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Abstract 

Background:  Artificial intelligence (AI) and machine learning (ML) have resulted 
in significant enthusiasm for their promise in healthcare. Despite this, prospective 
randomized controlled trials and successful clinical implementation remain limited. 
One clinical application of ML is mitigation of the increased risk for acute care during 
outpatient cancer therapy. We previously reported the results of the System for High 
Intensity EvaLuation During Radiation Therapy (SHIELD-RT) study (NCT04277650), 
which was a prospective, randomized quality improvement study demonstrating that 
ML based on electronic health record (EHR) data can direct supplemental clinical evalu-
ations and reduce the rate of acute care during cancer radiotherapy with and without 
chemotherapy. The objective of this study is to report the workflow and operational 
challenges encountered during ML implementation on the SHIELD-RT study.

Results:  Data extraction and manual review steps in the workflow represented 
significant time commitments for implementation of clinical ML on a prospective, ran-
domized study. Barriers include limited data availability through the standard clinical 
workflow and commercial products, the need to aggregate data from multiple sources, 
and logistical challenges from altering the standard clinical workflow to deliver adap-
tive care.

Conclusions:  The SHIELD-RT study was an early randomized controlled study which 
enabled assessment of barriers to clinical ML implementation, specifically those which 
leverage the EHR. These challenges build on a growing body of literature and may 
provide lessons for future healthcare ML adoption.
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Trial registration: NCT04277650. Registered 20 February 2020. Retrospectively regis-
tered quality improvement study.

Keywords:  Radiation therapy, Chemoradiation, Machine learning, Artificial 
intelligence, Quality improvement, Implementation

Background
Artificial intelligence (AI) and machine learning (ML) have generated much enthusiasm 
in the healthcare space. Despite this, many obstacles remain to their adoption in routine 
clinical care. Among these are a lack of prospective data, need for trust from clinicians 
and patients, and logistical challenges in integration [1–5]. The need for this prospective 
deployment experience is critical, to verify accuracy and demonstrate usability and clini-
cal value in the real world. As such, digital health innovations have had a limited clinical 
impact [6].

We previously completed one of the first randomized controlled studies of clinical ML, 
using an electronic health record (EHR)-based ML approach to identify patients at high 
risk for acute care (emergency department visit or hospitalization) during cancer radia-
tion therapy (RT) [4]. These patients were then randomized to standard of care weekly 
evaluations (with ad hoc visits as deemed appropriate by the treating physician) versus 
mandatory twice-weekly evaluations. This study demonstrated that ML could appro-
priately identify high-risk patients and guide interventional strategies, reducing acute 
care rates in the high-risk population from 22.3% to 12.3%. Supportive management of 
patients with cancer is critical, with acute care resulting in detriments to patient out-
comes, quality of life, treatment decisions, and costs, which have made it a priority to the 
Centers for Medicare and Medicaid Services [7–9].

The impact on clinical workflow is an important consideration to assess the hidden 
costs of clinical ML implementation [10]. This study focuses on describing the chal-
lenges encountered in the workflow of integrating a locally developed ML approach in a 
busy radiation oncology clinic during the course of the randomized controlled SHIELD-
RT study.

Results
Deployment data extraction

One major identified barrier for the physics team was to develop a method for extract-
ing data in real-time clinical practice. In aggregate, the below data extraction process 
required a median of 5 h (interquartile range [IQR] 4–5 h) per week of a medical physics 
resident’s time.

For the purposes of deployment, identification of new RT courses was required. One 
major challenge in practically identifying these courses was the labels used in the Aria 
oncology information system (OIS) (Varian Medical Systems, Palo Alto). During retro-
spective model development, this was simply queried to identify 8134 courses of radio-
therapy completed from 2013 to 2016 [11]. In prospective development, identification 
of courses required queries through the scheduling system. The OIS designation at the 
time of SHIELD-RT designated new treatment appointments as three potential options: 
“new start” (new patient beginning new course), “old start” (patient with a prior OIS 
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course starting new course) or “final treatment” (either final fraction of a multi-fraction 
treatment or start of a single fraction treatment) (Fig. 1). To identify courses during the 
first week of treatment, manual review was needed to verify “old starts” and for qual-
ity assurance to verify that single fraction treatments labeled as “final treatment” were 
indeed a new course of radiation therapy.

After identification of eligible treatment courses, RT data were extracted from the OIS, 
including details regarding the treatment course name, prescription, total dose, number 
of fractions, RT technique, and patient diagnosis based on International Classification of 
Diseases (ICD) codes.

Additional manual review was required to inspect draft (unsigned) prescriptions of 
sequential RT boosts and verify that they were an intended component of the treatment 
plan. This included subsequent radiation plans that were designed to deliver additional 
RT dose to a portion of the originally treated field within a single treatment course (e.g., 
a boost to a breast tumor bed following lumpectomy after primary whole breast treat-
ment). Manual review of their inclusion was needed to accurately characterize a patient’s 
planned treatment course. Draft prescriptions typically represent planned treatment, 
but can also include boosts that are no longer intended (e.g., due to radiation planning 
constraints). These draft prescriptions are sometimes pended unsigned at the start of 
treatment initiation and therefore not automatically aggregated.

Machine learning deployment

Once patient RT data was identified, the process to generate ML predictions, randomize 
patients, and deploy clinical alerts was undertaken, requiring a median of 1.5  h per 
week (IQR 1–2 h) of the lead investigator’s time. From the OIS-generated patient list, 
the patient medical record number was used to query pre-treatment EHR data from the 
Duke enterprise data unified content explorer (DEDUCE) to provide additional input for 
the ML prediction [12]. DEDUCE aggregates data directly from the hospital and clinic 
operations via the Decision Support Repository (DSR), similarly to efforts utilizing data 
from institutional clinical data warehouses [13–15].

The combined OIS and EHR-queried data were then input into an aggregated R script 
to generate ML predictions. Patients identified as high risk (ML predicted 10% or greater 
risk of requiring acute care) were then entered into a REDCap database, which facili-
tated randomization, study documentation, and auditing [16]. Alerts were then manu-
ally placed in the OIS so that patients could be appropriately directed to supplemental 

Fig. 1  Patient identification workflow. New treatment courses were labeled as one of three potential options 
that required subsequent manual review
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visits, and the treating team was notified via manual emails. For auditing at a later time 
during the course of the study, the ML model was then run by two independent investi-
gators and output verified.

The clinical workflow

During treatment, alerts in the OIS prompted radiation therapists to direct high-risk 
patients who were randomized to the intervention arm to examination rooms for weekly 
mandatory supplemental visits. As previously reported, 79.7% (444 of 557) of mandatory 
supplemental evaluations were completed, with a median of 0 missed visits per course 
(IQR 0–1). Anecdotally, these were largely associated with missed alerts or patients 
forgetting about their supplemental evaluations especially in the context of variable 
scheduled times. These visits required an additional median of 5 min (IQR 5–10 min) of 
clinician time per visit [4].

Conclusions
In this study, we identify specific challenges during the implementation of a randomized 
controlled study of EHR-based ML-directed clinical evaluations for cancer patients 
undergoing RT. We demonstrated specific barriers across the real-time data aggregation, 
ML deployment, and clinical workflow steps. While the challenges are specific to the 
radiation oncology domain, the broader barriers are important considerations for inves-
tigators and clinicians alike, as AI becomes increasingly relevant in the delivery of clini-
cal care. These practical concerns are often not readily apparent or underestimated prior 
to clinical implementation, and can impact successful clinical use [1, 2, 10]. Streamlin-
ing the workflow to minimize deployment challenges is currently under discussion and 
investigation with institutional health ML oversight bodies as we work towards imple-
menting our ML model into routine care.

One major obstacle was the need for real-time data aggregation, particularly in the 
context of data extraction from commercial products, such as our institutional OIS. 
Application programming interfaces (APIs) can improve integration with existing soft-
ware. However, these opportunities do not consistently exist, presenting a barrier to 
institutionally developed and commercial solutions alike. Furthermore, we demonstrated 
that as the data were not stored in a fashion conducive for this use case, additional, in 
some cases manual, evaluation may be needed to obtain the required information. Mod-
ifications of OIS course start naming conventions and consistent entry of draft prescrip-
tions may improve automation and reduce the need for manual review.

Disparate information systems represent a second challenge. Cancer care, including 
RT, frequently involves multiple information systems that capture data salient to clini-
cally relevant decisions. This includes the EHR and OIS, as well as other sources (pathol-
ogy information systems), procedure data, and genomic data. Some of these elements 
are aggregated in the EHR, but typically in an unstructured format that makes real-time 
utilization challenging. The planned integration of data derived from clinical free-text 
will further introduce challenges in real-time data integration [17]. Our team is currently 
working towards a unified, rather than ad hoc data stream to improve linkage and clini-
cal deployment.
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Finally, we developed a clinical workflow that minimizes the number of touch points 
during the clinic day, integrating a direct OIS alert to the radiation therapy team at a 
treatment machine and the clinician responsible for the supplemental visits. Rates of 
supplemental visit completion were high, and overall clinician time was efficient.

This study does have limitations, including a specific use case and single institution. 
These may limit the generalizable lessons from our implementation, though this study 
demonstrates broader themes in ML implementation. This algorithm was also deployed 
during a 6-month period. Routine clinical deployment or longer-term prospective stud-
ies require more prolonged implementation periods, which introduce the risk of other 
confounders, such as automation bias or distributional shift, requiring regular quality 
assurance [18].

This early randomized study of ML-directed care demonstrates the potential for ML to 
guide systematic, clinically meaningful differences at the point of care. However, many 
challenges arose that required staff time and effort, and these must be streamlined for 
clinical deployment and routine adoption.

Methods
Ethics, consent, and permissions

SHIELD-RT was a prospective, randomized controlled quality improvement (QI) study, 
which was approved by the Duke University Medical Center Institutional Review Board 
(Pro00100647) and registered on ClinicalTrials.gov (NCT04277650). As a QI study, 
study consent was not required.

SHIELD‑RT study details

The methods of the SHIELD-RT study have been previously described [4]. This study 
included all adult outpatient RT courses with or without concurrent systemic therapy 
from January 7, 2019 to June 30, 2019 at the Duke Cancer Institute. Total body irradia-
tion courses were excluded due to planned admissions.

The ML model was previously developed, and source code is available online [11]. This 
was deployed and run weekly to identify high-risk patients who had started RT in the 
current week, with > 10% predicted risk of requiring acute care in the form of an emer-
gency department (ED) visit or hospital admission. High-risk patients were subsequently 
randomized to standard of care, which consists of weekly on-treatment evaluations by 
the treating radiation oncologist, or the addition of a mandatory second weekly evalu-
ation, typically performed by a clinician on the primary treating team (attending phy-
sician, resident physician, advanced practice provider, or nurse clinician). Both arms 
allowed for additional evaluations as indicated by the treating physician. The primary 
endpoint of this study was the rate of acute care visits during courses of RT, with sec-
ondary endpoints including the rate of acute care visits during RT and the 15 days fol-
lowing treatment, rates of missed supplemental evaluations, and reasons for acute care 
(grouped by those designated as potentially preventable by CMS [9]).

Implementation data collection

During the course of the study, investigators at each stage of implementation logged 
their time spent on the various tasks needed for deployment. Clinician time was also 
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documented in formal EHR clinical visit notes. Each team also described their work-
flows to facilitate future reproduction for routine clinical implementation.
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