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Abstract

A geometric perspective on some topics in statistical learning

by

Yuting Wei

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Martin Wainwright, Co-chair

Professor Adityanand Guntuboyina, Co-chair

Modern science and engineering often generate data sets with a large sample size and
a comparably large dimension which puts classic asymptotic theory into question in many
ways. Therefore, the main focus of this thesis is to develop a fundamental understanding of
statistical procedures for estimation and hypothesis testing from a non-asymptotic point of
view, where both the sample size and problem dimension grow hand in hand. A range of
different problems are explored in this thesis, including work on the geometry of hypothesis
testing, adaptivity to local structure in estimation, effective methods for shape-constrained
problems, and early stopping with boosting algorithms.

Our treatment of these different problems shares the common theme of emphasizing the
underlying geometric structure. To be more specific, in our hypothesis testing problem,
the null and alternative are specified by a pair of convex cones. This cone structure makes
it possible for a sharp characterization of the behavior of Generalized Likelihood Ratio
Test (GLRT) and its optimality property. The problem of planar set estimation based
on noisy measurements of its support function, is a non-parametric problem in nature. It
is interesting to see that estimators can be constructed such that they are more efficient
in the case when the underlying set has a simpler structure, even without knowing the
set beforehand. Moreover, when we consider applying boosting algorithms to estimate a
function in reproducing kernel Hibert space (RKHS), the optimal stopping rule and the
resulting estimator turn out to be determined by the localized complexity of the space.

These results demonstrate that, on one hand, one can benefit from respecting and making
use of the underlying structure (optimal early stopping rule for different RKHS); on the
other hand, some procedures (such as GLRT or local smoothing estimators) can achieve
better performance when the underlying structure is simpler, without prior knowledge of the
structure itself.

To evaluate the behavior of any statistical procedure, we follow the classic minimax
framework and also discuss about more refined notion of local minimaxity.
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Chapter 1

Introduction

With thousands of hundreds of data being collected everyday from modern science and
engineering, statistics has entered a new era. While the cost or time for data collection
has constrained the previous scientific studies, advanced technology allows for obtaining
extremely large and high-dimensional data. These data sets often have dimension of the
same order or even larger than the sample size, which often puts the class asymptotic theory
into question and a non-asymptotic point of view is called for in modern statistics.

The main focus of this thesis is to develop a fundamental understanding of statistical
procedures for high-dimensional testing and estimation, and brings together a combination
of techniques from statistics, optimization and information theory. In this thesis, a range
of different problems are explored, including work on the geometry of hypothesis testing,
adaptivity to local structure in estimation, effective methods for shape-constrained problems,
and early stopping with boosting algorithms. A common theme underlying much of this work
is the underlying geometric structure of the problem. In the following sections, we outline
some of the core problems and key ideas that will be developed in the remainder of this
thesis.

1.1 Geometry of high-dimensional hypothesis testing

Hypothesis testing, along with the closely associated notion of a confidence region, has long
played a central role in statistical inference. While research on hypothesis testing dates
back to the seminal work of Neyman and Pearson, high-dimensional and structured testing
problems have drawn attention in recent years, motivated by the large amounts of data
generated by experimental sciences and technological applications.

The generalized likelihood ratio test (GLRT) is a standard approach to composite test-
ing problems. Despite the wide-spread use of the GLRT, its properties have yet to be fully
understood. When is it optimal, and when can it be improved upon? How does its perfor-
mance depend on the null and alternative hypotheses? In this thesis, we provide answers
to these and other questions for the case where the null and alternative are specified by
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a pair of closed, convex cones. Such cone testing problems arise in various applications,
including detection of treatment effects, trend detection in econometrics, signal detection in
radar processing, and shape-constrained inference in non-parametric statistics.

The main contribution of this study is to provide a sharp characterization of the GLRT
testing radius purely in terms of the geometric structure of the underlying convex cones.
When applied to concrete examples, our result reveals some fundamental phenomena that do
not arise in the analogous problem of estimation under convex constraints. In particular, in
contrast to estimation error, the testing error no longer depends only on the problem instance
via a volume-based measure such as metric entropy or Gaussian complexity; instead, other
geometric properties of the cones also play an important role. In order to address the issue
of optimality, we proved information-theoretic lower bounds for the minimax testing radius
again in terms of geometric quantities. These lower bounds applies to any test function thus
providing a sufficient condition for the GLRT to be an optimal test.

These general theorems are illustrated by examples including the cases of monotone and
orthant cones, and involve some results of independent interest. It is worthwhile to note
that these newfound connections between the hardness of hypothesis testing and the local
geometry of the underlying structures have many implications. In particular, as we pointed
out, they reveal the intrinsic similarities and differences between estimation and hypothesis
testing.

1.2 Shape-constrained problems

Research on estimation and testing under shape constraints started in the 1950s. A non-
parametric problem is said to be shape-constrained if the underlying density or function is
required to satisfy constraints such as monotonicity, unimodality, or convexity (e.g., [70]).
Shape-constrained methods have their own merits in many ways, first of all, being non-
parametric, these methods are more robust than standard parametric approaches; on the
other hand, although these methods deal with infinite-dimensional models, shape constraints
may be implemented without tuning parameters (such as bandwidth, or penalization param-
eter).

Recent years have witnessed renewed interest in shape-constrained problems, motivated
by applications in areas such as medical research and econometrics. Here, in the second
part, we consider the problem of estimating an unknown planar convex set from noisy mea-
surements of its support function. For a given direction, the support function of a convex
set measures the distance between the origin and the supporting hyperplane that is per-
pendicular to that direction. Set recovery from support functions is used in areas such as
computational tomography, tactical sensing in robotics, and projection magnetic resonance
imaging [115].

For this problem, we construct a local smoothing estimator with an explicit data-driven
choice of bandwidth parameter. The main contribution is to establish the interesting fact
that, in every direction, this estimator adapts to the local geometry of the underlying set, and



CHAPTER 1. INTRODUCTION 4

it does so without any pre-knowledge of the set itself. Using a decision-theoretic framework
tailored to specific functions first introduced in Cai and Low [29], we establish the optimality
of our estimator in a strong pointwise sense. From these point estimators, we also construct
a set estimator that is both adaptive to polytopes with a bounded number of extreme points,
and achieves the globally optimal minimax rate.

Similarly to other shape-constrained problems, results developed for this problem also
exhibit a form of adaptivity to local problem structure, with methods performing better for
certain instances than suggested by a global minimax analysis. We will make these points
more concrete in our later chapter. In this general area, there are many problems that still
remain open. For example, there is only very limited theory on estimating multivariate
functions under shape constraints. The absence of a natural order structure in Rd for d > 1
presents a significant obstacle to such a generalization. Moreover, relative to estimation, it
is less clear how one can construct optimal and adaptive confidence intervals or regions (in
the multi-dimensional case) in these scenarios.

1.3 Optimization and early-stopping

Many methods for statistical estimation and testing, including maximum likelihood and
the generalized likelihood ratio test, are based on optimizing a suitable data-dependent
objective function. It is well-understood that procedures for fitting non-parametric models
must involve some form of regularization to prevent overfitting to the noisy data. The
classical approach is to add a penalty term to the objective function, leading to the notion
of a penalized estimator.

An alternative approach is to apply an iterative optimization algorithm to the original
objective, and then stop it after a pre-specified number of steps, thereby terminating it
prior to convergence. To be more specific, suppose based on the observations, we construct
empirical loss function Ln(f). A optimization algorithm is based on taking gradient steps

f t+1 = f t − αtgt,

to minimize this loss function. We want to specify the number of steps T , such that fT is
as close to the minimizer of the population loss as possible.

Relative to our rich and detailed understanding of regularization via penalization (e.g.,
[138, 63]), our understanding of early stopping regularization is not as well-developed. In
particular, for penalized estimators, it is now well-understood that complexity measures such
as the localized Gaussian width, or its Rademacher analogue, can be used to characterize
their achievable rates.

In this part, we show that such sharp characterizations can also be obtained for a broad
class of boosting algorithms with early stopping, including L2-boost, LogitBoost, and Ad-
aBoost, among others. This result, to our best knowledge, is the first one to establish a
precise connection between early stopping and regularized estimation in a general setting.
Since boosting algorithms are used broadly in data analysis, understanding this connection
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provides direct guidance in many applications for obtaining more generalizable and stable
statistical estimates.

1.4 Thesis overview

We want to note that although the emphasis to date has been primarily methodological
and theoretical, all of this work is motivated by applications arising from areas such as
computational imaging, statistical signal processing, and treatment effects which will be
further pursued in the future.

The remainder of this thesis is organized as follows. We begin with the basic statistical
notation and terminology in Chapter 2. It introduces important criteria to evaluate both
hypothesis testing and estimation procedures that will be used through out the thesis. Chap-
ter 3 is devoted to discuss a hypothesis testing problem where the null and alternative are
both specified both convex cones. It is based on my joint work with A. Guntuboyina and M.
Wainwright [149]. In Chapter 4, we consider the problem of estimating a planar set based
on noisy measurements of it support function. The estimators are constructed based on
locally smoothing and we focus on their adaptive behaviors when the underlying geometry
varies. This part is based on joint work with T. Cai and A. Guntuboyina [28]. In Chap-
ter 5, we explore a type of algorithmic regularization, where an optimal early stopping rule
is purposed for boosting algorithms applied to reproducing kernel Hibert space. The result
of this chapter is based on the joint work with F. Yang and M. Wainwright [150]. Finally
we close in Chapter 6, with discussions on possible future directions and open problems, as
a supplementary to the discussions in each Chapter. Proofs of more technical lemmas are
deferred to the appendices.
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Chapter 2

Background

Understanding the fundamental limits of estimation and testing problems is worthwhile for
multiple reasons. Firstly, it provides insights of the hardness of these tasks, regardless of
what procedures we are using. From a mathematical point of view, it often reveals some
intrinsic properties of the problems themselves. On the other hand, exhibiting fundamental
limits of performance also makes it possible to guarantee that an estimator/testing procedure
is optimal, so that there are limited pay-offs in searching for another procedure with lower
statistical error, although it might still be interesting to study other procedures with better
performance in other metrics.

In this chapter, our first goal is to set up the basic minimax frameworks for both es-
timation and hypothesis testing, which are regarded as standards for discussing about the
optimality of estimation and testing procedures in later chapters. Our second goal is to
introduce the standard setting of non-parametric estimation, of which we will discuss about
an important class of functions called reproducing kernel Hilbert space. It worth noting
that this chapter only includes some basic statistical notion and terminology, and for more
detailed descriptions, we refer the readers to examine the introductory material of individual
chapters.

2.1 Evaluating statistical procedures

Our first step here is to establish the minimax framework we use throughout the thesis.
Depending on the problem we work on, we use either the minimax risk or minimax testing
radius to evaluate optimality of our statistical procedures. Our treatment here is essentially
standard and more references can be found (e.g. [153, 156, 135, 81, 82, 49, 132, 96]).

Throughout, let P denote a class of distributions, and θ denote a functional on the space
P—a mapping from every distribution P to a parameter θ(P) taking value in some space Θ.
In some scenarios, the underlying distribution P is uniquely determined by the quantity θ(P),
namely, θ(P0) = θ(P1) if and only if P0 = P1. In these cases, θ provides a parameterization
of the family of distributions, and we write P = {Pθ | θ ∈ Θ} for such classes.
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2.1.1 Minimax estimation framework

Suppose now, we are given i.i.d observations Xi drawn from a distribution P ∈ P for which
θ(P) = θ∗. From these observation Xn ≡ {Xi}n, our goal is to estimate the unknown

parameter θ∗ and an estimator θ̂ to do so is a measurable function θ̂ : X n → Θ. In order
to evaluate the quality of any estimator, let ρ : Θ × Θ → [0,∞) be a semi-metric and we

consider the quantity ρ(θ̂, θ∗). Note that here θ∗ is a fixed but unknown quantity, whereas

θ̂ ≡ θ̂(Xn) is a random quantity. So we then assess the quality of the estimator by taking
expectations over the randomness in Xi, which gives us

EP ρ(θ̂(X1, . . . , Xn), θ∗). (2.1)

As the parameter θ∗ varies, this quantity also changes accordingly, which referred to as the
risk function associated with the parameter. Of course, for any θ∗, we can always estimate
it by ignoring the data completely and simply returning θ∗. This estimator will have zero
loss when evaluated at θ∗ but is likely to behave badly for other choices of the parameter.

In order to deal with the risk in a more uniform sense, let us look at the minimax
principle, first suggested by Wald [145]. For any estimator θ̂, its behavior is evaluated in an
adversarial manner, meaning we compute its worst-case behavior supP∈P EP[ρ(θ, θ(P))] and
compare estimators according to this criterion. The optimal estimator in this sense defines
the minimax risk—

M(θ(P), ρ) = inf
θ̂

sup
P∈P

EP

[
ρ(θ̂(Xn

1 ), θ(P))
]
, (2.2)

where the infimum is taken over all possible estimators. Often the case, we are interested
in evaluating the risk through some function of a norm—by letting Φ : R+ → R+ be a
non-decreasing function with Φ(0) = 0 (for example, Φ(t) = t2), then a generalization of the
ρ-minimax risk can be defined as

M(θ(P),Φ ◦ ρ) = inf
θ̂

sup
P∈P

EP

[
Φ(ρ(θ̂(Xn

1 ), θ(P)))
]
. (2.3)

For instance, if ρ(θ, θ′) = ‖θ − θ′‖2 and Φ(t) = t2, it corresponds to the minimax risks for
the mean squared error.

2.1.2 Minimax testing framework

Suppose again we are given observation X from P, a goodness-of-fit testing problem is to
decide whether the null-hypothesis θ(P) ∈ Θ0 holds or instead the alternative θ(P) ∈ Θ1

holds. Here both sets Θ0 and Θ1 are subsets of Θ. Usually the set Θ0 corresponds to some
desirable properties of the object of study. When both Θ0 and Θ1 consist of only one point,
we called the hypothesis simple, otherwise it is called composite.

We want to construct a decision rule with the values 1 when the null-hypothesis is rejected,
or 0 when the null-hypothesis is accepted. The decision rule ψ : X → {0, 1} is a measurable



CHAPTER 2. BACKGROUND 8

function of an observation and it is called a test. Two types of errors are considered in
hypothesis testing literature. The type I error is made if the null is rejected whenever it is
true and the type II error is made if the null is accepted whenever it does not hold. We refer
the readers to Lehmann and Romano [94] for more details.

For any test function ψ, two types of error are clearly defined when the testing problem
is simple, however for a composite testing problem, we measure its performance in terms of
its uniform error

E(ψ; Θ0,Θ1, ε) : = sup
θ∈Θ0

Eθ[ψ(y)] + sup
θ∈Θ1\B2(ε;Θ0)

Eθ[1− ψ(y)], (2.4)

which controls the worst-case error over both null and alternative. Here, for a given ε > 0,
we define the ε-fattening of the set Θ0 as

B2(Θ0; ε) : =
{
θ ∈ Rd | min

u∈Θ0

‖θ − u‖2 ≤ ε
}
, (2.5)

corresponding to the set of vectors in Θ that are at most Euclidean distance ε from some
element of Θ0.

The reason to do is because our formulation of the testing problem allows for the pos-
sibility that θ lies in the set Θ1\Θ0, but is arbitrarily close to some element of Θ0. Thus,
under this formulation, it is not possible to make any non-trivial assertions about the power
of any other test in a uniform sense. Accordingly, so as to be able to make quantitative
statements about the performance of different statements, we exclude a certain ε-ball from
the alternative. This procedure leads to the notion of the minimax testing radius associated
this composite decision problem. This minimax formulation was introduced in the seminal
work of Ingster and co-authors [81, 82]; since then, it has been studied by many authors
(e.g., [49, 132, 96, 97, 7]).

For a given error level ρ ∈ (0, 1), we are interested in the smallest setting of ε for which
some test ψ has uniform error at most ρ. More precisely, we define

εOPT(Θ0,Θ1; ρ) : = inf
{
ε | inf

ψ
E(ψ; Θ0,Θ1, ε) ≤ ρ

}
. (2.6)

When the sets (Θ0,Θ1) are clear from the context, we occasionally omit this dependence,
and write εOPT(ρ) instead. We refer to these two quantities as the minimax testing radius.

By definition, the minimax testing radius εOPT corresponds to the smallest separation ε
at which there exists some test that distinguishes between the hypotheses H0 and H1 with
uniform error at most ρ. Thus, it provides a fundamental characterization of the statistical
difficulty of the hypothesis testing. Similar to the definition of minimax estimation risk,
defined in (2.6), the minimax testing radius also characterize the best possible worst-case
guarantee.
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2.2 Non-parametric estimation

In this section, we move beyond the parametric setting, where P is uniquely determined
by a lower dimensional functional θ(P). We instead consider the problem of nonparametric
regression, in which the goal is to estimate a (possibly non-linear) function on the basis of
noisy observations.

Suppose we are given covariates x ∈ X , along with a response variable y ∈ Y . Through
out this thesis, unless it is particularly mentioned, we focus our attention on the case of
real-valued response variables, where the space Y is the real-line or or some subset of the
real line. Given a class of functions F , our goal is to find a function f : X → Y in F , such
that the error between y and f(x) is as small as possible.

Consider a cost function φ : R × R → [0,∞), where the non-negative scalar φ(y, θ)
denotes the cost associated with predicting θ when the true response is y. Some common
examples of loss functions φ that we consider in later sections include:

• the least-squares loss φ(y, θ) : = 1
2
(y − θ)2

• the logistic regression loss φ(y, θ) = ln(1 + e−yθ), and

• the exponential loss φ(y, θ) = exp(−yθ).

In the fixed design version of regression, only the response is a random quantity, in which
case it is reasonable to measure the quality of any f in terms of its error

L(f) : = EY n
[ 1

n

n∑
i=1

φ
(
Yi, f(xi)

)]
. (2.7)

Accordingly, we can define L(f) for the random design case, where the expectation is taken
over both the responses and the covariates. Note that with the covariates {xi}ni=1 fixed, the
functional L is a non-random object. In function space F , the optimal function minimizes
the population cost functional—that is

f ∗ ∈ arg min
f∈F
L(f). (2.8)

As a standard example, when we adopt the least-squares loss φ(y, θ) = 1
2
(y − θ)2, the

population minimizer f ∗ corresponds to the conditional expectation x 7→ E[Y | x].
Since we do not have access to the population distribution of the responses however,

the computation of f ∗ is impossible. Given our samples {Yi}ni=1, we consider instead some
procedure applied to the empirical loss

Ln(f) : =
1

n

n∑
i=1

φ(Yi, f(xi)), (2.9)
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where the population expectation has been replaced by an empirical expectation. For
example, when Ln corresponds to the log likelihood of the samples with φ(Yi, f(xi)) =
log[P(Yi; f(xi))], direct unconstrained minimization of Ln would yield the maximum likeli-
hood estimator.

2.2.1 Adaptive minimax risk

In this section, let us consider the case when the response {yi}ni=1 is generated through

yi = f ∗(xi) + wi for i = 1, 2, . . . , n, (2.10)

where wi is a random variable characterizing the noise in the measurements, with mean zero.
Now, based on these noisy responses, our goal is to find a function f (in the function class
F) such that f : X → R is as close as f ∗ as possible.

For each estimator f̂ , recall that its performance is measured by the loss function (2.7),
where

L(f̂ , f ∗) = EY n
[ 1

n

n∑
i=1

φ
(
Yi, f(xi)

)]
.

Note that here, the response is generated from model (2.10) so the loss is also a function of
f ∗. Of course, for each f ∗ ∈ F , we can always estimate it by omitting the data and simply
returning f ∗. This will give us a zero loss at f ∗ but possibly huge loss for other choices of
functions. So analogous to our Section 2.1.1, we compare estimators of f ∗ by their worst-case
behavior, namely

R(F ,F0, φ) = inf
f̂∈F

sup
f∗∈F0

L(f̂ , f ∗). (2.11)

Here the infimum is taken over all possible estimators in function class F and the supremum
is taken over the space F0 that f ∗ lies in. If there is no side knowledge of f ∗, we may take
F0 to be all possible functions.

Note that in this classic minimax risk framework, estimator are compared via their worst-
case behavior as measured by performance over the entire problem class. When the risk
function is near to constant over the set, then the global minimax risk is reflective of the
typical behavior. If not, then one is motivated to seek more refined ways of characterizing
the hardness of different problems, and the performance of different estimators.

One way of doing so is by studying the notion of an adaptive estimator, meaning one
whose performance automatically adapts to some (unknown) property of the underlying func-
tion being estimated. For instance, estimators using wavelet bases are known to be adaptive
to unknown degree of smoothness [44, 45]. Similarly, in the context of shape-constrained
problems, there is a line of work showing that for functions with simpler structure, it is
possible to achieve faster rates than the global minimax ones (e.g. [109, 158, 39]).
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To discuss the optimality in this adaptive or local sense, we review the notion of local
minimax framework here where the focus is on the performance at every function, instead
of the maximum risk over a large parameter space as in the conventional minimax theory.
This framework, first introduced in Cai and Low ( [29, 30]) for shape constrained regression,
provides a much more precise characterization of the performance of an estimator than the
conventional minimax theory does.

For a given function f ∈ F0, we choose the other function, say g, to be the one which is
most difficult to distinguish from f in the φ-loss. This benchmark is defined as

Rn(f) = sup
g∈F0

inf
f̂

max
{
L(f̂ , f), L(f̂ , g)

}
. (2.12)

Cai and Low [29] demonstrates that this is an useful benchmark in the context of estimating
convex functions, namely F0 denotes the class of convex functions. They established some
interesting properties, such as Rn(f) varies considerably over the collection of convex func-
tions and outperforming the benchmark Rn(f) at some convex function f leads to worse
performance at other functions. We want to point out that without saying this is a very
useful benchmark to evaluate the optimality of adaptive estimators, but there can be other
reasonable definitions of local minimax framework that are suitable in other contexts.

2.2.2 Reproducing kernel Hilbert spaces

In this section, we provide some background on a particular class of functions that will
be used in our later chapters—a class of function-based Hilbert spaces that are defined by
reproducing kernels. These function spaces have many attractive properties from both the
computational and statistical points of view.

A reproducing kernel Hilbert space H (short as RKHS, see standard sources [143, 73,
128, 17]), consisting of functions mapping a domain X to the real line R. Any RKHS is
defined by a bivariate symmetric kernel function K : X × X → R which is required to be
positive semidefinite, i.e. for any integer N ≥ 1 and a collection of points {xj}Nj=1 in X , the
matrix [K(xi, xj)]ij ∈ RN×N is positive semidefinite.

The associated RKHS is the closure of the linear span of functions in the form f(·) =∑
j≥1 ωjK(·, xj), where {xj}∞j=1 is some collection of points in X , and {ωj}∞j=1 is a real-

valued sequence. We can also define the inner product of two functions in the space. For
two functions f1, f2 ∈H which can be expressed as a finite sum f1(·) =

∑`1
i=1 αiK(·, xi) and

f2(·) =
∑`2

j=1 βjK(·, xj), the inner product is defined as

〈f1, f2〉H =

`1∑
i=1

`2∑
j=1

αiβjK(xi, xj)

with induced norm ‖f1‖2
H =

∑`1
i=1 α

2
iK(xi, xi). For each x ∈ X , the function K(·, x) belongs

to H , and satisfies the reproducing relation

〈f, K(·, x)〉H = f(x) for all f ∈H . (2.13)
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This property is known as the kernel reproducing property for the Hilbert space, and it gives
the power of RKHS methods in practice.

Moreover, when the covariates Xi are drawn i.i.d. from a distribution PX with compact
domain X , we can invoke Mercer’s theorem which states that any function in H can be
represented as

K(x, x′) =
∞∑
k=1

µkφk(x)φk(x
′), (2.14)

where µ1 ≥ µ2 ≥ · · · ≥ 0 are the eigenvalues of the kernel function K and {φk}∞k=1 are
eigenfunctions of K which form an orthonormal basis of L2(X ,PX) with the inner product
〈f, g〉 : =

∫
X f(x)g(x)dPX(x). We refer the reader to the standard sources [143, 73, 128, 17]

for more details on RKHSs and their properties.



13

Part II

Statistical inference and estimation
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Chapter 3

Hypothesis testing over convex cones

3.1 Introduction

Composite testing problem arise in a wide variety of applications and the generalized like-
lihood ratio test (GLRT) is a general purpose approach to such problem. The basic idea
of the likelihood ratiotest dates back to the early works of Fisher, Neyman and Pearson; it
attracted further attention following the work of Edwards [48], who emphasized likelihood
as a general principle of inference. Recent years have witnessed a great amount of work on
the GLRT in various contexts, including the papers [94, 112, 93, 51, 50]. However, despite
the wide-spread use of the GLRT, its optimality properties have yet to be fully understood.
For suitably regular problem, there is a great deal of asymptotic theory on the GLRT, and
in particular when its distribution under the null is independent of nuisance parameters
(e.g., [9, 120, 117]). On the other hand, there are some isolated cases in which the GLRT
can be shown to dominated by other tests (e.g., [147, 107, 106, 93]).

In this chapter, we undertake an in-depth study of the GLRT in application to a particular
class of composite testing problem of a geometric flavor. In this class of testing problem,
the null and alternative hypotheses are specified by a pair of closed convex cones C1 and
C2, taken to be nested as C1 ⊂ C2. Suppose that we are given an observation of the form
y = θ+w, where w is a zero-mean Gaussian noise vector. Based on observing y, our goal is
to test whether a given parameter θ belongs to the smaller cone C1—corresponding to the
null hypothesis—or belongs to the larger cone C2. Cone testing problem of this type arise
in many different settings, and there is a fairly substantial literature on the behavior of the
GLRT in application to such problem (e.g., see the papers and books [18, 89, 118, 117, 119,
122, 110, 107, 108, 47, 130, 147], as well as references therein).

3.1.1 Some motivating examples

Before proceeding, let us consider some concrete examples so as to motivate our study.
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Example 1 (Testing non-negativity and monotonicity in treatment effects). Suppose that
we have a collection of d treatments, say different drugs for a particular medical condition.
Letting θj ∈ R denote the mean of treatment j, one null hypothesis could be that none of
treatments has any effect—that is, θj = 0 for all j = 1, . . . , d. Assuming that none of the
treatments are directly harmful, a reasonable alternative would be that θ belongs to the
non-negative orthant cone

K+ : =
{
θ ∈ Rd | θj ≥ 0 for all j = 1, . . . , d

}
. (3.1)

This set-up leads to a particular instance of our general set-up with C1 = {0} and C2 = K+.
Such orthant testing problem have been studied by Kudo [89] and Raubertas et al. [117],
among other people.

In other applications, our treatments might consist of an ordered set of dosages of the
same drug. In this case, we might have reason to believe that if the drug has any effect, then
the treatment means would obey a monotonicity constraint—that is, with higher dosages
leading to greater treatment effects. One would then want to detect the presence or ab-
sence of such a dose response effect. Monotonicity constraints also arise in various types
of econometric models, in which the effects of strategic interventions should be monotone
with respect to parameters such as market size (e.g.,[42]). For applications of this flavor, a
reasonable alternative would be specified by the monotone cone

M : =
{
θ ∈ Rd | θ1 ≤ θ2 ≤ · · · ≤ θd

}
. (3.2)

This set-up leads to another instance of our general problem with C1 = {0} and C2 = M .
The behavior of the GLRT for this particular testing problem has also been studied in past
works, including papers by Barlow et al. [9], and Raubertas et al. [117].

As a third instance of the treatment effects problem, we might like to include in our
null hypothesis the possibility that the treatments have some (potentially) non-zero effect
but one that remains constant across levels—i.e., θ1 = θ2 = · · · = θd. In this case, our null
hypothesis is specified by the ray cone

R : =
{
θ ∈ Rd | θ = c1 for some c ∈ R

}
. (3.3)

Supposing that we are interested in testing the alternative that the treatments lead to a
monotone effect, we arrive at another instance of our general set-up with C1 = R and
C2 = M . This testing problem has also been studied by Bartholomew [10, 11] and Robertson
et al. [121] among other researchers.

In the preceding three examples, the cone C1 was linear subspace. Let us now consider
two more examples, adapted from Menendnez et al. [108], in which C1 is not a subspace. As
before, suppose that component θi of the vector θ ∈ Rd denotes the expected response of
treatment i. In many applications, it is of interest to test equality of the expected responses
of a subset S of the full treatment set [d] = {1, . . . , d}. More precisely, for a given subset S
containing the index 1, let us consider the problem of testing the the null hypothesis

C1 ≡ E(S) : =
{
θ ∈ Rd | θi = θ1 ∀ i ∈ S, and θj ≥ θ1 ∀ j /∈ S

}
(3.4)
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versus the alternative C2 ≡ G(S) = {θ ∈ Rd | θj ≥ θ1 ∀ j ∈ [d]}. Note that C1 here is not a
linear subspace.

As a final example, suppose that we have a factorial design consisting of two treatments,
each of which can be applied at two different dosages (high and level). Let (θ1, θ2) denote the
expected responses of the first treat at the low and high dosages, respectively, with the pair
(θ3, θ4) defined similarly for the second treatment. Suppose that we are interesting in testing
whether the first treatment at the lowest level is more effective than the second treatment
at the highest level. This problem can be formulated as testing the null cone

C1 : = {θ ∈ R4 | θ1 ≤ θ2 ≤ θ3 ≤ θ4} versus the alternative

C2 : = {θ ∈ R4 | θ1 ≤ θ2, and θ3 ≤ θ4}. (3.5)

As before, the null cone C1 is not a linear subspace.

Example 2 (Robust matched filtering in signal processing). In radar detection problem [126],
a standard goal is to detect the presence of a known signal of unknown amplitude in the
presence of noise. After a matched filtering step, this problem can be reduced to a vec-
tor testing problem, where the known signal direction is defined by a vector γ ∈ Rd,
whereas the unknown amplitude corresponds to a scalar pre-factor c ≥ 0. We thus ar-
rive at a ray cone testing problem: the null hypothesis (corresponding to the absence
of signal) is given C1 = {0}, whereas the alternative is given by the positive ray cone
R+ =

{
θ ∈ Rd | θ = cγ for some c ≥ 0

}
.

In many cases, there may be uncertainty about the target signal, or jamming by ad-
versaries, who introduce additional signals that can be potentially confused with the target
signal γ. Signal uncertainties of this type are often modeled by various forms of cones, with
the most classical choice being a subspace cone [126]. In more recent work (e.g., [18, 66]),
signal uncertainty has been modeled using the circular cone defined by the target signal
direction, namely

C(γ;α) : =
{
θ ∈ Rd | 〈γ, θ〉 ≥ cos(α) ‖γ‖2‖θ‖2

}
, (3.6)

corresponding to the set of all vectors θ that have angle at least α with the target signal.
Thus, we are led to another instance of a cone testing problem involving a circular cone.

Example 3 (Cone-constrained testing in linear regression). Consider the standard linear
regression model

y = Xβ + σZ, where Z ∼ N(0, In), (3.7)

where X ∈ Rn×p is a fixed and known design matrix. In many applications, we are interested
in testing certain properties of the unknown regression vector β, and these can often be
encoded in terms of cone-constraints on the vector θ : = Xβ. As a very simple example,
the problem of testing whether or not β = 0 corresponds to testing whether θ ∈ C1 : = {0}
versus the alternative that θ ∈ C2 : = range(X). Thus, we arrive at a subspace testing
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problem. We note this problem is known as testing the global null in the linear regression
literature (e.g., [24]). If instead we consider the case when the p-dimensional vector β lies
in the non-negative orthant cone (3.1), then our alternative for the n-dimensional vector θ
becomes the polyhedral cone

P : =
{
θ ∈ Rn | θ = Xβ for some β ≥ 0

}
. (3.8)

The corresponding estimation problem with non-negative constraints on the coefficient vector
β has been studied by Slawski et al. [131] and Meinshausen [104]; see also Chen et al. [40]
for a survey of this line of work. In addition to these preceding two cases, we can also
test various other types of cone alternatives for β, and these are transformed via the design
matrix X into other types of cones for the parameter θ ∈ Rn.

Example 4 (Testing shape-constrained departures from parametric models). Our third ex-
ample is non-parametric in flavor. Consider the class of functions f that can be decomposed
as

f =
k∑
j=1

ajφj + ψ. (3.9)

Here the known functions {φj}kj=1 define a linear space, parameterized by the coefficient vec-
tor a ∈ Rk, whereas the unknown function ψ models a structured departure from this linear
parametric class. For instance, we might assume that ψ belongs to the class of monotone
functions, or the class of convex functions. Given a fixed collection of design points {ti}ni=1,
suppose that we make observations of the form yi = f(ti) + σgi for i = 1, . . . , n, where each
gi is a standard normal variable. Defining the shorthand notation θ : =

(
f(t1), . . . , f(tn)

)
and g = (g1, . . . , gn), our observations can be expressed in the standard form y = θ + σg. If,
under the null hypothesis, the function f satisfies the decomposition (3.9) with ψ = 0, then
the vector θ must belong to the subspace {Φa | a ∈ Rk}, where the matrix Φ ∈ Rn×k has
entries Φij = φj(xi).

Now suppose that the alternative is that f satisfies the decomposition (3.9) with some ψ
that is convex. A convexity constraint on ψ implies that we can write θ = Φa+ γ, for some
coefficients a ∈ Rk and a vector γ ∈ Rn belonging to the convex cone

V ({ti}ni=1) : =
{
γ ∈ Rn | γ2 − γ1

t2 − t1
≤ γ3 − γ2

t3 − t2
≤ · · · ≤ γn − γn−1

tn − tn−1

}
. (3.10)

This particular cone testing problem and other forms of shape constraints have been studied
by Meyer [110], as well as by Sen and Meyer [129].

3.1.2 Problem formulation

Having understood the range of motivations for our problem, let us now set up the problem
more precisely. Suppose that we are given observations of the form y = θ + σg, where
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θ ∈ Rd is a fixed but unknown vector, whereas g ∼ N(0, Id) is a d-dimensional vector of
i.i.d. Gaussian entries and σ2 is a known noise level. Our goal is to distinguish the null
hypothesis that θ ∈ C1 versus the alternative that θ ∈ C2\C1, where C1 ⊂ C2 are a nested
pair of closed, convex cones in Rd.

In this chapter, we study both the fundamental limits of solving this composite testing
problem, as well as the performance of a specific procedure, namely the generalized likelihood
ratio test, or GLRT for short. By definition, the GLRT for the problem of distinguishing
between cones C1 and C2 is based on the statistic

T (y) : = −2 log

(
supθ∈C1

Pθ(y)

supθ∈C2
Pθ(y)

)
. (3.11a)

It defines a family of tests, parameterized by a threshold parameter β ∈ [0,∞), of the form

φβ(y) : = I(T (y) ≥ β) =

{
1 if T (y) ≥ β

0 otherwise.
(3.11b)

Recall that in our Section 2.1.2, we have set up the minimax testing framework. In
order to be able to make quantitative statements about the performance of different state-
ments, we exclude a certain ε-ball from the alternative. We consider the testing problem of
distinguishing between the two hypotheses

H0 : θ ∈ C1 and H1 : θ ∈ C2\B2(C1; ε), (3.12)

where

B2(C1; ε) : =
{
θ ∈ Rd | min

u∈C1

‖θ − u‖2 ≤ ε
}
, (3.13)

is the ε-fattening of the cone C1. To be clear, the parameter ε > 0 is a quantity that is used
during the course of our analysis in order to titrate the difficulty of the testing problem. All
of the tests that we consider, including the GLRT, are not given knowledge of ε. Let us
introduce shorthand T (C1, C2; ε) to denote this testing problem (3.12).

Obviously, the testing problem (3.12) becomes more difficult as ε approaches zero, and
so it is natural to study this increase in quantitative terms. Recall that for any (measurable)
test function ψ : Rd → {0, 1}, we measure its performance in terms of its uniform error

E(ψ;C1, C2, ε) : = sup
θ∈C1

Eθ[ψ(y)] + sup
θ∈C2\B2(ε;C1)

Eθ[1− ψ(y)], (3.14)

which controls the worst-case error over both null and alternative.
For a given error level ρ ∈ (0, 1), we are interested in the smallest setting of ε for which

either the GLRT, or some other test ψ has uniform error at most ρ. More precisely, we define

εOPT(C1, C2; ρ) : = inf
{
ε | inf

ψ
E(ψ;C1, C2, ε) ≤ ρ

}
, and (3.15a)

εGLR(C1, C2; ρ) : = inf
{
ε | inf

β∈R
E(φβ;C1, C2, ε) ≤ ρ

}
. (3.15b)
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When the subspace-cone pair (C1, C2) are clear from the context, we occasionally omit this
dependence, and write εOPT(ρ) and εGLR(ρ) instead. We refer to these two quantities as the
minimax testing radius and the GLRT testing radius respectively.

By definition, the minimax testing radius εOPT corresponds to the smallest separation
ε at which there exists some test that distinguishes between the hypotheses H0 and H1 in
equation (3.12) with uniform error at most ρ. Thus, it provides a fundamental characteri-
zation of the statistical difficulty of the hypothesis testing. On the other hand, the GLRT
testing radius εGLR(ρ) provides us with the smallest radius ε for which there exists some
threshold—say β∗— for which the associated generalized likelihood ratio test φβ∗ distin-
guishes between the hypotheses with error at most ρ. Thus, it characterizes the performance
limits of the GLRT when an optimal threshold β∗ is chosen. Of course, by definition, we
always have εOPT(ρ) ≤ εGLR(ρ). We write εOPT(ρ) � εGLR(ρ) to mean that—in addition to
the previous upper bound—there is also a lower bound εOPT(ρ) ≥ cρεGLR(ρ) that matches
up to a constant cρ > 0 depending only on ρ.

3.1.3 Overview of our results

Having set up the problem, let us now provide a high-level overview of the main results of
this chapter.

1. Our first main result, stated as Theorem 3.3.1 in Section 3.3.1, gives a sharp characterization—
meaning upper and lower bounds that match up to universal constants—of the GLRT
testing radius εGLR for cone pairs (C1, C2) that are non-oblique (we discuss the non-
obliqueness property and its significance at length in Section 3.2.2). We illustrate the
consequences of this theorem for a number of concrete cones, include the subspace
cone, orthant cone, monotone cone, circular cone and a Cartesian product cone.

2. In our second main result, stated as Theorem 3.3.2 in Section 3.3.2, we derive a lower
bound that applies to any testing function. It leads to a corollary that provides suf-
ficient conditions for the GLRT to be an optimal test, and we use it to establish
optimality for the subspace cone and circular cone, among other examples. We then
revisit the Cartesian product cone, first analyzed in the context of Theorem 3.3.1, and
use Theorem 3.3.2 to show that the GLRT is sub-optimal for this particular cone, even
though it is in no sense a pathological example.

3. For the monotone and orthant cones, we find that the lower bound established in
Theorem 3.3.2 is not sharp, but that the GLRT turns out to be an optimal test. Thus,
Section 3.3.3 is devoted to a detailed analysis of these two cases, in particular using a
more refined argument to obtain sharp lower bounds.

The remainder of this chapter is organized as follows: Section 3.2 provides background
on conic geometry, including conic projections, the Moreau decomposition, and the notion
of Gaussian width. It also introduces the notion of a non-oblique pair of cones, which have



CHAPTER 3. HYPOTHESIS TESTING OVER CONVEX CONES 20

been studied in the context of the GLRT. In Section 3.3, we state our main results and
illustrate their consequences via a series of examples. Sections 3.3.1 and 3.3.2 are devoted,
respectively, to our sharp characterization of the GLRT and a general lower bound on the
minimax testing radius. Section 3.3.3 explores the monotone and orthant cones in more
detail. In Section 3.5, we provide the proofs of our main results, with certain more technical
aspects deferred to the appendix sections.

Notation Here we summarize some notation used throughout the remainder of this chap-
ter. For functions f(σ, d) and g(σ, d), we write f(σ, d) . g(σ, d) to indicate that f(σ, d) ≤
cg(σ, d) for some constant c ∈ (0,∞) that may only depend on ρ but independent of (σ, d),
and similarly for f(σ, d) & g(σ, d). We write f(σ, d) � g(σ, d) if both f(σ, d) . g(σ, d) and
f(σ, d) & g(σ, d) are satisfied.

3.2 Background on conic geometry and the GLRT

In this section, we provide some necessary background on cones and their geometry, including
the notion of a polar cone and the Moreau decomposition. We also define the notion of a
non-oblique pair of cones, and summarize some known results about properties of the GLRT
for such cone testing problem.

3.2.1 Convex cones and Gaussian widths

For a given closed convex cone C ⊂ Rd, we define the Euclidean projection operator ΠC :
Rd → C via

ΠC(v) : = arg min
u∈C
‖v − u‖2. (3.16)

By standard properties of projection onto closed convex sets, we are guaranteed that this
mapping is well-defined. We also define the polar cone

C∗ : =
{
v ∈ Rd | 〈v, u〉 ≤ 0 for all u ∈ C

}
. (3.17)

Figure 3.1(b) provides an illustration of a cone in comparison to its polar cone. Using ΠC∗

to denote the projection operator onto this cone, Moreau’s theorem [111] ensures that every
vector v ∈ Rd can be decomposed as

v = ΠC(v) + ΠC∗(v), and such that 〈ΠC(v), ΠC∗(v)〉 = 0. (3.18)

We make frequent use of this decomposition in our analysis.
Let S−1 : = {u ∈ Rd | ‖u‖2 = 1} denotes the Euclidean sphere of unit radius. For every

set A ⊆ S−1, we define its Gaussian width as

W(A) : = E
[

sup
u∈A
〈u, g〉

]
where g ∼ N(0, Id). (3.19)
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This quantity provides a measure of the size of the set A; indeed, it can be related to the vol-
ume of A viewed as a subset of the Euclidean sphere. The notion of Gaussian width arises in
many different areas, notably in early work on probabilistic methods in Banach spaces [113];
the Gaussian complexity, along with its close relative the Rademacher complexity, plays a
central role in empirical process theory [137, 87, 14].

Of interest in this work are the Gaussian widths of sets of the form A = C ∩ S−1, where
C is a closed convex cone. For a set of this form, using the Moreau decomposition (3.18),
we have the useful equivalence

W(C ∩ S−1) = E
[

sup
u∈C∩S−1

〈u, ΠC(g) + ΠC∗(g)〉
]

= E‖ΠC(g)‖2, (3.20)

where the final equality uses the fact that 〈u, ΠC∗(g)〉 ≤ 0 for all vectors u ∈ C, with equality
holding when u is a non-negative scalar multiple of ΠC(g).

For future reference, let us derive a lower bound on E‖ΠCg‖2 that holds for every cone
C strictly larger than {0}. Take some non-zero vector u ∈ C and let R+ = {cu | c ≥ 0} be
the ray that it defines. Since R+ ⊆ C, we have ‖ΠCg‖2 ≥ ‖ΠR+g‖2. But since R+ is just a
ray, the projection ΠR+(g) is a standard normal variable truncated to be positive, and hence

E‖ΠCg‖2 ≥ E‖ΠR+g‖2 =

√
1

2π
. (3.21)

This lower bound is useful in parts of our development.

3.2.2 Cone-based GLRTs and non-oblique pairs

In this section, we provide some background on the notion of non-oblique pairs of cones, and
their significance for the GLRT. First, let us exploit some properties of closed convex cones
in order to derive a simpler expression for the GLRT test statistic (3.11a). Using the form
of the multivariate Gaussian density, we have

T (y) = min
θ∈C1

‖y − θ‖2
2 −min

θ∈C2

‖y − θ‖2
2 = ‖y − ΠC1(y)‖2

2 − ‖y − ΠC2(y)‖2
2 (3.22)

= ‖ΠC2(y)‖2
2 − ‖ΠC1(y)‖2

2, (3.23)

where we have made use of the Moreau decomposition to assert that

‖y − ΠC1(y)‖2
2 = ‖y‖2

2 − ‖ΠC1(y)‖2
2, and ‖y − ΠC2(y)‖2

2 = ‖y‖2
2 − ‖ΠC2(y)‖2

2.

Thus, we see that a cone-based GLRT has a natural interpretation: it compares the squared
amplitude of the projection of y onto the two different cones.

When C1 = {0}, then it can be shown that under the null hypothesis (i.e., y ∼ N(0, σ2Id)),
the statistic T (y) (after rescaling by σ2) is a mixture of χ2-distributions (see e.g., [117]). On
the other hand, for a general cone pair (C1, C2), it is not straightforward to characterize
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the distribution of T (y) under the null hypothesis. Thus, past work has studied conditions
on the cone pair under which the null distribution has a simple characterization. One such
condition is a certain non-obliqueness property that is common to much past work on the
GLRT (e.g., [147, 107, 108, 80]). The non-obliqueness condition, first introduced by Warrack
et al. [147], is also motivated by the fact that are many instances of oblique cone pairs for
which the GLRT is known to dominated by other tests. Menendez et al. [106] provide an
explanation for this dominance in a very general context; see also the papers [108, 80] for
further studies of non-oblique cone pairs.

A nested pair of closed convex cones C1 ⊂ C2 is said to be non-oblique if we have the
successive projection property

ΠC1(x) = ΠC1(ΠC2(x)) for all x ∈ Rd. (3.24)

For instance, this condition holds whenever one of the two cones is a subspace, or more
generally, whenever there is a subspace L such that C1 ⊆ L ⊆ C2; see Hu and Wright [80]
for details of this latter property. To be clear, these conditions are sufficient—but not
necessary—for non-obliqueness to hold. There are many non-oblique cone pairs in which
neither cone is a subspace; the cone pairs (3.4) and (3.5), as discussed in Example 1 on
treatment testing, are two such examples. (We refer the reader to Section 5 of the paper [108]
for verification of these properties.) More generally, there are various non-oblique cone pairs
that do not sandwich a subspace L.

The significance of the non-obliqueness condition lies in the following decomposition
result. For any nested pair of closed convex cones C1 ⊂ C2 that are non-oblique, for all
x ∈ Rd we have

ΠC2(x) = ΠC1(x) + ΠC2∩C∗1 (x) and 〈ΠC1(x), ΠC2∩C∗1 (x)〉 = 0. (3.25)

This decomposition follows from general theory due to Zarantonello [157], who proves that
for non-oblique cones, we have ΠC2∩C∗1 = ΠC∗1

ΠC2—in particular, see Theorem 5.2 in this
paper.

An immediate consequence of the decomposition (3.25) is that the GLRT for any non-
oblique cone pair (C1, C2) can be written as

T (y) = ‖ΠC2(y)‖2
2 − ‖ΠC1(y)‖2

2 = ‖ΠC2∩C∗1 (y)‖2
2

= ‖y‖2
2 − min

θ∈C2∩C∗1
‖y − θ‖2

2.

Consequently, we see that the GLRT for the pair (C1, C2) is equivalent to—that is, deter-
mined by the same statistic as—the GLRT for testing the reduced hypothesis

H̃0 : θ = 0 versus H̃1 : θ ∈
(
C2 ∩ C∗1

)
\B2(ε). (3.26)

Following the previous notation, write it as T ({0}, C2 ∩ C∗1 ; ε) and we make frequent use of
this convenient reduction in the sequel.
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3.3 Main results and their consequences

We now turn to the statement of our main results, along with a discussion of some of their
consequences. Section 3.3.1 provides a sharp characterization of the minimax radius for the
generalized likelihood ratio test up to a universal constant, along with a number of concrete
examples. In Section 3.3.2, we state and prove a general lower bound on the performance
of any test, and use it to establish the optimality of the GLRT in certain settings, as well
as its sub-optimality in other settings. In Section 3.3.3, we revisit and study in details two
cones of particular interest, namely the orthant and monotone cones.

3.3.1 Analysis of the generalized likelihood ratio test

Let (C1, C2) be a nested pair of closed cones C1 ⊆ C2 that are non-oblique (3.24). Consider
the polar cone C∗1 as well as the intersection cone K = C2 ∩ C∗1 . Letting g ∈ Rd denote a
standard Gaussian random vector, we then define the quantity

δ2
LR(C1, C2) : = min

{
E‖ΠKg‖2,

( E‖ΠKg‖2

max{0, inf
η∈K∩S−1

〈η, EΠKg〉}

)2
}
. (3.27)

Note that δ2
LR(C1, C2) is a purely geometric object, depending on the pair (C1, C2) via the new

cone K = C2 ∩ C∗1 , which arises due to the GLRT equivalence (3.26) discussed previously.
Recall that the GLRT is based on applying a threshold, at some level β ∈ [0,∞), to

the likelihood ratio statistic T (y); in particular, see equations (3.11a) and (3.11b). In the
following theorem, we study the performance of the GLRT in terms of the the uniform testing
error E(φβ;C1, C2, ε) from equation (3.14). In particular, we show that the critical testing
radius for the GLRT is governed by the geometric parameter δ2

LR(C1, C2).

Theorem 3.3.1. There are numbers {(bρ, Bρ), ρ ∈ (0, 1/2)} such that for every pair of
non-oblique closed convex cones (C1, C2) with C1 strictly contained within C2:

(a) For every error probability ρ ∈ (0, 0.5), we have

inf
β∈[0,∞)

E(φβ;C1, C2, ε) ≤ ρ for all ε2 ≥ Bρ σ
2 δ2

LR(C1, C2). (3.28a)

(b) Conversely, for every error probability ρ ∈ (0, 0.11], we have

inf
β∈[0,∞)

E(φβ;C1, C2, ε) ≥ ρ for all ε2 ≤ bρ σ
2 δ2

LR(C1, C2). (3.28b)

See Section 3.5.1 for the proof of this result.
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Remarks While our proof leads to universal values for the constants Bρ and bρ, we have
made no efforts to obtain the sharpest possible ones, so do not state them here. In any case,
our main interest is to understand the scaling of the testing radius with respect to σ and the
geometric parameters of the problem. In terms of the GLRT testing radius εGLR previously
defined (3.15b), Theorem 3.3.1 establishes that

εGLR(C1, C2; ρ) � σ δLR(C1, C2), (3.29)

where � denotes equality up to constants depending on ρ, but independent of all other
problem parameters. Since εGLR always upper bounds εOPT for every fixed level ρ, we can
also conclude from Theorem 3.3.1 that

εOPT(C1, C2; ρ) . σ δLR(C1, C2).

It is worthwhile noting that the quantity δ2
LR(C1, C2) depends on the pair (C1, C2) only via

the new cone K = C2 ∩ C∗1 . Indeed, as discussed in Section 3.2.2, for any pair of non-oblique
closed convex cones, the GLRT for the original testing problem (3.12) is equivalent to the
GLRT for the modified testing problem T ({0}, K; ε).

Observe that the quantity δ2
LR(C1, C2) from equation (3.27) is defined via the minima

of two terms. The first term E‖ΠKg‖2 is the (square root of the) Gaussian width of the
cone K, and is a familiar quantity from past work on least-squares estimation involving
convex sets [139, 37]. The Gaussian width measure the size of the cone K, and it is to be
expected that the minimax testing radius should grow with this size, since K characterizes
the set of possible alternatives. The second term involving the inner product 〈η, EΠKg〉 is
less immediately intuitive, partly because no such term arises in estimation over convex sets.
The second term becomes dominant in cones for which the expectation v∗ : = E[ΠKg] is
relatively large; for such cones, we can test between the null and alternative by performing
a univariate test after projecting the data onto the direction v∗. This possibility only arises
for cones that are more complicated than subspaces, since E[ΠKg] = 0 for any subspace K.

Finally, we note that Theorem 1 gives a sharp characterization of the behavior of the
GLRT up to a constant. It is different from the usual minimax guarantee. To the best of
our knowledge, it is the first result to provide tight upper and lower control on the uniform
performance of a specific test.

3.3.1.1 Consequences for convex set alternatives

Although Theorem 3.3.1 applies to cone-based testing problem, it also has some implications
for a more general class of problem based on convex set alternatives. In particular, suppose
that we are interested in the testing problem of distinguishing between

H0 : θ = θ0, versus H1 : θ ∈ S, (3.30)

where S is a not necessarily a cone, but rather an arbitrary closed convex set, and θ0 is some
vector such that θ0 ∈ S. Consider the tangent cone of S at θ0, which is given by

TS(θ) : = {u ∈ Rd | there exists some t > 0 such that θ + tu ∈ S
}
. (3.31)
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Note that TS(θ0) contains the shifted set S − θ0. Consequently, we have

E(ψ; {0},S − θ0, ε) ≤ Eθ=0[ψ(y)] + sup
θ∈TS(θ0)\B2(0;ε)

Eθ[1− ψ(y)] = E(ψ; {0}, TS(θ0), ε),

which shows that the tangent cone testing problem

H0 : θ = 0 versus H1 : θ ∈ TS(θ0), (3.32)

is more challenging than the original problem (3.30). Thus, applying Theorem 3.3.1 to this
cone-testing problem (3.32), we obtain the following:

Corollary 1. For the convex set testing problem (3.30), we have

ε2OPT(θ0,S; ρ) . σ2 min

{
E‖ΠTS(θ0)g‖2,

( E‖ΠTS(θ0)g‖2

max{0, inf
η∈TS(θ0)∩S−1

〈η, EΠTS(θ0)g〉}

)2
}
. (3.33)

This upper bound can be achieved by applying the GLRT to the tangent cone testing prob-
lem (3.32).

This corollary offers a general recipe of upper bounding the optimal testing radius. In
Subsection 3.3.1.6, we provide an application of Corollary 1 to the problem of testing

H0 : θ = θ0 versus H1 : θ ∈M,

where M is the monotone cone (defined in expression (3.2)). When θ0 6= 0, this is not a
cone testing problem, since the set {θ0} is not a cone. Using Corollary 1, we prove an upper
bound on the optimal testing radius for this problem in terms of the number of constant
pieces of θ0.

In the remainder of this section, we consider some special cases of testing a cone K
versus {0} in order to illustrate the consequences of Theorem 3.3.1. In all cases, we compute
the GLRT testing radius for a constant error probability, and so ignore the dependencies
on ρ. For this reason, we adopt the more streamlined notation εGLR(K) for the radius
εGLR({0}, K; ρ).

3.3.1.2 Subspace of dimension k

Let us begin with an especially simple case—namely, when K is equal to a subspace Sk
of dimension k ≤ d. In this case, the projection ΠK is a linear operator, which can be
represented by matrix multiplication using a rank k projection matrix. By symmetry of
the Gaussian distribution, we have E[ΠKg] = 0. Moreover, by rotation invariance of the
Gaussian distribution, the random vector ‖ΠKg‖2

2 follows a χ2-distribution with k degrees
of freedom, whence

√
k

2
≤ E‖ΠKg‖2 ≤

√
E‖ΠKg‖2

2 =
√
k.
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Applying Theorem 3.3.1 then yields that the testing radius of the GLRT scales as

ε2GLR(Sk) � σ2
√
k. (3.34)

Here our notation � denotes equality up to constants independent of (σ, k); we have omitted
dependence on the testing error ρ so as to simplify notation, and will do so throughout our
discussion.

3.3.1.3 Circular cone

A circular cone in Rd with constant angle α ∈ (0, π/2) is given by Circd(α) : = {θ ∈ Rd |
θ1 ≥ ‖θ‖2 cos(α)}. In geometric terms, it corresponds to the set of all vectors whose angle
with the standard basis vector e1 = (1, 0, . . . , 0) is at most α radians. Figure 3.1(a) gives an
illustration of a circular cone.

(a) (b)

Figure 3.1. (a) A 3-dimensional circular cone with angle α. (b) Illustration of a cone
versus its polar cone.

Suppose that we want to test the null hypothesis θ = 0 versus the cone alternative
K = Circd(α). We claim that, in application to this particular cone, Theorem 3.3.1 implies
that

ε2GLR(K) � σ2 min
{√

d, 1
}

= σ2, (3.35)

where � denotes equality up to constants depending on (ρ, α), but independent of all other
problem parameters.

In order to apply Theorem 3.3.1, we need to evaluate both terms that define the geometric
quantity δ2

LR(C1, C2). On one hand, by symmetry of the cone K = Circd(α) in its last
(d− 1)-coordinates, we have EΠKg = βe1 for some scalar β > 0 and e1 denotes the standard
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Euclidean basis vector with a 1 in the first coordinate. Moreover, for any η ∈ K ∩ S−1, we
have η1 ≥ cos(α), and hence

inf
η∈K∩S−1

〈η, EΠKg〉 = η1β ≥ cos(α)β = cos(α)‖EΠKg‖2.

Next, we claim that ‖EΠKg‖2 � E‖ΠKg‖2. In order to prove this claim, note that Jensen’s
inequality yields

E‖ΠKg‖2 ≥ ‖EΠKg‖2

(a)

≥ (EΠCircd(α)g)1 = E(ΠCircd(α)g)1

(b)

≥ E‖ΠCircd(α)g‖2 cos(α), (3.36)

where in this argument, inequality (a) follows from simply fact that ‖x‖2 ≥ |x1| whereas in-
equality (b) follows from the definition of circular cone. Plugging into definition δ2

LR(C1, C2),
the corresponding second term equals to a constant. Therefore, the second term in the def-
inition (3.27) of δ2

LR(C1, C2) is upper bounded by a constant, independent of the dimension
d.

On the other hand, from known results on circular cones (see §6.3, [103]), there are
constants κj = κj(α) for j = 1, 2 such that κ1d ≤ E‖ΠKg‖2

2 ≤ κ2d. Moreover, we have

E‖ΠKg‖2
2 − 4

(a)

≤ (E‖ΠKg‖2)2
(b)

≤ E‖ΠKg‖2
2.

Here inequality (b) is an immediate consequence of Jensen’s inequality, whereas inequality
(a) follows from the fact that var(‖ΠKg‖2) ≤ 4—see Lemma A.4.1 in Section 3.5.1 and the
surrounding discussion for details. Putting together the pieces, we see that E‖ΠKg‖2 �

√
d

for the circular cone. Combining different elements of our argument leads to the stated
claim (3.35).

3.3.1.4 A Cartesian product cone

We now consider a simple extension of the previous two examples—namely, a convex cone
formed by taking the Cartesian product of the real line R with the circular cone Circd−1(α)—
that is

K× : = Circd−1(α)× R. (3.37)

Please refer to Figure 3.2 as an illustration of this cone in three dimensions.
This example turns out to be rather interesting because—as will be demonstrated in

Section 3.3.2.3—the GLRT is sub-optimal by a factor
√
d for this cone. In order to set up

this later analysis, here we use Theorem 3.3.1 to prove that

ε2GLR(K×) � σ2
√
d. (3.38)

Note that this result is strongly suggestive of sub-optimality on the part of the GLRT. More
concretely, the two cones that form K× are both “easy”, in that the GLRT radius scales as
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Figure 3.2: Illustration of the product cone defined in equation (3.37).

σ2 for each. For this reason, one would expect that the squared radius of an optimal test
would scale as σ2—as opposed to the σ2

√
d of the GLRT—and our later calculations will

show that this is indeed the case.
We now prove claim (3.38) as a consequence of Theorem 3.3.1. First notice that projecting

to the product cone K× can be viewed as projecting the first d−1 dimension to circular cone
Circd−1(α) and the last coordinate to R. Consequently, we have the following inequality

E‖ΠCircd−1(α)g‖2 ≤ E‖ΠK×g‖2

(a)

≤
√

E‖ΠK×g‖2
2

=
√

E‖ΠCircd−1(α)g‖2
2 + E[g2

d].

where inequality (a) follows by Jensen’s inequality. Making use of our previous calculations
for the circular cone, we have E‖ΠK×g‖2 �

√
d. Moreover, note that the last coordinate of

E[ΠK×g] is equal to 0 by symmetry and the standard basis vector ed ∈ Rd, with a single one
in its last coordinate, belongs to K× ∩ S−1, we have

inf
η∈K×∩S−1

〈η, EΠK×(g)〉 ≤ 〈ed, EΠK×(g)〉 = 0.

Plugging into definition δ2
LR(C1, C2), the corresponding second term equals infinity. There-

fore, the minimum that defines δ2
LR(C1, C2) is achieved in the first term, and so is proportional

to
√
d. Putting together the pieces yields the claim (3.38).

3.3.1.5 Non-negative orthant cone

Next let us consider the (non-negative) orthant cone given by K+ : =
{
θ ∈ Rd | θj ≥

0 for j = 1, . . . , d
}

. Here we use Theorem 3.3.1 to show that

ε2GLR(K+) � σ2
√
d. (3.39)
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Turning to the evaluation of the quantity δ2
LR(C1, C2), it is straightforward to see that

[ΠK+(θ)]j = max{0, θj}, and hence EΠK+(g) = 1
2
E|g1| 1 = 1√

2π
1, where 1 ∈ Rd is a

vector of all ones. Thus, we have

‖EΠK+(g)‖2 =

√
d

2π

and ‖EΠK+(g)‖2 ≤ E‖ΠK+(g)‖2 ≤
√

E‖ΠK+(g)‖2
2 =

√
d

2
,

where the second inequality follows from Jensen’s inequality. So the first term in the defini-
tion of quantity δ2

LR(C1, C2) is proportional to
√
d. As for the second term, since the standard

basis vector e1 ∈ K+ ∩ S−1, we have

inf
η∈K+∩S−1

〈η, EΠKg〉 ≤ 〈e1,
1√
2π

1〉 =
1√
2π
.

Consequently, the second term in the definition of quantity δ2
LR(C1, C2) lower bounded by a

universal constant times d. Combining these derivations yields the stated claim (3.39).

3.3.1.6 Monotone cone

As our final example, consider testing in the monotone cone given by M : =
{
θ ∈ Rd | θ1 ≤

θ2 ≤ · · · ≤ θd
}
. Testing with monotone cone constraint has also been studied in different

settings before, where it is known in some cases that restricting to monotone cone helps
reduce the hardness of the problem to be logarithmically dependent on the dimension (e.g.,
[16, 148]).

Here we use Theorem 3.3.1 to show that

ε2GLR(M) � σ2
√

log d. (3.40)

From known results on monotone cone (see §3.5, [3]), we know that E‖ΠMg‖2 �
√

log d. So
the only remaining detail is to control the second term defining δ2

LR(C1, C2). We claim that
the second term is actually infinity since

max{0, inf
η∈M∩S−1

〈η, EΠMg〉} = 0, (3.41)

which can be seen by simply noticing vectors 1√
d
1,− 1√

d
1 ∈M ∩ S−1 and

min
{
〈 1√

d
, EΠMg〉, 〈−

1√
d
, EΠMg〉

}
≤ 0.

Here 1 ∈ Rd denotes the vector of all ones. Combining the pieces yields the claim (3.40).
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Testing constant versus monotone It is worth noting that the same GLRT bound
also holds for the more general problem of testing the monotone cone M versus the linear
subspace L = span(1) of constant vectors, namely:

ε2GLR(L,M) � σ2
√

log d. (3.42)

In particular, the following lemma provides the control that we need:

Lemma 3.3.1. For the monotone cone M and the linear space L = span(1), there is a
universal constant c such that

inf
η∈K∩S−1

〈η, EΠKg〉 ≤ c, K : = M ∩ L⊥.

See Appendix A.7.1 for the proof of this lemma.

Testing an arbitrary vector θ0 versus the monotone cone Finally, let us consider an
important implication of Corollary 1 in the context of testing departures in monotone cone.
More precisely, for a fixed vector θ0 ∈M , consider the testing problem

H0 : θ = θ0, versus H1 : θ ∈M, (3.43)

Let us define k(θ0) as the number of constant pieces of θ0, by which we mean there exist
integers d1, . . . , dk(θ0) with di ≥ 1 and d1 + · · ·+ dk(θ0) = d such that θ0 is a constant on each

set Si : = {j :
∑i−1

t=1 dt + 1 ≤ j ≤
∑i

t=1 di}, for 1 ≤ i ≤ k(θ0).
We claim that Corollary 1 guarantees that the optimal testing radius satisfies

ε2OPT(θ0,M ; ρ) . σ2

√
k(θ0) log

(
d

k(θ0)

)
. (3.44)

Note that this upper bound depends on the structure of θ0 through how many pieces θ0

possesses, which reveals the adaptive nature of Corollary 1.
In order to prove inequality (3.44), let us use shorthand k to denote k(θ0). First notice

that both 1/
√
d,−1/

√
d ∈ TM(θ0), then

max{0, inf
η∈TM (θ0)∩S−1

〈η, EΠTM (θ0)g〉} ≤ 0,

which implies the second term for δ2
LR(C1, C2) equals to infinity. It only remains to calculate

E‖ΠTM (θ0)g‖2. Since the tangent cone TM(θ0) equals to the Cartesian product of k monotone
cones, namely TM(θ0) = Md1 × · · · ×Mdk , we have

E‖ΠTM (θ0)g‖2
2 = E‖ΠMd1

g‖2
2 + · · ·+ E‖ΠMdk

g‖2
2 = log(d1) + · · ·+ log(dk)

≤ k log

(
d

k

)
,
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where the last step follows from convexity of the logarithm function. Therefore Jensen’s
inequality guarantees that

E‖ΠTM (θ0)g‖2 ≤
√
E‖ΠTM (θ0)g‖2

2 ≤

√
k log

(
d

k

)
.

Putting the pieces together, Corollary 1 guarantees that the claimed inequality (3.44) holds
for the testing problem (3.43).

3.3.2 Lower bounds on the testing radius

Thus far, we have derived sharp bounds for a particular procedure—namely, the GLRT. Of
course, it is of interest to understand when the GLRT is actually an optimal test, meaning
that there is no other test that can discriminate between the null and alternative for smaller
separations. In this section, we use information-theoretic methods to derive a lower bound
on the optimal testing radius εOPT for every pair of non-oblique and nested closed convex
cones (C1, C2). Similar to Theorem 3.3.1, this bound depends on the geometric structure of
intersection cone K : = C2 ∩ C∗1 , where C∗1 is the polar cone to C1.

In particular, let us define the quantity

δ2
OPT(C1, C2) : = min

{
E‖ΠKg‖2,

( E‖ΠKg‖2

sup
η∈K∩S−1

〈η, EΠKg〉

)2
}
. (3.45)

Note that the only difference from δ2
LR(C1, C2) is the replacement of the infimum over K∩S−1

with a supremum, in the denominator of the second term. Moreover, since the supremum is
achieved at EΠKg

‖EΠKg‖2
, we have supη∈K∩S−1〈η, EΠKg〉 = ‖EΠKg‖2. Consequently, the second

term on the right-hand side of equation (3.45) can be also written in the equivalent form(
E‖ΠKg‖2
‖EΠKg‖2

)2

.

With this notation in hand, are now ready to state a general lower bound for minimax
optimal testing radius:

Theorem 3.3.2. There are numbers {κρ, ρ ∈ (0, 1/2]} such that for every nested pair of
non-oblique closed convex cones C1 ⊂ C2, we have

inf
ψ
E(ψ;C1, C2, ε) ≥ ρ whenever ε2 ≤ κρ σ

2 δ2
OPT(C1, C2), (3.46)

In particular, we can take κρ = 1/14 for all ρ ∈ (0, 1/2].

See Section 3.5.2 for the proof of this result.
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Remarks In more compact terms, Theorem 3.3.2 can be understood as guaranteeing

εOPT(C1, C2; ρ) & σδOPT(C1, C2),

where & denotes an inequality up to constants (with ρ viewed as fixed).
Theorem 3.3.2 is proved by constructing a distribution over the alternative H1 supported

only on those points in H1 that are hard to distinguish from H0. Based on this construction,
the testing error can be lower bound by controlling the total variation distance between two
marginal likelihood functions. We refer our readers to our Section 3.5.2 for more details on
this proof.

One useful consequence of Theorem 3.3.2 is in providing a sufficient condition for opti-
mality of the GLRT, which we summarize here:

Corollary 2 (Sufficient condition for optimality of GLRT). Given the cone K = C2 ∩ C∗1 ,
suppose that there is a numerical constant b > 1, independent of K and all other problem
parameters, such that

sup
η∈K∩S−1

〈η, EΠKg〉 = ‖EΠKg‖2 ≤ b inf
η∈K∩S−1

〈η, EΠKg〉. (3.47)

Then the GLRT is a minimax optimal test—that is, εGLR(C1, C2; ρ) � εOPT(C1, C2; ρ).

It is natural to wonder whether the condition (3.47) is also necessary for optimality
of the GLRT. This turns out not to be the case. The monotone cone, to be revisited
in Section 3.3.3.2, provides an instance of a cone testing problem for which the GLRT is
optimal while condition (3.47) is violated. Let us now return to these concrete examples.

3.3.2.1 Revisiting the k-dimensional subspace

Let Sk be a subspace of dimension k ≤ d. In our earlier discussion in Section 3.3.1.2, we
established that ε2GLR(Sk) � σ2

√
k. Let us use Corollary 2 to verify that the GLRT is

optimal for this problem. For a k-dimensional subspace K = Sk, we have EΠKg = 0 by
symmetry; consequently, condition (3.47) holds in a trivial manner. Thus, we conclude that
ε2OPT(Sk) � ε2GLR(Sk), showing that the GLRT is optimal over all tests.

3.3.2.2 Revisiting the circular cone

Recall the circular cone K = {θ ∈ Rd | θ1 ≥ ‖θ‖2 cos(α)} for fixed 0 < α < π/2. In our
earlier discussion, we proved that ε2GLR(K) � σ2. Here let us verify that this scaling is optimal
over all tests. By symmetry, we find that EΠKg = βe1 ∈ Rd, where e1 denotes the standard
Euclidean basis vector with a 1 in the first coordinate, and β > 0 is some scalar. For any
vector η ∈ K ∩ S−1, we have η1 ≥ cos(α), and hence

inf
η∈K∩S−1

〈η, EΠKg〉 ≥ cos(α)β = cos(α)‖EΠKg‖2.
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Consequently, we see that condition (3.47) is satisfied with b = 1
cos(α)

> 0, so that the GLRT

is optimal over all tests for each fixed α. (To be clear, in this example, our theory does not
provide a sharp bound uniformly over varying α.)

3.3.2.3 Revisiting the product cone

Recall from Section 3.3.1.4 our discussion of the Cartesian product coneK× = Circd−1(α)×R.
In this section, we establish that the GLRT, when applied to a testing problem based on
this case, is sub-optimal by a factor of

√
d.

Let us first prove that the sufficient condition (3.47) is violated, so that Corollary 2 does
not imply optimality of the GLRT. From our earlier calculations, we know that E‖ΠK×g‖2 �√
d. On the other hand, we also know that EΠK×g is equal to zero in its last coordinate.

Since the standard basis vector ed belongs to the set K× ∩ S−1, we have

inf
η∈K×∩S−1

〈η, EΠK×g〉 ≤ 〈ed, EΠK×g〉 = 0,

so that condition (3.47) does not hold.
From this calculation alone, we cannot conclude that the GLRT is sub-optimal. So let us

now compute the lower bound guaranteed by Theorem 3.3.2. From our previous discussion,
we know that EΠK×g = βe1 for some scalar β > 0. Moreover, we also have ‖EΠK×g‖2 = β �√
d; this scaling follows because we have ‖EΠK×g‖2 = ‖EΠCircd−1(α)g‖2 �

√
d− 1, where we

have used the previous inequality (3.36) for circular cone. Putting together the pieces, we
find that Theorem 3.3.2 implies that

ε2OPT(K×) & σ2, (3.48)

which differs from the GLRT scaling in a factor of
√
d.

Does there exist a test that achieves the lower bound (3.48)? It turns out that a simple
truncation test does so, and hence is optimal. To provide intuition for the test, observe that
for any vector θ ∈ K× ∩ S−1, we have θ2

1 + θ2
d ≥ cos2(α). To verify this claim, note that

1

cos2(α)

(
θ2

1 + θ2
d

)
≥ θ2

1

cos2(α)
+ θ2

d ≥
d−1∑
j=1

θ2
j + θ2

d = 1.

Consequently, the two coordinates (y1, yd) provide sufficient information for constructing a
good test. In particular, consider the truncation test

ϕ(y) : = I
[
‖(y1, yd)‖2 ≥ β

]
,

for some threshold β > 0 to be determined. This can be viewed as a GLRT for testing the
standard null against the alternative R2, and hence our general theory guarantees that it will
succeed with separation ε2 & σ2. This guarantee matches our lower bound (3.48), showing
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that the truncation test is indeed optimal, and moreover, that the GLRT is sub-optimal by
a factor of

√
d for this particular problem.

We provide more intuition on why the the GLRT sub-optimal and use this intuition to
construct a more general class of problem for which a similar sub-optimality is witnessed in
Appendix A.1.

3.3.3 Detailed analysis of two cases

This section is devoted to a detailed analysis of the orthant cone, followed by the monotone
cone. Here we find that the GLRT is again optimal for both of these cones, but establishing
this optimality requires a more delicate analysis.

3.3.3.1 Revisiting the orthant cone

Recall from Section 3.3.1.5 our discussion of the (non-negative) orthant cone

K+ : = {θ ∈ Rd | θj ≥ 0 for j = 1, . . . , d},

where we proved that ε2GLR(K+) � σ2
√
d. Let us first show that the sufficient condition

(3.47) does not hold, so that Corollary 2 does not imply optimality of the GLRT. As we
have computed in our Section 3.3.1.5, quantity E‖ΠK+(g)‖2 �

√
d and

inf
η∈K+∩S−1

〈η, EΠKg〉 ≤ 〈e1,
1√
2π

1〉 =
1√
2π
,

where use the fact that EΠK+(g) = 1√
2π

1. So that condition (3.47) is violated.
Does this mean the GLRT is sub-optimal? It turns out that the GLRT is actually optimal

over all tests, as we can demonstrate by proving a lower bound—tighter than the one given
in Theorem 3.3.2—that matches the performance of the GLRT. We summarize it as follows:

Proposition 3.3.1. There are numbers {κρ, ρ ∈ (0, 1/2]} such that for the (non-negative)
orthant cone K+, we have

inf
ψ
E(ψ; {0}, K+, ε) ≥ ρ whenever ε2 ≤ κρ σ

2
√
d. (3.49)

See the Section A.3.1 for the proof of this proposition.
From Proposition 3.3.1, we see that the optimal testing radius satisfies ε2OPT(K+) & σ2

√
d.

Compared to the GLRT radius ε2GLR(K+) established in expression (3.39), it implies the
optimality of the GLRT.

3.3.3.2 Revisiting the monotone cone

Recall the monotone cone given by M : = {θ ∈ Rd | θ1 ≤ θ2 ≤ · · · ≤ θd}. In our previous dis-
cussion in Section 3.3.1.6, we established that ε2GLR(M) � σ2

√
log d. We also pointed out
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that this scaling holds for a more general problem, namely, testing cone M versus linear
subspace L = span(1). In this section, we show that the GLRT is also optimal for both
cases.

First, observe that Corollary 2 does not imply optimality of the GLRT. In particular,
using symmetry of the inner product, we have shown in expression (3.41) that

max{0, inf
η∈M∩S−1

〈η, EΠMg〉} = 0,

for cone pair (C1, C2) = ({0},M). Also note that from Lemma 3.3.1 we know that for cone
pair (C1, C2) = (span(1),M), there is a universal constant c such that

inf
η∈K∩S−1

〈η, EΠKg〉 ≤ c, K : = M ∩ L⊥.

In both cases, since E‖ΠKg‖2 �
√

log d, so that the sufficient condition (3.47) for GLRT
optimality fails to hold.

It turns out that we can demonstrate a matching lower bound for ε2OPT(M) in a more
direct way by carefully constructing a prior distribution on the alternatives and control the
testing error. Doing so allows us to conclude that the GLRT is optimal, and we summarize
our conclusions in the following:

Proposition 3.3.2. There are numbers {κρ, ρ ∈ (0, 1/2]} such that for the monotone cone
M and subspace L = {0} or span(1), we have

inf
ψ
E(ψ;L,M, ε) ≥ ρ whenever ε2 ≤ κρ σ

2
√

log(ed). (3.50)

See Section A.3.2 for the proof of this proposition.
Proposition 3.3.2, equipped with previous achievable results by GLRT (3.40), gives a

sharp rate characterization on the testing radius for both problem with regard to monotone
cone:

H0 : θ = 0 versus H1 : θ ∈M
and H0 : θ ∈ span(1) versus H1 : θ ∈M.

In both cases, the optimal testing radius satisfies ε2OPT(L,M, ρ) � σ2
√

log(ed). As a conse-
quence, the GLRT is optimal up to an universal constant. As far as we know, the problem
of testing a zero or constant vector versus the monotone cone as the alternative has not been
fully characterized in any past work.

3.4 Discussion

In this chapter, we have studied the the problem of testing between two hypotheses that are
specified by a pair of non-oblique closed convex cones. Our first main result provided a char-
acterization, sharp up to universal multiplicative constants, of the testing radius achieved
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by the generalized likelihood ratio test. This characterization was geometric in nature, de-
pending on a combination of the Gaussian width of an induced cone, and a second geometric
parameter. Due to the combination of these parameters, our analysis shows that the GLRT
can have very different behavior even for cones that have the same Gaussian width; for in-
stance, compare our results for the circular and orthant cone in Section 3.3.1. It is worth
noting that this behavior is in sharp contrast to the situation for estimation problem over
convex sets, where it is understood that (localized) Gaussian widths completely determine
the estimation error associated with the least-squares estimator [139, 37]. In this way, our
analysis reveals a fundamental difference between minimax testing and estimation.

Our analysis also highlights some new settings in which the GLRT is non-optimal. Al-
though past work [147, 107, 112] has exhibited non-optimality of the GLRT in certain set-
tings, in the context of cones, all of these past examples involve oblique cones. In Sec-
tion 3.3.1.4, we gave an example of sub-optimality which, to the best of our knowledge,
is the first for a non-oblique pair of cones—namely, the cone {0}, and a certain type of
Cartesian product cone.

Our work leaves open various questions, and we conclude by highlighting a few here.
First, in Section 3.3.2, we proved a general information-theoretic lower bound for the min-
imax testing radius. This lower bound provides a sufficient condition for the GLRT to be
minimax optimal up to constants. Despite being tight in many non-trivial situations, our
information-theoretic lower bound is not tight for all cones; proving such a sharp lower bound
is an interesting topic for future research. Second, as with a long line of past work on this
topic [117, 108, 106, 147], our analysis is based on assuming that the noise variance σ2 is
known. In practice, this may or may not be a realistic assumption, and so it is interesting
to consider the extension of our results to this setting.

We note that our minimax lower bounds are proved by constructing prior distributions on
H0 and H1 and then control the distance between marginal likelihood functions. Following
this idea, we can also consider our testing problem in the Bayesian framework. Without any
prior preference on which hypothesis to take, we will let Pr(H0) = Pr(H1) = 1/2; thus the
Bayesian testing procedure makes decision based on quantity

B01 : =
m(y | H0)

m(y | H1)
=

∫
θ∈C1

Pθ(y)π1(θ)dθ∫
θ∈C2

Pθ(y)π2(θ)dθ
, (3.51)

which is often called Bayesian factor in literature. Analyzing the behavior of this statistic is
an interesting direction to pursue in the future.

3.5 Proofs of main results

We now turn to the proofs of our main results, with the proof of Theorems 3.3.1 and 3.3.2
given in Sections 3.5.1 and 3.5.2 respectively. In all cases, we defer the proofs of certain more
technical lemmas to the appendices.
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3.5.1 Proof of Theorem 3.3.1

Since the cones (C1, C2) are both invariant under rescaling by positive numbers, we can first
prove the result for noise level σ = 1, and then recapture the general result by rescaling
appropriately. Thus, we fix σ = 1 throughout the remainder of the proof so as to simplify
notation. Moreover, let us recall that the GLRT consists of tests of the form φβ(y) : =
I(T (y) ≥ β), where the likelihood ratio T (y) is given in equation (3.11a). Note here the
cut-off β ∈ [0, ∞) is a constant that does not depend on the data vector y.

By the previously discussed equivalence (3.26), we can focus our attention on the simpler
problem T ({0}, K; ε), where K = C2 ∩ C∗1 . By the monotonicity of the square function for
positive numbers, the GLRT is controlled by the behavior of the statistic ‖ΠK(y)‖2, and in
particular how it varies depending on whether y is drawn according to H0 or H1.

Letting g ∈ Rd denote a standard Gaussian random vector, let us introduce the random
variable Z(θ) : = ‖ΠK(θ + g)‖2 for each θ ∈ Rd. Observe that the statistic ‖ΠK(y)‖2 is
distributed according to Z(0) under the null H0, and according to Z(θ) for some θ ∈ K
under the alternative H1. The Lemma A.4.1 which is stated and proved in Appendix A.4.1
guarantees random variables of the type Z(θ) and 〈θ, ΠKg〉 are sharply concentrated around
their expectations.

As shown in the sequel, using the concentration bound (A.15a), the study of the GLRT
can be reduced to the problem of bounding the mean difference

Γ(θ) : = E (‖ΠK(θ + g)‖2 − ‖ΠKg‖2) (3.52)

for each θ ∈ K. In particular, in order to prove the achievability result stated in part (a)
of Theorem 3.3.1, we need to lower bound Γ(θ) uniformly over θ ∈ K, whereas a uniform
upper bound on Γ(θ) is required in order to prove the negative result in part (b).

3.5.1.1 Proof of GLRT achievability result (Theorem 3.3.1(a))

By assumption, we can restrict our attention to alternative distributions defined by vectors
θ ∈ K satisfying the lower bound ‖θ‖2

2 ≥ Bρ δ
2
LR({0}, K), where for every target level ρ ∈

(0, 1), constant Bρ is chosen such that

Bρ : = max

{
32π, inf

(
B > 0 | B1/2

(27πB)1/4 + 16
− 2√

e
≥
√
−8 log(ρ/2)

)}
.

Since function f(x) : = x1/2

(27πx)1/4+16
− 2√

e
is strictly increasing and goes to infinity, so that the

constant Bρ defined above is always finite.
We first claim that it suffices to show that for such vector, the difference (3.52) is lower

bounded as

Γ(θ) ≥ B
1/2
ρ

(27πBρ)1/4 + 16
− 2√

e
= f(Bρ). (3.53)
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Taking inequality (3.53) as given for the moment, we claim that the test

φτ (y) = I[‖ΠK(y)‖2
2 ≥ τ ] with threshold τ : = (1

2
f(Bρ) + E[‖ΠK(g)‖2])2

has uniform error probability controlled as

E(φτ ; {0}, K, ε) : = E0[φτ (y)] + sup
θ∈K,‖θ‖22≥ε2

Eθ[1− φτ (y)] ≤ 2e−f
2(Bρ)/8 < ρ. (3.54)

where the last inequality follows from the definition of Bρ.

Establishing the error control (3.54) Beginning with errors under the null H0, we have

E0[φτ (y)] = P0(‖ΠKg‖2 ≥
√
τ) = P0

[
‖ΠKg‖2 − E[‖ΠKg‖2] ≥ f(Bρ)/2

]
≤ exp(−f 2(Bρ)/8),

where the final inequality follows from the concentration bound (A.15a) in Lemma A.4.1, as
along as f(Bρ) > 0.

On the other hand, we have

sup
θ∈K,‖θ‖22≥ε2

Eθ[1− φτ (y)] = P
[
‖ΠK(θ + g)‖2 ≤

1

2
f(Bρ) + E‖ΠKg‖2

]
= P

[
‖ΠK(θ + g)‖2 − E‖ΠK(θ + g)‖2 ≤

1

2
f(Bρ)− Γ(θ)

]
,

where the last equality follows by substituting Γ(θ) = E[‖ΠK(θ + g)‖2]− E[‖ΠKg‖2]. Since
the lower bound (3.53) guarantees that 1

2
f(Bρ)− Γ(θ) ≤ −1

2
f(Bρ), we find that

sup
θ∈K,‖θ‖22≥ε2

Eθ[1− φτ (y)] ≤ P
[
‖ΠK(θ + g)‖2 − E‖ΠK(θ + g)‖2 ≤ −

1

2
f(Bρ)

]
≤ exp(−f 2(Bρ)/8),

where the final inequality again uses the concentration inequality (A.15a). Putting the pieces
together yields the claim (3.54).

The only remaining detail is to prove the lower bound (3.53) on the difference (3.52). To
prove inequality (3.53), we make use of the following auxiliary Lemma 3.5.1.

Lemma 3.5.1. For every closed convex cone K and vector θ ∈ K, we have the lower bounds

Γ(θ) ≥ ‖θ‖2
2

2‖θ‖2 + 8E‖ΠKg‖2

− 2√
e
. (3.55a)

Moreover, for any vector θ that also satisfies the inequality 〈θ, EΠKg〉 ≥ ‖θ‖2
2, we have

Γ(θ) ≥ α2(θ)
〈θ, EΠKg〉 − ‖θ‖2

2

α(θ)‖θ‖2 + 2E‖ΠKg‖2

− 2√
e
, (3.55b)

where α(θ) : = 1− exp
(
−〈θ,EΠKg〉2

8‖θ‖22

)
.
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See Appendix A.4.2 for the proof of this claim.
We now use Lemma 3.5.1 to prove the lower bound (3.53). Note that the inequality

‖θ‖2
2 ≥ Bρδ

2
LR({0}, K) implies that one of the following two lower bounds must hold:

‖θ‖2
2 ≥ BρE‖ΠKg‖2, (3.56a)

or 〈θ, EΠKg〉 ≥
√
BρE‖ΠKg‖2. (3.56b)

We will analyze these two cases separately.

Case 1 In order to show that the lower bound (3.56a) implies inequality (3.53), we will
prove a stronger result—namely, that the inequality ‖θ‖2

2 ≥
√
BρE‖ΠKg‖2/2 implies that

inequality (3.53) holds.
From the lower bound (3.55a) and the fact that, for each fixed a > 0, the function

x 7→ x2/(2x+ a) is increasing on the interval [0,∞), we find that

Γ(θ) ≥
√
BρE‖ΠKg‖2/2√

2B
1/4
ρ + 8

√
E‖ΠKg‖2

− 2√
e
.

Further, because of general bound (3.21) that E‖ΠKg‖2 ≥ 1/
√

2π and the fact that the
function x 7→ x/(a+ x) is increasing in x, we obtain

Γ(θ) ≥
√
Bρ

2(8πBρ)1/4 + 16
− 2√

e
,

which ensures inequality (3.53).

Case 2 We now turn to the case when inequality (3.56b) is satisfied. We may assume the
inequality ‖θ‖2

2 ≥
√
BρE‖ΠKg‖2/2 is violated because otherwise, inequality (3.53) follows

immediately. When this inequality is violated, we have

〈θ, EΠKg〉 ≥
√
BρE‖ΠKg‖2 and ‖θ‖2

2 <
√
BρE‖ΠKg‖2/2. (3.57)

Our strategy is to make use of inequality (3.55b), and we begin by bounding the quan-
tity α appearing therein. By combining inequality (3.57) and inequality (3.21)—namely,
E‖ΠKg‖2 ≥ 1/

√
2π, we find that

α ≥ 1− exp

(
−
√
BρE‖ΠKg‖2

4

)
≥ 1− exp

(
−
√
Bρ

4
√

2π

)
≥ 1/2, whenever Bρ ≥ 32π.

Using expression (3.57), we deduce that

Γ(θ) ≥
α2
√
BρE‖ΠKg‖2

α(4Bρ)1/4 + 4
√

E‖ΠKg‖2

−
√

2

e
≥

√
BρE‖ΠKg‖2

(26Bρ)1/4 + 16
√
E‖ΠKg‖2

−
√

2

e
.

where the second inequality uses the previously obtained lower bound α > 1/2, and the fact
that the function x 7→ x2/(x+ b) is increasing in x.

This completes the proof of inequality (3.53) thus completing the GLRT achievability
result.
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3.5.1.2 Proof of GLRT lower bound (Theorem 3.3.1(b))

We divide our proof into two scenarios, depending on whether or not E‖ΠKg‖2 is less than
128.

Case E‖ΠKg‖2 < 128 We begin by setting bρ = 1
256

. The assumed bound ε2 ≤ 1
256
δ2

LR({0}, K)
then implies that

ε2 ≤ 1

256
δ2

LR({0}, K) ≤ E‖ΠKg‖2

256
<

1

2
.

For every ε2 ≤ 1
2
, we claim that E(φ; {0}, K, ε) ≥ 1/2. Note that the uniform error

E(φ; {0}, K, ε) is at least as large as the error in the simple binary test

H0 : y ∼ N(0, Id) versus H1 : y ∼ N(θ, Id), (3.58a)

where θ ∈ K is any vector such that ‖θ‖2 = ε. We claim that the error for the simple binary
test (3.58a) is lower bounded as

inf
ψ
E(ψ; {0}, {θ}, ε) ≥ 1/2 whenever ε2 ≤ 1/2. (3.58b)

The proof of this claim is straightforward: introducing the shorthand Pθ = N(θ, Id) and
P0 = N(0, Id), we have

inf
ψ
E(ψ; {0}, {θ}, ε) = 1− ‖Pθ − P0‖TV.

Using the relation between χ2 distance and TV-distance in expression (A.1c) and the fact
that χ2(Pθ,P0) = exp(ε2)− 1, we find that the testing error satisfies

inf
ψ
E(ψ; {0}, {θ}, ε) ≥ 1− 1

2

√
exp(ε2)− 1 ≥ 1/2, whenever ε2 ≤ 1/2.

(See Section A.2 for more details on the relation between the TV and χ2-distances.) This
completes the proof under the condition E‖ΠKg‖2 < 128.

Case E‖ΠKg‖2 ≥ 128 In this case, our strategy is to exhibit some θ ∈ H1 for which
the expected difference Γ(θ) = E (‖ΠK(θ + g)‖2 − ‖ΠKg‖2) is small, which then leads to
significant error when using the GLRT. In order to do so, we require an auxiliary lemma
(Lemma A.5.1) to suitable control Γ(θ) which is stated and proved in Appendix A.5.1.

We now proceed to prove our main claim. Based on Lemma A.5.1, we claim that if
ε2 ≤ bρδ

2
LR({0}, K) for a suitably small constant bρ such that

bρ : = sup

{
bρ > 0 | 12

√
bρ + 3

√
bρ

(
2

e

)1/4

+ 24

√
bρ
2e
≤ 1

16

}
,



CHAPTER 3. HYPOTHESIS TESTING OVER CONVEX CONES 41

then

Γ(θ) ≤ 1

16
, for some θ ∈ K, ‖θ‖2 ≥ ε. (3.59)

We take inequality (3.59) as given for now, returning to prove it in our appendix A.5.2. In
summary, then, we have exhibited some θ ∈ H1—namely, a vector θ ∈ K with ‖θ‖2 ≥ ε—
such that Γ(θ) ≤ 1/16. This special vector θ plays a central role in our proof.

We claim that the GLRT cannot succeed with error smaller than 0.11 no matter how
the cut-off β is chosen. In order to see this, firstly the following lemma allows us to relate
‖ΠKg‖2 to its expectation:

Lemma 3.5.2. Given every closed convex cone K such that E‖ΠKg‖2 ≥ 128, we have

P(‖ΠKg‖2 > E‖ΠKg‖2) > 7/16. (3.60)

See Appendix A.5.3 for the proof of this claim.
For future reference, we note that it is relatively straightforward to show that the random

variable ‖ΠKg‖2 is distributed as a mixture of χ-distributions, and indeed, the Lemma 3.5.2
can be proved via this route. Raubertas et al. [117] proved that the squared quantity ‖ΠKg‖2

2

is a mixture of χ2 distributions, and a very similar argument yields the analogous statement
for ‖ΠKg‖2.

We are now ready to calculate the testing error for the GLRT given in equation (3.11b).
Our goal is to lower bound the error E(φβ; {0}, K, ε) uniformly over the chosen threshold
β ∈ [0,∞). We divide the choice of β into three cases, depending on the relationship
between β and E‖ΠKg‖2, E‖ΠK(θ + g)‖2. Notice this particular θ is chosen to be the one
that satisfies inequality (3.59).

Case 1 First, consider a threshold β ∈ [0, E‖ΠKg‖2]. It then follows immediately from
inequality (3.60) that the type I error by its own satisfies

type I error = P0(‖ΠKy‖2 ≥ β) ≥ P(‖ΠKg‖2 ≥ E‖ΠKg‖2) ≥ 7

16
.

Case 2 Otherwise, consider a threshold β ∈
(
E‖ΠKg‖2, E‖ΠK(θ + g)‖2

]
. In this case, we

again use inequality (3.60) to bound the type I error, namely

type I error = P0(‖ΠKy‖2 ≥ β)

= P
[
‖ΠKg‖2 ≥ E‖ΠKg‖2

]
− P

[
‖ΠKg‖2 ∈ [E‖ΠKg‖2, β)

]
≥ 7

16
−max

x
{f‖ΠKg‖2(x)(β − E‖ΠKg‖2)},

where we use f‖ΠKg‖2 to denote the density function of the random variable ‖ΠKg‖2 As
discussed earlier, the random variable ‖ΠKg‖2 is distributed as a mixture of χ-distributions;
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in particular, see Lemma 3.5.2 above and the surrounding discussion for details. As can be
verified by direct numerical calculation, any χk variable has a density that bounded from
above by 4/5. Using this fact, we have

type I error ≥ 7

16
− 4

5
(β − E‖ΠKg‖2)

(i)

≥ 7

16
− 4

5
Γ(θ)

(ii)
> 3/8,

where step (i) follows by the assumption that β belongs to the interval
(
E‖ΠKg‖2, E‖ΠK(θ + g)‖2

]
,

and step (ii) follows since Γ(θ) ≤ 1/16.

Case 3 Otherwise, given a threshold β ∈
(
E‖ΠK(g + θ)‖2,∞

)
, we define the scalar x : =

β−E‖ΠK(g+θ)‖2. From the concentration inequality given in Lemma A.4.1, we can deduce
that

type II error ≥ Pθ(‖ΠKy‖2 ≤ β)

= 1− P
(
‖ΠK(θ + g)‖2 − E‖ΠK(θ + g)‖2 > β − E‖ΠK(θ + g)‖2

)
≥ 1− exp(−x2/2).

At the same time,

type I error = P0(‖ΠKy‖2 ≥ β) = P(‖ΠKg‖2 ≥ E‖ΠKg‖2)− P(‖ΠKg‖2 ∈ [E‖ΠKg‖2, β))

≥ 7

16
− 4

5
(β − E‖ΠKg‖2),

where we again use inequality (3.60) and the boundedness of the density of ‖ΠKg‖2. Recalling
that we have defined x : = β − E‖ΠK(g + θ)‖2 as well as Γ(θ) = E

(
‖ΠK(θ + g)‖2 − ‖ΠKg‖2

)
,

we have

β − E‖ΠKg‖2 = x+ Γ(θ) ≤ x+
1

16
,

where the last step uses the fact that Γ(θ) ≤ 1/16. Consequently, the type I error is lower
bounded as

type I error ≥ 7

16
− 4

5
(x+ 1/16) =

31

80
− 4

5
x.

Combining the two types of error, we find that the testing error is lower bounded as

inf
x>0

{
(
31

80
− 4

5
x)+ + 1− exp(−x2/2)

}
= 1− exp(− 312

2× 642
) ≥ 0.11.

Putting pieces together, the GLRT cannot succeed with error smaller than 0.11 no matter
how the cut-off β is chosen.
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3.5.2 Proof of Theorem 3.3.2

We now turn to the proof of Theorem 3.3.2. As in the proof of Theorem 3.3.1, we can assume
without loss of generality that σ = 1. Since 0 ∈ C1 and K : = C2 ∩ C∗1 ⊆ C2, it suffices to
prove a lower bound for the reduced problem of testing

H0 : θ = 0, versus H1 : ‖θ‖2 ≥ ε, θ ∈ K.

Let B(1) = {θ ∈ Rd | ‖θ‖2 < 1} denotes the open Euclidean ball of radius 1, and let
Bc(1) : = Rd\B(1) denotes its complement.

We divide our analysis into two cases, depending on whether or not E‖ΠKg‖2 is less than
7. In both cases, let us set κρ = 1/14.

Case 1 Suppose that E‖ΠKg‖2 < 7. In this case,

ε2 ≤ κρδ
2
OPT({0}, K) ≤ κρE‖ΠKg‖2 < 1/2.

Similar to our proof of Theorem 3.3.1(b), Case 1, by reducing to the simple verses simple
testing problem (3.58a), any test yields testing error no smaller than 1/2 if ε2 < 1/2. So our
lower bound directly holds for the case when E‖ΠKg‖2 < 7.

Case 2 Otherwise, suppose we have E‖ΠKg‖2 ≥ 7. The following lemma provides a generic
way to lower bound the testing error.

Lemma 3.5.3. For every non-trivial closed convex cone K and probability measure Q sup-
ported on K ∩Bc(1), the testing error is lower bounded as

inf
ψ
E(ψ; {0}, K, ε) ≥ 1− 1

2

√
Eη,η′ exp(ε2〈η, η′〉)− 1, (3.61)

where Eη,η′ denotes expectation with respect to an i.i.d pair η, η′ ∼ Q.

See Appendix A.6.1 for the proof of this claim.
We apply Lemma 3.5.3 with the probability measure Q defined as

Q(A) : = P
(

ΠKg

E‖ΠKg‖2/2
∈ A

∣∣∣ ‖ΠKg‖2 ≥ E‖ΠKg‖2/2

)
, (3.62)

for measurable set A ⊂ Rd where g denotes a standard d-dimensional Gaussian random
vector i.e., g ∼ N(0, Id). It is easy to check that measure Q is supported on K ∩Bc(1). We
make use of Lemma A.6.1 in Appendix A.6.2 to control Eη,η′ exp(ε2〈η, η′〉) and thus upper
bounding the testing error.

We now lower bound the testing error when ε2 ≤ κρ δ
2
OPT({0}, K). By definition of

δ2
OPT({0}, K), the inequality ε2 ≤ κρ δ

2
OPT({0}, K) implies that

ε2 ≤ κρE‖ΠKg‖2 and ε2 ≤ κρ

(
E‖ΠKg‖2

‖EΠKg‖2

)2

.
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The first inequality above implies, with κρ = 1/14, that ε2 ≤ E‖ΠKg‖2/14 ≤ (E‖ΠKg‖2)2/32
(note that E‖ΠKg‖2 ≥ 7). Therefore the assumption in Lemma A.6.1 is satisfied so that
inequality (A.40) gives

Eη,η′ exp(ε2〈η, η′〉) ≤ 1

a2
exp

(
5κρ +

40κ2
ρE(‖ΠKg‖2

2)

(E‖ΠKg‖2)2

)
. (3.63)

So it suffices to control the right hand side above. From the concentration result in Lemma A.4.1,
we obtain

a = P(‖ΠKg‖2 − E‖ΠKg‖2 ≥ −
1

2
E‖ΠKg‖2) ≥ 1− exp(−(E‖ΠKg‖2)2

8
) > 1− exp(−6),

where the last step uses E‖ΠKg‖2 ≥ 7, and

E‖ΠKg‖2
2 = (E‖ΠKg‖2)2 + var(‖ΠKg‖2) ≤ (E‖ΠKg‖2)2 + 4.

Here the last inequality follows from the fact that var(‖ΠKg‖2) ≤ 4—see Lemma A.4.1.
Plugging these two inequalities into expression (3.63) gives

Eη,η′ exp(ε2〈η, η′〉) ≤
(

1

1− exp(−6)

)2

exp

(
5κρ + 40κ2

ρ +
160κ2

ρ

(E‖ΠKg‖2)2

)
,

where the right hand side is less than 2 when κρ = 1/14 and E‖ΠKg‖2 ≥ 7. Combining with
inequality (3.61) forces the testing error to be lower bounded as

∀ψ, E(ψ; {0}, K, ε) ≥ 1− 1

2

√
Eη,η′ exp(ε2〈η, η′〉)− 1 ≥ 1

2
> ρ,

which completes the proof of Theorem 3.3.2.
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Chapter 4

Adaptive estimation of planar convex
sets

4.1 Introduction

In this chapter, we discuss the problem of nonparametric estimation of an unknown planar
compact, convex set from noisy measurements of its support function on a uniform grid.
Before describing the details of the problem, let us first introduce the support function. For
a compact, convex set K in R2, its support function is defined by

hK(θ) := max
(x1,x2)∈K

(x1 cos θ + x2 sin θ) for θ ∈ R.

Note that hK is a periodic function with period 2π. It is useful to think about θ in terms of
the direction (cos θ, sin θ). The line x1 cos θ + x2 sin θ = hK(θ) is a support line for K (i.e.,
it touches K and K lies on one side of it). Conversely, every support line of K is of this
form for some θ. The convex set K is completely determined by the its support function hK
because K =

⋂
θ{(x1, x2) : x1 cos θ + x2 sin θ ≤ hK(θ)}.

The support function hK possesses the circle-convexity property (see, e.g., [140]): for
every α1 > α > α2 and 0 < α1 − α2 < π,

hK(α1)

sin(α1 − α)
+

hK(α2)

sin(α− α2)
≥ sin(α1 − α2)

sin(α1 − α) sin(α− α2)
hK(α). (4.1)

Moreover the above inequality characterizes hK , i.e., any periodic function of period 2π sat-
isfying the above inequality equals hK for a unique compact, convex subset K in R2. The
circle-convexity property (4.1) is clearly related to the usual convexity property. Indeed, re-
placing sinα by α in (4.1) leads to the condition for convexity. In spite of this similarity, (4.1)
is different from convexity as can be seen from the example of the function h(θ) = | sin θ|
which satisfies (4.1) but is clearly not convex.
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4.1.1 The problem, motivations, and background

We are now ready to describe the problem studied in this chapter. Let K∗ be an unknown
compact, convex set in R2. We study the problem of estimating K∗ or hK∗ from noisy
measurements of hK∗ . Specifically, we observe data (θ1, Y1), . . . , (θn, Yn) drawn according to
the model

Yi = hK∗(θi) + ξi for i = 1, . . . , n (4.2)

where θ1, . . . , θn are fixed grid points in (−π, π] and ξ1, . . . , ξn are i.i.d Gaussian random
variables with mean zero and known variance σ2. We focus on the dual problems of estimating
the scalar quantity hK∗(θi) for each 1 ≤ i ≤ n as well as the convex set K∗. In this chapter,
we propose data-driven adaptive estimators and establish their optimality for both of these
problems.

The problem considered here has a range of applications in engineering. The regression
model (4.2) was first proposed and studied by Prince and Willsky [115] who were moti-
vated by an application to Computed Tomography. Lele et al. [95] showed how solutions
to this problem can be applied to target reconstruction from resolved laser-radar measure-
ments in the presence of registration errors. Gregor and Rannou [67] considered application
to Projection Magnetic Resonance Imaging. It is also a fundamental problem in geomet-
ric tomography; see Gardner [57]. Another application domain where this problem might
plausibly arise is robotic tactical sensing as has been suggested by Prince and Willsky [115].
Finally this is a natural shape constrained estimation problem and would fit right into the
recent literature on shape constrained estimation (e.g. [70]).

Most proposed procedures for estimating K∗ in this setting are based on least squares
minimization. The least squares estimator K̂ls is defined as any minimizer of

∑n
i=1(Yi −

hK(θi))
2 as K ranges over all compact convex sets. The minimizer in this optimization

problem is not unique and one can always take it to be a polytope. This estimator was
first proposed by [115] who also proposed an algorithm for computing it based on quadratic
programming. Further algorithms for computing K̂ls were proposed in Prince et al. [115, 95,
58].

The theoretical performance of the least squares estimator was first considered by Gardner
et al. [59] who mainly studied its accuracy for estimating K∗ under the natural fixed design
loss:

Lf (K
∗, K̂) :=

1

n

n∑
i=1

(hK∗(θi)− hK̂(θi))
2 . (4.3)

The key result of Gardner et al. [59] (specialized to the planar case that we are studying)
states that Lf (K

∗, K̂ls) = O(n−4/5) as n → ∞ almost surely provided K∗ is contained
in a ball of bounded radius. This result is complemented by the minimax lower bound in
Guntuboyina [74] where it was shown that n−4/5 is the minimax rate for this problem. These
two results together imply minimax optimality of K̂ls under the loss function Lf . No other
theoretical results for this problem are available outside of those in Gardner et al. [59] and
Guntuboyina [74].
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As a result, the following basic questions are still unanswered:

1. How to optimally and adaptively estimate hK∗(θi) for a fixed i ∈ {1, . . . , n}? This is
the pointwise estimation problem. In the literature on shape constrained estimation,
pointwise estimation has been well studied. Prominent examples include [23, 152, 68,
69, 34, 36, 83] for monotonicity constrained estimation and [77, 100, 71, 72, 29] for
convexity constrained estimation. For the problem considered here however, nothing
is known about pointwise estimation. It may be noted that the result Lf (K

∗, K̂ls) =
O(n−4/5) of Gardner et al. [59] does not say anything about the accuracy of hK̂ls

(θi)
as an estimator for hK∗(θi).

2. How to construct minimax optimal estimators for the set K∗ that also adapt to poly-
topes? Polytopes with a small number of extreme points have a much simpler structure
than general convex sets. In the problem of estimating convex sets under more stan-
dard observation models different from the one studied here, it is possible to construct
estimators that converge at faster rates for polytopes compared to the overall minimax
rate (see Brunk [22] for a summary of this theory). Similar kinds of adaptation has
been recently studied for monotonicity and convexity constrained estimation problems,
see [75, 38, 8]. Based on these results, it is natural to expect minimax estimators that
adapt to polytopes in this problem. This has not been addressed previously.

4.1.2 Overview of our results

We will answer both the above questions in the affirmative in this chapter. The main
contributions can be summarized as follows:

1. We study the pointwise adaptive estimation problem in detail in the decision theoretic
framework where the focus is on the performance at every function, instead of the
maximum risk over a large parameter space as in the conventional minimax theory in
nonparametric estimation literature. Recall that this framework which has been dis-
cussed in our Section 2.2.1, is first introduced in Cai and Low [29] for shape constrained
regression and provides a much more precise characterization of the performance of an
estimator than the conventional minimax theory does.

In the context of the present problem, the difficulty of estimating hK∗(θi) at a given
K∗ and θi can be expressed by means of a benchmark Rn(K∗, θ) which is defined as
follows (below EL denotes expectation taken with respect to the joint distribution of
Y1, . . . , Yn generated according to the model (4.2) with K∗ replaced by L):

Rn(K∗, θ) = sup
L

inf
h̃

max
(
EK∗(h̃− hK∗(θ))2, EL(h̃− hL(θ))2

)
, (4.4)

where the supremum above is taken over all compact, convex sets L while the infimum
is over all estimators h̃. In our first result for pointwise estimation, we establish, for
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each i ∈ {1, . . . , n}, a lower bound for the performance of every estimator for estimating
hK∗(θi). Specifically, it is shown that

Rn(K∗, θi) ≥ c · σ2

k∗(i) + 1
(4.5)

where k∗(i) is an integer for which an explicit formula can be given in terms of K∗ and
i; and c is a universal positive constant. It will turn out that k∗(i) is related to the
smoothness of hK∗(θ) at θ = θi.

We construct a data-driven estimator, ĥi, of hK∗(θi) based on local smoothing together
with an optimization scheme for automatically choosing a bandwidth, and show that
the estimator ĥi satisfies

EK∗
(
ĥi − hK∗(θi)

)2

≤ C · σ2

k∗(i) + 1
(4.6)

for a universal constant C > 0. Inequalities (4.5) and (4.6) (see also inequality (4.21))
together imply that ĥi is, within a constant factor, an optimal estimator of hK∗(θi)
for every compact, convex set K∗. This optimality is much stronger than the tra-
ditional minimax optimality usually employed in nonparametric function estimation.
The quantity σ2/(k∗(i) + 1) depends on the unknown set K∗ in a similar way that the
Fisher information depends on the unknown parameter in a regular parametric model.
In contrast, the optimal rate in the minimax paradigm is given in terms of the worst
case performance over a large parameter space and does not depend on individual
parameter values.

2. Using the optimal adaptive point estimators ĥ1, . . . , ĥn, we construct two set estimators
K̂ and K̂ ′. The details of this construction are given in Section 4.2.2. In Theorems
4.3.3 and 4.3.5, it is shown that K̂ is minimax optimal for K∗ under the loss function
Lf while the estimator K̂ ′ is minimax optimal under the integral squared loss function
defined by

L(K∗, K̂ ′) :=

∫ π

−π
(hK̂′(θ)− hK∗(θ))

2 dθ. (4.7)

The square root of the above loss function is often referred to as the McClure-Vitale
metric on the space of non-empty compact, convex sets (e.g. [102, 43]). In Theorem
4.3.3, we prove that

EK∗Lf (K∗, K̂) ≤ C

σ2

n
+

(
σ2
√
R

n

)4/5
 (4.8)

provided K∗ is contained in a ball of radius R. This, combined with the minimax
lower bound in Guntuboyina [74], proves the minimax optimality of K̂. An analogous
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result is shown in Theorem 4.3.5 for EK∗L(K∗, K̂ ′). For the pointwise estimation
problem where the goal is to estimate hK∗(θi), the optimal rate σ2/(k∗(i) + 1) can
be as large as n−2/3. However the bound (4.8) shows that the globally the risk is at
most n−4/5. The shape constraint given by convexity of K∗ ensures that the points
where pointwise estimation rate is n−2/3 cannot be too many. Note that we make no
smoothness assumptions for proving (4.8).

3. We show that our set estimators K̂ and K̂ ′ adapt to polytopes with bounded number of
extreme points. Already inequality (4.8) implies that EK∗Lf (K∗, K̂) is bounded from
above by the parametric risk Cσ2/n provided R = 0 (note that R = 0 means that K∗ is
a singleton). Because σ2/n is much smaller than n−4/5, the bound (4.8) shows that K̂
adapts to singletons. Theorem 4.3.4 extends this adaptation phenomenon to polytopes
and we show that EK∗Lf (K∗, K̂) is bounded by the parametric rate (up to a logarithmic
multiplicative factor of n) for all polytopes with bounded number of extreme points.
An analogous result is also proved for EK∗L(K∗, K̂ ′) in Theorem 4.3.5. It should be
noted that the construction of our estimators K̂ and K̂ ′ (described in Section 4.2.2)
does not involve any special treatment for polytopes; yet the estimators automatically
achieve faster rates for polytopes.

We would like to stress two features of the results in this chapter: (a) we do not make
any smoothness assumptions on the boundary of K∗ throughout; in particular, note that we
obtain the n−4/5 rate for the set estimators K̂ and K̂ ′ without any smoothness assumptions,
and (b) we go beyond the traditional minimax paradigm by considering adaptive estimation
in both the pointwise estimation problem and the problem of estimating the entire set K∗.
In particular, pointwise estimation is studied in a general non-asymptotic framework, which
evaluates the performance of a procedure at eah individual set K∗, not the worst case
performance over a large parameter space as in the conventional minimax theory.

The remainder of this chapter is structured as follows. The proposed estimators are
described in detail in Section 4.2. The theoretical properties are analyzed in Section 4.3;
Section 4.3.1 gives results for pointwise estimation while Section 4.3.2 deals with set estima-
tors. Section 4.4 considers optimal estimation of some special compact convex sets K∗ where
we explicitly compute the associated rates of convergence. A simulation study is given in
Section 4.5 where we compare the performance of our estimators to other existing estimators
in the literature. In Section 4.6, we summarize our main results and discuss potential open
problems for future work. The proofs of the main results are given in Section 4.7. Proofs of
other results together with additional technical results are given in Chapter B.

4.2 Estimation procedures

Recall the regression model (4.2), where we observe noisy measurements (θ1, Y1), . . . , (θn, Yn)
with θi = 2πi/n− π, i = 1, . . . , n being fixed grid points in (−π, π]. In this section, we first
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describe in detail our estimate ĥi for hK∗(θi) for each i. Subsequently, we will put together
these estimates ĥ1, . . . , ĥn to yield set estimators for K∗.

4.2.1 Estimators for hK∗(θi) for each fixed i

Fixing 1 ≤ i ≤ n, our construction of the estimator ĥi for hK∗(θi) is based on the key
circle-convexity property (4.1) of the function hK∗(·). Let us define, for φ ∈ (0, π/2) and
θ ∈ (−π, π], the following two quantities:

l(θ, φ) := cosφ (hK∗(θ + φ) + hK∗(θ − φ))− hK∗(θ + 2φ) + hK∗(θ − 2φ)

2

and

u(θ, φ) :=
hK∗(θ + φ) + hK∗(θ − φ)

2 cosφ
.

The following lemma states that for every θ, the quantity hK∗(θ) is sandwiched between
l(θ, φ) and u(θ, φ) for every φ. This will be used crucially in defining ĥ. The proof of this
lemma is a straightforward consequence of (4.1) and is given in Section B.1.6.

Lemma 4.2.1. For every 0 < φ < π/2 and every θ ∈ (−π, π], we have l(θ, φ) ≤ hK∗(θ) ≤
u(θ, φ).

For a fixed 1 ≤ i ≤ n, Lemma 4.2.1 implies that l(θi,
2πj
n

) ≤ hK∗(θi) ≤ u(θi,
2πj
n

) for every
0 ≤ j < bn/4c. Note that when j = 0, we have l(θi, 0) = hK∗(θi) = u(θi, 0). Averaging these
inequalities for j = 0, 1, . . . , k where k is a fixed integer with 0 ≤ k < bn/4c, we obtain

Lk(θi) ≤ hK∗(θi) ≤ Uk(θi) for every 0 ≤ k < bn/4c (4.9)

where

Lk(θi) :=
1

k + 1

k∑
j=0

l

(
θi,

2πj

n

)
and Uk(θi) :=

1

k + 1

k∑
j=0

u

(
θi,

2πj

n

)
.

We are now ready to describe our estimator. Fix 1 ≤ i ≤ n. Inequality (4.9) says that
the quantity of interest, hK∗(θi), is sandwiched between Lk(θi) and Uk(θi) for every k. Both
Lk(θi) and Uk(θi) can naturally be estimated by unbiased estimators. Indeed, let

l̂(θi, 2jπ/n) := cos(2jπ/n)(Yi+j + Yi−j)−
Yi+2j + Yi−2j

2
, û(θi, 2jπ/n) :=

Yi+j + Yi−j
2 cos(2jπ/n)

and take

L̂k(θi) :=
1

k + 1

k∑
j=0

l̂ (θi, 2jπ/n) , Ûk(θi) :=
1

k + 1

k∑
j=0

û (θi, 2jπ/n) . (4.10)
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Obviously, in order for the above to be meaningful, we need to define Yi even for i /∈
{1, . . . , n}. This is easily done in the following way: for any i ∈ Z, let s ∈ Z be such that
i− sn ∈ {1, . . . , n} and take Yi := Yi−sn.

As k increases, one averages more terms in (4.10) and hence the estimators L̂k(θi) and
Ûk(θi) become more accurate. Let ∆̂k(θi) := Ûk(θi)− L̂k(θi) which is the same as

∆̂k(θi) =
1

k + 1

k∑
j=0

(
Yi+2j + Yi−2j

2
− cos(4jπ/n)

cos(2jπ/n)

Yi+j + Yi−j
2

)
. (4.11)

Because of (4.9), a natural strategy for estimating hK∗(θi) is to choose k for which ∆̂k(θi) is
the smallest and then use either L̂k(θi) or Ûk(θi) at that k as the estimator. This is essentially
our estimator with one small difference in that we also take into account the noise present
in ∆̂k(θi). Formally, our estimator for hK∗(θi) is given by:

ĥi = Ûk̂(i)(θi), where k̂(i) := argmin
k∈I

{(
∆̂k(θi)

)
+

+
2σ√
k + 1

}
(4.12)

and I := {0} ∪ {2j : j ≥ 0 and 2j ≤ bn/16c}.
Our estimator ĥi can be viewed as an angle-adjusted local averaging estimator. It is

inspired by the estimator of Cai and Low [29] for convex regression. The number of terms
averaged equals k̂(i) + 1 and this is analogous to the bandwidth in kernel-based smoothing
methods. Our k̂(i) is determined from an optimization scheme. Notice that unlike the
least squares estimator hK̂ls

(θi), the construction of ĥi for a fixed i does not depend on the

construction of ĥj for j 6= i.

4.2.2 Set estimators for K∗

We next present estimators for the set K∗. The point estimators ĥ1, . . . , ĥn do not directly
give an estimator for K∗ because (ĥ1, . . . , ĥn) is not necessarily a valid support vector i.e.,
(ĥ1, . . . , ĥn) does not always belong to the following set:

H :=
{

(hK(θ1), . . . , hK(θn)) : K ⊆ R2 is compact and convex
}
.

To get a valid support vector from (ĥ1, . . . , ĥn), we need to project it onto H to obtain:

ĥP := (ĥP1 , . . . , ĥ
P
n ) := arg min

(h1,...,hn)∈H

n∑
i=1

(
ĥi − hi

)2

(4.13)

The superscript P here stands for projection. An estimator for the set K∗ can now be
constructed immediately from ĥP1 , . . . , ĥ

P
n via

K̂ :=
{

(x1, x2) : x1 cos θi + x2 sin θi ≤ ĥPi for all i = 1, . . . , n
}
. (4.14)
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In Theorems 4.3.3 and 4.3.4, we prove upper bounds on the accuracy of K̂ under the loss
function Lf given in (4.3).

There is another reasonable way of constructing a set estimator for K∗ based on the point
estimators ĥ1, . . . , ĥn. We first interpolate ĥ1, . . . , ĥn to define a function ĥ′ : (−π, π] → R
as follows:

ĥ′(θ) :=
sin(θi+1 − θ)
sin(θi+1 − θi)

ĥi +
sin(θ − θi)

sin(θi+1 − θi)
ĥi+1 for θi ≤ θ ≤ θi+1. (4.15)

Here i ranges over 1, . . . , n with the convention that θn+1 = θ1 + 2π (and θn ≤ θ ≤ θn+1

should be identified with −π ≤ θ ≤ −π + 2π/n). Based on this function ĥ′, we can define
our estimator K̂ ′ of K∗ by

K̂ ′ := argmin
K

∫ π

−π

(
ĥ′(θ)− hK(θ)

)2

dθ. (4.16)

The existence and uniqueness of K̂ ′ can be justified in the usual way by the Hilbert space
projection theorem. In Theorem 4.3.5, we prove bounds on the accuracy of K̂ ′ as an estimator
for K∗ under the integral loss L given in (4.7).

Let us now briefly comment on the algorithms for computing our set estimators K̂ and K̂ ′.
The expression (4.14) shows how to write K̂ in terms of ĥPi , i = 1, . . . , n and therefore, we only
need to be able to compute ĥPi , i = 1, . . . , n for computing K̂. This can be done via quadratic
programming because the set H can explicitly written as {h ∈ Rn : aTi h ≤ 0, i = 1, . . . , n}
for some collection of vectors a1, . . . , an in Rn (see, for example, Prince and Willsky [115,
Theorem1]). To compute K̂ ′, we take a fine uniform grid of points α1, . . . , αM in (−π, π] for
a large value of M and approximate K̂ ′ via

argmin
K

M∑
i=1

(
ĥ′(αi)− hK(αi)

)2

.

More precisely, one can take K̂ ′ :=
{

(x1, x2) : x1 cosαi + x2 sinαi ≤ h̃i for all i = 1, . . . ,M
}

where

(h̃1, . . . , h̃M) := arg min
(h1,...,hM )∈HM

M∑
i=1

(
ĥ′(αi)− hi

)2

with HM := {(hK(α1), . . . , hK(αM)) : K ⊆ R2 is compact and convex}. This estimator
can then be computed in an analogous way as K̂ by quadratic programming. We present
simulation examples in Section 4.5 where one can see that there is often not much difference
between K̂ and K̂ ′ in practice.

4.3 Main results

We now investigate the accuracy of the proposed point and set estimators. The proofs of
these results are given in Section 4.7.
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4.3.1 Accuracy of the point estimator

As mentioned in the introduction, we evaluate the performance of the point estimator ĥi
at individual functions, not the worst case over a large parameter space. This provides
a much more precise characterization of the accuracy of the estimator. Let us first recall
inequality (4.9) where hK∗(θi) is sandwiched between Lk(θi) and Uk(θi). Define ∆k(θi) :=
Uk(θi)− Lk(θi).

Theorem 4.3.1. Fix i ∈ {1, . . . , n}. There exists a universal constant C > 0 such that the
risk of ĥi as an estimator of hK∗(θi) satisfies the inequality,

EK∗
(
ĥi − hK∗(θi)

)2

≤ C · σ2

k∗(i) + 1
(4.17)

where

k∗(i) := argmin
k∈I

(
∆k(θi) +

2σ√
k + 1

)
. (4.18)

Remark 4.3.1. It turns out that the bound in (4.17) is linked to the level of smoothness
of the function hK∗ at θi. However for this interpretation to be correct, one needs to regard
hK∗ as a function on R2 instead of a subset of R. This is further explained in Remark 4.4.1.

Theorem 4.3.1 gives an explicit bound on the risk of ĥi in terms of the quantity k∗(i)
defined in (4.18). It is important to keep in mind that k∗(i) depends on K∗ even though this
is suppressed in the notation. In the next theorem, we show that σ2/(k∗(i)+1) also presents
a lower bound on the accuracy of every estimator for hK∗(θi). This implies, in particular,
optimality of ĥi as an estimator of hK∗(θi).

One needs to be careful in formulating the lower bound in this setting. A first attempt
might perhaps be to prove that, for a universal constant c > 0,

inf
h̃
EK∗

(
h̃− hK∗(θi)

)2

≥ c · σ2

k∗(i) + 1

where the infimum is over all possible estimators h̃. This, of course, would not be possible
because one can take h̃ = hK∗(θi) which would make the left hand side zero. A formulation
of the lower bound which avoids this difficulty was proposed by [29] in the context of convex
function estimation. Their idea, translated to our setting of estimating the support function
hK∗ at a point θi, is to consider, instead of the risk at K∗, the maximum of the risk at
K∗ and the risk at L∗ which is most difficult to distinguish from K∗ in term of estimating
hK∗(θi). This leads to the benchmark Rn(K∗, θi) defined in (4.4).

Theorem 4.3.2. For any fixed i ∈ {1, . . . , n}, we have

Rn(K∗, θi) ≥ c · σ2

k∗(i) + 1
(4.19)

for a universal constant c > 0.
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Theorems 4.3.1 and 4.3.2 together imply that σ2/(k∗(i)+1) is the optimal rate of estima-
tion of hK∗(θi) for a given compact, convex set K∗. The results show that our data driven
estimator ĥi for hK∗(θi) performs uniformly within a constant factor of the ideal benchmark
Rn(K∗, θi) for every i. This means that ĥi adapts to every unknown set K∗ instead of a
collection of large parameter spaces as in the conventional minimax theory commonly used
in nonparametric literature.

Remark 4.3.2 (A stronger upper bound on the risk of ĥi). From the proof of Theorem
4.3.2, it can be seen that the following statement is true: there exists a compact, convex set
L∗ such that

inf
h̃

max
(
EK∗(h̃− hK∗(θi))2,EL∗(h̃− hL∗(θi))2

)
≥ cσ2

k∗(i) + 1
(4.20)

the infimum above being over all estimators h̃ of hK∗(θi). In light of this, it is natural to ask
whether the following inequality

max
(
EK∗(ĥi − hK∗(θi))2,EL∗(ĥi − hL∗(θi))2

)
≤ Cσ2

k∗(i) + 1
(4.21)

holds for the same L∗ where ĥi refers to our estimator defined in (4.12) and C represents
a universal constant. Note that this is a stronger inequality than (4.17). It turns out that
(4.21) is indeed a true inequality and we provide a proof in Section B.1.3.

Given a specific set K∗ and 1 ≤ i ≤ n, the quantity k∗(i) is often straightforward to
compute up to constant multiplicative factors. Several examples are provided in Section
4.4. From these examples, it will be clear that the size of σ2/(k∗(i) + 1) is linked to the
level of smoothness of the function hK∗ at θi. However for this interpretation to be correct,
one needs to regard hK∗ as a function on R2 instead of a subset of R. This is explained in
Remark 4.4.1.

The following corollaries shed more light on the quantity σ2/(k∗(i) + 1). The proofs of
these corollaries are given in Section B.1.4. The first corollary below shows that σ2/(k∗(i)+1)
is at most C(σ2R/n)−2/3 for every i and K∗ (C is a universal constant) provided K∗ is
contained in a ball of radius R. In Example 4.4.3, we provide an explicit choice of i and K∗

for which σ2/(k∗(i) + 1) ≥ c(σ2R/n)−2/3 (c is a universal constant). This implies that the
conclusion of the following corollary cannot in general be improved.

Corollary 4.3.1. Suppose K∗ is contained in some closed ball of radius R. Then for every
i ∈ {1, . . . , n}, we have, for a universal constant C > 0,

σ2

k∗(i) + 1
≤ C

{(
σ2R

n

)2/3

+
σ2

n

}
(4.22)

and

E
(
ĥi − hK∗(θi)

)2

≤ C

{(
σ2R

n

)2/3

+
σ2

n

}
. (4.23)
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Note that the above corollary implies the consistency of ĥi as an estimator for hK∗(θi)
for every i and K∗. It turns out that ĥi is a minimax optimal estimator of hK∗(θi) over the
class of all compact convex sets K∗ contained in some closed ball of radius R. This is proved
in the next result.

Proposition 4.3.1. For R ≥ 0, let K(R) denote the class of all compact, convex sets that
are contained in some fixed closed ball of radius R. Then for every i ∈ {1, . . . , n}, we have

sup
K∗∈K(R)

EK∗
(
ĥi − hK∗(θi)

)2

≤ C

{
σ2

n
+

(
σ2R

n

)2/3
}

(4.24)

for a universal constant C. We further have

inf
h̃

sup
K∗∈K(R)

EK∗
(
h̃− hK∗(θi)

)2

≥ c

{
σ2

n
+

(
σ2R

n

)2/3
}

(4.25)

for a universal constant c > 0 where the infimum is taken over all possible estimators h̃ of
hK∗(θi).

It is clear from the definition (4.18) that k∗(i) ≤ n for all i and K∗. In the next corollary,
we prove that there exist sets K∗ and i for which k∗(i) ≥ cn for a constant c. For these sets,
the optimal rate of estimating hK∗(θi) is therefore parametric.

For a fixed i and K∗, let φ1(i) and φ2(i) be such that φ1(i) ≤ θi ≤ φ2(i) and such that
there exists a single point (x1, x2) ∈ K∗ with

hK∗(θ) = x1 cos θ + x2 sin θ for all θ ∈ [φ1(i), φ2(i)]. (4.26)

The following corollary says that if the distance of θi to its nearest end-point in the interval
[φ1(i), φ2(i)] is large (i.e., of constant order), then the optimal rate of estimation of hK∗(θi)
is parametric. This situation happens usually for polytopes (polytopes are compact, convex
sets with finitely many vertices); see Examples 4.4.1 and 4.4.3 for specific instances of this
phenomenon. For non-polytopes, it can often happen that φ1(i) = φ2(i) = θi in which case
the conclusion of the next corollary is not useful.

Corollary 4.3.2. For every i ∈ {1, . . . , n}, we have

k∗(i) ≥ c nmin (θi − φ1(i), φ2(i)− θi, π) (4.27)

for a universal constant c > 0. Consequently

E
(
ĥi − hK∗(θi)

)2

≤ Cσ2

1 + nmin(θi − φ1(i), φ2(i)− θi, π)
(4.28)

for a universal constant C > 0.
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From the above two corollaries, it is clear that the optimal rate of estimation of hK∗(θi)
can be as large as n−2/3 and as small as the parametric rate n−1. The rate n−2/3 is achieved,
for example, in the setting given in Example 4.4.3 while the parametric rate is achieved, for
example, for polytopes.

The next corollary argues that bounding k∗(i) in specific examples requires only bounding
the quantity ∆k(θi) from above and below. This corollary will be useful in Section 4.4 while
working out k∗(i) in specific examples.

Corollary 4.3.3. Fix 1 ≤ i ≤ n. Let {fk(θi), k ∈ I} and {gk(θi), k ∈ I} be two sequences
which satisfy gk(θi) ≤ ∆k(θi) ≤ fk(θi) for all k ∈ I. Also let

k̆(i) := max

{
k ∈ I : fk(θi) <

(
√

6− 2)σ√
k + 1

}
(4.29)

and

k̃(i) := min

{
k ∈ I : gk(θi) >

6(
√

2− 1)σ√
k + 1

}
(4.30)

as long as there is some k ∈ I for which gk(θi) > 6(
√

2 − 1)σ/
√
k + 1; otherwise take

k̃(i) := maxk∈I k. We then have k̆(i) ≤ k∗(i) ≤ k̃(i) and

EK∗
(
ĥi − hK∗(θi)

)2

≤ C
σ2

k̆(i) + 1
(4.31)

for a universal constant C > 0.

4.3.2 Accuracy of set estimators

We now turn to study the accuracy of the set estimators K̂ (defined in (4.14)) and K̂ ′ (defined
in (4.16)). The accuracy of K̂ will be investigated under the loss function Lf (defined in

(4.3)) while the accuracy of K̂ ′ will be studied under the loss function L (defined in (4.7)).
In Theorem 4.3.3 below, we prove that EK∗Lf (K∗, K̂) is bounded from above by a con-

stant multiple of n−4/5 as long as K∗ is contained in a ball of radius R. The discussions
following the theorem shed more light on its implications.

Theorem 4.3.3. If K∗ is contained in some closed ball of radius R ≥ 0, then

EK∗Lf
(
K∗, K̂

)
≤ C

σ2

n
+

(
σ2
√
R

n

)4/5
 (4.32)

for a universal constant C > 0. Note here that R = 0 is allowed (in which case K∗ is a
singleton).
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Note that as long as R > 0, the right hand side in (4.32) will be dominated by the
(σ2
√
R/n)−4/5 term for all large n. This would mean that

sup
K∗∈K(R)

EK∗Lf (K∗, K̂) ≤ C

(
σ2
√
R

n

)4/5

(4.33)

where K(R) denotes the set of all compact convex sets contained in some fixed closed ball
of radius R.

The minimax rate of estimation over the class K(R) was studied in Guntuboyina [74]. In
Theorems 3.1 and 3.2 [74], it was proved that

inf
K̃

sup
K∗∈K(R)

EK∗Lf (K∗, K̂) �

(
σ2
√
R

n

)4/5

(4.34)

where � denotes equality upto constant multiplicative factors. From (4.33) and (4.34), it
follows that K̂ is a minimax optimal estimator of K∗. We should mention here that an
inequality of the form (4.33) was proved for the least squares estimator K̂ls by Gardner et
al. [59] which implies that K̂ls is also a minimax optimal estimator of K∗.

The n−4/5 minimax rate here is quite natural in connection with estimation of smooth
functions. Indeed, this is the minimax rate for estimating twice differentiable one-dimensional
functions. Although we have not made any smoothness assumptions here, we are working
under a convexity-based constraint and convexity is associated, in a broad sense, with twice
smoothness (see, for example, Alexandrov [2]).

Remark 4.3.3. Because of the formula (4.3) for the loss function Lf , the risk EK∗Lf (K∗, K̂)

can be seen as the average of the risk of K̂ for estimating hK∗(θi) over i = 1, . . . , n. We
have seen in Section 4.3.1 that the optimal rate of estimating hK∗(θi) can be as high as
n−2/3. Theorem 4.3.3, on the other hand, can be interpreted as saying that, on average over
i = 1, . . . , n, the optimal rate of estimating hK∗(θi) is at most n−4/5. Indeed, the key to
proving Theorem 4.3.3 is to establish the following inequality:

σ2

n

n∑
i=1

1

k∗(i) + 1
≤ C

σ2

n
+

(
σ2
√
R

n

)4/5
 .

under the assumption that K∗ is contained in a ball of radius R. Therefore, even though
each term σ2/(k∗(i) + 1) can be as large as n−2/3, on average, their size is at most n−4/5.

Remark 4.3.4. Theorem 4.3.3 provides different qualitative conclusions when K∗ is a sin-
gleton. In this case, one can take R = 0 in (4.32) to get the parametric bound Cσ2/n for
EK∗Lf (K∗, K̂). Because this is smaller than the nonparametric n−4/5 rate, it means that K̂
adapts to singletons. Singletons are simple examples of polytopes and one naturally wonders
here if K̂ also adapts to other polytopes as well. This is however not implied by inequality
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(4.32) which gives the rate n−4/5 for every K∗ that is not a singleton. It turns out that
K̂ indeed adapts to other polytopes and we prove this in the next theorem. In fact, we
prove that K̂ adapts to any K∗ that is well-approximated by a polytope with not too many
vertices. It is currently not known if the least squares estimator K̂ls has such adaptivity.

We next prove another bound for EK∗Lf (K∗, K̂). This bound demonstrates adaptivity

of K̂ as described in the previous remark. Recall that polytopes are compact, convex sets
with finitely many extreme points (or vertices). The space of all polytopes in Rn will be
denoted by P . For a polytope P ∈ P , we denote by vP , the number of extreme points of
P . Also recall the notion of Hausdorff distance between two compact, convex sets K and L
defined by

`H(K,L) := sup
θ∈R
|hK(θ)− hL(θ)| . (4.35)

This is not the usual way of defining the Hausdorff distance. For an explanation of the
connection between this and the usual definition, see, for example, Schneider [127, Theorem
1.8.11].

Theorem 4.3.4. There exists a universal constant C > 0 such that

EK∗Lf (K∗, K̂) ≤ C inf
P∈P

[
σ2vP
n

log

(
en

vP

)
+ `2

H(K∗, P )

]
. (4.36)

Remark 4.3.5 (Near-parametric rates for polytopes). The bound (4.36) implies that ĥ
has the parametric rate (upto a logarithmic factor of n) for estimating polytopes. Indeed,
suppose that K∗ is a polytope with v vertices. Then using P = K∗ in the infimum in (4.36),
we have the risk bound

EK∗Lf (K∗, K̂) ≤ Cσ2v

n
log
(en
v

)
. (4.37)

This is the parametric rate σ2v/n up to logarithmic factors and is smaller than the nonpara-
metric rate n−4/5 given in (4.32).

Remark 4.3.6. When v = 1, inequality (4.37) has a redundant logarithmic factor. Indeed,
when v = 1, we can use (4.32) with R = 0 which gives (4.37) without the additional
logarithmic factor. We do not know if the logarithmic factor in (4.37) can be removed for
values of v larger than one as well.

Now consider the second set estimator K̂ ′. The next theorem gives an upper bound on
its accuracy under the integral loss function L (defined in (4.7)).

Theorem 4.3.5. Suppose K∗ is contained in some closed ball of radius R ≥ 0. The risk
EK∗L(K∗, K̂ ′) satisfies both the following inequalities:

EK∗L(K∗, K̂ ′) ≤ C

σ2

n
+

(
σ2
√
R

n

)4/5

+
R2

n2

 (4.38)
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and

EK∗L(K∗, K̂ ′) ≤ C inf
P∈P

[
σ2vP
n

log

(
en

vP

)
+ `2

H(K∗, P ) +
R2

n2

]
. (4.39)

The only difference between the inequalities (4.38) and (4.39) on one hand and (4.32) and
(4.36) on the other is the presence of the R2/n2 term. This term is usually very small and
does not change the qualitative behavior of the bounds. However note that inequality (4.36)
did not require any assumption on K∗ being in a ball of radius R while this assumption is
necessary for (4.39).

Remark 4.3.7. The rate (σ2
√
R/n)4/5 is the minimax rate for this problem under the

loss function L. Although this has not been proved explicitly anywhere, it can be shown
by modifying the proof of Guntuboyina [74, Theorem 3.2] appropriately. Theorem 4.3.5
therefore shows that K̂ ′ is a minimax optimal estimator of K∗ under the loss function L.

4.4 Examples

We now investigate the results given in the last section for specific choices of K∗. It is useful
here to note that ∆k(θi) = Uk(θi)− Lk(θi) has the following alternative expression:

1

k + 1

k∑
j=0

(
hK∗(θi ± 4jπ/n)− cos(4jπ/n)

cos(2jπ/n)
hK∗(θi ± 2jπ/n)

)
. (4.40)

where we write hK∗(θi ± φ) for (hK∗(θi + φ) + hK∗(θi − φ)) /2 with φ = 2jπ/n, 4jπ/n.

Example 4.4.1 (Single point). Suppose K∗ := {(x1, x2)} for a fixed point (x1, x2) ∈ R2. In
this case

hK∗(θ) = x1 cos θ + x2 sin θ for all θ. (4.41)

It can then be directly checked from (4.40) that ∆k(θi) = 0 for every k ∈ I and i ∈ {1, . . . , n}.
As a result, it follows that k∗(i) = maxk∈I k ≥ cn for a constant c > 0. Theorem 4.3.1 then
says that the point estimator ĥi satisfies

EK∗
(
ĥi − hK∗(θi)

)2

≤ Cσ2

n
(4.42)

for a universal constant C > 0. One therefore gets the parametric rate here.
Also, Theorem 4.3.3 and inequality (4.38) in Theorem 4.3.5 can both be used here with

R = 0. This implies that the set estimators K̂ and K̂ ′ both converge to K∗ at the parametric
rate under the loss functions Lf and L respectively.

Example 4.4.2 (Ball). Suppose K∗ is a ball centered at (x1, x2) with radius R > 0. It is
then easy to verify that

hK∗(θ) = x1 cos θ + x2 sin θ +R for all θ. (4.43)
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As a result, for every k ∈ I and i ∈ {1, . . . , n}, we have

∆k(θi) =
R

k + 1

k∑
j=0

(
1−

cos 4πj
n

cos 2πj
n

)
≤ R

(
1− cos 4πk/n

cos 2πk/n

)
. (4.44)

Because k ≤ n/16 for all k ∈ I, it is easy to verify that ∆k(θi) ≤ 8R sin2(πk/n) ≤ 8Rπ2k2/n2.
Taking fk(θi) = 8Rπ2k2/n2 in Corollary 4.3.3, we obtain that k∗(i) ≥ cmin(n, (n2σ/R)2/5)
for a constant c. Also since the function 1− cos(2x)/ cos(x) is a strongly convex function on
[−π/4, π/4] with second derivative lower bounded by 3, we have

∆k(θi) =
R

k + 1

k∑
j=0

(
1−

cos 4πj
n

cos 2πj
n

)
≥ R

k + 1

k∑
j=0

3

2

(
2πj

n

)2

=
Rπ2k(2k + 1)

n2
.

This gives k∗(i) ≤ C min(n, (n2σ/R)2/5) as well for a constant C. We thus have k∗(i) �
(n2σ/R)2/5 for every i. Theorem 4.3.1 then gives

EK∗
(
ĥi − hK∗(θi)

)2

≤ C

σ2

n
+

(
σ2
√
R

n

)4/5
 (4.45)

for every i ∈ {1, . . . , n}. Theorem 4.3.3 and inequality (4.38) prove that the set estimators
K̂ and K̂ ′ also converge to K∗ at the n−4/5 rate.

In the preceding examples, we saw that the optimal rate σ2/(k∗(i) + 1) for estimating
hK∗(θi) did not depend on i. Next, we consider asymmetric examples where the rate changes
with i.

Example 4.4.3 (Segment). Let K∗ be the vertical line segment joining (0, R) and (0,−R)
for a fixed R > 0. Then hK∗(θ) = R| sin θ| for all θ. Assume that n is even and consider
i = n/2 so that θn/2 = 0. It can be verified that

∆k(θn/2) = ∆k(0) =
R

k + 1

k∑
j=0

tan
2πj

n
for every k ∈ I.

Because j 7→ tan(2πj/n) is increasing, it is straightforward to deduce from above that
3πRk/(8n) ≤ ∆k(0) ≤ 4πRk/n. Corollary 4.3.3 then gives

σ2

k∗(n/2) + 1
� σ2

n
+

(
σ2R

n

)2/3

. (4.46)

It was shown in Corollary 4.3.1 that the right hand side above represents the maximum
possible value of σ2/(k∗(i) + 1) when K∗ lies in a closed ball of radius R. Therefore this
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example presents the situation where estimation of hK∗(θi) is the most difficult. See Remark
4.4.1 for the connection to smoothness of hK∗(·) at θi.

Now suppose that i = 3n/4 (assume that n/4 is an integer for simplicity) so that θi = π/2.
Observe then that hK∗(θ) = R sin θ (without the modulus) for θ = θi ± 4jπ/n for every
0 ≤ j ≤ k, k ∈ I. Using (4.40), we have ∆k(θi) = 0 for every k ∈ I. This immediately gives
k∗(i) = bn/16c and hence

σ2

k∗(3n/4) + 1
� σ2

n
. (4.47)

In this example, the risk for estimating hK∗(θi) changes with i. For i = n/2, we get the
n−2/3 rate while for i = 3n/4, we get the parametric rate. For other values of i, one gets a
range of rates between n−2/3 and n−1.

Because K∗ is a polytope with 2 vertices, Theorem 4.3.4 and inequality (4.39) imply that
the set estimators K̂ and K̂ ′ converge at the near parametric rate σ2 log n/n. It is interesting
to note here that even though for some θi, the optimal rate of estimation of hK∗(θi) is n−2/3,
the entire set can be estimated at the near parametric rate.

Example 4.4.4 (Half-ball). Suppose K∗ := {(x1, x2) : x2
1 + x2

2 ≤ 1, x2 ≤ 0}. One then has
hK(θ) = 1 for −π ≤ θ ≤ 0 and hK(θ) = | cos θ| for 0 < θ ≤ π. Assume n is even and take
i = n/2 so that θi = 0. It can be checked that

∆k(0) =
1

2(k + 1)

k∑
j=0

(
1− cos 4πj/n

cos 2πj/n

)
.

This is exactly as in (4.44) with R = 1 and an additional factor of 1/2. Arguing as in
Example 4.4.2, we obtain that

σ2

k∗(n/2) + 1
� σ2

n
+

(
σ2

n

)4/5

.

Now take i = 3n/4 (assume n/4 is an integer) so that θi = π/2. Observe then that hK∗(θ) =
| cos θ| for θ = θi ± 4jπ/n for every 0 ≤ j ≤ k, k ∈ I. The situation is therefore similar to
(4.46) and we obtain

σ2

k∗(3n/4) + 1
� σ2

n
+

(
σ2

n

)2/3

.

Similar to the previous example, the risk for estimating hK∗(θi) changes with i and varies
from n−2/3 to n−4/5. On the other hand, Theorem 4.3.3 states that the set estimator K̂ still
estimates K∗ at the rate n−4/5.

Remark 4.4.1 (Connection between risk and smoothness). The reader may observe that
the support functions (4.41) and (4.43) in the two examples above differ only by the constant
R. It might then seem strange that only the addition of a non-zero constant changes the risk
of estimating hK∗(θi) from n−1 to n−4/5. It turns out that the function (4.41) is much more
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smoother than the function (4.43); the right way to view smoothness of hK∗(·) is to regard
it as a function on R2. This is done in the following way. Define, for each z = (z1, z2) ∈ R2,

hK∗(z) = max
(x1,x2)∈K∗

(x1z1 + x2z2) .

When z = (cos θ, sin θ) for some θ ∈ R, this definition coincides with our definition of hK∗(θ).
A standard result (see for example Corollary 1.7.3 and Theorem 1.7.4 in [127]) states that
the subdifferential of z 7→ hK∗(z) exists at every z = (z1, z2) ∈ R2 and is given by

F (K∗, z) := {(x1, x2) ∈ K∗ : hK∗(z) = x1z1 + x2z2} .

In particular, z 7→ hK∗(z) is differentiable at z if and only if F (K∗, z) is a singleton.
Studying hK∗ as a function on R2 sheds qualitative light on the risk bounds obtained in the

examples. In the case of Example 4.4.1 when K∗ = {(x1, x2)}, it is clear that F (K∗, z) =
{(x1, x2)} for all z. Because this set does not change with z, this provides the case of
maximum smoothness (because the derivative is constant) and thus we get the n−1 rate.

In Example 4.4.2 when K∗ is a ball centered at x = (x1, x2) with radius R, it can be
checked that F (K∗, z) = {x+Rz/‖z‖} for every z 6= 0. Since F (K∗, z) is a singleton for each
z 6= 0, it follows that z 7→ hK∗(z) is differentiable for every z. For R 6= 0, the set F (K∗, z)
changes with z and thus here hK∗ is not as smooth as in Example 4.4.1. This explains the
slower rate in Example 4.4.2 compared to 4.4.1.

Finally in Example 4.4.3, when K∗ is the vertical segment joining (0, R) and (0,−R), it
is easy to see that F (K∗, z) = K∗ when z = (1, 0). Here F (K∗, z) is not a singleton which
implies that hK∗(z) is non-differentiable at z = (1, 0). This is why one gets the slow rate
n−2/3 for estimating hK∗(θn/2) in Example 4.4.3.

4.5 Numerical results

In this section, we compare the performance of our estimators to other existing estimators for
both the pointwise estimation and set estimation problems. We shall refer to our estimator
ĥi (defined in (4.12)) as the local averaging estimator (LAE ). The set estimator K̂ (defined
in (4.14)) will be referred to as LAE with projection and the set estimator K̂ ′ (defined in
(4.16)) will be referred to as LAE with infinite projection.

Note that our estimators require knowledge of the noise level σ (which we have assumed
to be known for our theoretical analysis). In practice, σ is typically unknown and needs to
be estimated. Under the setting of the present chapter, σ is easily estimable by using the
median of the consecutive differences. Let δi = Y2i − Y2i−1, i = 1, . . . , bn

2
c. A simple robust

estimator of the noise level σ is the following median absolute deviation (MAD) estimator:

σ̂ =
mediani|δi −medianj(δj)|√

2Φ−1(0.75)
≈ 1.05×mediani|δi −medianj(δj)|. (4.48)

We use this estimate of σ in our simulations.
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Let us now briefly describe the other estimators to which our estimators will be com-
pared. The first of these is the least squares estimator [115] which we have already described
in this chapter. The other estimators come from Fisher et al. [52, Section 2] where the
authors propose four different estimators for K∗. These are: (A) a second-order local lin-
ear method; (B) a second-order Nadaraya-Watson kernel method; (C) a third-order local
quadratic estimator, and (D) a fourth-order Nadaraya-Watson kernel method. As remarked
in [52, Section 3], their method (D) is always inferior to (C) (even when the smoothing
parameters for (D) were chosen optimally). Therefore, we only compare our estimators with
the first three methods from [52]. We shall denote these estimators by FHTW-A, FHTW-B
and FHTW-C respectively (FHTW is an acronym for the author names of [52]). In our
simulations, we allow these three estimators to have knowledge of the true noise level σ.

In total therefore, we evaluate the performance of seven estimators in this section: three
estimators proposed in this chapter (LAE, LAE with projection and LAE with infinite pro-
jection), the least squares estimator (LSE ) and the three estimators from [52] (FHTW-A,
FHTW-B and FHTW-C ).

In the interest of space, we present simulation results here for only two cases: K∗ is (a)
the unit ball, and (b) the segment joining (0,−3) to (0,+3). Simulation results for other
choices of K∗ including square, ellipsoid and random polytope are given in the Section B.2.

4.5.1 Pointwise estimation

In this section, we evaluate the performances of the seven pointwise estimators hK∗(θi) for
fixed 1 ≤ i ≤ n. We measure the performance of each estimator h̃ by the mean squared error
(MSE) EK∗(h̃−hK∗(θi))2. For every fixed n, we simulate 200 random ensembles according to
the model (4.2) and then approximate the expectation by the average of error (h̃−hK∗(θi))2.
In simulations, σ = 0.5 and n ranges over {20, 50, 100, 200, 300, 500}. We plot the risk as a
function of n.

Ball: We start with the case when K∗ is a ball. Without loss of generality then, we can
assume that the ball is the standard unit ball whose support function always equals one. By
rotation invariance of the ball, it is enough to study the case when θi = 0. In the following
plot, we draw the mean squared errors of all the estimators against the sample size n.

From Figure 4.1, it is clear that the behaviors of LSE and both the LAE projection
estimators (LAE with projection and LAE with infinite projection) are almost the same,
while the performance of LAE is quite comparable. When n is large, the performance of
LAE is as good as that of LSE and the LAE projection estimators i.e., in this case, projecting
the LAE onto the support function space is unnecessary. Here the LAE, which only uses
local information, is quite similar to that of the LSE. Also note that the best performance
in this setting is achieved by the three FHTW estimators.
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Figure 4.1: Point estimation error when K∗ is a ball

Segment: Our second example is when K∗ is the segment from (0,−3) to (0,+3) and we
study the MSE when θi equal to 0, π/4, π/2 (in this example, the performance of various
estimators will vary with θi). The support function of K∗ here equals 3| sin θ| (this function
is plotted in the first plot of Figure 4.2); the three choices of θi are indicated in this plot
in red. The mean squared errors of all estimators against n are plotted in the last three
subplots of Figure 4.2 for each of the three choices of θi.
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Figure 4.2: Point estimation error when K∗ is a segment

Observe that similar to the case of the ball, the behaviors of LSE and both the LAE
projection estimators are almost the same. The LAE has comparable performance. An
interesting fact is that if one looks at the range of y-axis in the last three subplots of Figure
4.2, although the mean squared error is decreasing at each θi, the rate of decay varies with
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θi. It may be noted that this phenomenon is predicted in our theoretical analysis because
the benchmark Rn(K∗, θi) is adaptive to the structure of hK∗ at θi.

Note that in this example, the FHTW estimators perform poorly unlike the case of the
ball. The reason is that in [52], the support function is assumed to be twice differentiable
and so is the fitted ĥ. On the other hand, in this example, the true support function is
non-differentiable which explains their poor performance. Note that in contrast, our local
averaging estimator requires no assumptions on the local smoothness and as we have seen,
the estimator actually adapts to local smoothness.

Analogous plots for other choices of K∗ are given in Appendix B.2.1. These plots reveal
the same story as the previous two settings.

4.5.2 Set estimation

We now turn to set estimation. Recall that we proposed two estimators for set estimation:
the LAE with projection estimator K̂ (defined in (4.14)) and the LAE with infinite projection
estimator K̂ ′ (defined in (4.16)). We compare these two estimators to the LSE and the
FHTW estimators from [52]. In our simulations, we found that FHTW-B works much
better compared to FHTW-A and FHTW-C, which can also be seen from the simulations
for point estimation above. So we only present the results for FHTW-B among all the three
FHTW estimators.

For a set of specific choices of K∗ and n, we compute the expected squared errors
EK∗Lf (K̂,K∗) and EK∗L(K̂,K∗) for each of the estimators, where Lf and L are defined
in (4.3) and (4.7) respectively. Similar to the point estimation case, these two expectations
are approximated by the empirical average of 200 random ensembles according to the model
(4.2). For our LAE projection estimators which require the value of σ, we estimate σ via
(4.48). For the FHTW-B estimator which also requires σ, we take σ to be its true value.

We plot EK∗Lf (K̂,K∗) and EK∗L(K̂,K∗) for each estimator K̂ as a function of n. For
visualizing the set estimator, we picked an ensemble randomly from the 200 ensembles and
plotted each estimator. Note that for the LAE with infinite projection, as we mentioned
before, we take a finer uniform grid of points α1, . . . , αM on (−π, π] for a large value of M
and approximate the set by the intersection of M hyperplanes. In this case, M is set to be
1000.

Ball: Figure 4.3 presents the simulation results when K∗ is the unit ball. It shows that the
performance of the LAE projection estimator is almost identical to the that of the LSE. The
three set estimators LSE, LAE with projection and LAE with infinite projection all look alike
in the last subplot. Observe that for the LAE with infinite projection estimator, there are
many more support lines compared to the LAE with projection estimator. This is because
of the infinite nature of the projection that is used to define the LAE with infinite projection
estimator. The best estimator in this example is the FHTW-B estimator because it captures
the geometry of K∗ exactly.



CHAPTER 4. ADAPTIVE ESTIMATION OF PLANAR CONVEX SETS 66

●

●

●

●

●

●

100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

ball case

n

E
L f

(K̂
,K

∗ )

● LSE
LAE(projection)
LAE(infinite projection)
FHTW−B

LSE LAE projection

●

●

●

●

●

●

100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ball case

n

E
L(

K̂
,K

∗ )

● LSE
LAE(projection)
LAE(infinite projection)
FHTW−B

LAE infinite projection FHTW−B

Figure 4.3: Set estimation when K∗ is a ball

Segment : Our second example takes K∗ to be the segment from (0,−3) to (0,+3). The
plots are given in Figure 4.4. Similar to the ball case, our LAE projection estimators are
comparable to that of the LSE. Note that the FHTW-B estimator which assumes smoothness
of the support function becomes quite off (much higher risk) in this case.

From both these figures (as well as other set estimation figures in [27]), it is clear that
both our set estimators (K̂ and K̂ ′) look quite similar and have near identical performance.
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Figure 4.4: Set estimation when K∗ is a segment
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4.6 Discussion

In this chapter, we study the problems of estimating both the support function at a point,
hK∗(θi), and the whole convex set K∗. Data-driven adaptive estimators are constructed and
their optimality is established. For pointwise estimation, the quantity k∗(i), which appears
in both the upper bound (4.17) and the lower bound (4.19), is related to the smoothness
of hK∗(θ) at θ = θi. The construction of ĥi is based on local smoothing together with an
optimization algorithm for choosing the bandwidth. Smoothing methods for estimating the
support function have previously been studied by Fisher et al. [52]. Specifically, working
under certain smoothness assumptions on the true support function hK∗(θ), Fisher et al. [52]
estimated it using periodic versions of standard nonparametric regression techniques such
as local regression, kernel smoothing and splines. They evade the problem of bandwidth
selection however by assuming that the true support function is sufficiently smooth. Our
estimator comes with a data-driven method for choosing the bandwidth automatically and we
do not need any smoothness assumptions on the true convex set. The fact that our pointwise
estimator uses only local information (i.e., for computing ĥi, we only use information on Yj
corresponding to θj near θi) is quite advantageous in that the computational complexity can
be substantially reduced by parallelizing the computation.

It was noted that the construction of our estimators K̂ and K̂ ′ given in Section 4.2.2
does not involve any special treatment for polytopes; yet we obtain faster rates for poly-
topes. Such automatic adaptation to polytopes has been observed in other contexts: isotonic
regression where one gets automatic adaptation for piecewise constant monotone functions
(see Sabyasachi et al. [38]) and convex regression where one gets automatic adaptation for
piecewise affine convex functions (see Guntuboyina and Sen [75]).

Finally, we note that because σ2/(k∗(i)+1) gives the optimal rate in pointwise estimation,
it can potentially be used as a benchmark to evaluate other estimators for hK∗(θi) such as the
least squares estimator hK̂ls

(θi). From our simulations in Section 4.5, it seems that the least
squares estimator is also optimal in our strong sense for pointwise estimation. It is however
difficult to prove accuracy results for the least squares estimator for pointwise estimation.
The main difficulty comes from the fact that the least squares estimator is technically a
non-local estimator (meaning that hK̂ls(θi) can depend on the values of Yj for θj far from
θi). This and the other fact that there is no closed form expression for the least squares
estimator makes it very hard to study its pointwise estimation properties. In the related
problem of convex function estimation, pointwise properties of the least squares estimator
have been studied in Groeneboom et al. [71]. But their results are asymptotic in nature and,
more importantly, they make certain smoothness assumptions on the true function. In the
generality considered in this chapter, studying the least squares estimator seems difficult; it
will probably require new techniques which are beyond the scope of this chapter. This is an
interesting topic for future research.
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4.7 Proofs of the main results

This section contains the proofs of the main theorems stated in Section 4.3. The proofs of
the corollaries of Subsection 4.3.1 are given in the Section B.1.4. Some technical lemmas are
required for the proofs given below. These lemmas are also given in the Section B.1.6.

Please note that because of space constraints, for the first three proofs given below (those
of Theorem 4.3.1, Theorem 4.3.2 and Theorem 4.3.3), we only give a few details here and
relegate the complete argument to the appendix.

4.7.1 Proof of Theorem 4.3.1

We provide the proof of Theorem 4.3.1 here. The proof uses three simple lemmas: Lemma
B.1.2, B.1.3 and B.1.4 which are stated and proved in the Section B.1.6. Due to space
constraints, we only provide the initial part of the proof here moving the rest to Section
B.1.1.

Fix i = 1, . . . , n. Because ĥi = Ûk̂(i)(θi), we write(
ĥi − hK∗(θi)

)2

=
∑
k∈I

(
Ûk(θi)− hK∗(θi)

)2

I
{
k̂(i) = k

}
where I(·) denotes the indicator function. Taking expectations on both sides and using
Cauchy-Schwartz inequality, we obtain

EK∗
(
ĥi − hK∗(θi)

)2

≤
∑
k∈I

√
E(Ûk(θi)− hK∗(θi))4

√
PK∗

{
k̂(i) = k

}
.

The random variable Ûk − hK∗(0) is normally distributed and we know that EZ4 ≤ 3(EZ2)2

for every gaussian random variable Z. We therefore have

EK∗
(
ĥi − hK∗(θi)

)2

≤
√

3
∑
k∈I

E(Ûk(θi)− hK∗(θi))2

√
PK∗

{
k̂(i) = k

}
.

Because EK∗Ûk(θi) = Uk(θi) (defined in (4.9)), we have

EK∗(Ûk(θi)− hK∗(θi))2 = (Uk(θi)− hK∗(θi))2 + var(Ûk(θi)).

Because Lk(θi) ≤ hK∗(θi) ≤ Uk(θi), it is clear that Uk(θi)−hK∗(θi) ≤ Uk(θ)−Lk(θi) = ∆k(θi).
Also, Lemma B.1.4 states that the variance of Ûk is at most σ2/(k + 1). Putting these
together, we obtain

EK∗
(
ĥi − hK∗(θi)

)2

≤
√

3
∑
k∈I

(
∆2
k(θi) +

σ2

k + 1

)√
PK∗

{
k̂(i) = k

}
.
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The proof of (4.17) will therefore be complete if we show that

∑
k∈I

(
∆2
k(θi) +

σ2

k + 1

)√
PK∗

{
k̂(i) = k

}
≤ C

σ2

k∗(i) + 1
(4.49)

for a universal positive constant C. The proof of this inequality is technical and we have
moved it to the Section B.1.1.

4.7.2 Proof of Theorem 4.3.2

This subsection is dedicated to the proof of Theorem 4.3.2. The proof is again long and we
have moved most of the Section B.1.2. The basic idea is presented below and is based on a
classical inequality due to Le Cam [90] which states that for every estimator h̃ and compact,
convex set L∗, the quantity

max

[
EK∗

(
h̃− hK∗(θi)

)2

,EL∗
(
h̃− hL∗(θi)

)2
]

is bounded from above by

≥ 1

4
(hK∗(θi)− hL∗(θi))2 (1− ‖PK∗ − PL∗‖TV ) . (4.50)

Here PL∗ is the product of the Gaussian probability measures with mean hL∗(θi) and variance
σ2 for i = 1, . . . , n. Also ‖P −Q‖TV denotes the total variation distance between P and Q.

For ease of notation, we assume, without loss of generality, that θi = 0. We also write
∆k for ∆k(θi) and k∗ for k∗(i).

Suppose first that K∗ satisfies the following condition: There exists some α ∈ (0, π/4)
such that

hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0) >

σ
√
nα

(4.51)

where nα denotes the number of integers i for which −α < 2iπ/n < α. This condition
will not be satisfied, for example, when K∗ is a singleton. We shall handle such K∗ later.
Observe that nα ≥ 1 for all 0 < α < π/4 because we can take i = 0.

Let us define, for each α ∈ (0, π/4),

aK∗(α) :=

(
hK∗(α) + hK∗(−α)

2 cosα
,
hK∗(α)− hK∗(−α)

2 sinα

)
. (4.52)

and let L∗ = L∗(α) be defined as the smallest convex set that contains both K∗ and the
point aK∗(α). In other words, L∗ is the convex hull of K∗ ∪ {aK∗(α)}.

We now use Le Cam’s bound (4.50) with this choice of L∗. Details are given in [27,
Subsection B.1.2].
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4.7.3 Proof of Theorem 4.3.3

Recall the definition of h̃P in (4.13) and the definition of the estimator K̂ in (4.14). The
first thing to note is that

hK̂(θi) = ĥPi for every i = 1, . . . , n. (4.53)

To see this, observe first that, because ĥP = (ĥP1 , . . . , ĥ
P
n ) is a valid support vector, there

exists a set K̃ with hK̃(θi) = ĥPi for every i. It is now trivial (from the definition of K̂) to

see that K̃ ⊆ K̂ which implies that hK̂(θi)
≥ hK̃(θi) = ĥPi . On the other hand, the definition

of K̂ immediately gives hK̂(θi) ≤ ĥPi .
The observation (4.53) immediately gives

EK∗Lf (K∗, K̂) = EK∗
1

n

n∑
i=1

(
hK∗(θi)− ĥPi

)2

It will be convenient here to introduce the following notation. Let hvecK∗ denote the vector
(hK∗(θ1), . . . , hK∗(θn)). Also, for u, v ∈ Rn, let `(u, v) denote the scaled Euclidean distance
defined by `2(u, v) :=

∑n
i=1(ui − vi)2/n. With this notation, we have

EK∗Lf (K∗, K̂) = EK∗`2(hvecK∗ , ĥ
P ). (4.54)

Recall that ĥP is the projection of ĥ := (ĥ1, . . . , ĥn) onto H. Because H is a closed convex
subset of Rn, it follows that (see, for example, [133])

`2(h, ĥ) ≥ `2(ĥ, ĥP ) + `2(h, ĥP ) for every h ∈ H.
In particular, with h = hvecK∗ , we obtain `2(hvecK∗ , ĥ

P ) ≤ `2(hvecK∗ , ĥ). Combining this with (4.54),
we obtain

EK∗Lf (K∗, K̂) ≤ EK∗`2(hvecK∗ , ĥ) =
1

n

n∑
i=1

EK∗
(
ĥi − hK∗(θi)

)2

. (4.55)

In Theorem 4.3.1, we proved that

EK∗
(
ĥi − hK∗(θi)

)2

≤ Cσ2

k∗(i) + 1
for every i = 1, . . . , n.

This implies that

EK∗Lf (K∗, K̂) ≤ Cσ2

n

n∑
i=1

1

k∗(i) + 1
.

For inequality (4.32), it is therefore enough to prove that

n∑
i=1

1

k∗(i) + 1
≤ C

{
1 +

(
R
√
n

σ

)2/5
}
. (4.56)

Proving the above inequality is the main part of the proof of Theorem 4.3.3. Because of
space constraints, we have moved this proof to [27, Subsection B.1.5]. Our proof of (4.56)
is inspired by an argument due to Zhang [159, Proof of Theorem 2.1] in a very different
context.



CHAPTER 4. ADAPTIVE ESTIMATION OF PLANAR CONVEX SETS 71

4.7.4 Proof of Theorem 4.3.4

Let us start with some notation. For every compact, convex set P and i = 1, . . . , n, let kP∗ (i)
denote the quantity k∗(i) with K∗ replaced by P . More precisely,

kP∗ (i) := argmin
k∈I

(
∆P
k (θi) +

2σ√
k + 1

)
(4.57)

where ∆P
k (θi) is defined as in (4.40) with K∗ replaced by P . Lemma B.1.6 (stated and

proved in Section B.1.6 will be used crucially in the proof below. This lemma states that for
every i = 1, . . . , n, the risk EK∗(ĥi−hK∗(θi))2 can be bounded from above by a combination
of kP∗ (i) and how well K∗ can be approximated by P . This result holds for every P . The
approximation of K∗ by P is measured in terms of the Hausdorff distance (defined in (4.35)).

We are now ready to prove Theorem 4.3.4. We first use inequality (4.55) from the proof
of Theorem 4.3.3 which states

EK∗Lf
(
K∗, K̂

)
≤ 1

n

n∑
i=1

EK∗
(
ĥi − hK∗(θi)

)2

.

An application of Lemma B.1.6, specifically inequality (B.47) for i = 1, . . . , n, now implies
the existence of a universal positive constant C such that

EK∗Lf
(
K∗, K̂

)
≤ C

(
σ2

n

n∑
i=1

1

kP∗ (i) + 1
+ `2

H(K∗, P )

)
for every compact, convex set P . By restricting P to be in the class of polytopes, we get

EK∗Lf
(
K∗, K̂

)
≤ C inf

P∈P

(
σ2

n

n∑
i=1

1

kP∗ (i) + 1
+ `2

H(K∗, P )

)
.

For the proof of (4.36), it is therefore enough to show that

n∑
i=1

1

kP∗ (i) + 1
≤ CvP log

en

vP
for every P ∈ P (4.58)

where vP denotes the number of extreme points of P and C is a universal positive constant.
Fix a polytope P with vP = k. Let the extreme points of P be z1, . . . , zk. Let S1, . . . , Sk
denote a partition of {θ1, . . . , θn} into k nonempty sets such that for each j = 1, . . . ,m, we
have

hP (θi) = zj(1) cos θi + zj(2) sin θi for all θi ∈ Sj
where zj = (zj(1), zj(2)). For (4.58), it is enough to prove that∑

i:θi∈Sj

1

kP∗ (i) + 1
≤ C log(enj) for every j = 1, . . . , k (4.59)
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where nj is the cardinality of Sj. This is because we can write

n∑
i=1

1

kP∗ (i) + 1
=

k∑
j=1

∑
i:θi∈Sj

1

kP∗ (i) + 1
≤ C

k∑
j=1

log(enj) ≤ Ck log
en

k
.

where we used the concavity of x 7→ log(ex). We prove (4.59) below. Fix 1 ≤ j ≤ k. The
inequality is obvious if Sj is a singleton because kP∗ (i) ≥ 0. So suppose that nj = m ≥ 2.
Without loss of generality assume that Sj = {θu+1, . . . , θu+m} where 0 ≤ u ≤ n −m. The
definition of Sj implies that

hP (θ) = zj(1) cos θ + zj(2) sin θ for all θ ∈ [θu+1, θu+m].

We can therefore apply inequality (4.27) to claim the existence of a positive constant c such
that

kP∗ (i) ≥ c nmin (θi − θu+1, θu+m − θi) for all u+ 1 ≤ i ≤ u+m.

The minimum with π in (4.27) is redundant here because θu+m − θu+1 < 2π. Because
θi = 2πi/n− π, we get

kP∗ (i) ≥ 2πcmin (i− u− 1, u+m− i) for all u+ 1 ≤ i ≤ u+m.

Therefore, there exists a universal constant C such that

∑
i:θi∈Sj

1

kP∗ (i) + 1
≤ C

m∑
i=1

1

1 + min(i− 1,m− i)
≤ C

m∑
i=1

1

i
≤ C log(em).

This proves (4.59) thereby completing the proof of Theorem 4.3.4.

4.7.5 Proof of Theorem 4.3.5

Recall the definition (4.16) of the estimator K̂ ′ and that of the interpolating function (4.15).
Following an argument similar to that used at the beginning of the proof of Theorem 4.3.3,
we observe that

EK∗L(K∗, K̂ ′) ≤
∫ π

−π
EK∗

(
hK∗(θ)− ĥ′(θ)

)2

dθ =
n∑
i=1

∫ θi+1

θi

EK∗
(
hK∗(θ)− ĥ′(θ)

)2

dθ

(4.60)

Now fix 1 ≤ i ≤ n, θi ≤ θ ≤ θi+1 and let u(θ) := EK∗
(
hK∗(θ)− ĥ′(θ)

)2

. Using the

expression (4.15) for ĥ′(θ), we get that

u(θ) = EK∗
(
hK∗(θ)−

sin(θi+1 − θ)
sin(θi+1 − θi)

ĥi −
sin(θ − θi)

sin(θi+1 − θi)
ĥi+1

)2

.
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We now write ĥi = ĥi− hK∗(θi) + hK∗(θi) and a similar expression for ĥi+1. The elementary
inequality (a+b+c)2 ≤ 3(a2 +b2 +c2) along with max (sin(θ − θi), sin(θi+1 − θ)) ≤ sin(θi+1−
θi) then imply that

u(θ) ≤ 3EK∗
(
ĥi − hK∗(θi)

)2

+ 3EK∗
(
ĥi+1 − hK∗(θi+1)

)2

+ 3b2(θ)

where

b(θ) := hK∗(θ)−
sin(θi+1 − θ)
sin(θi+1 − θi)

hK∗(θi)−
sin(θ − θi)

sin(θi+1 − θi)
hK∗(θi+1)

Therefore from (4.60) (remember that |θi+1 − θi| = 2π/n), we deduce

EK∗L(K∗, K̂ ′) ≤ 12π

n

n∑
i=1

EK∗
(
ĥi − hK∗(θi)

)2

+ 3

∫ π

−π
b2(θ)dθ.

Now to bound
∑n

i=1 EK∗
(
ĥi − hK∗(θi)

)2

, we can simply use the arguments from the proofs

of Theorems 4.3.3 and 4.3.4. Therefore, to complete the proof of Theorem 4.3.5, we only
need to show that

|b(θ)| ≤ CR

n
for every θ ∈ (−π, π] (4.61)

for some universal constant C. For this, we use the hypothesis that K∗ is contained in a ball
of radius R. Suppose that the center of the ball is (x1, x2). Define K ′ := K∗ − {(x1, x2)} :=
{(y1, y2) − (x1, x2) : (y1, y2) ∈ K∗} and note that hK′(θ) = hK∗(θ) − x1 cos θ − x2 sin θ.
It is then easy to see that b(θ) is the same for both K∗ and K ′. It is therefore enough
to prove (4.61) assuming that (x1, x2) = (0, 0). In this case, it is straightforward to see
that |hK∗(θ)| ≤ R for all θ and also that hK∗ is Lipschitz with constant R. Now, because
max (sin(θ − θi), sin(θi+1 − θ)) ≤ sin(θi+1−θi), it can be checked that |b(θ)| is bounded from
above by

|hK∗(θ)|
∣∣∣∣1− sin(θi+1 − θ)

sin(θi+1 − θi)
− sin(θ − θi)

sin(θi+1 − θi)

∣∣∣∣+
i+1∑
j=i

|hK∗(θj)− hK∗(θ)|.

Because hK∗ is R-Lipschitz and bounded by R, it is clear that we only need to show∣∣∣∣1− sin(θi+1 − θ)
sin(θi+1 − θi)

− sin(θ − θi)
sin(θi+1 − θi)

∣∣∣∣ ≤ C

n

in order to prove (4.61). For this, write α = θi+1 − θ and β = θ − θi so that the above
expression becomes∣∣∣∣1− sinα + sin β

sin(α + β)

∣∣∣∣ ≤ |1− cosα|+ |1− cos β| ≤ α2 + β2

2
≤ C

n2
≤ C

n
.

This completes the proof of Theorem 4.3.5.
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Part III

Optimization
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Chapter 5

Early stopping for kernel boosting
algorithms

5.1 Introduction

While non-parametric models offer great flexibility, they can also lead to overfitting, and
thus poor generalization performance. For this reason, it is well-understood that procedures
for fitting non-parametric models must involve some form of regularization. When models
are fit via a form of empirical risk minimization, the most classical form of regularization
is based on adding some type of penalty to the objective function. An alternative form of
regularization is based on the principle of early stopping, in which an iterative algorithm is
run for a pre-specified number of steps, and terminated prior to convergence.

While the basic idea of early stopping is fairly old (e.g., [134, 4, 142]), recent years have
witnessed renewed interests in its properties, especially in the context of boosting algorithms
and neural network training (e.g., [114, 35]). Over the past decade, a line of work has
yielded some theoretical insight into early stopping, including works on classification error for
boosting algorithms [15, 53, 84, 101, 155, 160], L2-boosting algorithms for regression [26, 25],
and similar gradient algorithms in reproducing kernel Hilbert spaces (e.g. [33, 32, 141, 155,
116]). A number of these papers establish consistency results for particular forms of early
stopping, guaranteeing that the procedure outputs a function with statistical error that
converges to zero as the sample size increases. On the other hand, there are relatively few
results that actually establish rate optimality of an early stopping procedure, meaning that
the achieved error matches known statistical minimax lower bounds. To the best of our
knowledge, Bühlmann and Yu [26] were the first to prove optimality for early stopping of
L2-boosting as applied to spline classes, albeit with a rule that was not computable from
the data. Subsequent work by Raskutti et al. [116] refined this analysis of L2-boosting for
kernel classes and first established an important connection to the localized Rademacher
complexity; see also the related work [155, 123, 31] with rates for particular kernel classes.

More broadly, relative to our rich and detailed understanding of regularization via pe-
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nalization (e.g., see the books [76, 138, 136, 144] and papers [13, 88] for details), our under-
standing of early stopping regularization is not as well developed. Intuitively, early stopping
should depend on the same bias-variance tradeoffs that control estimators based on penal-
ization. In particular, for penalized estimators, it is now well-understood that complexity
measures such as the localized Gaussian width, or its Rademacher analogue, can be used to
characterize their achievable rates [13, 88, 136, 144]. Is such a general and sharp characteri-
zation also possible in the context of early stopping?

The main intention of this chapter is to answer this question in the affirmative for the early
stopping of boosting algorithms for a certain class of regression and classification problems
involving functions in reproducing kernel Hilbert spaces (RKHS). A standard way to obtain
a good estimator or classifier is through minimizing some penalized form of loss functions of
which the method of kernel ridge regression [143] is a popular choice. Instead, we consider
an iterative update involving the kernel that is derived from a greedy update. Borrowing
tools from empirical process theory, we are able to characterize the “size” of the effective
function space explored by taking T steps, and then to connect the resulting estimation error
naturally to the notion of localized Gaussian width defined with respect to this effective
function space. This leads to a principled analysis for a broad class of loss functions used in
practice, including the loss functions that underlie the L2-boost, LogitBoost and AdaBoost
algorithms, among other procedures.

The remainder of this chapter is organized as follows. In Section 5.2, we provide back-
ground on boosting methods and reproducing kernel Hilbert spaces, and then introduce the
updates studied in this chapter. Section 5.3 is devoted to statements of our main results,
followed by a discussion of their consequences for particular function classes in Section 5.4.
We provide simulations that confirm the practical effectiveness of our stopping rules, and
show close agreement with our theoretical predictions. In Section 5.6, we provide the proofs
of our main results, with certain more technical aspects deferred to the appendices.

5.2 Background and problem formulation

The goal of prediction is to learn a function that maps covariates x ∈ X to responses y ∈ Y .
In a regression problem, the responses are typically real-valued, whereas in a classification
problem, the responses take values in a finite set. In this chapter, we study both regression
(Y = R) and classification problems (e.g., Y = {−1,+1} in the binary case). Our primary
focus is on the case of fixed design, in which we observe a collection of n pairs of the form
{(xi, Yi)}ni=1, where each xi ∈ X is a fixed covariate, whereas Yi ∈ Y is a random response
drawn independently from a distribution PY |xi which depends on xi. Later in the chapter,
we also discuss the consequences of our results for the case of random design, where the
(Xi, Yi) pairs are drawn in an i.i.d. fashion from the joint distribution P = PXPY |X for some
distribution PX on the covariates.

In this section, we provide some necessary background on a gradient-type algorithm which
is often referred to as boosting algorithm. We also discuss briefly about the reproducing kernel
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Hilbert spaces before turning to a precise formulation of the problem that is studied in this
chapter.

5.2.1 Boosting and early stopping

Consider a cost function φ : R× R→ [0,∞), where the non-negative scalar φ(y, θ) denotes
the cost associated with predicting θ when the true response is y. Some common examples
of loss functions φ that we consider in later sections include:

• the least-squares loss φ(y, θ) : = 1
2
(y − θ)2 that underlies L2-boosting [26],

• the logistic regression loss φ(y, θ) = ln(1 + e−yθ) that underlies the LogitBoost algo-
rithm [55, 56], and

• the exponential loss φ(y, θ) = exp(−yθ) that underlies the AdaBoost algorithm [53].

The least-squares loss is typically used for regression problems (e.g., [26, 33, 32, 141, 155,
116]), whereas the latter two losses are frequently used in the setting of binary classification
(e.g., [53, 101, 56]).

We have set up the non-parametric estimation problem in our Section 2.2. To recall, we
define the population cost functional f 7→ L(f) via

L(f) : = EY n1
[ 1

n

n∑
i=1

φ
(
Yi, f(xi)

)]
. (5.1)

Note that with the covariates {xi}ni=1 fixed, the functional L is a non-random object. Given
some function space F , the optimal function∗ minimizes the population cost functional—that
is

f ∗ : = arg min
f∈F
L(f). (5.2)

As a standard example, when we adopt the least-squares loss φ(y, θ) = 1
2
(y − θ)2, the

population minimizer f ∗ corresponds to the conditional expectation x 7→ E[Y | x].
Since we do not have access to the population distribution of the responses however,

the computation of f ∗ is impossible. Given our samples {Yi}ni=1, we consider instead some
procedure applied to the empirical loss

Ln(f) : =
1

n

n∑
i=1

φ(Yi, f(xi)), (5.3)

where the population expectation has been replaced by an empirical expectation. For
example, when Ln corresponds to the log likelihood of the samples with φ(Yi, f(xi)) =

∗As clarified in the sequel, our assumptions guarantee uniqueness of f∗.
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log[P(Yi; f(xi))], direct unconstrained minimization of Ln would yield the maximum likeli-
hood estimator.

It is well-known that direct minimization of Ln over a sufficiently rich function class
F may lead to overfitting. There are various ways to mitigate this phenomenon, among
which the most classical method is to minimize the sum of the empirical loss with a penalty
regularization term. Adjusting the weight on the regularization term allows for trade-off
between fit to the data, and some form of regularity or smoothness in the fit. The behavior of
such penalized of regularized estimation methods is now quite well understood (for instance,
see the books [76, 138, 136, 144] and papers [13, 88] for more details).

In this chapter, we study a form of algorithmic regularization, based on applying a
gradient-type algorithm to Ln but then stopping it “early”—that is, after some fixed num-
ber of steps. Such methods are often referred to as boosting algorithms, since they in-
volve “boosting” or improve the fit of a function via a sequence of additive updates (see
e.g. [124, 53, 21, 20, 125]). Many boosting algorithms, among them AdaBoost [53], L2-
boosting [26] and LogitBoost [55, 56], can be understood as forms of functional gradient
methods [101, 56]; see the survey paper [25] for further background on boosting. The way
in which the number of steps is chosen is referred to as a stopping rule, and the overall
procedure is referred to as early stopping of a boosting algorithm.
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Figure 5.1. Plots of the squared error ‖f t − f∗‖2n = 1
n

∑n
i=1(f t(xi) − f∗(xi))2 versus the

iteration number t for (a) LogitBoost using a first-order Sobolev kernel (b) AdaBoost using
the same first-order Sobolev kernel K(x, x′) = 1 + min(x, x′) which generates a class of
Lipschitz functions (splines of order one). Both plots correspond to a sample size n = 100.

In more detail, a broad class of boosting algorithms [101] generate a sequence {f t}∞t=0 via
updates of the form

f t+1 = f t − αtgt with gt ∝ arg max
‖d‖F≤1

〈∇Ln(f t), d(xn1 )〉, (5.4)
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where the scalar {αt}∞t=0 is a sequence of step sizes chosen by the user, the constraint ‖d‖F ≤ 1
defines the unit ball in a given function class F , ∇Ln(f) ∈ Rn denotes the gradient taken at
the vector

(
f(x1), . . . , f(xn)), and 〈h, g〉 is the usual inner product between vectors h, g ∈

Rn. For non-decaying step sizes and a convex objective Ln, running this procedure for an
infinite number of iterations will lead to a minimizer of the empirical loss, thus causing
overfitting. In order to illustrate this phenomenon, Figure 5.1 provides plots of the squared

error ‖f t − f ∗‖2
n : = 1

n

∑n
i=1

(
f t(xi) − f ∗(xi)

)2
versus the iteration number, for LogitBoost

in panel (a) and AdaBoost in panel (b). See Section 5.4.2 for more details on exactly how
these experiments were conducted.

In the plots in Figure 5.1, the dotted line indicates the minimum mean-squared error ρ2
n

over all iterates of that particular run of the algorithm. Both plots are qualitatively similar,
illustrating the existence of a “good” number of iterations to take, after which the MSE
greatly increases. Hence a natural problem is to decide at what iteration T to stop such that
the iterate fT satisfies bounds of the form

L(fT )− L(f ∗) - ρ2
n and ‖fT − f ∗‖2

n - ρ2
n (5.5)

with high probability. Here f(n) - g(n) indicates that f(n) ≤ cg(n) for some universal
constant c ∈ (0,∞). The main results of this part provide a stopping rule T for which
bounds of the form (5.5) do in fact hold with high probability over the randomness in the
observed responses.

5.2.2 Reproducing Kernel Hilbert Spaces

The analysis of this chapter focuses on algorithms with the update (5.4) when the function
class F is a reproducing kernel Hilbert space H . Several important properties of this space
is summarized in our Section 2.2.2. To recall, a reproducing kernel Hilbert space H (short
as RKHS), consisting of functions mapping a domain X to the real line R. Any RKHS is
defined by a bivariate symmetric kernel function K : X × X → R which is required to be
positive semidefinite, i.e. for any integer N ≥ 1 and a collection of points {xj}Nj=1 in X , the
matrix [K(xi, xj)]ij ∈ RN×N is positive semidefinite.

Throughout this chapter, we assume that the kernel function is uniformly bounded, mean-
ing that there is a constant L such that supx∈X K(x, x) ≤ L. Such a boundedness condition
holds for many kernels used in practice, including the Gaussian, Laplacian, Sobolev, other
types of spline kernels, as well as any trace class kernel with trigonometric eigenfunctions.
By rescaling the kernel as necessary, we may assume without loss of generality that L = 1.
As a consequence, for any function f such that ‖f‖H ≤ r, we have by the reproducing
relation (2.13) that

‖f‖∞ = sup
x
〈f,K(·, x)〉H ≤ ‖f‖H sup

x
‖K(·, x)‖H ≤ r.

Given samples {(xi, yi)}ni=1, by the representer theorem [86], it is sufficient to restrict
ourselves to the linear subspace Hn = span{K(·, xi)}ni=1, for which all f ∈ Hn can be
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expressed as

f =
1√
n

n∑
i=1

ωiK(·, xi) (5.6)

for some coefficient vector ω ∈ Rn. Among those functions which achieve the infimum in
expression (5.1), let us define f ∗ as the one with the minimum Hilbert norm. This definition
is equivalent to restricting f ∗ to be in the linear subspace Hn.

5.2.3 Boosting in kernel spaces

For a finite number of covariates xi from i = 1 . . . n, let us define the normalized kernel
matrix K ∈ Rn×n with entries Kij = K(xi, xj)/n. Since we can restrict the minimization of
Ln and L from H to the subspace Hn w.l.o.g., using expression (5.6) we can then write the
function value vectors f(xn1 ) : = (f(x1), . . . , f(xn)) as f(xn1 ) =

√
nKω. As there is a one-to-

one correspondence between the n-dimensional vectors f(xn1 ) ∈ Rn and the corresponding
function f ∈Hn in H by the representer theorem, minimization of an empirical loss in the
subspace Hn essentially becomes the n-dimensional problem of fitting a response vector y
over the set range(K). In the sequel, all updates will thus be performed on the function
value vectors f(xn1 ).

With a change of variable d(xn1 ) =
√
n
√
Kz we then have

dt(xn1 ) : = arg max
‖d‖H ≤1
d∈range(K)

〈∇Ln(f t), d(xn1 )〉 =

√
nK∇Ln(f t)√

∇Ln(f t)K∇Ln(f t)
.

In this chapter, we study the choice gt = 〈∇Ln(f t), dt(xn1 )〉dt in the boosting update (5.4),
so that the function value iterates take the form

f t+1(xn1 ) = f t(xn1 )− αnK∇Ln(f t), (5.7)

where α > 0 is a constant stepsize choice. Choosing f 0(xn1 ) = 0 ensures that all iterates
f t(xn1 ) remain in the range space of K.

In this chapter, we consider the following three error measures for an estimator f̂ :

L2(Pn) norm: ‖f̂ − f ∗‖2
n =

1

n

n∑
i=1

(
f̂(xi)− f ∗(xi)

)2
,

L2(PX) norm: ‖f̂ − f ∗‖2
2 : = E

(
f̂(X)− f ∗(X)

)2
,

Excess risk: L(f̂)− L(f ∗),

where the expectation in the L2(PX)-norm is taken over random covariates X which are

independent of the samples (Xi, Yi) used to form the estimate f̂ . Our goal is to propose
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a stopping time T such that the averaged function f̂ = 1
T

∑T
t=1 f

t satisfies bounds of the
type (5.5). We begin our analysis by focusing on the empirical L2(Pn) error, but as we will
see in Corollary 3, bounds on the empirical error are easily transformed to bounds on the
population L2(PX) error. Importantly, we exhibit such bounds with a statistical error term
δn that is specified by the localized Gaussian complexity of the kernel class.

5.3 Main results

We now turn to the statement of our main results, beginning with the introduction of some
regularity assumptions.

5.3.1 Assumptions

Recall from our earlier set-up that we differentiate between the empirical loss function Ln
in expression (5.3), and the population loss L in expression (5.1). Apart from assuming
differentiability of both functions, all of our remaining conditions are imposed on the popu-
lation loss. Such conditions at the population level are weaker than their analogues at the
empirical level.

For a given radius r > 0, let us define the Hilbert ball around the optimal function f ∗ as

BH (f ∗, r) : = {f ∈H | ‖f − f ∗‖H ≤ r}. (5.8)

Our analysis makes particular use of this ball defined for the radius C2
H : = 2 max{‖f ∗‖2

H , 32, σ2}
where the effective noise level σ is defined in the sequel.

We assume that the population loss ism-strongly convex andM -smooth over BH (f ∗, 2CH ),
meaning that the

m-M-condition:
m

2
‖f − g‖2

n ≤ L(f)− L(g)−〈∇L(g), f(xn1 )− g(xn1 )〉 ≤ M

2
‖f − g‖2

n

holds for all f, g ∈ BH (f ∗, 2CH ) and all design points {xi}ni=1. In addition, we assume
that the function φ is M -Lipschitz in its second argument over the interval θ ∈ [min

i∈[n]
f ∗(xi)−

2CH ,max
i∈[n]

f ∗(xi)+2CH ]. To be clear, here∇L(g) denotes the vector in Rn obtained by taking

the gradient of L with respect to the vector g(xn1 ). It can be verified by a straightforward
computation that when L is induced by the least-squares cost φ(y, θ) = 1

2
(y − θ)2, the m-

M -condition holds for m = M = 1. The logistic and exponential loss satisfy this condition
(see supp. material), where it is key that we have imposed the condition only locally on the
ball BH (f ∗, 2CH ).

In addition to the least-squares cost, our theory also applies to losses L induced by scalar
functions φ that satisfy the

φ′-boundedness: max
i=1,...,n

∣∣∣∣∂φ(y, θ)

∂θ

∣∣∣∣
θ=f(xi)

≤ B, for all f ∈ BH (f ∗, 2CH ) and y ∈ Y .
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This condition holds with B = 1 for the logistic loss for all Y , and B = exp(2.5CH ) for the
exponential loss for binary classification with Y = {−1, 1}, using our kernel boundedness
condition. Note that whenever this condition holds with some finite B, we can always rescale
the scalar loss φ by 1/B so that it holds with B = 1, and we do so in order to simplify the
statement of our results.

5.3.2 Upper bound in terms of localized Gaussian width

Our upper bounds involve a complexity measure known as the localized Gaussian width. In
general, Gaussian widths are widely used to obtain risk bounds for least-squares and other
types of M -estimators. In our case, we consider Gaussian complexities for “localized” sets
of the form

En(δ, 1) : =
{
f − g | ‖f − g‖H ≤ 1, ‖f − g‖n ≤ δ

}
(5.9)

with f, g ∈H . The Gaussian complexity localized at scale δ is given by

Gn
(
En(δ, 1)

)
: = E

[
sup

g∈En(δ,1)

1

n

n∑
i=1

wig(xi)
]
, (5.10)

where (w1, . . . , wn) denotes an i.i.d. sequence of standard Gaussian variables.
An essential quantity in our theory is specified by a certain fixed point equation that is

now standard in empirical process theory [136, 13, 88, 116]. Let us define the effective noise
level

σ : =

min
{
t | max

i=1,...,n
E[e((Yi−f∗(xi))2/t2)] <∞

}
for L.S.

4 (2M + 1)(1 + 2CH ) for φ′-bounded losses.
(5.11)

The critical radius δn is the smallest positive scalar such that

Gn(En(δ, 1))

δ
≤ δ

σ
. (5.12)

We note that past work on localized Rademacher and Gaussian complexity [105, 13] guar-
antees that there exists a unique δn > 0 that satisfies this condition, so that our definition
is sensible.

5.3.2.1 Upper bounds on excess risk and empirical L2(Pn)-error

With this set-up, we are now equipped to state our main theorem. It provides high-
probability bounds on the excess risk and L2(Pn)-error of the estimator f̄T : = 1

T

∑T
t=1 f

t

defined by averaging the T iterates of the algorithm. It applies to both the least-squares
cost function, and more generally, to any loss function satisfying the m-M -condition and the
φ′-boundedness condition.
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Theorem 1. Suppose that the sample size n large enough such that δn ≤ M
m

, and we compute
the sequence {f t}∞t=0 using the update (5.7) with initialization f 0 = 0 and any step size
α ∈ (0,min{ 1

M
,M}]. Then for any iteration T ∈

{
0, 1, . . . b m

8Mδ2n
c
}

, the averaged function

estimate f̄T satisfies the bounds

L(f̄T )− L(f ∗) ≤ CM
( 1

αmT
+
δ2
n

m2

)
, and (5.13a)

‖f̄T − f ∗‖2
n ≤ C

( 1

αmT
+
δ2
n

m2

)
, (5.13b)

where both inequalities hold with probability at least 1− c1 exp(−C2
m2nδ2n
σ2 ).

We prove Theorem 1 in Section 5.6.1.
A few comments about the constants in our statement: in all cases, constants of the form

cj are universal, whereas the capital Cj may depend on parameters of the joint distribution

and population loss L. In Theorem 1, we have the explicit value C2 = {m2

σ2 , 1} and C2 is
proportional to the quantity 2 max{‖f ∗‖2

H , 32, σ2}. While inequalities (5.13a) and (5.13b)
are stated as high probability results, similar bounds for expected loss (over the response yi,
with the design fixed) can be obtained by a simple integration argument.

In order to gain intuition for the claims in the theorem, note that apart from factors

depending on (m,M), the first term 1
αmT

dominates the second term δ2n
m2 whenever T . 1/δ2

n.
Consequently, up to this point, taking further iterations reduces the upper bound on the
error. This reduction continues until we have taken of the order 1/δ2

n many steps, at which
point the upper bound is of the order δ2

n.
More precisely, suppose that we perform the updates with step size α = m

M
; then, after a

total number of τ : = 1
δ2n max{8,M} many iterations, the extension of Theorem 1 to expectations

guarantees that the mean squared error is bounded as

E‖f̄ τ − f ∗‖2
n ≤ C ′

δ2
n

m2
, (5.14)

where C ′ is another constant depending on CH . Here we have used the fact that M ≥ m in
simplifying the expression. It is worth noting that guarantee (5.14) matches the best known
upper bounds for kernel ridge regression (KRR)—indeed, this must be the case, since a sharp
analysis of KRR is based on the same notion of localized Gaussian complexity (e.g. [12, 13])
. Thus, our results establish a strong parallel between the algorithmic regularization of
early stopping, and the penalized regularization of kernel ridge regression. Moreover, as will
be clarified in Section 5.3.3, under suitable regularity conditions on the RKHS, the critical
squared radius δ2

n also acts as a lower bound for the expected risk, meaning that our upper
bounds are not improvable in general.

Note that the critical radius δ2
n only depends on our observations {(xi, yi)}ni=1 through the

solution of inequality (5.12). In many cases, it is possible to compute and/or upper bound
this critical radius, so that a concrete and valid stopping rule can indeed by calculated in
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advance. In Section 5.4, we provide a number of settings in which this can be done in terms
of the eigenvalues {µj}nj=1 of the normalized kernel matrix.

5.3.2.2 Consequences for random design regression

Thus far, our analysis has focused purely on the case of fixed design, in which the sequence
of covariates {xi}ni=1 is viewed as fixed. If we instead view the covariates as being sampled

in an i.i.d. manner from some distribution PX over X , then the empirical error ‖f̂ − f ∗‖2
n =

1
n

∑n
i=1

(
f(xi)− f ∗(xi)

)2
of a given estimate f̂ is a random quantity, and it is interesting to

relate it to the squared population L2(PX)-norm ‖f̂ − f ∗‖2
2 = E

[
(f̂(X)− f ∗(X))2

]
.

In order to state an upper bound on this error, we introduce a population analogue of
the critical radius δn, which we denote by δn. Consider the set

E(δ, 1) : =
{
f − g | f, g ∈H , ‖f − g‖H ≤ 1, ‖f − g‖2 ≤ δ

}
. (5.15)

It is analogous to the previously defined set E(δ, 1), except that the empirical norm ‖ · ‖n
has been replaced by the population version. The population Gaussian complexity localized
at scale δ is given by

Gn
(
E(δ, 1)

)
: = Ew,X

[
sup

g∈E(δ,1)

1

n

n∑
i=1

wig(Xi)
]
, (5.16)

where {wi}ni=1 are an i.i.d. sequence of standard normal variates, and {Xi}ni=1 is a second
i.i.d. sequence, independent of the normal variates, drawn according to PX . Finally, the
population critical radius δn is defined by equation (5.10), in which Gn is replaced by Gn.

Corollary 3. In addition to the conditions of Theorem 1, suppose that the sequence {(Xi, Yi)}ni=1

of covariate-response pairs are drawn i.i.d. from some joint distribution P, and we compute
the boosting updates with step size α ∈ (0,min{ 1

M
,M}] and initialization f 0 = 0. Then the

averaged function estimate f̄T at time T : = b 1
δ2n max{8,M}c satisfies the bound

EX
(
f̄T (X)− f ∗(X)

)2
= ‖f̄T − f ∗‖2

2 ≤ c̃ δ2
n

with probability at least 1− c1 exp(−C2
m2nδ2n
σ2 ) over the random samples.

The proof of Corollary 3 follows directly from standard empirical process theory bounds [13,
116] on the difference between empirical risk ‖f̄T − f ∗‖2

n and population risk ‖f̄T − f ∗‖2
2.

In particular, it can be shown that ‖ · ‖2 and ‖ · ‖n norms differ only by a factor proportion
to δn. Furthermore, one can show that the empirical critical quantity δn is bounded by the
population δn. By combining both arguments the corollary follows. We refer the reader to
the papers [13, 116] for further details on such equivalences.
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It is worth comparing this guarantee with the past work of Raskutti et al. [116], who
analyzed the kernel boosting iterates of the form (5.7), but with attention restricted to the
special case of the least-squares loss. Their analysis was based on first decomposing the
squared error into bias and variance terms, then carefully relating the combination of these
terms to a particular bound on the localized Gaussian complexity (see equation (5.17) below).
In contrast, our theory more directly analyzes the effective function class that is explored
by taking T steps, so that the localized Gaussian width (5.10) appears more naturally. In
addition, our analysis applies to a broader class of loss functions.

In the case of reproducing kernel Hilbert spaces, it is possible to sandwich the localized
Gaussian complexity by a function of the eigenvalues of the kernel matrix. Mendelson [105]
provides this argument in the case of the localized Rademacher complexity, but similar
arguments apply to the localized Gaussian complexity. Letting µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0
denote the ordered eigenvalues of the normalized kernel matrix K, define the function

R(δ) =
1√
n

√√√√ n∑
j=1

min{δ2, µj}. (5.17)

Up to a universal constant, this function is an upper bound on the Gaussian width Gn
(
E(δ, 1)

)
for all δ ≥ 0, and up to another universal constant, it is also a lower bound for all δ ≥ 1√

n
.

5.3.3 Achieving minimax lower bounds

In this section, we show that the upper bound (5.14) matches known minimax lower bounds
on the error, so that our results are unimprovable in general. We establish this result for
the class of regular kernels, as previously defined by Yang et al. [154], which includes the
Gaussian and Sobolev kernels as special cases.

The class of regular kernels is defined as follows. Let µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 denote
the ordered eigenvalues of the normalized kernel matrix K, and define the quantity dn : =
argminj=1,...,n{µj ≤ δ2

n}. A kernel is called regular whenever there is a universal constant c
such that the tail sum satisfies

∑n
j=dn+1 µj ≤ c dnδ

2
n. In words, the tail sum of the eigenvalues

for regular kernels is roughly on the same or smaller scale as the sum of the eigenvalues bigger
than δ2

n.
For such kernels and under the Gaussian observation model (Yi ∼ N(f ∗(xi), σ

2)), Yang
et al. [154] prove a minimax lower bound involving δn. In particular, they show that the
minimax risk over the unit ball of the Hilbert space is lower bounded as

inf
f̂

sup
‖f∗‖H ≤1

E‖f̂ − f ∗‖2
n ≥ c`δ

2
n. (5.18)

Comparing the lower bound (5.18) with upper bound (5.14) for our estimator f̄T stopped
after O(1/δ2

n) many steps, it follows that the bounds proven in Theorem 1 are unimprovable
apart from constant factors.
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We now state a generalization of this minimax lower bound, one which applies to a
sub-class of generalized linear models, or GLM for short. In these models, the conditional
distribution of the observed vector Y = (Y1, . . . , Yn) given

(
f ∗(x1), . . . , f ∗(xn)

)
takes the

form

Pθ(y) =
n∏
i=1

[
h(yi) exp

(yif ∗(xi)− Φ(f ∗(xi))

s(σ)

)]
, (5.19)

where s(σ) is a known scale factor and Φ : R→ R is the cumulant function of the generalized
linear model. As some concrete examples:

• The linear Gaussian model is recovered by setting s(σ) = σ2 and Φ(t) = t2/2.

• The logistic model for binary responses y ∈ {−1, 1} is recovered by setting s(σ) = 1
and Φ(t) = log(1 + exp(t)).

Our minimax lower bound applies to the class of GLMs for which the cumulant func-
tion Φ is differentiable and has uniformly bounded second derivative |Φ′′| ≤ L. This class
includes the linear, logistic, multinomial families, among others, but excludes (for instance)
the Poisson family. Under this condition, we have the following:

Corollary 4. Suppose that we are given i.i.d. samples {yi}ni=1 from a GLM (5.19) for some
function f ∗ in a regular kernel class with ‖f ∗‖H ≤ 1. Then running T : = b 1

δ2n max{8,M}c
iterations with step size α ∈ (0,min{ 1

M
,M}] and f 0 = 0 yields an estimate f̄T such that

E‖f̄T − f ∗‖2
n � inf

f̂
sup

‖f∗‖H ≤1

E‖f̂ − f ∗‖2
n. (5.20)

Here f(n) � g(n) means f(n) = cg(n) up to a universal constant c ∈ (0,∞). As always,
in the minimax claim (5.20), the infimum is taken over all measurable functions of the input
data and the expectation is taken over the randomness of the response variables {Yi}ni=1.
Since we know that E‖f̄T − f ∗‖2

n - δ2
n, the way to prove bound (5.20) is by establishing

inf f̂ sup‖f∗‖H ≤1 E‖f̂ − f ∗‖2
n % δ2

n. See Section 5.6.2 for the proof of this result.
At a high level, the statement in Corollary 4 shows that early stopping prevents us from

overfitting to the data; in particular, using the stopping time T yields an estimate that
attains the optimal balance between bias and variance.

5.4 Consequences for various kernel classes

In this section, we apply Theorem 1 to derive some concrete rates for different kernel spaces
and then illustrate them with some numerical experiments. It is known that the complexity
of an RKHS in association with a distribution over the covariates PX can be characterized
by the decay rate (2.14) of the eigenvalues of the kernel function. In the finite sample
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setting, the analogous quantities are the eigenvalues {µj}nj=1 of the normalized kernel matrix
K. The representation power of a kernel class is directly correlated with the eigen-decay:
the faster the decay, the smaller the function class. When the covariates are drawn from
the distribution PX , empirical process theory guarantees that the empirical and population
eigenvalues are close.

5.4.1 Theoretical predictions as a function of decay

In this section, let us consider two broad types of eigen-decay:

• γ-exponential decay: For some γ > 0, the kernel matrix eigenvalues satisfy a decay
condition of the form µj ≤ c1 exp(−c2j

γ), where c1, c2 are universal constants. Ex-
amples of kernels in this class include the Gaussian kernel, which for the Lebesgue
measure satisfies such a bound with γ = 2 (real line) or γ = 1 (compact domain).

• β-polynomial decay: For some β > 1/2, the kernel matrix eigenvalues satisfy a
decay condition of the form µj ≤ c1j

−2β, where c1 is a universal constant. Examples
of kernels in this class include the kth-order Sobolev spaces for some fixed integer
k ≥ 1 with Lebesgue measure on a bounded domain. We consider Sobolev spaces that
consist of functions that have kth-order weak derivatives f (k) being Lebesgue integrable
and f(0) = f (1)(0) = · · · = f (k−1)(0) = 0. For such classes, the β-polynomial decay
condition holds with β = k.

Given eigendecay conditions of these types, it is possible to compute an upper bound on
the critical radius δn. In particular, using the fact that the functionR from equation (5.17) is
an upper bound on the function Gn

(
E(δ, 1)

)
, we can show that for γ-exponentially decaying

kernels, we have δ2
n - (logn)1/γ

n
, whereas for β-polynomial kernels, we have δ2

n - n−
2β

2β+1 up to
universal constants. Combining with our Theorem 1, we obtain the following result:

Corollary 5 (Bounds based on eigendecay). Under the conditions of Theorem 1:

(a) For kernels with γ-exponential eigen-decay, we have

E‖f̄T − f ∗‖2
n ≤ c

log1/γ n

n
at T � n

log1/γ n
steps. (5.21a)

(b) For kernels with β-polynomial eigen-decay, we have

E‖f̄T − f ∗‖2
n ≤ c n−2β/(2β+1) at T � n2β/(2β+1) steps. (5.21b)

See Section 5.6.3 for the proof of Corollary 5.
In particular, these bounds hold for LogitBoost and AdaBoost. We note that similar

bounds can also be derived with regard to risk in L2(Pn) norm as well as the excess risk
L(fT )− L(f ∗).
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To the best of our knowledge, this result is the first to show non-asymptotic and optimal
statistical rates for the ‖ · ‖2

n-error when early stopping LogitBoost or AdaBoost with an
explicit dependence of the stopping rule on n. Our results also yield similar guarantees for
L2-boosting, as has been established in past work [116]. Note that we can observe a similar
trade-off between computational efficiency and statistical accuracy as in the case of kernel
least-squares regression [155, 116]: although larger kernel classes (e.g. Sobolev classes) yield
higher estimation errors, boosting updates reach the optimum faster than for a smaller kernel
class (e.g. Gaussian kernels).

5.4.2 Numerical experiments

We now describe some numerical experiments that provide illustrative confirmations of our
theoretical predictions. While we have applied our methods to various kernel classes, in
this section, we present numerical results for the first-order Sobolev kernel as two typical
examples for exponential and polynomial eigen-decay kernel classes.

Let us start with the first-order Sobolev space of Lipschitz functions on the unit interval
[0, 1]. This function space is defined by the kernel K(x, x′) = 1 + min(x, x′), and with the
design points {xi}ni=1 set equidistantly over [0, 1]. Note that the equidistant design yields
β-polynomial decay of the eigenvalues of K with β = 1 as in the case when xi are drawn i.i.d.
from the uniform measure on [0, 1]. Consequently we have that δ2

n � n−2/3. Accordingly,
our theory predicts that the stopping time T = (cn)2/3 should lead to an estimate f̄T such
that ‖f̄T − f ∗‖2

n - n−2/3.
In our experiments for L2-Boost, we sampled Yi according to Yi = f ∗(xi) + wi with

wi ∼ N(0, 0.5), which corresponds to the probability distribution P(Y | xi) = N(f ∗(xi); 0.5),
where f ∗(x) = |x− 1

2
| − 1

4
is defined on the unit interval [0, 1]. By construction, the function

f ∗ belongs to the first-order Sobolev space with ‖f ∗‖H = 1. For LogitBoost, we sampled Yi
according to Bin(p(xi), 5) where p(x) = exp(f∗(x))

1+exp(f∗(x))
. In all cases, we fixed the initialization

f 0 = 0, and ran the updates (5.7) for L2-Boost and LogitBoost with the constant step size
α = 0.75. We compared various stopping rules to the oracle gold standard G, meaning the
procedure that examines all iterates {f t}, and chooses the stopping timeG = arg mint≥1 ‖f t−
f ∗‖2

n that yields the minimum prediction error. Of course, this procedure is unimplementable
in practice, but it serves as a convenient lower bound with which to compare.

Figure 5.2 shows plots of the mean-squared error ‖f̄T − f ∗‖2
n over the sample size n

averaged over 40 trials, for the gold standard T = G and stopping rules based on T = (7n)κ

for different choices of κ. Error bars correspond to the standard errors computed from our
simulations. Panel (a) shows the behavior for L2-boosting, whereas panel (b) shows the
behavior for LogitBoost.

Note that both plots are qualitatively similar and that the theoretically derived stopping
rule T = (7n)κ with κ∗ = 2/3 = 0.67, while slightly worse than the Gold standard, tracks
its performance closely. We also performed simulations for some “bad” stopping rules, in
particular for an exponent κ not equal to κ∗ = 2/3, indicated by the green and black curves.
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Figure 5.2. The mean-squared errors for the stopped iterates f̄T at the Gold standard,
i.e. iterate with the minimum error among all unstopped updates (blue) and at T = (7n)κ

(with the theoretically optimal κ = 0.67 in red, κ = 0.33 in black and κ = 1 in green) for
(a) L2-Boost and (b) LogitBoost.
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Figure 5.3. Logarithmic plots of the mean-squared errors at the Gold standard in blue
and at T = (7n)κ (with the theoretically optimal rule for κ = 0.67 in red, κ = 0.33 in black
and κ = 1 in green) for (a) L2-Boost and (b) LogitBoost.

In the log scale plots in Figure 5.3 we can clearly see that for κ ∈ {0.33, 1} the performance
is indeed much worse, with the difference in slope even suggesting a different scaling of
the error with the number of observations n. Recalling our discussion for Figure 5.1, this
phenomenon likely occurs due to underfitting and overfitting effects. These qualitative shifts
are consistent with our theory.
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5.5 Discussion

In this chapter, we have proven non-asymptotic bounds for early stopping of kernel boosting
for a relatively broad class of loss functions. These bounds allowed us to propose simple
stopping rules which, for the class of regular kernel functions [154], yield minimax optimal
rates of estimation. Although the connection between early stopping and regularization
has long been studied and explored in the theoretical literature and applications alike, to
the best of our knowledge, these results are the first one to establish a general relationship
between the statistical optimality of stopped iterates and the localized Gaussian complexity.
This connection is important, because this localized Gaussian complexity measure, as well
as its Rademacher analogue, are now well-understood to play a central role in controlling
the behavior of estimators based on regularization [136, 13, 88, 144].

There are various open questions suggested by our results. The stopping rules in this
chapter depend on the eigenvalues of the empirical kernel matrix; for this reason, they
are data-dependent and computable given the data. However, in practice, it would be
desirable to avoid the cost of computing all the empirical eigenvalues. Can fast approximation
techniques for kernels be used to approximately compute our optimal stopping rules? Second,
our current theoretical results apply to the averaged estimator f̄T . We strongly suspect that
the same results apply to the stopped estimator fT , but some new ingredients are required
to extend our proofs.

5.6 Proof of main results

In this section, we present the proofs of our main results. The technical details are deferred
to Appendix C.

In the following, recalling the discussion in Section 5.2.3, we denote the vector of function
values of a function f ∈H evaluated at (x1, x2, . . . , xn) as θf : = f(xn1 ) = (f(x1), f(x2), . . . f(xn)) ∈
Rn, where we omit the subscript f when it is clear from the context. As mentioned in the
main text, updates on the function value vectors θt ∈ Rn correspond uniquely to updates of
the functions f t ∈H . In the following we repeatedly abuse notation by defining the Hilbert
norm and empirical norm on vectors in ∆ ∈ range(K) as

‖∆‖2
H =

1

n
∆TK†∆ and ‖∆‖2

n =
1

n
‖∆‖2

2,

where K† is the pseudoinverse of K. We also use BH (θ, r) to denote the ball with respect
to the ‖ · ‖H -norm in range(K).

5.6.1 Proof of Theorem 1

The proof of our main theorem is based on a sequence of lemmas, all of which are stated
with the assumptions of Theorem 1 in force. The first lemma establishes a bound on the
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empirical norm ‖·‖n of the error ∆t+1 : = θt+1 − θ∗, provided that its Hilbert norm is suitably
controlled.

Lemma 1. For any stepsize α ∈ (0, 1
M

] and any iteration t we have

m

2
‖∆t+1‖2

n ≤
1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉.

See Section C.1 for the proof of this claim.
The second term on the right-hand side of the bound (5.22) involves the difference between

the population and empirical gradient operators. Since this difference is being evaluated at
the random points ∆t and ∆t+1, the following lemma establishes a form of uniform control
on this term.

Let us define the set

S : =

{
∆, δ̃ ∈ Rn | ‖∆‖H ≥ 1, and ∆, δ̃ ∈ BH (0, 2CH )

}
, (5.22)

and consider the uniform bound

〈∇L(θ∗ + δ̃)−∇Ln(θ∗ + δ̃), ∆〉 ≤ 2δn‖∆‖n
+ 2δ2

n‖∆‖H +
m

c3

‖∆‖2
n for all ∆, δ̃ ∈ S. (5.23)

Lemma 2. Let E be the event that bound (5.23) holds. There are universal constants (c1, c2)

such that P[E ] ≥ 1− c1 exp(−c2
m2nδ2n
σ2 ).

See Section C.2 for the proof of Lemma 2.

Note that Lemma 1 applies only to error iterates with a bounded Hilbert norm. Our last
lemma provides this control for some number of iterations:

Lemma 3. There are constants (C1, C2) independent of n such that for any step size α ∈(
0,min{M, 1

M
}
]
, we have

‖∆t‖H ≤ CH for all iterations t ≤ m
8Mδ2n

(5.24)

with probability at least 1− C1 exp(−C2nδ
2
n), where C2 = max{m2

σ2 , 1}.

See Section C.3 for the proof of this lemma which also uses Lemma 2.

Taking these lemmas as given, we now complete the proof of the theorem. We first
condition on the event E from Lemma 2, so that we may apply the bound (5.23). We then
fix some iterate t such that t < m

8Mδ2n
−1, and condition on the event that the bound (5.24) in

Lemma 3 holds, so that we are guaranteed that ‖∆t+1‖H ≤ CH . We then split the analysis
into two cases:
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Case 1 First, suppose that ‖∆t+1‖n ≤ δnCH . In this case, inequality (5.13b) holds directly.

Case 2 Otherwise, we may assume that ‖∆t+1‖n > δn‖∆t+1‖H . Applying the bound (5.23)

with the choice (δ̃,∆) = (∆t,∆t+1) yields

〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉 ≤ 4δn‖∆t+1‖n +
m

c3

‖∆t+1‖2
n. (5.25)

Substituting inequality (5.25) back into equation (5.22) yields

m

2
‖∆t+1‖2

n ≤
1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 4δn‖∆t+1‖n +

m

c3

‖∆t+1‖2
n.

Re-arranging terms yields the bound

γm‖∆t+1‖2
n ≤ Dt + 4δn‖∆t+1‖n, (5.26)

where we have introduced the shorthand notation Dt : = 1
2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
, as well

as γ = 1
2
− 1

c3

Equation (5.26) defines a quadratic inequality with respect to ‖∆t+1‖n; solving it and
making use of the inequality (a+ b)2 ≤ 2a2 + 2b2 yields the bound

‖∆t+1‖2
n ≤

cδ2
n

γ2m2
+

2Dt

γm
, (5.27)

for some universal constant c. By telescoping inequality (5.27), we find that

1

T

T∑
t=1

‖∆t‖2
n ≤

cδ2
n

γ2m2
+

1

T

T∑
t=1

2Dt

γm
(5.28)

≤ cδ2
n

γ2m2
+

1

αγmT
[‖∆0‖2

H − ‖∆T‖2
H ]. (5.29)

By Jensen’s inequality, we have

‖f̄T − f ∗‖2
n = ‖ 1

T

T∑
t=1

∆t‖2
n ≤

1

T

T∑
t=1

‖∆t‖2
n,

so that inequality (5.13b) follows from the bound (5.28).
On the other hand, by the smoothness assumption, we have

L(f̄T )− L(f ∗) ≤ M

2
‖f̄T − f ∗‖2

n,

from which inequality (5.13a) follows.
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5.6.2 Proof of Corollary 4

Similar to the proof of Theorem 1 in Yang et al. [154], a generalization can be shown using a
standard argument of Fanos inequality. By definition of the transformed parameter θ = DUα
with K = UTDU , we have for any estimator f̂ =

√
nUT θ that ‖f̂ − f ∗‖2

n = ‖θ − θ∗‖2
2.

Therefore our goal is to lower bound the Euclidean error ‖θ − θ∗‖2 of any estimator of θ∗.
Borrowing Lemma 4 in Yang et al. [154], there exists δ/2-packing of the set B = {θ ∈ Rn |
‖D−1/2θ‖2 ≤ 1} of cardinality M = edn/64 with dn : = arg minj=1,...,n{µj ≤ δ2

n}. This is done
through packing the following subset of B

E(δ) : =
{
θ ∈ Rn |

n∑
j=1

θ2
j

min{δ2, µj}
≤ 1
}
.

Let us denote the packing set by {θ1, . . . , θM}. Since θ ∈ E(δ), by simple calculation, we
have ‖θi‖2 ≤ δ.

By considering the random ensemble of regression problem in which we first draw at
index Z at random from the index set [M ] and then condition on Z = z, we observe n i.i.d
samples yn1 := {y1, . . . , yn} from Pθz , Fano’s inequality implies that

P(‖θ̂ − θ∗‖2 ≥
δ2

4
) ≥ 1− I(yn1 ;Z) + log 2

logM
.

where I(yn1 ;Z) is the mutual information between the samples Y and the random index Z.
So it is only left for us to control the mutual information I(yn1 ;Z). Using the mixture

representation, P̄ = 1
M

∑M
i=1 Pθi and the convexity of the KullbackLeibler divergence, we

have

I(yn1 ;Z) =
1

M

M∑
j=1

‖Pθj , P̄‖KL ≤
1

M2

∑
i,j

‖Pθi , Pθj‖KL.

We now claim that

‖Pθ(y), Pθ′(y)‖KL ≤
nL‖θ − θ′‖2

2

s(σ)
. (5.30)

Since each ‖θi‖2 ≤ δ, triangle inequality yields ‖θi − θj‖2 ≤ 2δ for all i 6= j. It is therefore
guaranteed that

I(yn1 ;Z) ≤ 4nLδ2

s(σ)
.

Therefore, similar to Yang et al. [154], following by the fact that the kernel is regular and

hence s(σ)dn ≥ cnδ2
n, any estimator f̂ has prediction error lower bounded as

sup
‖f∗‖H ≤1

E‖f̂ − f ∗‖2
n ≥ clδ

2
n.

Corollary 4 thus follows using the upper bound in Theorem 1.
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Proof of inequality (5.30) Direct calculations of the KL-divergence yield

‖Pθ(y), Pθ′(y)‖KL =

∫
log(

Pθ(y)

Pθ′(y)
)Pθ(y)dy

=
1

s(σ)

n∑
i=1

Φ(
√
n〈ui, θ′〉)− Φ(

√
n〈ui, θ〉)

+

√
n

s(σ)

∫ n∑
i=1

[
yi〈ui, θ − θ′〉

]
Pθdy. (5.31)

To further control the right hand side of expression (5.31), we concentrate on expressing∫ ∑n
i=1 yiuiPθdy differently. Leibniz’s rule allow us to inter-change the order of integral and

derivative, so that ∫
dPθ
dθ

dy =
d

dθ

∫
Pθdy = 0. (5.32)

Observe that ∫
dPθ
dθ

dy =

√
n

s(σ)

∫
Pθ ·

n∑
i=1

ui
(
yi − Φ′(

√
n〈ui, θ′〉)

)
dy

so that equality (5.32) yields∫ n∑
i=1

yiuiPθdy =
n∑
i=1

uiΦ
′(
√
n〈ui, θ〉).

Combining the above inequality with expression (5.31), the KL divergence between two
generalized linear models Pθ,Pθ′ can thus be written as

‖Pθ(y), Pθ′(y)‖KL =
1

s(σ)

n∑
i=1

Φ(
√
n〈ui, θ′〉)− Φ(

√
n〈ui, θ〉)

−
√
n〈ui, θ′ − θ〉Φ′(

√
n〈ui, θ〉). (5.33)

Together with the fact that

|Φ(
√
n〈ui, θ′〉)− Φ(

√
n〈ui, θ〉)−

√
n〈ui, θ′ − θ〉Φ′(

√
n〈ui, θ〉)|

≤ nL‖θ − θ′‖2
2.

which follows by assumption on Φ having a uniformly bounded second derivative. Putting
the above inequality with inequality (5.33) establishes our claim (5.30).



CHAPTER 5. EARLY STOPPING FOR KERNEL BOOSTING ALGORITHMS 95

5.6.3 Proof of Corollary 5

The general statement follows directly from Theorem 1. In order to invoke Theorem 1 for
the particular cases of LogitBoost and AdaBoost, we need to verify the conditions, i.e. that
the m-M -condition and φ′-boundedness conditions hold for the respective loss function over
the ball BH (θ∗, 2CH ). The following lemma provides such a guarantee:

Lemma 4. With D : = CH +‖θ∗‖H , the logistic regression cost function satisfies the m-M-
condition with parameters

m =
1

e−D + eD + 2
, M =

1

4
, and B = 1.

The AdaBoost cost function satisfies the m-M-condition with parameters

m = E−D, M = ED, and B = ED.

See Section C.4 for the proof of Lemma 4.

γ-exponential decay If the kernel eigenvalues satisfy a decay condition of the form µj ≤
c1 exp(−c2j

γ), where c1, c2 are universal constants, the function R from equation (5.17) can
be upper bounded as

R(δ) =

√
2

n

√√√√ n∑
i=1

min{δ2, µj} ≤
√

2

n

√√√√kδ2 +
n∑

j=k+1

c1e−c2j
2 ,

where k is the smallest integer such that c1 exp(−c2k
γ) < δ2. Since the localized Gaussian

width Gn
(
En(δ, 1)

)
can be sandwiched above and below by multiples of R(δ), some algebra

shows that the critical radius scales as δ2
n � n

log(n)1/γσ2 .

Consequently, if we take T � log(n)1/γσ2

n
steps, then Theorem 1 guarantees that the

averaged estimator θ̄T satisfies the bound

‖θ̄T − θ∗‖2
n .

(
1

αm
+

1

m2

)
log1/γ n

n
σ2,

with probability 1− c1exp(−c2m
2 log1/γ n).

β-polynomial decay Now suppose that the kernel eigenvalues satisfy a decay condition
of the form µj ≤ c1j

−2β for some β > 1/2 and constant c1. In this case, a direct calculation
yields the bound

R(δ) ≤
√

2

n

√√√√kδ2 + c2

n∑
j=k+1

j−2,
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where k is the smallest integer such that c2k
−2 < δ2. Combined with upper bound c2

∑n
j=k+1 j

−2 ≤
c2

∫
k+1

j−2 ≤ kδ2, we find that the critical radius scales as δ2
n � n−2β/(1+2β).

Consequently, if we take T � n−2β/(1+2β) many steps, then Theorem 1 guarantees that
the averaged estimator θ̄T satisfies the bound

‖θ̄T − θ∗‖2
n ≤

(
1

αm
+

1

m2

)(
σ2

n

)2β/(2β+1)

,

with probability at least 1− c1exp(−c2m
2( n
σ2 )1/(2β+1)).
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Chapter 6

Future directions

In this thesis, a range of different problems are described ranging from hypothesis testing,
non-parametric estimation to optimization algorithms. A common theme underlying much
of this work is the underlying geometric structure of the problem. For example, Chapter 3 on
cone testing showed that in addition to the Gaussian complexity, other geometric quantities
play a role in determining the difficulty of testing; the convex set estimation project showed
that polytopes with a controlled number of vertices are significantly easier to estimate.

It is interesting to see whether these results can provide some insights to other questions
in statistics and optimization that have a geometric flavor, such as manifold structure. In the
area of covariance estimation, Wiesel [151] noted that if covariance matrices are regarded as
elements of a Riemannian manifold, then maximum likelihood estimation of these covariance
matrices is a convex problem under the notion of geodesic convexity. This perspective opens
up a variety of new questions and methods for matrix estimation. In addition, manifold
learning is an area of active research in machine learning, applied mathematics, and statistics.
In recent years, researchers have established a number of theoretical guarantees for such
methods (e.g., [64, 85]). However, it remains unclear how to optimally extract the features
of a manifold that are sufficient for subsequent clustering and/or classification tasks under
minimal assumptions. It is my intention to tackle some of these interesting and fundamental
problems in my future career, using the skills that I have developed thus far.

In addition, statistical inference has long been one of the most important topics in statis-
tics. Compared to its estimation analogue, there are many interesting problems still remain
to be open. One general question that interests me a lot is how to do inference on struc-
tured data. As one concrete instance, there is an evolving line of work on testing problems
involving complicated structures such as communities in network data and trees (e.g., [1, 5]).
Such structures arise frequently in applications such as genetics, neuroscience, and the social
sciences, and the corresponding theory for testing methods is relatively undeveloped. More-
over, I am also interested in the problem of detecting multi-scaled signals and change-points
from plain background. This problem is one of the key problems in applied mathematics
and signal processing, and although some relevant results are known in different contexts
(e.g., [46, 54, 6, 146]), several issues are not yet resolved, including fundamental limits for
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high-dimensional problems, behaviors of different non-parametric function classes, and effi-
cient algorithms.

Another direction that I am interested in understanding is the role of regularization in
fitting complex models. A phenomenon that has been observed over this decade, is the
great generalization performance of deep neural nets despite the fact that it is highly over-
parametrized. To shed lights on this mystery, recent couple of years have witnessed many
brand-new ideas from statistics and optimization community to reach a better understanding
of non-convex problems. A line of work focus on studying the landscape of particular classes
of non-convex objective functions such any stationary point of the non-convex objective is
close to global optima, so it suffices to find a locally optimal solution (see e.g. [99, 78, 61,
62, 60]) Another line of work concentrated on analyzing the local convergence for various
algorithms and problems (e.g. [41, 98, 79] and showed that given a good initialization, many
simple local search algorithms including gradient descent succeed. However, the work listed
so far are of a case-to-case flavor mostly, namely each analysis is highly dependent on the
particular structure of individual problem. One interesting open problem is that can we
obtain a more general way of analyzing these optimization landscapes and understand the
role of generalization better.
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Appendix A

Proofs for Chapter 3

This chapter is organized as follows. In Section A.1, we first explain the intuition behind
the example in Section 3.3.2.3 where the GLRT is shown to be sub-optimal, and construct
a series of other cases where this sub-optimality is observed. We then provide the proofs
of Propositions 3.3.1 and 3.3.2 in Sections A.3.1 and A.3.2, respectively. It follows by some
background on distance metrics and their properties in Section A.2. The proofs of Theorem
3.3.1 (a) and (b) are completed in Section A.4 and A.5 respectively. The proofs of the
lemmas for Theorem 3.3.2 are collected in Section A.6. Finally, the technical lemmas which
were crucially used in the proofs of the Proposition 3.3.2 and the monotone cone example
are proved in Section A.7.

A.1 The GLRT sub-optimality

In this appendix, we first try to understand why the GLRT is sub-optimal for the Cartesian
product cone K× = Circd−1(α)×R, and use this intuition to construct a more general class
of problems for which a similar sub-optimality is witnessed.

A.1.1 Why is the GLRT sub-optimal?

Let us consider tests with null C1 = {0} and a general product alternative of the form
C2 = K× = K ×R, where K ⊆ Rd−1 is a base cone. Note that K = Circd−1 in our previous
example.

Now recall the decomposition (3.22) of the statistic T that underlies the GLRT. By the
product nature of the cone, we have

T (y) = ‖ΠK×y‖2 = ‖(ΠK(y−d), yd)‖2 =
√
‖ΠK(y−d)‖2

2 + ‖yd‖2
2,

where y−d : = (y1, . . . , yd−1) ∈ Rd−1 is formed from the first d− 1 coordinates of y. Suppose
that we are interested in testing between the zero vector and a vector θ∗ = (0, . . . , 0, θ∗d),
non-zero only in the last coordinate, which belongs to the alternative. With this particular
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choice, under the null distribution, we have y = σg whereas under the alternative, we have
y = θ∗+σg. Letting E0 and E1 denote expectations under these two Gaussian distributions,
the performance of the GLRT in this direction is governed by the difference

1

σ

{
E1[T (y)]− E0[T (y)]

}
= E1

√
‖ΠK(g−d)‖2

2 + ‖θ
∗
d

σ
+ gd‖2

2

−E0

√
‖ΠK(g−d)‖2

2 + ‖gd‖2
2.

Note both terms in this difference involve a (d− 1)-dimensional “pure noise” component—
namely, the quantity ‖ΠK(g−d)‖2

2 defined by the sub-vector g−d : = (g1, . . . , gd−1)—with the
only signal lying the last coordinate. For many choices of cone K, the pure noise component
acts as a strong mask for the signal component, so that the GLRT is poor at detecting
differences in the direction θ∗. Since the vector θ∗ belongs to the alternative, this leads to
sub-optimality in its overall behavior. Guided by this idea, we can construct a series of other
cases where the GLRT is sub-optimal. See Appendix A.1.2 for details.

A.1.2 More examples on the GLRT sub-optimality

Now let us construct a larger class of product cones for which the GLRT is sub-optimal. For
a given subset S ⊆ {1, . . . , d}, define the subvectors θS = (θi, i ∈ S) and θSc = (θj, j ∈ Sc},
where Sc denotes the complement of S. For an integer ` ≥ 1, consider any cone K` ⊂ Rd

with the following two properties:

• its Gaussian width scales as EW(K` ∩ B(1)) �
√
d, and

• for some fixed subset {1, 2 . . . , d} of cardinality `, there is a scalar γ > 0 such that

‖θS‖2 ≥ γ‖θSc‖2 for all θ ∈ K`.

As one concrete example, it is easy to check that the circular cone is a special example with
` = 1 and γ = 1/ tan(α). The following result applies to the GLRT when applied to testing
the null C1 = {0} versus the alternative C2 = Ks

× = K × R.

Proposition A.1.1. For the previously described cone testing problem, the GLRT testing
radius is sandwiched as

ε2GLR �
√
dσ2,

whereas a truncation test can succeed at radius ε2 �
√
`σ2.

Proof. The claimed scaling of the GLRT testing radius follows as a corollary of Theorem 3.3.1
after a direct evaluation of δ2

LR(C1, C2). In order to do so, we begin by observing that

inf
η∈C2×S−1

〈η, EΠC2g〉 ≤ 〈ed, EΠc2g〉 = 0, and

EW(C2 ∩ B(1)) = E‖ΠC2g‖2 �
√
d
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which implies that δ2
LR(C1, C2) �

√
d, and hence implies the sandwich claim on the GLRT

via Theorem 3.3.1.
On the other hand, for some pre-selected β > 0, consider the truncation test

ϕ(y) : = I
[
‖yS‖2 ≥ β

]
,

This test can be viewed as a GLRT for testing the zero null against the alternative R`, and
hence it will succeed with separation ε2 � σ2

√
`. Putting these pieces together, we conclude

that the GLRT is sub-optimal whenever ` is of lower order than d.

A.2 Distances and their properties

Here we collect some background on distances between probability measures that are useful
in analyzing testing error. Suppose P1 and P2 are two probability measures on Euclidean
space (Rd,B) equipped with Lebesgue measure. For the purpose of this paper, we assume
P1 � P2. The total variation (TV) distance between P1 and P2 is defined as

‖P1 − P2‖TV : = sup
B∈B
|P1(B)− P2(B)| = 1

2

∫
|dP1 − dP2|. (A.1a)

A closely related measure of distance is the χ2 distance given by

χ2(P1,P2) : =

∫
(
dP1

dP2

− 1)2dP2. (A.1b)

For future reference, we note that the TV distance and χ2 distance are related via the
inequality

‖P1 − P2‖TV ≤
1

2

√
χ2(P1,P2). (A.1c)

A.3 Proofs for Proposition 3.3.1 and 3.3.2

In this section, we complete the proofs of Propositions 3.3.1 and 3.3.2 in Sections A.3.1
and A.3.2, respectively.

A.3.1 Proof of Proposition 3.3.1

As in the proof of Theorem 3.3.1 and Theorem 3.3.2, we can assume without loss of generality
that σ = 1 since K+ is invariant under rescaling by positive numbers. We split our proof
into two cases, depending on whether or not the dimension d is less than 81.
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Case 1: First suppose that d < 81. If the separation is upper bounded as ε2 ≤ κρ
√
d, then

setting κρ = 1/18 yields

ε2 ≤ κρ
√
d < 1/2.

Similar to our proof for Theorem 3.3.1(b) Case 1, if ε2 < 1/2, every test yields testing error
no smaller than 1/2. It is seen by considering a simple verses simple testing problem (3.58a).
So our lower bound directly holds for the case when d < 81 satisfies.

Case 2: Let us consider the case when dimension d ≥ 81. The idea is to make use of
our Lemma 3.5.3 to show that the testing error is at least ρ whenever ε2 ≤ κρ

√
d. In

order to apply Lemma 3.5.3, the key is to construct a probability measure Q supported on
set K ∩ Bc(1) such that for i.i.d. pair η, η′ drawn from Q, quantity Eeλ〈η, η′〉 can be well
controlled. We claim that there exists such a probability measure Q that

Eη,η′eλ〈η, η
′〉 ≤ exp

(
exp

(
2 + λ√
d− 1

)
−
(

1− 1√
d

)2
)

where λ : = ε2. (A.2)

Taking inequality (A.2) as given for now, letting κρ = 1/8, we have λ = ε2 ≤
√
d/8. So the

right hand side in expression (A.2) can be further upper bounded as

exp

(
exp

(
2√
d− 1

+

√
d√

d− 1

λ√
d

)
−
(

1− 1√
d

)2
)
≤ exp

(
exp

(
1

4
+

9

8
· 1

8

)
−
(

1− 1

9

)2
)

< 2,

where we use the fact that d ≥ 81. As a consequence of Lemma 3.5.3, the testing error of
every test satisfies

inf
ψ
E(ψ; {0}, K+, ε) ≥ 1− 1

2

√
Eη,η′ exp(ε2〈η, η′〉)− 1 >

1

2
≥ ρ.

Putting these two cases together, our lower bound holds for any dimension thus we complete
the proof of Proposition 3.3.1.

So it only remains to construct a probability measure Q such that the inequality (A.2)
holds. We begin by introducing some helpful notation. For an integer s to be specified,
consider a collection of vectors S containing all d-dimensional vectors with exactly s non-
zero entries and each non-zero entry equals to 1/

√
s. Note that there are in total M : =

(
d
s

)
vectors of this type. Letting Q be the uniform distribution over this set of vectors namely

Q({η}) : =
1

M
, η ∈ S. (A.3)



APPENDIX A. PROOFS FOR CHAPTER 3 103

Then we can write the expectation as

Eeλ〈η, η′〉 =
1

M2

∑
η,η′∈S

eλ〈η, η
′〉.

Note that the inner product 〈η, η′〉 takes values i/s, for integer i ∈ {0, 1, . . . , s} and given
every vector η and integer i ∈ {0, 1, . . . , s}, the number of η′ such that 〈η, η′〉 = i/s equals
to
(
s
i

)(
d−s
s−i

)
. Consequently, we obtain

Eeλ〈η, η′〉 =

(
d

s

)−1 s∑
i=0

(
s

i

)(
d− s
s− i

)
eλi/s =

s∑
i=0

Aiz
i

i!
, (A.4)

where

z : = eλ/s and Ai : =
(s!(d− s)!)2

((s− i)!)2d!(d− 2s+ i)!
.

Let us set integer s : = b
√
dc. We claim quantity Ai satisfies the following bound

Ai ≤ exp
(
− (1− 1√

d
)2 +

2i√
d− 1

)
for all i ∈ {0, 1, . . . , s}. (A.5)

Taking expression (A.5) as given for now and plugging into inequality (A.4), we have

Eeλ〈η, η′〉 ≤ exp
(
− (1− 1√

d
)2
) s∑
i=0

(z exp( 2√
d−1

))i

i!

(a)

≤ exp
(
− (1− 1√

d
)2
)

exp

(
z exp(

2√
d− 1

)

)
(b)

≤ exp

(
−
(

1− 1√
d

)2

+ exp

(
2 + λ√
d− 1

))
,

where step (a) follows from the standard power series expansion ex =
∑∞

i=0
xi

i!
and step (b)

follows by z = eλ/s and s = b
√
dc >

√
d − 1. Therefore it verifies inequality (A.2) and

complete our argument.
It is only left for us to check inequality (A.5) for Ai. Using the fact that 1− x ≤ e−x, it

is guaranteed that

A0 =
((d− s)!)2

d!(d− 2s)!
= (1− s

d
)(1− s

d− 1
) · · · (1− s

d− s+ 1
) ≤ exp(−s

s∑
i=1

1

d− s+ i
).

(A.6a)
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Recall that integer s = b
√
dc, then we can bound the sum in expression (A.6a) as

s
s∑
i=1

1

d− s+ i
≥ s

s∑
i=1

1

d
=
s2

d
≥ (1− 1√

d
)2,

which, when combined with inequality (A.6a), implies that A0 ≤ exp(−(1− 1√
d
)2).

Moreover, direct calculations yield

Ai
Ai−1

=
(s− i+ 1)2

d− 2s+ i
, 1 ≤ i ≤ s. (A.6b)

This ratio is decreasing with index i as 1 ≤ i ≤ s, thus is upper bounded by A1/A0, which
implies that

Ai
Ai−1

≤ d

d− 2
√
d+ 1

= (1 +
1√
d− 1

)2 ≤ exp(
2√
d− 1

),

where the last inequality follows from 1 + x ≤ ex. Putting pieces together validates bound
(A.5) thus finishing the proof of Proposition 3.3.1.

A.3.2 Proof of Proposition 3.3.2

As in the proof of Theorem 3.3.1 and Theorem 3.3.2, we can assume without loss of generality
that σ = 1 since L and M are both invariant under rescaling by positive numbers.

We split our proof into two cases, depending on whether or not
√

log(ed) < 14.

Case 1: First suppose
√

log(ed) < 14, so that the choice κρ = 1/28 yields the upper bound

ε2 ≤ κρ
√

log(ed) < 1/2.

Similar to our proof of the lower bound in Theorem 3.3.1, by reducing to a simple testing
problem (3.58a), any test yields testing error no smaller than 1/2 if ε2 < 1/2. Thus, we
conclude that the stated lower bound holds when

√
log(ed) < 14.

Case 2: Otherwise, we may assume that
√

log(ed) ≥ 14. In this case, we exploit Lemma 3.5.3

in order to show that the testing error is at least ρ whenever ε2 ≤ κρ
√

log(ed). Doing so
requires constructing a probability measure QL supported on M ∩L⊥ ∩Bc(1) such that the
expectation Eeε2〈η, η′〉 can be well controlled, where (η, η′) are drawn i.i.d according to QL.
Note that L can be either {0} or span(1).

Before doing that, let us first introduce some notation. Let δ : = 9 and r : = 1/3 (note
that δ = r−2). Let

m : = max

{
n
∣∣∣ n∑

i=1

bδ − 1

δi
(d+ logδ d+ 3)c < d

}
. (A.7)
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We claim that the integer m defined above satisfies:

d3
4

logδ(d)e+ 1 ≤ m ≤ dlogδ de, (A.8)

where dxe denotes the smallest integer that is greater than or equal to x. To see this, notice
that for t = d3

4
logδ(d)e+ 1, we have

t∑
i=1

bδ − 1

δi
(d+ logδ d+ 3)c ≤

t∑
i=1

δ − 1

δi
(d+ logδ d+ 3) = (1− 1

δt
)(d+ α)

(i)

≤ d+ α− d+ α

δ2d3/4

(ii)
< d,

where we denote α : = logδ d + 3. The step (i) follows by definition that t = d3
4

logδ(d)e + 1

while step (ii) holds because as
√

log(ed) ≥ 14, we have α = logδ d + 3 < d1/4/δ2. On the
other hand, for t = dlogδ de, we have

t∑
i=1

bδ − 1

δi
(d+ logδ d+ 3)c ≥

t∑
i=1

δ − 1

δi
(d+ α)− t

= (1− 1

δt
)(d+ α)− t

> d+ α− d+ α

d
− (logδ d+ 1),

where the last step uses fact t = dlogδ de. Since when
√

log(ed) ≥ 14, we have α = logδ d+3 <
d, therefore (d+ α)/d+ logδ d+ 1 ≤ 2 + logδ d+ 1 = α, which guarantees that

t∑
i=1

bδ − 1

δi
(d+ logδ d+ 3)c > d.

We thereby established inequality (A.8).
We now claim that there exists a probability measure QL supported on M ∩ L⊥ ∩Bc(1)

such that

Eη,η′∼QLe
λ〈η, η′〉 ≤ exp

(
exp

(
9λ/4 + 2√
m− 1

)
−
(

1− 1√
m

)2

+
27λ

32(
√
m− 1)

)
, where λ : = ε2.

(A.9)

Recall that we showed in inequality (A.8) that m ≥ d3
4

logδ(d)e + 1. Setting κρ = 1/62

implies that whenever ε2 ≤ κρ
√

log(ed), we have

ε2 ≤ 1

62

√
log(ed) =

1

62

√
1 +

4

3
log δ · 3

4
logδ d ≤

1

62

√
4

3
log δ

(
1 +

3

4
logδ d

)
≤ 1

36

√
m.

(A.10)
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So the right hand side in expression (A.9) can be made less than 2 by

exp

(
9λ/4 + 2√
m− 1

)
−
(

1− 1√
m

)2

+
27λ

32(
√
m− 1)

≤ exp

(
9λ

4
√
m

√
m√

m− 1
+

2

7

)
−
(

1− 1

8

)2

+
27λ

32
√
m

√
m√

m− 1

≤ exp

(
9

4 · 36

8

7
+

2

7

)
−
(

1− 1

8

)2

+
27

32 · 36

8

7
< log 2,

where we use the fact that
√
m ≥

√
1 + 3

4
logδ d ≥ 8. Lemma 3.5.3 thus guarantees the

testing error to be no less than

inf
ψ
E(ψ;L,M, ε) ≥ 1− 1

2

√
Eη,η′ exp(ε2〈η, η′〉)− 1 >

1

2
≥ ρ,

which leads to our result in Proposition 3.3.2.
Now it only remains to construct a probability measure QL with the right support such

that inequality (A.9) holds. To do this, we make use of a fact from the proof of Proposi-
tion 3.3.1 for the orthant cone K+ ⊂ Rm. Recall that to establish Proposition 3.3.1, we
constructed a probability measure D supported on K+ ∩ Sm−1 ⊂ Rm such that if b, b′ are an
i.i.d pair drawn from D, we have

Eb,b′∼Deλ〈b, b
′〉 ≤ exp

(
exp

(
2 + λ√
m− 1

)
−
(

1− 1√
m

)2
)
. (A.11)

By construction, D is a uniform probability measure on the finite set S which consists of all
vectors in Rm which have s non-zero entries which are all equal to 1/

√
s where s = b

√
mc.

Based on this measure D, let us define QL as in the following lemma and establish some
of its properties under the assumption that

√
log(ed) ≥ 14.

Lemma A.3.1. Let G be the m×m lower triangular matrix given by

G : =


1
r 1
r2 r 1
...

...
. . .

rm−1 rm−2 · · · 1

 . (A.12a)

There exists an d×m matrix F such that

F TF = Im (A.12b)

and such that for every b ∈ S and η : = FGb, we have
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1. η ∈M ∩ L⊥ ∩Bc(1) if L = {0}, and

2. η − η̄1 ∈ M ∩ L⊥ ∩ Bc(1) if L = span(1), where η̄ =
∑d

i=1 ηi/d denotes the mean of
the vector η.

See Appendix A.7.2 for the proof of this claim.
If L = {0}, let probability measure QL be defined as the distribution of η : = FGb where

b ∼ D. Otherwise if L = span(1), let QL be the distribution of η− η̄1 where again η : = FGb
and b ∼ D. From Lemma A.3.1 we know that QL is supported on M ∩ L⊥ ∩ Bc(1). It only
remains to verify the critical inequality (A.9) to complete the proof of Proposition 3.3.2. Let
η = FGb and η′ = FGb′ with b, b′ being i.i.d having distribution D. Using the fact that
F TF = Im, we can write the inner product of η, η′ as

〈η, η′〉 = bTGTF TFGb′ = 〈Gb, Gb′〉.

The following lemma relates inner product 〈η, η′〉 to 〈b, b′〉, and thereby allows us to derive
inequality (A.9) based on inequality (A.11). Recall that S consists of all vectors in Rm which
have s non-zero entries which are all equal to 1/

√
s where s = b

√
mc.

Lemma A.3.2. For every b, b′ ∈ S, we have

〈Gb, Gb′〉 ≤ 〈b, b′〉
(1− r)2

+
r

s(1− r)2(1− r2)
, (A.13a)

‖Gb‖2
2 ≥

1

(1− r)2
− 2r + r2

s(1− r2)(1− r)2
. (A.13b)

See Appendix A.7.3 for the proof of this claim.
We are now ready to prove inequality (A.9). We consider the two cases L = {0} and

L = span(1) separately.
For L = {0}, recall that r = 1/3 and s = b

√
mc ≥

√
m − 1. Therefore as a direct

consequence of inequality (A.13a), we have

Eη,η∼Qeλ〈η, η
′〉 ≤ Eb,b′∼D exp

(
9λ

4
〈b, b′〉+

27λ

32(
√
m− 1)

)
. (A.14)

Combining inequality (A.14) with (A.11) completes the proof of inequality (A.9).
Let us now turn to the case when L = span(1). The proof is essentially the same as for

L = {0} with only some minor changes. Again our goal is to check inequality (A.9). For
this, we write

Eη,η′∼QLe
λ〈η, η′〉 = Eη,η′∼Q{0}e

λ〈η−η̄1, η′−η̄′1〉 ≤ Eη,η′∼Q{0}e
λ〈η, η′〉.

Here the last step use the fact that 〈η − η̄1, η′ − η̄′1〉 = 〈η, η′〉 − dη̄η̄′ ≤ 〈η, η′〉 where
the last inequality follows from the non-negativity of every entry of vectors η and η′ (this
non-negativity is a consequence of the non-negativity of F and G from Lemma A.3.1 and
non-negativity of vectors in S).

Thus, we have completed the proof of Proposition 3.3.2.
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A.4 Completion of the proof of Theorem 3.3.1(a)

In this appendix, we collect the proofs of lemmas involved in the proof of Theorem 3.3.1(a).

A.4.1 Proof of Lemma A.4.1

Let us start with the statement with this lemma.

Lemma A.4.1. For a standard Gaussian random vector g ∼ N(0, Id), closed convex cone
K ∈ Rd and vector θ ∈ Rd, we have

P
(
± (Z(θ)− E[Z(θ)]) ≥ t

)
≤ exp

(
− t2

2

)
, and (A.15a)

P
(
± (〈θ, ΠKg〉 − E〈θ, ΠKg〉) ≥ t

)
≤ exp

(
− t2

2‖θ‖2
2

)
, (A.15b)

where both inequalities hold for all t ≥ 0.

For future reference, we also note that tail bound (A.15a) implies that the variance is
bounded as

var(Z(θ)) =

∫ ∞
0

P
(∣∣Z(θ)− E[Z(θ)]

∣∣ ≥ √u)du ≤ 2

∫ ∞
0

e−u/2du = 4. (A.16)

To prove Lemma A.4.1, given every vector θ, we claim that the function g 7→ ‖ΠK(θ+g)‖2

is 1-Lipschitz, whereas the function g 7→ 〈θ, ΠKg〉 is a ‖θ‖2-Lipschitz function. From these
claims, the concentration results then follow from Borell’s theorem [19].

In order to establish the Lipschitz property, consider two vectors g, g′ ∈ Rd. By the
triangle inequaliuty non-expansiveness of Euclidean projection, we have∣∣∣‖ΠK(θ + g)‖2 − ‖ΠK(θ + g′)‖2

∣∣∣ ≤ ‖ΠK(θ + g)− ΠK(θ + g′)‖2 ≤ ‖g − g′‖2.

Combined with the Cauchy-Schwarz inequality, we conclude that∣∣〈θ, ΠKg〉 − 〈θ, ΠKg
′〉
∣∣ ≤ ‖θ‖2 ‖ΠKg − ΠKg

′‖2 ≤ ‖θ‖2 ‖g − g′‖2,

which completes the proof of Lemma A.4.1.

A.4.2 Proof of Lemma 3.5.1

We define the random variable Z(θ) : = ‖ΠK(θ + g)‖2 − ‖ΠKg‖2, as well as its posi-
tive and negative parts Z+(θ) = max{0, Z(θ)} and Z−(θ) = max{0,−Z(θ)}, so that
Γ(θ) = EZ(θ) = EZ+(θ) − EZ−(θ). Our strategy is to bound EZ−(θ) from above and
then bound EZ+(θ) from below. The following auxiliary lemma is useful for these purposes:
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Lemma A.4.2. For every closed convex cone K ⊂ Rd and vectors x ∈ K and y ∈ Rd, we
have: ∣∣∣‖ΠK(x+ y)‖2 − ‖ΠK(y)‖2

∣∣∣ ≤ ‖x‖2, and (A.17)

max
{

2〈x, y〉+ ‖x‖2
2, 2〈x, ΠKy〉 − ‖x‖2

2

} (i)

≤ ‖ΠK(x+ y)‖2
2 − ‖ΠK(y)‖2

2

(ii)

≤ 2〈x, ΠKy〉+ ‖x‖2
2.

(A.18)

We return to prove this claim in Appendix A.4.3.
Inequality (A.17) implies that Z(θ) ≥ −‖θ‖2 and thus EZ−(θ) ≤ ‖θ‖2P{Z(θ) ≤ 0}. The

lower bound in inequality (A.18) then implies that P{Z(θ) ≤ 0} ≤ P{〈θ, g〉 ≤ −‖θ‖2
2/2} ≤

exp
(
− ‖θ‖

2
2

8

)
, whence

EZ−(θ) ≤ ‖θ‖2 exp

(
−‖θ‖2

2

8

)
≤ sup

u>0

(
ue−u

2/8
)

=
2√
e
.

Putting together the pieces, we have established the lower bound

EZ(θ) = EZ+(θ)− EZ−(θ) ≥ EZ+(θ)− 2√
e
. (A.19)

The next task is to lower bound the expectation EZ+(θ). By the triangle inequality, we have

‖ΠK(θ + g)‖2 ≤ ‖ΠK(θ + g)− ΠK(g)‖2 + ‖ΠK(g)‖2

≤ ‖θ‖2 + ‖ΠK(g)‖2,

where the second inequality uses non-expansiveness of the projection. Consequently, we have
the lower bound

EZ+(θ) = E
(‖ΠK(θ + g)‖2

2 − ‖ΠKg‖2
2)

+

‖ΠK(θ + g)‖2 + ‖ΠKg‖2

≥ E
(‖ΠK(θ + g)‖2

2 − ‖ΠKg‖2
2)

+

‖θ‖2 + 2‖ΠKg‖2

. (A.20)

Note that inequality (A.18)(i) implies two lower bounds on the difference ‖ΠK(θ + g)‖2
2 − ‖ΠKg‖2

2.
We treat each of these lower bounds in turn, and show how they lead to inequalities (3.55a)
and (3.55b).

Proof of inequality (3.55a): Inequality (A.20) and the first lower bound term from in-
equality (A.18)(i) imply that

EZ+(θ) ≥ E
(2〈θ, g〉+ ‖θ‖2

2)
+

‖θ‖2 + 2‖ΠKg‖2

≥ E
‖θ‖2

2

‖θ‖2 + 2‖ΠKg‖2

I{〈θ, g〉 ≥ 0}.

Jensen’s inequality (and the fact that P{〈θ, g〉 ≥ 0} = 1/2) now allow us to deduce

EZ+(θ) ≥ P {〈θ, g〉 ≥ 0} ‖θ‖2
2

(
‖θ‖2 +

2E‖ΠKg‖2

P {〈θ, g〉 ≥ 0}

)−1

=
‖θ‖2

2

2‖θ‖2 + 8E‖ΠKg‖2

and this gives inequality (3.55a).
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Proof of inequality (3.55b): Putting inequality (A.20), the second term on the left hand
side of inequality (A.18)(i), along with the fact that 〈θ, EΠKg〉 ≥ ‖θ‖2

2 together guarantees
that

EZ+(θ) ≥ E
(2〈θ, ΠKg〉 − ‖θ‖2

2)
+

‖θ‖2 + 2‖ΠKg‖2

≥ E
〈θ, EΠKg〉 − ‖θ‖2

2

‖θ‖2 + 2‖ΠKg‖2

I
{
〈θ, ΠKg〉 >

1

2
〈θ, EΠKg〉

}
.

Now introducing the event D : =
{
〈θ, ΠKg〉 > 〈θ, EΠKg〉/2

}
, Jensen’s inequality implies

that

EZ+(θ) ≥ P(D) E
〈θ, EΠKg〉 − ‖θ‖2

2

‖θ‖2 + 2E‖ΠKg‖2
P(D)

. (A.21)

The concentration inequality (A.15b) from Lemma A.4.1 gives us that

P(D) ≥ P
{
〈θ, ΠKg〉 >

1

2
〈θ, EΠKg〉

}
≥ 1− exp

(
−〈θ, EΠKg〉2

8‖θ‖2
2

)
. (A.22)

Inequality (3.55b) now follows by combining inequalities (A.19), (A.21) and (A.22).

A.4.3 Proof of Lemma A.4.2

Let us turn to prove Lemma A.4.2. Inequality (A.17) is a standard Lipschitz property of
projection onto a closed convex cone. Turning to inequality (A.18), recall the polar cone
K∗ : = {z | 〈z, θ〉 ≤ 0, ∀ θ ∈ K}, as well as the Moreau decomposition (3.18)—namely,
z = ΠK(z) + ΠK∗(z). Using this notation, we have

‖ΠK(x+ y)‖2
2 − ‖ΠKy‖2

2 = ‖x+ y − ΠK∗(x+ y)‖2
2 − ‖y − ΠK∗y‖2

2

= ‖x‖2
2 + 2〈x, y − ΠK∗(x+ y)〉+ ‖y − ΠK∗(x+ y)‖2

2 − ‖y − ΠK∗y‖2
2.

Since ΠK∗(y) is the closest point in K∗ to y, we have ‖y − ΠK∗(x + y)‖2 ≥ ‖y − ΠK∗(y)‖2,
and hence

‖ΠK(x+ y)‖2
2 − ‖ΠKy‖2

2 ≥ ‖x‖2
2 + 2〈x, y − ΠK∗(x+ y)〉. (A.23)

Since x ∈ K and ΠK∗(x + y) ∈ K∗, we have 〈x, ΠK∗(x + y)〉 ≤ 0, and hence, inequal-
ity (A.23) leads to the bound (i) in equation (A.18). In order to establish inequality (ii) in
equation (A.18), we begin by rewriting expression (A.23) as

‖ΠK(x+ y)‖2
2 − ‖ΠKy‖2

2 ≥ ‖x‖2
2 + 2〈x, y − ΠK∗y〉+ 2〈x, ΠK∗y − ΠK∗(x+ y)〉.

Applying the Cauchy-Schwarz inequality to the final term above and using the 1-Lipschitz
property of z 7→ ΠK∗z, we obtain:

〈x, ΠK∗y − ΠK∗(x+ y)〉 ≥ −‖x‖2‖ΠK∗y − ΠK∗(x+ y)‖2 ≥ −‖x‖2
2,
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which establishes the upper bound of inequality (A.18).
Finally, in order to prove the lower bound in inequality (A.18), we write

‖ΠK(x+ y)‖2
2 − ‖ΠKy‖2

2

=‖x+ y − ΠK∗(x+ y)‖2
2 − ‖x+ y − ΠK∗y − x‖2

2

=‖x+ y − ΠK∗(x+ y)‖2
2 − ‖x+ y − ΠK∗y‖2

2 + 2〈x, x+ y − ΠK∗y〉 − ‖x‖2
2.

Since the vector ΠK∗(x + y) corresponds to the projection of x + y onto K∗, we have ‖x +
y − ΠK∗(x+ y)‖2 ≤ ‖x+ y − ΠK∗y‖2 and thus

‖ΠK(x+ y)‖2
2 − ‖ΠKy‖2

2 ≤ ‖x‖2
2 + 2〈x, ΠKy〉,

which completes the proof of inequality (A.18).

A.5 Completion of the proof of Theorem 3.3.1(b)

In this appendix, we collect the proofs of lemmas involved in the proof of Theorem 3.3.1(b),
corresponding to the lower bound on the GLRT performance.

A.5.1 Proof of Lemma A.5.1

Let us first state Lemma A.5.1 and give a proof of it.

Lemma A.5.1. For any constant a ≥ 1 and for every closed convex cone K 6= {0}, we have

0 ≤ Γ(θ) ≤ 2a‖θ‖2
2 + 4〈θ, EΠKg〉
E‖ΠKg‖2

+ b‖θ‖2 for all θ ∈ K, (A.24a)

where

b : = 3 exp(−(E‖ΠKg‖2)2

8
) + 24 exp(−a

2‖θ‖2
2

16
). (A.24b)

In order to prove that Γ(θ) ≥ 0, we first introduce the convenient shorthand notation
v1 : = ΠK∗(θ + g) and v2 : = ΠK∗g. Recall that K∗ denotes the polar cone of K defined
in expression (3.17). With this notation, the the Moreau decomposition (3.18) then implies
that

‖ΠK(θ + g)‖2
2 − ‖ΠKg‖2

2 = ‖θ + g − v1‖2
2 − ‖g − v2‖2

2

= ‖θ‖2
2 + 2〈θ, g − v1〉+ ‖g − v1‖2

2 − ‖g − v2‖2
2.

The right hand side above is greater than ‖θ‖2
2+2〈θ, g−v1〉 because ‖g−v1‖2

2 ≥ minv∈K∗ ‖g−
v‖2

2 = ‖g − v2‖2
2. From the fact that E〈θ, g〉 = 0 and 〈θ, v〉 ≤ 0 for all v ∈ K∗, we have

Γ(θ) ≥ 0.
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Now let us prove the upper bound for expected difference Γ(θ). Using the convenient
shorthand notation Z(θ) : = ‖ΠK(θ + g)‖2 − ‖ΠKg‖2, we define the event

B : = {‖ΠKg‖2 ≥
1

2
E‖ΠKg‖2}, where g ∼ N(0, Id).

Our proof is then based on the decomposition Γ(θ) = EZ(θ) = EZ(θ)I(Bc) + EZ(θ)I(B).
In particular, we upper bound each of these two terms separately.

Bounding E[Z(θ)I(Bc)]: The analysis of this term is straightforward: inequality (A.17)
from Lemma A.4.2 guarantees that Z(θ) ≤ ‖θ‖2, whence

EZ(θ)I(Bc) ≤ ‖θ‖2P(Bc). (A.25)

Bounding E[Z(θ)I(B)]: Turning to the second term, we have

EZ(θ)I(B) ≤ EZ+(θ)I(B)

= E
(‖ΠK(θ + g)‖2

2 − ‖ΠKg‖2
2)

+

‖ΠK(θ + g)‖2 + ‖ΠKg‖2

I(B) ≤ E
(‖ΠK(θ + g)‖2

2 − ‖ΠKg‖2
2)

+

‖ΠKg‖2

I(B).

On event B, we can lower bound quantity ‖ΠKg‖2 with E‖ΠKg‖2/2 thus

E
(‖ΠK(θ + g)‖2

2 − ‖ΠKg‖2
2)

+

‖ΠKg‖2

I(B) ≤ E
(‖ΠK(θ + g)‖2

2 − ‖ΠKg‖2
2)

+ I(B)

E‖ΠKg‖2/2︸ ︷︷ ︸
: =T1

. (A.26)

Next we use inequality (A.18) to bound the numerator of the quantity T1, namely

E
(
‖ΠK(θ + g)‖2

2 − ‖ΠKg‖2
2

)+ I(B) ≤ E
(
2〈θ, ΠKg〉+ ‖θ‖2

2

)+ I(B)

≤ E
(
2〈θ, ΠKg〉+ a‖θ‖2

2

)+ I(B),

for every constant a ≥ 1. To further simplify notation, introduce event C : = {θTΠKg ≥
−a‖θ‖2

2/2} and by definition, we obtain

E
(
2〈θ, ΠKg〉+ a‖θ‖2

2

)+ I(B) = E
(
2〈θ, ΠKg〉+ a‖θ‖2

2

)
I(B ∩ C)

≤ a‖θ‖2
2 + 2E[〈θ, ΠKg〉I(B ∩ C)]. (A.27)

The right hand side of inequality (A.27) consists of two terms. The first term a‖θ‖2
2 is a

constant, so that we only need to further bound the second term 2E〈θ, ΠKg〉I(B ∩ C). We
claim that

E[〈θ, ΠKg〉I(B ∩ C)] ≤ E〈θ, ΠKg〉+ ‖θ‖2E‖ΠKg‖2(6
√

P(Cc) + P(Bc)/2). (A.28)
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Taking inequality (A.28) as given for the moment, combining inequalities (A.26), (A.27)
and (A.28) yields

EZ+(θ)I(B) ≤ T1 ≤
2a‖θ‖2

2 + 4E〈θ, ΠKg〉
E‖ΠKg‖2

+ ‖θ‖2(24
√

P(Cc) + 2P(Bc)). (A.29)

As a summary of the above two parts—namely inequalities (A.25) and (A.29), if we
assume inequality (A.28), we have

Γ(θ) ≤ 2a‖θ‖2
2 + 4E〈θ, ΠKg〉
E‖ΠKg‖2

+ ‖θ‖2(24
√

P(Cc) + 3P(Bc)). (A.30)

Based on expression (A.30), the last step in proving Lemma A.5.1 is to control the probabil-
ities P(Cc) and P(Bc) respectively. Using the fact that 〈θ, ΠKg〉 = 〈θ, (g − ΠK∗g)〉 ≥ 〈θ, g〉
and the concentration of 〈θ, g〉, we have

P(Cc) = P(〈θ, ΠKg〉 < −
a

2
‖θ‖2

2) ≤ P(〈θ, g〉 < −a
2
‖θ‖2

2) ≤ exp(−a
2‖θ‖2

2

8
),

and P(Bc) = P(‖ΠKg‖2 <
1

2
E‖ΠKg‖2) ≤ exp(−(E‖ΠKg‖2)2

8
).

where the second inequality follows directly from concentration result in Lemma A.4.1
(A.15a). Substituting the above two inequalities into expression (A.30) yields Lemma A.5.1.

So it is only left for us to show inequality (A.28). To see this, first notice that

E[〈θ, ΠKg〉I(B ∩ C)] = E〈θ, ΠKg〉 − E〈θ, ΠKg〉I(Cc ∪ Bc). (A.31)

The Cauchy-Schwarz inequality and triangle inequality allow us to deduce

−E〈θ, ΠKg〉I(Cc ∪ Bc) = 〈θ, −E[ΠKgI(Cc ∪ Bc)]〉
≤ ‖θ‖2‖E[ΠKgI(Cc ∪ Bc)]‖2

≤ ‖θ‖2

{
‖EΠKgI(Cc)‖2 + ‖EΠKgI(Bc)‖2

}
.

Jensen’s inequality further guarantees that

−E〈θ, ΠKg〉I(Cc ∪ Bc) ≤ ‖θ‖2

{
E[‖ΠKg‖2I(Cc)︸ ︷︷ ︸

: =T2

] + E[‖ΠKg‖2I(Bc)︸ ︷︷ ︸
: =T3

]
}
, (A.32)

By definition, on event Bc, we have ‖ΠKg‖2 ≤ E‖ΠKg‖2/2, and consequently

T3 ≤
E‖ΠKg‖2P(Bc)

2
. (A.33)

Turning to the quantity T2, applying Cauchy-Schwartz inequality yields

T2 ≤
√

E‖ΠKg‖2
2

√
EI(Cc) =

√
(E‖ΠKg‖2)2 + var(‖ΠKg‖2)

√
P(Cc).
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The variance term can be bounded as in inequality (A.16) which says that var(‖ΠKg‖2) ≤ 4.
From inequality (3.21), for every non-trivial cone (K 6= {0}), we are guaranteed that

E‖ΠKg‖2 ≥ 1/
√

2π, and hence var(‖ΠKg‖2) ≤ 8π(E‖ΠKg‖2)2. Consequently, the quantity
T2 can be further bounded as

T2 ≤
√

1 + 8πE‖ΠKg‖2

√
P(Cc) ≤ 6E‖ΠKg‖2

√
P(Cc). (A.34)

Putting together inequalities (A.33), (A.34) and (A.32) yields

−E[〈θ, ΠKg〉I(Cc ∪ (C ∩ Bc))] ≤ ‖θ‖2E‖ΠKg‖2(6
√

P(Cc) + P(Bc)/2),

which validates claim (A.28) when combined with inequality (A.31). We finish the proof of
Lemma A.5.1.

A.5.2 Proof of inequality (3.59)

Now let us turn to the proof of inequality (3.59). First notice that if the radius satisfies
ε2 ≤ bρδ

2
LR({0}, K), then there exists some θ ∈ H1 with ‖θ‖2 = ε that satisfies

‖θ‖2
2 ≤ bρE‖ΠKg‖2 and 〈θ, EΠKg〉 ≤

√
bρE‖ΠKg‖2. (A.35)

Setting a = 4/
√
bρ ≥ 1 in inequality (A.24a) yields

Γ(θ) ≤
8‖θ‖2

2/
√
bρ + 4〈θ, EΠKg〉
E‖ΠKg‖2

+ b‖θ‖2

where b : = 3 exp(− (E‖ΠKg‖2)2

8
) + 24 exp(−‖θ‖

2
2

bρ
). Now we only need to bound the two terms

in the upper bound separately. First, note that inequality (A.35) yields

8‖θ‖2
2/
√
bρ + 4〈θ, EΠKg〉
E‖ΠKg‖2

≤ 12
√
bρ. (A.36)

On the other hand, again by applying inequality (A.35), it is straightforward to verify the
following two facts that

‖θ‖2 exp(−(E‖ΠKg‖2)2

8
) ≤

√
bρE‖ΠKg‖2 exp(−(E‖ΠKg‖2)2

8
)

≤
√
bρ max

x∈(0,∞)

√
x exp(−x

2

8
) =

√
bρ

(
2

e

)1/4

,

and ‖θ‖2 exp(−‖θ‖
2
2

bρ
) ≤ sup

x∈(0,∞)

x exp(−x
2

bρ
) =

√
bρ
2e
.

Combining the above two inequalities ensures an upper bound for product b‖θ‖2 and directly
leads to upper bound of quantity Γ(θ), namely

Γ(θ) ≤ 12
√
bρ + 3

√
bρ

(
2

e

)1/4

+ 24

√
bρ
2e
,

With the choice of bρ, we established inequality (3.59).
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A.5.3 Proof of Lemma 3.5.2

In order to prove this result, we first define random variable F : = ‖ΠKg‖2
2 − m, where

m : = E‖ΠKg‖2
2 and σ̃2 : = var(F ). We make use of the Theorem 2.1 in Goldstein et al. [65]

which shows that the distribution of F and Gaussian distribution Z ∼ N(0, σ̃2) are very
close, more specifically, the Theorem says

‖F − Z‖TV ≤
16

σ̃2

√
m ≤ 8

E‖ΠKg‖2

. (A.37)

In the last inequality, we use the facts that σ̃2 ≥ 2m and
√

E‖ΠKg‖2
2 ≥ E‖ΠKg‖2.

It is known that the quantity ‖ΠKg‖2
2 is distributed as a mixture of χ2 distributions(see

e.g., [117, 65])—in particular, we can write

‖ΠKg‖2
2

law
=

VK∑
i=1

Xi = WK + VK , WK =

VK∑
i=1

(Xi − 1),

where each {Xi}i≥1 is an i.i.d. sequence χ2
1 variables, independent of VK . Applying the

decomposition of variance yields

σ̃2 = var(VK) + 2E‖ΠKg‖2
2 ≥ 2m.

We can write the probability P(‖ΠKg‖2 > E‖ΠKg‖2) as

P(‖ΠKg‖2 > E‖ΠKg‖2) = P(‖ΠKg‖2
2 − E‖ΠKg‖2

2 > (E‖ΠKg‖2)2 − E‖ΠKg‖2
2) ≥ P(F > 0).

So if E‖ΠKg‖2 ≥ 128, then inequality (A.37) ensures that dTV (F,N) ≤ 1/16, and hence

P(F > 0) ≥ P(Z > 0)− ‖F − Z‖TV ≥
7

16
.

We finish the proof of Lemma 3.5.2.

A.6 Completion of the proof of Theorem 3.3.2

In this appendix, we collect the proofs of various lemmas used in the proof of Theorem 3.3.2.

A.6.1 Proof of Lemma 3.5.3

For every probability measure Q supported on K ∩Bc(1), let vector θ be distributed accord-
ingly to measure εQ then it is supported on K ∩Bc(ε). Consider a mixture of distributions,

P1(y) = Eθ (2π)−d/2 exp(−‖y − θ‖
2
2

2
). (A.38)
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Let us first control the χ2 distance between distributions P1 and P0 : = N(0, Id). Direct
calculations yield

χ2(P1,P0) + 1 = EP0

(
P1

P0

)2

= EP0

(
Eθ exp{−‖y − θ‖

2
2

2
+
‖y‖2

2

2
}
)2

= EP0

(
Eθ exp{〈y, θ〉 − ‖θ‖

2
2

2
}
)2

.

Suppose random vector θ′ is an independent copy of random vector θ, then

χ2(P1,P0) + 1 = EP0Eθ,θ′ exp{〈y, θ + θ′〉 − ‖θ‖
2
2 + ‖θ′‖2

2

2
}

= Eθ,θ′ exp{‖θ + θ′‖2
2

2
− ‖θ‖

2
2 + ‖θ′‖2

2

2
}

= Eθ,θ′ exp(〈θ, θ′〉)
= E exp(ε2〈η, η′〉), (A.39)

where the second step uses the fact the moment generating function of multivariate normal
distribution. As we know, the testing error is always bounded below by 1 − ‖P1,P0‖TV, so
by the relation between the χ2 distance and TV distance, we have:

testing error ≥ 1− 1

2

√
E exp (ε2〈η, η′〉)− 1,

which completes our proof.

A.6.2 Proof of Lemma A.6.1

Let us first provide a formal statement of Lemma A.6.1 and then prove it.

Lemma A.6.1. Letting η and η′ denote an i.i.d pair of random variables drawn from the
distribution Q defined in equation (3.62), we have

Eη,η′ exp(ε2〈η, η′〉) ≤ 1

a2
exp

(
5ε2‖EΠKg‖2

2

(E‖ΠKg‖2)2
+

40ε4E(‖ΠKg‖2
2)

(E‖ΠKg‖2)4

)
, (A.40)

where a : = P(‖ΠKg‖2 ≥ 1
2
E‖ΠKg‖2) and ε > 0 satisfies the inequality ε2 ≤ (E‖ΠKg‖2)2/32.

To prove this result, we use Borell’s lemma [19] which states that for a standard Gaussian
vector Z ∼ N(0, Id) and a function f : Rd → R which is L-Lipschitz, we have

E exp(af(Z)) ≤ exp(aEf(Z) + a2L2/2) (A.41)

for every a ≥ 0.
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Let g, g′ be i.i.d standard normal vectors in Rd. Let

A(g) : = {‖ΠKg‖2 >
1

2
E‖ΠKg‖2} and A(g′) : = {‖ΠKg

′‖2 >
1

2
E‖ΠKg

′‖2}

By definition of the probability measure Q in expression (3.62), we have

Eη,η′ exp(ε2〈η, η′〉) = Eg,g′
[

exp

(
4ε2〈ΠKg, ΠKg

′〉
E‖ΠKg‖2E‖ΠKg′‖2

) ∣∣∣ A(g) ∩ A(g′)

]

=
1

P(A(g) ∩ A(g′))
Eg,g′ exp

(
4ε2〈ΠKg, ΠKg

′〉
E‖ΠKg‖2E‖ΠKg′‖2

)
I(A(g) ∩ A(g′)).

Using the independence of g, g′ and non-negativity of the exponential function, we have

Eη,η′ exp(ε2〈η, η′〉) ≤ 1

P(A(g))2
Eg,g′ exp

(
4ε2〈ΠKg, ΠKg

′〉
E‖ΠKg‖2E‖ΠKg′‖2

)
︸ ︷︷ ︸

: =T1

. (A.42)

To simplify the notation, we write λ : = 4ε2/(E‖ΠKg‖2)2 so that

T1 = Eg,g′ exp (λ〈ΠKg, ΠKg
′〉) . (A.43)

Now for every fixed value of g, the function h 7→ 〈ΠKg, ΠKh〉 is Lipschitz with Lipschitz
constant equal to ‖ΠKg‖2. This is because

|〈ΠKg, ΠKh〉 − 〈ΠKg, ΠKh
′〉| ≤ ‖ΠKg‖2‖ΠKh− ΠKh

′‖2 ≤ ‖ΠKg‖2‖h− h′‖2,

where we used Cauchy-Schwartz inequality and the non-expansive property of convex pro-
jection. As a consequence of inequality (A.41) and Cauchy-Schwartz inequality, the term T1

can be upper bounded as

T1 ≤ Eg exp

(
λ〈ΠKg, EΠKg

′〉+
λ2‖ΠKg‖2

2

2

)
≤
√
Eg exp (2λ〈ΠKg, EΠKg′〉)︸ ︷︷ ︸

: =T2

√
Eg exp (λ2‖ΠKg‖2

2)︸ ︷︷ ︸
: =T3

. (A.44)

We now control T2, T3 separately. For T2, note again that h 7→ 〈ΠKh, EΠKg
′〉 is a Lipschitz

function with Lipschitz constant equal to ‖EΠKg
′‖2. Inequality (A.41) implies therefore that

T2 ≤
√

exp (2λ〈EΠKg, EΠKg′〉+ 2λ2‖EΠKg′‖2
2). (A.45)

To control quantity T3, we use a result from [3, Sublemma E.3] on the moment generating
function of ‖ΠKg‖2 which gives

T3 ≤

√
exp

(
λ2E(‖ΠKg‖2

2) +
2λ4E(‖ΠKg‖2

2)

1− 4λ2

)
, whenever λ < 1/4. (A.46)
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Because of the assumption that ε2 ≤ (E‖ΠKg‖2)2/32, we have λ ≤ 1/8 < 1/4. Therefore
putting all the pieces together as above, we obtain

Eη,η′ exp(ε2〈η, η′〉) ≤ 1

P(A(g))2
exp

(
(λ+ λ2)‖EΠKg‖2

2 +
λ2E(‖ΠKg‖2

2)

2
+
λ4E(‖ΠKg‖2

2)

1− 4λ2

)
≤ 1

P(A(g))2
exp

(
1.25λ‖EΠKg‖2

2 + 2.5λ2E(‖ΠKg‖2
2)
)

=
1

P(A(g))2
exp

(
5ε2‖EΠKg‖2

2

(E(‖ΠKg‖2
2)

+
40ε4E(‖ΠKg‖2

2)

(E‖ΠKg‖2)4
)

)
.

This completes the proof of inequality (A.40).

A.7 Completion of the proof of Proposition 3.3.2 and

the monotone cone

In this appendix, we collect various results related to the monotone cone, and the proof of
Proposition 3.3.2.

A.7.1 Proof of Lemma 3.3.1

So as to simplify notation, we define ξ = ΠKg, with jth coordinate denoted as ξj. Moreover,
for a given vector g ∈ Rd and integers 1 ≤ u < v ≤ d, we define the u to v average as

ḡuv : =
1

v − u+ 1

v∑
j=u

gj.

To demonstrate an upper bound for the inner product inf
η∈K∩Sd−1

〈η, EΠKg〉, it turns out that

it is enough to take η = 1√
2
(−1, 1, 0, . . . , 0) ∈ K ∩ Sd−1 and uses the fact that

inf
η∈K∩Sd−1

〈η, EΠKg〉 ≤
1√
2
E(ξ2 − ξ1). (A.47)

So it is only left for us to analyze E(ξ2 − ξ1) which actually has an explicit form based on
the explicit representation of projection to the monotone cone (see Robertson et al. [121],
Chapter 1) where

ξi = λi − λ̄, λi = max
u≤j

min
v≥j

ḡuv. (A.48)

This is true because projecting to cone K = M ∩ L⊥ can be written into two steps ΠKg =
ΠL⊥(ΠMg) and projecting to subspace L⊥ only shifts the vector to be mean zero.
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We claim that the difference satisfies

ξ2 − ξ1 ≤ max
v≥2
|ḡ2v|+ max

v≥1
|ḡ1v|. (A.49)

To see this, as a consequence of expression (A.48), we have

ξ2 − ξ1 = max{min
v≥2

ḡ1v, min
v≥2

ḡ2v} −min
v≥1

ḡ1v.

The right hand side above only takes value in set {minv≥2 ḡ1v−g1, 0, minv≥2 ḡ2v−minv≥1 ḡ1v}
where the last two values agree with bound (A.49) obviously while the first value can be
written as

min
v≥2

ḡ1v − g1 = min
v≥2

(
1

v

v∑
i=2

gi − (1− 1

v
)g1

)
= min

v≥2
(1− 1

v
)(ḡ2v − g1) ≤ |ḡ2v|+ |g1|,

which also agrees with inequality (A.49).
Next let us prove that for every j = 1, 2, we have

Emax
v≥j
|ḡjv| < 20

√
2, (A.50)

and combine this fact with expressions (A.49) and (A.47) gives us inf
η∈K∩Sd−1

〈η, EΠKg〉 ≤ 40

which validates the conclusion in Lemma 3.3.1.
It is only left for us to verify inequality (A.50). First as we can partition the interval

[j, d] into k smaller intervals where each smaller interval is of length 2m except the last one,
then

E max
j≤v≤d

|ḡjv| = E max
1≤m≤k

max
v∈Im
|ḡjv| ≤

k∑
m=1

Emax
v∈Ik
|ḡjv|, (A.51)

where Im = [2m + j − 2, 2m+1 + j − 3], 1 ≤ m < k, the number of intervals k and length of
Ik are chosen to make those intervals sum up to d.

Given index 2m+j−2 ≤ v ≤ 2m+1 +j−3, random variables ḡjv are Gaussian distributed
with mean zero and variance 1/(v − j + 1). Suppose we have Gaussian random variable Xv

with mean zero and variance σ2
m = 1/(2m − 1) and the covariance satisfies cov(Xv, Xv′) =

cov(ḡjv, ḡjv′). Since σ2
m ≥ 1/(v−j+1), the variable maxv∈Im |ḡjv| is stochastically dominated

by the maximum max2m≤v≤2m+1−1 |Xv|, and therefore

k∑
m=1

Emax
v∈Im
|ḡjv| ≤

k∑
m=1

E max
2m≤v≤2m+1−1

|Xv|.

Applying the fact that for t ≥ 2 number of Gaussian random variable εi ∼ N(0, σ2), we have
Emax1≤i≤t |εi| ≤ 4σ

√
2 log t which gives

k∑
m=1

Emax
v∈Im
|ḡjv| ≤

k∑
m=1

4σm
√

2 log(2m) = 4
√

2 log 2

(
k∑

m=1

√
m

2m − 1

)
. (A.52)
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The last step is to control the sum
∑k

m=1

√
m

2m−1
. There are many ways to show that it is

upper bounded by some constant. One crude way is use the fact that
√
m

2m−1
≤ 2m/4 whenever

m ≥ 5, therefore we have

k∑
m=1

√
m

2m − 1
=

4∑
m=1

√
m

2m − 1
+

k∑
m=5

√
m

2m − 1
<

4∑
m=1

√
m

2m − 1
+

k∑
m=5

1

2m/4

<
4∑

m=1

√
m

2m − 1
+

2−5/4

1− 2−1/4
< 6,

which validates inequality (A.50) when combined with inequalities (A.51) and (A.52). This
completes the proof of Lemma 3.3.1.

A.7.2 Proof of Lemma A.3.1

The proof of Lemma A.3.1 involves two parts. First, we define the matrices G,F . Then we
prove that the distribution of η has the right support where we make use of Lemma A.3.2.

As stated, matrix G is a lower triangular matrix satisfying (A.12a). Let us now specify
the matrix F . Recall that we denote δ : = r−2 and r : = 1/3. To define matrix F , let us
first define a partition of [d] into m consecutive intervals

{
I1, . . . , Im

}
with m specified in

expression (A.7) and the length of each interval |Ii| = `i where `i is defined as

`i : = bδ − 1

δi
(d+ logδ d+ 3)c, 1 ≤ i ≤ m− 1, (A.53)

and `m : = d−
∑m−1

i=1 `i.
Following directly from the definition (A.53), each length `i ≥ 1 and `i is a decreasing

sequence with regard to i. Also `i satisfies the following

`1 = bδ − 1

δ
(d+ logδ d+ 3)c < d and `i ≥ δ`i+1, for 1 ≤ i ≤ m− 1, (A.54)

where the first inequality holds since as
√

log(ed) ≥ 14, we have (δ − 1)(logδ d+ 3) ≤ d and
the last inequality follows from the fact that babc ≥ abbc for positive integer a and b ≥ 0
(because abbc is an integer that is smaller than ab).

We are now ready to define the d×m matrix F . We take

F (i, j) =

{
1√
`j

i ∈ Ij,

0 otherwise.
(A.55)

It is easy to check that matrix F satisfies F TF = Im which validates inequality (A.12b).
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First we show that both η = FGb and η− η̄1 belong to M. The i-th coordinate of η can
be written as

ηi =
1√
`j

j∑
t=1

rj−tbt, ∀ i ∈ Ij.

Therefore we can denote uj as the value of ηi for i ∈ Ij. To establish monotonicity, we only
need to compare the value in the consecutive blocks. Direct calculation of the consecutive
ratio yields

uj+1

uj
=
r(
∑j

t=1 r
j−tbt) + bj+1√
`j+1

√
`j∑j

t=1 r
j−tbt

≥ r

√
`j
`j+1

≥ 1,

where we used the non-negativity of coordinates of vector b and the last inequality follows
from inequality (A.54) and δ = r−2. The monotonicity of η − η̄1 thus inherits directly from
the monotonicity of η.

To complete the proof of Lemma A.3.1, we only need to prove lower bounds on ‖η‖2 and
‖η − η̄‖2. For these, we shall use inequality (A.13b) of Lemma A.3.2.

Proof of the bound ‖η‖2 ≥ 1: Recall that r = 1/3 and as a direct consequence of
inequality (A.13b) in Lemma A.3.2, we have

〈η, η〉 = ‖Gb‖2
2 ≥

9

4
− 63

32s
> 1.96, (A.56)

where the last step follows form the fact that s = b
√
mc ≥ 7. Therefore, the norm condition

holds so η is supported on M ∩ LT ∩Bc(1).

Proof of the bound ‖η− η̄1‖2 ≥ 1: The norm ‖η− η̄1‖2
2 has the following decomposition

where

‖η − η̄1‖2
2 = ‖η‖2

2 − d(η̄)2.

We claim that d(η̄)2 ≤ 0.2. If we take this for now, combining with inequality (A.56) which
says ‖η‖2

2 is greater than 1.96, we can deduce that ‖η− η̄1‖2
2 ≥ 1. So it suffices to verify the

claim d(η̄)2 ≤ 0.2. Recall that η = FGb. Direct calculation yields

dη̄ = 〈1, η〉 = 1T · FGb =
m∑
k=1

bk

m∑
i=k

√
`ir

i−k

︸ ︷︷ ︸
: =ak

.
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Plugging into the definitions of r and `i guarantees that

ak ≤
m∑
i=k

√
(δ − 1)(d+ logδ d+ 3)

δi
1

δ(i−k)/2
=
√

(δ − 1)(d+ logδ d+ 3)δk
m∑
i=k

δ−i

≤

√
(d+ logδ d+ 3)

(δ − 1)δk−2
,

where the last step uses the summability of a geometric sequence—namely
∑m

i=k δ
−i ≤

δ−k+1/(δ− 1). Now for every vector b, our goal is to control
∑
akbk. Recall that every vector

b has s non-zero entries which equal to 1/
√
s where s = b

√
mc. Since ak decreases with k,

this inner product
∑
akbk is largest when the first s coordinates of b are non-zero, therefore

dη̄ ≤
s∑

k=1

ak
1√
s
≤ 1√

s

√
δ2(d+ logδ d+ 3)

δ − 1

s∑
k=1

1

δk/2
≤ 1√

s

√
δ2(d+ logδ d+ 3)

δ − 1

1√
δ − 1

,

and thus we have

d(η̄)2 ≤ 1√
m− 1

(d+ logδ d+ 3)

d

δ2

(δ − 1)(
√
δ − 1)2

≤ 81(d+ logδ d+ 3)

32d(
√
m− 1)

< 0.2,

where the last step uses
√
m ≥ 8. Therefore, the norm condition also holds so η − η̄1 is

supported on M ∩ LT ∩Bc(1).
Thus, we have completed the proof of Lemma A.3.1.

A.7.3 Proof of Lemma A.3.2

By definition of the matrix G, we have

〈Gb, Gb′〉 =
m∑
t=1

(Gb)t(Gb
′)t =

m∑
t=1

(bt + rbt−1 + · · ·+ rt−1b1)(b′t + rb′t−1 + · · ·+ rt−1b′1)

=
m∑
t=1

t∑
u=1

t∑
v=1

r2t−u−vbub
′
v.

Switching the order of summation yields

〈Gb, Gb′〉 =
m∑
u=1

m∑
v=1

bub
′
v

m∑
t=max{u,v}

r2t−u−v

=
m∑
u=1

m∑
v=1

bub
′
v

ru+v

r2 max{u,v} − r2m+2

1− r2

=
1

1− r2

m∑
u=1

m∑
v=1

bub
′
vr
|u−v|

︸ ︷︷ ︸
: =∆1

− 1

1− r2

m∑
u=1

m∑
v=1

bub
′
vr

2m+2−u−v

︸ ︷︷ ︸
: =∆2

. (A.57)
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We bound the two terms ∆1 and ∆2 separately.
Recall the fact that b, b′ belong to S, so there are exactly s = b

√
mc non-zero entry in

both b and b′ and these entries equal to 1/
√
s. The summation defining ∆1 is not affected

by the permutation of coordinates, so that we can assume without loss of generality that the
indices of non-zero entries in b are indexed by {1, . . . , s}, and that the indices of non-zero
entries in b′ are indexed by {k, k + 1, . . . , k + s− 1} for some 1 ≤ k ≤ m+ 1− s.

We split our proof into two cases depending on whether k ≤ s or k > s.

Case 1 (k ≤ s): The summation ∆1 can be written as

s(1− r2)∆1 = s

m∑
u=1

m∑
v=1

bub
′
vr
|u−v| =

s∑
u=1

k+s−1∑
v=k

r|u−v|.

Direct calculation yields

s(1− r2)∆1 =
k−1∑
u=1

k+s−1∑
v=k

rv−u +
s∑

u=k

u∑
v=k

ru−v +
s∑

u=k

k+s−1∑
v=u+1

rv−u

=
(1− rs)(r − rk)

(1− r)2
+
s− k + 1

1− r
− r

(1− r)2
(1− rs−k+1) +

r(s− k + 1)

1− r
− rk − rs+1

(1− r)2

=
1 + r

1− r
(s− k + 1) +

rk(rs + rs+2 − 2)

(1− r)2
.

Notice the following two facts that

〈b, b′〉 =
s− k + 1

s
and

−2r

(1− r)2
≤ rk(rs + rs+2 − 2)

(1− r)2
< 0,

so that

1

(1− r)2
〈b, b′〉+

−2r

s(1− r2)(1− r)2
≤ ∆1 ≤

1

(1− r)2
〈b, b′〉. (A.58)

Case 2 (k > s): The summation ∆1 satisfies the bounds

s(1− r2)∆1 = s

m∑
u=1

m∑
v=1

bub
′
vr
|u−v| =

s∑
u=1

k+s−1∑
v=k

rv−u =
rk−s(1− rs)2

(1− r)2
.

Since k − s ≥ 1, we have 〈b, b′〉 = 0 and consequently

∆1 ≤
1

(1− r)2
〈b, b′〉+

r

s(1− r2)(1− r)2
. (A.59)
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Combining inequalities (A.57), (A.58) and (A.59), we can deduce that

〈Gb, Gb′〉 ≤ ∆1 ≤
1

(1− r)2
〈b, b′〉+

r

s(1− r2)(1− r)2
,

which validates inequality (A.13a).
On the other hand, when b = b′, the summation ∆2 is the largest when the non-zero

entries of b lie on coordinates m− s+ 1, . . . ,m. Thus we have

s(1− r2)∆2 ≤
m∑

u=m−s+1

m∑
v=m−s+1

r2m+2−u−v =
r2(1− rs)2

(1− r)2
<

r2

(1− r)2
. (A.60)

Combining decomposition (A.57) with the inequalities (A.58), we can deduce that

〈Gb, Gb〉 ≤ 1

(1− r)2
− 2r

s(1− r2)(1− r)2
− r2

s(1− r2)(1− r)2
,

where we use the fact that 〈b, b〉 = 1. This completes the proof of inequality (A.13b).
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Appendix B

Proofs for Chapter 4

This chapter is organized as follows. We complete the proofs of Theorems 4.3.1 and 4.3.2
in Subsections B.1.1 and B.1.2 respectively. The proof of Inequality (4.21) in Remark 4.3.2
is given in Subsection B.1.3. The proofs of the corollaries of Section 4.3.1 are given in
Subsection B.1.4. The proof of Theorem 4.3.3 is completed in Subsection B.1.5. Technical
lemmas which were crucially used in the proofs of the main results are stated and proved in
Subsection B.1.6.

Finally, note that additional simulations (similar to those in the main text) are presented
in Section B.2.

B.1 Additional proofs and technical results

B.1.1 Completion of the proof of Theorem 4.3.1

We use the same notation as in the proof of Theorem 4.3.1 in the main text. To complete
the proof, we need to prove inequality (4.49).

Below, we write ∆k, k̂ and k∗ for ∆k(θi), k̂(i) and k∗(i) respectively for ease of notation.
We also write P for PK∗ .

We prove (4.49) by considering the two cases: k ≤ k∗, k ∈ I and k > k∗, k ∈ I separately.
The first case is k ≤ k∗, k ∈ I. By Lemma B.1.2 and (B.44), we get

∆k ≤ ∆k∗ ≤
6(
√

2− 1)σ√
k∗ + 1

≤ 6(
√

2− 1)σ√
k + 1

and consequently

∆2
k +

σ2

k + 1
≤ σ2

k + 1

(
36(
√

2− 1)2 + 1
)

for all k ≤ k∗, k ∈ I. (B.1)

We bound P{k̂ = k} from above by

P
{(

∆̂k

)
+

+
2σ√
k + 1

≤
(

∆̂k∗

)
+

+
2σ√
k∗ + 1

}
≤ P

{(
∆̂k∗

)
+
≥ 2σ√

k + 1
− 2σ√

k∗ + 1

}
.
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Because k ≤ k∗, the positive part above can be dropped and we obtain

P{k̂ = k} ≤ P
{

∆̂k∗ ≥
2σ√
k + 1

− 2σ√
k∗ + 1

}
.

Because ∆̂k∗ is normally distributed with mean ∆k∗ , we have

P{k̂ = k} ≤ P

Z ≥ 2σ(k + 1)−1/2 − 2σ(k∗ + 1)−1/2 −∆k∗√
var(∆̂k∗)

 ,

where Z is a standard normal random variable. From (B.44), we have

2σ√
k + 1

− 2σ√
k∗ + 1

−∆k∗ ≥
2σ√
k + 1

(
1−

√
k + 1

k∗ + 1

(
3
√

2− 2
))

.

As a result,

P{k̂ = k} ≤ P

Z ≥ 2σ√
(k + 1)var(∆̂k∗)

(
1−

√
k + 1

k∗ + 1

(
3
√

2− 2
)) .

Suppose k̃ := (k∗+ 1)
(
3
√

2− 2
)−2− 1. For k < k̃, we use the bound given by Lemma B.1.4

on the variance of ∆̂k∗ to obtain

P{k̂ = k} ≤ P

{
Z ≥ 2

(√
k∗ + 1

k + 1
− 3
√

2 + 2

)}
≤ exp

−2

[√
k∗ + 1

k + 1
− 3
√

2 + 2

]2
 .

Using this and (B.1), we see that the quantity∑
k<k̃,k∈I

(
∆2
k +

σ2

k + 1

)√
P{k̂ = k}

is bounded from above by

σ2

k∗ + 1

(
36(
√

2− 1)2 + 1
) ∑
k<k̃,k∈I

k∗ + 1

k + 1
exp

−[√k∗ + 1

k + 1
− 3
√

2 + 2

]2
 .

Because I consists of integers of the form 2j, it follows that for any two successive integers
k1 and k2 in I, we have 3/2 ≤ (k1 + 1)/(k2 + 1) ≤ 2. Using this, it is easily seen that

∑
k<k̃,k∈I

k∗ + 1

k + 1
exp

−[√k∗ + 1

k + 1
− 3
√

2 + 2

]2
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is bounded from above by∑
j≥4

2j exp

(
−
[
(3/2)j/2 − 3

√
2 + 2

]2
)

+
∑

0≤j≤3

2j,

which is just a universal positive constant. We have proved therefore that∑
k<k̃,k∈I

(
∆2
k +

σ2

k + 1

)√
P{k̂ = k} ≤ C1σ

2

k∗ + 1
, (B.2)

for a positive constant C1.
For k̃ ≤ k ≤ k∗, we simply use (B.1) along with the trivial bound P{k̂ = k} ≤ 1 to get∑
k̃≤k≤k∗,k∈I

(
∆2
k +

σ2

k + 1

)√
P{k̂ = k} ≤

(
36(
√

2− 1)2 + 1
) σ2

k∗ + 1

∑
k̃≤k<k∗,k∈I

k∗ + 1

k + 1
.

Once again because I consists of integers of the form 2j, we get∑
k̃≤k≤k∗,k∈I

k∗ + 1

k + 1
≤
∑
j≥0

2j
{

(3/2)j ≤
(

3
√

2− 2
)2
}
.

The right hand side above is just a constant. It follows therefore that∑
k̃≤k≤k∗,k∈I

(
∆2
k +

σ2

k + 1

)√
P{k̂ = k} ≤ C2σ

2

k∗ + 1
, (B.3)

for a positive constant C2. Combining (B.2) and (B.3), we deduce that∑
k≤k∗,k∈I

(
∆2
k +

σ2

k + 1

)√
P{k̂ = k} ≤ Cσ2

k∗ + 1
(B.4)

where C := C1 + C2 is a universal positive constant.
To complete the proof of Theorem 4.3.1, we need to deal with the case k > k∗, k ∈ I and

prove that ∑
k>k∗,k∈I

(
∆2
k +

σ2

k + 1

)√
P{k̂ = k} ≤ Cσ2

k∗ + 1
(B.5)

for a constant C. Assume that {k ∈ I : k > k∗} is non-empty for otherwise there is nothing
to prove. By the first part of (B.45) in Lemma B.1.3, we get∑

k>k∗,k∈I

(
∆2
k +

σ2

k + 1

)√
P{k̂ = k} ≤

(
1 +

1

(
√

6− 2)2

) ∑
k>k∗,k∈I

∆2
k

√
P{k̂ = k}. (B.6)
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We first bound P{k̂ = k} for k > k∗, k ∈ I. We proceed by writing

P{k̂ = k} ≤ P
{

∆̂+
k +

2σ√
k + 1

≤ ∆̂+
k∗

+
2σ√
k∗ + 1

}
≤ P

{
∆̂k +

2σ√
k + 1

≤ ∆̂+
k∗

+
2σ√
k∗ + 1

}
(because x ≤ x+)

≤ P
{

∆̂k +
2σ√
k + 1

≤ ∆̂k∗ +
2σ√
k∗ + 1

}
+ PK

{
∆̂k +

2σ√
k + 1

≤ 2σ√
k∗ + 1

}
≤ P

{
∆̂k ≤ ∆̂k∗ +

2σ√
k∗ + 1

}
+ PK

{
∆̂k ≤

2σ√
k∗ + 1

}
≤ P

{
∆̂k∗ − ∆̂k ≥ −

2σ√
k∗ + 1

}
+ P

{
−∆̂k ≥ −

2σ√
k∗ + 1

}
Both ∆̂k∗ − ∆̂k and ∆̂k are normally distributed with means ∆k∗ −∆k and ∆k respectively.
As a result

P{k̂ = k} ≤ P

Z ≥ ∆k −∆k∗ − 2σ(k∗ + 1)−1/2√
var(∆̂k∗ − ∆̂k)

+ P

Z ≥ ∆k − 2σ(k∗ + 1)−1/2√
var(∆̂k)


where Z is a standard normal random variable. Using (B.44) in Lemma B.1.3, we obtain

P{k̂ = k} ≤ P

Z ≥ ∆k − 2σ(k∗ + 1)−1/2
(
3
√

2− 2
)√

var(∆̂k∗ − ∆̂k)

+ P

Z ≥ ∆k − 2σ(k∗ + 1)−1/2√
var(∆̂k)

 .

By the Cauchy-Schwarz inequality and Lemma B.1.4, we get, for k > k∗,√
var(∆̂k∗ − ∆̂k) ≤

√
var(∆̂k∗) +

√
var(∆̂k) ≤

σ√
k + 1

+
σ√
k∗ + 1

≤ 2σ√
k∗ + 1

Also var(∆̂k) ≤ σ2/(k + 1) ≤ σ2/(k∗ + 1). Therefore if k > k∗, k ∈ I is such that

∆k ≥ 2σ(k∗ + 1)−1/2
(

3
√

2− 2
)
, (B.7)

we obtain

P{k̂ = k} ≤ P

{
Z ≥

∆k − 2σ(k∗ + 1)−1/2
(
3
√

2− 2
)

σ
√

2(k∗ + 1)−1/2

}
+ P

{
Z ≥ ∆k − 2σ(k∗ + 1)−1/2

σ(k∗ + 1)−1/2

}

≤ 2P

{
Z ≥

∆k − 2σ(k∗ + 1)−1/2
(
3
√

2− 2
)

σ
√

2(k∗ + 1)−1/2

}

≤ 2 exp

(
−k∗ + 1

2σ2

(
∆k − 2σ(k∗ + 1)−1/2(3

√
2− 2)

)2
)
.
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Using the inequality (x− y)2 ≥ x2/2− y2 with x = ∆k and y = 2σ(k∗+ 1)−1/2(3
√

2− 2), we
obtain

P{k̂ = k} ≤ 2 exp
(

2(3
√

2− 2)2
)

exp

(
−(k∗ + 1)∆2

k

4σ2

)
(B.8)

whenever k ∈ I, k > k∗ satisfies (B.7). It is easy to see that when (B.7) is not satisfied, the
right hand side above is larger than 2. Thus, inequality (B.8) is true for all k ∈ I, k > k∗.
As a result,

∆2
k

√
P{k̂ = k} ≤

√
2 exp

(
(3
√

2− 2)2
)
ξ
(
∆2
k

)
for all k ∈ I, k > k∗. (B.9)

where

ξ(z) := z exp

(
−(k∗ + 1)z

8σ2

)
for z > 0.

By (B.6) and (B.9), the proof would therefore be complete if we show that
∑

k∈I:k>k∗
ξ (∆2

k)
is bounded from above by a universal positive constant. For this, note first that the function
ξ(z) is decreasing for z ≥ z̆ := 8σ2/(k∗ + 1) and attains its maximum over z > 0 at z = z̆.
Note also the second part of inequality (B.45) gives ∆2

k ≥ zk for all k ∈ I, k > k∗ where

zk :=
(
√

6− 2)2σ2(k + 1)

4(k∗ + 1)2

We therefore get

ξ
(
∆2
k

)
≤ ξ(max(zk, z̆)) = max(zk, z̆) exp

(
−(k∗ + 1) max(zk, z̆)

8σ2

)
≤ max(zk, z̆) exp

(
−(k∗ + 1)zk

8σ2

)
≤ (zk + z̆) exp

(
−(k∗ + 1)zk

8σ2

)
.

Because k > k∗, it is easy to see that

z̆ =
8σ2

k∗ + 1
≤ 8σ2(k + 1)

(k∗ + 1)2
.

We deduce that

ξ
(
∆2
k

)
≤

[
(
√

6− 2)2

4
+ 8

]
σ2(k + 1)

(k∗ + 1)2
exp

(
−(
√

6− 2)2

32

k + 1

k∗ + 1

)
.

Denoting the constants above by c1 and c2, we can write∑
k∈I:k>k∗

ξ
(
∆2
k

)
≤ c1σ

2

k∗ + 1

∑
k∈I:k>k∗

k + 1

k∗ + 1
exp

(
− k + 1

c2(k∗ + 1)

)
.



APPENDIX B. PROOFS FOR CHAPTER 4 130

The sum in the right hand side above is easily seen to be bounded from above by

∑
j≥0

2j exp

(
− 1

c2

(
3

2

)j)

which is further bounded by a universal constant. This completes the proof of Theorem
4.3.1.

B.1.2 Completion of the proof of Theorem 4.3.2

We continue from where we left off in the proof of chapter 4. We first work with the case
when K∗ satisfies the condition (4.51). The idea here is to use Le Cam’s bound (4.50) with
the choice of L∗ given in the proof in the chapter 4. In the remainder of the proof, we use
Lemma B.1.5 which is stated and proved in Section B.1.

To control the total variation distance in (4.50), we use Pinsker’s inequality:

||PK∗ − PL∗||TV ≤
√

1

2
D(PK∗||PL∗),

and the fact that (note that θi = 2πi/n− π)

D(PK∗ ||PL∗) =
1

2σ2

n∑
i=1

(hK∗(2iπ/n− π)− hL∗(2iπ/n− π))2

where D(PK∗‖PL∗) denotes the Kullback-Leibler divergence between the probability mea-
sures PK∗ and PL∗ .

The support function of L∗ is easily seen to be the maximum of the support functions of
K∗ and the singleton {aK∗(α)}. Therefore,

hL∗(θ) := max

(
hK∗(θ),

hK∗(α) + hK∗(−α)

2 cosα
cos θ +

hK∗(α)− hK∗(−α)

2 sinα
sin θ

)
= max

(
hK∗(θ),

sin(θ + α)

sin 2α
hK∗(α) +

sin(α− θ)
sin 2α

hK∗(−α)

)
.

Using (4.1), it can be shown that

hK∗(θ) ≤
sin(θ + α)

sin 2α
hK∗(α) +

sin(α− θ)
sin 2α

hK∗(−α) (B.10)

for −α < θ < α and

hK∗(θ) ≥
sin(θ + α)

sin 2α
hK∗(α) +

sin(α− θ)
sin 2α

hK∗(−α) (B.11)
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for θ ∈ [−π,−α]∪ [α, π]. To see this, assume that θ > 0 without loss of generality. We then
work with the two separate cases θ ∈ [0, α] and θ ∈ [α, π]. In the first case, apply (4.1) with
α1 = α, α = θ and α2 = −α to get (B.10). In the second case, apply (4.1) with α1 = θ, α = α
and α2 = −α to get (B.11).

As a result of (B.10) and (B.11), we get that

hL∗(θ) =
sin(θ + α)

sin 2α
hK∗(α) +

sin(α− θ)
sin 2α

hK∗(−α) (B.12)

for −α ≤ θ ≤ α, and that hL∗(θ) equals hK∗(θ) for every other θ in (−π, π].
We now give an upper bound on hL∗(θ) − hK∗(θ) for 0 ≤ θ < α. Using (4.1) with

α1 = θ, α = 0 and α2 = −α, we obtain

hK∗(θ) ≥
sin(α + θ)

sinα
hK∗(0)− sin θ

sinα
hK∗(−α).

Thus for 0 ≤ θ < α, we obtain the inequality

0 ≤ hL∗(θ)− hK∗(θ) =
sin(θ + α)

sin 2α
hK∗(α) +

sin(α− θ)
sin 2α

hK∗(−α)− hK∗(θ)

≤ sin(θ + α)

sinα

(
hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0)

)
.

Because 0 < α < π/4, 0 ≤ θ ≤ α, we use the fact that the sine function is increasing on
(0, π/2) to deduce that

0 ≤ hL∗(θ)− hK∗(θ) ≤
hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0) for all 0 ≤ θ < α.

One can similarly deduce the same inequality for the case −α < θ ≤ 0 as well. Because of
this and the fact that hL∗(θ) equals hK∗(θ) for all θ in (−π, π] that are not in the interval
(−α, α), we obtain

D(PK∗ ||PL∗) =
1

2σ2

n∑
i=1

(hK∗(2iπ/n− π)− hL∗(2iπ/n− π))2

≤ nα
2σ2

(
hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0)

)2

.

Also because hL∗(0) = (hK∗(α) + hK∗(−α))/(2 cosα), Le Cam’s inequality gives

r ≥ 1

4

(
hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0)

)2(
1−

√
nα
4σ2

(
hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0)

))
(B.13)

for every 0 < α < π/4 where

r := inf
h̃

max

[
EK∗

(
h̃− hK∗(θi)

)2

,EL∗
(
h̃− hL∗(θi)

)2
]

(B.14)



APPENDIX B. PROOFS FOR CHAPTER 4 132

where the infimum above is over all estimators h̃. Our strategy now is to choose an appro-
priate α∗ ∈ (0, π/4) in order to prove that r ≥ cσ2/(k∗+ 1) for some positive constant c. Let
us now define α∗ by

α∗ := inf

{
0 < α < π/4 :

hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0) >

σ
√
nα

}
.

Note first that α∗ > 0 because nα ≥ 1 for all α and thus for α very small while the quantity
(hK∗(α) + hK∗(−α))/(2 cosα) − hK∗(0) becomes close to 0 for small α (by continuity of
hK∗(·)).

Also because we have assumed (4.51), it follows that 0 < α∗ < π/4. Now for each ε > 0
sufficiently small, we have

hK∗(α∗ − ε) + hK∗(−α∗ + ε)

2 cos(α∗ − ε)
− hK∗(0) ≤ σ

√
nα∗−ε

.

Letting ε ↓ 0 in the above and using the fact that nα∗−ε → nα∗ and the continuity of hK∗ ,
we deduce

hK∗(α∗) + hK∗(−α∗)
2 cosα∗

− hK∗(0) ≤ σ
√
nα∗

. (B.15)

Because 0 < α∗ < π/4, by the definition of the infimum, there exists a decreasing sequence
{αk} ∈ (0, π/4) converging to α∗ such that

hK∗(αk) + hK∗(−αk)
2 cosαk

− hK∗(0) >
σ
√
nαk

for all k.

For k large, nαk is either nα∗ or nα∗ + 2, and hence letting k →∞, we get

hK∗(α∗) + hK∗(−α∗)
2 cosα∗

− hK∗(0) ≥ σ√
nα∗ + 2

≥ 1√
3

σ
√
nα∗

,

where we also used that nα∗ ≥ 1. Combining the above with (B.15), we conclude that

1√
3

σ
√
nα∗
≤ hK∗(α∗) + hK∗(−α∗)

2 cosα∗
− hK∗(0) ≤ σ

√
nα∗

.

Using α = α∗ in (B.13), we get

r ≥ σ2

24nα∗
. (B.16)

We shall now show that

α∗ ≤ α̃ :=
8(k∗ + 1)π

n
(B.17)

when 8(k∗ + 1)π/n ≤ π/4 (otherwise (B.17) is obvious). This would imply, because α 7→ nα
is non-decreasing, that

nα∗ ≤ nα̃ =
nα̃

π
− 1 = 8k∗ + 7.
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This and (B.16) would give

r ≥ σ2

24(8k∗ + 7)
≥ cσ2

k∗ + 1

for a positive constant c. This would prove the theorem when assumption (4.51) is true.
To prove (B.17), we only need to show that

hK∗(α̃) + hK∗(−α̃)

2 cos α̃
− hK∗(0) >

σ
√
nα̃

=
σ√

8k∗ + 7
. (B.18)

We verify this via Lemma B.1.5 on a case-by-case basis. When k∗ = 0, we have α̃ = 8π/n
so that, by Lemma B.1.5, the left hand side above is bounded from below by ∆2. Because
k∗ is zero, by definition of k∗, we have

∆2 +
2σ√

3
≥ ∆0 + 2σ = 2σ.

This gives ∆2 ≥ 2σ(1−(1/
√

3)) which can be verified to be larger than σ/
√

8k∗ + 7 = σ/
√

7.
When k∗ = 1, we have α̃ = 16π/n so that, by Lemma B.1.5, the left hand side in (B.18)

is bounded from below by ∆4. Because k∗ = 1, by definition of k∗, we have

∆4 +
2σ√

5
≥ ∆1 +

2σ√
2
≥ 2σ√

2

which gives ∆4 ≥ 2σ((1/
√

2)−(1/
√

5)). This can be verified to be larger than σ/
√

8k∗ + 7 =
σ/
√

15.
When k∗ ≥ 2, we again use Lemma B.1.5 to argue that the left hand side in (B.18) is

bounded from below by ∆2(k∗+1). Because ∆k is increasing in k (Lemma B.1.2), we have
∆2(k∗+1) ≥ ∆2k∗ . By the definition of k∗ (and the fact that ∆k∗ ≥ 0), we have

∆2k∗ ≥
2σ

k∗ + 1

(
1−

√
k∗ + 1

2k∗ + 1

)
.

Because k∗ ≥ 2, it can be easily checked that (k∗+1)/(2k∗+1) ≤ 3/5 and (8k∗+7)/(k∗+1) ≥
23/3. These, together with the fact that 2(1 −

√
3/5)

√
23/3 > 1, imply (B.18). This

completes the proof of the theorem when assumption (4.51) holds.
We now deal with the simpler case when (4.51) is violated. When (4.51) is violated, we

first show that

k∗ >
12n

16(1 + 2
√

3)2
− 1. (B.19)

To see this, note first that, because (4.51) is violated, we have

hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0) ≤ σ

√
nα
≤ σ

(nα
π
− 1
)−1/2
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for all α ∈ (0, π/4]. Lemma B.1.5 implies that for every 1 ≤ k ≤ n/16, we get

∆k ≤
hK∗(4kπ/n) + hK∗(−4kπ/n)

2 cos 4kπ/n
− hK∗(0) ≤ σ√

4k − 1
≤ σ√

3k
. (B.20)

Now for every

k ≤ 12n

16(1 + 2
√

3)2
− 1, (B.21)

we have

∆k +
2σ√
k + 1

≥ 2σ√
k + 1

≥ σ√
3n/16

+
2σ√
n/16

> ∆n/16 +
2σ√

n/16 + 1
.

It follows therefore that any k satisfying (B.21) cannot be a minimizer of ∆k +2σ(k+1)−1/2,
thereby implying (B.19).

Let L∗ be defined as the Minkowski sum of K∗ and the closed ball with center 0 and
radius σ(3n/2)−1/2. In other words, L∗ :=

{
x+ σ(3n/2)−1/2y : x ∈ K and ||y|| ≤ 1

}
. The

support function L∗ can be checked to equal:

hL∗(θ) = hK∗(θ) + σ(3n/2)−1/2. (B.22)

Le Cam’s bound again gives

r ≥ 1

4
(hK∗(0)− hL∗(0))2 {1− ||PK∗ − PL∗||TV } (B.23)

where r is as defined in (B.14). By use of Pinsker’s inequality, we have

||PK∗ − PL∗||TV ≤
1

2σ

√√√√ n∑
i=1

(hK(2iπ/n− π)− hK̆(2iπ/n− π))2 =
1

2σ

√
nσ2

3n/2
≤ 1

2
.

Therefore, from (B.23) and (B.19), we get that

r ≥ σ2

12n
≥ 1

16(1 + 2
√

3)2

σ2

k∗ + 1
.

This completes the proof of Theorem 4.3.2.

B.1.3 Proof of Inequality (4.21) in Remark4.3.2

Fix i ∈ {1, . . . , n} and a compact, convex set K∗. Let L∗ be defined as in the proof of
Theorem 4.3.2. We want to show that

max
(
EK∗(ĥi − hK∗(θi))2,EL∗(ĥi − hL∗(θi))2

)
≤ C.

σ2

k∗(i) + 1
(B.24)
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for a universal constant C where ĥi denotes our estimator defined in (4.12). We have already
proved in Theorem 4.3.1 that

EK∗
(
ĥi − hK∗(θi)

)2

≤ C.
σ2

k∗(i) + 1
. (B.25)

It can similarly be proved that

EL∗
(
ĥi − hL∗(θi)

)2

≤ C.
σ2

kL∗∗ (i) + 1
(B.26)

where kL
∗
∗ denotes the quantity k∗(i) with K∗ replaced by L∗. More precisely

kL
∗

∗ (i) := argmin
k∈I

(
∆L∗

k (θi) +
2σ√
k + 1

)
where ∆L∗

k (θi) is defined as in (4.40) with K∗ replaced by L∗.
Inequalities (B.25) and (B.26) together imply that the left hand side of (B.24) is bounded

from above by

Cσ2 max

(
1

k∗(i) + 1
,

1

kL∗∗ (i) + 1

)
. (B.27)

We show below how to establish (B.24) from the above bound. As in the proof of Theorem
4.3.2, we shall work with two separate cases.

In the first case, we suppose that the condition (4.51) in the proof of Theorem 4.3.2 holds.
In this case, recall from the proof of Theorem 4.3.2 that the set L∗ is defined as the convex
hull of K∗ ∪ {aK∗(α)} where aK∗(α) is defined as in (4.52). We show below then that

∆L∗

k (θi) ≤ ∆k(θi) for every k ∈ I (B.28)

This would immediately imply that k∗(i) ≤ kL
∗
∗ (i). The inequality (B.24) would then follow

from the bound (B.27).
In order to prove (B.28), we first recall from (B.12) the expression for the support function

of L∗ i.e., hL∗(θ) equals the right hand side of (B.12) when −α ≤ θ ≤ α and it equals hK∗(θ)
for every other θ ∈ (−π, π]. For notational convenience, let us denote by δK

∗
j (θi), the quantity

inside the summation in (4.40) i.e.,

δK
∗

j (θi) = hK∗(θi ± 4jπ/n)− cos(4jπ/n)

cos(2jπ/n)
hK∗(θi ± 2jπ/n) (B.29)

where hK∗(θi±φ) has the same meaning as in (4.40). This means that ∆k(θi) =
∑k

j=0 δ
K∗
j (θi)/(k+

1). We similarly define δL
∗

j (θi) with L∗ replacingK∗ in (B.29) so that ∆L∗

k (θi) =
∑k

j=0 δ
L∗
j (θi)/(k+

1).
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We now verify (B.28) as follows. From the formula (B.12), it is easy to observe that
δL
∗

j (θi) equals zero whenever 4jπ/n ≤ α or, equivalently, j ≤ nα/(4π). We therefore have

∆L∗

k (θi) =
1

k + 1

k∑
j=0

δL
∗

j (θi) =
1

k + 1

k∑
j=0

δL
∗

j (θi)I{j > nα/(4π)}. (B.30)

where I{·} denotes the indicator function. When j > nα/(4π), again from the form of the
support function of hL∗ described in (B.12), it follows that hL∗(4jπ/n) = hK∗(4jπ/n). On
the other hand, hL∗(θ) ≥ hK∗(θ) for all θ simply because K∗ ⊆ L∗. We thus have

δL
∗

j (θi) ≤ δK
∗

j (θi) for j > nα/(4π).

Because δK
∗

j (θi) is always nonnegative, inequality (B.28) is now immediate from this and
(B.30).

We now turn to the case when the condition (4.51) in the proof of Theorem 4.3.2 does
not hold. Observe that in this case, we proved in (B.19) and (B.20) respectively that

k∗(i) >
12n

16(1 + 2
√

3)2
− 1 and ∆k ≤

σ√
3k

(B.31)

for every k ∈ I. It may also be recalled that L∗ in this case was chosen to be such that its
support function satisfies the identity given in (B.22). As a result of this, it is easily seen
that

∆L∗

k (θi) = ∆k(θi) + σ

(
3n

2

)−1/2
1

k + 1

k∑
j=0

(
1− cos(4jπ/n)

cos(2jπ/n)

)
for every k. Now following the calculations in Example 4.4.2 (immediately after inequality
(4.44)), we deduce that

∆L∗

k (θi) ≤ ∆k(θi) +
8
√

2σπ2

√
3

k2n−5/2.

The second inequality in (B.31) now allows us to deduce that

∆L∗

k (θi) ≤
σ√
3k

+
8
√

2σπ2

√
3

k2n−5/2 ≤ c1σ
(
k−1/2 + k2n−5/2

)
for a universal constant c1. Thus if k ∈ I is such that k ≥ c2n for a positive constant c2, we
have

∆L∗

k (θi) ≤
c1σ√
n

(
1 + c

−1/2
2

)
and consequently

∆L∗

k (θi) +
2σ√
k + 1

≤ σ√
n

[
c1(1 + c

−1/2
2 ) + 2c

−1/2
2

]
(B.32)



APPENDIX B. PROOFS FOR CHAPTER 4 137

for every k ∈ I, k ≥ c2n. On the other hand for k ≤ c3n, we have

∆L∗

k (θi) +
2σ√
k + 1

≥ 2σ√
k + 1

≥ 2σ√
c3n+ 1

≥ 2σ√
n(c3 + 1)

. (B.33)

From (B.32) and (B.33), it is easy to see that if c3 and c2 are suitably chosen, then no k
for which k ≤ c3n can minimize the left hand side of (B.33). This implies therefore that
kL
∗
∗ (i) ≥ cn for a positive constant c. On the other hand, the first inequality in (B.31) implies

that k∗(i) is also at least cn for a positive constant c. This allows to deduce that (B.27) is
bounded from above by a constant multiple of σ2/(k∗(i) + 1). This completes the proof of
inequality (4.21) in Remark 4.3.2.

B.1.4 Proofs of Corollaries and Proposition 4.3.1 in Section 4.3.1

The proofs of the corollaries stated in Section 4.3.1 are given here. For these proofs, we need
some simple properties of the ∆k(θi) which are stated and proved in Appendix B.1.

We start with the proof of Corollary 4.3.3.

Proof of Corollary 4.3.3. Fix 1 ≤ i ≤ n. We will prove that k̆(i) ≤ k∗(i) ≤ k̃(i). Inequality
(4.31) would then follow from Theorem 4.3.1. For simplicity, we write ∆k for ∆k(θi), fk for
fk(θi), gk for gk(θi), k∗ for k∗(i), k̆ for k̆(i) and k̃ for k̃(i).

Inequality (B.45) in Lemma B.1.3 gives

∆k ≥
σ(
√

6− 2)√
k + 1

for all k > k∗, k ∈ I.

Thus any k ∈ I for which fk ≤ ∆k < σ(
√

6− 2)/
√
k + 1 has to satisfy k ≤ k∗. This proves

k̆ ≤ k∗.
For k∗ ≤ k̃, we first inequality (B.44) in Lemma B.1.3 to obtain ∆k∗ ≥ 6(

√
2−1)σ/

√
k∗ + 1.

Also Lemma B.1.2 states that k 7→ ∆k is non-decreasing for k ∈ I. We therefore have

gk ≤ ∆k ≤ ∆k∗ ≤
6(
√

2− 1)σ√
k∗ + 1

≤ 6(
√

2− 1)σ√
k + 1

for all k ≤ k∗, k ∈ I.

Therefore any k ∈ I for which gk > 6(
√

2 − 1)σ/
√
k + 1 has to be larger than k∗. This

proves k̃ ≥ k∗. The proof is complete.

We next give the proof of Corollary 4.3.1.

Proof of Corollary 4.3.1. We only need to prove (4.22). Inequality (4.23) would then follow
from Theorem 4.3.1. Fix i ∈ {1, . . . , n} and suppose that K∗ is contained in a ball of radius
R centered at (x1, x2). We shall prove below that ∆k(θi) ≤ 6πRk/n for every k ∈ I and
(4.22) would then follow from Corollary 4.3.3. Without loss of generality, assume that θi = 0.
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As in the proof of Theorem 4.3.5, we may assume that K∗ is contained in the ball of
radius R centered at the origin. This implies that |hK∗(θ)| ≤ R for all θ and also that hK∗
is Lipschitz with constant R. Note then that for every k ∈ I and 0 ≤ j ≤ k, the quantity

Q :=
hK∗(4jπ/n) + hK∗(−4jπ/n)

2
− cos(4jπ/n)

cos(2jπ/n)

hK∗(2jπ/n) + hK∗(−2jπ/n)

2

can be bounded as

|Q| =
∣∣∣∣hK∗(4jπ/n)− hK∗(2jπ/n) + hK∗(−4jπ/n)− hK∗(−2jπ/n)

2

−
(

cos(4jπ/n)− cos(2jπ/n)

cos(2jπ/n)

)
hK∗(2jπ/n) + hK∗(−2jπ/n)

2

∣∣∣∣ ≤ 6Rjπ

n
.

Here we used also the fact that cos(·) is Lipschitz and cos(2jπ/n) ≥ 1/2. The inequality
∆k(0) ≤ 6πRk/n then immediately follows. The proof is complete.

Proof of Proposition 4.3.1. Inequality (4.24) is clearly a direct consequence of (4.23). We
therefore only prove (4.25) below. We assume without loss of generality that n is even,
i = n/2 and that θi = 0. Also assume that K(R) contains of all compact, convex sets that
are contained in the ball of radius R centered at the origin.

Take K∗ to be the vertical line segment joining the two points (0, R) and (0,−R) for a
fixed R > 0 (as in Example 4.4.3). Further let L∗ be as in the proof of Theorem 4.3.2. It is
then easy to check that L∗ ∈ K(R) and thus the minimax risk in the left hand side of (4.25)
is bounded from below by

inf
h̃

max
(
EK∗(h̃− hK∗(θi))2,EL∗(h̃− hL∗(θi))2

)
Inequality (4.20) then gives that

inf
h̃

sup
K∗∈K(R)

EK∗
(
h̃− hK∗(θi)

)2

≥ cσ2

k∗(i) + 1
.

We now use inequality (4.46) which proves that the right hand side above is bounded from
above by a constant multiple of (σ2/n)+(σ2R/n)2/3. This completes the proof of Proposition
4.3.1.

We conclude this section with a proof of Corollary 4.3.2.

Proof of Corollary 4.3.2. By Theorem 4.3.1, inequality (4.28) is a direct consequence of
(4.27). We therefore only need to prove (4.27). Fix k ∈ I with

k ≤ n

4π
min(θi − φ1(i), φ2(i)− θi). (B.34)
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It is then clear that θi ± 4jπ/n ∈ [φ1(i), φ2(i)] for every 0 ≤ j ≤ k. From (4.26), it follows
that

hK∗(θ) = x1 cos θ + x2 sin θ for all θ = θi ±
4jπ

n
, 0 ≤ j ≤ k.

We now argue that ∆k(θi) = 0. To see this, note first that ∆k(θi) = Uk(θi) − Lk(θi) has
the following alternative expression (4.40). Plugging in hK∗(θ) = x1 cos θ+x2 sin θ in (4.40),
one can see by direct computation that ∆k(θi) = 0 for every k ∈ I satisfying (B.34). The
definition (4.18) of k∗(i) now immediately implies that

k∗(i) ≥ min
( n

4π
min(θi − φ1(i), φ2(i)− θi), cn

)
for a small enough universal constant c. This proves (4.27) thereby completing the proof.

B.1.5 Completion of the proof of Theorem 4.3.3

We complete the proof of Theorem 4.3.3 starting from where we left off in the main text.
The goal is to prove inequality (4.56). The argument below is inspired by an argument due
to Zhang [159, Proof of Theorem 2.1] in a very different context.

Recall that k∗(i) takes values in I := {0} ∪ {2j : j ≥ 0, 2j ≤ bn/16c}. For k ∈ I, let

ρ(k) :=
n∑
i=1

I{k∗(i) = k} and `(k) :=
n∑
i=1

I{k∗(i) < k}

Note that `(0) = 0, `(1) = ρ(0) and ρ(k) = `(2k)− `(k) for k ≥ 1, k ∈ I. As a result

n∑
i=1

1

k∗(i) + 1
=
∑
k∈I

ρ(k)

k + 1
= `(1) +

∑
k≥1,k∈I

`(2k)− `(k)

k + 1
.

Let K denote the maximum element of I. Because `(2K) = n, we can write

n∑
i=1

1

k∗(i) + 1
=

n

K + 1
+
`(1)

2
+

∑
k≥2,k∈I

k`(k)

(k + 1)(k + 2)
.

Using n/(K + 1) ≤ C and loose bounds for the other terms above, we obtain

n∑
i=1

1

k∗(i) + 1
≤ C +

∑
k≥1,k∈I

3`(k)

k
. (B.35)

We shall show below that

`(k) ≤ min

(
n,
ARk5/2

σn

)
for all k ∈ I (B.36)
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for a universal positive constant A. Before that, let us first prove (4.56) assuming (B.36).
Assuming (B.36), we can write

∑
k≥1,k∈I

`(k)

k
=

∑
k≥1,k∈I

`(k)

k
I

{
k ≤

(
σn2

AR

)2/5
}

+
∑

k≥1,k∈I

`(k)

k
I

{
k >

(
σn2

AR

)2/5
}

(B.37)

In the first term on the right hand side above, we use the bound `(k) ≤ ARk5/2/(σn). We
then get

∑
k≥1,k∈I

`(k)

k
I

{
k ≤

(
σn2

AR

)2/5
}
≤ AR

σn

∑
k≥1,k∈I

k3/2I

{
k ≤

(
σn2

AR

)2/5
}
.

Because I consists of integers of the form 2j, the sum in the right hand side above is bounded
from above by a constant multiple of the last term. This gives

∑
k≥1,k∈I

`(k)

k
I

{
k ≤

(
σn2

AR

)2/5
}
≤ CR

σn

(
σn2

AR

)3/5

= C

(
R
√
n

σ

)2/5

(B.38)

For the second term on the right hand side in (B.37), we use the bound `(k) ≤ n which gives

∑
k≥1,k∈I

`(k)

k
I

{
k >

(
σn2

AR

)2/5
}
≤ n

∑
k≥1,k∈I

k−1I

{
k >

(
σn2

AR

)2/5
}

Again, because I consists of integers of the form 2j, the sum in the right hand side above is
bounded from above by a constant multiple of the first term. This gives

∑
k≥1,k∈I

`(k)

k
I

{
k >

(
σn2

AR

)2/5
}
≤ Cn

(
σn2

AR

)−2/5

= C

(
R
√
n

σ

)2/5

. (B.39)

Inequalities (B.38) and (B.39) in conjunction with (B.35) proves (4.56) which would complete
the proof of (4.32).

We only need to prove (B.36). For this, observe first that when k∗(i) < k, Corollary 4.3.3
gives that

∆k(θi) ≥
(
√

6− 2)σ√
k + 1

. (B.40)

This is because if (B.40) is violated, then Corollary 4.3.3 gives k ≤ k̆(i) ≤ k∗(i). Conse-
quently, we have

I{k∗(i) < k} ≤ ∆k(θi)
√
k + 1

(
√

6− 2)σ
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and

`(k) ≤
√
k + 1

(
√

6− 2)σ

n∑
i=1

∆k(θi) for every k ∈ I. (B.41)

We will now prove an upper bound for ∆k(θi), 1 ≤ i ≤ n under the assumption that K∗ is
contained in a ball of radius R ≥ 0. We may assume without loss of generality that this ball
is centered at the origin because the expression for ∆k(θi) given in (4.40) remains unchanged
if hK∗(θ) is replaced by hK∗(θ)− a1 cos θ − a2 sin θ for any (a1, a2) ∈ R2.

Now using the expression (4.40) for ∆k(θi), it is easy to see that

n∑
i=1

∆k(θi) =
1

k + 1

k∑
j=0

δj (B.42)

where δj is given by

δj =
n∑
i=1

(
hK∗(θi+2j) + hK∗(θi−2j)

2
− cos(4jπ/n)

cos(2jπ/n)

hK∗(θi+j) + hK∗(θi−j)

2

)
.

with θk = 2πk/n − π. Because θ 7→ hK∗(θ) is a periodic function of period 2π, the above
expression for δj only depends on hK∗(θ1), ..., hK∗(θn). In fact, it is easy to see that

δj =

(
1− cos(4jπ/n)

cos(2jπ/n)

) n∑
i=1

hK∗(θi).

Now because K∗ is contained in the ball of radius R centered at the origin, it follows that
|hK∗(θi)| ≤ R for each i which gives

δj ≤ nR

(
1− cos(4jπ/n)

cos(2jπ/n)

)
≤ nR

(
1− cos(4kπ/n)

cos(2kπ/n)

)
=
nR(1 + 2 cos 2πk/n)

cos 2πk/n
(1−cos 2πk/n)

for all 0 ≤ j ≤ k. Because k ≤ n/16 for all k ∈ I, it follows that

δj ≤ 8nR sin2(πk/n) ≤ 8Rπ2k2

n
for all 0 ≤ j ≤ k.

The identity (B.42) therefore gives
∑n

i=1 ∆k(θi) ≤ 8Rπ2k2/n for all k ∈ I. Consequently,
from (B.41) and the trivial fact that `(k) ≤ n, we obtain

`(k) ≤ min

(
n,

8π2

(
√

6− 2)

Rk2
√
k + 1

σn

)
for all k ∈ I.

Note that `(0) = 0 so that the above inequality only gives something useful for k ≥ 1. Using
k + 1 ≤ 2k for k ≥ 1 and denoting the resulting constant by C, we obtain (B.36). This
completes the proof of Theorem 4.3.3.
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B.1.6 Technical Lemmas

Our first task here is to provide the proof of Lemma 4.2.1. We also restate this result here
for the convenience of the reader.

Lemma B.1.1. For every 0 < φ < π/2 and every θ ∈ (−π, π], we have l(θ, φ) ≤ hK∗(θ) ≤
u(θ, φ).

Proof. The inequality hK∗(θ) ≤ u(θ, φ) is obtained by using (4.1) with α1 = θ+φ, α2 = θ−φ
and α = θ. For l(θ, φ) ≤ hK∗(θ), we use (4.1) with α1 = θ + 2φ, α2 = θ and α = θ + φ to
obtain

hK∗(θ) ≥ 2hK∗(θ + φ) cosφ− hK∗(θ + 2φ).

One similarly has hK∗(θ) ≥ 2hK∗(θ− φ) cosφ− hK∗(θ− 2φ) and l(θ, φ) ≤ hK∗(θ) is deduced
by averaging these two inequalities.

We next provide three lemmas which were used in the proofs of the main results of
chapter 4.

Lemma B.1.2. Recall the quantity ∆k(θi) defined in (4.40). The inequality ∆2k(θi) ≥
1.5∆k(θi) holds for every 1 ≤ i ≤ n and 0 ≤ k ≤ n/16.

Proof. We may assume without loss of generality that θi = 0. We will simply write ∆k for
∆k(θi) below for notational convenience. Let us define, for θ ∈ R,

δ(θ) :=
hK∗(2θ) + hK∗(−2θ)

2
− cos 2θ

cos θ

hK∗(θ) + hK∗(−θ)
2

.

Note then that ∆k =
∑k

j=0 δ(2jπ/n)/(k + 1). We shall first prove that

δ(y) ≥
(

tan y

tanx

)
δ(x) for every 0 < y ≤ π/4 and x < y ≤ 2x. (B.43)

For this, first apply (4.1) to α1 = 2x, α2 = x and α = y to get

hK∗(y) ≤ sin(y − x)

sinx
hK∗(2x) +

sin(2x− y)

sinx
hK∗(x).

We then apply (4.1) to α1 = 2y, α2 = x and α = 2x to get (note that 2y − x ≤ 2y < π/2)

hK∗(2y) ≥ sin(2y − x)

sinx
hK∗(2x)− sin(2y − 2x)

sinx
hK∗(x).

Combining these two inequalities, we get (note that 2y ≤ π/2 which implies that cos 2y ≥ 0)

hK∗(2y)− cos 2y

cos y
hK∗(y) ≥ αhK∗(2x)− βhK∗(x),
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where

α :=
sin(2y − x)

sinx
− cos 2y

cos y

sin(y − x)

sinx

and

β :=
sin(2y − 2x)

sinx
+

cos 2y

cos y

sin(2x− y)

sinx
.

It can be checked by a straightforward calculation that

α =
tan y

tanx
and β =

tan y

tanx

cos 2x

cosx
.

It follows therefore that

hK∗(2y)− cos 2y

cos y
hK∗(y) ≥ tan y

tanx

(
hK∗(2x)− cos 2x

cosx
hK∗(x)

)
.

We similarly obtain

hK∗(−2y)− cos 2y

cos y
hK∗(−y) ≥ tan y

tanx

(
hK∗(−2x)− cos 2x

cosx
hK∗(−x)

)
.

The required inequality (B.43) now results by adding the above two inequalities. A trivial
consequence of (B.43) is that δ(y) ≥ δ(x) for 0 < y ≤ π/4 and x < y ≤ 2x. Further,
applying (B.43) to y = 2x (assuming that 0 < x < π/8), we obtain δ(2x) ≥ 2δ(x). Note
that tan 2x = 2 tan x/(1− tan2 x) ≥ 2 tanx for 0 < x < π/8.

To prove ∆2k ≥ (1.5)∆k, we fix 1 ≤ k ≤ n/16 (note that the inequality is trivial when
k = 0) and note that

∆2k =
1

2k + 1

2k∑
j=0

δ

(
2jπ

n

)
=

1

2k + 1

k∑
j=1

(
δ

(
2(2j − 1)π

n

)
+ δ

(
4jπ

n

))
where we used the fact that δ(0) = 0. Using the bounds proved for δ(θ), we have

δ

(
2(2j − 1)π

n

)
≥ δ

(
2jπ

n

)
and δ

(
4jπ

n

)
≥ 2δ

(
2jπ

n

)
.

Therefore

∆2k ≥
3

2k + 1

k∑
j=1

δ

(
2jπ

n

)
≥ 3

2(k + 1)

k∑
j=0

δ

(
2jπ

n

)
=

3

2
∆k

and this completes the proof.

Lemma B.1.3. Fix i ∈ {1, . . . , n}. Consider ∆k(θi) (defined in (4.40)) and k∗(i) (defined
in (4.18)). We then have the following inequalities

∆k∗(i)(θi) ≤
6(
√

2− 1)σ√
k∗(i) + 1

. (B.44)



APPENDIX B. PROOFS FOR CHAPTER 4 144

and

∆k(θi) ≥ max

(
(
√

6− 2)σ√
k + 1

,
(
√

6− 2)
√
k + 1σ

2(k∗ + 1)

)
(B.45)

for all k > k∗(i), k ∈ I.

Proof. Fix i ∈ {1, . . . , n}. Below we simply denote k∗(i) and ∆k(θi) by k∗ and ∆k respectively
for notational convenience.

We first prove (B.44). If k∗ ≥ 2, we have

∆k∗ +
2σ√
k∗ + 1

≤ ∆k∗/2 +
√

2
2σ√
k∗ + 2

≤ ∆k∗/2 +
√

2
2σ√
k∗ + 1

.

Using Lemma B.1.2 (note that k∗ ∈ I and hence k∗ ≤ n/16), we have ∆k∗/2 ≤ (2/3)∆k∗ .
We therefore have

∆k∗ +
2σ√
k∗ + 1

≤ 2

3
∆k∗ +

√
2

2σ√
k∗ + 1

which proves (B.44). Inequality (B.44) is trivial when k∗ = 0. Finally, for k∗ = 1, we have
∆1 +

√
2σ ≤ ∆0 + 2σ = 2σ which again implies (B.44).

We now turn to (B.45). Let k′ denote the smallest k ∈ I for which k > k∗. We start by
proving the first part of (B.45):

∆k ≥
(
√

6− 2)σ√
k + 1

for k > k∗, k ∈ I. (B.46)

Note first that if (B.46) holds for k = k′, then it holds for all k ≥ k′ as well because ∆k ≥ ∆k′

(from Lemma B.1.2) and 1/
√
k + 1 ≤ 1/

√
k′ + 1. We therefore only need to verify (B.46)

for k = k′. If k∗ = 0, then k′ = 1 and because

∆1 +
2σ√

2
≥ ∆0 + 2σ = 2σ,

we obtain ∆1 ≥ (2−
√

2)σ. This implies (B.46). On the other hand, if k∗ > 0, then k′ = 2k∗
and we can write

∆2k∗ +
2σ√

2k∗ + 1
≥ ∆k∗ +

2σ√
k∗ + 1

≥ 2σ√
k∗ + 1

.

This gives

∆2k∗ ≥
2σ√

2k∗ + 1

(√
2k∗ + 1

k∗ + 1
− 1

)
which implies inequality (B.46) for k = 2k∗ because (2k∗ + 1)/(k∗ + 1) ≥ 3/2. The proof of
(B.46) is complete.
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For the second part of (B.45), we use Lemma B.1.2 which states ∆2k ≥ (1.5)∆k ≥
√

2∆k

for all k ∈ I. By a repeated application of this inequality, we get

∆k ≥
√
k

k′
∆k′ ≥

√
k + 1

k′ + 1
∆k′ for all k ≥ k′.

Using (B.46) for k = k′, we get

∆k ≥
(
√

6− 2)σ
√
k + 1

k′ + 1
.

The proof of (B.45) is now completed by observing that k′ ≤ 2k∗ + 1.

Lemma B.1.4. Fix i ∈ {1, . . . , n}. For every 0 ≤ k ≤ n/8, the variance of the random
variable Ûk(θi) (defined in (4.10)) is at most σ2/(k + 1). Also, for every 0 ≤ k ≤ n/16, the
variance of the random variable ∆̂k(θi) (defined in (4.11)) is at most σ2/(k + 1).

Proof. Fix 1 ≤ i ≤ n. We shall first prove the bound for the variance of Ûk(θi) for a fixed
0 ≤ k ≤ n/8. Note that

Ûk(θi) =
1

k + 1

k∑
j=0

Yi+j + Yi−j
2 cos(2jπ/n)

.

It is therefore straightforward to see that

var(Ûk(θi)) =
σ2

(k + 1)2

(
1 +

1

2

k∑
j=1

sec2(2jπ/n)

)
.

For 1 ≤ j ≤ k ≤ n/8, we have sec(2jπ/n) ≤
√

2 because 2jπ/n ≤ π/4. The inequality
var(Ûk(θi)) ≤ σ2/(k + 1) then immediately follows.

Let us now turn to the variance of ∆̂k(θi). When k = 0, the conclusion is obvious since
∆̂k(θi) = 0. Otherwise, the expression (4.11) for ∆̂k(θi) can be rewritten as

∆̂k(θi) = S1 + S2 + S3

where

S1 =
−1

k + 1

k∑
j=1

{j is odd} cos(4jπ/n)

cos(2jπ/n)

Yi+j + Yi−j
2

,

S2 =
1

k + 1

k∑
j=1

{j is even}
(

1− cos(4jπ/n)

cos(2jπ/n)

)
Yi+j + Yi−j

2
,

and

S3 =
1

k + 1

2k∑
j=k+1

{j is even} Yj + Y−j
2

.
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S1, S2 and S3 are clearly independent. Moreover, the different terms in each Si are also
independent. Thus

var(S1) =
σ2

2(k + 1)2

k∑
j=1

{j is odd} cos2(4jπ/n)

cos2(2jπ/n)
,

var(S2) =
σ2

2(k + 1)2

k∑
j=1

{j is even}
(

1− cos(4jπ/n)

cos(2jπ/n)

)2

,

and

var(S3) =
σ2

2(k + 1)2

2k∑
j=k+1

{j is even} ≤ σ2

2(k + 1)
.

Now for k ≤ n/16 and 1 ≤ j ≤ k,

0 ≤ cos(4jπ/n)

cos(2jπ/n)
≤ 1

which implies that var(S1) + var(S2) ≤ σ2/2(k + 1). Thus var(∆̂k(θi)) ≤ σ2/(k + 1).

The next lemma was used in the proof of Theorem 4.3.2.

Lemma B.1.5. Let ∆k be the quantity (4.40) with θi = 0 i.e.,

∆k :=
1

k + 1

k∑
j=0

(
hK∗(4jπ/n) + hK∗(−4jπ/n)

2
− cos(4jπ/n)

cos(2jπ/n)

hK∗(2jπ/n) + hK∗(−2jπ/n)

2

)
.

Then the following inequality holds for every k ≤ n/16:

∆k ≤
hK∗(4kπ/n) + hK∗(−4kπ/n)

2 cos(4kπ/n)
− hK∗(0).

Proof. From Lemma B.1.2, it follows that δ(2iπ/n) ≤ δ(2kπ/n) for all 1 ≤ i ≤ k (this follows
by reapplying Lemma B.1.2 to 2iπ/n, 4iπ/n, . . . until we hit 2kπ/n). As a consequence, we
have ∆k ≤ δ(2kπ/n). Now, if θ = 2kπ/n then θ ≤ π/8 and we can write

δ(θ) =
hK∗(2θ) + hK∗(−2θ)

2
− cos 2θ

cos θ

hK∗(θ) + hK∗(−θ)
2

= cos 2θ

(
hK∗(2θ) + hK∗(−2θ)

2 cos 2θ
− hK∗(0)

)
− cos 2θ

(
hK∗(θ) + hK∗(−θ)

2 cos θ
− hK∗(0)

)
.

Because hK∗(θ) + hK∗(−θ) ≥ 2hK∗(0) cos θ and cos 2θ ≥ 0, we have

δ(θ) ≤ cos 2θ

(
hK∗(2θ) + hK∗(−2θ)

2 cos 2θ
− hK∗(0)

)
≤ hK∗(2θ) + hK∗(−2θ)

2 cos 2θ
− hK∗(0).

The proof is complete.
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Lemma B.1.6 (Approximation). There exists a universal positive constant C such that for
every i = 1, . . . , n and every compact, convex set P , we have

EK∗
(
ĥi − hK∗(θi)

)2

≤ C

(
σ2

kP∗ (i) + 1
+ `2

H(K∗, P )

)
. (B.47)

Proof. Fix i ∈ {1, . . . , n} and a compact, convex set P . For notational convenience, we write
∆k,∆

P
k , k∗ and kP∗ for ∆k(θi),∆

P
k (θi), k∗(θi) and kP∗ (θi) respectively.

We assume that the following condition holds:

kP∗ + 1 ≥ 24(
√

2− 1)√
6− 2

(k∗ + 1). (B.48)

If this condition does not hold, we have

1

k∗ + 1
<

24(
√

2− 1)√
6− 2

1

kP∗ + 1

and then (B.1.6) immediately follows from Theorem 4.3.1.
Note that (B.48) implies, in particular, that kP∗ > k∗. Inequality (B.45) in Lemma B.1.3

applied to k = kP∗ implies therefore that

∆kP∗
≥

(
√

6− 2)
√
kP∗ + 1σ

2(k∗ + 1)
.

Also inequality (B.44) applied to the set P instead of K∗ gives

∆P
kP∗
≤ 6(

√
2− 1)σ√
kP∗ + 1

.

Combining the above pair of inequalities, we obtain

∆kP∗
−∆P

kP∗
≥

(
√

6− 2)
√
kP∗ + 1σ

2(k∗ + 1)
− 6(
√

2− 1)σ√
kP∗ + 1

.

The right hand above is non-decreasing in kP∗ + 1 and so we can replace kP∗ + 1 by the lower
bound in (B.48) to obtain, after some simplication,

∆kP∗
−∆P

kP∗
≥ σ

4
√
k∗ + 1

√
24(
√

2− 1)(
√

6− 2). (B.49)

The key now is to observe that

|∆k −∆P
k | ≤ 2`H(K∗, P ) for all k. (B.50)
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This follows from the definition (4.35) of the Hausdorff distance which gives

∣∣∆k −∆P
k

∣∣ ≤ `H(K∗, P )

(
1 +

1

k + 1

k∑
j=0

cos(4jπ/n)

cos(2jπ/n)

)

and this clearly implies (B.50) because cos(4jπ/n)/ cos(2jπ/n) ≤ 1 for all 0 ≤ j ≤ k.
From (B.50) and (B.49), we deduce that

`H(K∗, P ) ≥ cσ√
k∗ + 1

for a universal positive constant c. This, together with inequality (4.17), clearly implies
(B.47) which completes the proof.

B.2 Additional Simulation Results

We had presented simulation results only when K∗ is a ball and a segment in chapter 4.
Here we present additional simulation results when K∗ is a square, ellipsoid and random
polytope.

B.2.1 Pointwise estimation

Here, we present plots analogous to Figure 4.2 for three additional choices of K∗:

1. K∗ is the square formed by the four corner points: {(0, 0), (0, 1), (1, 0), (1, 1)} whose
support function equals hK∗(θ) = max{0, sin θ, cos θ, sin θ + cos θ}. This function is
plotted in the first subplot of Figure B.1. We study pointwise estimation here for
θi = 0, π/8 and π/4 (these points are indicated by the red dots in the first subplot).
For each of these three values of θi, we calculated the mean squared error as a function
of n which is plotted in Figure B.1.

2. K∗ is the ellipsoid {(x, y) : x2/4+y2/2 = 1} and θi = 0, π/4, π/2. The support function

equals hK∗(θ) :=
(
4 cos2 θ + 2 sin2 θ

)1/2
. This function is plotted in the first subplot of

Figure B.2. We study pointwise estimation here for θi = 0, π/4 and π/2 (these points
are indicated by the red dots in the first subplot). For each of these three values of θi,
we calculated the mean squared error as a function of n which is plotted in Figure B.2.

3. For our final example, we consider a random polytope K∗ generated by sampling 10
points from the uniform distribution on the square [−2, 2] × [−2, 2] and taking their
convex hull. The performance of the seven estimators is shown in the following plots.
In the first subplot, the support function is drawn in black with points 0, π/8, π/4
marked as our choices for θi. Similarly as before, the last three subplots shows how
the mean squared error changes with sample size n growing.
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(ĥ

i−
h i

)2

●

●

●

●
● ●

●

●

LSE
LAE
LAE(projection)
LAE(infinite projection)
FHTW−A
FHTW−B
FHTW−C

Figure B.1: Point estimation error when K∗ is a square

The story in all these plots is the same. The error decays in all cases as n grows. The per-
formance of our estimators is similar to the LSE. The performance of the FHTW estimators
is good when smoothness assumptions are met but otherwise they can be poor.

B.2.2 Set Estimation

Here we present simulation results on set estimation for each of the three examples discussed
above. The relevant plots are given in Figure B.4 (when K∗ is the square), Figure B.5 (when
K∗ is the ellipsoid) and Figure B.6 (when K∗ is the random polytope).

The conclusions are again same as before. Our estimators perform at the same level as
the LSE. Even though, we propose two set estimators: LAE with projection and LAE with
infinite projection, both of them look similar and have similar performance. The FHTW-B
estimator seems to work well when K∗ can be well-approximated by an ellipsoid.
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Figure B.2: Point estimation error when K∗ is an ellipsoid
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Figure B.3: Point estimation error when K∗ is a random polytope
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Figure B.4: Set estimation when K∗ is a square



APPENDIX B. PROOFS FOR CHAPTER 4 152

●

●

●

●

●

●

100 200 300 400 500

0.
00

0.
05

0.
10

0.
15

ellipsoid case

n

E
L f

(K̂
,K

∗ )

● LSE
LAE(projection)
LAE(infinite projection)
FHTW−B

LSE LAE projection

●

●

●

●

●

●

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ellipsoid case

n

E
L(

K̂
,K

∗ )

● LSE
LAE(projection)
LAE(infinite projection)
FHTW−B

LAE infinite projection FHTW−B

Figure B.5: Set estimation when K∗ is an ellipsoid
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Appendix C

Proofs for Chapter 5

C.1 Proof of Lemma 1

Recalling that K† denotes the pseudoinverse of K, our proof is based on the linear transfor-
mation

z : = n−1/2(K†)1/2θ ⇐⇒ θ =
√
nK1/2z.

as well as the new function Jn(z) : = Ln(
√
n
√
Kz) and its population equivalent J (z) : =

EJn(z). Ordinary gradient descent on Jn with stepsize α takes the form

zt+1 = zt − α∇Jn(zt) = zt − α
√
n
√
K∇Ln(

√
n
√
Kzt). (C.1)

If we transform this update on z back to an equivalent one on θ by multiplying both sides
by
√
n
√
K, we see that ordinary gradient descent on Jn is equivalent to the kernel boosting

update θt+1 = θt − αnK∇Ln(θt).
Our goal is to analyze the behavior of the update (C.1) in terms of the population cost

J (zt). Thus, our problem is one of analyzing a noisy form of gradient descent on the function
J , where the noise is induced by the difference between the empirical gradient operator ∇Jn
and the population gradient operator ∇J .

Recall that the L is M -smooth by assumption. Since the kernel matrix K has been
normalized to have largest eigenvalue at most one, the function J is also M -smooth, whence

J (zt+1) ≤ J (zt) + 〈∇J (zt), dt〉+
M

2
‖dt‖2

2,

where dt : = zt+1 − zt = −α∇Jn(zt).

Morever, since the function J is convex, we have J (z∗) ≥ J (zt)+〈∇J (zt), z∗−zt〉, whence

J (zt+1)− J (z∗) ≤ 〈∇J (zt), dt + zt − z∗〉+
M

2
‖dt‖2

2

= 〈∇J (zt), zt+1 − z∗〉+
M

2
‖dt‖2

2. (C.2)
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Now define the difference of the squared errors V t : = 1
2

{
‖zt−z∗‖2

2−‖zt+1−z∗‖2
2

}
. By some

simple algebra, we have

V t =
1

2

{
‖zt − z∗‖2

2 − ‖dt + zt − z∗‖2
2

}
=− 〈dt, zt − z∗〉 − 1

2
‖dt‖2

2

=− 〈dt, −dt + zt+1 − z∗〉 − 1

2
‖dt‖2

2

=− 〈dt, zt+1 − z∗〉+
1

2
‖dt‖2

2.

Substituting back into equation (C.2) yields

J (zt+1)− J (z∗) ≤ 1

α
V t + 〈∇J (zt) +

dt

α
, zt+1 − z∗〉

=
1

α
V t + 〈∇J (zt)−∇Jn(zt), zt+1 − z∗〉,

where we have used the fact that 1
α
≥M by our choice of stepsize α.

Finally, we transform back to the original variables θ =
√
n
√
Kz, using the relation

∇J (z) =
√
n
√
K∇L(θ), so as to obtain the bound

L(θt+1)− L(θ∗) ≤ 1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 〈∇L(θt)−∇Ln(θt), θt+1 − θ∗〉.

Note that the optimality of θ∗ implies that ∇L(θ∗) = 0. Combined with m-strong convexity,
we are guaranteed that m

2
‖∆t+1‖2

n ≤ L(θt+1)− L(θ∗), and hence

m

2
‖∆t+1‖2

n ≤
1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉,

as claimed.

C.2 Proof of Lemma 2

We split our proof into two cases, depending on whether we are dealing with the least-squares
loss φ(y, θ) = 1

2
(y − θ)2, or a classification loss with uniformly bounded gradient (‖φ′‖∞ ≤ 1).

C.2.1 Least-squares case

The least-squares loss is m-strongly convex with m = M = 1. Moreover, the difference
between the population and empirical gradients can be written as ∇L(θ∗ + δ̃) −∇Ln(θ∗ +
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δ̃) = σ
n
(w1, . . . , wn), where the random variables {wi}ni=1 are i.i.d. and sub-Gaussian with

parameter 1. Consequently, we have

|〈∇L(θ∗ + δ̃)−∇Ln(θ∗ + δ̃), ∆〉| =

∣∣∣∣∣σn
n∑
i=1

wi∆(xi)

∣∣∣∣∣.
Under these conditions, one can show (see [144] for reference) that∣∣∣∣∣σn

n∑
i=1

wi∆(xi)

∣∣∣∣∣ ≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

1

16
‖∆‖2

n, (C.3)

which implies that Lemma 2 holds with c3 = 16.

C.2.2 Gradient-bounded φ-functions

We now turn to the proof of Lemma 2 for gradient bounded φ-functions. First, we claim
that it suffices to prove the bound (5.23) for functions g ∈ ∂H and ‖g‖H = 1 where
∂H : = {f−g | f, g ∈H }. Indeed, suppose that it holds for all such functions, and that we
are given a function ∆ with ‖∆‖H > 1 . By assumption, we can apply the inequality (5.23)
to the new function g : = ∆/‖∆‖H , which belongs to ∂H by nature of the subspace H =
span{K(·, xi)}ni=1.

Applying the bound (5.23) to g and then multiplying both sides by ‖∆‖H , we obtain

〈∇L(θ∗ + δ̃)−∇Ln(θ∗ + δ̃), ∆〉

≤2δn‖∆‖n + 2δ2
n‖∆‖H +

m

c3

‖∆‖2
n

‖∆‖H
≤2δn‖∆‖n + 2δ2

n‖∆‖H +
m

c3

‖∆‖2
n,

where the second inequality uses the fact that ‖∆‖H > 1 by assumption.
In order to establish the bound (5.23) for functions with ‖g‖H = 1, we first prove it

uniformly over the set {g | ‖g‖H = 1, ‖g‖n ≤ t}, where t > 1 is a fixed radius (of course,
we restrict our attention to those radii t for which this set is non-empty.) We then extend
the argument to one that is also uniform over the choice of t by a “peeling” argument.

Define the random variable

Zn(t) : = sup
∆,δ̃∈E(t,1)

〈∇L(θ∗ + δ̃)−∇Ln(θ∗ + δ̃), ∆〉. (C.4)

The following two lemmas, respectively, bound the mean of this random variable, and its
deviations above the mean:
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Lemma 5. For any t > 0, the mean is upper bounded as

EZn(t) ≤ σGn(E(t, 1)), (C.5)

where σ : = 2M + 4CH .

Lemma 6. There are universal constants (c1, c2) such that

P
[
Zn(t) ≥ EZn(t) + α

]
≤ c1 exp

(
− c2nα

2

t2

)
. (C.6)

See Appendices C.2.3 and C.2.4 for the proofs of these two claims.
Equipped with Lemmas 5 and 6, we now prove inequality (5.23). We divide our argument

into two cases:

Case t = δn We first prove inequality (5.23) for t = δn. From Lemma 5, we have

EZn(δn) ≤ σGn(E(δn, 1))
(i)

≤ δ2
n, (C.7)

where inequality (i) follows from the definition of δn in inequality (5.12). Setting α = δ2
n in

expression (C.6) yields

P
[
Zn(δn) ≥ 2δ2

n

]
≤ c1 exp

(
−c2nδ

2
n

)
, (C.8)

which establishes the claim for t = δn.

Case t > δn On the other hand, for any t > δn, we have

EZn(t)
(i)

≤ σGn(E(t, 1))
(ii)

≤ tσ
Gn(E(t, 1))

t
≤ tδn,

where step (i) follows from Lemma 5, and step (ii) follows because the function u 7→ Gn(E(u,1))
u

is non-increasing on the positive real line. (This non-increasing property is a direct conse-
quence of the star-shaped nature of ∂H .) Finally, using this upper bound on expression
EZn(δn) and setting α = t2m/(4c3) in the tail bound (C.6) yields

P
[
Zn(t) ≥ tδn +

t2m

4c3

]
≤ c1 exp

(
−c2nm

2t2
)
. (C.9)

Note that the precise values of the universal constants c2 may change from line to line
throughout this section.
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Peeling argument Equipped with the tail bounds (C.8) and (C.9), we are now ready to
complete the peeling argument. Let A denote the event that the bound (5.23) is violated for
some function g ∈ ∂H with ‖g‖H = 1. For real numbers 0 ≤ a < b, let A(a, b) denote the
event that it is violated for some function such that ‖g‖n ∈ [a, b], and ‖g‖H = 1. For k =
0, 1, 2, . . ., define tk = 2kδn. We then have the decomposition E = (0, t0)∪ (

⋃∞
k=0A(tk, tk+1))

and hence by union bound,

P[E ] ≤ P[A(0, δn)] +
∞∑
k=1

P[A(tk, tk+1)]. (C.10)

From the bound (C.8), we have P[A(0, δn)] ≤ c1 exp (−c2nδ
2
n). On the other hand,

suppose that A(tk, tk+1) holds, meaning that there exists some function g with ‖g‖H = 1
and ‖g‖n ∈ [tk, tk+1] such that

〈∇L(θ∗ + δ̃)−∇Ln(θ∗ + δ̃), g〉 > 2δn‖g‖n + 2δ2
n +

m

c3

‖g‖2
n

(i)

≥ 2δntk + 2δ2
n +

m

c3

t2k

(ii)

≥ δntk+1 + 2δ2
n +

m

4c3

t2k+1,

where step (i) uses the ‖g‖n ≥ tk and step (ii) uses the fact that tk+1 = 2tk. This lower bound

implies that Zn(tk+1) > tk+1δn +
t2k+1m

4c3
and applying the tail bound (C.9) yields

P(A(tk, tk+1)) ≤ P(Zn(tk+1) > tk+1δn +
t2k+1m

4c3

)

≤ exp
(
−c2nm

222k+2δ2
n

)
.

Substituting this inequality and our earlier bound (C.8) into equation (C.10) yields

P(E) ≤ c1 exp(−c2nm
2δ2
n),

where the reader should recall that the precise values of universal constants may change from
line-to-line. This concludes the proof of Lemma 2.

C.2.3 Proof of Lemma 5

Recalling the definitions (5.1) and (5.3) of L and Ln, we can write

Zn(t) = sup
∆,δ̃∈E(t,1)

1

n

n∑
i=1

(φ′(yi, θ
∗
i + δ̃i)− Eφ′(yi, θ∗i + δ̃i))∆i
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Note that the vectors ∆ and δ̃ contain function values of the form f(xi)−f ∗(xi) for functions
f ∈ BH (f ∗, 2CH ). Recall that the kernel function is bounded uniformly by one. Conse-
quently, for any function f ∈ BH (f ∗, 2CH ), we have

|f(x)− f ∗(x)| = |〈f − f ∗, K(·, x)〉H |
≤ ‖f − f ∗‖H ‖K(·, x)‖H ≤ 2CH .

Thus, we can restrict our attention to vectors ∆, δ̃ with ‖∆‖∞, ‖δ̃‖∞ ≤ 2CH from hereon-
wards.

Letting {εi}ni=1 denote an i.i.d. sequence of Rademacher variables, define the symmetrized
variable

Z̃n(t) : = sup
∆,δ̃∈E(t,1)

1

n

n∑
i=1

εiφ
′(yi, θ

∗
i + δ̃i) ∆i. (C.11)

By a standard symmetrization argument [138], we have Ey[Zn(t)] ≤ 2Ey,ε[Z̃n(t)]. Moreover,
since

φ′(yi, θ
∗
i + δ̃i) ∆i ≤

1

2

(
φ′(yi, θ

∗
i + δ̃i)

)2

+
1

2
∆2
i

we have

EZn(t) ≤E sup
δ̃∈E(t,1)

1

n

n∑
i=1

εi
(
φ′(yi, θ

∗
i + δ̃i)

)2
+ E sup

∆∈E(t,1)

1

n

n∑
i=1

εi∆
2
i

≤2E sup
δ̃∈E(t,1)

1

n

n∑
i=1

εiφ
′(yi, θ

∗
i + δ̃i)︸ ︷︷ ︸

T1

+ 4CH E sup
∆∈E(t,1)

1

n

n∑
i=1

εi∆i︸ ︷︷ ︸
T2

,

where the second inequality follows by applying the Rademacher contraction inequality [92],
using the fact that ‖φ′‖∞ ≤ 1 for the first term, and ‖∆‖∞ ≤ 2CH for the second term.

Focusing first on the term T1, since E[εiφ
′(yi, θ

∗
i )] = 0, we have

T1 = E sup
δ̃∈E(t,1)

1

n

n∑
i=1

εi

(
φ′(yi, θ

∗
i + δ̃i)− φ′(yi; θ∗i )

)
︸ ︷︷ ︸

ϕi(δ̃i)

(i)

≤ ME sup
δ̃∈E(t,1)

1

n

n∑
i=1

εiδ̃i

(ii)

≤
√
π

2
MGn(E(t, 1)),
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where step (i) follows since each function ϕi is M -Lipschitz by assumption; and step (ii)
follows since the Gaussian complexity upper bounds the Rademacher complexity up to a
factor of

√
π
2
. Similarly, we have

T2 ≤
√
π

2
Gn(E(t, 1)),

and putting together the pieces yields the claim.

C.2.4 Proof of Lemma 6

Recall the definition (C.11) of the symmetrized variable Z̃n. By a standard symmetrization
argument [138], there are universal constants c1, c2 such that

P
[
Zn(t) ≥ EZn[t] + c1α

]
≤ c2P

[
Z̃n(t) ≥ EZ̃n[t] + α

]
.

Since {εi}ni=1 are {yi}ni=1 are independent, we can study Z̃n(t) conditionally on {yi}ni=1.
Viewed as a function of {εi}ni=1, the function Z̃n(t) is convex and Lipschitz with respect to
the Euclidean norm with parameter

L2 : = sup
∆,δ̃∈E(t,1)

1

n2

n∑
i=1

(
φ′(yi, θ

∗
i + δ̃i) ∆i

)2

≤ t2

n
,

where we have used the facts that ‖φ′‖∞ ≤ 1 and ‖∆‖n ≤ t. By Ledoux’s concentration for
convex and Lipschitz functions [91], we have

P
[
Z̃n(t) ≥ EZ̃n[t] + α | {yi}ni=1

]
≤ c3 exp

(
− c4

nα2

t2

)
.

Since the right-hand side does not involve {yi}ni=1, the same bound holds unconditionally over
the randomness in both the Rademacher variables and the sequence {yi}ni=1. Consequently,
the claimed bound (C.6) follows, with suitable redefinitions of the universal constants.

C.3 Proof of Lemma 3

We first require an auxiliary lemma, which we state and prove in the following section. We
then prove Lemma 3 in Section C.3.2.

C.3.1 An auxiliary lemma

The following result relates the Hilbert norm of the error to the difference between the
empirical and population gradients:
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Lemma 7. For any convex and differentiable loss function L, the kernel boosting error
∆t+1 : = θt+1 − θ∗ satisfies the bound

‖∆t+1‖2
H ≤ ‖∆t‖H ‖∆t+1‖H

+ α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉. (C.12)

Proof. Recall that ‖∆t‖2
H = ‖θt− θ∗‖2

H = ‖zt− z∗‖2
2 by definition of the Hilbert norm. Let

us define the population update operator G on the population function J and the empirical
update operator Gn on Jn as

G(zt) : = zt − α∇J (
√
n
√
Kzt),

and zt+1 : = Gn(zt) = zt − α∇Jn(
√
n
√
Kzt). (C.13)

Since J is convex and smooth, it follows from standard arguments in convex optimization
that G is a non-expansive operator—viz.

‖G(x)−G(y)‖2 ≤ ‖x− y‖2 for all x, y ∈ C. (C.14)

In addition, we note that the vector z∗ is a fixed point of G—that is, G(z∗) = z∗. From
these ingredients, we have

‖∆t+1‖2
H

= 〈zt+1 − z∗, Gn(zt)−G(zt) +G(zt)− z∗〉
(i)

≤‖zt+1 − z∗‖2‖G(zt)−G(z∗)‖2

+ α〈
√
n
√
K[∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t)], zt+1 − z∗〉

(ii)

≤ ‖∆t+1‖H ‖∆t‖H
+ α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉

where step (i) follows by applying the Cauchy-Schwarz to control the inner product, and
step (ii) follows since ∆t+1 =

√
n
√
K(zt+1 − z∗), and the square root kernel matrix

√
K is

symmetric.

C.3.2 Proof of Lemma 3

We now prove Lemma 3. The argument makes use of Lemmas 1 and 2 combined with
Lemma 7.

In order to prove inequality (5.24), we follow an inductive argument. Instead of prov-
ing (5.24) directly, we prove a slightly stronger relation which implies it, namely

max{1, ‖∆t‖2
H } ≤ max{1, ‖∆0‖2

H }+ tδ2
n

4M

γ̃m
. (C.15)
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Here γ̃ and c3 are constants linked by the relation

γ̃ : =
1

32
− 1

4c3

= 1/C2
H . (C.16)

We claim that it suffices to prove that the error iterates ∆t+1 satisfy the inequality (C.15).
Indeed, if we take inequality (C.15) as given, then we have

‖∆t‖2
H ≤ max{1, ‖∆0‖2

H }+
1

2γ̃
≤ C2

H ,

where we used the definition C2
H = 2 max{‖θ∗‖2

H , 32}. Thus, it suffices to focus our
attention on proving inequality (C.15).

For t = 0, it is trivially true. Now let us assume inequality (C.15) holds for some t ≤ m
8Mδ2n

,
and then prove that it also holds for step t+ 1.

If ‖∆t+1‖H < 1, then inequality (C.15) follows directly. Therefore, we can assume
without loss of generality that ‖∆t+1‖H ≥ 1.

We break down the proof of this induction into two steps:

• First, we show that ‖∆t+1‖H ≤ 2CH so that Lemma 2 is applicable.

• Second, we show that the bound (C.15) holds and thus in fact ‖∆t+1‖H ≤ CH .

Throughout the proof, we condition on the event E and E0 := { 1√
n
‖y − E[y | x]‖2 ≤

√
2σ}.

Lemma 2 guarantees that P(Ec) ≤ c1 exp(−c2
m2nδ2n
σ2 ) whereas P(E0) ≥ 1 − E−n follows from

the fact that Y 2 is sub-exponential with parameter σ2n and applying Hoeffding’s inequality.
Putting things together yields an upper bound on the probability of the complementary
event, namely

P(Ec ∪ Ec0) ≤ 2c1 exp(−C2nδ
2
n)

with C2 = max{m2

σ2 , 1}.

Showing that ‖∆t+1‖H ≤ 2CH In this step, we assume that inequality (C.15) holds at

step t, and show that ‖∆t+1‖H ≤ 2CH . Recalling that z : = (K†)1/2√
n
θ, our update can be

written as

zt+1 − z∗ = zt − α
√
n
√
K∇L(θt)− z∗

+ α
√
n
√
K(∇Ln(θt)−∇L(θt)).

Applying the triangle inequality yields the bound

‖zt+1 − z∗‖2 ≤ ‖ zt − α
√
n
√
K∇L(θt)︸ ︷︷ ︸

G(zt)

−z∗‖2

+ ‖α
√
n
√
K(∇Ln(θt)−∇L(θt))‖2
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where the population update operator G was previously defined (C.13), and observed to be
non-expansive (C.14). From this non-expansiveness, we find that

‖zt+1 − z∗‖2 ≤ ‖zt − z∗‖2 + ‖α
√
n
√
K(∇Ln(θt)−∇L(θt))‖2,

Note that the `2 norm of z corresponds to the Hilbert norm of θ. This implies

‖∆t+1‖H ≤ ‖∆t‖H + ‖α
√
n
√
K(∇Ln(θt)−∇L(θt))‖2︸ ︷︷ ︸

: =T

Observe that because of uniform boundedness of the kernel by one, the quantity T can be
bounded as

T ≤ α
√
n‖∇Ln(θt)−∇L(θt))‖2 = α

√
n

1

n
‖v − Ev‖2,

where we have define the vector v ∈ Rn with coordinates vi : = φ′(yi, θ
t
i). For functions

φ satisfying the gradient boundedness and m −M condition, since θt ∈ BH (θ∗, CH ), each
coordinate of the vectors v and Ev is bounded by 1 in absolute value. We consequently have

T ≤ α ≤ CH ,

where we have used the fact that α ≤ m/M < 1 ≤ CH

2
. For least-squares φ we instead have

T ≤ α

√
n

n
‖y − E[y | x]‖2 =:

α√
n
Y ≤

√
2σ ≤ CH

conditioned on the event E0 := { 1√
n
‖y − E[y | x]‖2 ≤

√
2σ}. Since Y 2 is sub-exponential

with parameter σ2n it follows by Hoeffding’s inequality that P(E0) ≥ 1− E−n.
Putting together the pieces yields that ‖∆t+1‖H ≤ 2CH , as claimed.

Completing the induction step We are now ready to complete the induction step for
proving inequality (C.15) using Lemma 1 and Lemma 2 since ‖∆t+1‖H ≥ 1. We split the
argument into two cases separately depending on whether or not ‖∆t+1‖H δn ≥ ‖∆t+1‖n. In
general we can assume that ‖∆t+1‖H > ‖∆t‖H , otherwise the induction inequality (C.15)
satisfies trivially.

Case 1 When ‖∆t+1‖H δn ≥ ‖∆t+1‖n, inequality (5.23) implies that

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗+∆̃), ∆t+1〉

≤ 4δ2
n‖∆t+1‖H +

m

c3

‖∆t+1‖2
n, (C.17)
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Combining Lemma 7 and inequality (C.17), we obtain

‖∆t+1‖2
H ≤‖∆t‖H ‖∆t+1‖H + 4αδ2

n‖∆t+1‖H + α
m

c3

‖∆t+1‖2
n

=⇒ ‖∆t+1‖H ≤
1

1− αδ2
n
m
c3

[
‖∆t‖H + 4αδ2

n

]
, (C.18)

where the last inequality uses the fact that ‖∆t+1‖n ≤ δn‖∆t+1‖H .

Case 2 When ‖∆t+1‖H δn < ‖∆t+1‖n, we use our assumption ‖∆t+1‖H ≥ ‖∆t‖H together
with Lemma 7 and inequality (5.23) which guarantee that

‖∆t+1‖2
H ≤‖∆t‖2

H + 2α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉

≤‖∆t‖2
H + 8αδn‖∆t+1‖n + 2α

m

c3

‖∆t+1‖2
n.

Using the elementary inequality 2ab ≤ a2 + b2, we find that

‖∆t+1‖2
H ≤‖∆t‖2

H + 8α

[
mγ̃‖∆t+1‖2

n +
1

4γ̃m
δ2
n

]
+ 2α

m

c3

‖∆t+1‖2
n

≤‖∆t‖2
H + α

m

4
‖∆t+1‖2

n +
2αδ2

n

γ̃m
, (C.19)

where in the final step, we plug in the constants γ̃, c3 which satisfy equation (C.16).
Now Lemma 1 implies that

m

2
‖∆t+1‖2

n ≤ Dt + 4‖∆t+1‖nδn +
m

c3

‖∆t+1‖2
n

(i)

≤ Dt + 4

[
γ̃m‖∆t+1‖2

n +
1

4γ̃m
δ2
n

]
+
m

c3

‖∆t+1‖2
n,

where step (i) again uses 2ab ≤ a2 + b2. Thus, we have m
4
‖∆t+1‖2

n ≤ Dt + 1
γ̃m
δ2
n. Together

with expression (C.19), we find that

‖∆t+1‖2
H ≤ ‖∆t‖2

H +
1

2
(‖∆t‖2

H − ‖∆t+1‖2
H ) +

4α

γ̃m
δ2
n

=⇒ ‖∆t+1‖2
H ≤ ‖∆t‖2

H +
4α

γ̃m
δ2
n. (C.20)
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Combining the pieces By combining the two previous cases, we arrive at the bound

max
{

1, ‖∆t+1‖2
H

}
≤max

{
1, κ2(‖∆t‖H + 4αδ2

n)2, ‖∆t‖2
H +

4M

γ̃m
δ2
n

}
, (C.21)

where κ : = 1
(1−αδ2n mc3 )

and we used that α ≤ min{ 1
M
,M}.

Now it is only left for us to show that with the constant c3 chosen such that γ̃ = 1
32
− 1

4c3
=

1/C2
H , we have

κ2(‖∆t‖H + 4αδ2
n)2 ≤ ‖∆t‖2

H +
4M

γ̃m
δ2
n.

Define the function f : (0, CH ] → R via f(ξ) : = κ2(ξ + 4αδ2
n)2 − ξ2 − 4M

γ̃m
δ2
n. Since

κ ≥ 1, in order to conclude that f(ξ) < 0 for all ξ ∈ (0, CH ], it suffices to show that
argminx∈R f(x) < 0 and f(CH ) < 0. The former is obtained by basic algebra and follows
directly from κ ≥ 1. For the latter, since γ̃ = 1

32
− 1

4c3
= 1/C2

H , α < 1
M

and δ2
n ≤ M2

m2 it thus
suffices to show

1

(1− M
8m

)2
≤ 4M

m
+ 1

Since (4x+ 1)(1− x
8
)2 ≥ 1 for all x ≤ 1 and m

M
≤ 1, we conclude that f(CH ) < 0.

Now that we have established max{1, ‖∆t+1‖2
H } ≤ max{1, ‖∆t‖2

H }+ 4M
γ̃m
δ2
n, the induction

step (C.15) follows. which completes the proof of Lemma 3.

C.4 Proof of Lemma 4

Recall that the LogitBoost algorithm is based on logistic loss φ(y, θ) = ln(1 + e−yθ), whereas
the AdaBoost algorithm is based on the exponential loss φ(y, θ) = exp(−yθ). We now
verify the m-M -condition for these two losses with the corresponding parameters specified
in Lemma 4.

C.4.1 m-M-condition for logistic loss

The first and second derivatives are given by

∂φ(y, θ)

∂θ
=
−ye−yθ

1 + e−yθ
, and

∂2φ(y, θ)

(∂θ)2
=

y2

(e−yθ/2 + eyθ/2)2
.

It is easy to check that |∂φ(y,θ)
∂θ
| is uniformly bounded by B = 1.
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Turning to the second derivative, recalling that y ∈ {−1,+1}, it is straightforward to
show that

max
y∈{−1,+1}

sup
θ

y2

(e−yθ/2 + eyθ/2)2
≤ 1

4
,

which implies that ∂φ(y,θ)
∂θ

is a 1/4-Lipschitz function of θ, i.e. with M = 1/4.
Our final step is to compute a value for m by deriving a uniform lower bound on the

Hessian. For this step, we need to exploit the fact that θ = f(x) must arise from a function
f such that ‖f‖H ≤ D : = CH + ‖θ∗‖H . Since supxK(x, x) ≤ 1 by assumption, the repro-
ducing relation for RKHS then implies that |f(x)| ≤ D. Combining this inequality with the
fact that y ∈ {−1, 1}, it suffices to lower the bound the quantity

min
y∈{−1,+1}

min
|θ|≤D

∣∣∣∣∂2φ(y, θ)

(∂θ)2

∣∣∣∣ = min
|y|≤1

min
|θ|≤D

y2

(e−yθ/2 + eyθ/2)2

≥ 1

e−D + eD + 2︸ ︷︷ ︸
m

,

which completes the proof for the logistic loss.

C.4.2 m-M-condition for AdaBoost

The AdaBoost algorithm is based on the cost function φ(y, θ) = e−yθ, which has first and
second derivatives (with respect to its second argument) given by

∂φ(y, θ)

∂θ
= −ye−yθ, and

∂2φ(y, θ)

(∂θ)2
= e−yθ.

As in the preceding argument for logistic loss, we have the bound |y| ≤ 1 and |θ| ≤ D. By
inspection, the absolute value of the first derivative is uniformly bounded B : = eD, whereas
the second derivative always lies in the interval [m,M ] with M : = eD and m : = e−D, as
claimed.

Moreover, as shown by our later results, under suitable regularity conditions, the ex-
pectation of the minimum squared error ρ2

n is proportional to the statistical minimax risk

inf f̂ supf∈F E[L(f̂)−L(f)], where the infimum is taken over all possible estimators f̂ . Note
that the minimax risk provides a fundamental lower bound on the performance of any esti-
mator uniformly over the function space F . Coupled with our stopping time guarantee (5.5),
we are guaranteed that our estimate achieves the minimax risk up to constant factors. As a
result, our bounds are unimprovable in general (see Corollary 4).
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