
P
ξ2

))
−2 ln

(
1+
√

P
ξ2

)
−ln(9)

)

≤ inf
P≥34ξ2

k2P +
1

9
e
− 0.12mP

ξ2 , (A.37)

where the last inequality follows from the fact that 0.38P
ξ2

> 3
2

(
1 + ln

(
P
ξ2

))
+2 ln

(
1 +

√
P
ξ2

)
+

ln (9) for P
ξ2
> 34. This can be checked easily by plotting it.1 Using P = 100ξ2P ∗ ≥ 50ξ2 >

1It can also be verified symbolically by examining the expression g(b) = 0.38b2 − 3
2 (1 + ln b2) − 2 ln(1 +

b)− ln (9), taking its derivative g′(b) = 0.76b− 3
b − 2

1+b , and second derivative g′′(b) = 0.76 + 3
b2 + 2

(1+b)2 > 0.

Thus g(·) is convex-∪. Further, g′(
√

34) ≈ 3.62 > 0, and g(
√

34) ≈ 0.09 and so g(b) > 0 whenever b ≥
√

34.
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34ξ2 (since P ∗ ≥ 1
2
) in (A.37),

Jmin(m, k2, σ2
0) ≤ k2100ξ2P ∗ +

1

9
e
−m 0.12×100ξ2P∗

ξ2

= k2100ξ2P ∗ +
1

9
e−12mP ∗ . (A.38)

Using (A.36) and (A.38), the ratio of the upper and the lower bounds is bounded for all m
since

µ ≤ k2100ξ2P ∗ + 1
9
e−12mP ∗

k2P ∗ + 1
9
e−12mP ∗

≤ k2100ξ2P ∗

k2P ∗
= 100ξ2. (A.39)

For m = 1, ξ = 1, and thus in the proof the ratio µ ≤ 100. For m large, ξ ≈ 2 [127, Chapter
VIII], and µ . 400. For arbitrary m, using the recursive construction in [128, Theorem 8.18],
ξ ≤ 4, and thus µ ≤ 1600 regardless of m.

A.10 Tighter outer bound for the vector Witsenhausen

problem: proof of Theorems 6 and 13

Achievability: a combination of linear and DPC-based

strategies

The combination of linear and DPC-based strategies of Chapter 4.3.3 recovers Um
dpc +α(1−

β)Xm
0 at the decoder with high probability. In order to perfectly recover Xm

1 = (1−β)Xm
0 +

Um
dpc, we can use α = 1, and hence the strategy would achieve a rate of

Rach = sup
Plin,Pdpc:P=Plin+Pdpc

1

2
log2

(
Pdpc(Pdpc + σ̃2

0 + 1)

Pdpc + σ̃2
0

)
, (A.40)

where we take a supremum over Plin, Pdpc such that they sum up to P . Let σX0,U1 = −σ0

√
Plin

(note that as Plin varies from 0 to P , σX0,U1 varies from 0 to−σ0

√
P ). Then, Pdpc = P−σ2

X0,U1

σ2
0

,

and Pdpc + σ̃2
0 = Pdpc + σ2

0 + Plin − 2σ0

√
Plin = P + σ2

0 + 2σX0,U1 . Thus,

Rach = sup
σX0,U1

∈[−σ0
√
P ,0]

1

2
log2




(
P − σ2

X0,U1

σ2
0

)
(P + σ2

0 + 2σX0,U1 + 1)

P + σ2
0 + 2σX0,U1


 . (A.41)

Simple algebra shows that this expression matches that in Corollary 2.
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Proof. [Of Theorem 6]
For any chosen pair of encoding map Em and decoding map Dm, there is a Markov chain

Xm
0 → Xm

1 → Ym
2 → X̂m

1 . Using the data-processing inequality

I(Xm
0 ; X̂m

1 ) ≤ I(Xm
1 ; Ym

2 ). (A.42)

The terms in the inequality can be bounded by single letter expressions as follows. Define Q
as a random variable uniformly distributed over {1, 2, . . . ,m}. Define X0 = X0,Q, U = UQ,

X1 = X1,Q, Z = ZQ, Y = YQ and X̂1 = X̂1,Q. Then,

I(Xm
1 ; Ym

2 ) = h(Ym
2 )− h(Ym

2 |Xm
1 )

(a)

≤
∑

i

h(Y2,i)− h(Ym
2 |Xm

1 )

=
∑

i

h(Y2,i)− h(Y2,i|X1,i)

=
∑

i

I(X1,i;Y2,i)

= mI(X1;Y2|Q)

= m (h(Y2|Q)− h(Y2|X1, Q))

≤ m (h(Y2)− h(Y2|X1, Q))
(b)
= m (h(Y2)− h(Y2|X1)) = mI(X1;Y2), (A.43)

where (a) follows from an application of the chain-rule for entropy followed by using the fact
that conditioning reduces entropy, and (b) follows from the observation that the additive
noise Zi is iid across time, and independent of the input X1,i (thus Y ⊥⊥ Q|X). Also,

I(Xm
0 ; X̂m

1 ) = h(Xm
0 )− h(Xm

0 |X̂m
1 )

=
∑

i

h(X0,i)− h(Xm
0 |X̂m

1 )

(a)

≥
∑

i

(
h(X0,i)− h(X0,i|X̂1,i)

)

=
∑

i

I(X0,i; X̂1,i) = mI(X0; X̂1|Q)

= m
(
h(X0|Q)− h(X0|X̂1, Q)

)

(b)

≥ m
(
h(X0)− h(X0|X̂1)

)
= mI(X0; X̂1), (A.44)

where (a) and (b) again follow from the fact that conditioning reduces entropy, and (b) also
uses the observation that since X0,i are iid, X0, X0,i, and X0|Q = q are distributed identically.
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Now, using (A.42), (A.43) and (A.44),

mI(X0; X̂) ≤ I(Xm
0 ; X̂m

1 ) ≤ I(Xm
1 ; Ym) ≤ mI(X1;Y ). (A.45)

Also observe that from the definitions of X0, X1, X̂1 and Y , E [d(Xm
0 ,X

m
1 )] = E [d(X0, X1)],

and E
[
d(Xm

1 , X̂
m
1 )
]

= E
[
d(X1, X̂1)

]
. Using the Cauchy-Schwartz inequality, the correlation

σX0,U1 = E [X0U1] must satisfy the following constraint,

|σX0,U1| = |E [X0U1] | ≤
√
E [X2

0 ]
√
E [U2

1 ] ≤ σ0

√
P . (A.46)

Also,
E
[
X2

1

]
= E

[
(X0 + U1)2

]
= σ2

0 + P + 2σX0,U1 . (A.47)

Since Z = Y −X1 ⊥⊥ X1, and a Gaussian input distribution maximizes the mutual informa-
tion across an average-power-constrained AWGN channel,

I(X1;Y ) ≤ 1

2
log2

(
1 +

P + σ2
0 + 2σX0,U1

1

)
. (A.48)

I(X0; X̂1) = h(X0)− h(X0|X̂1)

= h(X0)− h(X0 − γX̂|X̂1) ∀γ
(a)

≥ h(X0)− h(X0 − γX̂1)

=
1

2
log2

(
2πeσ2

0

)
− h(X0 − γX̂1), (A.49)

where (a) follows from the fact that conditioning reduces entropy. Also note here that the
result holds for any γ > 0, and in particular, γ can depend on σX0,U1 . Now,

h(X0 − γX̂1) = h(X0 − γ(X̂1 −X1)− γX1)

= h
(
X0 − γ(X̂1 −X1)− γX0 − γU

)

= h
(

(1− γ)X0 − γU1 − γ(X̂1 −X1)
)
. (A.50)

The second moment of a sum of two random variables A and B can be bounded as follows

E
[
(A+B)2

]
= E

[
A2
]

+ E
[
B2
]

+ 2E [AB]
Cauchy-Schwartz ineq.

≤ E
[
A2
]

+ E
[
B2
]

+ 2
√

E [A2]
√

E [B2]

=
(√

E [A2] +
√
E [B2]

)2

, (A.51)
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with equality when A and B are aligned, i.e. A = λB for some λ ∈ R. For the random
variable under consideration in (A.50), choosing A = (1−γ)X0−γU1, and B = −γ(X̂1−X1)
in (A.51)

E
[(

(1− γ)X0 − γU1 − γ(X̂1 −X1)
)2
]

≤
(√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1 + γ

√
E
[
(X̂1 −X1)2

])2

. (A.52)

Equality is obtained by aligning2 X1 − X̂1 with (1− γ)X0 − γU1. Thus,

I(X0; X̂1)

≥ 1

2
log2

(
2πeσ2

0

)
− h(X0 − γX̂1)

≥ 1

2
log2




σ2
0(√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1 + γ

√
E
[
(X̂1 −X1)2

])2


 .(A.53)

Using (A.45), I(X0; X̂1) ≤ I(X1;Y ). Using the lower bound on I(X0; X̂1) from (A.53) and
the upper bound on I(X1;Y ) from (A.48), we get

1

2
log2




σ2
0(√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1 + γ

√
E
[
(X̂1 −X1)2

])2




≤ 1

2
log2

(
1 +

P + σ2
0 + 2σX0,U1

1

)
,

2In general, since X̂m
1 is a function of Ym

2 , this alignment is not actually possible when the recovery of
Xm

1 is not exact. The derived bound is therefore loose.
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for the choice of Em and Dm. Since log2 (·) is a monotonically increasing function,

σ2
0(√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1 + γ

√
E
[
(X̂1 −X1)2

])2

≤ 1 + P + σ2
0 + 2σX0,U1

i.e.

(√
(1− γ)2σ2

0 + γ2P − 2γ(1− γ)σX0,U1 + γ

√
E
[
(X̂1 −X1)2

])2

≥ σ2
0

1 + P + σ2
0 + 2σX0,U1

,

Since γ > 0, γ

√
E
[
(X̂1 −X1)2

]
≥
√

σ2
0

1+P+σ2
0+2σX0,U1

−
√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1 .

Because the RHS may not be positive, we take the maximum of zero and the RHS and
obtain the following lower bound for Em and Dm.

E
[
(X̂1 −X1)2

]
≥ 1

γ2



(√

σ2
0

1 + P + σ2
0 + 2σX0,U1

−
√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1

)+



2

.

(A.54)
Because the bound holds for every γ > 0,

E
[
(X̂1 −X1)2

]
≥ sup

γ>0

1

γ2



(√

σ2
0

1 + P + σ2
0 + 2σX0,U1

−
√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1

)+



2

,

(A.55)
for the chosen Em and Dm. Now, from (A.46), σX0,U1 can take values in [−σ0

√
P , σ0

√
P ].

Because the lower bound depends on Em and Dm only through σX0,U1 , we obtain the following
lower bound for all Em and Dm,

E
[
(X̂1 −X1)2

]

≥ inf
|σX0,U1

|≤σ0
√
P

sup
γ>0

1

γ2



(√

σ2
0

1 + P + σ2
0 + 2σX0,U1

−
√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1

)+



2

,

which proves Theorem 6. Notice that we did not take limits in m anywhere, and hence the
lower bound holds for all values of m.
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A.11 Proof of Corollary 2.

The case of nonzero rate

Proof. To prove Theorem 13, consider now the problem when the encoder wants to also
communicate a message M reliably to the decoder at rate R.

Using Fano’s inequality, since Pr(M 6= M̂) = εm → 0 as m → ∞, H(M |M̂) ≤ mδm
where δm → 0. Thus,

I(M ; M̂) = H(M)−H(M |M̂)

= mR−H(M |M̂)

≥ mR−mδm = m(R− δm). (A.56)

As before, we consider a mutual information inequality that follows directly from the Markov
chain (M,Xm

0 )→ Xm
1 → Ym → (X̂m, M̂) :

I(M,Xm
0 ; M̂, X̂m) ≤ I(Xm

1 ; Ym). (A.57)

The RHS can be bounded above as in (A.43). For the LHS,

I(M,Xm
0 ; M̂, X̂m

1 ) = I(M ; M̂, X̂m
1 ) + I(Xm

0 ; M̂, X̂m
1 |M)

≥ I(M ; M̂) + I(Xm
0 ; M̂, X̂m

1 |M)

= I(M ; M̂) + h(Xm
0 |M)− h(Xm

0 |M̂, X̂m
1 ,M)

Xm
0 ⊥⊥M= I(M ; M̂) + h(Xm

0 )− h(Xm
0 |M̂, X̂m

1 ,M)

≥ I(M ; M̂) + h(Xm
0 )− h(Xm

0 |X̂m
1 )

≥ I(M ; M̂) + I(Xm
0 ; X̂m

1 )
using (A.44)

≥ I(M ; M̂) +mI(X0; X̂). (A.58)

From (A.56), (A.57) and (A.58), we obtain

m(R− δm) +mI(X0; X̂)
using (A.56)

≤ I(M ; M̂) +mI(X0; X̂)
using (A.58)

≤ I(M,Xm
0 ; M̂, X̂m

1 )
using (A.57)

≤ I(Xm
1 ; Ym

2 )
using (A.43)

≤ mI(X1;Y2). (A.59)

I(X1;Y2) and I(X0; X̂1) can be bounded as before in (A.48) and (A.53). Observing that as
m→∞, δm → 0, we get the following lower bound on the MMSE for nonzero rate,

MMSE(P,R)

≥ inf
σX0,U1

sup
γ>0

1

γ2



(√

σ2
022R

1 + σ2
0 + P + 2σX0,U1

−
√

(1− γ)2σ2
0 + γ2P − 2γ(1− γ)σX0,U1

)+



2
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In the limit δm → 0, we require from (A.59) that I(X1;Y2) ≥ R. This gives the following
constraint on σX0,U1 ,

1

2
log2

(
1 + P + σ2

0 + 2σX0,U1

)
≥ R

i.e. σX0,U1 ≥
22R − 1− P − σ2

0

2
, (A.60)

yielding (in conjunction with (A.46)) the constraint on σX0,U1 in Theorem 13. The con-
straint on P in the Theorem follows from Costa’s result [74], because the rate R must be
smaller than the capacity over a power constrained AWGN channel with known interference,
1
2

log2 (1 + P ).

Since we are free to choose γ, let γ = γ∗ =
σ2
0+σX0,U1

σ2
0+P+2σX0,U1

. Then, 1 − γ∗ =
P+σX0,U1

σ2
0+P+2σX0,U1

.

Thus, we get

0 ≥ inf
σX0,U1

1

γ∗2



(√

σ2
022R

1 + σ2
0 + P + 2σX0,U1

−
√

(1− γ∗)2σ2
0 + γ∗2P − 2γ∗(1− γ∗)σX0,U1

)+



2

.

(A.61)
It has to be the case that the term inside (·)+ is non-positive for some value of σX0,U1 . This
immediately yields

22R ≤ sup
σX0,U1

1

σ2
0

(
(1− γ∗)2σ2

0 + γ∗
2

P − 2γ∗(1− γ∗)σX0,U1

)
(1 + σ2

0 + P + 2σX0,U1)

= sup
σX0,U1

1

σ2
0

((P + σX0,U1)
2σ2

0 + (σ2
0 + σX0,U1)

2P − 2(P + σX0,U1)(σ
2
0 + σX0,U1)σX0,U1)

(σ2
0 + P + 2σX0,U1)

2

×(1 + σ2
0 + P + 2σX0,U1)

= sup
σX0,U1

1

σ2
0

(
P 2σ2

0 − σ2
X0,U1

σ2
0 + 2PσX0,U1σ

2
0 + Pσ4

0 − Pσ2
X0,U1

− 2σ3
X0,U1

)

(σ2
0 + P + 2σX0,U1)

2

×(1 + σ2
0 + P + 2σX0,U1)

= sup
σX0,U1

1

σ2
0

(
(Pσ2

0 − σ2
X0,U1

)(P + σ2
0 + 2σX0,U1)

)

(σ2
0 + P + 2σX0,U1)

2
(1 + σ2

0 + P + 2σX0,U1)

= sup
σX0,U1

(Pσ2
0 − σ2

X0,U1
)(1 + σ2

0 + P + 2σX0,U1)

σ2
0(σ2

0 + P + 2σX0,U1)

Thus, we get the following upper bound on C(P ),

C(P ) ≤ sup
σX0,U1

∈[−σ0
√
P ,σ0

√
P ]

1

2
log2

(
(Pσ2

0 − σ2
X0,U1

)(1 + σ2
0 + P + 2σX0,U1)

σ2
0(σ2

0 + P + 2σX0,U1)

)
. (A.62)
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The term (Pσ2
0 − σ2

X0,U1
) is oblivious to the sign of σX0,U1 . However, the term

1 + σ2
0 + P + 2σX0,U1

σ2
0 + P + 2σX0,U1

= 1 +
1

σ2
0 + P + 2σX0,U1

(A.63)

is clearly larger for σX0,U1 < 0 if we fix |σX0,U1|. Thus the supremum in (A.62) is attained at
some σX0,U1 < 0, and we get

C(P ) ≤ sup
σX0,U1

∈[−σ0
√
P ,0]

1

2
log2

(
(Pσ2

0 − σ2
X0,U1

)(1 + σ2
0 + P + 2σX0,U1)

σ2
0(σ2

0 + P + 2σX0,U1)

)
, (A.64)

which matches the expression in Corollary 2. Thus for perfect reconstruction (MMSE = 0),
the combination of linear and DPC strategy proposed in Chapter 4.3.3 is optimal.
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Appendix B

Approximate-optimality for a noisy
version of Witsenhausen’s
counterexample

The proof involves showing that the ratio of the upper bound of Theorem 16 and the
lower bound of Theorem 15 is no larger than 41. This is done by dividing the (k, σ,N1) space
into different regions, which are dealt with separately.

An optimal value of P that attains the minimum in the second expression in the lower
bound of Theorem 15 is denoted by P ∗.
Case 1 : N1 ≥ 1.
A lower bound is

J opt ≥
σ2

0N1

σ2
0N1 + σ2

0 +N1

(N1≥1)

≥ σ2
0

σ2
0 + σ2

0 + 1
=

σ2
0

2σ2
0 + 1

.

The zero-input upper bound J Z̃I =
σ2
0

σ2
0+1

. The ratio of the upper and lower bounds is

therefore smaller than
2σ2

0 + 1

σ2
0 + 1

< 2. (B.1)

Case 2 : σ2
0 < N1 < 1.

If N1 > σ2
0, using the first term in the lower bound of Theorem 15,

J opt ≥ σ2
0N1

σ2
0N1 + σ2

0 +N1

(N1>σ2
0)

>
σ2

0σ
2
0

σ2
0σ

2
0 + σ2

0 + σ2
0

=
σ4

0

σ4
0 + 2σ2

0

(σ2
0<1)

>
σ4

0

σ2
0 + 2σ2

0

=
σ2

0

3
.

The Z̃I upper bound J Z̃I =
σ2
0

σ2
0+1

< σ2
0. Thus the ratio of upper and lower bounds is smaller

than 3.
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Case 3 : N1 < σ2
0 < 1.

Case 3a: P ∗ ≥ σ2
0

16
.

Since the lower bound is the larger of the two terms in Theorem 15, it is larger than any
convex combination of the two terms as well. That is,

J opt ≥ 1

2


k2P ∗ +

((√
κ̃−
√
P ∗
)+
)2

+

1

2

σ2
0N1

σ2
0N1 + σ2

0 +N1(
P ∗≥σ

2
0

16

)
≥ k2σ2

0

32
+

σ2
0N1

2(σ2
0N1 + σ2

0 +N1)
.

Now for the upper bound, we use the zero-forcing strategy

J Z̃F =
k2σ4

0

σ2
0 +N1

+
σ2

0N1

σ2
0N1 + σ2

0 +N1

≤ k2σ4
0

σ2
0

+
σ2

0N1

σ2
0N1 + σ2

0 +N1

= k2σ2
0 +

σ2
0N1

σ2
0N1 + σ2

0 +N1

.

The ratio of upper and lower bound is therefore smaller than max{32, 2} = 32.

Case 3b: P ∗ < σ2
0

16
.

Since N1 < σ2
0,

σ̃2
0 =

σ4
0

σ2
0 +N1

(N1<σ2
0)

≥ σ4
0

σ2
0 + σ2

0

=
σ2

0

2
.

Thus,

κ̃ =
σ̃2

0

(σ̃0 +
√
P ∗)2 + 1

≥ σ2
0/2(

σ√
2

+ σ
4

)2

+ 1

(σ2
0≤1)

≥ σ2
0

2
(

1√
2

+ 1
4

)2

+ 1
≥ σ2

0

3
.

Thus,

(
√
κ̃−
√
P ∗)2 ≥ σ2

0

(
1√
3
− 1

4

)2

> 0.1σ2
0.

Using J Z̃I =
σ2
0

σ2
0+1

< σ2
0, the ratio of the upper and lower bounds is smaller than 10.

Case 4 : N1 ≤ 1 < σ2
0.
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Case 4a: P ∗ ≤ 1
9
.

In this case,

σ̃2
0 =

σ4
0

σ2
0 +N1

(N1≤1≤σ2
0)

≥ σ4
0

σ2
0 + σ2

0

=
σ2

0

2

Therefore,

κ̃ =
σ̃2

0

(σ̃0 +
√
P ∗)2 + 1

≥ σ2
0/2(

σ√
2

+ 1
3

)2

+ 1
≥ 0.24.

Thus,

((√
κ̃−
√
P ∗
)+
)2

≥ 0.024. The zero-input upper bound is smaller than 1. Thus the

ratio is smaller than 1
0.024

< 41.
Case 4b: P ∗ > 1

9

A lower bound is

J opt ≥ max

{
k2

9
,

σ2
0N1

σ2
0N1 + σ2

0 +N1

}

≥ k2

9
× 9

10
+

σ2
0N1

σ2
0N1 + σ2

0 +N1

× 1

10
=
k2

10
+

σ2
0N1

10(σ2
0N1 + σ2

0 +N1)
.

Now, we use the asymptotic vector quantization upper bound of

lim
m→∞

J Ṽ Q ≤ k2

(
σ2

0N1

σ2
0 +N1

+ 1

)
+

σ2
0N1

σ2
0 +N1

. (B.2)

Since N1 < 1, this upper bound is smaller than 2k2 +
σ2
0N1

σ2
0N1+σ2

0+N1
. The ratio of the first terms

in the upper bound and the lower bound of (B.2) is at most 20. The ratio of the second
terms is

σ2
0N1

σ2
0 +N1

× 10(σ2
0N1 + σ2

0 +N1)

σ2
0N1

= 10
σ2

0N1

σ2
0 +N1

+ 10

≤ 10 + 10 = 20.

Thus the ratio of the upper and lower bounds is no larger than 41 in all cases.
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