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Abstract
Cryphonectria parasitica is the causal agent of chestnut blight, a fungal 
disease that almost entirely eliminated mature American chestnut from 
North America over a 50-year period. Here we formally report the genome of 
C. parasitica EP155 using a Sanger shotgun sequencing approach. After 
finishing and integration with SSR markers, the assembly was 43.8 Mb in 26 
scaffolds (L50=5; N50=4.0Mb). Eight chromosomes are predicted: five 
scaffolds have two telomeres and 12 scaffolds have one telomere sequence. 
A total of 11,609 gene models were predicted, of which 85% show 
similarities to other proteins. This genome resource has already increased 
the utility of a fundamental plant pathogen experimental system through 
new understanding of the fungal vegetative incompatibility system, with 
significant implications for enhancing mycovirus-based biological control.

Key words
Chestnut blight, forest pathology, mycology, mycoviruses, transposable 
elements, vegetative incompatibility

Introduction

Plant disease epidemics have had profound ecological and economic 
consequences and significantly influenced human history. One of the most 
momentous disease epidemics was chestnut blight, which completely 
changed the ecological landscape of the hardwood forests of the eastern 
United States during the 20th century (reviewed in Anagnostakis, 1988). The 
causal agent, the ascomycete fungus Cryphonectria parasitica, found a very 
susceptible host in the American chestnut tree, Castanea dentata, following 
its introduction into North America on nursery stock of resistant Asian 
chestnut tree species. The resulting disease epidemic, first identified in 1903
in the Bronx Zoo, spread rapidly, resulting in the destruction of an estimated 
four billion mature American chestnut trees in the following 50 years 
(Anagnostakis, 1988). Although the root systems of infected trees often 
survive and re-sprout, since the new sprouts remain susceptible to endemic 
C. parasitica, the once dominant tree now survives throughout its former 
natural range primarily as an understory shrub (Dalgleish et al. 2015). 

Although C. parasitica can colonize other members of the family 
Fagaceae, canker formation and mortality are restricted to North American 
and European chestnut (Castanea dentata and C. sativa, respectively) and 
American chinkapin trees (C. pumila; Dallavalle and Zambonelli, 1999). Asian
chestnut species (Castanea crenata and C. mollissima) are resistant to 
chestnut blight, presumably due to co-adaptation of the two organisms, and 
provide the basis for a resistance back-cross breeding program 
(Anagnostakis, 2012). The mechanisms underlying the ability of C. parasitica 
to effectively penetrate defense barriers and rapidly expand in the cambium 
tissues of susceptible hosts remain ill defined, with no identified role for 
toxins, specific secondary metabolites or hydrolytic enzymes. 
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The discovery of a group of RNA viruses, now classified in the family 
Hypoviridae (hypoviruses), that reduce the virulence of C. parasitica (causing
hypovirulence), stimulated intensive research into the potential of using 
fungal viruses for the biological control of fungal diseases (reviewed in Dawe 
and Nuss, 2001; Hillman and Suzuki, 2004; Nuss 1992; 2005). Subsequent 
epidemiological, population genetic and molecular studies have established 
the chestnut/C. parasitica/hypovirus pathosystem as the textbook example 
of both the consequences of accidental introduction of an exotic organism 
and of hypovirulence-mediated biological control of fungal pathogens. The 
use of hypovirulent C. parasitica strains to treat individual disease cankers is 
highly effective, and hypovirulence provides a level of blight control in some 
locations in Europe (Heiniger and Rigling, 1994). However, attempts to 
introduce hypovirulent strains into North American forest ecosystems to 
control chestnut blight has been problematic, primarily due to the inability of
the introduced hypoviruses to spread through the fungal population 
(Milgroom and Cortesi 2004). The use of severe hypovirus strains that reduce
C. parasitica ecological fitness, as well as virulence, is one factor that 
contributes to this poor performance (Milgroom and Cortesi, 2004). A second 
factor that limits hypovirus spread in North American forests is a diverse self-
nonself fungal recognition system termed vegetative incompatibility (vic), 
that regulates the ability of C. parasitica strains to undergo anastomosis 
(Milgroom and Cortesi, 2004). Like mycoviruses in general, hypoviruses lack 
an extracellular phase to their life cycle and spread to virus-free strains in a 
population by fusion of the hyphae (anastomosis) (Van Alfen et al. 1975). 
However, the recent identification, genetic characterization, and systematic 
disruption of the C. parasitica genes that regulate the vic system has 
provided a promising new opportunity for overcoming this major barrier to 
hypovirus dissemination (Zhang and Nuss 2016; Stauder et al. 2019). 

In this paper, we report the C. parasitica strain EP155 genome 
sequence as an important resource for elucidating the genomic basis for the 
selective pathogenicity, niche-associated evolution and virus-based 
biological control of this classic forest pathogen. This genome resource 
provides a valuable source of data to enable ongoing and future research of 
this important plant-associated fungus.

Materials and Methods

Genome sequencing and assembly. Cryphonectria parasitica isolate 
EP155 (ATCC 38755), an orange-pigmented, virulent, hypovirus-free strain 
(vc type EU-5, MAT1-2) was originally isolated in 1977 from a canker on 
Castanea dentata in Bethany, CT, U.S.A. (Anagnostakis and Day 1979). The 
fungus was grown on potato dextrose agar overlaid with cellophane at room 
temperature on the laboratory bench for approximately 7 d; mycelium and 
conidia were scraped from the cellophane using a sterile razor blade, allowed
to air dry under a laminar flow hood, then pulverized using liquid nitrogen in 
a mortar and pestle. DNA was extracted as described by Choi et al. (2012). 
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All sequencing reads were collected with standard Sanger sequencing 
protocols on ABI 3730XL capillary sequencing machines (ThermoFisher 
Scientific, Waltham, MA) at the U.S. Department of Energy Joint Genome 
Institute in Walnut Creek, CA. The genome was sequenced from fosmid and 
plasmid libraries using a Sanger whole-genome shotgun approach. Three 
different-sized libraries were used as templates for the plasmid/fosmid 
subclone sequencing process and both ends were sequenced as follows: 
332,747 reads from a 2.3 kb-sized plasmid library, 265,247 reads from a 6.8 
kb sized plasmid library, and 107,327 reads from a 39.3 kb-sized fosmid 
library. Sequence reads were assembled using a modified version of Arachne
v.20071016 (Jaffe et al. 2003) with parameters maxcliq1=100, 
correct1_passes=0, and BINGE_AND_PURGE=True. This produced 42 scaffold
sequences, with N50 of 4.0 Mb, 294 contigs with a 333.9 Kb N50, and a total 
scaffold size of 44.1 Mb.

Finishing and map integration. The initial whole-genome shotgun 
assembly was broken down into scaffolds and each scaffold piece was 
reassembled with Phrap (www.phrap.org) and manually improved and 
finished using Consed (Gordon 2004). All low-quality regions and gaps were 
targeted with computationally selected Sanger sequencing reactions 
completed with 4:1 BigDye terminator: dGTP chemistry (ThermoFisher 
Scientific). These automated rounds included walking on 2.3kb and 6.8kb 
plasmid subclones using custom primers (4,526 primers were selected). 
Following completion of the automated rounds, a trained finisher manually 
inspected each assembly. Reactions were manually selected to improve the 
genome. Remaining gaps and hairpin structures were resolved by generating
small insert shatter libraries of 6.8kb-spanning clones (Grigoriev et al. 2014).
Five fosmid clones were shotgun sequenced and finished to fill large gaps 
and resolve larger repeats. All these sequencing reactions were generated 
using Sanger long-read technology. Each assembly was validated by an 
independent quality assessment. This examination included a visual 
examination of subclone paired ends and visual inspection of high-quality 
discrepancies and all remaining low-quality areas. The EP155 assembly was 
further refined with the aid of the C. parasitica genetic linkage map 
constructed from a cross of Japanese C. parasitica isolate JA17 and Italian 
isolate P17-8 (Kubisiak and Milgroom, 2006) that was upgraded by the 
addition of 141 single sequence repeat (SSR) markers mined from the EP155 
genome sequence using Primer3 (Rozen and Skaletsky 2000). Allele data for 
96 ascospore progeny of the JA17 X P17-8 cross were collected for 60 
polymorphic EP155-derived SSR markers located at the terminal ends of the 
EP155 scaffolds. Finished segments (33 scaffolds with 34 contigs) were 
localized and ordered into pseudomolecules using a 30-marker map with 
seven joins to form the final assembly. Summary statistics were generated 
using the JGI Annotation Pipeline, and genome completeness was assessed 
using BUSCO v3.02 (Simão et al. 2015).
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Gene models and functional predictions. EP155 gene models were 
predicted and annotated using the JGI Annotation Pipeline, which combined 
homology-based, ab initio and transcriptome-based gene predictors 
predictions (Dawe et al. 2003; Grigoriev et al. 2014, Kuo et al 2014; Shang et
al. 2008) using the JGI EST pipeline. Putative protein domains were identified 
by querying against a local InterProScan database (Jones et al. 2014). The 
mitochondrial genome was annotated using MITOS v.2 (Bernt et al. 2013).

Scaffold regions enriched in genes of similar function were identified 
using a hypergeometric test (P > 0.01, with multiple testing) over a sliding 
window consisting of 60 ORFs with 10-ORF increments. ORFs were identified 
in each window that shared the same KOG definition, InterPro label and/or 
GO label. The probability that ORFs share the same label and co-occur in the 
same window was calculated, and significantly enriched clusters were 
identified (P < 0.01). Tested features included InterPro annotation, Gene 
Ontology and KOG annotation. For the latter two categorical tests, we tested 
each category from the leaf to the root node. 

Putative cytochrome P450 monooxygnases (P450s) were identified 
through BLAST searches for the conserved P450 signature domains, namely, 
the oxygen-binding motif and the heme-binding motif. P450s that showed 
both domains were considered authentic P450s. Incomplete P450 sequences 
were manually annotated to deduce the full-length sequence and grouped 
under ‘authentic P450s’. The P450s that showed only one of the two 
signature domains were considered as ‘tentative P450s’. Identified P450s 
were then classified into CYP families and subfamilies based on the existing 
nomenclature criteria of > 40% nucleotide similarity for assigning a family 
and > 55% for a subfamily. The P450 families were further grouped into 
clans. These clan, family, subfamily groupings were based on the 
classification criteria recommended by the International P450 Superfamily 
Nomenclature Committee. P450s that could not be assigned to any known 
clan based on the existing classification scheme were assigned to an 
appropriate clan(s) based on their relative position in the phylogenetic tree. 
P450omes of other fungi available at the cytochrome P450 webpage 
(http://drnelson.uthsc.edu/CytochromeP450.html) were used for a 
comparative analysis. 

Protein localizations were predicted using the classical secretion 
pipeline Secretool (Cortázar et al. 2014). The predicted secretome was 
evaluated for candidate effector genes using the EffectorP v2.0 prediction 
tool in combination with EffectorP v1.0, a stringent approach that is 
recommended to limit false positives to less than 8% (Sperschneider et al. 
2018). 

Putative heterokaryon incompatibility genes were identified through a 
combination of BLASTp searches and syntenic comparisons with the 
Neurospora crassa genome (Galagan et al. 2003). The following 
heterokaryon incompatibility proteins were used to query the EP155 
assembly: generic HET domains (PF06985.2), het proteins from Neurospora 
crassa (het-c, het-6, pin-c, tol, un24) and het proteins from Podospora 
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anserina (het-c, het-D/het-E, het-s). Several motifs are also associated with 
some het genes and may function in programmed cell death; therefore we 
also searched for NACHT (PF05729.3) and WD40 repeat (PF00400.22) 
domains, both of which are found associated with HET domains in P. anserina
het-D/het-e (Paoletti et al. 2007). Because of the large number of these 
motifs associated with other functions, we only searched for them by 
comparing motifs in regions adjacent to ORFs with HET domains. We also 
looked for synteny in C. parasitica to the genomic regions of N. crassa that 
contain het genes. This was done simply using the VISTA tracks in the JGI 
genome browser by zooming out and looking for similar genes in the two 
genomes. We especially looked for the pairs of het genes that function 
together in N. crassa: het-6/un24 and het-c/pin-c. 

Transposable elements (TEs) were identified using REPET v2.5 (Flutre 
et al. 2011) as described (Rivera et al. 2018). TE families that contained ≥10 
sequences (minimum of one sequence ≥300 bp) were assessed for RIP using
RIPCAL v2 (Hane and Oliver 2008) using di-nucleotide frequency and 
alignment-based algorithms. Evidence of RIP mutation was present if di-
nucleotide frequencies met the following criteria: (CpA + TpG)/(A/C + 
GpT)≤1.03 and (TpA/ApT) ≥0.89, and RIPCAL alignments showed peaks for 
(CA TA) + (TG   TA) mutations. 

Data deposition. The genome assembly and annotations are made 
available via the JGI fungal genome portal MycoCosm 
(mycocosm.jgi.doe.gov/fungi; Grigoriev et al. 2014). The data are also 
deposited at DDBJ/EMBL/GenBank under the following accessions (TO BE 
PROVIDED UPON ACCEPTANCE). Supplementary tables and figures are 
available through the National Agricultural Library AgData Commons at 
DOI(TO BE PROVIDED UPON ACCEPTANCE).

Results and discussion

Genome sequencing, assembly and integration with karyotypes and 
genetic linkage map. The genome of Cryphonectria parasitica EP155 was 
sequenced using the Sanger whole-genome shotgun approach using paired-
end sequencing reads of plasmid and fosmid libraries at a coverage of 
~8.54X. After trimming for vector and quality, the EP155 genome was 
originally assembled into 39 main genome scaffolds totaling 43.9 Mb (version
1), with the eleven largest scaffolds containing 90% (39,571,974 bp) of the 
genome sequence. The version 1 assembly was condensed using 
recombinational linkage data, yielding the final condensed version 2 
assembly contained in 26 scaffolds with 33 contigs (L50 = 5; N50 = 4.0Mb; 
43.9 Mb) with an estimated error rate of less than 1 error in 100,000 base 
pairs. The allele data also allowed placement of the C. parasitica mating-type
locus (MAT1) on Scaffold 2 and vegetative incompatibility loci vic1, vic2, 
vic4, vic6 and vic7 on Scaffolds 5, 7, 4, 3 and 6, respectively. A brief 
overview of the genome assembly is provided in Table 1; complete summary
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statistics can be accessed at the JGI website 
https://genome.jgi.doe.gov/Crypa2/Crypa2.home.html.

Overall, there was close correspondence between EP155 karyotypes 
(Eusebio-Cope et al. 2009) and the 26 scaffolds of the EP155 genome 
assembly. Estimated C. parasitica chromosome sizes based on PFGE ranged 
from 3.3 Mb to 9.7 Mb with no evidence of mini-chromosomes or accessory 
chromosomes that are associated with some plant pathogenic fungi 
(Bertazzoni et al. 2018; Eusebio-Cope et al. 2009). The 16 telomeric 
sequences identified in the EP155 assembly indicated a minimum of eight 
chromosomes, in good agreement with cytological and electrophoretic 
karyotyping datasets that predicted chromosome counts of either seven or 
nine (Eusebio-Cope et al. 2009; Milgroom et al. 1992). Five of the EP155 
scaffolds were within the estimated chromosome size range and were 
complete from telomere to telomere (scaffolds 1-4, 8). Twelve scaffolds had 
a telomere on one end (scaffolds 5-7, 9-11). The remaining scaffolds were 
smaller and lacked telomeres. 

The eleven largest scaffolds ranged in size from 1 Mb to 7.4 Mb, and 
together comprised 99.2% of the genome sequence (43.3 Mb). Roughly half 
of the genome was contained in four scaffolds of at least 5.1 Mb in length. 
Scaffold 8 was closest in size to that predicted for chromosome 9 (3.2 Mb vs 
3.3 Mb), contained two telomere sequences and contained the beta-tubulin 
gene that was previously identified as residing on chromosome 9 by 
Southern analysis (Eusebio-Cope, et al. 2009). The close correspondence 
between karyotyping results and the draft genome sequence analysis 
provides a promising platform for further refinement of the sequence 
assembly to the chromosome level. 

Gene model predictions. After filtering for EST support, completeness and 
homology support, a total of 11,609 genes were structurally and functionally 
annotated from the EP155 version 2 assembly (Table 1). This number is 
similar to that predicted for related fungi such as Neurospora crassa 
(10,620), Magnaporthe oryzae (12,841) and Fusarium graminearum 
(11,640). Structural features of the predicted C. parasitica genes conformed 
to those reported for the sequenced genomes of other ascomycete fungi in 
terms of average gene length (1645.62 nt), average size of encoded protein 
(421.78 aa), exon number (2.9) and intron size (123 nt). Over 85% of 
predicted proteins show similarities to other proteins from NCBI non-
redundant protein database. Over 66% of the predicted proteins contained 
Pfam domains, with the most highly represented domains including: major 
facilitator superfamily MFS-1 (PF07690; n=244), fungal Zn(20-Cys(6) 
transcriptional regulatory protein (PF000172; n=166), short-chain 
dehydrogenase/reductase SDR (PF000106; n=132), cytochrome P450 
(PF00067; n=116), and serine /threonine protein kinases (PF00069; n=116). 
Relative to the predicted proteomes of seven other members of the 
Diaporthales curated by the JGI Mycoportal (Diaporthales MCL.2920), 85.7% 
of the predicted C. parasitica proteins are members of multigene clusters.
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Mitochondrial genome. The mitochondria of C. parasitica have been 
extensively studied for their association with virulence attenuation (i.e. 
hypovirulence), either derived from viral infection, mtDNA mutations or 
mitochondrial plasmids (Baidyaroy et al. 2000; Monteiro-Vitorello et al. 1995,
Polashock and Hillman 1994). Some C. parasitica strains harbor 
mitochondrial plasmids that elicit hypovirulence (Monteiro -Vitorello et al. 
2000). Similarly, some strains of C. parasitica are subject to mitochondrial 
hypovirulence, a cytoplasmically transmissible form of hypovirulence 
associated with defects in the mitochondria (Baidyaroy et al. 2000; Monteiro-
Vitorello et al. 1995). Although distinct from viral-induced hypovirulence, 
there are remarkable parallels between the non-viral forms of hypovirulence,
including virulence attenuation and the shared alteration of transcript 
accumulation of over 70 genes (Allen and Nuss 2004; Monteiro-Vitorello et al.
1995, 2000). Mitochondria of some C. parasitica strains are also shown to 
harbor small RNA viruses that can reduce fungal virulence (Polashock and 
Hillman 1994) and can be transmitted to several other fungal species (Shahi 
et al., 2019). Given that C. parasitica EP155 is a virus-free, virulent strain of 
the fungus, it was not surprising that the mtDNA assembly did not share 
significant similarity with any of the known indicators of mitochondrial 
hypovirulence, e.g., the assembly did not contain sequences with similarity 
to SSU rDNA InC9 [AF218209], Cryphonectria parasitica mitovirus 1-NB631 
[NC004046], or pCRY1 [AF031368]. The ratio of UGA (=cytoplasmic 
terminator) to UGG codons predicted to encode Trp in the C. parasitica 
mitochondrial genome is high compared to other fungi, ~95%, and this 
correlates positively with the relatively high number of UGA codons predicted
to encode Trp in Cryphonectria mitochondrial viruses compared to other 
related mitochondrial viruses (Nibert, 2018).

Overall, the mtDNA genome contained a full complement of protein 
coding genes (atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, 
nad4, nad4L, nad5, nad6), rRNA and ribosomal proteins (rrns, rnL, rps3), and 
29 tRNAs. Similar to the mitochondrial genomes of most filamentous 
ascomycetes, the majority of the tRNAs were clustered together, with 10 
tRNA genes located side-by-side on each side of the rrnL ribosomal gene. 
Endonuclease ORFs were abundant, with 36 LAGLI-DADG homing 
endonucleases and 27 GIY-YIG endonucleases predicted to occupy 29% of 
the mtDNA assembly. Numerically, C. parasitica EP155 had a total of 63 
predicted mitochondrial endonucleases, exhibiting one of the largest overall 
cohorts of such enzymes identified to date (Sclerotinia borealis=61, 
Rhizoctonia solani Rhs1AP=43, Agaricus bisporus=46; Mardonov et al. 2014).

A physical and genetic map of the C. parasitica EP155 mitochondrion 
was published in 1996 (Bell et al. 1996), with a predicted size of 157 kbp and
13 genes mapped. In the current study, genome sequencing recovered the 
mitochondrial genome within a single 158,902 bp scaffold, consistent with 
the published physical map. All open reading frames contained within the 
mtDNA assembly were in the same orientation. Gene order predictions 

8

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369



Crouch et al. 2019; Phytopathology, page 9

between the physical map and the mtDNA genome sequence only partially 
matched. Gene ordering in the portion of the physical map containing 
atp6/nad5/nad3/cob/cox1/nad6 agreed with the assembly, but the remainder
of the physical map did not correspond with gene ordering derived from 
sequencing. 

Secondary metabolites genes and gene clusters with similar 
function. In fungi, genes involved in complex coordinated functions such as 
pathogenicity and secondary metabolite (SM) production can occur as co-
regulated gene clusters (Nierman et al. 2005; reviewed in Keller et al. 2005; 
Keller 2019). Altogether, 59 predicted SM genes/gene clusters were 
identified from scaffolds 1-11 of the C. parasitica EP155 genome assembly. 
All but six of these regions contained either polyketide synthase (PKS; 
annotated as PKS1-PKS31) and/or non-ribosomal peptide synthase (NPS) 
genes (annotated as NPS1-10; NPS12-13; PKS/NPS1-PKS/NPS5; ACS1; LYS1; 
FASA; OAS1). The predicted SMs ranged in size from just a single gene 
(44.8%) to clusters containing up to 39 genes. The two largest clusters, 
PKS16 and PKS26 (39 and 32 genes, respectively), each spanned over 100 
kbp of scaffold 10 and 1, respectively. 

Enrichment analysis identified 69 clusters (P < 1 x 10-4). Overall, these 
functional gene clusters were more or less evenly distributed across all 
scaffolds with the exception that six clusters containing a total of 23 MFS 
transporter ORFs were located on the right half (1.6 Mb) of scaffold 8. ORFs 
that were most commonly clustered in C. parasitica (enriched at P < 1 x 10-4)
corresponded with genes present in the predicted SM clusters, and included 
MFS transporters (163 ORFs distributed across 31 clusters), NAD(P)-binding 
with reductase or dehydrogenase activity (94 ORFs / 14 clusters), P450s (83 
ORFs / 32 clusters) and putative PKS genes (23 ORFs / 9 clusters).

Cytochrome P450 monooxygenase. Cytochrome P450 monooxygenases 
(P450s) are heme-thiolate proteins found across the biological kingdoms. 
These enzymes perform a wide variety of reactions such as hydroxylation, 
epoxidation, dealkylation, sulfoxydation, deamination, desulphuration, 
dehalogenation, and nitric oxide reduction (Sono et al 1996). Fungi in 
general possess extraordinarily large numbers of P450 genes (P450ome) in 
their genomes, second only to plants. In the genomes of mushroom-forming 
fungi, especially white rot fungi, genes encoding P450s are highly expanded 
in number, facilitating the breakdown of lignins and other complex 
substances (Syed and Yadav 2012; Suzuki et al. 2012).

Our analysis revealed that the C. parasitica EP155 genome contains 
122 P450s (P450ome). Using the Cytochrome P450 (CYP) nomenclature 
criteria, C. parasitica P450s were classified into 76 CYP families and 101 sub-
families. The majority of the P450s in the C. parasitica P450ome were 
orphans, with no known function. Fifteen novel sub-families were identified 
(one under each of the CYP families CYP503, CYP526, CYP548, CYP567, 
CYP584, CYP614, CYP638, CYP639, CYP660, CYP5091, CYP5093, CYP5111, 
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CYP5129, CYP5168 and CYP5227). In comparison with other euascomycetes, 
the C. parasitica genome has a moderately sized P450ome, comparable in 
size to the P450omes of Pyricularia oryzae (123 P450s), F. verticillioides (126
P450s) and A. terreus (124 P450s). Interestingly, unlike a majority of the 
euascomycetes, which do not contain basidiomycete-like P450s, the C. 
parasitica P450ome revealed five such basidiomycete P450 homologs, 
namely CYP5053, CYP5227, CYP5090, CYP5093 and CYP5201. The 
abundance of basidiomycete P450 homologs in C. parasitica implies that 
these P450s may play a key role in the oxidation of wood-derived 
compounds and tree pathogenesis (Syed and Yadav 2012; Suzuki et al. 
2012).  

Vegetative incompatibility. In C. parasitica, six di-allelic loci controlling 
vegetative incompatibility in European C. parasitica populations have been 
identified by classical genetics (Cortesi and Milgroom, 1998), five of which 
function in preventing heterokaryon formation (Choi et al. 2012; Smith et al. 
2006; Zhang et al. 2014). At least two more vic loci are thought to function in
natural populations of C. parasitica (Liu and Milgroom, 2007; Robin et al. 
2000). These loci have historically been referred to in C. parasitica as 
vegetative incompatibility (vic) loci (Anagnostakis, 1988), but are assumed 
to share characteristics with heterokaryon incompatibility (het) loci in other 
fungi. Incompatibility genes at six of these vic loci were identified in C. 
parasitica by a combination of linkage mapping and comparative genomics 
that made use of the EP155 genome sequence (Choi et al. 2012; Zhang et al.
2014). Systematic disruption of these vic genes demonstrated their role in 
allorecognition and their ability to restrict virus transmission (Choi et al. 
2012; Zhang et al. 2014; Zhang and Nuss 2016).

From fungi other than C. parasitica, thirteen genes with heterokaryon 
incompatibility function have been characterized at the molecular level: 
seven from N. crassa and six from P. anserina (Glass and Dementhon, 2006; 
Paoletti and Saupe, 2009). As in N. crassa and P. anserina, vic genes in C. 
parasitica are characterized by significant allelic polymorphisms, several are 
idiomorphic, and two encode proteins with a HET domain. The HET domain is
defined by three conserved motifs of about 18, 36 and 10 amino acids in 
length, arranged in a specific order within a ~200 amino acid region, which is
also a feature of six of the het genes characterized in P. anserina and N. 
crassa (Paoletti and Clavé, 2007; Smith et al. 2000). BLASTp analysis of the 
C. parasitica EP155 genome sequence identified 94 proteins with homologs 
from other ascomycete het genes. C. parasitica protein 88866 (annotated 
hch1, for het-c homolog) is homologous to N. crassa het-c (PF07217.2); in C. 
parasitica the region containing hch1 is syntenic to the region of the N. 
crassa genome containing het-c, but we found no homolog to pin-c in C. 
parasitica, which is the linked interacting partner to het-c in N. crassa. 
Several C. parasitica-encoded proteins were found with high levels of 
similarity to het genes from P. anserina. A homolog of the P. anserina het-D/E
genes, C. parasitica protein 84049 (annotated pdh1, for Podospora het-D 
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homolog), clearly contains conserved NACHT, WD-repeats and HET domains. 
Protein 106535 (annotated pch1, for Podospora het-c homolog) is highly 
similar to P. anserina het-C. None of these het gene homologs in C. parasitica
map to regions associated with known vegetative incompatibility function.

Overall, there are 124 genes annotated in C. parasitica that contain the
HET domain. This number is among the highest found yet in any ascomycete
genome. Podospora anserina was previously described as containing the 
most recorded HET domains with 120 (Paoletti et al. 2007), N. crassa has 55 
and Aspergillus oryzae has 38 (Federova et al. 2005). We found several ORFs
that putatively encode HET domains with high similarity to pin-c, tol or het-6 
from N. crassa, but none was found in regions syntenic with the N. crassa 
homologs and therefore we did not name these specifically as homologs. 
Genes with HET domains that were not clearly homologous to known het 
genes were considered to have HET-like domains. Considerably more ORFs 
that have HET-domains occur in filamentous ascomycete genomes than 
known functional het genes (Federova et al. 2005). Similarly, homologs of 
known het genes are not necessarily functional het genes in other species. 
The overall lack of synteny among HET domain genes between C. parasitica 
and other ascomycete species, and the dispersed repetitive distribution, both
intra- and intergenomically, supports the view that the HET domain 
represents a component of a mobile genetic element (Paoletti and Saupe, 
2009).

Transposable elements. Transposable elements (TEs) representing both 
Class I (retrotransposons) and Class II transposons (transposons with DNA 
transposition intermediates) were present in the genome of C. parasitica 
EP155 (Table 1). The TE load, ~14% of the total genome sequence, was 
largely due to the presence of 2,716 Class I retroelements, comprising 
almost 5.0 Mb total. Class I elements in the family Metaviridae (Gypsy/Ty3 
elements) were the most abundant group of retroelements, with 2,040 
elements comprising over 4 Mb of the genome and making up over 75% of 
all TEs. No copy of a Metaviridae retrotransposon containing an intact coding
sequence was identified. Metaviridae elements were commonly located in 
TE-rich clusters. Of note was the region surrounding the MAT1 locus on 
scaffold 5, where there are numerous retrotransposon fragments on either 
side of the MAT1-2 gene. Overall, the 4-Mb scaffold where MAT1 resides 
(scaffold 5) was ~17% transposon-derived. The presence of TEs surrounding 
the Mat1 locus was consistent with mapping studies performed by Kubisiak 
and Milgroom (2006), where significant recombination suppression and high 
levels of heterogeneity in the region surrounding the MAT1 locus was 
documented. 

Seventeen full-length TEs with intact coding sequences were identified 
in the EP155 genome. Nine of the 17 intact transposons were copies of the 
hAT-family Class II transposon Crypt1, the only C. parasitica element that has
been shown experimentally to be active (Linder-Basso et al. 2001). 
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Repeat-induced point mutation (RIP) is a fungal genome defense 
mechanism that may mutate repeated sequences such as TEs, most 
commonly leading to sequences with a reduced GC content and CT 
transition mutations. RIP is well defined and extremely efficient in 
Neurospora crassa (Cambareri et al. 1998) and has been documented at a 
much less efficient level in several other filamentous fungi (reviewed in 
Galagan and Selker, 2004; Clutterbuck, 2011). Duplicate contiguous 
sequences of greater than ~400 bases within a given genome are detected 
by an unknown mechanism and then disabled by methylation of cytosine 
bases in either copy of the duplicated sequence, followed by subsequent 
deamination of the methylated cytosines to thymine. The only gene known 
to be required for RIP encodes a DNA methyltransferase called rid (RIP-
defective; Freitag et al. 2002), and this gene is present in the C. parasitica 
EP155 genome. However, RIPCAL analyses and dinucleotide frequencies 
showed little evidence for RIP mutation across the C. parasitica EP155 
genome. Our detections of RIP were limited to DIRS elements (n=537), 
helitrons (n=24), and an unidentified Class II element (n=23). Our analysis 
did not detect a signature of RIP mutation from Metaviridae elements, 
although using a de-RIP approach, Clutterbuck (2011) identified 10 Gypsy 
elements with dinucleotide ratios consistent with RIP mutation.

Conclusions
Cryphonectria parasitica has great importance as a plant pathogen both 
historically and contemporarily. The fungus caused the pandemic that 
reshaped forests in North America and is still abundant in the environment, 
suppressing chestnut populations. Thus, information about the fungal 
genome is vital to understanding host/pathogen interactions and supports 
traditional breeding and transgenic approaches to develop resistance against
the disease. As important scientifically, C. parasitica is a model system for 
examining virus/fungus interactions at the molecular and population levels. 
These interactions have provided a powerful and exploitable platform for 
identifying cellular mechanisms important for fungal pathogenesis, and for 
examining the potential of viruses for biological control of a fungal pathogen.
Understanding this fungal genome is therefore critical to understanding the 
fungus as a pathogen, as a host for its own pathogens, and to explore the 
potential of using mycoviruses to productively alter fungal phenotype.
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Table 1. Summary features of the Cryphonectria parasitica EP155 genome 
assembly. 
Assembly 
data

Scaffold count 26

Contig count 33
Scaffold assembly length 43.9 Mb
Estimated % sequence bases in gaps 0.2%
Scaffold N50/L50 4.0/5.1 Mb
Contig N50/L50 5.0/4.0 Mb
Average scaffold length (Mb) 1.69
Maximum scaffold size (Mb) 7.44
Number of scaffolds >5.0 kb 20
Number of scaffolds >50.0 kb 13
% of assembly in scaffolds >50.0 kb 99.6%
No. Ns per 100 kb 160
GC content 50.8%

Annotation Gene Models 11,609
BUSCO eukaryote orthologs 94.4%
BUSCO fungal orthologs 98.6%
Gene density (genes/Mb scaffold) 264.4
Average gene length (bp) 1648.6
Average protein length (aa) 422.9
Average exon frequency 2.91 exons/gene
Average exon length 487.0
Average intron length 122.6
% complete gene models (with start and stop codons) 84%
% genes with homology support 85%
% genes with Pfam domains 66%

Gene 
clusters

Multigene clusters 10,803

Average multigene cluster size (bp) 5.32
Singletons 6,605

No. secondary metabolite clusters (46 total)
DMAT1 2
NRPS2 and NRPS-like 14
PKS3 and PKS-like 22
Hybrid PKS/NRPS 4
TC 4

No. CAZyme families (548 total)
Auxillary activities 66
Carbohydrate-binding module 36
Carbohydrate esterase 40
Distantly related to plant expansins 6
Glycoside hydrolase 291
Glycosyl transferases 100
Polysaccharide lyase 9

Secretome and effector predictions
Secretome (3.4% of genes in proteome predicted as 
secreted)

397

Candidate effectors (8% of secretome) 32
Cytochrome P450 monooxygenases 122
No. transposable elements (2,955 total elements, spanning 5.3 Mb)

2,040 LTR4 (Class I)  4,029,976 
1 LINE5 (Class I)  102 

19

774
775



Crouch et al. 2019; Phytopathology, page 20

537 DIRS (Class I)  705,541 
192 TIR6 (Class II)  256,785 
24 Helitron (Class II)  96,326 
127 Unknown Order (Class I)  220,656 
23 MITE7 4,568 

1 DMAT: dimethylallyl transferase
2 NRPS: nonribosomal peptide synthetase
3 PKS: polyketide synthase
4 LTR: long terminal repeat 
5 LINE: long interspersed nuclear element 
6 TIR: tandem inverted repeat
7 MITE: miniature inverted repeat
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