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ABSTRACT

We evaluated the prospects of quantifying the parameterized post-Newtonian parameter β and solar quadrupole

moment J2� with observations of near-Earth asteroids with large orbital precession rates (9 to 27 arcsec century−1).

We considered existing optical and radar astrometry, as well as radar astrometry that can realistically be obtained

with the Arecibo planetary radar in the next five years. Our sensitivity calculations relied on a traditional covariance

analysis and Monte Carlo simulations. We found that independent estimates of β and J2� can be obtained with

precisions of 6× 10−4 and 3× 10−8, respectively. Because we assumed rather conservative observational uncertainties,

as is the usual practice when reporting radar astrometry, it is likely that the actual precision will be closer to 2× 10−4

and 10−8, respectively. A purely dynamical determination of solar oblateness with asteroid radar astronomy may

therefore rival the helioseismology determination.
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1. INTRODUCTION

The parameterized post-Newtonian (PPN) formal-

ism is a useful framework for testing metric theories

of gravity (Will 2014). It consists of 10 dimension-

less parameters that describe the general properties of

the metric. In general relativity (GR), only 2 of the

10 parameters are non-zero. They are known as the

Eddington−Robertson−Schiff parameters γ and β. γ

represents the amount of curvature produced by a unit

mass, and β represents the amount of nonlinearity in

the superposition law for gravity.

Several techniques have been used to place obser-

vational bounds on these parameters (Will 2014), in-

cluding observations of the bending and delay of light

by spacecraft tracking (Bertotti et al. 2003, e.g.,) or

Very Long Baseline Interferometry (e.g., Lambert &

Le Poncin-Lafitte 2009), and fitting of ephemerides to

observations of planetary positions (e.g., Folkner 2009;

Fienga et al. 2011; Verma et al. 2014; Fienga et al. 2015).

In GR, γ and β are equal to one. Doppler track-

ing of the Cassini spacecraft has shown that γ does

not differ from one by more than 2 × 10−5 (Bertotti

et al. 2003). Ephemeris-based studies prior to 2009 indi-

cated that β − 1 does not differ from zero by more than

10−4 (Folkner 2009; Pitjeva & Pitjev 2014). More re-

cently, the availability of precise ranging data from the

MESSENGER Mercury orbiter (Solomon et al. 2001)

enabled improved estimates (Verma et al. 2014; Fienga

et al. 2015; Park et al. 2017). Here, we evaluate the

prospect of asteroid orbit precession measurements to

place more stringent bounds on β. We consider Earth-

based radar observations of near-Earth asteroids with

perihelion shifts larger than 10 arcsec century−1.

Orbital precession can also be caused by the nonuni-

formity of the gravity field that results from the oblate

shape of the Sun. The solar oblateness is character-

ized by the solar quadrupole moment, J2� (e.g., Kaula

2000). Simultaneous estimation of β and J2� requires

that the precessional effects due to GR and to the Sun’s

oblateness be disentangled. Fortunately, GR is a purely

central effect, whereas the oblateness-induced precession

has an inclination dependence. The two effects also have

a different distance dependence (Misner et al. 1973). As

a result, observations of a small sample of near-Earth

asteroids with a variety of semi-major axes and inclina-

tions (Table 1) can in principle be used to estimate β

and J2� (Margot 2003; Margot & Giorgini 2009).

Current estimates of the solar quadrupole moment

are typically derived on the basis of interior models

of the Sun constrained by helioseismology data (e.g.,

Mecheri et al. 2004; Antia et al. 2008). The current

best value from the helioseismology literature is J2� =

(2.2±0.1)×10−7 (Will 2014). Dynamical estimates that

do not rely on fits to helioseismology data yield similar

values of J2� = 2.3 ± 0.25 × 10−7 (Fienga et al. 2015)

and J2� = 2.25± 0.09× 10−7 (Park et al. 2017). High-

precision dynamical estimates are important to validate

our understanding of the interior structure of the Sun.

Our simulations of the determination of β and J2�
using a variety of asteroid orbits suggest that indepen-

dent values of β and J2� can be obtained with satisfac-

tory precision: with the traditionally conservative as-

signment of radar uncertainties, β can be constrained at

the 6 × 10−4 level and J2� can be constrained at the

3 × 10−8 level. With uncertainties that more closely

reflect measurement errors, this precision may be im-

proved by a factor of ∼3. (Section 4).

The outline of this paper is as follows. In Section 2,

we describe our choice of target asteroids. In Section 3,

we discuss the estimation of asteroid orbits with opti-

cal and radar measurements. Our dynamical model and

data reduction procedures are described in Section 3.1

and 3.2, respectively. Orbit determination results are

presented in Section 3.3. Simulations of the determina-

tion of β and J2� are described in Section 4.

2. TARGET ASTEROIDS

The per-orbit secular advance in the angular position

of the perihelion is given by (Misner et al. 1973)

δω =
6πGM�

a(1− e2)c2

[
(2− β + 2γ)

3

]
+

6π

2
R2

�
(1− 3/2 sin2 i)

a2(1− e2)2
J2�,

(1)

where ω is the argument of perihelion, GM� is the Sun’s

gravitational parameter, R� is the radius of the Sun, c

is the speed of light, and a, e, and i are the semi-major

axis, eccentricity, and orbital inclination (with respect

to the solar equator) of a planetary body, respectively.
Because both GR and solar oblateness affect perihelion

precession, estimates of β and J2� are highly correlated

and it is desirable to track a variety of solar system

bodies with a range of a, e, i values to disentangle the

two effects.

Our selection of target asteroids follows the method of

Margot (2003). We select asteroids with both large per-

ihelion shift values and favorable observing conditions

with radar (Table 1 and Figure 1). This sample of as-

teroid orbits includes a wide range of semi-major axes,

eccentricities, and inclinations, which are advantageous

when simultaneously solving for β and J2�. The pre-

dicted rates of perihelion advance, ˙δω, shown in Figure

1 and Table 1 were computed assuming γ = β = 1 and

J2� = 2.2× 10−7.

3. METHODS
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Table 1. Selected asteroids and orbital elements: Semima-
jor Axis (a), Eccentricity (e), and Inclination with Respect
to the Ecliptic (iec) and Sun’s equator (ieq).

Target a (au) e iec (deg) ieq (deg) ˙δω (′′ cy−1)

1566 Icarus 1.078 0.827 22.9 15.8 10.1

1998 TU3 0.787 0.484 5.41 3.41 9.11

1999 KW4 0.642 0.688 38.9 46.0 22.1

1999 MN 0.674 0.665 2.02 5.25 18.5

2000 BD19 0.876 0.895 25.7 28.0 26.9

2000 EE14 0.662 0.533 26.5 26.1 15.0

2001 YE4 0.677 0.541 4.82 11.0 14.4

2004 KH17 0.712 0.499 22.1 14.9 12.0

2006 CJ 0.676 0.755 10.3 16.1 23.7

Note. The predicted rate of perihelion advance in arcsec
century−1 (′′ cy−1), ˙δω, was computed using Equation (1).

We first determined nominal trajectories for asteroids

in our sample with astrometric (i.e., positional) data,

both optical and radar (Table 2). The process involved

three steps: (1) numerical integration of each asteroid’s

orbit and calculation of partial derivatives of the equa-

tions of motion with respect to the solve-for parameters

(i.e., the six components of the state vectors), (2) eval-

uation of simulated optical and radar observables and

computation of their partial derivatives with respect to

the solve-for parameters, and (3) least-squares adjust-

ments to the solve-for parameters.

We used the Mission Operations and Navigation

Toolkit Environment (MONTE) software (Evans et al.

2016, MONTE v124) for orbit determination and pa-

rameter estimation. MONTE is an astrodynamics com-

puting platform developed by NASA’s Jet Propulsion

Laboratory (JPL). MONTE is used for spacecraft nav-
igation and trajectory design. MONTE has also been

used for a variety of scientific purposes, including grav-

ity analysis (Verma & Margot 2016) and ephemeris

generation (Greenberg et al. 2017).

3.1. Dynamical model

MONTE uses a variable-step Adams-Bashforth

method to numerically integrate the equations of motion

and corresponding partial derivatives. Our dynamical

model includes gravitational forces from the Sun, 8 plan-

ets, and 21 minor planets with well-determined masses

(Konopliv et al. 2011), general relativistic effects, and

perturbations due to the oblateness of the Sun.

In addition to these forces, we have also modeled the

nongravitational Yarkovsky orbital drift. Perihelion ad-

vance due to GR and solar oblateness does not affect

the value of the semi-major axis, but Yarkovsky drift

does. This nongravitational effect has been shown to

affect the semi-major axes of small bodies due to the

anisotropic re-emission of absorbed sunlight (e.g., Bot-

tke et al. 2006). The change in semi-major axis with

time due to Yarkovsky orbital drift, 〈da/dt〉, was esti-

mated for all target asteroids with the method of Green-

berg et al. (2017). The values ranged in amplitude be-

tween 4 and 50 au/My, which is plausible for kilometer-

sized bodies. Only one target (1566 Icarus) is common

between our target list and the 42 Yarkovsky detections

of Nugent et al. (2012), and only one target (1999 MN)

is common between our target list and the 21 Yarkovsky

detections of Farnocchia et al. (2013). In both cases, our

Yarkovsky drift estimates are consistent with and better

constrained than prior work.

To initialize the integration process, we used a priori

state vectors extracted from the Minor Planet Center

(MPC) database (Minor Planet Center 2017).

3.2. Existing optical and radar astrometry

We used both optical and radar astrometry to de-

termine the nominal trajectory of each asteroid. Op-

tical measurements provide positional information on

the plane of the sky. They are typically expressed as

right ascension (R.A.) and declination (decl.) in the

equatorial frame of epoch J2000.0. We downloaded op-

tical astrometry from the MPC (Minor Planet Center

2017). We debiased optical astrometry and assigned

data weights according to the algorithm recommended

by Farnocchia et al. (2015).

Radar astrometry consists of round-trip light time,

a measurement that can provide the asteroid−observer

distance, and Doppler shift, a measurement that can

provide the line-of-sight velocity of the asteroid with re-

spect to the observer. Radar measurements have frac-

tional uncertainties as small as 10−8. The addition of

radar astrometry can decrease orbital element uncer-

tainties by orders of magnitude compared to an optical-

only orbit solution (Ostro & Giorgini 2004). However,

the number of radar measurements is typically small

compared to the number of optical observations (Table

2).

We processed a total of 12,102 optical measurements

(R.A. and decl. pairs obtained at 6051 epochs), as well

as 56 range and 17 Doppler measurements that have

been published.

3.3. Orbit determination for nominal trajectories

In order to compute nominal asteroid trajectories, we

computed the expected values of the observables and

their partial derivatives with respect to initial state vec-

tors. We calculated weighted residuals by subtracting
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Figure 1. Distribution of asteroid orbital elements for asteroids in our sample. The corresponding rates of perihelion shift,
predicted with Equation (1), are shown as contour lines.

computed measurements (C) from observed measure-

ments (O) and dividing the result by the correspond-

ing observational uncertainty (σ). We adjusted initial

state vectors with an iterative least-squares techniques

that minimized the sum of squares of weighted residuals.

Because there are 9 targets and 6 orbital elements per

asteroid in the nominal situation (γ = 1, β = 1, J2� =

2.2× 10−7), we adjusted a total of 54 parameters.

We defined outliers as measurements with weighted

residuals in excess of three. We identified and re-

jected 127 epochs with outliers in the optical astrome-

try. There were no outliers in the radar astrometry. We

obtained a measure of the quality of the fit at each itera-

tion by computing the dimensionless rms of the weighted

residuals:

RMS =

√√√√ 1

N

N∑
i=1

(
Oi − Ci
σi

)2

, (2)

where N is the number of observations, Oi is the ith ob-

servation, Ci is the ith computed measurement, and σi
is the observational uncertainty associated with the ith

observation. We stopped the iterative process when the

change in the RMS of the weighted residuals between

two successive iterations was less than 0.01%. RMS

residuals smaller than one indicate solutions that pro-

vide good fits to the observations (Table 2).

3.4. Anticipated radar astrometry

The objectives of this study are to evaluate the preci-

sion with which PPN parameter β and solar quadrupole

moment J2� can be determined from orbital fits con-

strained by existing and anticipated optical and radar

astrometry. To quantify the effect of anticipated radar

astrometry on the determination of these parameters, we

simulated all existing optical and radar astrometry (Ta-

ble 2) and a number of anticipated Arecibo Observatory

range measurements (Table 3) with the nominal aster-

oid trajectories described above. We did not attempt

to simulate the effect of additional optical astrometry,

which is expected to improve the overall quality of the

fits, albeit not as powerfully as radar astrometry (Ostro

& Giorgini 2004).

To supplement the published astrometry with realis-

tic anticipated values, we used the epochs of closest ap-

proach to Earth when the asteroids are detectable with

the Arecibo radar (Table 3). On the basis of prior expe-

rience, we assumed that two to four independent data

points would be collected at each future apparition. For

apparitions in the past (identified in bold in Table 3),

we used the number of data points that were actually

obtained. In total, we simulated 61 independent range

measurements in addition to the 56 published values.

For each realization in our simulations, we added noise

to the observations by randomly drawing from a Gaus-

sian distribution with zero mean and standard deviation

equal to the observational uncertainty. Observational

uncertainties for observations in the future were assigned

according to signal-to-noise ratio (S/N) and experience,

with values ranging between 30 and 900 m. Uncertain-

ties for observations in the past mirrored the actual mea-

surement uncertainties adopted by the observer for these

data points.

3.5. Orbit determination with estimation of β and J2�

We assigned solve-for parameters to one of two cate-

gories: local and global. Local parameters are specific to

each asteroid, i.e., the 6 orbital elements or initial state
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Table 2. Selected asteroids and corresponding observations: Observational Interval, Number of Optical Pairs (R.A. and Decl.)
of Observations, and Number of Published Range and Doppler Observations.

Target Observational interval Nopt Nrng Ndop RMSopt RMSrng RMSdop

1566 Icarus 1949 Jun−2015 Jul 1230 10 13 0.56 0.28 1.10

1998 TU3 1982 Dec−2016 Nov 860 ... ... 0.47 ... ...

2000 BD19 1997 Feb−2016 Apr 522 ... ... 0.51 ... ...

1999 KW4 1998 May−2016 Jul 2117 36 ... 0.39 0.39 ...

1999 MN 1999 Jun−2015 Jun 141 ... ... 0.64 ... ...

2000 EE14 2000 Mar−2016 Jun 396 ... ... 0.48 ... ...

2001 YE4 2001 Dec−2017 Jan 336 4 1 0.50 0.23 0.07

2004 KH17 2004 May−2016 May 211 1 ... 0.62 0.01 ...

2006 CJ 2006 Feb−2017 Feb 238 5 3 0.59 0.30 0.11

Note. The last three columns provides the post-fit root-mean-square of weighted residuals.

Table 3. Selected asteroids and simulated observations:
Years of Close Earth Approaches (yyyy − 2000), Number
of Simulated Radar Ranges, and Corresponding Uncertain-
ties.

Target Year of close approach Nrange Uncertainties (m)

1998 TU3 12, 19 5 75–900

1999 KW4 16, 17, 18, 19, 20 12 40–300

1999 MN 04, 05 2 75–600

2000 BD19 06, 07, 20 10 300–375

2000 EE14 07, 08, 21, 22 11 300–600

2001 YE4 12, 16, 21 10 30–600

2004 KH17 13 2 300

2006 CJ 12, 17, 22 9 60–300

Note. Years highlighted in bold correspond to epochs for
which data have already been collected. The next

detectable approach of 1566 Icarus is not until 2024.

vector (total of 9× 6 = 54 parameters), whereas global

parameters are common to all asteroids, i.e., β and J2�.

We jointly solved for these 56 parameters.

We used two independent approaches to evaluate the

precision in the determination of global parameters β

and J2�. First, we used a traditional covariance analysis

(Section 4.1) as described in Bierman (1977). Second,

we performed Monte Carlo simulations (Section 4.2) to

verify the results of the covariance analysis.

4. RESULTS

4.1. Covariance analysis

A covariance analysis is a powerful technique that can

be used to evaluate the precision of solve-for parameters.

First, simulated, noise-free measurements and their par-

tial derivatives are computed on the basis of nominal tra-

jectories. A least-squares estimation is then performed,

where the estimates logically converge on the nominal

values. In the process, the associated covariance matrix

is produced. The expected precision of the estimated

parameters is then inferred by examining the covariance

matrix. The square roots of the diagonal elements pro-

vide the one-standard-deviation formal uncertainties.

After global fits of 56 parameters, we obtained the

following formal uncertainties:

σβ = 5.6× 10−4, (3)

σJ2� = 2.7× 10−8, (4)

with a correlation coefficient of -0.72. The parameters

remain correlated because both GR and solar oblateness

contribute to perihelion precession. However, the range

of asteroid orbital parameters (Table 1) helps reduce

the correlation coefficient. Consideration of the Lense-

Thirring effect for the Sun increases our σβ and σJ2�
estimates by 0.2% and 4%, respectively.

The expected formal uncertainty on J2� with di-

rect dynamical measurement of asteroids is 2.7 times

the uncertainty based on fits to helioseismology data

(Antia et al. 2008). For β, the expected formal uncer-

tainty is about twice the uncertainty obtained with pre-

MESSENGER planetary ephemerides (Konopliv et al.

2011), ∼7 times the uncertainty obtained with post-

MESSENGER planetary ephemerides (Verma et al.

2014; Will 2014; Fienga et al. 2015), and ∼14 times the

uncertainty obtained with MESSENGER range data

(Park et al. 2017) The formal uncertainties scale linearly

with the uncertainties assigned to the measurements. It

is often the case that radar observers assign conservative

uncertainties, as evidenced by RMS residuals or reduced

chi-square metrics that are almost always smaller than

unity and most often < 0.3 (Table 2). Therefore, we
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anticipate that the actual precision may be improved by

a factor of ∼3, and the dynamical determination of J2�
may be as precise as the helioseismology determination.

In order to investigate the benefit of future obser-

vations, we also performed covariance analyses under

the assumption that observations would stop at the

end of 2017, 2019, or 2021, as opposed to 2022 in

our nominal scenario. The results were σβ,2017 =

9.6 × 10−4, σβ,2019 = 7.6 × 10−4, σβ,2021 = 7.5 × 10−4

and σJ2�,2017 = 1.9 × 10−7, σJ2�,2019 = 4.2 × 10−8,

σJ2�,2021 = 3.8× 10−8.

4.2. Monte Carlo simulations

More robust results can be obtained by perform-

ing end-to-end simulations that approximate the actual

measurement and estimation process. In these analyses,

integration of the trajectories and estimation of the pa-

rameters are conducted as described in Section 3 with

two variations. First, we chose initial values of the solve-

for parameters that are not identical to their nominal

values. For instance, the initial positions and velocities

of all asteroids were changed by 10 km and 0.1 ms−1 in

each direction, respectively. Likewise, initial values for

β and J2� were changed by 4×10−4 and 5×10−8, which

is approximately five times the uncertainty of recent es-

timates. Second, we polluted the simulated measure-

ments with independent noise realizations as described

in Section 3.

We performed 500 Monte Carlo simulations. After

convergence of the least-squares estimation, we com-

pared the estimated values of solve-for parameters with

their nominal values, which produced error estimates.

To arrive at an estimate of the uncertainties, we can

fit Gaussian distributions to the histograms of error es-

timates, or we can compute the covariance matrix, as

follows:

cov(pi, pj) =
1

N − 1

N∑
k=1

(pki − pni )(pkj − pnj ), (5)

where N is the total number of simulations, pni is the

nominal value of the ith parameter (β = 1, J2� =

2.2 × 10−7), and pki is the estimated value of the ith

parameter from the kth simulation of observations. We

used Equation (5) and estimated the formal uncertain-

ties in the solve-for parameters by computing the square

root of diagonal elements. We found

σβ = 7.4× 10−4, (6)

σJ2� = 3.7× 10−8, (7)

with a correlation coefficient of -0.81. These values con-

firm the covariance analysis results.

5. CONCLUSIONS

A modest observing campaign requiring 50−60 hours

of Arecibo telescope time over the next five years can

provide about 20 range measurements of asteroids whose

orbits exhibit large perihelion shift rates. The Arecibo

Planetary Radar facility is required for these measure-

ments because its sensitivity is ∼20 times better than

that of other radar systems (Naidu et al. 2016), allowing

detection of asteroids that are not detectable elsewhere.

The Arecibo measurements will complement existing

optical and radar astrometry and enable joint orbital so-

lutions with β and J2� as adjustable parameters. Inde-

pendent, purely dynamical determinations of both pa-

rameters are important because they place bounds on

theories of gravity and the interior structure the of Sun,

respectively.

Our simulation results likely under-estimated actual

precision for two reasons. First, we did not attempt

to simulate the impact of future optical astrometry nor

improvements to the accuracy of star catalogs. Both

of these effects will inevitably improve the quality of

the orbital determinations. Second, we assumed, based

on historical evidence, that radar observers assign fairly

conservative uncertainties to their measurements, which

often underestimate the precision of the measurements

by a factor of ∼3 (Table 2). As a result, we anticipate

that the uncertainties of the final estimates will be close

to

σβ ∼ 2× 10−4, (8)

σJ2� ∼ 10−8. (9)
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