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Abstract 

This paper applies a MDL-based computational model of 
inductive learning to the problem of word segmentation. The 
main idea is that syllables are grouped into words as soon as 
this operation decreases the size of the overall representation 
of the data, that is the codelength of information. When 
exposed to a stream of artificial words, our model 
(MDLChunker) is able to reproduce Giroud & Rey (in press) 
effect: humans learn sub-words as well as real words at the 
beginning, but after a while they learn real words better than 
sub-words. In order to better mimic human learning, a 
limited-size short-term memory was added to the model and 
estimates of its size are given. 

Keywords: inductive learning; word segmentation; 
minimum description length; computational model; 
distributional cues; simplicity principle 

Introduction 
In a seminal paper, Saffran et al. (1996) showed that, when 
exposed to a stream of concatenated artificial words, 
humans are able to segment correctly and learn the words 
from the only transitional probabilities between syllables. 
This result suggested that infants, although sensitive to 
acoustical factors such as phrasal prosody or lexical stress 
(Swingley, 2005), could be influenced by distributional cues 
to segment the stream of speech they are exposed to. 

This paper presents a cognitive computational model 
(MDLChunker) to account for that phenomenon. It is based 
on the general idea that humans tend to make decisions 
leading to the simplest representation, i.e. minimizing the 
codelength of information in memory. Compared to existing 
models, it does not rely on any adjustable parameters. 

Originally, MDLChunker was build to predict human 
performances on artificial grammar learning tasks, which is 
a classical paradigm in the implicit learning field (Servan-
Schreiber & Anderson, 1990). Our purpose is to use the 
same model to account for word segmentation, which is the 
task traditionally studied in statistical learning. In this way, 
we follow Perruchet & Pacton (2006) who propose that 
implicit learning and statistical learning are two approaches 
of the same phenomenon. 

Existing models 
Two strategies can be used to model the way infants may 
solve the word segmentation problem (Swingley, 2005), 
which corresponds to two kinds of distributional-based 

computational models: those following a top-down 
approach, by inserting boundaries into continuous speech 
(bracketing strategy) and those using a bottom-up approach, 
creating new units by grouping frequent ones (clustering 
strategy) 

Parser (Perruchet & Vinter, 1998) uses the clustering 
strategy. It maintains a list of weighted candidate words, 
which can be viewed as a mental lexicon. At each time step, 
Parser randomly selects between 1 and 3 units in the input 
to form a new candidate word. A unit is initially a syllable, 
but can become a longer group of syllables through an 
aggregative chunking process, provided that their weights 
are high enough. This bottom-up mechanism is intended to 
model the perception shaping phenomenon: what we 
already learned affects our perception. We do not view a 
new item as composed of elementary items if it has already 
been learned, we view it as a whole. For instance, “bkjbk” is 
viewed as a sequence of 5 letters whereas “obama” is 
viewed as one item. Parser contains a reinforcement 
parameter increasing the weight of the current percept. A 
forgetting mechanism is also implemented by a constant 
diminution of each weight at each time step. Finally, an 
interference mechanism slightly decreases the weight of 
each candidate word which shares a syllable with the new 
percept. When applied to a long sequence of concatenated 
artificial words, the best-weighted candidate words are those 
of the language (Perruchet & Vinter, 1998). BootLex 
(Batchelder, 2002) follows a bottom-up approach similar to 
PARSER. 

Top-down word segmentation can be simulated by 
connectionist models. Christiansen, Allen & Seidenberg 
(1998) used a simple recurrent network to extract word 
boundaries from a corpus of child directed speech. 

Brent & Cartwright (1996) model also follows a top-down 
approach. It does not contain a mechanism to aggregate the 
syllables, but only assess the relevance of a given 
segmentation. Therefore, it exhaustively generates all 
possible segmentations and uses the minimum description 
length principle (MDL) to select the most relevant one. 
Similarly, Argamon et al. (2004) uses the MDL principle in 
a segmentation task consisting in finding prefixes and 
suffixes inside words. Since our model also uses that 
minimum description length principle, we now present this 
idea. 
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A MDL-based model 
Following Chater (1999), our hypothesis is that simplicity 
can account for many cognitive tasks. We already built a 
model (Robinet et al., 2008), that implement the general 
notion of simplicity using the formalism provided by the 
MDL principle. This model was designed to predict the time 
course of concept creation in a task where participants are 
learning an artificial grammar. We believe this model is 
general enough to apply to other tasks, such as word 
segmentation. When applied to the word segmentation task, 
MDLChunker could be seen as an online version of Brent & 
Cartwright (1996) model, with an explicit representation of 
chunks progressively updated over time. 

From this point of view of simplicity, a good 
segmentation would minimize the amount of information 
which has to be stored. Using a lexicon would compress 
information by limiting redundancy. For instance, since the 
sequence of letters “o b a m a” is frequent, adding the word 
“w1: o b a m a” to the lexicon would compress the input. 
Adding “w2: b k j b k” would not compress anything, only 
consuming the memory size necessary to define it. A good 
segmentation can therefore be viewed as a trade-off between 
the conciseness of the lexicon and the expressiveness of the 
input data with respect to that lexicon. For instance, a very 
small lexicon, although saving resources, would lead to a 
high number of unrecognized words in the input. On the 
contrary, a very detailed lexicon corresponding to numerous 
combinations of syllables would take a large place in 
memory, although being good at processing new inputs. 

Information theory offers a formal way to implement that 
idea, namely the minimum description length (MDL) 
principle (Rissanen, 1978). This method consists in 
computing the lengths of the codes for representing the 
lexicon (hereafter represented as Lexicon) and the lengths of 
the codes for representing the input data knowing the 
lexicon (hereafter represented as Data|Lexicon), and 
minimize their sum. Codelengths are estimated by means of 
Shannon's formula, saying that a symbol s, occurring with 
probability p, can be ideally compressed with a binary code 
whose length is I(s)=-log2(p). In our case, p is estimated by 
the frequency of s. 

Let us give an example. Suppose a language composed of 
the two words “abc” and “cb”. Input is therefore a long 
concatenation of these words. A good lexicon would contain 
“abc” and “cb” after enough data has been processed. 
Suppose that, so far, we have already processed 
“abcabcabcabccbcbabccbabcabcabc”. Because we have 
already learned the words “a”, “b”, “c”, “ab” and “cc”, the 
data was segmented as such: “ab c ab c ab c ab cc b c b ab 
cc b ab c ab c ab c”. If we need to process “abcab”, there are 
several ways to segment the new input. Let us consider two 
of them: “ab c ab” and “abc ab”. Case #1 only uses existing 
words whereas case #2 suggests “abc” as a new word. 
Figure 1 presents codelengths for the two cases. 

Case #1: 
Lexicon=a, b, c, ab, cc ; Data|Lexicon=ab c ab c ab c ab cc b 
c b ab cc b ab c ab c ab c ab c ab. 
For example, codelength for c is -log2(11/32) because c 
occurs 11 times out of 32. Codelength(cc) is -log2(3/32), etc. 
The size for the entire case #1 is therefore 65.5 bits. 

Case #2: 
Lexicon=a, b, c, ab, cc, abc. Since a new word “abc” is 
added to the lexicon, the data are segmented accordingly: 
Data|Lexicon=abc abc abc abc c b c b abc c b abc abc abc 
abc ab 
The total size for case #2 is 63.4 bits. Therefore, case #2 is a 
better segmentation because its total size is smaller. 
 

 
 

Figure 1: Sizes of lexicon and data for case #1 and case 
#2 after processing the input “abcab” 

 
This way of selecting the most probable segmentation 
humans have chosen can be viewed as a form of Occam's 
razor: given several segmentation hypotheses, humans 
would select the simplest one. This idea that simplicity 
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could be a unifying principle in cognitive science has been 
discussed by Chater & Vitanyi (2003). 
As we mentioned earlier, Brent & Cartwright (1996) used 
the MDL principle for selecting the best segmentation, but 
they had to generate all possible combinations. In order to 
be more cognitively plausible, we designed a model to 
account for the process by which words are progressively 
aggregated through the process of the input. 

In its first version, MDLChunker considers a fixed-size 
part of the input at each step. It then operates in 3 sub-steps: 

� the new piece of input is encoded using the existing 
words in the lexicon; 

� the model creates new words by grouping two 
existing words, provided that they decreases the 
overall size (MDL principle); 

� data is re-expressed using the existing words. 
With this architecture, our model is able to correctly 

segment a stream of artificial words, even if words share 
some syllables. It successfully learned the artificial words of 
the Perruchet & Vinter (1998) experiment.  

The vanishing sub-word effect 
This model was also tested on data from Giroux & Rey (in 
press). They designed a new experiment to compare 
recognition performances of adults hearing either 2 or 10 
min of an artificial spoken language. The language is 
composed of 6 words, formally represented here as ABC, 
DEF, GH, IJ, KL and MN. Participants just listened to a 

random concatenation of these words, uttered at the rate of 
3.3 syllables/s by a speech synthesizer without any prosodic 
information. 

After a 10 min training, recognition performances on 
dissyllabic words (such as "GH") was significantly higher 
than those obtained on dissyllabic sub-words (such as 
"BC"), while no difference occurs after a 2 min training. 

Authors successfully reproduced this vanishing sub-word 
effect with PARSER, using the same Perruchet & Vinter 
(1998) parameter values. This result credits the bottom-up 
hypothesis by suggesting that sub-word recognition is a 
necessary step in the word learning process. 

Our model was run on the same artificial language to 
check whether we could reproduce this vanishing sub-word 
effect. The input was split in blocks of 5 syllables1. After 
each block was processed, codelengths were computed for 
the 2 tri-syllabic words (ABC and DEF), the 4 dissyllabic 
words (GH, IJ, KL and MN), the 4 sub-words (AB, BC, DE 
and EF) and the 8 non-words used by Giroud & Rey (CK, 
FM, CG, FI, HI, JK, LM and NG). 1000 simulations were 
performed with random input sequences and codelengths 
were averaged. 
Figure 2 presents all codelengths as a function of the 
number of syllables processed. The lower the codelength, 

                                                           
1 Because input was split in blocs of 5 syllables, 

trissyllabic words are statistically broken more often than 
dissyllabic ones. Thus, isolated syllables from trissyllabic words 
are more frequent and have a lower codelength 

Figure 2 : Time course of codelengths obtained with our model during the processing of the first 750 syllables. 
Codelengths are presented for all the words, sub-words and non-words of the experiment. 
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the more frequent the word. At the beginning, there is no 
difference between all dissyllabic words and sub-words, but 
tri-syllabic ones are trivially coded using 50% more space. 
After about 30 syllables have been processed, things begin 
to change: non-words2 costs more and more to be 
represented, whereas real words, both dissyllabic3 and 
trissyllabic, are efficiently coded, even less than sub-words. 
We used the test designed by Giroux & Rey, in order to 
compare our model to human data. The words GH, IJ, KL, 
MN are tested against the non-words CK, FM, CG, FI and 
the sub-words AB, DE, BC, EF are tested against the non-
words HI, JK, LM, NG. In this test, the model has to choose 
the dissyllabic unit that best matches with the language on 
which it was trained (in our case, that with the lowest 
codelength). The two tests (words vs non-words and sub-
words vs non-words) are performed eight times for each 
training phase (virtual participant). Averaged performances 
are presented Figure 3 along with those obtained by Giroux 
& Rey. 

No significant difference between performance on words 
over sub-words was obtained with our model at 15 syllables 
(F(1, 999)=0.69 ; p=0.41), whereas a significant difference 
(F(1, 999)=465 ; p<10-16) is observed at 75 syllables. 
Fed with the same artificial grammar, our model could thus 
reproduce this vanishing sub-word effect, but the rate of 
learning appears too fast compared to the human 
counterpart. This is due to the fact that our model never 
forgets anything. In order to be more cognitively plausible, 
we improved our model by restricting its memory i.e. the 
data from which the model could make associations to 
create new words. We also changed the way the input is 
processed in order not to split the input into fixed-size parts 
but instead to process it as a stream of syllables. 

Improvement: adding of a memory module 
Instead of taking into account all the data already processed, 
this new version of the model used a memory buffer to only 
keep a given amount of data. This buffer plays the role of a 
short-term memory (STM) whereas the set of existing words 
(the lexicon) is more like a long-term memory. The model 
works in the following way (Figure 4): 

� The beginning of the current input is segmented in 
order to minimize its codelength and the first two 
units are candidates for forming a new word 
(perception shaping); 

 

                                                           
2 A difference between HI, HK, LM, NG and CK, FM, 

CG, FI could be observed in Figure 2, because of the lower 
codelength of syllables C and F which are parts of trissyllabic 
words (see footnote 1). 

3 A difference between BC, EF and AB, DE could be 
observed in Figure 2. While our model systematically creates the 
first among two possible new words, AB and DE are created more 
often than BC and EF. The former are only created if the input split 
breaks ABC in A and BC, which is less frequent than having either 
ABC or AB and C. 

 
 

Figure 3 : Percentages of correct results for humans, 
PARSER and our model, on the two tests: words vs non-
word and sub-words vs non-words. A 2 minutes training 
corresponds to 400 syllables and a 10 minutes training to 

2000 syllables. 
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� This new word is created only if its creation would 
decrease the overall size of the system (STM 
rewritten + lexicon with the new word).  

� The new percept (the first input unit) is added to 
STM; 

� Old percepts exceeding memory size are removed 
from STM. This step depends both on the memory 
size and on the codelength of the oldest percepts. 

 

 
 

Figure 4: Architecture of our system after adding of the 
memory module 

 
Let us go back to the previous example in order to highlight 
the changes in the new version of the model. Existing words 
are “a”, “b”, “c”, “ab” and “cc”. Previous STM state is the 
following: “ab c ab c ab c ab c ab cc b c b ab cc b ab c ab c 
ab c”. New input is “abcabccb ...” shaped as “ab c ab cc b” 
(Figure 4, step 1). The first two units are selected in the new 
input. In our case, this is “ab” and “c”. The new word “abc” 

is then candidate for being a new word in the lexicon 
(Figure 4, step 2).  

With this new word, the state of the system would be 
represented using 63.4 bits, which is better than the 65.5 bits 
if “abc” were not created. Therefore, the new word is 
created and “ab” is added to STM (Figure 4, step 3). 

There are several ways to avoid STM overflow when a 
new set of syllables has to be added. We could have kept a 
fixed number of “words”. In order to be more coherent with 
the rest of our model, we kept a fixed quantity of 
information i.e., a maximum number of bits. After a new 
percept has been added to memory, old percepts are 
therefore removed to keep memory size under its limit. 
Then the process continues with the next input. 

Estimation of a good memory size 
By supplementing our model with a finite memory, we 
added a parameter (the memory size) that needs to be 
adjusted. With a huge memory (1000 bits), the model learns 
at a very high rate, like in its previous version. This is not 
cognitively plausible and does not correspond to human 
data. With a too small memory (100 bits), no learning 
occurs at all, because there is not enough data available at 
the same time in memory to find regularities. With a size of 
150 bits, we found a good similarity between the model and 
the human learning rate. With this 150 bits memory size, we 
reproduced both the vanishing-words effect, and the time 
course of learning. At 2 minutes (400 syllables) no 
significant difference (F(1, 999)=-0.21; p=0.64) was observed 
on performances between words and sub-words. This 
difference became significant (F(1, 999)=48.4; p<10-12) after 
a 10 minute training. 

Comparison with PARSER 
Our MDL based model obtains results that are very close to 
those obtained with PARSER. These two chunking models 
use two different approaches to implement the same 
functions: perception shaping, reinforcement, forgetting and 
interference. 

Perception shaping 
The underlying idea is that perception depends on what was 
already learned. 

PARSER: Shape the input by selecting the longest 
existing unit above a fixed threshold (shaping threshold). 

MDLChunker:  When looking for the shortest encoding 
of the input, the model tends to prefer units with shorter 
codelengths, since codelength depends on earlier 
perceptions. 

Reinforcement 
The idea is to increase the weight of recently perceived unit 
in order to give frequent units a higher weight. 

PARSER: Add a fixed weight to the perceived unit. The 
weight differs depending on the position relative to the 
shaping threshold. 
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MDLChunker:  Perception of a new unit increases its 
frequency, thus naturally decreasing its codelength. 

Forgetting 
The idea is to decrease the weight of the units that no longer 
occurs. 

PARSER: At each iteration it decreases all the unit 
weights by a fixed quantity. 

MDLChunker:  Frequency of unperceived units slightly 
decreases naturally after each new perceived unit.  

Interference 
The idea is that when shaping the perceived unit by using 
some units, other units that could apply have their weight 
decreased. 

PARSER: Decrease the weight of all the units 
overlapping the perceived unit. 

MDLChunker:  Frequency of units not used to encode 
the perceived unit slightly decreases naturally, which in turn 
increases its codelength, thus making it less interesting for 
future perceptions. 

Conclusion 
In this paper we show that, our original chunking model 
designed for an implicit learning paradigm, can easily 
account for word segmentation, which is the classical 
paradigm used in statistical learning (Saffran et al., 1996). 

Without any improvement in our parameter-free model, 
we successfully reproduced the Perruchet & Vinter (1998) 
experiment as well as the vanishing sub-word effect 
presented by Giroux & Rey (in press). We observed no 
significant differences between words and sub-words at the 
beginning of the training, following by a significant 
superiority of words over sub-words during the training. 
While the memory size is infinite in this first version of our 
model, the learning rate is much higher than humans one. 
We limited this memory size to account for forgetting 
effects. We found that for a size of 150 bits, model and 
humans learning rates are equivalent according to the 
conducted tests.  

Both MDLChunker and PARSER can extract words from 
a stream of syllables. They are also able to reproduce the 
vanishing sub-word effect, suggesting that chunking is an 
efficient bottom-up process to model word segmentation. 

We plan several kinds of improvements in the future. 
First, this general MDL-based model of inductive learning 
needs to be applied to other word segmentation tasks as well 
as other problems. We also aim at improving its model of 
memory and we will probably attempt to unify the 
representation of the lexicon (long-term memory) and the 
data already processed (short-term memory). The idea that 
memory could be modeled in term of quantity of 
information (Brady et al., 2008) appear challenging to us. It 
would be interesting to see how this point of view compares 
with the classical view of expressing memory limit in terms 
of a number of chunks (Miller, 1956). 
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