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ABSTRACT 
Motivation: A typical metagenome dataset generated using a 454 
pyrosequencing platform consists of short reads sampled from the 
collective genome of a microbial community. The amount of se-
quence in such datasets is usually insufficient for assembly, and 
traditional gene prediction cannot be applied to unassembled short 
reads. As a result, analysis of such datasets usually involves com-
parisons in terms of relative abundances of various protein families. 
The latter requires assignment of individual reads to protein families, 
which is hindered by the fact that short reads contain only a frag-
ment, usually small, of a protein. 
Results: We have considered the assignment of pyrosequencing 
reads to protein families directly using RPS-BLAST against COG 
and Pfam databases and indirectly via proxygenes that are identified 
using BLASTx searches against protein sequence databases. Using 
simulated metagenome datasets as benchmarks, we show that the 
proxygene method is more accurate than the direct assignment. We 
introduce a clustering method which significantly reduces the size of 
a metagenome dataset while maintaining a faithful representation of 
its functional and taxonomic content. 

Contact: vmmarkowitz@lbl.gov 

1 INTRODUCTION  
The ultimate goal of metagenomic studies of a microbial commu-
nity (microbiome) is to determine the systemic properties including 
genetics, metabolism, physiology and behavioral aspects of all 
community members, their interactions with various biotic and 
abiotic factors, transfer of energy and nutrients, and ecosystem 
dynamics. In practice, such comprehensive studies are seldom 
feasible and the scope of metagenomic analysis of most microbial 
communities is limited to genomic and metabolic reconstruction of 
the dominant population(s) including identification of key meta-
bolic pathways likely to be present or absent in these populations. 
For most metagenome projects the amount of sequence data is 
insufficient for assembly and classification of sequences into dif-
ferent populations thus preventing even limited population-specific 
genomic and metabolic reconstruction. In these cases a gene-
centric analysis using environmental gene tags (EGTs) is employed 
(Tringe et al. 2005). In this approach protein coding sequences 
(CDS) are identified in unassembled or partially assembled me-
tagenomic sequences using an ab initio or evidence-based gene 
finder. These CDSs are further assigned to protein families, such as 
COGs (Tatusov et al. 1997), Pfams (Bateman et al. 2004) and 
TIGRfams (Selengut et al. 2007) and comparison of the relative 
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abundance of protein families is performed. Proteins are assigned 
to families using reverse position-specific BLAST (RPS-
BLAST) against position specific scoring matrices (PSSMs) of 
COGs in the CDD database (Marchler-Bauer et al.  2002) and en-
zyme-specific PSSMs in the PRIAM database (Claudel-Renard et 
al. 2003), and using hmmsearch against hidden Markov models 
(HMMs) in Pfam and TIGRfam databases. Alternatively, associa-
tions of proteins with functional subsystems can be achieved via 
BLAST searches against databases of annotated proteomes such as 
SEED (Overbeek et al. 2005). 

The quality of annotations for metagenomic sequence data is 
lower than that of isolate microbial genomes due to higher rate of 
sequencing errors and data fragmentation. However identification 
of CDSs, their assignment to protein families and enumeration of 
representatives in metagenomes do not pose a problem even for 
completely unassembled reads generated by the Sanger sequencing 
platform, nor do they distort the functional or taxonomic profiles 
of the datasets. Such profiles may be distorted by the biases inher-
ent to Sanger sequencing which involves cloning of metagenomic 
DNA into vectors, propagation of the vector within host bacteria 
and DNA amplification. The extent and the impact of such biases 
are largely unknown and therefore are difficult to account for in the 
downstream analysis. These problems and the relatively high cost 
of Sanger sequencing led to the increasing popularity of another 
variant of shotgun metagenome sequencing, which does not re-
quire cloning of environmental DNA and employs 454 Life Sci-
ences pyrosequencing platform (Edwards et al. 2006). This type of 
sequencing raises another challenge to the downstream analysis: 
the depth of sequence generated by the pyrosequencing platform is 
usually insufficient for assembly, so the resulting metagenomes 
consist of individual unassembled reads. Furthermore, unlike 
Sanger sequencing which generates individual reads of 600-800 
bp, each encoding a full-length protein or a significant portion 
thereof, pyrosequencing reads are 100 to 200 bp long and contain 
only a (usually small) fragment of a protein. As a result, traditional 
procedures for finding CDSs and assigning them to protein fami-
lies cannot be applied to such sequences.  

For protein family assignment of unassembled and/or short se-
quences, such as those generated by 454 platforms, two strategies 
can be envisioned: (1) direct assignment to protein families using 
translated read sequences for searches against family-specific 
PSSMs or HMMs; or (2) assignment via proxygene which we 
define as a full-length protein identified by a BLASTx search of 
read sequences against a protein sequence database and then used 
as a representative of a read or group of reads. 

The perceived disadvantage of direct assignment of 454 reads to 
protein families is the low sensitivity of assignment in the case of 
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RPS-BLAST, high computational demands in the case of 
hmmsearch and possible biases introduced by different degrees of 
sequence conservation within different protein families, which may 
explain why published metagenome studies followed a proxygene 
approach (Angly et al. 2006, Edwards et al. 2006, Thurnbaugh et 
al. 2006). These studies provided insufficient details about the 
methods employed for the selection of proxygenes (e.g., using best 
BLAST hit or multiple BLAST hits, resolution of functional anno-
tation conflicts if more than one BLAST hit was used, etc.) or the 
reliability of the protein family assignment based on proxygenes. 

In this paper we examine the reliability of direct and indirect as-
signment strategies using simulated metagenomic datasets created 
from pyrosequencing reads generated for isolate microbial ge-
nomes. We show that indirect assignment using proxygenes is 
more accurate than the direct method using RPS-BLAST. We also 
introduce a clustering method that reduces significantly the size of 
the derived datasets while maintaining the accuracy of functional 
and taxonomic assignments based on proxygenes. The reduction in 
size allows maintaining a compact yet comprehensive overview of 
the functional and taxonomic content of a metagenome. 

2 METHODS 

2.1 Simulated datasets 
Reads from 22 genome projects, sequenced at the Joint Genome 
Institute (JGI) using the 454 GS20 pyrosequencing platform that 
produces ~100 bp reads, were selected and the genomes were split 
into three groups based on their phylogeny and the number of 
reads to ensure similar sizes for the simulated datasets. From each 
genome project, reads were sampled randomly at four different 
levels of coverage (0.1X, 1X, 2X and 4X per genome), resulting in 
a total of 12 simulated datasets (Table 1). The coverage is defined 
as the average number of times a nucleotide is sampled.  

The position of each read on the assembled contigs was identi-
fied by BLASTn. Only the best hit of each read, with identity 
>95%,  was kept and used to identify a position of the read with 
respect to the CDSs predicted on the assembled contigs using the 
JGI annotation and analysis pipeline. The nucleotide sequences of 
the genomes, the coordinates of the reference genes and their func-
tional annotation were extracted from version 2.2 of the IMG data-
base (http://img.jgi.doe.gov). At each level of coverage the CDSs 
overlapping the reads by more than 50nt comprised the reference 
gene set; the assignment of a read to a protein family was consid-
ered correct if it coincided with the family assignment of the gene 
from which the read has originated. 

2.2 Assignment of 454 reads to protein families 
We considered two ways of assigning reads to protein families: (1) 
direct assignment of the reads using RPS-BLAST against profiles 
of COGs and Pfams and (2) assignment via a proxygene. For direct 
assignment, translated RPS-BLAST search of reads against PSSMs 
in the CDD database was performed with an e-value cutoff in the 
range of 10-1 to 10-8 retaining the best hit only.  

Proxygenes for 454 reads were found by BLASTx of the reads 
against the protein sequences in the IMG 2.2 database using e-
value cutoffs in the range of 10-1 - 10-8. Proxygenes were either 
assigned as the best BLASTx hit of a read (BH) or using a simple 
clustering method (see Figure 1). For the latter, the set of all reads 

{x1, …, xN} that have at least one hit below the cutoff have been 
clustered using the following algorithm: 
1. Let x=x1 and i=1.   
2. Add x to group number Gi. 
3. Extract the set of all proteins (A) that x has hits to, and add 

them to Gi.  
4. For each protein p in A, extract all other reads xj, …, xM that 

have a best hit to p, and add them to Gi.  
5. For each x in { x1, …,  xM} repeat step 2 until no more reads 

or proteins can be added to Gi. 
6. Let x be the next unassigned read and let i=i+1, and repeat 

step 2.  
This algorithm results in disjoint clusters (proxy clusters) in 

which no reads and no genes are members of more than one group.  
For each protein within the proxy cluster, the cumulative bit-score 
of its alignment to the reads within the same cluster is calculated. 
The protein with the highest cumulative bit-score is selected as a 
representative proxygene of this proxy cluster and is used for all 
further analyses, such as functional and taxonomic accuracy or 
determination of the overall functional profiles.  

Most protein databases seem to be contaminated to some extent 
with rRNA sequences on which protein-coding genes have been 
predicted in different frames. Due to the high sequence conserva-
tion of rRNA genes, some of these “ghost” proteins are also con-
served and even form “ghost” clusters which may contain proteins 
with no sequence similarity whatsoever and represent the same 
parts of rRNA sequences translated in different frames. Therefore 
before any protein family assignments of 454 reads were carried 
out, a filtering step has been introduced which involved BLASTn 
of the reads against an RNA database compiled of all rRNAs in 
IMG 2.2 in order to remove these reads.  

3 RESULTS 
454 reads can be associated with protein families by direct assign-
ment or via proxygenes. Direct assignment compares the sequence 
of the read translated in 6 frames directly to the sequence profiles 
of protein families. Assignment via proxygenes is an indirect ap-
proach whereby BLASTx against a protein sequence database is 
used to identify a full-length protein (“proxygene”) with high se-
quence similarity to the translated sequence of the 454 read. High 
sequence similarity between the read and the proxygene is consid-
ered as an indication that the read originated from a protein-coding 
gene which has high overall sequence similarity to the proxygene. 
Consequently, protein family membership and functional annota-
tion of the read is considered to be the same as that of a full-length 
protein, which is used as a “proxy” of the 454 read in subsequent 
metagenome data analysis. Similarly, high sequence similarity 
between the read and the proxygene implies phylogenetic prox-
imity of the organisms from which the read and the proxygene 
have originated, so that the full-length protein can be also used as a 
“proxy” of the read in assessing the taxonomic composition of the 
metagenome. However, the indirect approach may produce spuri-
ous hits to proteins that have little overall sequence similarity to 
the gene from which the read has originated. Accordingly, we have 
evaluated the accuracy of protein family assignments of the simu-
lated datasets using direct and proxygene-based methods with sev-
eral e-value cutoffs and assessed the accuracy of taxonomic as-
signments using both the BH and proxygene cluster approach. 
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It should be pointed out that although the simulated datasets 
used in this study faithfully reproduce some of the features of 454-
sequenced metagenomes, such as the frequency and type of se-
quencing errors or variation (if any) of sequencing coverage, cer-
tain problems associated with processing of real metagenomes are 
hard to reproduce in a simulated environment. The main problem 
is the absence of a comprehensive collection of reference genomes; 
as a result only a small fraction of the genes in most metagenomic 
datasets generated to date are from organisms that have sequenced 
close relatives, thus limiting the detection of similarities between 
the short reads and reference genes. However, many of the ge-
nomes from which the 454 reads for the simulated datasets were 
selected belong to such over-sampled taxonomic groups as 
gamma- and betaproteobacteria (Table 1). In order to account for 
the potential errors resulting from a biased composition of refer-
ence databases and simulate the absence of close relatives of the 
sampled organisms, we followed the approach of (Mavromatis et 
al. 2007) and excluded all closely related genomes (either the same 
species or genus as the sampled genomes) from the reference data-
base before carrying out BLASTx searches. The estimated se-
quence coverage is another unknown variable which may affect the 
results in the case of real metagenomes sequenced with 454 plat-
form. For instance, the effect of resampling of a complex microbial 
community at very low sequence coverage is hard to estimate and 
it is possible that protein family composition and abundance will 
vary greatly from sample to sample. Similarly, comparison of 
completely unrelated microbial communities sampled at different 
coverage may result in virtually identical protein family abundance 
profiles. We attempted to address this problem by sampling the 
genomes included into each dataset at four different levels of cov-
erage (0.1X, 1X, 2X, 4X) as described in the Methods section.  

3.1 Evaluating accuracy of protein family assignment 
In the first step we optimized the settings of RPS-BLASTx and 
BLASTx searches by using e-value cutoffs in the range of 10-1 to 
10-8 and then estimated the accuracy of read assignments to COGs. 
The latter was calculated as the ratio of correct COG assignments 
(i.e. same COG assignment of the proxygene as that of the gene 
from which the read originated) over the total number of COG 
assignments. The results of this analysis (Figure 2) show that the 
direct assignment has invariably lower accuracy than the proxy-
gene approach, with the exception of very low cutoffs for metage-
nome dataset M1 where direct approach performs as well as as-
signment via proxygenes (e.g. M1 at 4X in Figure 2). Most nota-
bly, the accuracy of COG assignment via proxygenes varied very 
little at different e-value cutoffs, with the percent of false assign-
ments never exceeding 10% even at e-value of 10-1 (Figure 2). 
However, the percentage of reads assigned to COGs depends 
strongly on the cutoff and increases substantially at higher e-values 
(see Table 2). For example, about 39% of all reads in the dataset 
M3 were assigned to COGs at cutoff 10-1, while at a more stringent 
cutoff of 10-5 used in previous studies (Angly et al. 2006, Edwards 
et al. 2006, Thurnbaugh et al. 2006) only 20% of the reads were 
assigned to COGs. This result is independent of the coverage, 
which is expected in the case of random sampling of reads. Since 
decreasing the e-value cutoff provides little reduction of the rate of 
false positive assignments while strongly affecting the overall 

number of reads assigned to COGs, the e-value cutoff 10-1 has 
been used in further analysis.  

In addition to evaluating the e-value cutoffs, the effect of refer-
ence database composition was assessed by performing BLASTx 
searches against the reference database from which either the ge-
nomes of the same species or genomes of the same genus as the 
organisms used in the simulated datasets were removed. The effect 
of the reference database composition was most pronounced in the 
case of metagenome dataset M1 where removing all reference 
genomes belonging to the same genus as sampled organisms re-
sulted in an error rate twice as high as that observed for the refer-
ence database with only same-species genomes removed. Con-
versely, removing all reference genomes of the same genus from 
the database had little if any effect on the accuracy of assignments 
for datasets M2 and M3. These results can be explained by the 
different taxonomic composition of metagenome datasets M2 and 
M3 as compared to dataset M1 (see Table 1): M1 has been sam-
pled mostly from the representatives of Firmicutes, while M2 and 
M3 are composed almost exclusively of Proteobacteria, a phylum 
with more sequenced representatives than all other bacterial phyla 
combined. Even in the absence of the closest relatives, these ge-
nomes provide a comparative context rich enough for highly accu-
rate assignment of reads.  

The taxonomic composition of the simulated metagenome data-
sets also affected the percentage of reads assigned to COGs: at low 
e-values metagenome datasets M2 and M3 had twice as many 
reads assigned to COGs as dataset M1, although these differences 
were less prominent at higher e-values (Table 2). Furthermore, 
while the accuracy of direct assignments was essentially the same 
for all datasets at a given e-value, the accuracy of assignment via 
proxygenes was much higher for metagenome dataset M3 as com-
pared to M1 at the same e-value, sequence coverage and reference 
database composition. Note that although reference databases con-
tain significantly fewer genomes of Firmicutes than Proteobacteria, 
there are many phyla with even less sequenced representatives. It 
is expected that for the metagenomes composed of the members of 
such poorly sampled phyla the accuracy of proxygene-based as-
signment will be even lower. Thus proxygene-based comparisons 
of the metagenomes with vastly different taxonomic composition 
(e. g., those dominated by proteobacteria against those composed 
mostly of planctomycetes or chloroflexi) should be treated with 
caution, since several-fold differences in the accuracy of protein 
family assignments may result in gross errors in data interpretation. 
Our results emphasize the importance of a good reference database 
for the analysis of 454 data and indicate that although the availabil-
ity of same-species reference sequences is highly desirable, it may 
be unnecessary as long as sequences of multiple and diverse repre-
sentatives of the same phylum are present in the database. 

3.2 Proxygene clustering  
While the best BLAST hit (BH) is the simplest and most direct 
method of selecting a proxygene, this approach may result in a 
high level of redundancy: several reads may be associated with the 
same proxygene (see Figure 1.a), therefore there is no need to con-
sider them as separate entities. Moreover, due to the presence of 
many closely related genomes in the reference databases, the read 
may have hits of nearly the same strength to several highly similar 
genes of which only one is chosen as a proxygene. Alternatively, 
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the reads originating from the same gene may become associated 
with different, but closely related proxygenes (see Figure 1.b). In 
terms of their protein family membership and functional annota-
tion, all such proxygenes are equivalent and should be handled as 
one entity. Finally, treating each read-proxygene pair separately 
results in very large datasets, hardly amenable to any manual 
analysis by biologists and posing serious data management scal-
ability problems. 

In order to address these problems, we have developed a simple 
clustering algorithm for grouping the reads and proxygenes, as 
illustrated in Figure 1.c and described in the Methods section. This 
proxygene clustering provides a significant reduction in the size of 
the resulting datasets. Figure 3 shows a comparison between the 
number of proxygenes with and without proxygene clustering: the 
reduction is about 1.2 to 1.5 times at 0.1X coverage (BLAST 
evalue cutoff = 10-5; removing same-genus genomes), whereas at 
4X it is about 7 times for dataset M1, 10 times for M2 and 10 times 
for M3 (Table 2). This reduction is significant in light of the rap-
idly increasing number and size of metagenome datasets. 

3.3 Taxonomic assignment of reads via proxygenes  
In addition to assessing the functional content of various microbial 
communities, most metagenomic studies attempt to determine and 
compare the taxonomic composition of the samples. For metage-
nomic datasets generated with the pyrosequencing platform this 
question can be addressed by a proxygene-based approach, using 
the phylogenetic distribution of proxygenes as an estimate of the 
phylogenetic composition of a sample. Similarly, a proxygene 
cluster-based approach can be used to estimate the taxonomic 
composition of a sample, whereby the taxonomic identity of all 
reads assigned to a proxygene cluster is considered either the same 
as the representative proxygene (an approach used in this study) or 
as that of the lowest taxonomic group to which all proxygenes in 
the proxygene cluster belong.  

Using the simulated data sets, we have examined the accuracy of 
the taxonomic assignment of reads using proxygene and proxygene 
cluster approaches. The accuracy of the assignment was measured 
as the fraction of true positives at different taxonomic levels (do-
main, phylum, class, order and family). As expected, the accuracy 
of assignment at the domain and phylum level is much higher as 
compared to the level of order and family with domain-level as-
signments being 100% accurate and the fraction of accurate fam-
ily-level assignments varying from 20 to 60% for different me-
tagenomes and different reference databases. The accuracy of 
taxonomic assignments at the phylum level reaches more than 90% 
for datasets M2 and M3, while the accuracy of assignments for M1 
is only 60% at the same level. Similar to the accuracy of protein 
family assignments, this disparity appears to reflect the difference 
in taxonomic composition of the three simulated datasets, with M1 
composed of representatives of less well-sampled phyla than M2 
and M3. 

At low sequence coverage (0.1X) the proxygenes and proxygene 
clusters are almost identical since most proxygene clusters contain 
only one or two reads. However, at higher (4X) coverage the clus-
tering of the reads into proxygene clusters does not decrease the 
accuracy and in some cases it even improves the assignment, espe-
cially at higher taxonomic levels (phylum, class), which are most 
frequently used for estimation of the taxonomic composition of 

metagenomic samples. This result indicates that the reads are 
grouped into essentially consistent taxonomic clusters and selec-
tion of one proxygene as a representative of multiple reads effec-
tively screens out some of the spurious hits that would adversely 
affect the accuracy of taxonomic assignments.  

3.4 Hierarchical clustering against a reference 
The relative frequencies of COGs and PFAMs are often used to 
compare metagenomic datasets obtained from different environ-
ments and detect functions that are over or under-represented 
(Tringe et al. 2005). Such analyses depend on an unbiased identifi-
cation of COGs and PFAMs and comparable accuracy of their 
detection in different datasets irrespective of the taxonomic com-
position, population structure and variation in sequence coverage 
of microbial communities. Our results indicate that although the 
accuracy of protein family assignment is fairly high, it may vary 
greatly between metagenome datasets depending on their taxo-
nomic composition and sequence coverage. Such variations may 
influence the results of gene-centric analysis performed on the 
individual protein families and even on their groupings, such as 
COG Pathways and Functional Categories. However, it is not clear 
whether these variations in accuracy could change the overall func-
tional profiles of the metagenomes so severely as to affect the re-
sults of their profile-based clustering. 

In order to address these questions, we performed hierarchical 
clustering of the datasets based on the relative frequencies of 
COGs produced by direct assignment, proxygenes and proxygene 
clusters (Figure 4). The placement of absolute (i.e. COG frequen-
cies of all proteins from sampled isolate genomes) and sampled 
references (i.e. COG frequencies of the sampled genes) for all 
metagenome datasets shows that 454 sequencing indeed has little 
bias in terms of under- or over- sampling certain genomic regions. 
Furthermore, there is little difference between the profiles obtained 
by proxygene and proxygene cluster approaches indicating that 
there is little loss or gain of functional information with proxygene 
clustering. The error introduced by annotation in every case is 
nevertheless high since none of the metagenome datasets ends up 
in a cluster with the sample and absolute reference. As expected, 
4X and 2X sampling references are closer to the absolute refer-
ences than 1X and especially 0.1X. In addition, there is significant 
difference between the direct and proxygene-base profiles, since 
the profiles obtained by direct assignment mostly clustered to-
gether.  

These results indicate that, although metagenome datasets gen-
erated by pyrosequencing platforms may indeed represent an unbi-
ased sample of community DNA, significant biases can be intro-
duced by subsequent processing of the data. These biases are 
mostly due to the skewed composition of reference databases and, 
depending on the taxonomic composition and population structure 
of the sample, they may be as difficult to account for as cloning 
biases of Sanger technology. While the accuracy of protein family 
assignments was sufficient to separate the three simulated metage-
nome datasets discussed in this paper, a similar separation may not 
be possible for real environmental samples that may be character-
ized by large disparity in sequence coverage due to different even-
ness and abundance of species distribution and considerable varia-
tion of the taxonomic composition. 
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4 DISCUSSION 
We have compared methods for the annotation of short reads in 
metagenome datasets using benchmark datasets that model faith-
fully the main features of real datasets. While the proxygene based 
method is generally more accurate, its efficiency depends on the 
composition of the reference database. Thus, the metagenome data-
sets containing representatives of over-sampled phyla were anno-
tated more efficiently. The accuracy of assignments did not in-
crease significantly at lower e-value cutoffs, while selection of less 
stringent cutoffs (10-1) allowed assignment of twice as many reads 
without increasing the rate of false positive assignments. We have 
also shown that the proxygene clustering has the important advan-
tage of reducing substantially the size of metagenome datasets, 
while preserving faithfully their functional and taxonomic content.  

Despite the increase of the average read length produced by 
newer generation of 454 sequencing platforms, such as GS FLX 
(~200 bp reads), it is expected that many metagenome datasets will 
remain unassembled due to prohibitively high amount of sequence 
data necessary to ensure even modest degree of assembly for all 
but the simplest microbial communities. Consequently, it is likely 
that gene-centric analysis will remain the method of choice for the 
analysis of many metagenomes and therefore the proxygene cluster 
based annotation presented in this paper has standing practical 
significance. We have applied this method to several metagenome 
datasets from ongoing metagenome studies (such as the PT3 and 
PT6 datasets listed in Table 2) that have been included into the 
IMG/M system (Markowitz et al. 2008). As soon as their analysis 
is completed and published, these datasets will be released as part 
of IMG/M’s public version (http://img.jgi.doe.gov/m).  
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Fig. 1.  Assigning reads to full-length (proxy) genes in a database: (a) 
each read is assigned to a separate proxygene by best BLAST hit: a read 
may be assigned to several identical proxygenes; (b) grouping identical 
proxygenes: a read may be assigned to several proxygenes; (c) proxygene-
clustering: each read is assigned to a single proxygene. 
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Fig. 2. Indirect annotation of COGs is compared to annotation using BH-
proxygenes for three simulated datasets at 4X coverage (Table 1): (a) M1, 
(b) M2 and (c) M3. We removed all reference genomes that belong to the 
same species and/or genera as genomes used to create the simulated me-
tagenomes before the BLASTx step. P(A) is the probability that a read is 
assigned to a COG and P(C|A) is the probability that an assigned COG is 
correct conditioned on the event that a COG has been assigned.. 

 

 

 

 

 

 

 

 

 

Fig. 3. The number of proxygenes is significantly reduced for all levels of 
coverage using the clustering approach. The number of proxygenes for the 
BH approach is shown in black for the three simulated datasets (M1, M2 
and M3) at coverage 0.1X, 1X, 2X and 4X. The red lines show the number 
of proxygenes after clustering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Hierarchical clustering of relative COG frequencies of the three 
simulated metagenome datasets (M1, M2 and M3) at different levels of 
coverage. The absolute reference consists of the relative frequencies as they 
occur in the isolate genomes while the sample reference is the relative 
frequency of the reads that were sampled. The best BLAST hit proxygene 
(BH) and the proxygenes defined by the clustering approach (Cluster) are 
shown together with the direct annotation using RPS-BLAST (rpsblast). 
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Table 1. Genomes sampled for the simulated metagenome datasets. The size of each genome and total number or reads sampled for each dataset is shown. 
M1 = Metagenome dataset 1, M2 = Metagenome dataset 2 and M3 = Metagenome dataset 3.  

  Genome Reads sampled 
Dataset Organism size (bp) 0.1X 1X 2X 4X 

Clostridium phytofermentans ISDg 4533512 4638 46379 92756 185498 

Prochlorococcus marinus NATL2A 1842899 1866 18681 37360 74720 
Lactobacillus reuteri 100-23 2174299 2371 23710 47419 85352 
Caldicellulosiruptor saccharolyticus DSM 8903 2970275 2950 29496 58992 111422 

Clostridium sp. OhILAs 2997608 2934 29348 58697 117398 
Herpetosiphon aurantiacus ATCC 23779 6605151 6937 69387 138775 277553 
Bacillus weihenstephanensis KBAB4 5602503 4158 45463 91109 175869 

Halothermothrix orenii H168 2578146 2698 26980 53965 104554 

M1 

Clostridium cellulolyticum H10 3958683 3978 39802 79605 159206 

Geobacter sp. FRC-32 3982463 4225 42266 84525 158487 

Burkholderia multivorans ATCC 17616 6979389 7110 71074 142102 284221 
Delftia acidovorans SPH-1 6702581 7046 70448 140916 267735 

Comamonas testosteroni KF-1 5906374 6189 61895 123794 237264 

M2 

Geobacter lovleyi SZ 3871860 4300 43004 86009 153584 

Shewanella putrefaciens CN-32 4659220 4714 47151 94318 188633 

Shewanella loihica PV-4 4602594 4588 45882 91773 183536 
Halorhodospira halophila SL1 2678452 2690 26898 53796 110282 
Pseudomonas putida F1 5959964 6407 64080 128158 238005 
Shewanella baltica OS195 5310173 5378 53779 107548 215103 
Bifidobacterium longum bv. Infantis ATCC 15697 2832748 2898 28990 57981 112343 
Stenotrophomonas maltophilia R551-3 4544233 4685 46844 93699 179581 

M3 

Parvibaculum lavamentivorans DS-1 3854587 4501 39379 78764 157526 

Table 2: Percentage of assigned reads together with the degree of reduction obtained using proxygene-clustering as opposed to BBH-proxygene. PT3 and 
PT6 are datasets from lean and obese mouse gut metagenome datasets generated using 454 (GS20) platform.  

 Percentage assigned / Times reduction 

 BLAST e-value cutoff 
Dataset 10-1 10-2 10-3 10-4 10-5 10-6 

PT3 17 / 4.0 13 / 3.9 10 / 3.8 7.7 / 3.5 5.6 / 3.3 3.9 / 3.0 

PT6 19 /3.4 15 / 3.0 12 / 3.3 9.5 / 3.2 7.1 / 3.1 5.1 / 3.0 
M1 (0.1X) 26 / 1.4  22 / 1.4 18 / 1.3 14 / 1.3 12 / 1.2 8.7 / 1.2 

M1 (1X) 26 / 4.0 22 / 3.7 18 / 3.4 15 / 3.1 11 / 2.8 8.6 / 2.4 

M1 (2X) 26 / 6.6 22 / 6.0 18 / 5.4 15 / 4.8 11 / 4.2  8.5 / 3.6 
M1 (4X) 26 / 11  22 / 10  18 / 9.2 15 / 8.0 11 / 6.8 8.5 / 5.6 

M2 (0.1X) 41 / 1.5  36 / 1.4  31 / 1.4 27 / 1.3 23 / 1.3  18 / 1.3 

M2 (1X) 41 / 4.7 36 / 4.5 32 / 4.0 28 / 3.8 23 / 3.5 18 / 3.1 
M2 (2X) 40 / 8.2 36 / 7.7 32 / 7.1 27 / 6.5 23 / 5.9 18 / 5.1 

M2 (4X) 41 / 15 36 / 15 32 / 13 28 / 12 23 / 10 18 / 8.7 

M3 (0.1X) 39 / 1.6 34 / 1.5 29 / 1.5 25 / 1.4 20 / 1.4 15 / 1.3 
M3 (1X) 39 / 5.1 34 / 4.8 29 / 4.4 24 / 4.0 20 / 3.6 15 / 3.1 

M3 (2X) 39 / 8.9 34 / 8.3 29 / 7.5 25 / 6.7 20 / 5.9 15 / 5.0 

M3 (4X) 39 / 17 34 / 15 29 / 14 24 / 12 20 / 10  15 / 8.5 
  




