
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
MDLChunker: a MDL-based Model of Word Segmentation

Permalink
https://escholarship.org/uc/item/2np5f8gq

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 31(31)

ISSN
1069-7977

Authors
Lemaire, Benoit
Robinet, Vivien

Publication Date
2009

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2np5f8gq
https://escholarship.org
http://www.cdlib.org/

MDLChunker: a MDL-based Model of Word Segmentation

Vivien Robinet (vivien.robinet@imag.fr)
TIMC-IMAG laboratory, University of Grenoble, Domaine de la Merci

38706 La Tronche, FRANCE

Benoît Lemaire (benoit.lemaire@imag.fr)
TIMC-IMAG laboratory, University of Grenoble, Domaine de la Merci

38706 La Tronche, FRANCE

Abstract

This paper applies a MDL-based computational model of
inductive learning to the problem of word segmentation. The
main idea is that syllables are grouped into words as soon as
this operation decreases the size of the overall representation
of the data, that is the codelength of information. When
exposed to a stream of artificial words, our model
(MDLChunker) is able to reproduce Giroud & Rey (in press)
effect: humans learn sub-words as well as real words at the
beginning, but after a while they learn real words better than
sub-words. In order to better mimic human learning, a
limited-size short-term memory was added to the model and
estimates of its size are given.

Keywords: inductive learning; word segmentation;
minimum description length; computational model;
distributional cues; simplicity principle

Introduction
In a seminal paper, Saffran et al. (1996) showed that, when
exposed to a stream of concatenated artificial words,
humans are able to segment correctly and learn the words
from the only transitional probabilities between syllables.
This result suggested that infants, although sensitive to
acoustical factors such as phrasal prosody or lexical stress
(Swingley, 2005), could be influenced by distributional cues
to segment the stream of speech they are exposed to.

This paper presents a cognitive computational model
(MDLChunker) to account for that phenomenon. It is based
on the general idea that humans tend to make decisions
leading to the simplest representation, i.e. minimizing the
codelength of information in memory. Compared to existing
models, it does not rely on any adjustable parameters.

Originally, MDLChunker was build to predict human
performances on artificial grammar learning tasks, which is
a classical paradigm in the implicit learning field (Servan-
Schreiber & Anderson, 1990). Our purpose is to use the
same model to account for word segmentation, which is the
task traditionally studied in statistical learning. In this way,
we follow Perruchet & Pacton (2006) who propose that
implicit learning and statistical learning are two approaches
of the same phenomenon.

Existing models
Two strategies can be used to model the way infants may
solve the word segmentation problem (Swingley, 2005),
which corresponds to two kinds of distributional-based

computational models: those following a top-down
approach, by inserting boundaries into continuous speech
(bracketing strategy) and those using a bottom-up approach,
creating new units by grouping frequent ones (clustering
strategy)

Parser (Perruchet & Vinter, 1998) uses the clustering
strategy. It maintains a list of weighted candidate words,
which can be viewed as a mental lexicon. At each time step,
Parser randomly selects between 1 and 3 units in the input
to form a new candidate word. A unit is initially a syllable,
but can become a longer group of syllables through an
aggregative chunking process, provided that their weights
are high enough. This bottom-up mechanism is intended to
model the perception shaping phenomenon: what we
already learned affects our perception. We do not view a
new item as composed of elementary items if it has already
been learned, we view it as a whole. For instance, “bkjbk” is
viewed as a sequence of 5 letters whereas “obama” is
viewed as one item. Parser contains a reinforcement
parameter increasing the weight of the current percept. A
forgetting mechanism is also implemented by a constant
diminution of each weight at each time step. Finally, an
interference mechanism slightly decreases the weight of
each candidate word which shares a syllable with the new
percept. When applied to a long sequence of concatenated
artificial words, the best-weighted candidate words are those
of the language (Perruchet & Vinter, 1998). BootLex
(Batchelder, 2002) follows a bottom-up approach similar to
PARSER.

Top-down word segmentation can be simulated by
connectionist models. Christiansen, Allen & Seidenberg
(1998) used a simple recurrent network to extract word
boundaries from a corpus of child directed speech.

Brent & Cartwright (1996) model also follows a top-down
approach. It does not contain a mechanism to aggregate the
syllables, but only assess the relevance of a given
segmentation. Therefore, it exhaustively generates all
possible segmentations and uses the minimum description
length principle (MDL) to select the most relevant one.
Similarly, Argamon et al. (2004) uses the MDL principle in
a segmentation task consisting in finding prefixes and
suffixes inside words. Since our model also uses that
minimum description length principle, we now present this
idea.

2866

A MDL-based model
Following Chater (1999), our hypothesis is that simplicity
can account for many cognitive tasks. We already built a
model (Robinet et al., 2008), that implement the general
notion of simplicity using the formalism provided by the
MDL principle. This model was designed to predict the time
course of concept creation in a task where participants are
learning an artificial grammar. We believe this model is
general enough to apply to other tasks, such as word
segmentation. When applied to the word segmentation task,
MDLChunker could be seen as an online version of Brent &
Cartwright (1996) model, with an explicit representation of
chunks progressively updated over time.

From this point of view of simplicity, a good
segmentation would minimize the amount of information
which has to be stored. Using a lexicon would compress
information by limiting redundancy. For instance, since the
sequence of letters “o b a m a” is frequent, adding the word
“w1: o b a m a” to the lexicon would compress the input.
Adding “w2: b k j b k” would not compress anything, only
consuming the memory size necessary to define it. A good
segmentation can therefore be viewed as a trade-off between
the conciseness of the lexicon and the expressiveness of the
input data with respect to that lexicon. For instance, a very
small lexicon, although saving resources, would lead to a
high number of unrecognized words in the input. On the
contrary, a very detailed lexicon corresponding to numerous
combinations of syllables would take a large place in
memory, although being good at processing new inputs.

Information theory offers a formal way to implement that
idea, namely the minimum description length (MDL)
principle (Rissanen, 1978). This method consists in
computing the lengths of the codes for representing the
lexicon (hereafter represented as Lexicon) and the lengths of
the codes for representing the input data knowing the
lexicon (hereafter represented as Data|Lexicon), and
minimize their sum. Codelengths are estimated by means of
Shannon's formula, saying that a symbol s, occurring with
probability p, can be ideally compressed with a binary code
whose length is I(s)=-log2(p). In our case, p is estimated by
the frequency of s.

Let us give an example. Suppose a language composed of
the two words “abc” and “cb”. Input is therefore a long
concatenation of these words. A good lexicon would contain
“abc” and “cb” after enough data has been processed.
Suppose that, so far, we have already processed
“abcabcabcabccbcbabccbabcabcabc”. Because we have
already learned the words “a”, “b”, “c”, “ab” and “cc”, the
data was segmented as such: “ab c ab c ab c ab cc b c b ab
cc b ab c ab c ab c”. If we need to process “abcab”, there are
several ways to segment the new input. Let us consider two
of them: “ab c ab” and “abc ab”. Case #1 only uses existing
words whereas case #2 suggests “abc” as a new word.
Figure 1 presents codelengths for the two cases.

Case #1:
Lexicon=a, b, c, ab, cc ; Data|Lexicon=ab c ab c ab c ab cc b
c b ab cc b ab c ab c ab c ab c ab.
For example, codelength for c is -log2(11/32) because c
occurs 11 times out of 32. Codelength(cc) is -log2(3/32), etc.
The size for the entire case #1 is therefore 65.5 bits.

Case #2:
Lexicon=a, b, c, ab, cc, abc. Since a new word “abc” is
added to the lexicon, the data are segmented accordingly:
Data|Lexicon=abc abc abc abc c b c b abc c b abc abc abc
abc ab
The total size for case #2 is 63.4 bits. Therefore, case #2 is a
better segmentation because its total size is smaller.

Figure 1: Sizes of lexicon and data for case #1 and case
#2 after processing the input “abcab”

This way of selecting the most probable segmentation
humans have chosen can be viewed as a form of Occam's
razor: given several segmentation hypotheses, humans
would select the simplest one. This idea that simplicity

2867

could be a unifying principle in cognitive science has been
discussed by Chater & Vitanyi (2003).
As we mentioned earlier, Brent & Cartwright (1996) used
the MDL principle for selecting the best segmentation, but
they had to generate all possible combinations. In order to
be more cognitively plausible, we designed a model to
account for the process by which words are progressively
aggregated through the process of the input.

In its first version, MDLChunker considers a fixed-size
part of the input at each step. It then operates in 3 sub-steps:

� the new piece of input is encoded using the existing
words in the lexicon;

� the model creates new words by grouping two
existing words, provided that they decreases the
overall size (MDL principle);

� data is re-expressed using the existing words.
With this architecture, our model is able to correctly

segment a stream of artificial words, even if words share
some syllables. It successfully learned the artificial words of
the Perruchet & Vinter (1998) experiment.

The vanishing sub-word effect
This model was also tested on data from Giroux & Rey (in
press). They designed a new experiment to compare
recognition performances of adults hearing either 2 or 10
min of an artificial spoken language. The language is
composed of 6 words, formally represented here as ABC,
DEF, GH, IJ, KL and MN. Participants just listened to a

random concatenation of these words, uttered at the rate of
3.3 syllables/s by a speech synthesizer without any prosodic
information.

After a 10 min training, recognition performances on
dissyllabic words (such as "GH") was significantly higher
than those obtained on dissyllabic sub-words (such as
"BC"), while no difference occurs after a 2 min training.

Authors successfully reproduced this vanishing sub-word
effect with PARSER, using the same Perruchet & Vinter
(1998) parameter values. This result credits the bottom-up
hypothesis by suggesting that sub-word recognition is a
necessary step in the word learning process.

Our model was run on the same artificial language to
check whether we could reproduce this vanishing sub-word
effect. The input was split in blocks of 5 syllables1. After
each block was processed, codelengths were computed for
the 2 tri-syllabic words (ABC and DEF), the 4 dissyllabic
words (GH, IJ, KL and MN), the 4 sub-words (AB, BC, DE
and EF) and the 8 non-words used by Giroud & Rey (CK,
FM, CG, FI, HI, JK, LM and NG). 1000 simulations were
performed with random input sequences and codelengths
were averaged.
Figure 2 presents all codelengths as a function of the
number of syllables processed. The lower the codelength,

1 Because input was split in blocs of 5 syllables,

trissyllabic words are statistically broken more often than
dissyllabic ones. Thus, isolated syllables from trissyllabic words
are more frequent and have a lower codelength

Figure 2 : Time course of codelengths obtained with our model during the processing of the first 750 syllables.
Codelengths are presented for all the words, sub-words and non-words of the experiment.

2868

the more frequent the word. At the beginning, there is no
difference between all dissyllabic words and sub-words, but
tri-syllabic ones are trivially coded using 50% more space.
After about 30 syllables have been processed, things begin
to change: non-words2 costs more and more to be
represented, whereas real words, both dissyllabic3 and
trissyllabic, are efficiently coded, even less than sub-words.
We used the test designed by Giroux & Rey, in order to
compare our model to human data. The words GH, IJ, KL,
MN are tested against the non-words CK, FM, CG, FI and
the sub-words AB, DE, BC, EF are tested against the non-
words HI, JK, LM, NG. In this test, the model has to choose
the dissyllabic unit that best matches with the language on
which it was trained (in our case, that with the lowest
codelength). The two tests (words vs non-words and sub-
words vs non-words) are performed eight times for each
training phase (virtual participant). Averaged performances
are presented Figure 3 along with those obtained by Giroux
& Rey.

No significant difference between performance on words
over sub-words was obtained with our model at 15 syllables
(F(1, 999)=0.69 ; p=0.41), whereas a significant difference
(F(1, 999)=465 ; p<10-16) is observed at 75 syllables.
Fed with the same artificial grammar, our model could thus
reproduce this vanishing sub-word effect, but the rate of
learning appears too fast compared to the human
counterpart. This is due to the fact that our model never
forgets anything. In order to be more cognitively plausible,
we improved our model by restricting its memory i.e. the
data from which the model could make associations to
create new words. We also changed the way the input is
processed in order not to split the input into fixed-size parts
but instead to process it as a stream of syllables.

Improvement: adding of a memory module
Instead of taking into account all the data already processed,
this new version of the model used a memory buffer to only
keep a given amount of data. This buffer plays the role of a
short-term memory (STM) whereas the set of existing words
(the lexicon) is more like a long-term memory. The model
works in the following way (Figure 4):

� The beginning of the current input is segmented in
order to minimize its codelength and the first two
units are candidates for forming a new word
(perception shaping);

2 A difference between HI, HK, LM, NG and CK, FM,

CG, FI could be observed in Figure 2, because of the lower
codelength of syllables C and F which are parts of trissyllabic
words (see footnote 1).

3 A difference between BC, EF and AB, DE could be
observed in Figure 2. While our model systematically creates the
first among two possible new words, AB and DE are created more
often than BC and EF. The former are only created if the input split
breaks ABC in A and BC, which is less frequent than having either
ABC or AB and C.

Figure 3 : Percentages of correct results for humans,
PARSER and our model, on the two tests: words vs non-
word and sub-words vs non-words. A 2 minutes training
corresponds to 400 syllables and a 10 minutes training to

2000 syllables.

2869

� This new word is created only if its creation would
decrease the overall size of the system (STM
rewritten + lexicon with the new word).

� The new percept (the first input unit) is added to
STM;

� Old percepts exceeding memory size are removed
from STM. This step depends both on the memory
size and on the codelength of the oldest percepts.

Figure 4: Architecture of our system after adding of the
memory module

Let us go back to the previous example in order to highlight
the changes in the new version of the model. Existing words
are “a”, “b”, “c”, “ab” and “cc”. Previous STM state is the
following: “ab c ab c ab c ab c ab cc b c b ab cc b ab c ab c
ab c”. New input is “abcabccb ...” shaped as “ab c ab cc b”
(Figure 4, step 1). The first two units are selected in the new
input. In our case, this is “ab” and “c”. The new word “abc”

is then candidate for being a new word in the lexicon
(Figure 4, step 2).

With this new word, the state of the system would be
represented using 63.4 bits, which is better than the 65.5 bits
if “abc” were not created. Therefore, the new word is
created and “ab” is added to STM (Figure 4, step 3).

There are several ways to avoid STM overflow when a
new set of syllables has to be added. We could have kept a
fixed number of “words”. In order to be more coherent with
the rest of our model, we kept a fixed quantity of
information i.e., a maximum number of bits. After a new
percept has been added to memory, old percepts are
therefore removed to keep memory size under its limit.
Then the process continues with the next input.

Estimation of a good memory size
By supplementing our model with a finite memory, we
added a parameter (the memory size) that needs to be
adjusted. With a huge memory (1000 bits), the model learns
at a very high rate, like in its previous version. This is not
cognitively plausible and does not correspond to human
data. With a too small memory (100 bits), no learning
occurs at all, because there is not enough data available at
the same time in memory to find regularities. With a size of
150 bits, we found a good similarity between the model and
the human learning rate. With this 150 bits memory size, we
reproduced both the vanishing-words effect, and the time
course of learning. At 2 minutes (400 syllables) no
significant difference (F(1, 999)=-0.21; p=0.64) was observed
on performances between words and sub-words. This
difference became significant (F(1, 999)=48.4; p<10-12) after
a 10 minute training.

Comparison with PARSER
Our MDL based model obtains results that are very close to
those obtained with PARSER. These two chunking models
use two different approaches to implement the same
functions: perception shaping, reinforcement, forgetting and
interference.

Perception shaping
The underlying idea is that perception depends on what was
already learned.

PARSER: Shape the input by selecting the longest
existing unit above a fixed threshold (shaping threshold).

MDLChunker: When looking for the shortest encoding
of the input, the model tends to prefer units with shorter
codelengths, since codelength depends on earlier
perceptions.

Reinforcement
The idea is to increase the weight of recently perceived unit
in order to give frequent units a higher weight.

PARSER: Add a fixed weight to the perceived unit. The
weight differs depending on the position relative to the
shaping threshold.

2870

MDLChunker: Perception of a new unit increases its
frequency, thus naturally decreasing its codelength.

Forgetting
The idea is to decrease the weight of the units that no longer
occurs.

PARSER: At each iteration it decreases all the unit
weights by a fixed quantity.

MDLChunker: Frequency of unperceived units slightly
decreases naturally after each new perceived unit.

Interference
The idea is that when shaping the perceived unit by using
some units, other units that could apply have their weight
decreased.

PARSER: Decrease the weight of all the units
overlapping the perceived unit.

MDLChunker: Frequency of units not used to encode
the perceived unit slightly decreases naturally, which in turn
increases its codelength, thus making it less interesting for
future perceptions.

Conclusion
In this paper we show that, our original chunking model
designed for an implicit learning paradigm, can easily
account for word segmentation, which is the classical
paradigm used in statistical learning (Saffran et al., 1996).

Without any improvement in our parameter-free model,
we successfully reproduced the Perruchet & Vinter (1998)
experiment as well as the vanishing sub-word effect
presented by Giroux & Rey (in press). We observed no
significant differences between words and sub-words at the
beginning of the training, following by a significant
superiority of words over sub-words during the training.
While the memory size is infinite in this first version of our
model, the learning rate is much higher than humans one.
We limited this memory size to account for forgetting
effects. We found that for a size of 150 bits, model and
humans learning rates are equivalent according to the
conducted tests.

Both MDLChunker and PARSER can extract words from
a stream of syllables. They are also able to reproduce the
vanishing sub-word effect, suggesting that chunking is an
efficient bottom-up process to model word segmentation.

We plan several kinds of improvements in the future.
First, this general MDL-based model of inductive learning
needs to be applied to other word segmentation tasks as well
as other problems. We also aim at improving its model of
memory and we will probably attempt to unify the
representation of the lexicon (long-term memory) and the
data already processed (short-term memory). The idea that
memory could be modeled in term of quantity of
information (Brady et al., 2008) appear challenging to us. It
would be interesting to see how this point of view compares
with the classical view of expressing memory limit in terms
of a number of chunks (Miller, 1956).

References
Argamon, S., Akiva, N., Amir, A., & Kapah, O. (2004).

Efficient unsupervised recursive word segmentation using
minimum description length. In Proc. 20th International
Conference on Computational Linguistics (Coling-04).

Batchelder, E. O. (2002). Bootstrapping the lexicon: A
computational model of infant speech segmentation.
Cognition, 83(2), 167-206.

Brady, T. F., Konkle, T., & Alvarez, G. A. (2008). Efficient
Coding in Visual Short-Term Memory: Evidence for an
Information-Limited Capacity. In B. C. Love, K. McRae,
& V. M. Sloutsky (Eds.), Proceedings of the 30th Annual
Conference of the Cognitive Science Society (pp. 887-
892). Austin, TX: Cognitive Science Society.

Brent, M. R., & Cartwright, T. A. (1996). Distributional
regularity and phonotactic constraints are useful for
segmentation. Cognition, 61(1-2), 93-125.

Chater, N. (1999). The Search for Simplicity: A
Fundamental Cognitive Principle? The Quarterly Journal
of Experimental Psychology A, 52, 273-302.

Chater, N., & Vitanyi, P. (2003). Simplicity: a unifying
principle in cognitive science? Trends in Cognitive
Sciences, 7(1), 19-22.

Christiansen, M. H., Allen, J., & Seidenberg, M. S. (1998).
Learning to segment speech using multiple cues: A
connectionist model. Language and Cognitive Processes,
13(2/3), 221-268.

Giroux, I., & Rey, A. (in press). Lexical and sub-lexical
units in speech perception. Cognitive Science.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity to process
information. Psychological Review, 63(2), 81-97.

Perruchet, P., & Pacton, S. (2006). Implicit learning and
statistical learning: one phenomenon, two approaches.
Trends in Cognitive Sciences, 10(5), 233-238.

Perruchet, P., & Vinter, A. (1998). PARSER: A Model for
Word Segmentation. Journal of Memory and Language,
39(2), 246-263.

Rissanen, J. (1978). Modeling by shortest data description.
Automatica, 14(5), 465–471.

Robinet, V., Bisson, G., Gordon, M., & Lemaire, B. (2008).
Modèle cognitif de l'apprentissage inductif de concepts.
In Actes du colloque annuel de l'association pour la
recherche cognitive. France.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996).
Statistical Learning by 8-Month-Old Infants. Science,
274(5294), 1926.

Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word
Segmentation: The Role of Distributional Cues. Journal
of Memory and Language, 35(4), 606-621.

Servan-Schreiber, E., & Anderson, J. R. (1990). Learning
Artificial Grammars With Competitive Chunking. Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 16(4), 592-608.

Swingley, D. (2005). Statistical clustering and the contents
of the infant vocabulary. Cognitive Psychology, 50(1), 86-
132.

2871

