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ABSTRACT OF THE THESIS

Cross-tissue omics analysis discovers coiled-coil domain containing 80 and superoxide

dismutase 3 as novel serum biomarker candidates for non-alcoholic fatty liver disease

by

Nicholas Waxter Darci-Maher

Master of Science in Bioinformatics

University of California, Los Angeles, 2022

Professor Paivi E. Pajukanta, Chair

Non-alcoholic fatty liver disease (NAFLD) is a fast growing epidemic, which remains grossly

underdiagnosed due to the lack of affordable and practical diagnostic tools in the primary

health care setting. Here, we utilize dual-tissue RNA-seq data in subcutaneous adipose tis-

sue and liver paired with liver histology-based NAFLD diagnosis from a cohort of obese

individuals to discover serum biomarker candidates (SBCs) for obesity-related NAFLD. We

hypothesize that in some obese individuals, obesity and its accompanying low-grade inflam-

mation compromise the key functions of subcutaneous adipose tissue, preventing efficient

adipogenesis and storage of fat into the subcutaneous fat depot, and thus driving ectopic

fat accumulation into the liver. To identify subcutaneous adipose tissue-origin SBCs for the

three primary NAFLD histology traits, steatosis, fibrosis, and non-alcoholic steatohepatitis

(NASH), we scan for genes that are transcriptome-wide significantly differentially expressed

(DE) for these NAFLD traits in subcutaneous adipose tissue but not in the liver, encode

proteins secreted to serum, and show preferential expression in subcutaneous adipose tissue

over the liver. Using a best subsets analysis, we identify the secreted adipokines CCDC80,
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SOD3, and COL6A2 as the key SBCs, the adipose expression of which explains the most sig-

nificant amount of variance in steatosis, fibrosis, and NASH among the SBCs. We also show,

by knockdown in human preadipocytes during adipogenesis, that the fibrosis and NASH

SBCs, CCDC80 and SOD3, modulate the crucial adipogenesis genes, SREBF1 and LEP,

emphasizing their premise as indicators for adipose-tissue origin, obesity-related NAFLD.

Our results have a great translational potential to improve the diagnosis of obesity-related

NAFLD by providing a blood panel of SBCs.
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CHAPTER 1

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent disorder that affects ∼25%

of people globally [1]. NAFLD represents a heterogenous spectrum of liver disease, ranging

from simple steatosis to liver fibrosis and non-alcoholic steatohepatitis (NASH) [2]. NAFLD

can ultimately lead to liver cirrhosis, and is expected to become the leading cause of liver

transplantation within this decade [3]. Heterogeneity in NAFLD etiology and pathogenesis

is also reflected by the fact that while obesity is the key risk factor for NAFLD, 5-40% of

NAFLD patients are normal weight, depending on the population [4–6].

NAFLD manifests in the liver, but prevailing theories suggest that the obesity-driven

form of NAFLD originates in adipose tissue [2, 7–11]. It has been hypothesized that some

obese individuals cannot generate new adipocytes (hypoplasia) effectively enough to store ex-

tra fat, and instead their existing adipocytes become larger (hypertrophy) [2, 10, 12]. These

large adipocytes tend to undergo cellular death, attracting infiltrations of inflammatory cells,

such as macrophages, which ultimately causes low grade inflammation and deteriorates adi-

pose tissue functions [2, 10, 12]. As a result, adipose lipolysis and hepatic de novo lipogenesis

increase, releasing free fatty acids into the bloodstream [2, 10, 13]. This drives ectopic fat

deposits onto vital organs, including the liver. These deposits evoke macrophage infiltration

and inflammation in the liver, which the liver attempts to repair with scar tissue, i.e. fibrosis

[2, 10]. Without weight loss intervention, the obese adipose tissue becomes increasingly dys-

functional, and the liver becomes increasingly fibrotic, until the liver is permanently damaged

[2, 7–10]. Existing evidence broadly supports this hypothesis [2, 11, 13–15], but many of the
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exact molecular factors driving NAFLD pathogenesis remain unknown. Furthermore, the

known common NAFLD variants, including the PNPL3, TM6SF2, HSD17B13, and GCKR

variants, explain only a small proportion (10–20%) of its heritability [16].

Presently, there is no effective treatment for the obesity-driven advanced forms of NAFLD;

however, as simple steatosis is still reversible through weight loss, early diagnosis would be

extremely important [2, 8]. While a variety of diagnosis strategies currently exist for the

various stages of the NAFLD spectrum, these strategies are either too invasive (e.g. liver

biopsy) or too expensive (e.g. magnetic resonance imaging (MRI)) to be implemented in

primary health care [2, 17]. Liver biopsy can accurately identify the stages of steatosis,

fibrosis, and NASH by direct histological assessment of the liver tissue [2, 9]. However, a

liver biopsy is invasive, relatively risky, and prone to bias [18, 19]. Imaging methods, includ-

ing abdominal ultrasonography, MRI, and elastography, are less invasive [20–22]. However,

MRIs are expensive, and ultrasonography and elastography have low sensitivity in detect-

ing early steatosis cases and cannot robustly detect NASH [2]. Existing serum biomarker

panels [23–29] are noninvasive and inexpensive. However, predictive power of these models

remains limited, with area under the receiver operating curve (AUC) ranging from 0.66 to

0.87 [2, 17]. Because of these diagnostic challenges, the early stages of NAFLD go largely

underdiagnosed, and many patients already exhibit fibrosis by the time NAFLD is detected.

In our study, we used a cross-tissue omics approach to search for effective subcutaneous

adipose tissue-origin biomarkers for NAFLD and elucidate their roles in NAFLD patho-

genesis, using dual-tissue transcriptomic data from a cohort of extremely obese individuals

who underwent bariatric surgery. First, we found proof-of-concept evidence for the adipose

origin of NAFLD by discovering an adipose co-expression network, enriched for fatty acid

degradation and insulin signaling pathway genes, to be highly positively correlated with a

liver co-expression network, enriched for amino acid biosynthesis genes. This indicates that

normal healthy adipose tissue functions are correlated with normal healthy liver functions,

given that the adipose network was negatively correlated with serum triglyceride (TG) lev-
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els and the liver network was negatively correlated with NAFLD. Next, to find key adipose

genes involved in NAFLD, we searched for genes differentially expressed (DE) in adipose

tissue but not in liver between individuals with histology-based healthy liver and those with

NAFLD. We then filtered these adipose NAFLD DE genes for 10 likely serum biomarker

candidates (SBCs), which were DE in adipose but not liver, secreted to serum, and exhib-

ited adipose aware expression. We defined key SBCs using a best subsets approach, where

we searched for the minimum number of SBCs whose adipose expression explained the max-

imum variance in NAFLD. Next, we conducted siRNA knockdown experiments with the

key fibrosis and NASH SBC genes in human preadipocytes differentiated to adipocytes. In

these adipogenesis experiments, we found that knockdown of the SBC Coiled-Coil Domain

Containing 80 (CCDC80) significantly increased the expression of the fatty acid synthesis

master transcription factor (TF) Sterol Regulatory Element Binding Transcription Factor

1 (SREBF1) [30, 31], and knockdown of the SBC Superoxide Dismutase 3 (SOD3) signifi-

cantly decreased the expression of the satiety signaling protein Leptin (LEP) [32]. Our study

has the potential to substantially improve patient outcomes by discovering genes which may

drive the pathogenesis of obesity-induced, adipose-origin NAFLD, and could be developed

into a serum biomarker panel to noninvasively detect NAFLD.
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CHAPTER 2

Results

2.1 Study design

We developed an integrative cross-tissue transcriptomics approach to search for adipose-

origin secreted serum biomarker candidates for NAFLD (Figure 1), leveraging a cohort of

extremely obese inviduals with RNA-seq data available from both adipose (n=262) and liver

tissue (n=267), as well as NAFLD traits diagnosed by liver histology. We defined NAFLD

using steatosis, fibrosis, and NASH, which were measured by histological assessment of liver

tissue. First, we searched for correlation between adipose and liver co-expression networks.

Next, we scanned for adipose aware DE genes, which were genes DE for NAFLD traits in

subcutaneous adipose tissue but not liver. We then identified SBCs in this list of adipose

aware DE genes by selecting genes that coded for secreted proteins, were expressed highly

enough in adipose tissue to be detected in serum, and were expressed much higher in adipose

tissue than in liver. We selected key SBCs from this list using best subsets analysis. Finally,

we investigated the functions of key SBCs in adipose tissue by knocking them down in a

culture of human preadipocytes differentiating to adipocytes.
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Figure 1: Study design to discover CCDC80, SOD3, and COL6A2 as novel serum

biomarker candidates (SBCs) for obesity-related NAFLD. To discover novel SBCs

for obesity-related NAFLD, we leveraged a unique dual-tissue transcriptomic cohort with

histology-based diagnosis of steatosis, fibrosis, and NASH. First, we discovered molecular

crosstalk between adipose tissue and liver using WGCNA. Next, we scanned for genes DE in

adipose tissue for the three NAFLD traits. We filtered these DE genes for secreted proteins,

i.e. SBCs, using a set of selection criteria, and determined the key SBCs using best subsets

analysis. Finally, we followed up the key SBCs functionally by knocking them down in

human preadipocytes during adipogenesis.
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2.2 Co-expression networks of distinct functional pathways

correlate across an individual’s subcutaneous adipose tissue

and liver

To search for signatures of molecular crosstalk between adipose and liver tissue related to

NAFLD, we used our dual-tissue cohort to construct gene co-expression networks separately

in adipose and liver tissue using the R [33] package WGCNA [34, 35], and related these

networks to each other (see Methods). To investigate the functional significance of the

modules (i.e. networks), we correlated all adipose and liver module eigengenes (MEs) with

common metabolic traits and NAFLD liver histology measurements. To identify networks

involved in tissue crosstalk, we correlated every adipose ME with every liver ME.

In agreement with our hypothesis, we found evidence that the healthy functions of adi-

pose tissue, consisting of storing and burning fat, are positively associated with the healthy

functions of liver tissue, consisting of synthesizing biomolecules into fatty acids. This was

represented by positive correlation between the adipose lightyellow network (ALY) and the

liver saddlebrown network (LSB) (r=0.331, p=2.296 ∗ 10−7). ALY is negatively correlated

with serum TG (r=−0.252, p=9.979 ∗ 10−5), and is enriched for regulation of lipolysis in

adipocytes (false discovery rate (FDR)=0.0156), insulin signaling pathways (FDR=0.0156),

and adipocyte cell-type marker genes (phypergeometric=1.453 ∗ 10−7). LSB is negatively corre-

lated with steatosis (r=−0.378, p=2.572∗10−9), fibrosis (r=−0.306, p=1.982∗10−6), NASH

(r=−0.384, p=1.302 ∗ 10−9), type 2 diabetes mellitus (T2D) (r=−0.291, p=6.284 ∗ 10−6),

and body mass index (BMI) (r=−0.277, p=1.825 ∗ 10−5), and is enriched for the biosyn-

thesis of amino acids pathway (FDR=1.725x10-9) and hepatocyte cell-type marker genes

(phypergeometric=1.842 ∗ 10−3, 2.202 ∗ 10−3, 1.292 ∗ 10−4, 7.143 ∗ 10−4, and 1.513 ∗ 10−3 for

Hep-7, Hep-9, Hep-10, Hep-11, and Hep-13, respectively).

Additionally, our results suggest that inflamed and dysfunctional adipose tissue is associ-

ated with a decrease in normal healthy liver function, and an increase of NAFLD and other

6



adverse metabolic trait functions. This was represented by negative correlation between the

adipose cyan network (AC) and LSB (r=−0.351, p=3.561∗10−8). AC is positively correlated

with NASH (r=0.268, p=3.303 ∗ 10−5), and is enriched for autoimmune and inflammatory

pathways, including inflammatory bowel disease (FDR=1.824∗10−11) and autoimmune thy-

roid disease (FDR=5.558 ∗ 10−13).

Taken together, our gene co-expression network results indicate that adipose and liver

tissue communicate at the transcriptional level, and that this communication is grossly

inverted in NAFLD. To investigate the details of this tissue crosstalk, we aimed to move

past the co-expression network level and discover individual genes as indicators for adipose

dysfunction-related NAFLD.

2.3 645 genes are DE in subcutaneous adipose tissue, but not

liver, between individuals with and without NAFLD

To first identify genes whose adipose expression was associated with three key histology-based

NAFLD traits (steatosis, fibrosis, and NASH), we ran DE analysis with the R [33] limma-

voom pipeline [36–38]. We compared the adipose expression of individuals with steatosis,

fibrosis, and NASH to those with healthy livers, while correcting for common demographic

and technical confounders (see Methods). We identified 974 genes DE for at least one

NAFLD histology trait (698, 282, and 676 DE genes for steatosis, fibrosis, and NASH, re-

spectively) (Figure 2). To select genes with adipose tissue aware expression, we filtered

out all liver DE genes for the same three NAFLD traits. This resulted in 645 total adipose

aware DE genes (437, 187, and 469 adipose aware DE genes for steatosis, fibrosis, and NASH,

respectively). These adipose aware DE genes were significantly enriched in both the ALY

(phypergeometric=1.467∗10−7) and AC (phypergeometric=6.430∗10−13) adipose co-expression net-

works, enforcing our hypothesis that dysfunctional adipose tissue is associated with NAFLD.

Next, we focused on the genes among these 645 that were most likely to be detectable in
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serum to discover potential adipose-origin serum biomarkers for NAFLD.

2.4 Selection of 10 serum biomarker candidates (SBCs) for

NAFLD

We reasoned that the adipose aware NAFLD DE genes that are effective SBCs must leave

the cell, be expressed at sufficient levels in their source tissue to be detectable in serum, and

have predominantly adipose aware expression. To implement these constraints, we filtered

the 645 adipose aware DE genes for the ones present in the Human Protein Atlas (HPA)

[39] list of secreted proteins, and with median transcripts per million (TPM) greater than 30

in subcutaneous adipose tissue, using data from the GTEx portal. Additionally, we filtered

out all genes whose ratio of subcutaneous adipose median TPM to liver median TPM was

less than 10. This design resulted in a final list of 10 SBCs: CCDC80, CD300LG, COL6A1,

COL6A2, GPX3, MGP, SFRP2, SOD3, TIMP3, and VEGFB (Figure 3). Taken together,

all SBCs are DE in subcutaneous adipose tissue for at least one NAFLD trait (steatosis,

fibrosis, or NASH), are not DE in liver for any of the same three NAFLD traits, code for

secreted proteins, have median TPM >30 in subcutaneous adipose tissue, and have >10x

higher median TPM in subcutaneous adipose tissue than in liver tissue.

2.5 Determination of key SBCs using best subsets modeling

approach

To find the best subset of these 10 genes for evaluating NAFLD risk, we modeled the ef-

fect of their adipose expression on NAFLD. First, we observed that there are significant

adipose expression gene-gene correlations among the 10 SBCs (Figure 4a), indicating that

they are not fully independently expressed in the adipose tissue. To avoid redundancy, we

then searched for the minimum set among the 10 SBCs whose adipose expression explained
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Figure 2: A total of 974 genes are differentially expressed (DE) in subcutaneous

adipose tissue between the obese individuals with the three main NAFLD traits,

steatosis, fibrosis and/or NASH, and the obese individuals with healthy livers.

We performed DE analysis on bulk RNA-seq data from subcutaneous adipose biopsies in the

KOBS cohort, comparing individuals with the NAFLD traits diagnosed by liver histology

to those with healthy livers. Of the 974 adipose DE genes, 698, 282, and 676 genes are DE

for steatosis, fibrosis, and NASH, respectively. (a) Volcano plot showing the results of the

NASH DE analysis in the adipose tissue. The X-axis represents log fold-change (logFC) from

individuals with NASH and those with healthy livers. The Y-axis represents the negative

log of the DE p-value, adjusted for multiple testing. Significant SBCs identified in our

subsequent filtering steps (Figure 3) are highlighted. Volcano plots of steatosis and fibrosis

DE results are shown in Figure S1. (b) Bar plot showing the DE direction of the SBCs in

steatosis, fibrosis, and NASH. X-axis represents logFC from individuals with each NAFLD

trait and those with healthy livers. Y-axis represents the SBC name. Blue SBCs have

increased adipose expression in individuals with NAFLD when compared to the individuals

with healthy livers, while red SBCs have decreased adipose expression.
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Figure 3: Filtering of subcutaneous adipose NAFLD DE genes to select serum

biomarker candidates (SBCs). To identify SBCs among the list of 974 adipose NAFLD

DE genes, we selected the genes that were DE for NAFLD in adipose tissue but not in the

liver, coded for proteins secreted to serum, had moderate to high expression in adipose tissue,

and had >10x higher expression in subcutaneous adipose tissue than in the liver. These filters

reduced the list of 974 total adipose DE genes across steatosis, fibrosis, and NASH to 10

SBCs. Blue genes are upregulated in steatosis, fibrosis, and/or NASH in adipose tissue,

while red genes are downregulated.
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the maximum amount of variance in NAFLD, using a best subsets approach with the R

[33] package leaps [40]. In this approach, we fit linear models for different combinations and

numbers of SBCs, and tested the variance in steatosis, fibrosis, and NASH explained by each

combination of genes, while correcting for the same covariates we used in the WGCNA and

DE analyses (see Methods). We discovered that the gene COL6A2 explains the most vari-

ation in steatosis (r2=0.055, ppermutation=0.012), and the genes CCDC80 and SOD3 explain

the most variation in both fibrosis and NASH (r2=0.102, ppermutation=1.970∗10−3 for fibrosis;

r2=0.166, ppermutation=3.500 ∗ 10−4 for NASH) (Figure 4b). This result further strengthens

the premise of CCDC80 and SOD3 as biomarkers, because our permutation results show

that their adipose expression explains more variation in fibrosis and NASH than virtually

all other pairs of genes.

2.6 Effect of CCDC80 and SOD3 knockdown on human

preadipocytes during adipogenesis

Because CCDC80 and SOD3 were observed as the strongest SBCs for both fibrosis and

NASH, we next investigated their effects on adipogenesis in vitro using an siRNA knockdown

experiment. In this experiment, we cultured human SGBS preadipocytes over the course

of differentiation from preadipocytes to adipocytes, and collected bulk RNA-seq data at

four time points. We first confirmed that the knockdown was effective, as evidenced by

the downregulation of both CCDC80 and SOD3 (p<0.05) in their respective knockdown

conditions (Figure 5b, S2). Next, we searched for DE genes between control and separate

knockdown of CCDC80 and SOD3 at each adipogenesis time point from baseline to seven

days (see Methods). Because we were interested in the impact of CCDC80 and SOD3

knockdown on adipogenesis specifically, we restricted the genes tested for DE to a list of

preadipocyte, adipocyte, and adipogenesis marker genes (n=492 genes tested, see Methods).

We found evidence suggesting that CCDC80 contributes to NAFLD progression by in-
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Figure 4: Selection of the key SBCs using the best subsets analysis, motivated by

our prior gene-gene correlations observed in the adipose expression of the SBCs.

We filtered the list of 10 SBCs further by testing the proportion of variance explained in

steatosis, fibrosis, and NASH by the adipose expression of the SBCs. (a) Pairwise gene-gene

correlation structure between the adipose expression of the SBC genes. Each box represents

the strength of the pairwise Pearson correlation between the adipose expression of the SBCs.

Green boxes correspond to a positive correlation, and purple boxes correspond to a negative

correlation. “X” indicates that the correlation is non-significant. Genes are ordered by the

first principal component (PC). These correlations motivate the idea that a small subset of

the SBCs can capture most of the expression of all 10 SBCs, which we then tested in the best

subsets analysis. (b) Results of the best subsets analysis. For steatosis, fibrosis, and NASH,

the best subset of significant SBCs was chosen by the leaps algorithm, based on the variance

in the NAFLD trait explained by each combination of genes. P-values were calculated based

on a permutation test (B=100,000) (see Methods). To capture genes involved in the early

onset of NAFLD, only the 3 genes that were uniquely DE for steatosis in the adipose tissue

were considered for the steatosis model.
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hibiting the ability of adipose tissue to produce new adipocytes to store fat. This was

supported by the observation that knockdown of CCDC80 during adipogenesis significantly

increased the expression of fatty acid master transcription factor SREBF1 at 7 days (log

fold-change in knockdown compared to control (logFC)=1.547, p=8.608 ∗ 10−4), as well as

TG hydrolysis enzyme Lipoprotein Lipase (LPL) at 7 days (logFC=2.597, p=7.215 ∗ 10−4)

(Figure 5). Of the 141 adipogenesis pathway genes we downloaded from WikiPathways, 13

were DE during at least one timepoint in the CCDC80 knockdown.

We also found evidence suggesting that SOD3 protects against NAFLD by promoting a

healthy satiety feedback loop. This was supported by the fact that the knockdown of SOD3

during adipogenesis significantly decreased the expression of the satiety signaling protein

LEP at 4 days (logFC=−0.651, p=1.966∗10−4) (Figure S2). 17 of the adipogenesis pathway

genes were DE during at least one timepoint in the SOD3 knockdown.
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Figure 5: CCDC80 knockdown in human preadipocytes differentiated to

adipocytes activates known drivers of adipogenesis. We knocked down CCDC80

using siRNA transfection in a culture of human SGBS preadipocyte cells (see Methods), and

measured expression via RNA-seq at 4 time points during adipogenesis. We then performed

a differential expression (DE) analysis between the CCDC80 gene knockdown and scramble

conditions at each time point. (a) Results of the DE analysis. The X-axis represents the log

fold-change (logFC) of all 43 genes which were DE in at least one time point; the Y-axis the

gene names; and facets the time points. Blue genes were expressed significantly more in the

CCDC80 knockdown, and red genes were expressed less. (b) Mean expression of CCDC80

and selected well known examples of adipogenesis genes in the scramble and knockdown

samples. The X-axis represents the time point; the Y-axis counts per million (CPM); facets

the gene name; error bars the mean±standard deviation; and colors the direction of DE

at 7D. Stars indicate the significance of DE between the knockdown and scramble samples:

“***”=adjP<0.001; “**”=adjP<0.01; “*”=adjP<0.05; “.”=adjP < 0.1.
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Figure S1: A total of 698 genes are differentially expressed (DE) for steatosis, and

282 genes for fibrosis, in the obese adipose tissue from the KOBS participants.

We performed DE analysis on bulk RNA-seq data from subcutaneous adipose biopsies in the

KOBS cohort, as described in Figure 2. Volcano plots show the results of the steatosis (a)

and fibrosis (b) DE analyses in the adipose tissue. In both plots, the X-axis represents log

fold-change (logFC) in adipose bulk RNA-seq data from individuals with NASH and those

with healthy livers. The Y-axis represents the negative log of the DE p-value, adjusted for

multiple testing with the Benjamini-Hochberg procedure. Significant SBCs identified in our

filtering steps (Figure 3) are highlighted.
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Figure S2: Knockdown of SOD3 in human preadipocytes differentiated to

adipocytes deactivates known drivers of healthy energy homeostasis. We knocked

down SOD3 using siRNA transfection in a culture of human SGBS preadipocyte cells (see

Methods), and performed differential expression (DE) analysis in the same way as the

CCDC80 knockdown analysis described in Figure 5. (a) Results of the DE analysis. The

X-axis represents the log fold-change (logFC) of all 54 genes which were DE in at least

one time point during the differentiation; the Y-axis the gene names; and facets the time

points. Blue genes were expressed significantly more in the SOD3 knockdown, and red genes

were expressed less. (b) Mean expression of SOD3 and selected well known examples of

adipogenesis and satiety signaling genes in the scramble and knockdown samples during dif-

ferentiation. The X-axis represents the time point; the Y-axis counts per million (CPM);

facets the gene name; error bars the mean±standard deviation; and colors the direction of

DE at 4D. Stars indicate the significance of DE between the knockdown and scramble sam-

ples: “***”=adjP<0.001; “**”=adjP<0.01; “*”=adjP<0.05; “.”=adjP < 0.1.
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CHAPTER 3

Discussion

We hypothesized that in some obese individuals, obesity induces pathological inflammatory

changes in the subcutaneous adipose tissue, leading to ectopic deposition of fat into the liver

and driving the development of NAFLD, and that these mechanisms could be traced without

liver biopsy or abdominal imaging using adipose aware SBCs. To test our hypothesis, we

first demonstrated that there is crosstalk between the adipose tissue and liver by identifying

correlation between adipose and liver gene co-expression networks associated with NAFLD

and related metabolic traits. Next, we identified 645 adipose tissue aware DE genes for

liver histology-based NAFLD phenotypes in extremely obese individuals with and without

NAFLD. Filtering these adipose aware DE genes resulted in the identification of 10 SBCs,

which are DE in adipose, are not DE in liver, show adipose aware expression, and encode

proteins secreted to serum. We then identified CCDC80 and SOD3 as the key SBCs for

fibrosis and NASH based on the best subsets analysis, in which they explain the maximum

variance in fibrosis and NASH compared to all other subsets of DE SBCs, as well as other

pairs of genes genome-wide in our permutation analysis. Finally, we demonstrated that

both CCDC80 and SOD3 influence adipogenesis by knocking them down during human

preadipocyte differentiation.

Previous work has utilized transcriptomics data and direct serum protein measurements

paired with NAFLD diagnosis to search for noninvasive biomarkers for NAFLD [17, 41–43].

However, to the best of our knowledge, our study is the first to leverage a dual-tissue cohort

with both adipose tissue and liver RNA-seq available, paired to a gold-standard NAFLD
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diagnosis using liver histology. With our cross-tissue analysis, which scanned genome-wide

for SBCs, we add this unique dual-tissue perspective, focused on obesity-driven, adipose-

origin, NAFLD, to the body of previous NAFLD studies [17, 41–43]. While previous work

has assessed the connection between either NAFLD and the adipose transcriptome [44, 45]

or NAFLD and the liver transcriptome [43], our study made use of RNA-seq data measured

from both adipose and liver in the same individuals. This was crucial in identifying our

SBCs, because we were able to pinpoint genes involved in the adipose origin of NAFLD,

specifically by removing the liver NAFLD DE genes. We reasoned that a large proportion

of the liver NAFLD DE genes would be driven by the immune responses of the liver to the

ectopic fat deposits present in NAFLD, and thus they would not be ideal biomarkers for

detecting the onset of adipose-origin NAFLD. Detecting adipose aware SBCs is important,

because adipose tissue is known to secrete a wide array of signaling proteins [46, 47], which

opens up the possibility for capturing the specific adipokines associated with NAFLD in

serum.

Our selection criteria for SBCs, which are specifically tailored to a cross-tissue transcrip-

tomic design, provide additional novelty to our study. The HPA secretome has been applied

previously to search for biomarkers [48], and the GTEx median TPM data has been applied

to study NAFLD [49]; however, ours is the first to apply the two resources in combination

as a set of filtering criteria for SBCs. These publicly available datasets allowed us to imple-

ment a crucial element of our study design, i.e. the selection of the adipose aware NAFLD

DE genes which are most likely to be detectable in serum. Thus, our SBCs are DE in adi-

pose tissue but not the liver for the three key NAFLD traits, steatosis, fibrosis and NASH,

and in addition are expressed highly in adipose tissue, secreted to serum, and expressed

substantially more in the adipose tissue than in the liver.

Due to our integrative filtering design, CCDC80 and SOD3 are likely to be strong indi-

cators of NAFLD. Both of these genes meet all of our filtering criteria for SBCs, and our

significant genome-wide permutation results show that they explain more variance in fibrosis
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and NASH than all other pairs of genes. While our knockdown results do not prove that

CCDC80 and SOD3 are causal in the pathogenesis of NAFLD, a biomarker can be effec-

tive whether or not it is causal. Our evidence that SOD3 and CCDC80 modulate healthy

adipose tissue functions demonstrates their premise as indicators of the onset of NAFLD,

either as responsive or causal players, and validates our computational methods of discovery.

Additionally, previous work on the function of both genes aligns with our results [50–53].

As we observed in our study, CCDC80 has been shown to associate positively with adverse

metabolic traits, including fatty liver [50–52]. In several mouse models described previously,

CCDC80 knockdown decreased plasma TGs [50], and CCDC80 knockout promoted adipoge-

nesis [51]. In a human study, CCDC80 was quantified in serum, and serum CCDC80 levels

correlated positively with obesity risk, inflammation markers, and liver steatosis [52]. It has

been proposed that CCDC80 increases hypertriglyceridemia by decreasing the expression of

LPL, a key catalyst in hydrolysis of TGs [50]. Gong et al. observed that CCDC80 knock-

down in vascular smooth muscle cells in vitro increased LPL expression, while CCDC80

overexpression decreased LPL [50]. In agreement with this evidence, we observed an upreg-

ulation of LPL in our CCDC80 knockdown in preadipocytes during adipogenesis at day 7.

Additionally, we observed that the key TF of fatty acid biosynthesis, SREBF1, was signif-

icantly upregulated at day 7 in the CCDC80 knockdown during adipogenesis. SREBF1 is

widely accepted as a TF promoting adipogenesis [30, 31, 54]. SREBF1 exhibits a steep and

sustained increase in expression during the induction stage of adipogenesis [30], preceding

the increases in expression of other known master adipogenesis regulators PPARG [55] and

CEBPA [30, 56]. Kim et al. demonstrated the direct nature of the interaction between

SREBF1 and PPARG by showing that cells expressing SREBF1 preferentially synthesize

ligands for PPARG [54]. Thus, our results suggest that CCDC80 contributes to the patho-

genesis of NAFLD by preventing adipose tissue from performing its vital functions through

adipogenesis.

Our results also corroborate evidence supporting SOD3 as an adipose origin biomarker for
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NAFLD. SOD3 is seen as a protective factor against oxidative stress, which has been shown

to be a major contributor to the pathogenesis of NAFLD [53, 57–59]. SOD3 knockdown in

human adipocytes caused increased accumulation of TGs [53], and global SOD3 knockout

mice exhibited increased obesity and insulin resistance [53]. Adipocyte diameters in the white

adipose tissue of mice overexpressing SOD3 on a high-fat diet were significantly smaller

than those of control mice on a high-fat diet, and were almost identical to control mice

on a regular chow diet [60]. Previous work suggests that SOD3 functions as a protective

mechanism against NAFLD development by inhibiting the expression of inflammatory genes

in adipose tissue [60], which aligns well with our hypothesis that NAFLD onset is triggered

by dysfunctional and inflamed adipose tissue. Gao et al. also detected SOD3 protein in

the supernatant of human adipocytes, suggesting it is secreted by the adipose tissue [53].

Additionally, we observed that LEP was significantly downregulated in the SOD3 knockdown

at day 4 during adipogenesis. LEP encodes an adipokine secreted from adipose tissue that

acts on the brain, playing a major role in energy homeostasis and satiety signaling [61–63].

It has been shown that LEP acts as the primary link between adipose tissue and the brain,

in a negative feedback loop that decreases hunger urges with increasing energy intake and

fat accumulation [61]. However, this same system has been demonstrated to break down

in obesity, where LEP deficiency and/or LEP resistance hinder the ability of the body to

balance energy intake and expenditure [61]. Taken together, our SOD3 knockdown results

suggest that the normal function of SOD3 is to protect against NAFLD by promoting effective

energy homeostasis.

CCDC80 and SOD3, along with the full list of 10 SBCs, should be considered for inclusion

in a future serum biomarker panel to diagnose NAFLD. Several SBCs have been previously

measured in serum, using ELISA kits and other related methods [52, 53, 64–68], however

further investigation is needed. While our study leveraged the list of secreted proteins from

the HPA, the majority of our analysis was done in a transcriptomic paradigm, under the

assumption that mRNA abundance of the SBCs in adipose tissue is an effective proxy for
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their corresponding protein levels in serum. Future vetting of our SBCs should involve

comparing their protein levels in serum between individuals with and without NAFLD.

Our present study is limited by the fact that our discovery cohort originates from a

genetically relatively homogenous European population, the Finns [69]. It is crucial to follow

up our work with future studies in populations underrepresented in genomics, including Latin

American, African, and Southeast Asian populations. Here, we made use of the European

KOBS cohort because it was the first to make our dual-tissue NAFLD study design possible.

Currently, diagnosis of NAFLD requires either a liver biopsy, which necessitates an in-

vasive surgery or inpatient procedure, or abdominal imaging (MRI or elastography), which

is costly and time consuming [2]. Furthermore, NAFLD often remains undiagnosed and

is therefore grossly underdiagnosed [2], emphasizing the pressing need for SBCs. Our cell

culture-validated SBCs have strong potential to be developed into an effective blood panel

for NAFLD, which could be used in the primary care setting as an initial screening step.

This could allow for more efficient primary care screenings for NAFLD and its precursors,

including steatosis, and ultimately improve patient health by catching and treating NAFLD

earlier in its development. We envision that high-risk patients for NAFLD, specifically obese

patients, could greatly benefit from this diagnostic option.

In conclusion, leveraging dual-tissue RNA-seq data from adipose tissue and liver, paired

with liver histology-based NAFLD diagnosis, we discover 10 serum biomarker candidates for

NAFLD. We identified CCDC80 and SOD3, which explain maximum variance in fibrosis and

NASH compared to all SBCs, as the key SBCs, and followed up this conclusion with func-

tional knockdown experiments throughout adipogenesis. Our methodology can be extended

to study cross-tissue communications and discover SBCs in any complex disease, providing

that a cohort of RNA-seq data from multiple tissues in the same individuals is available along

with detailed phenotype data. Overall, identifying SBCs involved in tissue-tissue crosstalk

using our integrative transcriptomics pipeline can contribute to improved understanding and

earlier clinical detection and diagnosis of complex diseases in the future.
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CHAPTER 4

Methods

4.1 Study cohorts

4.1.1 Kuopio Obesity Surgery Study (KOBS) cohort used for WGCNA and

DE analysis

The KOBS cohort was recruited at the University of Eastern Finland among extremely

obese Finnish individuals who underwent bariatric surgery, as described in detail previously

[70–72]. During the surgery, subcutaneous adipose and liver biopsies were collected for

bulk RNA-sequencing as well as serum samples for clinical measurements, as described in

detail previously [73]. The KOBS participants have detailed phenotype data measured for

histological, metabolic, and anthropometric traits. These include age, sex, BMI, serum lipid

and glucose levels, and liver histology measurements (i.e. liver fibrosis, liver steatosis, and

NASH diagnosis). All individuals in the KOBS cohort provided a written informed consent,

and the study protocols were approved by the local ethics committee.

4.2 Adipose and liver bulk RNA sequencing in the KOBS cohort

The adipose RNA-seq data [70] (n=262) were generated by sequencing TruSeq stranded

libraries on the HiSeq4000 sequencing platform, producing an average of 42.38 M reads [70].

The liver RNA-seq data [72] (n=267) were generated by sequencing Ribo-Zero stranded

libraries on the HiSeq2500 sequencing platform, producing an average of 39.73 M reads [72].
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We aligned both the adipose and liver bulk reads to the GRCh37/hg19 reference using a

2-pass pipeline with STAR [74] and performed QC using PicardTools [75].

4.3 Identification of adipose and liver cell-type marker genes

To identify cell-type marker genes in adipose tissue and liver, we leveraged two additional

cohorts where single nucleus RNA sequencing (snRNA-seq) was performed.

In the adipose cohort, snRNA-seq was performed on subcutaneous adipose biopsies from

15 individuals in the Finnish Twin and CRYO studies, as described in detail previously [76].

All individuals provided written informed consent, and the study protocols were approved

by the local ethics committee. Filtering was performed with DIEM [77], and clusters were

identified using Seurat v3.2.3 [78]. Cell-type annotation was performed using SingleR v1.2.4

[79], and cell-type marker genes were selected based on a Wilcoxon rank-sum test [76].

In the liver cohort, female patients (n=3) underwent surgery at the Dumont-UCLA Liver

Cancer Center to treat hepatocellular carcinoma (HCC), as described in detail previously

[80]. All participants in the study provided written informed consent, and the study proto-

cols were approved by the UCLA IRB. During the surgery, tumor and adjacent non-tumor

biopsies were collected. In the present study, we used only the snRNA-seq samples from

non-tumor tissue. To identify marker genes for each liver cell-type, we tested normalized

expression between nuclei within and outside a cluster. We normalized raw counts by first

scaling all nuclei to sum to 1,000, then log-transforming. Next, we used the FindAllMarkers

function from Seurat [78] to run differential expression. For each cell-type, we performed a

logistic regression for each gene testing expression of nuclei within the cell-type against those

classified as any other cell-type. We kept marker genes with an average log2 fold change of

at least 0.1. We corrected p-values for multiple testing across all genes and cell-types using

FDR.
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4.4 Weighted gene co-expression network analysis (WGCNA) of

KOBS adipose and liver expression data

To investigate molecular crosstalk between subcutaneous adipose tissue and liver, we used

the KOBS expression data to construct weighted gene correlation networks with the R [33]

package WGCNA v1.70 [34, 35]. In this and all other statistical analyses, we utilized the

R packages ggplot2 [81] and tidyverse [82] extensively. Before creating the networks, we

first normalized the expression data according to the developers’ instructions for RNA-seq

data. Briefly, we selected genes with nonzero expression in 90% of samples (as described

previously [83]), calculated their counts per million (CPM), performed a rank-based inverse

normal transformation (INT), regressed out common RNA-seq covariates (age, sex, RNA

integrity number (RIN), percent uniquely mapped reads, percent intronic bases, and median

3’ bias), and thereafter performed a second INT. This resulted in 21,408 and 22,500 input

genes in the adipose tissue and liver, respectively. After normalization, we verified that no

extreme outliers existed in the data by hierarchically clustering the samples.

Next, we constructed two independent co-expression networks, one in the subcutaneous

adipose tissue and one in the liver, using WGCNA [34, 35, 84]. We followed the “step-by-step

network construction” tutorial from the WGCNA website, which involved calculating an ad-

jacency matrix, converting it to a dissimilarity topological overlap matrix (TOM), clustering

genes hierarchically based on the TOM, performing a dynamic tree cut, and merging mod-

ules based on their module eigengene (ME) correlation. When constructing the adjacency

matrix, we used a soft threshold power of 7 and 10 in adipose and liver, respectively, based

on inspection of the plots showing the effect of soft threshold power on mean connectivity

and scale free topology model fit. When merging modules, we used a cut height of 0.10 and

0.25 for adipose and liver, respectively, based on inspection of the ME dendrograms. The

completed networks contained 57 and 28 modules for adipose and liver, respectively.

With the two networks constructed, we followed the “Relating modules to external clinical
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traits” tutorial to correlate all MEs in both networks with relevant metabolic and histological

phenotypes: liver steatosis, liver fibrosis, NASH diagnosis, type 2 diabetes mellitus (T2D),

statin usage, BMI, triglycerides, and fasting glucose adjusted for T2D. We assessed the

significance of these correlations after Bonferroni correction. Additionally, we correlated the

MEs of both networks with each other, and assessed the significance of these correlations

after Bonferroni correction.

Finally, we calculated the functional enrichment of modules in both networks. First,

we calculated the KEGG pathway enrichment using an overrepresentation analysis (ORA)

in WebGestalt 2019 [85, 86]. Next, we calculated the enrichment (compared to all genes

with nonzero expression in 90% of samples) of adipose aware DE genes; unique cell-type

marker genes for adipocytes, preadipocytes, and hepatocytes; and genes which were both

DE and unique cell-type markers, respectively, using a hypergeometric test. We also iden-

tified transcription factors in the modules using PANTHER v16 [87]. We calculated the

module membership of key genes identified in the functional enrichment tests using a Pear-

son correlation with the ME.

4.5 DE analysis of KOBS adipose and liver expression data

To identify genes differentially expressed (DE) between the KOBS participants with and

without NAFLD, we performed case-control DE analysis on KOBS adipose and liver expres-

sion data for steatosis, fibrosis, and NASH, diagnosed by liver histology. In each analysis,

the cases were patients with a nonzero grade for the liver histology phenotype being tested

(n=158, 118, and 85 for steatosis, fibrosis, and NASH, respectively). The controls were

patients with a grade of zero in all three liver histology phenotypes (n=87 for all tests).

To prepare for the DE analysis, we performed trimmed mean of M values (TMM) nor-

malization on the adipose and liver bulk RNA-seq data using edgeR v3.32.1 [88–90]. To

run the DE analysis, we then input these normalized expression values into the limma-voom
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pipeline v3.46.0 [36–38], correcting for the same covariates that were regressed out in the

WGCNA analysis. We assessed the significance of DE genes after Benjamini-Hochberg cor-

rection. After identifying the DE genes for steatosis, fibrosis, and NASH in adipose and liver

tissue, we calculated the enrichment of cell-type marker genes in all DE gene lists using a

hypergeometric test.

4.6 Filtering of adipose NAFLD DE genes for adipose-origin

serum biomarker candidates

To identify adipose-origin serum biomarker candidates (SBCs) for NAFLD, we applied a

filtering approach that focused on the adipose NAFLD DE genes. We started with the list

of genes which were DE for any of the three liver histology traits (steatosis, fibrosis, or

NASH) in the subcutaneous adipose tissue. Next, we removed the genes that were also DE

for any of the same NAFLD traits in the liver. Next, we downloaded tissue-specific median

transcripts per million (TPM) data from GTEx, and selected the genes that had both the

median TPM>30 in subcutaneous adipose tissue and whose ratio of subcutaneous adipose

median TPM to liver median TPM was >10. Finally, we selected the genes that encoded

proteins secreted to serum, based on the Human Protein Atlas list of secreted proteins [39].

We designated the adipose NAFLD DE genes that satisfied all of these filters as SBCs.

To assess the relationship of the SBCs to each other, we correlated their adipose ex-

pression. First, we normalized the data by calculating the log-CPM of all SBCs. Then,

we computed the Pearson correlation of every pairwise combination of SBCs using the R

package Hmisc v4.6 [91], and assessed the significance of each correlation after Bonferroni

correction.
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4.7 Best subsets approach to identify key SBCs

To find the most effective subset of SBCs, we tested the proportion of variance in steatosis,

fibrosis, and NASH explained by the adipose expression of different combinations of SBC,

using the leaps algorithm. To normalize the data, we first calculated the adipose counts

per million (CPM) of the SBCs, then performed an INT. Next, we used linear models in

a best subsets analysis to test the variance in NAFLD traits explained by adipose SBC

expression, using the regsubsets function from the R package leaps v3.1 [40]. This package

uses an iterative algorithm to identify the best-fitting linear model with each number of

genes included, ranging from a single variable to every variable provided.

For fibrosis and NASH, we tested all SBC genes DE for the target phenotype as possible

inputs to the model. For steatosis, to identify genes involved in the early onset of NAFLD, we

only tested SBC genes exclusively DE for steatosis, and not fibrosis or NASH. We included

RNA-seq covariates (the same used in WGCNA and DE) in these analyses by regressing

them out of the transformed CPMs before running leaps.

We identified the models that explained maximum variance in steatosis, fibrosis, and

NASH using the Bayesian Information Criterion (BIC), and assessed the significance of these

models with a permutation test (B=100,000). For each permutation, we selected a random

set of adipose genes with nonzero expression in 90% of samples, equal to the number of genes

in the best subset model chosen by leaps. We then used a linear model to test the variance

in the phenotype being assessed that was explained by the adipose expression of those genes.

The p-value for each SBC model was defined as the proportion of random permuted models

whose r2 value was greater than the SBC model.
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4.8 SGBS Cell culture

Simone Golabi Behmel Syndrome (SGBS) pre-adipocyte cells [92] were maintained in DMEM/F-

12 Nut media (Lonza # BE12-719F) with 4µg/ml Pantothenate (Sigma, # P-5155), 8µg/ml

Biotin (Sigma # B-4639), 10% fetal bovine serum (FBS), 1% penicillin-streptomycin. These

cells undergo complete differentiation into mature adipocytes in 14 days [93]. When pre-

adipocytes reached confluence they were treated with serum free differentiation medium

DMEM/F-12 supplemented with 4µg/ml Pantothenate, 8µg/ml Biotin, 1% penicillin-streptomycin,

2 µmol/l rosiglitazone (Cayman Chemical # CAT 71740), 25 nmol/l dexamethasone (Sigma

# D-4902), 0.5 mmol/l methylisobuthylxantine (Sigma # I5879), 0.1 µmol/l cortisol (Sigma

# H0888), 0.01 mg/ml transferrin (Sigma # T8158), 0.2 nmol/l triiodotyronin (Sigma #

T6397), and 20 nmol/l human insulin (Sigma # I9278) for 7 days. This was followed with

cell culture in adipogenic medium DMEM/F-12 supplemented with 4µg/ml Pantothenate,

8µg/ml Biotin, 1% penicillin-streptomycin, 0.1 µmol/l cortisol, 0.01 mg/ml transferrin, 0.2

nmol/l triiodothyronine, and 20 nmol/l human insulin for an additional 7 days.

4.9 CCDC80 and SOD3 siRNA knockdown and sample

collection for RNA-seq experiment

The cells were seeded in a 6-well plate at 1.6 x 106 cells per well. Once the cells reached 50%

confluency, they were transfected with siRNA using lipofectamine RNAiMAX (Invitrogen)

according to the manufacturer’s instructions. Predesigned siRNAs from Thermo Fisher

Scientific were used [scrambled (control) siRNA (30 nM) (ref no: 4390843), CCDC80 (60

nM) (ID: s45625), SOD3 (60 nM) (ID: s13272)].

During differentiation, the cells are devoid of serum and they stop dividing. This enables

the cells to retain the siRNA transfection mix for up to 14 days, as previously shown [94]. In

this study the cells were differentiated, and the samples were collected at different timepoints.
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The cells were incubated with the transfection mix for 48h, after which the baseline samples

were collected. The rest of the samples were treated with differentiation media (as described

above), and collection was done at 24h, 4 days and 7 days.

4.10 siRNA knockdown RNA-seq library preparation

Cells were lysed and RNA was extracted using miRNeasy micro kit (Qiagen). Library sam-

ples were prepared using QuantSeq 3’ mRNA-seq library prep kit FWD (Lexogen) according

to the manufacturer’s instructions, amplified for 18 cycles, and then sequenced with Illumina

Next seq 500 for 75 cycles.

4.11 Alignment and quantification of siRNA knockdown

RNA-seq data

We aligned raw QuantSeq RNA-seq reads from the siRNA knockdown experiment to the

GENCODE GRCh37 human reference genome and annotation v19 using STAR v2.5.2 [74].

We measured control, scrambled (control) siRNA, CCDC80 siRNA knockdown, and SOD3

siRNA knockdown conditions across the four differentiation time points, with 3-4 replicates

per condition, resulting in a total of 59 samples. Before running the alignment, we first

trimmed the raw reads with cutadapt v3.5, using a polyA sequence concatenated to the

standard Illumina adapter as the trimming target. We used a 2-pass method to align the

trimmed reads, which had an average read length of 83.5bp. After alignment, we verified the

quality of our data using FastQC, based on statistics including sequence quality, GC content,

and adapter content. Finally, we quantified gene expression using the Subread v1.6.2 package

featureCounts, and selected only uniquely mapped reads for the expression data.
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4.12 DE analysis of siRNA knockdown expression data

To identify genes DE between the CCDC80 and SOD3 knockdown samples and control

samples, we performed DE analysis of the knockdown experiment expression data. First,

we removed lowly expressed genes by selecting only those which had a total count of >10

summed across the samples within one group (control or knockdown). Next, we restricted the

genes being tested for DE to SOD3, CCDC80, unique cell-type marker genes for adipocytes

and preadipocytes, and adipogenesis pathway genes downloaded from WikiPathways WP236

[95] (n=492 genes tested). We also excluded the non-transfected control samples, resulting

in a final sample size of 28 for both CCDC80 and SOD3.

We ran the limma-voom pipeline on the knockdown expression data in the same way as

described for the KOBS DE analyses, except without including any covariates, thus com-

paring the knockdown samples to the scrambled (control) siRNA samples independently at

each time point and for each knockdown condition (n=7 in all 8 tests). Our rationale for not

including typical technical covariates of RNA-seq is that this was an in vitro cell-line experi-

ment with isogenic replicates, in which the expression was assessed by performing QuantSeq

3’ tag-based sequencing instead of the regular, highly dynamic bulk RNA-seq analysis.

To interpret the results of the DE tests, we analyzed the lists of DE genes at each time

point. First, we verified that the knockdown was successful using the nominal p-values

for CCDC80 and SOD3 in all timepoints from the corresponding experiments. Next, we

overlapped the DE gene lists with the adipogenesis pathway genes from WikiPathways, and

focused on those marked as transcription factors, especially SREBF1. Finally, we overlapped

the lists of DE genes with SREBF1 binding targets downloaded from WikiPathways WP2706

and the TRANSFAC [96, 97] database.
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