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ABSTRACT OF THE DISSERTATION

Exploring lipids with nonlinear optical microscopy in multiple biological systems

By

Alba Alfonso-Garćıa

Doctor of Philosophy in Biomedical Engineering

University of California, Irvine, 2016

Professor Enrico Gratton, Chair

Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may

give rise to a variety of diseases that affect organs from the cardiovascular to the central

nervous system. A deeper understanding of lipid metabolic processes would spur medical

research towards developing precise diagnostic tools, treatment methods, and preventive

strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex

task because of the perturbative effect exerted by traditional biochemical assays and most

fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation

of biological samples with minimum disturbance, and is particularly well suited for label-

free visualization of lipids, providing chemical specificity without compromising on spatial

resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivari-

ate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and

other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biolog-

ical systems. We used nonlinear Raman techniques to characterize Meibum secretions in

the progression of dry eye disease, where the lipid and protein contributions change in ratio

and phase segregation. We employed similar tools to examine lipid droplets in mice livers

aboard a spaceflight mission, which lose their retinol content contributing to the onset of

nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves

around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages,
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whose variable phenotype gives rise to contrasting healing and inflammatory activities. We

also proposed new label-free markers, based on lifetime imaging, for macrophage pheno-

type, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C

virus infected cells, and in specific strains of age-related macular degeneration diseased cells

by spontaneous Raman spectroscopy. We used synthesized highly-deuterated cholesterol to

track its compartmentalization in adrenal cells, revealing heterogeneous lipid droplet con-

tent. These examples illustrate the potential of label-free nonlinear optical microscopy for

unveiling complex physiological processes by direct visualization of lipids. Detailed image

analysis and combined microscopy modalities will continue to reveal and quantify fundamen-

tal biology that will support the advance of biomedicine.
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Chapter 1

Lipids

“Any of various substances that are soluble in nonpolar organic solvents (as

chloroform and ether), that are usually insoluble in water, that with proteins

and carbohydrates constitute the principal structural components of living cells,

and that include fats, waxes, phosphatides, cerebrosides, and related and derived

compounds.”i

Lipids are key components of the cellular machinery that enables life. Lipids provide struc-

tural support and are a source of energy to bring about the innumerable chemical reactions

that cells perform untiringly. Phospholipids build the membranes that gives cells their in-

tegrity, and keep their organelles organized. Triglycerides are densely packed as energy

reservoirs to be burned on demand. Lipids are thus critical for human life. They constitute

over 10% of the human body mass (figure 1.1). Lipid related pathologies are on the top

of the list of deadliest diseases, and account for billions of dollars in the medical and the

pharmaceutical industries.

iMerriam-Webster’s Learner’s Dictionary
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Figure 1.1: Chemical composition of the human body.

1.1 Classification of lipids

The previous broad and loose definition includes over 40,000 lipid structures, identified as

of April 2nd 2015, according to the LIPID MAPS database. ii, the largest public lipid-only

database in the world

There are several strategies to classify lipids: according to whether or not they can be bro-

ken or hydrolyzed into smaller molecules (simple or complex lipids); according to their water

solubility properties (polar, non-polar, or amphiphatic lipids), or in reference to their biosyn-

thetic pathways1. The surge in bioinformatics has inspired a comprehensive and systematic

classification of lipid structures based on the latter. LIPID MAPS proposes a comprehensive

classification mainly based on the hydrophobicity of the chemical constituents of the various

lipids. This classification allows for new lipids (natural and synthetic) to be included as they

are being discovered (or synthesized). Table 1.1 shows the eight main categories of lipids

based on the definition provided by Fahy et al.2:

“Hydrophobic or amphipathic small molecules that may originate entirely

iiwww.lipidmaps.org
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Category Abbreviation Example
Fatty acyls FA fatty acids
Glycerolipids GL triacylglycerols
Glycerophpspholipids GP diacylglycerophosphocholines
Sphingolipids SP ceramides
Sterol lipids ST cholesterol
Prenol lipids PR carotenoids
Saccharolipids SL acylaminosugars
Polyketides PK flavonoids

Table 1.1: Lipid categories, abbreviations and examples. Adapted from2.

or in part by carbanion-based condensations of thioesters (fatty acids, polyke-

tides, etc.) and/or by carbocation-based condensations of isoprene units (prenols,

sterols, etc.).”

1.2 Cellular lipids

As one of the principal constituents of living cells, lipids are central in human health. Obesity,

atherosclerosis, cancer, dementia and other neurodegenerative disorders, or developmental

diseases arise from lipid abnormalities. The human body, and the living cell, exhibits a high

degree of coordination to keep all the physiological systems working synchronously, that is

to keep homeostasis iii. This includes the lipid network. Lipid homeostasis falters as a result

of lipid excess, deficit, or malfunction of interacting pathways, among other causes, giving

rise to the aforementioned diseases. In order to understand the rise of such disorders it is

key to know how lipid metabolism iv is maintained. For that let us first briefly review the

lipid composition, arrangements within the cell, and their transport and distribution around

the body.

iiiHomeostasis: the tendency towards a relatively stable equilibrium between independent elements as
maintained by physiological processes.

ivMetabolism: the chemical processes that occur within a living organism in order to maintain life.
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Figure 1.2: Example of a) an aliphatic lipid: palmitic acid, and b) a lipid structure with
aromatic rings: cholesterol.

1.2.1 Composition and properties of lipids

Fats, oils, waxes, or hormones are some of the organic lipid-base compounds. Lipid structures

are composed of sequences of hydrogen and carbon covalent bonds that can be arranged in

aliphatic hydrocarbon chains, such as palmitic acid, or in aromatic rings, such as the ones

present in the cholesterol molecule (see figure 1.2).

Lipids differ in the number of C-H bonds (the length of the chains or the number of rings),

as well as in the additional functional groups that associate with the different subtypes.

Fatty acids, for example, terminate with a carboxyl group (COOH), and can be saturated

or unsaturated depending on whether they have only single carbon bonds or double carbon

bonds, respectively. Waxes, on the other hand, are long chains of hydrocarbons linked

through an ester oxygen to a long-chain alcohol. Glycerosphingolipids or sphingolipids are

amphipathic lipids, they have a polar head with a glycerol and a phosphate group, and

hydrophobic hydrocarbon tails. This bipolar character endows them with the ability of
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Figure 1.3: Phospholipid structures: micelle, lipid bilayer, vesicle.

forming spontaneous ordered molecular aggregates, such as micelles, bilayers, or vesicles

(figure 1.3). This has a remarkable impact on life; it is the way membranes are formed and

cellular compartmentalization is enabled.

The hydrogen-carbon covalent bonds store large amounts of energy. The average C-H bond

energy (standard free energy-change) is 413 kJ/mol. Fatty acids group in threes to a glycerol

molecule via an ester linkage to form triacylglycerols, which contain more energy than sugars.

These are densely packed into lipid droplets in the cell cytoplasm. Lipid droplets where

believed to be inert depots of neutral lipids3, but the discovery of lipid associated proteins

specific to the surface of lipid droplets4 spurred research that unveiled them as dynamic,

functional organelles.

1.2.2 Cellular organization and role of lipids

Lipids serve multiple functions in the living organism. They provide structural support as

constituents of the cellular membrane, and the intracellular membranes that compartmental-
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ize the cellular organelles. Glycerophospholipids are the main building blocks of membranes,

while sterol lipids, and saccharolipids provide stability and add functionality. The cellu-

lar and intracellular membranes separate and compartmentalize biomolecular compounds, a

strategy that protects against toxic events.

Lipids are stored in cells as energy reservoirs in the form of acylated amphiphilic alcohols, or

neutral lipids (triacylglycerols and steryl esters)5. These lipids are insoluble in the cellular

cytosol and are not able to integrate efficiently into the membranes, thus they pack into

lipid droplets. Ever since 1991, when Constantine Londos’ group recognized the existence of

the protein perilipin4, has the scientific community examined with detail the accumulations

of lipids inside cells. The importance of this finding lays in the localization of this protein

on the surface of such lipid accumulations, which the scientific community has named in a

variety of ways: lipid droplets, lipid bodies, adiposomes, etc. In 2006, Martin and Parton

made an attempt to unify the nomenclature and suggested the use of lipid droplet to refer

to such lipid inclusions in the cytoplasm of cells6. Lipid droplets have a central core of

neutral lipids, triglycerols and sterol esters in particular, and are lined by a monolayer of

phospholipids decorated with free cholesterol and associated proteins, such as the primor-

dial perilipin5. These dynamic organelles are involved in multiple physiological processes

including lipid, hormone and vitamin synthesis, protein degradation and storage7, and even

virus replication8,9. Lipid droplets interact with other intracellular organelles such as the

endoplasmic reticulum10. Despite all the research being done on this organelle in the last few

decades, evidence remains weak and little is understood about their biogenesis, regulatory

mechanisms, and interactions with other cellular organelles.

Lipids also serve as hormones. Steroids like cortisol and testosterone, or eicosanoids like

arachidonic acid and prostaglandis, are molecules that act as chemical messengers within

cells to regulate signal transduction pathways. Estrogen and testosterone are cholesterol

derivatives that act as sex hormones for female and male, respectively. Aldosterone regu-
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lates blood pressure, and cortisol suppresses the immune system and regulates metabolism.

Other hormones, not lipid based such as insulin11 or leptin12, also interact and aid in lipid

metabolism tasks.

1.2.3 Lipid distribution circuit in the human body

Cholesterol and triglycerides are distributed throughout the body in lipoproteins that cir-

culate in the blood stream (figure1.4). This general transport system delivers dietary lipids

and begins in the liver. The system consist of a loop circuit with two branches: the For-

ward Cholesterol Transport (FCT) and the Reverse Cholesterol Transport (RCT). Ingested

cholesterol and triglycerides are first transported from the gut to the liver and further pro-

cessed to be delivered to the peripheral tissues (FCT). This distribution throughout the body

happens through the blood stream. The excess of cholesterol is then returned to the liver,

which secretes it into the bile acids and then cholesterol goes to the small intestines to be

reabsorbed or excreted from the body (RCT). Neither cholesterol nor triglycerides are water

soluble molecules and therefore they are encapsulated in lipoprotein (LP) particles. There

are a variety of these LP particles, which can be classified according to their presence in

specific parts of the lipid loop circuit. Their lipid and protein content also vary13. Briefly,

chylomicron particles circulate from the intestine to the liver. Very low density lipoproteins

(VLDL) are in charge of transporting cholesterol and triglycerides from the liver. Once

VLDL lose their triglyceride content in adipose tissue, where it is stored in gross quantities

for posterior energy consumption, cholesterol is still packed in low density lipoprotein (LDL)

particles that travel towards the peripheral tissues. In there, LDL containing cholesterol gets

internalized by the cells, where it is consumed for membrane construction or as hormone sig-

naling messengers. Finally, the loop is closed by high-density lipoprotein (HDL) particles

that bring the excess of cholesterol back to the liver (see figure 1.4)14.
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Figure 1.4: Forward and reverse cholesterol transport system. TG rich VLDL: triglycerides
rich very low-density lipoprotein; LDL: low-density lipoprotein; CE rich oxLDL: cholesteryl
ester rich oxidized LDL; HDL: high-density lipoprotein; FA: fatty acids. Adapted from14.

1.2.4 Cellular lipid transport and distribution

At the cellular level, cholesterol is synthesized in the endoplasmic reticulum (ER) from acetyl

CoA through the mevalonate pathway. Most of this newly formed cholesterol quickly leaves

the ER to be distributed into the plasma membrane. Some of it goes through the Golgi

first, following the biosynthetic secretory pathway. The cholesterol left in excess in the ER

is esterified and stored into the core of cytoplasmic lipid droplets (LD) that protrude from

the it (figure 1.5).

Cholesterol is, however, mostly taken up from diet, as are triglycerides. Receptor-mediated

endocytosis delivers the dietary lipids packed in low-density lipoproteins (LDL) into the

cells. The LDL receptor mechanism begins with clathrin-coated vesicles that take the lipids

to sorting endosomes, which separate the particles from the receptor. The receptor protein

is recycled back into the membrane, while the LDL particle is transferred into late endo-
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somes to be hydrolyzed. Then, triglycerides, cholesteryl esters, and free cholesterol leave

the endosomal system to be distributed into the plasma membrane, the ER, recycling en-

dosomes, or mitochondria. It is still unknown where cholesterol goes first, given the lack

of spatio-temporal resolution of traditional assays. Finally, cells eliminate excess cholesterol

and triglyceride via exocytosis mechanisms that involve transmembrane proteins, such as

the ABC transporter family (figure 1.5 )15,16 .

1.3 Lipid related disorders

Because of the broad impact that lipids have in the human body, alterations in lipid metabolism

and transport contribute to many diseases, directly and indirectly. The human body harvests

and stores lipids that are further consumed as energy, or membrane and hormone production.

Lipid management is tightly regulated to maintain proper body function, otherwise disease

may arise from altered lipid homeostasis. Both an excess or a deficit of fat are problematic

for human health.

Obesity results from an unbalance between consumed and utilized fats. As a direct con-

sequence, the non-utilized fat accumulates in excess in adipose tissues underneath the skin

and around the vital organs, which compromises their function, and leads to serious lipotoxic

associated diseases, such as insulin resistance and eventually type-2 diabetes11. Excessive

triglyceride accumulation in the liver cells (hepatocytes) is the beginning of liver disorders

from simple hepatic steatosis (fatty liver disease) to inflammation, fibrosis, and cirrhosis that

ultimately leads to liver failure17.

An excess or a deficit of cholesterol can be highly detrimental during embryogenesis as

well as in adult life. A defect in cholesterol biosynthesis has been directly implicated in

Smith-Lemli-Opitz syndrome that causes malformation, mental retardation or even death in
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Figure 1.5: Cholesterol is synthesized de novo in the endoplasmatic reticulum (ER) and
is transported from it to the Golgi apparatus and further to the plasma membrane (1).
Another fraction of the newly formed cholesterol is directly sent into the plasma membrane
(2). Cholesterol is also internalized by the plasma membrane via clathrin-coated vesicles and
caveolae via endocytosis (3). These cholesterol molecules are transported into endosomes and
from there recycled back to the plasma membrane (4) or brought to the ER (5). Pathways
going from the Golgi back to the ER have also been described (6). Cholesterol mainly taken
up from low-density lipoprotein (LDL) particles via clatherin-coated vesicles (7), which are
transported into sorting endosomes (SE) where the LDL receptor is separated from the
LDL particles (8). While the LDL receptors and a small fraction of free cholesterol are
recycled back to the plasma membrane directly or via the recycling endosomes (RE) (9), the
cholesteryl esters in the LDL particles go to late endosomes (LE) and lysosomes where they
are hydrolyzed and free cholesterol is released (10). From the endosomes, free cholesterol
is transported into the Golgi apparatus(11). Additionally, there is a tracking route from
the ER to cytosolic lipid droplets (LD) and vice-versa (12) in which cholesterol is esterified
and hydrolyzed. It has been noted that caveolae might be linked to cholesterol uptake from
high-density lipoproteins (HDL) (13). In minor quantities, free cholesterol can also move
from LDL directly to the plasma membrane (14). In a similar manner, the reverse way is
also probable and it may also involve caveolae mediated exocytosis to HDL (15). Adapted
from16.
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embryos18. Gallstones are composed of cholesterol, among other substances. Interestingly,

cholesterol was first discovered in these masses13. Neurodegenerative disorders are also

related to cholesterol defects. In fact, the brain is the organ with the highest cholesterol

levels in the human body. Neurons and glial cells membranes, as well as the myelin sheaths,

contain elevated quantities of cholesterol. A miss-regulation of cholesterol levels is implicated

in dementia and Alzheimer’s disease19. Importantly, heavily loaded cholesterol cores are the

main feature of atherosclerotic plaques. Cholesterol buildup in the main arteries is the

precursor for more serious cardiovascular diseases20, including cardiac arrest and strokes,

and the leading cause of death worldwide21.

Indirect lipid related disorders include lysosomal storage disorders such as Niemann-Pick type

A or B, linked to defects in the breakdown of lipids in late endosomes and lysosomes, which

are intracellular trafficking vesicles that permit material transportation and exchange22.

1.4 Lipid and fluorescence microscopy

The ability of visualizing lipids complements biochemical assays reporting on dynamic and

in situ events by which we can learn how lipids behave and interact with other cellular

components.

Lipid storage was first visualized with non-fluorescent dyes such as Sudan Black and Oil

Red O that targeted the lipid bodies in cells. Sudan Black was first used in bacteria23

and later applied to visualizing fat storage in c.elegans24. Sudan Black staining, however,

requires fixation protocols that are not adequate for all kind of applications25, and it cannot

be combined with other labels26. Oil Red O (ORO) is also a common stain for lipid droplet

imaging. Improved staining protocols even permitted its use in conjunction with other

immunolabels. Specific detection methods appeared to circumvent the fact that ORO not
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only stains lipid droplets but it can also target phospholipids, in which case the emitted color

is slightly different26. Further improvements set ORO as the gold standard for visualizing

lipid droplets, and for identifying foam cells in atherosclerotic environments27.

As one of the brightest ways to achieve chemical selectivity in cellular biology, fluorescence

microscopy offers some lipid labels and analogues useful to track various types of lipid in

living cells and organisms. Among them Nile Red and BODIPY-conjugated fatty acids stand

out. Nile Red staining of intracellular lipid droplets in mammalian cells marked the point of

adoption of this labeling technique28, but this staining method is not specific enough; it labels

not only neutral lipids in lipid droplets but also phospholipids, cholesterol, cholesteryl esters,

and even free albumin.29,30 BODIPY-conjugated fatty acids are used to monitor fatty acid

uptake in mammalian cells31, and BODIPY-cholesterol is used to detect the traffic of small

cholesterol molecules32,33, and to study lipid pathways in cells34, and in larger organisms

such as zebrafish35 and c.elegans36. A compilation of lipid bodies staining protocols with

fluorescent probes was provided by Melo et al.3

Imaging cholesterol was not possible in living cells due to a lack of suitable fluorescent probes

that mimic cholesterol’s biophysical and biological properties for a long time.37 In the mid

1990’s dehydroergosterol (DHE), a natural occurring fluorescent analog of cholesterol, was

discovered38. Unfortunately, its requirements for far and near ultraviolet excitation light

are inconvenient for extended biological applications. Also, its transport pathways differ

from those of endogenous cholesterol, and its fluorescence properties highly depend on the

local micro-environment39. Photobleaching occurs rapidly for DHE, which concentrates its

applications in fluorescence recovery after photobleaching (FRAP) experiments40. Another

widely used fluorescent label for cholesterol is filipin. Filipin is a naturally fluorescent com-

pound that binds to cholesterol but not to cholesteyl esters, hence it allows for cholesterol

detection in cellular membranes41. However it only permits qualitative analysis since its

fluorescence is not proportional to the cholesterol content39, and it doesn’t allow live cell
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imaging because it perturbs the bilayer structure41. Laurdan is yet another fluorescent probe

to study membrane lipids. As an environmentally sensitive probe it informs about the phase

subdomains of membranes as they transform from gel to fluid42. Laurdan has extensively

been used to analyze cholesterol content in the plasma membrane43. Other methods to image

phospholipids include fluorescce from nitrobenzoxadiazole (NBD)-conjugates derivatives44,45.

These fluorescent tags allow to visualize subtle changes of fat levels, but uptake and transport

properties of these dyes, as well as their physical properties, determine the success of the

visualization. Some studies have brought into question the reliability of these stains, as in

multiple occasions they indicate trends contrary to those observed by biochemcial assays.

Lipophilic dyes present several inconsistencies, and fixation artifacts. And incorporation of

hydrophobic dyes can cause phase separation or induce lipid-raft formation that perturb

cellular signaling46–48.

In addition to the probes’ reliability, fluorescent labeling of lipids have four main shortcom-

ings49:

• Completeness and uniformity. Fluorescent agents such as Nile Red and Oil Red O

distribute unevenly and sometimes can color non-lipid structures30,50.

• Invasiveness. Some fluorescent agents interfere with cellular function.

• Photobleaching. All fluorophores photobleach over time, which limits the observation

time window.

• Specificity. Contrary to proteins, lipids can not be transgenically labeled with fluores-

cent dyes, labeling needs to come from external agents, but not all lipids can actually

be associated with one.

The ideal case scenario is to observe a system with minimal perturbation. For that, label-

free methods are of interest. Autofluorescence form endogenous cellular compounds provide
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a means for examining metabolic processes as we will see in chapter 6. Coherent Raman

scattering microscopy offers chemical sensitivity by exploiting intrinsic properties of the

molecules to generate contrast, and it is at the center of the work presented in this thesis.

1.5 Lipid vibrations

Another way to differentiate lipids is to make use of their vibrational properties. Raman

spectroscopy probes the vibrations of the chemical bonds in molecules. Every molecule has a

set of vibrational resonances that constitute its molecular fingerprint or signature. In spite of

such signatures, Raman spectra of molecules with similar motifs are fairly comparable, and

difficult to differentiate. Proteins, for example, perform an extremely diverse set of functions,

but exhibit only a limited set of chemical groups, resulting in negligible or extraordinarily

subtle differences in their Raman spectra49. Lipids, on the other hand, are better suited

to be discriminated based on their Raman spectra. The high concentration of lipids in

biological samples (lipid droplets) makes lipids a good target for vibrational imaging. Lipids’

Raman spectra stand out from that of other biomolecules because of their characteristic

chemical structure, formed by carbon-hydrogen bonds arranged in chains or rings. These

arrangements of carbon and hydrogen come in different flavors, each vibrating at a slightly

different frequency. Methyl (-CH3), methylene (=CH2), and methine (=CH-) stretching

modes define the CH-stretching range of the Raman spectrum (2800 to 3050 cm−1) and

are the source of strong Raman resonances, commonly used in vibrational imaging. The

fingerprint region of the spectrum (∼800 to 1800 cm−1) is also populated with a diverse set

of molecular vibrations that enables a deeper chemical analysis, as it contains resonances

other than CH-stretching modes: bending or scissoring modes, and vibrations from bonds

between other chemical groups that contain oxygen, nitrogen or phosphorus. A relation of

the most common vibration modes used for the study of lipid structures is detailed in table
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2.4.

Raman spectra of lipids can therefore be discriminated from other compounds in the bi-

ological samples, which enables chemical specificity. It is more challenging however, to

discriminate between different lipid types, specially if they co-exist in the same focal vol-

ume. It is for that reason that Raman sensitive alternative markers have been developed.

These include deuterium and alkyne labels. Replacing hydrogen by deuterium shifts the

vibrational frequencies to a silent region of the Raman spectrum, devoid of endogenous res-

onances, enhancing the specificity of the probe. This approach has been used to visualize

intracellular hydrodynamics in single living cells51, to observe phospholipids as they undergo

phase segregation in lipid bilayers52,53, to distinguish among individual neutral lipids54 or

drug components55. More recently, de novo protein synthesis has been studied by incorpo-

rating metabolic deuterated amino acids in cells56. An alternative label to deuterium are

alkyne-tags, that also vibrate within the silent portion of the Raman spectra (∼2000-2300

cm−1)57–60.

Isotope labels are efficient Raman labels61 as they

1. are very small - virtually the same size as the target molecule,

2. have a minimal chemical impact,

3. have a minimal disruption to the regular cell function, and

4. do not photobleach and persist during long timescale imaging.

For the above reasons, CRS microscopy is the chosen tool for biological imaging in this work.

Lipids have strong vibrational signatures that permit rapid CRS imaging, facilitating studies

that examine large tissue areas or large number of cells, as well as dynamic event or live

samples. CRS microscopy enables chemical quantification of biological phenomena without

compromising spatial resolution.
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Chapter 2

Experimental techniques

Nonlinear optical (NLO) microscopy is gaining popularity as a standard technique for imag-

ing biological samples in research laboratories around the world (see figure 2.1). It provides

a minimally invasive method to visualize biological samples in a state close to their natural

environment. The main characteristic of NLO microscopy is the nonlinear dependence of

the signal with the incident light intensity, endowing this technique with very special quali-

ties. For a nonlinear interaction of photons to occur, high photon densities are necessary, as

well as temporal and spatial coherence. The nonlinear effect occurs only at the focal volume,

where the probability that multiple photons are absorbed simultaneously by the sample is the

highest. As a result, NLO microscopy techniques are capable of providing depth sectioning,

and out-of-focus photodamage is practically nonexistent. In addition, longer wavelengths

(near-infrared) can be used to achieve these nonlinear processes. Longer optical wavelengths

are also beneficial for imaging biological samples, as they scatter less and thus penetrate

deeper, which allows for imaging thick tissues. Moreover, water absorption can be neglected

for near-IR light, this is important due to the large portion of water present in biological

samples (figure 1.1). Finally, light emitted from nonlinear interactions is easy to discriminate

from the excitation light, as they are spectrally apart. To achieve the high photon densities,
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Figure 2.1: Number of publications on nonlinear optical microscopy, according to PubMed.

Technique Avreb. contrast mechanism
Two-photon excited fluorescence TPEF electronic motions
Coherent Raman scattering CRS vibrational modes
Second harmonic generation SHG non-centrosymmetric molecules
Third harmonics generation THG third-order susceptibility variations
Sum frequency generation SFG IR and Raman modes

Table 2.1: Listing of nonlinear optical microscopy techniques, their common abbreviations,
and their contrast mechanism.

as well as the spatial and temporal coherence, high intensity light sources, such as pulsed

laser light, are required62. Table 2.1 lists the most common nonlinear optical microscopy

techniques and the contrast mechanism they rely on.

Coherent Raman scattering (CRS) microscopy is the principal focus of this thesis. Sporadi-

cally, and when the project so requires, second harmonic generation (SHG) and two-photon

excited fluorescence (TPEF) were also used. In particular, TPEF was employed to study

the lifetime of endogenous co-enzymes in live cells in a label-free approach to discriminate

between cellular phenotypes (chapter 6).

The following sections describe the basics of CRS, starting with the spontaneous Raman
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scattering phenomenon. Coherent Raman scattering techniques are discussed next, followed

by an introduction to fluorescence lifetime imaging microscopy (FLIM).

2.1 Raman microscpectroscopy

2.1.1 The Raman effect

Light scattering phenomena are routinely used to study light-matter interactions. The most

basic scattering phenomena is known as Rayleight scattering. A photon with a given energy

undergoes an elastic interaction with the material, and the emitted photon conserves this

given energy. Rayleight scattering (figure 2.2 A) is relevant for interactions with heteroge-

neous media or particles much smaller than the wavelength of the incident photon. The

scattered intensity is proportional to ν4o or 1/λ4o, where νo and λo are the frequency and the

wavelength of the incident photon.

When the interaction results in an emitted photon with different energy than the incident,

the process is inelastic. Raman scattering is an example of inelastic scattering. Given an

incident photon of energy hν1, there is a Stokes Raman scattering event when the emerging

photon is of lower energy, or frequency hνS = hν1−hνV , producing a red-shift of the radiated

light (figure 2.2 B). There is an anti-Stokes Raman scattering event when the radiated photon

is of higher energy or frequency hνA = hν1 + hνV , and there is a blue-shift of the radiated

light (figure 2.2 C). The difference in energy of the incident and the emitted photons is due to

the interaction with the vibrational states (of frequency νV ) of the molecules on the sample.

The spectrum of light scattered by each material will be different and representative of the

molecules that in contains. It will always contain a portion of Rayleigh scattering at the

incident wavelength as well, and it will have red- and blue-shifted sidebands, corresponding

to the Stokes and anti-Stokes resonances, illustrated in figure 2.2 E.
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scattering processes. D) Schematic of a vibrating molecule and all the scattered light. E)
Schematic spectrum with the incident light, and the corresponding scattering lines.
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Because of its inherent nature this type of scattering process is known as spontaneous Raman

scattering and, although earlier predicted, it was first observed by C. V. Raman and K. S.

Krishnan in 1928. In a short note to Nature63, they described it as “a new type of secondary

radiation” in the following situation:

“...in every case in which light is scattered by the molecules in dust-free liquids

or gases, the diffuse radiation of the ordinary kind, having the same wave-length

as the incident beam, is accompanied by a modified scattered radiation of de-

graded frequency.”

2.1.2 Properties of the Raman signal

As Raman and Krishnan pointed out, the so-called Raman scattering is very weak. They

used a focused beam of sunlight as a “very powerful illumination” source to observe a feeble

scattered light63. The intensity of the Raman signal (I(ωS)) is proportional to the cross

section (σ(ωS)) of the sample molecules, which denotes the Raman scattering efficiency of

these molecules,

I(ωS) = Nzσ(ωS)Io (2.1)

where N is the molecular number density, z is the length of the sample, and Io is the intensity

of the incident light. Note that typical cross sections of organic liquids are on the order of

10−29cm2, which corresponds approximately to 1 in 10 million photons that undergo Raman

scattering if the incident light travels through 1 cm of liquid64. This analogy taken to the

microscopic world of biology is translated into ∼ 105 photons scattered per second when

10 mW of laser light passes through 1 µm3 of organic liquid. Considering that the Raman

signal is isotropic and we only detect in one direction, only a fraction of these photons will

be eventually collected to acquire information, a fraction below 100 photons per millisecond.
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Spontaneous Raman signal is linearly proportional to the incident power, and proportional

to the number of oscillators in the sample, which makes it a quantitative technique. Sponta-

neous Raman is also an incoherent signal, because all the oscillators in the material vibrate

independently with different phases, rendering the radiated waves uncorrelated with one

another.

With spontaneous Raman scattering we can interrogate a sample at specific locations to

learn about its chemical composition. It is even possible to raster scan the laser beam (or

the sample) to create chemical maps, where each pixel contains not one intensity value,

but an entire Raman spectrum. However, the properties of spontaneous Raman scattering

complicate its use for biomedical studies, specially if imaging microscopy at rapid rates are

relevant for the study. Coherent Raman scattering techniques, which are nonlinear and

coherent, overcome some of the previous limitations, in particular, they are capable of fast

imaging.

2.2 Coherent Raman scattering microscopy

2.2.1 CRS, a nonlinear optical process

Coherent Raman scattering (CRS) microscopy is based on the Raman effect, hence relies

on vibrational contrast to generate chemical maps. Contrary to spontaneous Raman, CRS

exhibits a nonlinear dependence on the incoming fields and produces coherent radiation.

CRS microscopy takes full advantage of the coherent radiation that provides strong Raman

signals and enables fast image acquisition. This last property is key for most biological

imaging applications, and in particular for high throughput analysis and dynamic studies.

CRS signals find their origin in the dipole moment (µ) induced by the driving fields, which
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describes the motion of the electron displacement (r(t)) from the equilibrium position as:

µ(t) = −e · r(t) (2.2)

where e is the charge of the electron. The addition of the dipole moments from the several

molecules in the sample defines the macroscopic polarization as:

P (t) = Nµ(t) (2.3)

where N is the number of electric dipoles per unit volume. The polarization can be written

as a function of the driving electric field, which can be expanded as a power series because

the relation between polarization and electric field also has nonlinear components:

P (t) = εoχE(t) = εo[χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...] (2.4)

where εo is the electric permittivity in vacuum, and χ(n) the nth order of the material

susceptibility.

Coherent Raman effects are χ(3) processes, governed by the third order contribution of the

polarization response of the material, that can be expressed in terms of the incoming fields

as:

P
(3)
l (t) =

∑
ijk

χ
(3)
ijklEiEjEk (2.5)
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2.2.2 CRS signals

CRS probes Raman active vibrations. All the modes that are available with spontaneous

Raman also exhibit CRS contrast. In this case, we drive the Raman vibrations by simulating

the sample with two incident fields: the pump (Ep), and the Stokes (ES), with frequencies

ωp and ωS, respectively. When the difference frequency of these fields (Ω = ωp−ωS) matches

a resonance of the sample, namely a vibrational mode (ων), four new frequency components

are generated:

1. ωS − Ω: coherent Stokes Raman scattering (CSRS).

2. ωp − Ω = ωS: stimulated Raman gain (SRG).

3. ωs + Ω = ωp: stimulated Raman loss (SRL).

4. ωp + Ω: coherent anti-Stokes Raman scattering (CARS).

While the spontaneous Raman signal (figure 2.3 A) is linearly dependent on the intensity

of the incoming field, CRS signals are nonlinearly dependent. The advantages of NLO

microscopy apply to CRS. It is capable of depth sectioning, permits a deeper penetration

depth, and has diminished photodamage compared to linear microscopy. The absence of

photobleaching is also a competitive advantage with respect to fluorescence microscopy.

Spontaneous Raman is incoherent, each molecule has an electron cloud that oscillates in-

dependently and radiates at a different phase than the neighboring molecule. Conversely,

CRS is a coherent technique. The phase of the electronic oscillations is driven by the in-

coming fields, thus all the molecules in the sample move in synchrony, with a well defined

phase. This property has important consequences. First, the signal yield is greater than in

a spontaneous Raman scattering process. Second, the signal is no longer isotropic, but it
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propagates in a well-defined direction, making it easier and more efficient to detected. These

properties favor fast biological imaging.

2.2.3 CARS and SRS

We further concentrate on two out of the four frequency components generated in a CRS

interaction, CARS and SRL.

Coherent anti-Stokes Raman Scattering (CARS; figure 2.3 B) signals scale with the inten-

sities of three fields and exhibit a square modulus dependence on the material’s nonlinear

susceptibility (χNL). It also has a quadratic dependence on the number density, as a con-

sequence of the coherent summation of the individual fields, making it much stronger than

spontaneous Raman. Importantly, the CARS interactions generate at a brand new frequency

(i.e. color): ωp+Ω. This frequency can be detected with a photodetector provided the correct

spectral bandpass filter precedes it.

The SRL signal, on the other hand, is emitted at the same frequency as one of the incoming

fields, ωp. The detection of SRL is based on the phase relation between this signal and the

incident field. High-frequency modulation techniques allow to detect the imaginary part of

the nonlinear susceptibility, assigning a linear dependence on χNL to SRL and making it

dependent on the product of two intensities, rather than three, like it is for CARS. In this

case, SRL signal is linearly dependent on the molecular number density. From now on we

will refer to SRL as simply SRS (stimulated Raman scattering, figure 2.3 C).

Other relevant differences between CARS and SRS are summarized in table 2.2. Of particular

interest is the nonresonant background contribution to the CARS signal, which is absent

in SRS. This is to be considered when choosing between CARS or SRS for a particular

application. In cases where the signal of interest is weak, SRS might provide a better
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Figure 2.3: Schemcatic scattering representations and Jablonski energy diagrams for A)
spontaneous Raman scattering, B) coherent anti-Stokes Raman scattering (CARS), and C)
stimulated Raman scattering (SRS).
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Figure 2.4: Nonresonant background in CARS and SRS. A) CARS and B) SRS images of
yeast cells. C) Intensity profile of selected region of interest in each image.

CARS SRS
Type of process parametric energy transfer
Nonresonant background Exist Absent
Raman Spectrum Distorted Exact
concentration dependence linear to quadratic linear
Point spread function Nonexistent Existent
Fluorescence background Contamination by two-photon Not susceptible to

Table 2.2: Comparison of CARS signal and SRS signal, adapted from66.

outcome due to its higher signal-to-background ratio. The nonresonant background in CARS,

however, might be useful in some applications where a context image is useful, for example

to delineate yeast cells outline (figure 2.4), or to identify macrophages or cells in liver tissue

in order to count their lipid droplet content, as we will discuss in chapter 5. The capability to

reconstruct the Raman spectrum also differs. SRS offers a straightforward method, whereas

CARS spectra need to be fitted and further processed to resemble the Raman signatures65.

For this reason we have chosen to use SRS microscopy to biochemically characterize the

samples.
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Figure 2.5: Coherent Raman Scattering microscope scheme. OPO: optical parametric oscil-
lator; AOM: acousto-optic modulator; PD: photodiode; PMT: photomultiplier tube; Obj.:
objective; PC: personal computer.

2.2.4 The CRS microscope

The CRS imaging system that we use for the applications in this thesis consists on 4 main

modules: light source, optical path, scanner and microscope, and detection apparatus (see

figure 2.5).

1. Light source

A Mode-locked Nd:Vanadate laser (Picotrain; High-Q, Hohenems, Austria) with two

outputs, one at 1064nm, the so-called Stokes beam, and another one at the second

harmonic of the first one, 532nm, that is used to pump an optical parametrical oscillator
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(OPO; Levante Emerald, Berlin, Germany). The output signal of the OPO is tunable

from 700 to 980nm. The coarse tuning depends on the temperature of the OPO crystal

and the fine tuning comes from the angle adjustment of a Lyot filter. At each OPO

crystal temperature, a certain λ range, spanning from 6nm up to 10nm, is accessible by

tuning the angle of the Lyot filter. Both lasers emit picosecond pulse trains at 76MHz

repetition rate. Each pulse is 7ps at full width half maximum (FHWM).

2. Optical path

The Stokes beam passes through an acoustic-optic modulator (AOM; Crystal Tech-

nology, Palo Alto, CA) that modulates the signal at 10 MHz, necessary to detect the

stimulated Raman loss signal. The AOM is placed at the focal point of a telescope

that expands the beam. Then, the Stokes beam passes through an iris diaphragm that

blocks the zeroth order diffracted beam. We use the first order diffraction from the

AOM because the zeroth order cannot be modulated to 100%. The Stokes beam is

finally directed towards a dichroic beam combiner, where it is overlapped to the pump

beam. The pump beam is provided by the OPO and is directed to a time-delay stage,

used to temporally overlap the two beams. It is then steered to the dichroic beam

combiner. The collinearly overlapped beams are sent to the microscope scanner with

a set of mirrors.

3. Scanner and microscope

The collinearly overlapped pump and Stokes beams pass through a laser scanner unit

equipped with a set of galvanometer mirrors that scan the beam both in X and Y dimen-

sions. The beam then enters the inverted microscope FluoView 300 IX71 (Olympus,

Center Valley, PA) to finally pass though an objective and reach the sample at the

sample plane.

4. Detection

This system allows for 3 simultaneously imaged channels as previously mentioned.
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In the forward direction there is a photo-multiplier tube (PMT R3896; Hamamatsu,

Hamamatsu City, Japan) used to detect CARS or SHG signal, depending on the filter

placed in front of it. For detecting CARS we will use a 625nm filter with a 95nm

bandwidth and for the SHG signal a 400nm filter with 40nm of bandwidth (Thorlabs,

Newton, NJ). To detect the modulated pump intensity there is a photodiode (PD,

FDS1010; Thorlabs) connected to a home-built lock-in amplifier that demodulates the

signal. There is a short wave pass 945nm filter (Semrock, Rochester, NY) in front of

the PD to block the 1064nm Stokes beam. In the backwards direction there is another

PMT that can be used to detect E-CARS or additional TPEF.

Other setup configurations for CARS and SRS spectral imaging are based on spectral multi-

plexing and temporal focusing approaches. Multiplexing CARS or SRS require a femtosecond

broadband source that provides the spectral bandwidth and a picosecond narrowband that

determines the spectral resolution67. The SRS configuration required additional lock-in am-

plifier technology that complicates the instrumental setup significantly68,69.Spectral focusing

imaging is achieved by broadband laser sources and the time delay between the two lasers

is scanned to obtain spectral resolution70–73.

2.2.5 Hyperspectral SRS imaging

Hyperspectral SRS refers to the Raman spectrum reconstruction process carried out by SRS

imaging. To achieve it in our setup, the pump frequency (ωp) is swept across the desired

portion of the spectrum that wants to be reconstructed. The tuning of the pump beam

is possible by adjusting the crystal temperature, the lyot filter, and the cavity length of

the OPO. Every time ωp is tuned to a new position, the total laser power that goes into

the sample is re-adjusted to be kept constant throughout the entire experiment. It is a

straightforward procedure: set a pump frequency, adjust the power, take an image, change

29



ω1

ω2

ω3

ω1 ω2 ω3

2700 300029002800 3100
Raman shift (cm   )-1

Figure 2.6: Schematic representation of hyperspectral SRS: images are collected at consec-
utive wavenumbers to reconstruct portions of the Raman spectrum. Depicted here the CH
stretching band of a lipid droplet in Y1 adrenal cells and corresponding images acquired at
three different colors ω1, ω2, ω3, as examples.

λp (nm) Raman shift (cm−1)
CH band 820 to 803 2796.6 to 3054.8
CD band 880 to 855 1965.1 to 2297.4
Fingerprint ∼ 900 ∼ 1600

Table 2.3: Pump wavelengths corresponding to the Raman shifts of interest for hyperspectral
SRS interrogation at the CH, CH and fingerprint bands.

the pump frequency by a desired increment and repeat. By the end, a three-dimensional

cube of images is generated, with spatial information on the x, and y axis; and chemical

information on the z axis (figure 2.6).

Our setup is optimized for the CH stretching band, using wavelengths from 803 to 820 nm,

but it is also capable to image in other useful windows of the Raman spectra, such as the

CD band or the fingerprint (see table2.3).

Chapter 3 explores some methodologies to analyze these hyperspectral SRS data cubes.
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Mode Description Raman shift range (cm−1)
CH def. Methane deformation ∼ 1440
C=C conjugated carbon-carbon double bond stretch ∼ 1590
C=C carbon-carbon double bond stretch ∼ 1660
C=O ester bond stretch ∼ 1730
CH2-ss Methylene symmetric stretch 2845 - 2850
CH3-ss Methyl symmetric stretch 2865 - 2875
CH2-as Methylene asymmetric stretch 2880 - 2910
CH-ss Methane symmetric stretch 2900 - 2915
CH3-as Methyl asymmetric stretch 2960 - 2970
(C=)CH Methane stretch ∼ 3015

Table 2.4: Characteriztic vibrational bands of lipids.74,75

2.3 Raman contrast of lipids

Lipids have very specific Raman signatures due to their high concentration of CH bonds that

vibrate at slightly different frequencies depending on the lipid specific structure. Chemical

specificity is achieved by exploring the differences in the Raman spectra.

Due to their nature based on C-H bond interactions, lipids vibrate at well established fre-

quency bands, namely the CH stretching band (from 2800 to 3100 cm−1), and the fingerprint

region (from 800 to 1800 cm−1). These bands are charactersitic of different vibrational modes

of the CH bonds or the CC bonds, compiled in table 2.4.

Quantitative information about the lipid composition of biological samples can be obtained

form the analysis of the Raman spectra. The degree of saturation is measured by the

relative intensity ratio between the double bond stretches and the methane deformations

(I1660/I1440) in the fingerprint76,77, or examining the peak at ∼ 3015 in the CH stretching

band78. The packing order of the lipid chains is estimated by the ratio between the symmetric

CH stretching mode intensities (I2885/I2850)
79. The particular lipid class (sterol vs aliphatic)

can also be inferred from the Raman spectra80.

Figure 2.7 shows the Raman spectra from a variety cholesteryl esters, cholesterol, retinol,
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Figure 2.7: Raman spectra of cholesteryl esters, free cholesterol, retinol, stearic acid, and
oleic acid.

and the fatty acids, stearic acid and oleic acids. Notice the prominent CH stretching band

in all of them, except for retinol, whose conjugated double bond system has a Raman band

at ∼ 1600 cm−1 that overwhelms every other contribution. The ripples on the CH band are

characteristic of every lipid, as is the relative intensities of the peaks in the upper fingerprint

region (1200 - 1800 cm−1).

2.4 Fluorescence Lifetime Imaging Microscopy

Fluorescence lifetime imaging microscopy contrast comes from the spatial variations of flu-

orescence lifetime within the imaged specimen. An excited molecule resides in the excited

state for a few nanoseconds before relaxing back to the ground state. The relaxation process

can be radiative, and thus emit a photon, or non-radiative. The molecular lifetime is defined
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by the average time the molecule spends in the exited state before returning to the ground

state, by any pathway.

τ =
1

Γ + knr
(2.6)

where Γ is the rate of the emissive decay pathways and knr the rate of the non-radiative

decays81.

Lifetime measurements are advantageous over steady-state fluorescence intensities for mul-

tiple reasons. First, steady-state measurements are limited by spatial variations in the path

length, light scattering effects, and available number of fluorophores. Second, the lifetime

of a fluorophore is independent of its concentration. Third, the local microenvironment (pH

changes, ion activity, energy transfer) affects the fluorophore lifetime, converting it into a

sensor of the environment.

Time-resolved fluorescence measurements were pioneered by Sacchi’s82 and Fernandez’s83

groups in the late 1970’s and 80’s, but their lifetime measurements were performed in small

regions of the samples. With instrumentation development lead by Alsins84, Minami85 and

Kusurni86 in the late 1980’s, which improved instrumentation sensitivity, lifetime imaging

microscopy became a reality. Oida et al. provided in 1993 the first description of a FLIM

microscopy that acquired images based on time-resolved fluorescence measurements, which

they called ”flimscopy”87. In parallel, Gratton88, Gadella89, and Lakowicz90 groups devel-

oped frequency domain FLIM approaches.

Fluorescence lifetime imaging microscopy (FLIM) measures the lifetime of fluorophores, in-

dependently of their intensity and concentration. Fluorescence lifetimes are typically on

the order of nanoseconds, and depend on the structure of the fluorophore as well as their
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microenvironment (temperature, polarity, pH, etc.)91.

The temporal evolution of the emitted fluorescence intensity can by described by a single

exponential decay as:

I(t) = Ioe
− t/τ (2.7)

where Io is the intensity at time t = 0, t is the time after the absorption, and τ is the

fluorescence lifetime (equation 2.6).

Time-domain FLIM uses pulsed illumination to excite the molecules and trigger the expo-

nential intensity decay, which is measured either by time-correlated single photon counting

(TCSPC) or by gating strategies. The first option consist on recording the time in which

individual photons are collected, and fitting a histogram of the individual events to an ex-

ponential decay function. The second option relies on detecting collections of different time

windows of the decaying fluorescence intensity. Both techniques in the time-domain require

to fit the data to exponential decays in order to obtain the lifetimes, a task that is tedious

and often times challenging, specially for multi-exponential decays.

Frequency-domain FLIM employs high-frequency intensity modulated light sources and de-

tection schemes for fast lifetime imaging acquisitions. In this case, the emitted fluorescence

will follow the modulation patter of the excitation light with a phase shift (φω) and an

amplitude modulation (mω) that directly depends on the molecular lifetime (τ) and the

modulation frequency of the light source (ω). See figure 2.8 for a schematic representation.
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Figure 2.8: Frequency-domain FLIM. Sinusoidal excitation signal modulated at frequency
ω, and emission signal with phase shift φω and a modulation intensity mω.

tan(φω) = ωτ (2.8a)

mω =
1√

1 + (ωτ)2
(2.8b)

where ω = 2πf , and f is the laser repetition rate81.

A common method to visualize frequency-domain FLIM data is known as the phasor ap-

proach, in which the modulation and phase are represented in a polar plot where g is the

horizontal axis, and s the vertical axis, such that

g(ω) = mω · cos(φω) (2.9a)

s(ω) = mω · sin(φω) (2.9b)

The coordinates g(ω) and s(ω) can also be represented as the components of the Fourier
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Figure 2.9: Fluorescence emission temporal evolution and the phasor approach given by the
Frourier transform on the intensity decay. τ : lifetime, φω: emission phase shift, mω: emission
modulation intensity.

transformation of the fluorescence intensity variation with time (figure 2.9),

∫ ∞
0

I(t)ejωt dt =

∫ ∞
0

I(t)(cos(ωt) − jsin(ωt)) dt (2.10)

normalizing by the total intensity:

g(ω) =

∫∞
0
I(t)cos(ωt) dt∫∞
0
I(t) dt

(2.11a)

s(ω) =

∫∞
0
I(t)sin(ωt) dt∫∞
0
I(t) dt

(2.11b)

In case the decay is characterized by a single exponential decay (as in equation 2.7)

g(ω) =
1

1 + (ωτ)2
(2.12a)

s(ω) =
ωτ

1 + (ωτ)2
(2.12b)
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In case of multiple exponential decays contributing to the lifetime of a pixel,

g(ω) =
∑
k

fk
1 + (ωτk)2

(2.13a)

s(ω) =
∑
k

fkωτk
1 + (ωτk)2

(2.13b)

where fk is the intensity weighted fractional contribution of the component with lifetime

τk
92.

This can be graphically represented in the complex plain, where single exponential decays

are represented by phasors along a semicircle of lifetime 0 in (g = 1, s = 0), and infinite

lifetimes in (g = 0, s = 0), the origin of coordinates (see figure 2.9). In this representation,

samples with a lifetime defined by a multi-exponential decay will appear as phasors inside the

semicircle. By the law of phasor addition, a bi-exponential decay will have a phasor along the

line that joins the two single exponential decay components, that sit in the semicircle. For

an element described by three exponential decays, the individual decays will form a triangle,

and the resulting phasor will be within the triangle.92,93 This representation can be mapped

back to the image, where areas of similar composition will have neighboring phasors in the

plot that can be grouped together and identified back in the image. This property simplifies

the analysis and provides a fitting-free approach for identifying the areas of the image with

similar and different lifetimes.

FLIM data can be acquired with two photon microscopy, which allows to probe endogenous

fluorophores such as tryptophan or NAD(P)H. The lifetime of these fluorophores ranges from

0.1 ns to 7 ns, see table 2.5 for a detailed list.

The fluorescence lifetime images presented in this thesis were acquired with a Zeiss LSM
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fluorophore excitation (nm) emission (nm) lifetime (ns)
tryptophan 280 (mac) 250-310 350 (max) 3.03
NAD(P)H free 300-380 450-500 0.3
NAD(P)H protein bound 300-380 450-500 2.0-2.3
FDA 420-500 520-570 2.91
FDA protein bound 420-500 520-570 <0.01
lipofuscin 340-395 540, 430-460 1.34

Table 2.5: Endogenous fluorophore excitation, emission, and lifetimes values. Adapted
from91.

710 microscope (Carl Zeiss, Jena, Germany). A Titanium:Sapphire MaiTai laser (Spectra-

Physics, Mountain View, CA) with 100 fs pulses and 80 MHz repetition rate was used as a

two-photon excitation source at 740 nm. The laser light was focused through a 40x, 1.2 N.A.,

water immersion objective (Carl Zeiss, Oberkochen, Germany). The autofluorescence was

detected with a photomultiplier tube (PMT; H7422P-40, Hamamatsu, Japan) after passing

through a bandpass 460/80 nm filter. A dichroic filter at 690 nm served to separate the

excitation from the emission signals. Fluorescence lifetime data were acquired using an A320

FastFLIM FLIMbox (ISS, Champaign, IL). The lifetimes of at least 100 photos per pixel

were analyzed from 60 frames acquired per image at 3 mW of power in the sample plane.

The scan speed was set at 25.21 µs/pixel, and the image size at 256 by 256 pixels, which

span across 154 µm. The lifetime of rhodamine 110 was measured to calibrate the FLIM

system, as it is established at 4 ns.

The SimFCS software, developed at the Laboratory of Fluorescence Dynamics (LFD, UC

Irvine), was used to collect and process these FLIM data. As previously described, the

fluorescence intensity decay associated to each pixel of the FLIM image is mapped into the

two coordinates (g,s) system, the so-called phasor plot92,93.
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Chapter 3

Methodology

3.1 Big Data in microscopy

Big Data is nowadays a hot topic in many fields. With the Internet up and running for a

couple of decades, the boom of social media platforms, and personalized mobile applications

that curate incalculable amounts of personal data, new techniques to manage these datasets

are blossoming. In biomedical applications Big Data is a concept that applies not only to

the personal medical records and vital constants that now we can easily monitor with our

smart-phones, watches (Apple watchi, Samsung gear ii), or bracelets (Fitbit iii), but also to

cell sequencing, such as genomics, with the gene sequencing becoming more affordable and

mainstreamiv. A study done in 2015 compared four Big Data domains, namely Twitter,

YouTube, astronomy and genomics94. This study discussed the challenges that genomics

will face in the near future in terms of data acquisition, storage, distribution, and analysis.

Microscopy was, in principle, not recognized as a Big Data generator, but this paradigm is

ihttp://www.apple.com/watch/health/
iihttp://www.samsung.com/us/support/get-started/gear-s2/s-health/
iiihttps://www.fitbit.com/
ivhttps://cloud.google.com/genomics/
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changing. With better computers and microscopes, traditional approaches fall short to han-

dle the amount of data that scientists eagerly generate. Light-sheet microscopy, for example,

is able to follow embryogenesis, and create digital embryos in which the nuclei position can

be tracked during more than 24 hours, one minute at a time95,96. Superresolution microscopy

also requires the acquisition of large amounts of data to resolve biological structures beyond

the diffraction limit97–99. This opens the door to exploring a myriad physiological processes

with very high spatio-temporal resolution. It is imperative that we set an infrastructure that

is not only capable to acquire large amounts of information, but also manages it wisely and

efficiently to obtain analytic results of out it, or else these data become futile.

As image processing tools thrive in other fields, and become faster and available, the mi-

croscopy community borrows and implements them with great success. A group at UCLA

has recently created an integrated platform capable of imaging single cells and classify them

without labels making use of deep learning analysis100. This method, that boosts perfor-

mance compared to traditional flow cytometers (100.000 cells/s vs 2.000 cell/s classified,

respectively), could be used in caner diagnostics, drug development studies, or to investigate

biofuel production, to name a few.

We implement multivariate analysis and machine learning algorithms for chemical identi-

fication and segmentation of lipid features in large datasets of coherent Raman scattering

images.

3.2 CRS image processing

A typical optical microscopy image is an array of intensities in the xy spatial plane. Often,

a third dimension is added to explore the depth of the sample and to generate volumes. In

vivo applications of optical microscopy in dermatology relay on the capacity to look deep
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below the skin surface101. For cell biology studies traditionally carried on the flat petri

dish, this three-dimensional image modality is becoming popular. It allows to image the

cells in an environment that better mimics their natural milieu. For example, tumors are

three-dimensional masses whit specific properties to this geometry, which are not available

when studying cancer cells in the two-dimensional plane102,103. In addition to spatial depth,

biological dynamics are also of interest. Time series analysis become relevant to follow

drug effects55, or wound healing104. This makes the data package four-dimensional105. On

top of it, chemical imaging techniques, like coherent Raman scattering microscopy, adds

an extra layer of complexity, perhaps even in form of a fifth dimension, if all other dimen-

sions are also explored. Brain tumors were detected with SRS microscopy in vivo inside the

brain by rapid, label-free detection of endogenous markers imaged at different frequencies106.

Combining nonlinear optical microscopy techniques provides multimodal information on bi-

ological samples, but also increases data analysis complexity107. It is an exiting time to

develop image processing strategies capable of handling with detail all the multimodal and

multidimensional images obtained with NLO microscopy.

Our typical multidimensional data space is composed by the spatial x and y coordinates, and

the wavelength information along the third dimension. The main challenges we face in this

work are: 1) the identification of lipid reservoirs, and 2) the (bio)chemical characterization of

the samples. For its chemical selectivity and sensitivity, CRS is chosen to image lipids, with

lipid droplets at the center of interest relevant to many lipid-related physiological process.

To address the first challenge, the CRS microscope was tuned at a specific frequency, usually

the symmetric stretching vibration mode of the CH2 bonds (2845 cm−1). As a result, we

obtain chemical images, where only these bonds densely packed into lipid droplets appear

as bright objects. CARS is preferred in situations where we can benefit from the additional

nonresonant background, for example, to add context to those lipid droplets and be able to

identify the cell’s nuclei and plasma membrane (see figure 2.4). SRS is preferred when the
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substance of interest is present at low concentrations, in which case the detected signals are

so weak that a high signal-to-background ratio is imperative.

To tackle the second challenge the CRS microscope was used in the SRS mode. Hyperspectral

SRS stacks directly reconstruct portions of the Raman spectrum. In this case, each image

in the stack is taken at a different color (matched vibrational frequency), and the intensity

plotted along the third-dimension of the data cube provides a direct representation of the

Raman spectrum of the sample. CARS is also capable of reconstructing the Raman spectrum,

but additional post-processing is required65.

Both challenges, quantifying the lipid droplet properties in a biological system and analyzing

the chemical composition of a sample, require the acquisition of hundreds, if not thousands, of

images per project. These images contain themselves hundreds of features that can be used to

describe the samples: morphological cues, localization parameters, chemical characterization,

element interactions, etc. These are too many images and features to be processed one by

one manually. Automated tools capable of handling big datasets such as machine learning

techniques, commonly applied for image processing and speech recognition, become useful

to our field.

Image segmentation methods are commonly applied for lipid droplet quantification. In sec-

tion 3.3, we discuss an automated machine learning based scheme to detect intracellular

lipid droplets and extract quantitative information. We used this method to examine the

lipid metabolism of macrophages, cells of the immune system crucial in the progression of

atherosclerotic plaques (chapter 5).

Adding the chemical characterization to the samples require a third dimension added to

the spatial dataset: color. The generated spectral data can be examined in multiple ways

depending on the prior knowledge of the sample and the ultimate goal of the analysis. We im-

plement multivariate analysis, such as vertex component analysis (VCA), as a robust method
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to analyze spectral data. We combined VCA with other clustering algorithms and machine

learning classification for deeper inspection of Meibum secretions (chapter 4). Deuterated

cholesterol was specifically located within cells by means of VCA analysis (chapter 7).

3.3 Lipid droplet segmentation

High throughput studies are used to elucidate general trends on biological responses to spe-

cific behaviors, treatments, disease, etc., by means of statistical analysis. For that, hundreds

or thousands of cells (in culture or as part of tissues) need to be imaged and analyzed in re-

alistic time-frames. A star application for CRS in that realm is the analysis of lipid droplets.

The objective is to monitor the changes in intracellular lipid deposits as a result of treatment.

At first, this seems an easy task. Lipid droplets are generally spherical organelles, that

appear as very bright circles in the two-dimensional CRS image. A simple intensity threshold

segmentation is, in first approximation, enough to acquire number and size of each lipid

droplet. Automating the process to screen hundreds of images poses a question: do all

the images respond well to the same intensity threshold? If the images were taken with

the exact same imaging parameters maybe yes, but even in that case, slight laser power

fluctuations, non-homogeneous sample illumination, and inherent sample inhomogeneities

rule a more realistic no. Also, lipid droplets might not be well isolated and surrounded by

a dark cellular background, but rather clustered on top of each other. Lipid droplets tend

to have heterogeneous sizes when lipid metabolism is altered, they can be as small as < 1

µm or as large as 10 µm diameter bodies, or can even present themselves as puddles of lipid

irregularly shaped. These inhomogeneities call for more sophisticated approaches.

In 2008, Hagmar et al. compared four theoretical models for lipid droplet segmentation of

CARS images108. They conclude that a simple global thresholding approach is insufficient

43



for CARS images, as it underestimates the droplet size or misjudges the weaker entities.

Their analysis shows that watershed and level set segmentations work alright for well-defined

objects, but that the best approach for complex biological samples is local thresholding. The

same group applied this approach to analyze the lipid droplets in yeast cells a year later109.

A different approach was taken by Vogler et al. to segment CARS images110. They perform

an exhaustive analysis of the intensity histograms of the images to differentiate between

the different contrast mechanisms that contribute to the CARS image, namely interference

effects, nonresonant background, and the vibrationally resonant signal. All these methods

are still not automated. Medyukhina et al. set the basis for an automated segmentation

of CARS images in their 2012 work, in which they make use of gray-scale and intensity

gradient information to segment cells and nuclei in nonlinear microscopy images111. In 2013,

Chen et al. presented a fully automated image analysis method based on maximum entropy

thresholding (MET) to quantify intracellular lipid droplets112. These are only a handful of

examples that illustrate the evolution of the task: from simple global thresholding tests in

an image per image basis, to more sophisticated automated approaches.

Indeed, thresholding-based segmentation methods are well suited for processing lipid droplet

images, where droplets appear as bright objects on a dark background109,112,113. For CARS

images, where lipid droplets display a wide range of pixel intensities compared to the back-

ground, it is difficult to select one unique threshold that separates foreground pixels from

background pixels108. To this end, we have developed a novel image segmentation algorithm

to process CARS images of lipid droplets that relies on machine learning based classification.

The algorithm that we use first assumes that all lipid droplets have one unique local maxi-

mum. Watershed transformation is then applied to separate the image into distinct regions of

interest that have either one or zero lipid droplets. The intensity threshold to delineate each

lipid droplet differs in each region of interest and is computed by optimizing the difference

of local foreground to background intensities. This generates candidate segmentations for
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Image Specific Lipid droplet specific
Shape-based features Intensity-based features

percentile area, convex area Statistics on the intensity of
pixels inside the segmenta-
tion

skewness eccentricity, axis lengths Statistics on the intensity of
pixels outside the segmenta-
tion

kurtosis solidity, curvyness Comparison of the previous

Table 3.1: Lipid droplet segmentation features for the machine learning algorithm used in
chapter5 to count lipid droplets in macrophages.

Image # True Positives False Positives False Negatives Recall Precision
32 79 18 20 0.798 0.8144
218 8 3 3 0.727 0.727
376 217 12 20 0.916 0.948
564 374 47 34 0.917 0.888
1679 111 45 21 0.841 0.712
3136 487 2 91 0.843 0.996

TOTAL 1276 127 189 0.871 0.9095

Table 3.2: Validation parameters from the lipid droplet segmentation algorithm. Total data
set = 3833 images. Precision = 90.95%, recall = 87.10%.

every region of interest, regardless of whether the region contains zero or one lipid droplet.

To identify the candidate segmentations that truly contain a lipid droplet we train a classifier

(the list of features is given in table 3.1).

With the classifier output and additional cell segmentation we obtain the number of lipid

droplets in every single cell we imaged (see Figure 5.4), and their physical properties such

as size and intensity. A validation analysis concluded this method has a precision of 90.95%

and a recall of 87.10% (figure 3.1 and table 3.2.).

This algorithm was implemented to analyze the lipid droplet content of individual macrophages

with distinct phenotypes in chapter 5.
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Figure 3.1: Subset of images used for validating the lipid droplet segmentation machine
learning algorithm.

3.4 Spectral analysis

Hyperspectral SRS images are typically three-dimensional data cubes. In our case, the first

two dimensions belong to the traditional x and y spatial coordinates of an image, while the

third dimension is reserved for the spectral features (color λ or frequency ω). The data cubes

are intensity arrays, where each plane reconstructs an image with a single type of molecular

vibrations - characterized by a color, and the depth collects information from the different

colors, or molecular vibrations in the samples. These datasets are on the order of millions of

data points. In our case, with a typical image size of 512 by 512 pixels, and about 40 points

per spectra, we surpass the 10M data points for a single hyperspectral SRS (hsSRS) image.

This number rapidly increases with the progression of an experiment. It can be even larger,

if a third spatial dimension is of interest (four-dimensional data sets) or even if time series

analysis is required (i.e. dynamic studies; up to five-dimensional data sets). It is imperative

to find global solutions to manage and treat all the data in a systematic and reliable way.

Chemical maps result from linear analysis when the system composition and spectral cali-

bration of the individual chemical species are available. The lack of such information makes
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multivariate analysis the preferred choice. The downside is that given no ground truth it is

difficult to asses the accuracy of the interpretations. Multivariate analysis (MVA) include

data reduction algorithms such as principal component analysis (PCA), or spectral unmixing

methods such as vertex component analysis (VCA). MVA methods have previously been used

in confocal and coherent Raman studies. For example, VCA was applied to confocal Raman

microscopy images to track the distribution of polyemers in plant cells114. PCA was applied

on hyperspectral CARS to identify cholesterol crystals in atherosclerotic plaque115. A less

common approach was taken by Fu and Xie when they borrowed for CRS data the phasor

approach more commonly applied in FLIM and FRET microscopy116. They presented a cell

segmentation approached based on spectral phasor analysis of the hyperspectral SRS scans.

Shortly, the spectral data can be Fourier transformed into a polar plot representation in

which each point represents a full spectrum at a particular pixel. Clusters of phasors can be

mapped back to the image to identify areas of closely resembling Raman spectra, providing a

chemical segmentation of the image. Machine learning algorithms have also been applied to

Raman117 and to CARS118 microscopic images to identify subcellular compartments using

florescence images for training purposes.

Every project has different needs, so the metrics we are ultimately interested in differ, and

most importantly, so does the nature of the samples. In spite of that, there are specific

commonalities that can be exploited to generate standard ways to retrieve data from hsSRS

images. All the analysis that follows has been implemented in Matlab and is tailored to the

images acquired by our CRS setup.

3.4.1 Data preparation

We collect SRS images either manually or with the the lab-built specscan.py python code

that automates the process. As a result N images in .tif format and a .txt file are generated.
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For convenience, the code LoadSRSStack.m was developed to load datasets with as many

hsSRS stacks as desired. This function groups the data into a single matrix, where each

rows corresponds to each pixel on the entire dataset, and each columns to a spectral feature

(wavelength/Raman shift) of the dataset. This function also retrieves the pump wavelength

of each data point from the .txt file generated by the python code specscan.py, at the end of

each hsSRS stack, and uses the wavenumberCONV.m function to convert it from λ(nm) to

ω(cm−1). The output data can be analyzed together as a whole, for example in batch-level

multivariate analysis (see below), or as individual images.

Despite SRS is essentially free from nonresonant background, it is not free from all sorts

of noise. Often, the signals we are interested in are so small that an increased gain of the

detector is required, which contributes into increased background noise. In other occasions,

we are interested in isolating specific parts of the sample, i.e. lipid droplets in cells or

tissues, and thus the rest of the tissue or cell cytoplasm becomes the background. The

function SRSbkgcorrect.m allows the user to select a portion of the image that corresponds

to background, and the average spectra of the selected area is subtracted to the entire image.

This corrects for background contributions and it also takes care of additional baselines. Even

thought specscan.py corrects the power every time the imaging wavelength is changed, to

keep power constant throughout a hsSRS stack, we often encounter and an overall baseline

added to the final spectra that is common to all the pixels in the image. Subtracting the

spectrum of a background area in the image usually solvents this inconvenience.

3.4.2 Data clustering and classification

Raman spectra are reconstructed by plotting the intensity versus the pump wavelength

(λ(nm)), or the Raman shift frequency (ω(cm−1)), for each pixel in the image. That provides

information on the chemical characteristics on each area in the imaged sample. Visualizing
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this chemical information is of interest for rapid inspection and careful interpretation of the

samples.

Displaying the image at one particular color indicates the presence of a particular bond, and

perhaps component, in the sample, but ensemble analysis to visualize the overall composition

of the samples is preferred. Multivariate analysis (MVA) is a popular strategy that provides

a statistical approach to analyzing data composed by more than one variable. In our case,

it provides a visualization method for hyperspectral images, by assigning the same color

to pixels with the same spectral features, or pertaining to the same chemical component.

Multivariate analysis are essentially unsupervised algorithms that group observations into

multiple categories based on inherent similarities or distances without previous knowledge

on the available groups. Principal component analysis (PCA) is a multivariate analysis

approach that performs data reduction by regrouping the observations such that the variance

of the data is best explained. By taking only those principal components that explain the

most variance, the amount of data is reduced without a significant loss of information.

Vertex component analysis (VCA) is another MVA method that provides an intuitive way

to unmix spectral data. Both PCA and VCA represent the data in a space where it might be

easier to find groups or data clusters. To find those clusters we can apply machine learning

and statistical approaches. K-means clustering analysis (KMCA) is another unsupervised

method that identifies spectra of similar features and groups them together. Machine learning

classifiers, on the other hand, are supervised algorithms that assign the observations to a

category on the bases of pre-established connections within a training dataset of known

classification. We discuss some of these approached below.

The results of any of these MVA, clustering, or classification analysis benefit from having a

well-conditioned input dataset. Z-score normalization (equation 3.1), for example, prevents

the result of the processing to be affected from intensity variation effects, and reduces the

noise contribution into the analysis.
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Z-score normalization:

Sp = 0 (3.1a)

σSp = 1 (3.1b)

Figure 3.2 exemplifies the effect of a z-scored dataset. Figure 3.2 A illustrates a K-means

cluster analysis done with raw data and it returns four groups that differentiate on the

pixel intensity variations, rather than in spectral features, as does the analysis in figure3.2

B, where the data has been previously corrected to have mean 0 and std 1 (z-score). The

analysis performed in each case yields very different results as quantified by the number of

pixels classified into each group (insert histograms in figure 3.2) and visualized in the images

below the spectra.

Principal Component analysis

Principal component analysis (PCA) is a MVA method based on orthogonal transformations

and projections of the data, from possibly correlated variables, to convert it into a set of

independent variables, called principal components. The principal components (PCs) are

statistically found in order of decreasing variance. The first principal component accounts

for the largest variability of the dataset, the second one is orthogonal to the first and explains

the second largest variance of the dataset, and so on. PCA provides a data reduction step

without loss of information, as the number of principal components is smaller than the

number of observations, but yet most of the variance of the system is explained by the firsts

PCs. PCA has been previously used for hsSRS and hsCARS before115.
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Figure 3.2: K-means cluster analysis A) without, and with B) previous z-score normalization
of the input data. Image size ∼ 82 µm.
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Vertex Component Analysis

Vertex component analysis (VCA) is a more intuitive approach to analyze mixed spectral

vectors, such as the ones in hyperspectral SRS. VCA is an unsupervised algorithm that

projects the data into a simplex geometry by means of singular value decomposition (SVD).

It assumes the different components of the sample are linearly mixed together. A detailed

derivation can be found in Nascimento et al. article119. The vertices of the defined simplex

are occupied by the extremes of the projection, so-called end-members. VCA assumes there is

at least one spectrum in the data set for each pure components of the mixture. The algorithm

first projects the data iteratively onto perpendicular directions of the subspace defined by

the end-members already determined, one after the other, until all the end-members are

visited and the mixer matrix M is created (equation 3.2 ).

The model defines each spectrum (S; size p x q, p spectra of q spectral points) as a linear

combination of the pure spectra, or end-members (M ; size l x q, l end-member spectra of q

spectral points), weighted by the abundance matrix (A; size p x l), which is determined in

a second step by multiplying the mixer matrix (M) pseudoinverse with the original spectral

data (S). It also assumes there is a noise level associated to the measures (N ; size p x q)

(see equation3.2b).

Initial spectral data:

Sij = [Iλ1ij , I
λ2
ij , ..., I

λq
ij ] (3.2a)
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Vertex Component Analysis:

S = AM +N (3.2b)

M = [m1,m2, ...ml] (3.2c)

A = [α1, α2, ...αl]
T (3.2d)

VCA reduces the dimension of the spectral space from q to l, with q >> l, providing an

easier problem to handle.

In regard to the biological projects presented in this thesis, VCA becomes the preferred strat-

egy to explore the data and learn about the chemical composition of the different samples.

Typical hsSRS stacks in the CH region of the Raman spectra contain 37 to 40 data points

(oversampling/undersampling justification). Taking the upper limit, a single hsSRS stack is

composed of 512x512x40=10.485.760 data points, arranged as 40 images of 512x512 pixels,

or 262.144 spectra of 40 points. VCA reduces the dimension of the dataset to as little as 3

images of 512x512 pixles, and provides a comprehensive visualization output.

The number of end-members is an input to the algorithm. An empirical approach can be

taken in which we manually explore the result of various choices of end-member numbers.

This is actually recommended when little is known about the nature of the samples. Because

VCA is an unsupervised method, every run might deliver a slightly or dramatically different

output. An analysis of this differences results very informative. If a more systematical

approach is desired, or in combination of the empirical method, the number of principal

components that explain the most variance (running the hsSRS through PCA) gives an

indication on how many end-members best describe the dataset. Prior knowledge of the

data also helps. In most of our cases we are interested in obtaining a map of the overall
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Figure 3.3: VCA scheme for 3 end-members. A) End-member spectrum-color assignation
in the RGB color space. B) RGB basis-images recovered from the VCA analysis and final
reconstruction as a chemical map.

protein and lipid in the samples. In that case, three end-members is a good starting point,

provided there is always some background. If different types of lipids are present in the

sample, more end-members could yield to the desired solution.

Let us keep the example of three end-members. In that case the simplex that VCA will

use is a triangle. First, it will find the purest spectra on the image, provided there is

at least one pixel with unmixed, pure, spectrum of the components of interest. Then, it

will describe all other spectra in the hsSRS stack as linear combination of the three end-

members spectra. For visualization purposes, each end-members is assigned a color in of the

three-dimensional RGB space (figure 3.3 A). Any other color space is just as valid and this

strategy can be adapted to as many end-members one defines, though if it is more than 4

visualization becomes challenging. Now, every pixels is color-coded and similar colors imply

similar spectral characteristics. The image can be easily reconstructed to a chemical map

(see figure 3.3 B).

The Matlab function VCAonSRSimage.m is designed to analyze hsSRS stacks. It requires
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a folder with the .tif stacks of interest and the corresponding .txt files, and the number of

end-members desired. This function uses the aforementioned LoadSRSstack.m to load the

data and generate the features matrix, and the Matlab build-in VCA function to perform the

analysis. It returns the basis-spectra and corresponding coefficients for each pixel, as well

as the input data rearranged in convenient matrices for further analysis. A quick inspection

of the returned basis-spectra is usually done before assigning specific colors to the specific

end-members, and the images are reconstructed using the output of the function.

K-means clustering analysis

K-means clustering analysis (KMCA) is another unsupervised algorithm that groups data

into a predefined number of clusters k. For spectral data, the algorithm groups spectra with

similar features together, by assigning each spectrum to the group that minimizes the sum

of distances between original spectra (SJp ) and the mean spectrum of the assigned cluster

(mk), so-called centroids:

min(
∑

(SJp −mk)) (3.3a)

mk =
1

J

J∑
i=1

Sip (3.3b)

At first, J spectra are randomly assigned to each cluster k, and the mean of each cluster

(mk) is computed. The K-means algorithm examines the distance between each spectrum

and the computed cluster centroids, and if the spectrum of interest is not assigned to the

group with the closest mean, it is re-assigned to the one that minimizes such distance. As

an iterative process, this step is repeated until all spectra are located in the cluster with the

nearest centroid, or until the overall sum is minimized120.
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To select the number of clusters in the K-means algorithm, as well as the number of end-

members in the VCA algorithm, it is useful to examine the data with principal component

analysis (PCA) first. PCA results are less intuitive when applied to (Raman) spectral in-

formation, particularly of a reduced portion of the Raman spectra; there are not that many

data points in each spectrum for a meaningful data reduction step. However, the number

of principal components that explain the most variance can be used as a starting point to

decide the number of clusters and end-members of the previous algorithms.

Classifiers

Machine learning classifiers attempt to identify the category to which a new observation

belongs to, taking as reference a training set with observations of known category. In the

most strict sense, classifiers are supervised learning algorithms. Clustering approaches, such

as K-means clustering analysis, are unsupervised learning algorithms.

Some common classifiers include logistic regression or naive Bayes classifiers, which are both

linear classifiers, support vector machines, k-nearest neighbor, decision trees-based random

forests, or neuronal networks.

A random forests (RF) algorithm is an ensemble learning method that classifies new data

according to pre-established relations with a training dataset. It is an ensemble of decision

trees each of which issues a vote, the mots popular class is elected winner and determined to

be the class of the particular data point under scrutiny121. This is a supervised algorithm;

once the algorithm is trained against a specific classification, it can identify the same classes

in new data sets, considerably speeding the process up.
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3.4.3 Batch-level multivariate analysis

The previous data analysis methods can be applied at single hsSRS images for individual

analysis, or to an ensemble of measurement. When the ground truth is missing, unsupervised

methods provide a description of the chemical composition of the sample that can be used for

quantification, but these methods might yield a slightly different result every time they are

implemented. Comparing results across images is delicate due to the lack of commonality. In

such cases running the analysis once for the entire dataset warranties an unbiased comparison.

Running the analysis on the entire dataset might be however computationally costly. Com-

bining different approaches becomes a good strategy. We have develop a batch-level multi-

variate analysis that combines VCA, KMCA, and RF classification to analyze big datasets

on a study that aims to characterize the lipid-rich secretions of Meibomian glands (chapter

4). The overall methodology is described next.

A random subset of hyperspectral SRS images was selected as training set. VCA with three

end-members was applied to unmix the spectral information. This step re-distributes the

data into a new RBG color space. Every spectrum of the training dataset is represented

by a color defined as the linear combination of the three end-members and weighted with

VCA output coefficients, enabling the reconstruction of chemical maps that describe each

sample. However quantification remains challenging. Similar colors now mean similar spec-

tral features but without clear thresholds among classes. Thus K-means clustering analysis

is applied to group similar spectral classes into six groups that quantify biochemical distri-

bution of the samples. Finding out the number of clusters highly depends on the nature of

the sample. In our case, where we wanted to discriminate between lipids and proteins as we

will explain in chapter 4, stating with three groups seemed appropriate. The three groups

belong to lipid, protein, and background. An inspection to the spectra classified into each

group revealed a large variability in the lipid group. More clusters were intended but the
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Figure 3.4: Methodology diagram. Green box: unsupervised identification of the chemical
composition. Orange box: supervised learning and classification of the new samples. hsSRS:
hyperspectral stimulated Raman scattering, VCA: vertex component analysis.

result was not robust, showing different groups at each implementation and often doubling

the categories. A nested KMCA targeting only the initial lipid cluster was applied. We

found four extra sub-clusters that revealed meaningful information form the dataset, obtain-

ing a total of six reference spectra that best describe the training set. To analyze the rest of

hsSRS scans we train a RF classifier with the training set images and the retrieved spectral

clusters. After calibrating the RF, we run the remaining images through it and obtain their

direct classification. This speeds up the process and permits an unbiased comparison of the

different images to proceed with further biomedical analysis.
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Chapter 4

Meibum: case study

Dry eye disease affects a considerable portion of the elderly population, but its diagnostic

is inefficient, and its cause remains elusive. A complete biochemical characterization of the

tear film lipid layer, the main component in jeopardy in dry eye disease, is nonexistent and

difficult to attain. With the aim of defining a reference on its composition we characterize

the biochemical composition Meibomian gland secretions, the main contributor to the tear

film lipid layer. Coherent Raman scattering hyperspectral imaging in the CH spectral band

is coupled to multivariate analysis to generate chemical maps of the meibum secretions that

indicate variations on the protein and lipid contributions as the disease progresses.

4.1 Introduction

Dry eye disease causes irritation in the eye and blurred vision, as a consequence of eye dry-

ness. This increasingly prevalent condition of the tear film poses a significant burden on the

patient’s daily life. Current diagnostic methods and classification of various stages of dry eye

disease rely and the good judgment of clinicians. Even thought there are some standardized
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guidelines on how to identify and classify a dry eye patient, a lack of quantitative methods

based on the biochemistry of the process prevent an objective diagnostic. Usually the prop-

erties of the tear film are examined to obtain a degree of disease, not even professionals agree

on.

Dry eye is defined as a tear film instability. The tear film is an aqueous layer on top of

the cornea that contains a lipid-rich layer in the posterior-most part, which protects the eye

surface. The main source of lipids on tear film lipid layer are the Meibomian glands, located

in the upper and lower eyelids. These glands secrete lipid that redistributes on the tear film

with every blink. The specific role of meibum secretion in the progression of dry eye disease

remains unclear, but it is to expect that the composition of meibum affects the composition

of the tear film lipid layer, and it is hypothesized that it may play an important role in tear

film related disorders, such as dry eye.

To establish a quantitative correlation between the quality of the meibum and the degree

of dry eye severity, we revisit the lipid composition of meibum in healthy subjects and

patients with different severity of dry eye disease. A study with human subjects has been

designed (UCI IRB HS# 2014-1510 Correlates of Meibomian Gland Dysfunction and Dry

Eye Severity) by our collaborators at the Gavin Herbert Eye Institute of UC Irvine. Our

contribution to the study consists on examining the biochemical composition of meibum

secretions extracted from a variety of patients with Raman microscpectroscopy, with the

ultimate goal of establishing correlations between the meibum composition and the clinical

parameters used currently to diagnose dry eye disease.

4.1.1 The tear film and the meibomian glands

The tear film makes the posterior-most part of the eye covering the top of the cornea. In the

1950s a three layer model was proposed to describe the composition of the tear film122. The
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current model is based on those three layers, but it features undefined boundaries between

them (see figure 4.1), as the tear film is rather a dynamic entity with complex chemical

composition. The three main layers are:

1. Glycocalyx layer: A hydrophilic mucin-enriched layer, of high viscosity, due to the high

abundance of membrane-bound proteins and mucins.

2. Aqueous layer: A hydrophilic aqueous layer, with water soluble proteins, mucins, and

salts.

3. Tear film lipid layer: A lipid layer with a higher hydrophobic character that contains

both lipids and proteins. More recent models subdivide this layer into 2 additional

sub-layers, nonpolar lipids on the outermost part and polar lipids in the inner part,

with the hydrophilic heads in contact with the aqueous layer and their hydrophobic

tails staked in the nonpolar lipid sublayer.

The function of the lipid tear film is to slow down the evaporation of the aqueous part of the

tear film, to preserve a clear optical surface and to form a protective barrier against microbes

and organic matter, such as dust and pollen122,123. Its complex composition includes several

kinds of lipids, a plethora of proteins, and also inorganic salts.

The principal source of lipids in the tear film lipid layer is the Meibomian gland system122,124.

Meibomian glands, or glandulae tarsales, are sebaceous glands located at the margins of the

upper and lower eyelids of humans and mammals. They are named after Heinrich Mei-

bom, a german physician and anatomist, who provided the first acuarate description of

these holocrine glands in 16661. The sebum secretion produced by these glands was termed

meibum in 1981 by Nicolaides et al.125. These secretions contain a complex mixture of lipids

including cholesteryl esters, triacylglycerols, phospholipids, wax esters, free cholesterol, and

fatty acids. Cholesteryl and wax esters are the most prominent components as they account
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for ∼ 60% of the meibum lipids122 (see table 4.1, adapted from126).

Lipid class % of total meibum lipid (w/w) Reference
Wax esters 41 ± 8 127

Cholesteryl ester ∼ 30 128,129

cholesterol <2

Table 4.1: Main lipids in human meibum.

4.1.2 Dry eye disease

In 2007 the International Dry Eye Workshop established a new definition for dry eye130:

“Dry eye is a multifactorial disease of the tears and ocular surface that results

in symptoms of discomfort, visual disturbance, and tear film instability with

potential damage to ocular surface. It is accompanied by increased osmolarity of

the tear film and inflammation of the ocular surface.”

This definition replaced the one established in 1995 by the National Eye Institute and the

Industry of Dry Eye Workshop, which referred mainly to the abnormal evaporation of the

tear film and didn’t specify the effect of dry eye on visual function.

The prevalence of dry eye disease depends highly on the age group, and ranges from 5%

to over 30%, being more prevalent in elderly citizens. About twice as much women than

men of age 50 or older suffer from it. Older people and women are thus the most affected

demographics131.

The most common symptoms of dry eye disease include tearing, irritation, itching, blurred

vision, and increased blinking frequency. These symptoms cause pain and decreased visual

performance, degrading the patients’ quality of life and affecting their daily routines131.
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Figure 4.1: Meibomian glands in the upper and lower eyelids, and tear film detail with the
three layers that follow the corneal epithelium, from anterior to posterior part: hydrophilic
mucin-enriched layer, aqueous layer, and hydrophobic lipid layer.
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There are two types of dry eye: aqueous tear-deficient dry eye (ADDE) and evaporative dry

eye (EDE). The former entails a failure of the lacrimal secretory function, and the latter

implies an excessive water loss from the ocular surface, with a normal lacrimal secretory

function130. The causes for EDE can be intrinsic, extrinsic, or a combination of both.

Intrinsic causes include meibomian gland dysfunction (MGD) or disorders of the lids and

low blink rates. Extrinsic causes account for vitamin A deficiency, contact lens wear, or

allergic conjunctivitis, among others.

As the most important source of lipids to the tear film lipid layer, dysfunctional meibomian

glands is one of the most common causes of EDE124. We focus here on evaporative dry eye

disease and its connection with meibum secretions.

There is no gold standard diagnostic method for dry eye disease. Clinitians combine a

large variety of test to obtain a final diagnostic. These include ocular surface staining, tear

film stability tests, reflex tear flow, and tear osmolarity tests. Meibomian gland expression

is a parameter of high relevance, however, it is defined in a very loose way based on the

appearance of the secretion (from clear oily-looking in healthy patients to opaque tooth

paste-like in the most sever cases).

4.1.3 Raman measures on Meibum

Chromatographic (thin layer chromatography (TLC), gas chromatography (GC), or liquid

chromatography (LC)) and spectroscopic (UV/VIS, fluorescence, infrared (IR), mass spec-

troscopy (MS)) studies point out the different composition of meibum in health and dry

eye patients, but do not provide strongly conclusive results1. Raman spectroscopy has also

been applied to the eye in numerous occasions, and it was used to characterize the human

meibum lipid in 2009132, but had a limited success in differentiating meibum from healthy

and diseased patients. More recently, coherent Raman scattering microscopy has been used
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to examine the Meibomian glands of mice133,134. These studies show a purification of the lipid

fraction as meibum matures from the acinus of the Meibominal glands, to the central duct,

to the output orifice, where it is finally released (by a blink)134. This purification consist on

clearing out the protein fraction of the meibocytes (cells that produce the lipid content on

the Mebomian glands). The latter study also points towards an increased contribution of

protein in mice meibum secretions when these are under desiccating stress, mimicking dry

eye conditions. That paves the road to hypothesize normal meibum might have less protein

contribution released to the tear film lipid layer than altered meibum.

Hyperspectral SRS in the CH stretching window of the Raman spectra (2800 - 3100 cm−1)

is informative of the lipid, and the overall protein content of the sample. A variety of lipid

profiles can be identified if the samples has regions with pure components. When there is

a mixture of lipids, the disentanglement becomes challenging. However, lipids can be told

apart from protein based on their different vibration modes that arise from being CH2 and

CH3 rich, respectively. These two modes are representative of the biomolecular class and

suffice to be resolved with hsSRS in the CH region.

4.2 Experimental details

4.2.1 Clinical data collection and evaluation

Meibum secretions are collected from the central portion of the lower eyelid, unless otherwise

noted. For collection, the lower eyelid is everted and the margin is wiped gently using a

sterile Q-tip. The Meibomian gland expressor (also known as Korb device in honor of its

inventor, Dr. Donald Korb, figure 4.2 A) is applied to the cleaned portion of the lower

eyelid for 10-15 seconds (figure 4.2 B and C), and the expressed meibum is collected using

an ophthalmic spatula (18-380 Miltex Ellis Foreign Body Spud; Steele Supply Company, St.
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A B C

Figure 4.2: A) Korb device. B) Clinical use of the Korb device for collection of meibum
samples. C) Detail of the previous. Courtesy of Dr. J. Paugh.

Joseph, Michigan, USA). The meibum sample is then smeared onto a clean microscope slide

for micro-spectroscopy processing, which is further sandwiched with a thin coverslip hold

with double side sticky-tape, and kept at room temperature until SRS imaging.

During the visit to the clinic for sample collection, additional standard dry eye tests are also

performed.

• Meibomian gland expression (MGE) is graded on a clinical scale based on the

secretion appearance. 0 = normal(clear and oily), 1 = cloudy, 2 = cloudy with particles,

3 = inspissated or toothpaste looking. MGE correlates with the cloudiness, color, and

viscosity of the meibum secretion.

• Tear breakup time (TBUT) measures the time it takes for the tear film to breakup

after a blink, in seconds. The measurement is done by staining the eye with sodium

fluorescein. This quantity is believed to be directly related to the quality of lipid

portion of the tear film, short breakup times correlate with poor tear lipid quality or

quantity.

• Corneal staining is assessed by the NEI scale and the Oxford scheme and is used to

inspect the quality of the corneal surface. Damage in the corneal surface epithelium
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leads to the sensation of pain.

• Tear osmolarity is also measured. It is negatively correlated to TBUT, as short

breakup times also imply increased water evaporation leading to increased tear film

osmolarity.

• Questionnaires to asses the symptoms and the pain level are also filled in by

the patient. Examples of these questionnaires are the OSDI (Ocular Surface Disease

Index), the Shein questionnaire or the MDG questionnaire.

4.2.2 Sample imaging and data collection

Two types of images were acquired. First, single color image tiles at 2850 cm−1 were taken

to reconstruct the entire meibum secretion as a mosaic. These imaging was done with a 20x

objective with no extra magnification (pixel size of 1.38 µm). ImageJ was used to reconstruct

the mosaics.

Second, hyperspectral SRS (hsSRS) stacks of 37 colors were acquired from one to three

zoomed-in areas of the sample. The 20x objective with a 3x magnification factor was em-

ployed (pixel size of 0.46 µm). HsSRS stacks of meibum in the CH stretching region were

composed of 37 images of 512 by 512 pixels, accounting for a total of 262,144 spectra of 37

data points per image. This clinical study aimed to examine at least 100 patients, with at

least two samples per patient (one from each eye) we obtained over 200 samples. An average

of two hsSRS stacks per sample were collected to account for intrasample variations. That

yielded > 400 hsSRS stacks to analyze, or a total of 104,857,600 spectra to examine and

compare, with at least 3.88x109 data points. An efficient method to extract information out

of these data is imperative. The hyperspectral SRS stacks were processed with customized

Matlab code based on the clustering and classification methodology defined in chapter 3,

and detailed in the next section.
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4.2.3 Hyperspectral data analysis

The aim for the hyperspectral SRS data analysis is two-folded:

1. Characterize the chemical classes that best define the meibum secretions.

2. Classify new images into predefined chemical classes in a fast and reliable way.

We have limited prior knowledge on the patients’ meibum secretions. We know they contain

lipids, and potentially protein. But we don’t have details on the specific composition and

location of these biomolecules within the sample for each patient. Hence, an unsupervised

approach, with no assumptions, is required to find the sample composition. Because the data

set is composed of multiple observables, namely 37 spectral features, we chose multivariate

analysis (MVA) for the task.

MVA on each individual sample becomes unpractical if the results are to be compared across

samples. Because of the unsupervised nature of the MVA, the result for each individual

image (or hsSRS stack) strongly depends on the input data. Despite the similarities in

composition among samples, the algorithms focus on different attributes for each image,

which result in slightly different spectral signatures retrieved as the composition descriptors,

complicating the comparison and the interpretation of the results. To amend that risk, we

perform batch-level MVA; all the hsSRS stacks are re-organized as a single dataset to which

the multivariate analysis is applied.

The associated computational costs to batch-level MVA analysis are high. In addition, if

new samples want to be added to the study at later times, the analysis would need to be

repeated from scratch. The process is time consuming and inefficient. To circumvent this

inconvenience we fragment the dataset into two groups: a training set and a new images set.

The training set consists of a subset of data with 19 hsSRS stacks from 17 different pa-
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Figure 4.3: Multivariate analysis sequence applied to the training set to obtain the reference
spectra. First, the data are processed by vertex component analysis (VCA). Second, k-means
cluster analysis (KMCA) with k = 3 is applied to the VCA output to generate three groups
with the main components of the sample: background, lipid-rich group, and protein-rich
group. Third, a second KMCA with k = 4 provides additional segmentation of the lipid-rich
group.

tients. These samples were chosen to have a broad representation of all kind of spectral and

morphological features found in the dataset, when this was 43 patients long.

The result of the MVA on the training set yielded six spectral classes that define the meibum

samples, including background from the microscope slide. The spectral classes were obtained

after a sequence of multivariate analysis schematized in figure 4.3.

Once the reference spectra are established we trained a random forest classifier to accomplish

the second task: classify the new images dataset. The diagram in figure 3.4 shows the overall

methodology.

We next detail each step of the methodology applied to the meibum secretion samples.

VCA analysis of the training set

Vertex component analysis (VCA) is applied to the 19 hsSRS stacks of the training set. First,

the data was standardized by a z-score normalization to avoid intensity variation effects.
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Because the samples are mainly composed of lipids, proteins, and the slide background,

three end-members suffice to describe the gross-composition of the the meibum secretions.

Each end-member is the spectrum of a single pixel in the entire training set, and is assigned

to a vertex of a simplex (a triangle in this case), as we saw in chapter 3, figure 3.3. Colors

were then assigned to this triad of spectra. We used the RGB color space, and we assign

blue to background, red to lipid (or the basis spectrum with a prominent 2845 cm−1 peak),

and green to protein (basis spectrum with a predominant contribution from the peak at 2930

cm−1). Each other spectrum in the training set was then defined as a linear combination of

the three end-members:

Si = cir ·mr + cig ·mg + cib ·mb (4.1)

where [cr, cg, cb] are the color coefficients of each pixel i as determined by the VCA output,

and by extension of each spectrum. Consider red = [1, 0, 0], green = [0, 1, 0], and blue

= [0, 0, 1]. As a result, the 37-dimensional hsSRS stacks in the training set can now be

represented as a single false-colored image, or chemical map. Figure 4.4 A shows the three

basis spectra resulting from VCA and three reconstructed images.

The result of the VCA not only provides a first segmentation of the data, but also an

important data reduction step. The dimension of the spectral space is reduced from 37 to

3. From 184,287,232 data points (19 images of 512x512 pixels with 37 spectral points per

pixel) to 14,942,208 data points (19 images of 512x512 pixels with only 3 features per pixel),

which is an 8% of the initial data set. This reduction also diminishes the impact of the noise

that contribute to the images. Meibum chemical maps were reconstructed by overlaying the

resulting three RGB components. Areas of similar color have similar spectral features, thus

similar composition.
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Figure 4.4: Multivariate analysis output. Spectra and image reconstruction examples from
A) VCA analysis on the training set, B) coarse KMCA with k = 3 on the VCA output color
space, and C) final result after the fine KMCA with k = 4 on the lipid-rich group from the
first KMCA, plus the protein group (normalized intensities). Image size ∼ 82 µm.
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The basis spectra are however extreme indicators with unclear association with a biochemcial

component. Also, the images feature a continuum of colors challenging to classify for further

quantification. In order to gain biochemical character for the basis spectra and to facilitate

quantification we implement a K-means clustering analysis (KMCA) on the color space

defined by the VCA output, which is less noisy and more intuitive than the initial space, as

now every point is a complete spectrum.

Note, that principal component analysis (PCA) provides an indication of the number of end-

members or clustering groups that are more significant for the dataset. We found that the

first two principal components (PC1 and PC2) represent the lipid and protein content of the

secretions (figure 4.5). But they do not account for most of the variance of the training set

(figure 4.5 insert). Additional principal components (i.e. PC3) have significant contributions

but correspond to noisy spectra. This is indicative of the high degree of variability of the

samples, especially due to some impurities that are found across the dataset, such as makeup

contamination. The images in the right panel of figure 4.5 show the intensity maps for the

first three principal components (PC1, PC2, PC3) of three hsSRS stacks in the training

dataset. Nonetheless, the PCA analysis indicated a minimum of 3 components to describe

the sample, namely lipid, protein, and background contributions, as we intuitively chose for

the VCA analysis.

K-means cluster analysis of the training set

A three-group K-means clustering algorithm (KMCA) on the VCA color output identified

the main biochemical components of the meibum samples (protein- and lipid-rich areas, and

background). The retrieved groups have a centroid (average) spectrum that is familiar to

the Raman-versed reader (figure 4.4 B). The output clusters are populated with J spectra,
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Figure 4.5: Principal component analysis (PCA) applied to meibum secretions. Left panel:
Spectra of the first three principal components (PCs). Insert: variance percentage explained
by the PCs. Right panel: Image representation examples of the first three PCs. Image size
∼ 82 µm.

which distance to the centroid of the group (nk) is minimized:

min(
∑

(SiJ − nk)) (4.2a)

nk =
1

J

J∑
i=1

Si =
1

J

J∑
i=1

(cir ·mr + cig ·mg + cib ·mb) (4.2b)

Applying a KMCA to the raw data right away provided disappointing results. First the

difference in spectral intensities prevailed over differences in spectral features (see figure 3.2

A). Second, even with a z-score normalization the results do not offer the same dynamic range

as the VCA output (figure3.2 B), because KMCA performs averages of the spectral groups,

losing detailed information of the sample. A sequential implementation of VCA followed by

KMCA resulted more effective. VCA identified the extreme contributions of the dataset that

define the three major spectral classes, and it assigned maximum intensity to these three

end-members, significantly reducing the contribution of noise from potential contamination.
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Figure 4.6: A) K-means cluster analysis with k=4 output centroids (average spectra of the
four groups) and reconstructed image. B) Principals components PC1 and PC2 spectra and
corresponding images. Image size ∼ 82 µm.

In the reduced three-dimensional space, with biochemical relevant coordinates, KMCA is not

only more computationally efficient, but also has a guide to statistically identify the groups

and variations within the sample with greater detail than in the original 37-dimensional

space.

An initial KMCA with k = 3identified the three biochemical relevant clusters and provided

average chemical maps. The analysis of the spectral variation within each cluster unveiled

a big spectral divergence on the lipid-rich group. Interestingly, the spectral variation was

relevant to the case study, as the working hypothesis is based on a variation in the protein
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fraction of the samples linked to the progression of the disease. A second KMCA implemen-

tation only on the lipid-rich cluster of the first KMCA yielded average spectra that exhibited

such a variation in the vicinity of the CH3 stretching resonance. We chose four groups (k

= 4) that partition the lipid-rich regions into sub-groups with increasing levels of protein

content (approximately 33%, 50%, 75%, and 100%). A bigger k oversampled the data, and

fewer groups (smaller k) were not representative enough of this specific dataset. The result

of the second K-means provided a graded variation of the contribution of methyl group in

the samples, indicative of protein. Although we shall not forget that these spectra might be

indicative of other lipid species that are also find in meibum in smaller concentrations.

Together with the protein spectra from the first KMCA (100% protein peak with no methy-

lene contribution), the 5 spectra define a scaled lipid-to-protein ratio. Figure 4.4 C shows

the 5 reference spectra and three reconstructed images, which also include the background

pixels identified in the first KMCA. Note the similarity with the direct VCA output (figure

4.4 A). Now, we have a quantifiable segmentation of the images, as the groups are clearly

defined by a single index, without compromising on spectral variety.

Overall, this nested clustering approach defined a set of reference spectra that simplify the

description of the samples: from the first (coarse) KMCA the background and the protein

spectra, and form the second (fine) KMCA the lipid-protein scale. Translated to the images,

we can quantify the fraction of pixels, or area, that belongs to each group.

4.2.4 Classification

In the previous step, we retrieved six spectral classes that characterize the chemical com-

position of the meibum secretions, fulfilling the first goal of this data analysis. With these

reference spectra tackled the second goal by training a classifier capable of quantifying the

new images of the dataset.
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nTrees InBagFraction MinLeafSize oobError Sensitivity Specificity
20 0.5 1 0.15 0.939 0.949
20 0.5 3 0.15 0.937 0.951
20 0.5 10 0.14 0.940 0.951
20 0.5 100 0.15 0.936 0.939
20 0.7 3 0.15 0.937 0.951
60 0.7 3 0.125 0.949 0.955
100 0.5 100 0.15 0.944 0.939

Table 4.2: Settings of the RF calibration: nTrees: number of trees in the forest; InBagFrac-
tion: fraction of input data to sample, out of the randomly selected 85% of the total training
set; MinLeafSize: minimum number of observations per tree leaf. Performance of the RF
classifier: oobError: minimum of the out-of-bag error estimates of the forest.

Before classifying the new hsSRS stacks that are not part of the training set, the classifier

was calibrated. We chose a Random Forests classifier for the task, as it is intuitive, fast, and

robust. More details are described in chapter 3.

For this case study we use the dataset defined by the previous 19 images to train the classifier.

We get the z-scored spectra from 85% of this dataset to be the training set, and the reference

spectral classes obtained with the previous clustering steps, which are considered to be the

true class category of each spectrum. Remember that we do not have an absolute ground

truth in this experiment. To calibrate the classifier we tune three particular properties: the

number of trees in the forest (nTrees), the fraction of input data to sample (InBagFraction)

out of the randomly selected 85% of the total training set, and the minimum number of

observations per tree leaf (MinLeafSize). As output, or classifier performance metric, we

have the out-of-bag (oob) error, and the sensitivity and specificity. Table 4.2 shows a relation

of the input settings and the output observations that help determine the calibration of the

classifier. Note that many more combinations and other parameters can be altered which

might yield a better result.

The oobError refers to the minimum of the out-of-bag error estimates of the forest (each

tree has an out-of-bag error estimate). This is computed using the sample points not chosen
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Figure 4.7: Random Forest (RF) classifier performance. An image from the training set was
left out of the calibration set and used to validate the performance of the RF classifier. A)
Result out of the training set multivariate analysis. B) Result out of the random forests
classifier. C) Comparison in a confusion matrix that shows the number of pixels that belong
to group x and are classified into group y, with x,y = [1 2 3 4 5 6]. Image size ∼ 82 µm.

by each specific tree (the fraction of input data not to sample, or out-of-bag), which is an

inherent property of the classifier itself. There is room for improvement on that end. In

addition to it, we have set aside a 15% of the input data not to be considered in the classifier

training tasks, and use it as test dataset. Knowing the true class for these points, and

running it though the trained classifier, also gives an estimate on how well this performs.

From this analysis we extract the sensitivity and the specificity of the classifier, which turn

out to be remarkably good.

For the present analysis we chose the following calibration parameters: nTrees = 20, In-

BagFraction = 0.5, MinLeafSize = 10. However, analysis with other settings (i.e. nTrees

= 60, InBagFraction = 0.7, MinLeafSize = 3) will be done in the near future. With the

classifier calibrated, we interpreted the rest of meibum secretion samples, without the need

of MVA pre-clustering.

An image from the training dataset was left out of the calibration dataset and used for

posterior validation of the classifier performance. Figure 4.7 compares the groups obtained

straight form the MVA clustering sequence (A) with the classification output without pre-

vious MVA processing (B). At first glance the images are almost identical. The histogram

of the surface fraction for each group reveals slight differences that are further quantified in
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the confusion matrix (C). The confusion matrix shows the number of pixels that belong to

group y (vertical axis) according for the results obtained in figure 4.7 A, and classified in

group x (horizontal axis) according for the results obtained in figure 4.7 B. Notice how a

small fraction of pixels/spectra that belong to group y = 5 are missclassified into group x =

3. More subtle differences include pixels classified into group x = 2, which belong to group

y = 6, these two groups are the protein-rich groups.

4.2.5 Correlation with the clinical data

Once the methodology is established, we can obtain the percentage of area sample in each

biochemical class for each hsSRS stack. This metric may be used to compare the fraction of

lipid and protein across meibum secretions of different patients.

Next steps include the investigation of correlations between the biochemical composition

from the multivariate analysis and the clinical parameters evaluated at the time of the

sample collection.

4.3 Results and discussion

The CH-stretching band of the Raman spectra of biological samples is indicative of its lipid

composition and overall protein content. However, it is challenging if not impossible to

single out a specific components, as they are usually mixed together within the same focal

volume. Nonetheless, the window is packed with information that can be carefully extracted

and used to explain the general biochemical properties of lipid-rich samples, such as meibum

secretions.

Raman spectroscopy in the fingerprint region was used to examine Meibomian glands and

78



meibum secretions, because this window is rich of chemical information. However, most

studies were done in cuvette measurements of bulk meibum in which a point sample was

representative of the whole. Similar approaches with other spectroscopic techniques provided

high degree of composition information but lacked spatial resolution. Raman imaging were

the entire spectrum is obtained for each pixel of the sample is possible, but it is extremely

slow. To speed up the process coherent Raman scattering was used, compromising on spectral

resolution. CRS imaging on mice meibomian glands informed about the composition and

spatial distribution of the glands. CRS imaging on the fingerprint region is also possible,

but the signals at low Raman shifts are weak and have no easy interpretation, as they

may be originated from a handful of chemical bonds, not exclusive to a single biochemical

component.

We applied CRS in form of hyperspectral SRS (hsSRS) to examine the meibum secretions in

the CH stretching window of the Raman spectrum, where the signal is strong and meaningful.

This allowed us to reconstruct chemical maps of the meibum secretions and learn about the

composition and conformation changes as a function of dry eye disease severity.

4.3.1 Training set processing

The result of processing the training set through the MVA is depicted in figure 4.8. Images

reconstructed by VCA have a rich dynamic range of colors that identify substructures within

the meibum secretions with great detail (figure 4.8 A). To be able to quantify what part of

the area belongs to protein- or lipid-rich groups we proceeded a KMCA implementation,

from which we extracted six reference spectra (figure 4.8 B). The fraction of pixels in each

spectral group, for each image, is presented in figure 4.8 C, and the final reconstructed images

with the six spectral classes - each represented by a different color - are shown in figure 4.8

D.
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Note the variation of lipid classes across the images, which is quantified in the composition

fraction histogram. This subset of data illustrates the variation of structures and composi-

tion across meibum secretions from different patients. Relevant substructures include solid

protein blocks depicted in darker green, wax ester-rich lipid globules in darker orange, or

large areas of lipid-protein mixtures in lime green.

4.3.2 Bulk analysis of the classified images

Once the training set was characterized, and the Random Forests classifier was calibrated,

obtaining new analysis from new hsSRS images was fast and easy. The only pre-processing

required from new hsSRS was z-score normalization, in order to directly compare the results

with the reference spectra. Figure 4.9 shows a batch of images classified with the calibrated

RF and the corresponding histogram with the protein and lipid fractions. Note that the his-

tograms were normalized to only account for meibum secretion, no background was included.

The composition fraction of each sample may be used as a metric for further classification

and correlation with the clinical data.

4.3.3 Large sample, small sampling

Meibum secretions can be as long as > 1 cm of continuous material, or as small as some

specks distributed on the slide. Despite CRS microscopy allows rapid inspection of large

areas, rather than single point measurement, the achieved field of view is small compared

to the large meibum secretions. To obtain an accurate representation of the secretion,

accounting for intrasample variability or homogeneity, at least two subsections were sampled.

In order to detect the morphological details of the samples, hyperspectral imaging was done

in zoomed-in areas that further limit the field of view to ∼ 82 µm.
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Figure 4.9: Classification results of a new subset of hsSRS images through the RF classifier.
Images and corresponding composition fractions are shown. Image size ∼ 82 µm.
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Figure 4.10: A-C) Mosaics of three meibum secretion at 2850 cm−1, with a-c) detail chemical
map acquired after MVA, image size ∼ 82 µm. White arrows point to protein-rich structures.

The areas selected for imaging include structures representative of the particular secretion.

Figures 4.10 A-C show three reconstructed mosaics (gray scale images) taken at 2850 cm−1.

Each one includes a detail section analyzed through the MVA sequence to obtain the corre-

sponding chemical map (figure 4.10 a-c, color images).

Different structures were identified in the single color image which show different biochem-

ical composition in the chemical maps. A common structure features lipid-rich globules

surrounded by protein-rich areas. Angular, crystal-looking blocks are present with variable
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frequency along some meibum secretions. These blocks are mainly composed of protein

(green angular structures, figure 4.10 a and b, white arrows). Lipid puddles as big as > 100

µm in diameter were also found in some secretions (see top part of image 16 in figure 4.8 A

and D, or right side of image 6 in figure 4.9 for a small puddle). It might be worth analyzing

the frequency and the size of the protein blocks and the lipid puddles in each secretion, as

they might be correlated with the severity of the dry eye case.

Other particular structures found in these samples were small, bright dots, with no spec-

tral features. It is my hypothesis that these dots correspond to makeup contamination,

among other reasons, because only samples from female donors contain them. These bright

sports would hinder the spectral analysis if only VCA or KMCA was applied independently.

The MVA sequence analysis overlooks them, considering their signal as noise. Training set

samples 2 and 5 contain these makeup traces (see figure 4.8 A and D).

4.3.4 Lipid and protein segregation

We identified an apparent segregation of protein and lipid within the meibum samples.

Lipids were arranged as orange blobs (up to ∼ 10 µm in size) embedded within a green

protein-rich matrix. Figure 4.11 shows three representative examples of this organization

captured by KMCA (A). Each of the images belongs to a different patient and has different

predominant contribution form the lipid fraction. Secretion number 1 contains the largest

contribution of wax esters-rich areas in a continuous mass that is decorated with protein-rich

sections. The edges of the secretion concentrate the purest wax ester contributions. Samples

number 2 shows very clear segregation between the lipid and the protein phases and features

fragmented lipid globules of various lipid classes (dark orange blobs versus ocher blobs).

Secretion number 3 shows the higher degree of lipid-protein mixture of the three. The most

abundant lipid class in this sample has a high contribution of the methyl stretches. The
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Figure 4.11: Lipid fraction varies across samples of different patients. A) KMCA images
from three different patients. Image size ∼ 82 µm. B) Corresponding lipid composition
according to the spectral groups depicted in C) normalized reference spectra.

overall color is less red, and its lipid globular structure is less defined than in the previous

sample. Both samples 2 and 3 suggest that the lipid fraction (oranges) is embedded in a

protein-rich matrix (greens).

4.3.5 Eyelid location analysis

In order to address whether the composition of meibum secretions from meibomian glands

situated in different parts of the eyelid is comparable or not, multiple secretions were ex-

tracted from a subset of patients. Figure 4.12 shows the lipid and protein composition and

the corresponding images from two sets of samples collected from two different subjects.

Despite only a limited portion of the secretion samples was measured, the data provide

an indicative measure of the overall sample composition. In this case, sample 46 contains

more overall protein than sample 45. The location of the Meibomian gland the secretion

is extracted from does not affect the result dramatically, as there is, from this set of data,

as much variability within the same secretion as there is between neighboring secretions.

Further analysis with additional patients would elucidate clearer trends.
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Figure 4.12: Meibum composition analysis of secretions from the left eye (OS), and the nasal
(N), central (C), and temporal (T) parts of the right eye (OD), for two different subjects
(number 45 and number 46). Image size ∼ 82 µm.

4.4 Concluding remarks

Given all the acquired data and a robust image processing stream, further analysis will unveil

trends that might (or might not) be correlated to the severity of dry eye disease. Parameters

to consider in the analysis include:

1. Lipid and protein fraction contribution to each individual stack.

2. Morphological parameters of the sample (number of angular protein blocks, size of lipid

globules, etc.)

3. Composition variability within secretions.

4. Composition variability across secretions from different Meibomian glands of the same

patient.

86



Once the morphological and compositional properties of the meibum secretions are specified,

we suggest to explore correlations with the clinical data by means of linear regression or more

sophisticated statistical techniques.

We have build a solid data analysis infrastructure capable of systematic quantification of

meibum secretions, based on coherent Raman scattering imaging of the CH stretching moi-

eties of the samples and batch-level multivariate analysis coupled to machine learning classifi-

cation. Further analysis of the acquired data together with the clinical evaluations performed

by the doctors could provide valuable information on the understanding of dry eye disease

progression. A basic understanding of the biochemical changes occurring during the develop-

ment of dry eye disease may stimulate new diagnostic protocols and strategies for potential

alleviation methods of this irritating eye disease.
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Chapter 5

Lipid accumulation as a hallmark for

disease

Disruption of lipid homeostasis may result in excessive intracellular lipid accumulation. Cells

control excessive lipid content by packing lipids it into dedicated droplets that initially pro-

tects against cytotoxicity. However, over-accumulation has negative consequences to human

health. Spaceflight-induced alterations affects numerous organ systems in the body, including

the lipid liver metabolism, which remains unexplored. Raman microspectroscopy combined

with metabolomics and transcriptomics analysis were used to investigate altered hepatic lipid

metabolism on mice that reside aboard a space shuttle. Early signs of liver injury were found

in the form of increased lipid droplet accumulation and retinol loss in the spaceflight mice,

which raise concern that long-duration spacial travels may increase the risk for nonalcoholic

fatty liver disease. Atherosclerosis is also characterized by lipid accumulation. Macrophages,

scavenger cells in atherosclerotic lesions, exhibit a variety of polarization states that influence

their ability to handle lipid. Macrophage’s lipid accumulation was quantified by coherent

Raman scattering microscopy combined with machine learning segmentation algorithms. We

found that pro-inflammatory macrophages have a tendency to become foam cells upon stim-
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ulation with excess lipid, while pro-healing macrophages tend to remain lean, despite not

being fully resistant to become lipid-laden cells.

5.1 Spaceflight activates lipotoxic pathways in the liver

This work has been published in the following paper:

Jonscher, K. R., Alfonso Garcia, A., Suhalim, J. L., Orlicky, D. J., Potma, E. O., Ferguson,

V. L., et al. (2016). Spaceflight Activates Lipotoxic Pathways in Mouse Liver. PLoS ONE,

11(4), e0152877.

5.1.1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is characterized by the over-accumulation of lipids

in form of lipid droplets in the liver cells. On Earth, although still unclear, some of the

possible causes of NAFLD include obesity and diabetes17. NAFLD however, could also be a

systemic effect of microgravity and other spaceflight environment factors such as radiation

and oxidative stress135,136.

Spaceflight conditions alter regular body activity as we know it. In times when space journeys

are longer (NASA’s one-year mission i), projected to go further (journeys to Mars ii), and

not only limited to professional astronauts (Virgin Galactic iii, and Space Adventures iv),

knowledge of body reactions to the space environment gains particular importance. Scientists

are studying the effects of microgravity on bone and muscle, as well as in the brain and on

cardiovascular function137–139. Of particular interest to us are the effects of microgravity on

ihttps://www.nasa.gov/content/one-year-crew
iihttp://www.mars-one.com/, http://mars.nasa.gov/programmissions/science/goal4/
iiihttp://www.virgingalactic.com/
ivhttp://www.spaceadventures.com/
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hepatic energy and lipid metabolism. The importance of finding how hepatic function is

altered as a result of spaceflights lies in the relevant role of the liver in orchestrating gross-

metabolism. It has been shown that NAFLD increases the risk for further pathologies such

as cardiovascular problems, type-2 diabetes, and hepatocellular cancer140.

In collaboration with Dr. Karen Jonscher from the University of Colorado School of Medicine

and her colleagues, we participated in a novel systems biology approach to address functional

liver changes in mice aboard the space transportation system STS-135 during 13 days, on the

last US space shuttle mission, launched on July 8, 2011. The full study comprises data from a

variety of techniques, featuring transcriptomics, metabolomics, liquid chromatography/mass

spectroscopy, gas chromatography/mass spectroscopy, pathway analysis, microscopy (CARS,

SRS, SHG, TPEF, immunohistochemistry), and Raman spectroscopy.

5.1.2 Experimental details

Two groups of 15 nine-week old weight-matched female C57BL/6J mice were considered for

the experiment. Both groups of mice were placed in animal enclosure modules (AEM). One

group, referred to as FLT, was then brought to the Space Shuttle Atlantis (STS-135) for 13.5

days, while the other, referred to as AEM, was kept at the Space Life Sciences Laboratory

(SLSL) at the Kennedy Space Center. Both groups were given the same diet, based on

NASA NuRFB foodbars141. Ground control (AEM) mice were kept under environmental

conditions that mimic those of the flight group as much as possible (temperature, humidity,

light:dark cycle, food and water intake).

Mice of both groups were weighted before and after the journey, and euthanized after the

return of the flight group. Mice tissues were then distributed between different research

groups. We received half livers from 6 mice in each group that had been dissected, flash

frozen in liquid nitrogen, and fixed. For the microscopy studies, liver cryosections of ∼ 12
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AEM FLT FLT/AEM p-value
Food intake (g) 4.08±0.10 4.09±0.18 1.00 0.865
∆ Body Mass (g) -1.18±0.24 -2.28±0.57 1.93 0.036 (*)
∆ % Fat 4.12±0.77 5.05±1.84 1.22 0.022 (*)

Table 5.1: Food intake and body composition measurements for AEM controls and FLT
mice. Values presented are mean ± SEM. p-values obtained with a two-tailed Student’s
t-test, * for p<0.05. Data from n=6 mice per group.

µm thickness were placed on microscope slides, rinsed with cold phosphate-buffered saline

(PBS) to remove Optimal Cutting Temperature (OCT) solution v (used to prepare the

samples) and sandwiched with a thin coverslip.

5.1.3 Results and discussion

Both mice groups lost weight over the course of thirteen days, but the flight (FLT) group

lost double the amount of weight than the ground controls (AEM). A larger weight loss

in the flight group was expected as astronauts also lose body weight on their trips due to

muscle atrophy137. Interestingly, the fat mass of both groups was not significantly different.

Instead, the lean body mass was accounted for the weight difference between the two groups.

Overall, this makes the flight group of mice have a significantly larger percentage of body

fat. Table 5.1 summarizes the weights of food intake, body mass increment, and percentage

fat increment for each mice group during the length of the experiment.

Because liver is an important player for metabolic processing of excess lipid, our task was to

study its appearance in CARS microscopy. FLT mice livers had more lipid droplets (LDs)

than ground controls, as illustrated in figure 5.1. The overall CARS signal intensity from

FLT mice livers was about 3.5 higher than that of the AEM control group. Accordingly,

spaceflight mice showed increased levels of triglycerides, as measured by colorimetric assays,

vOCT contains polyvinyl alcohol (PVA), which has a strong Raman mode at ∼ 2912 cm−1 that interferes
with the CH stretching signal from the samples.
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Figure 5.1: Spaceflight mice have increased accumulation of hepatic lipid droplets. Frozen
liver cryosections were imaged by CARS at 60x magnification. Representative images are
shown from 3 different animals in each group. Images form the AEM ground control group
are in the top panel, and from FLT mice in the bottom panel. Multiple regions were images
from 2 cryosections taken at different tissue depth per animal. Images were processed using
ImageJ and integrated pixel intensity measured for each unit area. A Mann-Whitney test
was used to compare integrated intensity values between groups. *** p < 0.001.

and indicated by triglyceride biosyntheic pathways up-regulation. These test indicate a shift

in the balance between lipid synthesis and oxidation. Increased lipid storage is likely to

protect against the excess lipid.

In addition to the increased abundance of lipid droplets in the flight mice, we studied whether

the composition of the droplets would also differ between the two groups. We used sponta-

neous Raman spectroscopy to probe individual lipid droplets first, and hyperspectral SRS

to investigate larger areas of the liver containing multiple lipid droplets. We did not observe

significant differences in the smaller LDs, but we did find a significant variation in a fraction

of the largest LDs. While the typical lipid indicators remained unchanged in both groups,

a peak at 1593 cm−1 was not present in all LDs of the flight cohort. Figure 5.2, panel A,

shows an SRS image at ∼1593cm−1 of a ground mice (AEM) liver section with bright lipid

droplets. In contrast, the spaceflight mice (FLT) image (figure 5.2 panel C), excited at the

same frequency, exhibits lipid droplets with lower intensity, almost near the background in-

tensity level. When imaged at 2845cm−1, liver sections of both ground and spaceflight groups
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display intense and well defined lipid droplets, figure 5.2 panels B and D, respectively. The

reconstructed Raman spectra, from the hsSRS images (Figure 5.2 E - red curves) confirm

this discrepancy in the vicinity of the 1593 cm−1 peak. The C=C stretching mode at 1660

cm−1, characteristic of unsaturated lipids, as well as the C-H stretching band (2800-3050

cm−1) appear almost identical for both groups. Table 5.2 shows the relevant vibrational

modes and their molecular assignments. Additional spontaneous confocal Raman spectra

(Figure 5.2 E - black curves) confirms the similarities throughout the entire spectral span

examined (from 1400 to 3100 cm−1). The notable difference between the Raman spectra of

both groups is the lack of the 1593 cm−1 peak in the spaceflight mice, which closely matches

the spectral differences seen in the hsSRS images.

The only noticeable difference in composition of mice exposed to microgravity was in the

1593 cm−1 peak, which was assigned to retinoids (figure 5.3). Retinol is a dietary fatty

acid with conjugated C=C double bonds, present in the mice diet (NuRFB foodbars). The

strong resonance of retinol’s conjugated double bond system overwhelms other Raman con-

tributions. Thus retinol has a negligible effect on the CH bands, not affecting the 3010 cm−1

peak (=C-H), and hence the saturation ratio (I3010/I2845), which doesn’t change from one

group to the other.

The liver is the largest storage of retinol in the body. Specifically, 80% of the total retinoids

in the whole body, which comprises vitamin A and its metabolites, are stored in lipid droplets

in hepatic stellate cells (HSC), in form of retinyl esters142. We observe a loss of retinoids in

the spaceflight mice livers, which might be a sign of HSC activation, perhaps initiated by the

exposure to the stress associated to the space environment. Metabolomics and transcriptomic

studies made on these same samples showed changes in the FLT livers that suggest the

activation of lipid metabolism pathways such as the PPAR-α pathway. Retinoids released

from activated HSC trigger transcriptional programs mediated by nuclear receptors that are

relevant to these lipid metabolic pathways142.
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Figure 5.2: Lipid droplets in spaceflight mouse liver have reduced retinol content. Space
flight mice may lack retinol. Stimulated Raman scattering (SRS) images of liver sections
revealed a decreased intensity of the embedded lipid droplets at ∼ 1593cm−1 for spaceflight
mice (FLT, image c) with respect to ground mice (AEM, image a), and show no difference
at 2845cm−1 (images b and d), the CH2 symmetric stretching band characteristic of lipids.
Hyperspectral SRS imaging around the two frequencies of interest unveil a quasi-identical
spectra of the lipid droplets of the two mouse groups, except for the peak at ∼ 1593cm−1

(red curves). Spontaneous Raman spectra (black curves) agree with the SRS results.
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Figure 5.3: Raman spectrum and molecular structure of retinol.
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Raman shift (cm−1) Molecular vibration
1440 Lipid/protein, CH deformation
1593 Retinol, conjugated C=C stretch
1660 Lipids, C=C stretching band
2845 Lipids, CH2 symmetric stretch
2885 Lipids, CH2 asymmetric stretch
2950 Lipid/protein, CH3 stretch
3010 Lipid, =CH stretched

Table 5.2: Raman shifts and associated molecular vibrations143–145.

5.1.4 Concluding remarks

Spaceflight mice lost a significant amount of lean body mass, compared to the ground con-

trols, which is consistent with human studies on spaceflight journeys or bed rest137. As a

consequence, the total percentage of fat in the mice body increased, and so did the total

amount of hepatic triglycerides. Indeed, more lipid droplets were found in the spaceflight

livers by CARS imaging, which was in agreement with the upregulation of genes involved in

triglyceride biosynthesis. The Raman analysis of lipid droplet composition points towards

potential initiation of hepatic stellate cell (HSC) activation induced by spaceflight factors.

Spontaneous confocal Raman of individual lipid droplets, and hyperspectral SRS imaging of

larger areas, showed a notable difference between spaceflight and ground control livers at the

band assigned to the vibration of conjugated C=C double bonds (∼ 1953 cm−1), a Raman

mode indicative of retinol esters, which are densely packed into lipid droplets of the HSC in

the liver under regular physiological conditions. HSC release retinoids upon activation that

affect other metabolic pathways, which were also found to be altered in the spaceflight mice,

such as a high upregulation of the PPAR-α pathway that plays an important role in lipid

metabolism as it is involved in fatty acid uptake, mitochondrial β-oxidation, triglyceride

turnover, and bile synthesis/secretion, among others. All these symptoms may ultimately

lead to NAFLD146,147.

This study exemplifies the potential of CRS imaging as a visualization partner to omic
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studies, including genomics, proteomics, and metabolomics. The consequences of certain

gene activation or metabolic pathways, up- or downregulated, have visible effects that can

be monitored by CRS microspectroscopy. In particular, CRS microscopy has the ability of

interrogating large areas at rapid rates, useful not only for morphological inspection, but also

for fast chemical imaging of multiple structures simultaneously. In this case, information from

multiple lipid droplets was acquired in a single SRS hyperstack image, compared to multiple

single measurements taken on individual lipid droplets by confocal Raman spectroscopy.

Confocal Raman is particularly useful as a first inspection tool to identify possible markers

of interest. Once these have been identified, CRS microspectroscopy offers a high-throughput

analysis tool with spatio-chemical resolution.

5.2 Lipid accumulation patterns in polarized macrophages

5.2.1 Introduction

Macrophages, atherosclerosis scavengers

Atherosclerosis is a chronic inflammatory disease that also revolves around abnormal accu-

mulation of fat. It is characterized by the interaction of lipoproteins, the immune system,

and the arterial wall. As a result, lipid-rich plaques grow into the arterial lumen. These

plaques often remain stable, but some may eventually rupture and form thrombosis, leading

to myocardial infarction or stroke148.

Plaque starts forming when low-density lipoproteins (LDL), circulating within the blood

stream, traverse the vessel wall in susceptible regions of the endothelium. Once in the

sub-endothelial space, LDL particles are retained and modified into oxidized LDL (oxLDL)

particles149,150. The presence of the modified lipoproteins triggers an inflammatory reaction,
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to which the immune system responds by recruiting monocytes at the lesion site. The re-

cruited monocytes adhere to the endothelium and also migrate through it, into the vessel

intima, where they differentiate into macrophages that uptake the modified lipoproteins,

and eventually become foam cells151,152. Depending upon the biological mediators present

within the plaques milieu, different macrophage phenotypes arise, generating a heteroge-

neous macrophage population. At one end of this spectrum, in the first line of defense,

macrophages exposed to inflammatory signals polarize towards a classically activated, in-

flammatory phenotype (M1) and secrete proinflammatory cytokines and reactive species. At

the opposite end of the spectrum, macrophages present within a wound healing environ-

ment polarize towards an alternatively activated, prohealing phenotype (M2) and facilitate

processes involved in tissue repair153–155. Even though being a simplified approach, the clas-

sification of macrophages as either M1 or M2 is used as a paradigm to study their role in

the pathogenesis of atherosclerosis148,151,156. It is believed that proinflammatory cells uptake

massive amounts of oxLDL, and rapidly become foam cells promoting inflammation, while

prohealing macrophages play an atheroprotective role149,150,157.

The cytokines macrophages are in contact with in the plaque microenvironment determine

the cells’ polarization state. Currently, it is widely accepted that T-helper 1 (Th1) cytokines,

such as interferon-γ (IFN-γ) and interleukin-1β (IL-1β) promote differentiation of monocytes

into proinflammatory M1 macrophages, whereas Th2 cytokines, such as interleukin-4 (IL-4)

and IL-13, polarize monocytes into prohealing M2 macrophages156. Additionally, within the

plaque environment there are other inflammatory mediators, like the bacterial endotoxin

lipopolysaccharide (LPS), which has also been linked to a macrophage proinflammatory

response151,152,158.
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Lipid accumulation patterns in polarized macrophages

Studies examining how the polarization state of macrophages influence their ability to handle

lipids within plaques or in vitro yielded varied results. It is conventional wisdom that proin-

flammatory macrophages accumulate more lipid droplets and more readily transform into

foam cells compared to prohealing macrophages159. Recently, however, this picture has been

contested by several studies that have shown that pro-healing macrophages have a higher

propensity to become lipid-laden cells160–162. Moreover, foam cells within atherosclerotic

plaques have been shown to exhibit a mixture of surface markers of both phenotypes163,164.

These conflicting observations have prevented a cohesive understanding of the correlation

between macrophage polarization and intracellular lipid content. To address this question, a

more thorough and systematic investigation of how different polarization conditions influence

lipid uptake is necessary.

Standard methods to evaluate lipid accumulation in cells include biochemical assays and

imaging techniques. Biochemical assays work well for quantification of intracellular lipid

content165–167, but lack the spatial resolution needed to identify cell-to-cell variation. Con-

versely, imaging stains such as Oil Red O provide spatial resolution26, but lack chemical

selectivity and may produce labeling artifacts, which prove problematic when quantitative

accuracy is desired30,50,168.

Nonlinear vibrational microscopy, on the other hand, is a label-free method that generates

chemical contrast74. Nonlinear Raman microscopy, including coherent anti-Stokes Raman

scattering (CARS), is particularly useful for quantitative lipid analysis because of its fast

imaging capability64, important when collecting statistically meaningful data from a large

number of cells. CARS microscopy has been used successfully in quantitative analysis of

lipids in cells169, atherosclerotic plaques115,170, and even entire organisms76.

Using label-free CARS microscopy and machine learning-based lipid analysis, we estab-
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lish a relation between macrophage polarization and lipid accumulation. The automated

tools enable the imaging and lipid analysis of more than 4000 cells, providing statisti-

cally meaningful relations between macrophage phenotype and intracellular lipid content.

We find that macrophages stimulated with interferon-γ (IFN-γ) and lipopolysaccharide

(LPS), which induce a pro-inflammatory phenotype, accumulate more lipid droplets and

more readily become foam cells when compared to macrophages treated with interleukin-4

(IL-4) and interleukin-13 (IL-13), which induce a pro-healing phenotype. Furthermore, pro-

inflammatory macrophages accumulate more lipid droplets the longer they are in contact

with a lipid-rich medium. However, we also find that pro-healing macrophages are not fully

resistant to becoming foam cells, as a considerable fraction of cells treated with pro-healing

polarizing cytokines also accumulate significant amount of lipid droplets. Additionally, we

determine that LPS is a key factor in lipid accumulation, and pre-treatment with LPS in-

duces an increase in lipid droplets in all macrophage subtypes.

5.2.2 Experimental details

Cell culture

Mouse bone marrow-derived macrophages (BMDM) were isolated from femurs of female,

6-12 week old C57BL/6J mice and cultured as described171, in medium containing 10% fetal

bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin, and 10% media conditioned by

Ltk-cells expressing recombinant MCSF ectopically. On day 7, 3x105 BMDMs were seeded on

glass coverslips. The following day, cells were transferred to similar media containing either

lipoprotein-depleted bovine serum (LPDS; Alfa Aesar) or normal fetal bovine serum (FBS)

and then stimulated with cytokines. Lipopolysaccharides (LPS; Sigma) and interferon-γ

(IFN-γ; R&D) were used at 10 ng/ml, and IL-4 and IL-13 (Biolegend) were used at 20

ng/ml. After 24 hours of cytokine stimulation, media was replaced (with lipoprotein-depleted
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Phenotype (cytokines) Diets Time Points
M0 (none) FBS (+ control) 0 hours
M1 (IFN-γ + LPS) LPDS (- control) 24 hours
M2 (IL-4 + IL-13) oxLDL (at 20, 40, 100 µg/mL) 48 hours

Table 5.3: Combinations of these macrophges’ polarization, diet, and culture time make the
groups considered for this experiment.

serum (LPDS) or normal media, per the experimental condition, Table 5.3) and cells were

exposed to 0, 20, or 40 µg/ml oxidized human low-density lipoprotein (oxLDL; Alfa Aesar)

for the remaining duration of the experiment. Cells were fixed at each time point of the lipid

accumulation experiments in 10% neutral buffered formalin for 15 minutes and kept in PBS

at 4◦C until CARS imaging.

CARS imaging

The CARS microscope was set to excite the CH2 symmetric stretching mode (at 2845 cm−1),

abundant in lipid molecules. Images were taken with a 60x 1.2NA water immersion objective

lens (UPlanSApo, Olympus), which allowed for a crisp visualization of the small lipid droplets

that macrophages might accumulate in their cytoplasm upon treatment. The pixel size was

set to 0.15 µm. Ten to twelve images were taken for every group (see table 5.3). Macrophages

from at least three mice per group were independently imaged.

Image processing

Identifying correlations between macrophage phenotype and lipid accumulation requires

imaging and analyzing a large number of cells. High throughput imaging benefits from

automated analysis that reduces imaging processing time, and human errors. In order to

analyze the lipid handling behavior of the different macrophages subsets, we counted the

number of lipid droplets that macrophages accumulate over the course of hours immerse in
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Figure 5.4: Experiment pipeline. Culture the cells, image them under the CRS microscope
and process the raw CARS images with the machine learning based algorithm that identifies
and segments the lipid droplets in each individual cell.

lipid-rich media. Thresholding-based segmentation algorithms are appropriate to quantify

lipid droplets, identified as bright blobs on a dark background. Because global thresholding

algorithms perform poorly with CARS images108, and watershed segmentation113 delivers

an inaccurate output if used alone, local thresholding methods are preferred108,109. Other

segmentation techniques include maximum entropy thresholding, which provide successful

automatic segmentation112. Here we use an alternative approach based on machine learn-

ing classification to identify lipid droplets. We combine watershed segmentation with local

thresholding to identify lipid droplet candidates. We then train a classifier based on a series

of lipid droplet features (see table 3.1) and finally, with additional cell segmentation, we

obtain the number of lipid droplets in each cell. Over 4000 cells were imaged and analyzed

in total. Additional details on the machine-learning segmentation of lipid droplets can be

found in chapter 3 and it is summarized in figure 5.4.
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Statistical analysis

All the experiments were independently performed with cells derived from three differ-

ent mice in each experimental condition. The average number of lipid droplets for every

macrophage phenotype studied was computed for each mouse. Here we present the average

over three mice ± standard error of the mean ( SEM)., and the probability density distri-

bution of the number of lipid droplets over the entire population of cells imaged. Statistical

differences between two groups was computed by the Student’s t-test, and between multiple

groups using analysis of variance (ANOVA). Differences were considered significant when p

< 0.05.

5.2.3 Results

Macrophage polarization influences the accumulation of lipid droplets

We examined lipid accumulation using CARS imaging of macrophages induced towards a

pro-inflammatory (M1) or pro-healing (M2) phenotype by cytokine stimulation, and found

that macrophages of different phenotypes accumulate significantly different amounts of lipid.

Cells were stimulated with cytokines to induce polarization, cultured within a lipoprotein

deficient serum (LPDS), and then treated with oxidized low-density lipoprotein (oxLDL) for

24 hours. We found that cells polarized with LPS and IFN-γ, which induce a proinflamma-

tory phenotype, accumulated significantly more lipid when compared to cells polarized with

IL-4 and IL-13, prohealing phenotype, and to those left unpolarized. Images of macrophages

containing lipid droplets were quantified using the machine learning-based segmentation al-

gorithm, previously described (see figure 5.4). Figures 5.5 A-C show a representative example

of a CARS image for each macrophage polarization culture. Note how the signal from the

lipid droplets in pro-inflammatory cells (panel A) overwhelms the cytoplasm background.
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The brightness and contrast of panels B and C was altered to make the cytoplasm visible,

given the lack of lipid droplet signal in pro-healing and unpolarized macrophages. Figure 5.5

D shows the average number of lipid droplets in each culture of macrophages treated with

oxLDL for 24 hours.

Indeed, proinflammatory macrophages significantly store more lipid droplets (54.1±6.3) than

prohealing (12.0±0.3) and unpolarized (7.0±1.9) macrophages. The probability density dis-

tribution of the number of lipid droplets accumulated by each group is depicted in figure 5.5

F. This further shows how unpolarized macrophages (n = 187) rarely contain lipid droplets,

as the probability to find zero droplets in them is the highest and rapidly decays, nearing

zero for over 20 lipid droplets. For prohealing macrophages (n = 155), the probability of zero

droplets is also dominant, but it is less intense. The probability to find over 20 lipid droplets

in a cell is also very low, but it sustains at similar values until over 120 lipid droplets. Finally,

proinflammatory macrophages (n = 99) have a wide distribution of probabilities that ranges

form zero to over 200 lipid droplets detected in individual cells.

Similar trends were observed when cells were treated with FBS-containing culture medium,

or lipoprotein deficient serum only (figure 5.6). In the FBS cultures, proinflammatory

macrophages (with a total of 191 individual cells binned across 3 different mice) accumu-

late an average of 47.9±12.1 LDs over 24 hours culture, and 43.2±4.1 LDs over 48 hours.

Prohealing macrophages (a total of 208 from 4 different mice) have a significantly lower ac-

cumulation rate, 7.7±5.6 LDs over a 24 hour period, and 1.4±1.0 LDs after 48 hours. The

accumulation by unpolarized cells (337 cells from 4 different mice) is insignificant, it amounts

to 0.14±0.06 LDs after 24 hours and 0.30±0.12 LDs after 48 hours. Again, macrophages

in LDPS cultures exhibit the same overall behavior. Pro-inflammatory macrophages (363

cells in 5 different mice) accumulate on average 37.1±9.4 LDs in 24 hours LPDS culture,

and 43.0±8.3 LDs in 48 hours LPDS cultures. Prohealing macrophages (225 cells from 5

mice) reported a minimal accumulation of 0.9±0.2 LDs after 24 hours and 1.5±0.9 LDs after
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Figure 5.5: Accumulation of LDs by polarized macrophages in oxLDL. A) Coherent anti-
Stokes Raman scattering (CARS) image of proinflammatory macrophages treated with INF-γ
and LPS. B) CARS image of pro-healing macrophages treated with IL-4 and IL-13. C) CARS
image of unpolarized macrophages. Scale bar = 25 µm. D) Average number of lipid droplets
per cell for each macrophage group when cultured with oxLDL during 24 hours. *p<0.05. E)
Probability density estimate of the number of lipid droplets for every macrophage phenotype.
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Figure 5.6: Average number of lipid droplets per cell for each macrophage group when
cultured in A) FBS and B) LPDS, during 24 hours (filled bard) and 48 hours (stripe bars).
*p<0.05.

48 hours. Similarly, unpolarized macrophages accumulate 0.6±0.1 LDs after 24 hours and

2.5±1.7 LDs after 48 hours.

The average lipid droplet size was ∼ 1.5 µm and it was found to remain invariable among

the different groups.

Culture independent lipid accumulation and foam cell transformation

In response to a lipid-rich environment, macrophages are capable of transforming into foam

cells, a key development in atheroprogression172. Despite their general resistance to lipid

accumulation, a fraction of pro-healing macrophages accumulate significantly more lipid

droplets than the majority of the population (Figure 5.7A and B), when additionally treated

with oxidized oxLDL. Due to a lack of a quantitative definition for foam cells, we define a

foam cell rate (FCR) as:

FCR =
number of cells above TH

total number of cells
· 100 (5.1)
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where TH is the threshold number of intracellular lipid droplets within the cell. This aims

to quantify the amount of cells that appear as foamy in a given population.

Figure 5.7 shows CARS images of foam cells in a proinflammatory culture (panel A), and a

pro-healing culture (panel B, arrow). The FCR for cells treated with M1-inducing cytokines

is consistently higher at all threshold values when compared to the FCR for cells treated with

cytokines that induce M2-macrophages, which in turn had a higher FCR than unpolarized

cells (Figure 5.7 panel C). Interestingly, we also observed differences in the FCR over time.

The foam cell rate of cells treated with M1 cytokines increased between 24-48 hours after

the addition of lipids, whereas for cells treated with M2 cytokines FRC did not change, and

for unpolarized cells it was reduced during this period of time.

The duration of the oxLDL exposure influences lipid droplet accumulation

We next examined the changes in lipid droplet accumulation over a longer duration of oxLDL

exposure. With increasing time of exposure to oxLDL from 0 to 48 hours, the extent of lipid

droplet accumulation in macrophages treated with IFN-γ and LPS concomitantly increased

(see figure 5.8A-C, and the widening blue curve in D). In contrast, the amount of lipid

droplets in macrophages treated with IL-4 and IL-13 remained constant from 24 to 48 hours

after treatment, but it was larger than at time zero (figure figure 5.8 D, green curve). Finally,

the number of lipid droplets in unpolarized macrophages is reduced with incubation time

(figure 5.8 D orange curve). Before being fed oxLDL, macrophages treated with IL-4/IL-13

or untreated macrophages were likely to have 0 to 20 lipid droplets; however when treated

with additional oxLDL, macrophages treated with IL-4/IL13 develop more lipid droplets,

with a significant portion of cells exhibiting 50 to 100 lipid droplets. On the other hand,

pro-inflammatory macrophages may contain up to 100 lipid droplets prior to the addition of

oxLDL. Over time this distribution widens, showing that these cells store more lipid droplets

the longer they are exposed to an oxLDL-enriched medium.
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Figure 5.7: Foam cell form upon oxLDL stimulation regardless of polarization state. A)
CARS image of foam cells in macrophages stimulated with IFN-γ and LPS. B) CARS image
of a foam cell in macrophages stimulated with IL-4 and IL-13 (arrowhead). Scale bar = 25
µm. C) Foam cell rate, or percentage of cells above threshold, found in IFN-γ/LPS, IL-
4/IL-13, and untreated macrophages cultured with oxLDL after 24 hours (solid lines) and
48 hours (dashed lines).
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Lipopolysaccharide is a major factor that determines lipid droplet accumulation

Lipopolysaccharide (LPS), an endotoxin found in gram-negative bacteria, is known to have

potent inflammatory effects158. In order to test the impact of LPS on intracellular lipid ac-

cumulation, we treated the cells with different combinations of cytokines, with and without

LPS. We found that macrophages treated only with IFN-γ, which independently leads to

a pro-inflammatory phenotype, accumulate less lipid droplets than those additionally cul-

tured with LPS (figure 5.9). Macrophages treated with IL-4/IL-13, also showed an increase

in the number of their intracellular lipid droplets when additionally stimulated with LPS.

Macrophages solely treated with LPS develop significantly more lipid droplets than those

treated with no polarization factors at all, suggesting that LPS may have a dominant effect

on how cells handle lipids.

Furthermore, increasing the concentration of IFN-γ led to a correlated increase in the number

of lipid droplets accumulated by the macrophages (figure 5.10). Together, these observations

suggest that the specific diet and amount of cytokine stimulation play important roles in

regulating the amount of lipid accumulation in macrophages, and that indeed the plaque’s

micro-environment ultimately dictates the evolution of macrophage phenotype.

5.2.4 Discussion

CARS combined with machine learning asses lipid accumulation patterns

Macrophages conduct critical functions in the progression of atherosclerosis151. It remains

controversial, however, how macrophage subtypes respond to the lipid-rich matrix of the

developing plaque. A common trait of plaques is the abundance of foam cells: macrophages

with a high content of lipids, in the form of cytosolic lipid droplets. The ability of each

macrophage subtype to accumulate lipid may constitute a differentiating parameter between
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phenotypes. In this study, we used vibrational microscopy together with machine learning-

based segmentation to detect and quantify lipid droplets in prohealing and proinflammatory

macrophages subtypes. CARS offers an imaging method that is label-free, chemically se-

lective and fast enough to screen thousands of cells in a realistic amount of time. Machine

learning-based segmentation automates the recognition of such lipid droplets and speeds up

the analysis process significantly.

We examined cytosolic lipid droplet accumulation in macrophages under a set of culture con-

ditions that aim to simplify the environment these cells encounter in atheroma. We focused

on the differentiation factors and biological mediators (e.g. oxLDL, cytokines, endotoxins),

leaving aside interactions with other cell types (e.g. endothelial cells and smooth muscle

cells), and extra cellular matrix elements. We found that although proinflammatory cells

accumulate more lipid droplets than prohealing cells, the latter are also capable of becoming

foam cells.

Proinflammatory macrophages accumulate more lipid than prohealing macrophages

Macrophages stimulated with proinflammatory mediators interferon-γ (IFN-γ) and lipopolysac-

charides (LPS), the so-called proinflammatory macrophages, accumulate more lipid droplets

than any other tested macrophage subtype. We found that proinflammatory cells accumulate

significant amounts of lipid droplets when grown in regular medium based on fetal bovine

serum (FBS; figure 5.6 A), when exposed to high lipid levels (media containing oxidized

low-density lipoproteins (oxLDL); figure 5.5), and even when starved in lipoprotein-deficient

serum (LPDS; figure 5.6 B). These diets are posterior to the differentiation period, in which

the cells are cultured with FBS containing media. Note that standard FBS medium contains

appreciable quantities of lipids. On the other hand, unpolarized and prohealing macrophages,

those stimulated with interleukin 4 (IL4) and interleukin 13 (IL13), show only a slight in-

crease in lipid droplet accumulation when grown in a oxLDL-rich medium compared to
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basal medium. The latter subtypes seem to exhaust previously accumulated lipid pools

when starved in a lipid-poor medium. These results are in agreement with the observa-

tion of Chinetti-Gbaguidi et al. and support the traditional belief that proinflammatory

macrophages accumulate more lipid droplets than prohealing macrophages159.

Foam cell formation in pro-healing macrophages

Given the lack of a quantitative definition for foam cell, we adopt a quote by Libby et al., who

state that foam cell is a term that reflects the microscopic appearance of these lipid-laden

macrophages172, and extrapolate Schaffners approach, who distinguish them as large, round,

markedly vacuolated cells173, to any kind of shape and heavily vacuolated macrophages.

A subset of the prohealing macrophage population shows an accentuated increase in lipid

droplets that may qualify them as foam cells (figure 5.7). It is unknown whether these cells

keep their prohealing phenotype and what triggers the mechanisms to store higher amounts

of lipids. Macrophages are extremely plastic and can switch phenotype, making it possible for

prohealing macrophages to transform into proinflammatory cells174,175, which then become

foam cells. This event may have a low probability and thus happen only rarely, affecting only

a sub-section of the population of prohealing cells. We suggest performing an experiment

with fluorescent markers for inflammatory cues and simultaneously imaging with CARS and

TPEF to identify the phenotype of foam cells encountered in prohealing cultures.

Proinflammatory and prohealing macrophages have different lipid accumulation

rates

Proinflammatory and prohealing macrophages also differ in their ability to accumulate lipid

over time. While proinflammatory macrophages show an increased reservoir of lipid droplets

the longer they are exposed to oxLDL-enriched media, there is no such evidence for pro-
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healing macrophages (figure 5.8). Additionally, proinflammatory macrophages fed simply

with FBS or with LPDS do not show a significant difference on lipid droplet accumulation

over the studied period of time. This fact may indicate that proinflammatory macrophages

exacerbate their proinflammatory behavior in the presence of oxLDL. Collecting more and

more lipid droplets over time may increase their probability of becoming foam cells. In these

terms, proinflammatory macrophages seem to be a major force in arresting lesion progression.

However, how this exactly translates to atheroprogression remains to be investigated.

Lipopolysaccharides have a synergetic effect on the accumulation of lipid droplets

Lipopolysaccharides (LPS) have been reported as proinflammatory mediators of atheroscle-

rosis158. We altered the LPS content on the differentiation factors with the aim of iden-

tifying whether LPS has any impact on the number of accumulated lipid droplets in each

macrophage subtype. By removing LPS from the proinflammatory mediators, and adding

it to the prohealing mediators and the unpolarized subset of macrophages, we found that

LPS has indeed an inflammatory effect (figure 5.9). The trend points to larger accumula-

tion of lipid droplets when LPS is present in the differentiation factors used to obtain any

of the macrophage phenotypes. Interestingly, macrophages stimulated only with IFN-γ or

only with LPS accumulate less lipid droplets than when these two mediators are combined.

Similarly, when LPS is combined with IL4 and IL13, the cells also show an enhanced capa-

bility of gathering cytosolic lipid droplets. Summarizing, a differentiation strategy based on

LPS combined with either group of cytokines produces macrophages more apt to accumulate

lipids. This might indicate a synergetic effect between the cytokines and the endotoxin.
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5.2.5 Concluding remarks

We have seen a different behavior from different macrophage phenotypes, but we also ob-

serve, quite systematically, that a subpopulation of the prohealing cohort have similar lipid

accumulation outcomes to proinflammatory cells when stimulated with oxLDL. There is

much controversy in the literature as to how these different macrophage phenotypes react to

lipid excess. This response is important for understanding the progression of atherosclerosis,

and other diseases, and to be able to combat them efficiently.

The plaque micro-environment contains a cocktail of cytokines and messenger mediators that

will determine the fate of the recruited monocytes. But this is not a static environment, the

concentration of proinflammatory and prohealing cues changes constantly. In addition, what

we call proinflmmatory macrophages and prohealing macrophages are only the extremes

of a continuum of macrophage subtypes with slightly different functions and properties.

Moreover, these macrophages exhibit high degrees of plasticity156, a single cell can switch

from one state to another given the adequate conditions.

As early as 1999, proinflammatory macrophages (M1) were detected in human plaque176. By

2007, prohealing macrophages (M2) were also part of the plaque landscape177, but they were

identified to occupy a different area within plaque than the foamy M1 cells. Between 2011

and 2012, several contradicting reports discussed the role and characteristics of M1 and M2

within plaque. To name a few, Chinetti-Gbaguidi et al. found that M1 cells stored more and

larger lipid droplets, while M2 cells had defective cholesterol efflux, but an increased content

of cholesterol esters, and that these were less likely to become foam cells159. Van Tits et al.

in 2011, on the other hand, brought evidence that M2 macrophages were more susceptible

to foam cell formation than M1, showing that oxLDL render M2 cells proinflammtory162. In

2012, Finn et al. claimed that M2 macrophages uptake oxLDL but fail to produce cholesteryl

esters, have an increased cholesterol efflux, and thus do not become foam cells178. Another
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example is the Oh et al. study, which argues in favor of the increased capability of M2

macrophages to become foam cells, compared to M1 macrophages. They found higher levels

of cholesterol and cholestryl esters in M2 cells, compared to M1160. In 2013, Rousselle et al,

claimed again that M2 cells are more susceptible to foam cell formation161.

All these studies, however, define M1 and M2 macrophages in slightly different ways, and

use different sets and combinations of cytokines to polarize these cells. Also, some of the

studies are done in human plaques and others in mice models. Interestingly, Stöger et al.,

in 2012, found markers of both M1 and M2 macrophages in ruptured plaques, and claimed

that foam cells ambiguously express M1 and M2 surface markers163. In 2013, Leitinger et

al. stated that foam cells have no distinct M1 or M2 phenotype, and that both M1 and M2

are foam cells precursors164.

In essence, macrophage role and evolution in atherosclerosis is a complex process. The

balance between inflammatory and anti-inflammatory cues present in the plaque site controls

the progression of the disease152. Our in vitro study with bone derived mice macrophages,

agrees with the classical notion that M1 cells (proinflammatory macrophages) are more

predisposed to become foam cells than M2 or prohealing macrophages. But judging from

the number of lipid droplets accumulated in macrophages, quantified by machine learning

segmentation of CARS images, we also find that M2 cells are not fully resistant to become

foamy. There is some underlying mechanism that turns on the lipid accumulation activity

in a subset of the prohealing cultures when further stimulated with oxLDL. What happens

to these cells is unclear. It could be that they lost the prohealing phenotype and switch

in favor of a proinflammatory behavior. It could be that they remain with a prohealing

phenotype according to some markers, but activate alternative lipid metabolism pathways.

It is also possible that they become yet a third type of macrophage with a completely different

phenotype.

In conclusion, identifying what macrophages subtypes contribute to the foam cell population
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in atherosclerotic plaques is of interest to assess the sate of the lesion, maybe even predict its

evolution, to be able to apply efficient treatment. Currently, we lack the necessary informa-

tion to assess the macrophages’ phenotype after the diet experiment, thus it is challenging

to make statements about the state of the investigated macrophages. Immunofluorescence

labeling with surface or cytoplasmic markers, or label-free fluorescence lifetime imaging mi-

croscopy might be useful techniques to address these questions and will be explored in chapter

6.
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Figure 5.8: Lipid droplet accumulation increases with oxLDL exposure time only in pro-
inflammatory macrophages. CARS images of pro-inflammatory macrophages A) before start-
ing the oxLDL diet, B) after 24 hours in culture with oxLDL, and C) after 48 hours with
oxLDL. Scale bar = 25µm. D) Probability density estimate of the number of lipid droplets
for macrophage treated with IFN-γ/LPS, IL4/IL13, or left unpolarized at 0, 24, and 48 hours
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Figure 5.10: Culture with increased concentrations of interferon-γ (IFN-γ) increases the
number of lipid droplets in macrophages. A) Quantification of the average number of lipid
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Chapter 6

FLIM: a label-free tool for probing

metabolism

Metabolism is a highly complex infrastructure of chemical reactions that constitute living

organisms. Among techniques that enable interrogation of biological samples with minimum

disturbance, two-photon fluorescence lifetime imaging microscopy (FLIM) permits monitor-

ing of endogenous markers indicative of metabolic states in living cells and tissues. FLIM

complements and adds a visual level to traditional biochemical assays that are rather de-

structive. Here we discuss the use of FLIM to distinguish between macrophages’ phenotypes

based on their metabolic state. Proinflammatory macrophages present a glycolitic pheno-

type while prohealing macrophages rely on oxidative phosphorylation to produce energy.

This trait reflects the overall NADH binding state in the cells, yielding distinct autofluores-

cence lifetimes that can be used as a label-free marker. Other autofluorescence signals with

distinct lifetimes arise from subcellular structures that colocalize with lipid-rich areas. Foam

cells exhibit a longer fluorescence lifetime from regions rich in lipid droplets, as verified with

additional CARS imaging. Even longer lifetimes were detected from pools of lipids, which

may arise from products of oxidation.
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6.1 Label-free identification of macrophage phenotype

by fluorescence lifetime imaging microscopy

This work has been published in the following paper:

Alfonso Garcia, A., Smith, T. D., Datta, R., Luu, T. U., Gratton, E., Potma, E. O., and

Liu, W. F. (2016). Label-free identification of macrophage phenotype by fluorescence lifetime

imaging microscopy. Journal of Biomedical Optics, 21(4), 046005.

6.1.1 Introduction

Methods to distinguish different macrophage phenotypes are important for basic biologi-

cal studies, and may also be beneficial for diagnosis of diseases in which macrophages are

involved, atherosclerosis for instance. Traditionally, the identification of macrophage subpop-

ulations has relied heavily on quantifying the expression of proinflammatory and prohealing

markers through immunolabelling or analysis of gene expression. Common markers include

inducible nitric oxide synthase (iNOS) and arginase-1 (Arg1)163,179 or surface markers such as

CD86163,180–182, and CD206159,177, which report on the proinflammatory and the prohealing

state of the cell, respectively. Antibody- or nucleic acid-mediated interrogation of the cells

state are widespread techniques, but typically require elaborate biochemical protocols that

contain many steps181,183–186. These techniques are generally not capable of assessing live

cells in their native environments, since cells are detached from the surface, lysed, and/or

fixed. In order to assess the dynamics of phenotypic changes of cells during the course of

complex cellular studies and treatments it would be desirable to employ a method that is

based on endogenous markers and therefore compatible with live cell and tissue imaging.

Given the role of macrophages in the pathogenesis of many diseases, methods to image their

phenotype within live animals will also be beneficial.
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As a reflection of their distinct functions, classically and alternatively activated macrophages

have been shown to differ in their metabolic state as well as in their capacity to store lipid

droplets. While classically activated macrophages produce energy via aerobic glycolysis,

alternatively activated macrophages obtain energy from fatty acid oxidation and undergo

oxidative phosphorylation155,187. These pathways produce reduced nicotinamide adenine

dinucleotides (NADH) with different binding properties: freely diffusing NADH is a product

of glycolysis188, whereas NADH binds to mitochondrial shuttles (i.e. malate-aspartate) to

undergo oxidation189. The binding state of NADH in the cells translates into different

fluorescence lifetimes of this autofluorescent co-enzyme (free (∼0.4ns) or bound (2-4ns)),

principally due to the quenching state of adenine90. Therefore, fluorescence lifetime analysis

can gauge the metabolic state of the cell, and may be used to assess macrophage phenotype

in live cells and in a label-free manner.

Here we present a label-free method capable of recognizing macrophage subpopulations of

living cells. This method may be used in conjunction with a recently reported label-free

technique that distinguishes inflammatory and healing macrophages based on their differ-

ences in angular light scattering190. Our method is based on 2-photon fluorescence lifetime

microscopy (FLIM) of NADH, and can readily be extended to in vivo studies, which is not

feasible for light scattering measurements. In addition, the phasor approach to FLIM sim-

plifies the data analysis process to the visual inspection of clusters, especially if measured

lifetimes arise from complex multi-exponential decays92. In such cases, the commonly used

direct fitting approach may prove challenging. However, in the phasor plot representation,

the lifetimes emerge as clustered distributions that can be assigned directly to different

macrophage phenotypes, a technique previously reported for the metabolic state of germ

cells191 or neural stem cells192. NADH quantification through the redox ratio has also been

employed to determine stem cell differentiation193. In the cell cytoplasm a combination of

freely diffusing and bound NADH is found. When excited at the correct wavelength, and in

the absence of other exogenous or exotic fluorescent components, NADH is the main autoflu-
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orescent species that contributes to the optical emission, yielding a linear combination of the

single exponential decays of free and bound NADH in the phasor plot90,194. We demonstrate

that this approach allows the identification of macrophage phenotype in cell populations and

that this method retains its robustness and ease of use under a variety of conditions.

6.1.2 Experimental details

Cell culture

As for the lipid droplet counting experiment, mouse bone marrow-derived macrophages

(BMDM) were isolated from femurs of female, 6- to 12-week-old C57BL/6J mice and cultured

as described171 in medium containing 10% fetal bovine serum (FBS), 100 Uml penicillin, 100

µgml streptomycin, and 10% media conditioned by Ltk-cells expressing recombinant MCSF

ectopically. On day 7, 3 105 BMDMs were seeded on glass coverslips. The following day,

cells were transferred to similar media containing either lipoprotein-depleted bovine serum

(LPDS; Alfa Aesar) or normal FBS and then stimulated with cytokines. Lipopolysaccharides

(LPS; Sigma) and interferon-γ (IFN-γ; R&D) were used at 10 ngml, and IL-4 and IL-13

(Biolegend) were used at 20 ngml. After 24 h of cytokine stimulation, media was replaced

(with lipoprotein-depleted or normal media, per the experimental condition) and cells were

exposed to 0 or 40 µgml oxidized human low-density lipoprotein (oxLDL; Alfa Aesar) for

the remaining duration of the experiment.

Immunolabeling

After the live cell FLIM experiments, cells were fixed for further immunolabeling in 100%

methanol and washed with 1% bovine serum albumin (BSA; MP Biomedical) in PBS. Cells

were blocked with 5% normal donkey serum and stained for arginase-1 with a goat poly-
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clonal primary antibody (1:50; Santa Cruz) and Alexa 594-conjugated donkey anti-goat IgG

(1:500; Jackson ImmunoResearch). After washing in 1% BSA, cells were blocked a second

time with 5% normal goat serum and stained for iNOS with a rabbit polyclonal primary

antibody (1:50; Santa Cruz) and Alexa 488-conjugated goat anti-rabbit IgG (1:200; Jackson

ImmunoResearch). Nuclei were visualized with Hoechst 33342.

FLIM, data acquisition and processing

Fluorescence lifetime imaging microscopy (FLIM) was employed in the two-photon con-

figuration described in chapter 2. To examine the lifetime of the different macrophages

subpopulaitons, the phasor approach was used for the analysis.

Statistical analysis

Statistical significance between the phasors of the examined macrophage groups was de-

termined by the Students t-test, and considered positive for p < 0.05. The analysis was

performed on 3 to 7 images per each group as indicated in each experiment. Cells from at

least two separate mice were obtained, and a total of 12 to 32 cells were analyzed for each

condition.

6.1.3 Results and discussion

Fluorescence lifetime imaging microscopy of free and bound NADH in unpolar-

ized macrophages

As already mentioned, it is well established that macrophages stimulated with interferon-γ

(IFN-γ) and lipopolysaccharides (LPS) or with interleukins 4 and 13 (IL-4 and IL-13) render
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Figure 6.1: Representative immunofluorescence images of macrophages polarized with IFN-
γ and LPS or IL-4 and IL-13, or untreated, and stained for the pro-inflammatory marker
inducible nitric oxide synthase (iNOS, in green), the pro-healing marker arginase-1 (Arg1, in
red), and the cell nuclei (Hoechst 33342, in blue). Macrophages polarized with IFN-γ and
LPS express higher levels of iNOS, while macrophages polarized with IL-4 and IL-13 express
predominantly Arg1. Scale bar = 25 µm.

proinflammatory or prohealing polarization states, respectively158,181,195. We confirm this by

immunofluorescence staining for the proinflammatory marker inducible nitric oxide synthase

(iNOS; in green) and the prohealing marker arginase-1 (Arg1, in red) (Figure 6.1). IFN-

γ/LPS polarized macrophages express higher levels of iNOS, while IL-4/IL-13 stimulated

macrophages express predominantly Arg1, as expected. Nuclei were counterstained with

Hoechst 33342, indicated in blue.

Before interrogating the polarized macrophages with FLIM, we first study NADH lifetime

maps of unpolarized macrophages that we will use as reference. Figure 6.2 A shows an

autofluorescence image of untreated macrophages, and figure 6.2 B shows a map based on

lifetime contrast. The color coding is derived from the phasor plot in figure 6.2 C. In this plot,

the lifetime distributions of pure free NADH and NADH bound to lactate dehydrogenase

(LDH) are indicated. The two distributions are found at opposite sides of the unit semicircle,

also known as the universal circle92, which starts at point (1,0) for zero lifetime species, and

continues on to point (0,0) for infinite lifetime species. Freely diffusing NADH has a lifetime

of ∼ 0.4 ns and NADH bound to LDH has a longer lifetime of ∼ 3.4 ns, the latter varies

slightly with binding protein. Both lifetimes are characterized by a single exponential decay
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Figure 6.2: A) Autofluorescence intensity images of untreated macrophages. B) Correspond-
ing lifetime image with color code according to squares selected in C: purple areas have a
more bound NADH character, while yellow areas a more free NADH character (scale bar =
25 µm). C) Phasor plots of NADH bound to lactate dehydrogenase (LDH), free NADH, and
the cells in image A/B (arrowhead). The line that joins the free with the bound NADH pha-
sors, centered at 0.4 ns and 3.4 ns lifetimes, respectively, defines the metabolic trajectory.
The cells phasor lies along this line, as a linear combination of the two lifetimes.

and therefore lie on the semicircle196.

The two NADH states define the extremes of the so-called metabolic trajectory in the phasor

plot196,197. In the cellular cytoplasm we find both species at different ratios, which yield a

lifetime distribution that falls along the metabolic trajectory (figure 6.2 C, arrowhead).

This lifetime distribution (or phasor) can be characterized as the linear combination of the

free NADH and bound NADH phasors. The phasor approach to FLIM permits a rapid

identification of changes in the lifetime distributions92. The metabolic state of the cell can

be determined by the position of the phasor along the metabolic trajectory. We divide the

lifetime distribution of untreated macrophages through the center of mass in two parts along

the metabolic trajectory, so that the fraction of pixels in each section is 0.5 ± 10%. The

left part contains the pixels that are closer to the bound NADH extreme of the metabolic

trajectory (purple square), while the right part has those closer to the free NADH end

(yellow square). In this two-color representation, each pixel in the lifetime image in figure
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6.2 B is presented as either purple or yellow. The color coding can be interpreted as a relative

measure of bound versus free NADH: purple represents more bound character, a lower free

to bound NADH ratio, and yellow represents less bound character, a higher free to bound

NADH ratio. Using these analysis regions as a reference, we can examine how the phasors

of the polarized macrophages move along the metabolic trajectory, and thus quantify the

changes in the ratio of free to bound NADH for each group.

FLIM identifies different lifetime distributions in polarized macrophages

Using this approach, we next examine NADH lifetime distributions of polarized macrophages.

Figure 6.3 A shows an image with lifetime contrast obtained from unpolarized cells, and

the accompanying color scheme is defined in the phasor plot of figure 6.3 B. As before,

the cells display different color regions, corresponding to relative changes in the fluorescence

lifetime, although the shape of the overall lifetime distribution may vary slightly from analysis

of different cell populations. Using the same definition of the lifetime contributions as in

figure 6.3 B, figure 6.3 C shows a lifetime image of cells treated with IFN-γ and LPS,

corresponding to proinflammatory macrophages. Compared to untreated cells, the IFN-

γ/LPS cells have a phasor slightly shifted towards the free NADH end of the trajectory

(figure 6.3 D), which translates into larger yellow areas in the cells (figure 6.3 C). This is

expected, as IFN-γ/LPS macrophages turn on glycolytic pathways for energy generation198.

In contrast, cells treated with IL-4 and IL-13, have a higher contribution from bound NADH,

as indicated in purple, as shown in figure 6.3 E. The phasor plot in figure 6.3 F is now

shifted towards the direction of pure bound NADH, with effectively longer lifetimes. This

observation is consistent with the notion that alternatively activated macrophages favor

oxidative phosphorylation199, which requires protein-bound NADH188. IL-4/IL-13 treated

macrophages show a markedly elongated profile compared to IFN-γ/LPS and unpolarized

macrophages, this is expected as macrophage elongation has been previously related to an

124



10.50

M0 M1 M2

fr
ac

tio
n 

of
 p

ix
el

s

0

0.5

1
Lower free to bound NADH ratio 
Higher free to bound NADH ratio

Hoechst
iNOS
Arg1

untreated IFN-γ / LPS IL-4 / IL-13

un
tr

ea
te

d
IF

N
-γ

 / 
LP

S
IL

-4
 / 

IL
-1

3

g

s

s

s

0.5

0
0.5

0

0.5

0

* *

A

C

E

B

D

F

G

H I J

Figure 6.3: A) Untreated macrophages lifetime map (scale bar = 25 µm), and B) corre-
sponding phasor plot. The purple and yellow squares select the areas in the cells with more
bound NADH character, and more free NADH character, respectively, and are kept constant
throughout the entire analysis. C) Inflammatory macrophages, polarized with IFN-γ and
LPS, and D) corresponding phasor plot, shifted towards a markedly free NADH character.
E) Healing macrophages, polarized with IL-4 and IL-13, and F) corresponding phasor plot,
shifted towards the bound NADH side of the plot. G) Average fraction of pixels in each
square, normalized to the total number of pixels in both squares, for the three macrophage
cultures, the error bars correspond to the standard deviation. * p < 0.05, Student t-test.
H) Immunofluorescence images of the untreated macrophage culture, I) the IFN-γ and LPS
polarized culture, and J) the IL-4 and IL-13 polarized culture stained for iNOS (green), Arg1
(red), and nuclei using Hoechst 33342 (blue). Scale bar = 50 µm.

alternatively activated phenotype184.

In an effort to quantify the metabolic state of the cells we compute the fraction of pix-

els in each image that fall into the predefined lifetime categories (indicated here by the

purple and yellow squares in the phasor plot). Figure 6.3 G shows the results of averag-

ing the fraction of pixels (fop) over 3 images for the unpolarized cells, with a total of 14

cells from two different mice, and over 7 images for the polarized groups, that contained a

total of 21 and 32 cells for each inflammatory and healing macrophages, respectively, ob-

tained from three separate animals. Untreated macrophages show roughly equal amounts of
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short and longer lifetimes, as defined by the chosen purple (fop lower free to bound NADH ratio =

0.49 ± 0.03) and yellow (fop higher free to bound NADH ratio = 0.51 ± 0.03) subgroups (figures

6.3 A and B). However, macrophages polarized with IFN-γ and LPS have a significant

increase in the fraction of yellow pixels (fop higher free to bound NADH ratio = 0.83 ± 0.06 ver-

sus fop lower free to bound NADH ratio = 0.17 ± 0.06), those that report an increase in glycolytic

metabolism. These cells are depicted mainly as yellow in figure 6.3 C. Macrophages treated

with IL-4 and IL-13 have the opposite behavior, the fraction of pixels within the purple

square (fop lower free to bound NADH ratio = 0.65 ± 0.12) is significantly larger than those in the

yellow square (fop higher free to bound NADH ratio = 0.35 ± 0.12). As a result, the cells are colored

predominantly in purple in figure 6.3 E. After FLIM imaging the cells were fixed and stained

to examine their expression levels of proinflammatory and prohealing markers (figure 6.3

H-J). The stained cells confirm the correlation between NADH metabolism and macrophage

phenotype, as IFN-γ and LPS treated cells have higher expression of iNOS (figure 6.3 I) and

Arg1 expression predominates in IL-4 and IL-13 treated cells (figure 6.3 J).

In addition to evaluating the aggregate response of a population of cells with the overall

lifetime distribution, the phasor approach to FLIM also permits the visualization of intra-

cellular features with different lifetime properties. More specifically, the nuclear regions in

the cells tend to have a higher free NADH concentration (as shown in yellow) in the lifetime

images (white arrowheads in figures 6.3 A, 6.3 C, 6.3 E), whereas the cellular cytoplasm

displays a higher concentration of bound NADH (as shown in purple). A shift towards free

NADH in the nuclei has been previously reported using this same method to identify early

stages of cellular differentiation200.

Besides a rapid visualization method, the phasor approach can be used to classify the cells

according to their average individual phasor value. In that regard, figure 6.4 depicts the

aggregate phasor distribution of untreated and polarized macrophages, and locates the po-

sition of single cells analyzed within the distribution. The purple and yellow squares are
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Figure 6.4: The phasor plot agglutinates the lifetime distributions of the cells in the untreated
and the polarized macrophages. The purple and yellow squares are located in the same
position for the entire analysis. The insert zooms into the core of the phasor to show the
average phasor point of each cell analyzed across separate macrophage cultures. The shaded
areas align with the squares position.

kept constant, and divide the zoomed in area in shaded purple and yellow regions for refer-

ence. We find two clear groups, the IL-4/IL-13 polarized macrophages (purple diamonds) fall

within the purple square, with higher contribution of protein-bound NADH, and the IFN-

γ/LPS polarized macrophages (yellow squares) fall into the yellow area with lower lifetimes,

assigned to higher contribution of free NADH. Unpolarized macrophages stretch across the

areas, with a skewed preference towards the left side of the plot, indicative of an oxidative

metabolism basal state186,198.

NADH lifetime detected by FLIM is a robust indicator of macrophage glycolytic

state

Given that macrophages are involved in the progression of cardiovascular disease, a condition

in which the cellular microenvironment contains significantly more lipid, we were interested
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to know whether or not the presence of lipid influenced the polarization of macrophages

as determined by FLIM. We interrogated polarized macrophages with low (lipoprotein de-

ficient serum, LPDS, based medium) or excess (oxidized low-density lipoprotein, oxLDL,

containing medium) lipid. Notably, none of the cells in these conditions appeared to ac-

cumulate significant amounts of lipid droplets. We find the same results: inflammatory

macrophages (cells polarized with IFN-γ and LPS) have a significantly larger fraction of

glycolytic pixels in both cases; whereas healing macrophages (cells polarized with IL-4 and

IL-13) significantly bind more NADH to protein to undergo oxidative phosphorylation than

inflammatory cells do (figure 6.5 I), independent of the lipid environment. The fraction of

pixels quantified in figure 6.5 I are the average 5 to 7 images that contained a total of 12 to

23 macrophages from two separate mice. IFN-γ/LPS-stimulated macrophages treated with

LPDS (N = 6 images, 12 cells) have in average a fop lower free to bound NADH ratio = 0.27 ± 0.14

and fop higher free to bound NADH ratio = 0.73 ± 0.14, while IL-4/IL13-stimulated macrophages

treated with LPDS (N = 5 images, 23 cells) have in average a fop lower free to bound NADH ratio =

0.57 ± 0.05 and fop higher free to bound NADH ratio = 0.43 ± 0.05. Macrophages stimulated with

oxLDL followed the same trend, provided the cells are not foamy, the average fraction of pix-

els and standard deviation for IFN-γ/LPS-stimulated macrophages (N = 7 images, 15 cells)

are fop lower free to bound NADH ratio = 0.24±0.10 and fop higher free to bound NADH ratio = 0.76±0.10,

and for IL-4/IL13-stimulated macrophages (N = 5 images, 18 cells) are fop lower free to bound NADH ratio =

0.61±0.09 and fop higher free to bound NADH ratio = 0.39±0.09. Once again this is visually trans-

lated at the cellular level by yellow in the IFNγ/LPS cases (figures 6.5 A and C), and purple

in the IL-4/IL-13 cases (figures 6.5 B and D). We further confirmed by immunofluorescence

staining that cells in these conditions maintained their phenotypic markers, as shown in

figures 6.5 E-H. Thus, this method appears robust to alterations in the presence of different

lipid microenvironments.
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Figure 6.5: Macrophages polarized with IFN-γ and LPS and macrophages polarized with IL-
4 and IL-13 treated with lipoprotein deficient serum (LPDS) and with oxidized low-density
lipoproteins (oxLDL) maintain their glycolytic phenotype. A-D) Lifetime maps (scale bar
= 25µm), and E-H) immunofluorescence images of the corresponding macrophage groups
stained for iNOS (green), Arg1 (red), and nuclei with Hoechst 33342 (blue). Scale bar = 50
µm. I) Average fraction of pixels in the yellow and purple squares, normalized to the total
fraction of pixels, for each group of macrophage culture, the error bars correspond to the
standard deviation. * p < 0.05, Student t-test.
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6.1.4 Concluding remarks

NADH fluorescence lifetime imaging microscopy provides a label-free, non-destructive means

to identify the phenotype of live macrophages. FLIM indicates the metabolic state of polar-

ized macrophages; whether the cells shift to a glycolytic state or rather switch to an oxidative

metabolism, corresponding to a classically activated versus an alternatively activated phe-

notype, respectively.

Immunoassays or genetic-based assays to detect phenotypic markers are the standard tech-

niques used to identify macrophage polarization states, but typically require cells to be fixed

or lysed and to undergo an elaborate staining protocol. The FLIM phasor approach pre-

sented here allows characterization based on endogenous labels, which requires no sample

preparation, and, most importantly, permits imaging of live cells directly in tissues. While

this is not definitive to pinpoint the exact phenotype of a particular macrophage, as in-

flammatory and healing are extreme states, and to completely identify the exact phenotype

of macrophages (especially in situ) multiple tests are recommended186, FLIM and the pha-

sor approach provide an effective threshold to differentiate between glycolytic and oxidative

metabolisms. In addition, this method provides the ability to examine the metabolic state

of the cells in real-time, allowing for a fast identification of macrophage state. This is par-

ticularly advantageous in dynamic studies that require controlled tracking of the phenotype

as a given treatment evolves. Furthermore, since macrophages play a critical role in many

diseases including cancer and cardiovascular disease201,202, non-invasive imaging tools to

evaluate macrophage behavior during the progression of disease may provide critical insight

towards understanding their role in pathogenesis.
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6.2 Label free identification of foam cells by fluores-

cence lifetime imaging microscopy

6.2.1 Introduction

Macrophages in atherosclerotic lesions uptake the lipid accumulated at the plaque site, and

often become foam cells. As pointed out earlier in chapter 5, it has been conventional belief

that the proinflammatory macrophages (M1) are more prone to foam cell formation, despite

some studies that concluded that prohealing macrophages (M2) predominantly turn foamy.

Posterior studies find that both M1 and M2 are foam cell precursors, and that in fact, foam

cells ambiguously express M1 or M2 surface markers163,164. Foam cells may have a phenotype

completely different from that of M1 or M2 macrophages.

Using the FLIM approach described in section 6.1, we analyze the fluorescence lifetime of

foam cells arising from both M1 and M2 macrophage cultures treated with oxidized low-

density lipoprotein (oxLDL), with the aim to address the metabolic traits of lipid-laden

macrophages.

6.2.2 Experimental details

We polarized macropahges with Th1 and Th2 cytokines as described in chapter 5, followed

by a 24 hour oxLDL treatment after a 24 hour intermission in which the cells were cultured

in LPDS. This is a relevant step for stimulating foam cell formation, as pre-culture in LPDS

stimulates lipid uptake when available203. In fact, we found that skipping this step diminishes

the lipid droplet formation ability of the cells significantly, as the cells cultured with oxLDL

in the previous section, in which no LPDS pre-culture was effectuated, displayed negligible

levels of lipids droplets.
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Figure 6.6: Pro-healing macrophage (M2) imaged with A) FLIM, B) CARS, and C) im-
munofluorescence, with iNOS in the green channel, Arg1 in the red channel, and Hoechst in
the blue.

Most M1 macrophages transformed into foam cells upon oxLDL treatment, while only a por-

tion of the M2 population did, in agreement with our measurements in chapter 5. We then

imaged live cells with two-photon FLIM, with the same settings employed in section 6.1, fol-

lowed by CARS imaging, with the cells still alive, to image their lipid content. The same cells

were then fixed with methanol for posterior immunolabeling staining. Unfortunately, only

the M2 well survived the fixation step. Figure 6.6 shows the same M2 macrophage imaged

with FLIM and CARS, and the corresponding immunolabeling stained image, illustrating

the potential of this approach to perform cell level analysis.

Note that the localization of the same macrophages with the three different microscopes

was facilitated by the use of glass bottom dishes with integrated grids. µ-Dish 35 mm, high

Glass Bottom Grid-50 and 500 dishes (ibidi USA, Madison, WI) were used for this particular

experiment.
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6.2.3 Results and discussion

The phasor analysis of the macrophages treated with oxLDL can be divided in two groups, as

shown in figure 6.7. The cells from the M1 and M2 groups that did not turn into foam cells

compose the first group, whereas the cells from either subtypes that become foamy compose

the second group. The center of mass of the average phasor from non foam M1 cells (3 images

and 4 cells) is closer to the free NADH end of the metabolic trajectory than the center of

mass of the average phasor from non foam M2 cells (9 images and 14 cells), which has a

slight shift towards the bound NADH side of the metabolic trajectory, according to previous

experiments (section 6.1). Interestingly, the average phasors of foam cells, both found in M1

(8 images and 14 cells) and M2 (6 images and 9 cells) cultures, are even more shifted towards

the bound NADH end of the metabolic trajectory. This is due to an additional contribution

to the overall lifetime (red square in figure 6.7) that maps back to lipid-rich areas in the

cells, as shown by the CARS images of the same cells.

The results of FLIM and CARS microscopy can be overlapped for a cell by cell case, al-

lowing deeper analysis on the origin of the autofluorescent signals. Figure 6.8 A-C displays

an example of overlap between the images acquired with the FLIM and CARS of a proin-

flammatory (M1) macrophage. The cytoplasm is colored blue in the FLIM map, while the

nucleus appears green, and colocalizes with the darker area in the center of the cell in the

CARS image. The red areas in the FLIM image colocalize with bright areas in the CARS

image, which correspond to lipid droplets. This is a consistent trend in all foam cells ana-

lyzed, independently of their M1/M2 origin. Figures 6.8 D and E show individual phasors

for each proinflammatory (M1) and prohealing (M2) macrophage imaged (both foam and

non foam cells). The phasor contribution of each cell is divided into three sub-phasors de-

rived form the different sub-cellular structures previously identified (i.e. cytoplasm in blue,

nucleus in green, and lipid-rich areas in red). Note that the nuclear contribution has the

higher free NADH ratio, the lipid-rich areas have a longer lifetime, with phasors featuring a
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Figure 6.7: Phasor plots and exemplar FLIM/CARS images for M1 and M2 macrophages
treated with oxLDL. The top row contains cells that did not turn foamy, the bottom row
contains data from foam cells.
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Figure 6.8: Sub-cellular structures have different lifetimes that appear as different contri-
butions in the phasor plot. A-C) CARS, FLIM map, and overlap of the former two images
of a pro-inflammatory macrophage. D-E) Phasor plot of individual cells contribution from
each sub-cellular structure (red: lipid, blue: cytoplasm, green: nucleus) and the average and
standard deviation for proinflammatory and prohealing macrophages, respectively.

larger contribution from bound-NADH, and the cytoplasm phasors bridge the gap between

the previous two cellular structures.

6.2.4 Concluding remarks

The longer lifetime contribution is of unknown origin. It appears to colocalize with lipid

droplets, or lipid-rich areas, however aliphatic lipids are generally non-fluorescent. Additional

experiments should be carried out in order to address the nature of this signal. High-

resolution FLIM imaging, with a larger magnification factor for instance, would reveal greater

detail about the spatial origin of the different lifetimes. The degree to which the longer

lifetime correlates with the position of lipid droplets could aid the interpretation of its origin.
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Any attempt to assign an origin to this longer lifetime autofluorescnce is, at this point, mere

speculation. The higher resolution FLIM images coupled with magnified CARS images could

aid in locating the signal to the periphery or the interior of the lipid droplets. In this case,

the hypothesis could point towards increased NADH binding to some lipid droplet specific

enzyme with high affinity, therefore shifting the balance towards higher contributions of

bound NADH along the metabolic trajectory. If the signal is located within the lipid droplet,

it may be attributed to lipophilic structures, for example carotenoids, which have the ability

to autofluoresce due to their highly conjugated double bond system. Carotenoids exhibit a

broad absorption spectrum in the UV range (∼350-500 nm)204,205. We used a two-photon 740

nm excitation source, which could potentially excite some carotenoids. Fluorescence spectral

analysis of the absorption and emission properties of the samples would be informative.

Other highly conjugated lipophilic structures could also be considered as candidates, as well

as changes in the local micro-environment, such as the pH of the cell or the viscosity of the

local medium, which can affect the fluorescence lifetime.

Further investigations may include mass-spectroscopic and Raman spectroscopic analysis of

the cells, with particular emphasis on the lipid droplet portion, in the look out for highly

conjugated lipid structures, or lipid-droplet specific enzymes with high affinity for NADH.

Interestingly, autofluorescence has already been proposed as a contrast mechanism to differ-

entiate between different atherosclerotic plaques compounds, including collagen, elastin, and

even cholesterol206,207. It was claimed that lipids, including free cholesterol, exhibit fluores-

cence under intense UV laser excitation, but the exact origin of such fluorescence has not

been elucidated. It has been shown that carotenoids accumulate in atherosclerotic plaque208,

making these isoprenoids possible candidates for the origin of these long lifetime signals.

The distinct lifetime associated with the foam cells could be used as a label-free biomarker

that complements the M1/M2 lifetime differentiation characterized in section 6.1, when cells

are not foamy. Together, these label-free approaches could provide rapid in vivo visualization
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of different macrophages subpopulations in plaques, and could eventually be extended to the

analysis of other inflammatory processes where macrophages are essential.

6.3 Fluorescence lifetime imaging of endogenous bio-

markers of oxidative stress

This work has been published in the following paper:

Datta, R., Alfonso-Garcia, A., Cinco, R., and Gratton, E. (2015). Fluorescence lifetime

imaging of endogenous biomarker of oxidative stress. Scientific Reports, 5, 9848.

6.3.1 Introduction

Reactive oxygen species (ROS) are chemically reactive molecules that contain oxygen, in-

volved in cellular metabolism and homeostatis. When present at moderate, physiological

concentrations, ROS act as signaling messengers to regulate the cell’s state. However, in-

creased concentrations of ROS cause oxidative stress that can lead to protein and DNA dam-

age and/or lipid peroxidation, which in turn affects the normal functioning of the cell209–211.

Due to their implication in numerous diseases, including atherosclerosis, cancer, and neu-

rodegenerative disorders212–217, detection of ROS can be used to follow progression and

treatment. Fluorescent markers specific to ROS molecules are available, but once again they

involve the addition of exogenous materials. Additionally, the task of labeling and/or detect-

ing ROS is not simple, because these are highly unstable molecules. The products of ROS

are more stable and are used as an indirect measure of ROS themselves. These techniques

try to identify the damage ROS has caused or quantify the levels of antioxidats and redox

molecules.
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The present study shows the correlation of a distinct autofluorescence long lifetime signal

with lipid-rich areas, and suggests a label-free approach to ROS detection. We hypothesize

that the detected long lifetime species (LLS) is a product of lipid oxidation by ROS. In

order to guide the firsts steps towards the source identification of the LLS signal, we perform

CARS, third harmonic generation (THG), and confocal Raman on lipid-rich samples. We

found that the LLS signals come from areas that co-localize well with lipid areas in: 1) freshly

excised white adipose tissue, and 2) cells in culture with extra oleic acid in the media. Here

we characterize a non-invasive, label-free method to identify a biomarker of oxidative stress.

6.3.2 Experimental details

Sample preparation

HeLa cells were grown in Dulbecco’s Modified Eagle Medium (DMEM), supplemented with

10% fetal bovine serum, and 1% penicillin streptomycin (100 U/ml) at 37◦C in a 5% CO

incubator. For oleic acid (OA, Sigma-Aldrich, St. Louis, Missouri) treatment, the cells were

cultured in 5% lipoprotein deficient serum (LPDS; Intracel, Frederick, Maryland) and 95%

DMEM for 24 hours. Fatty acid free bovine serum albumin was prepared by dissolving bovine

serum albumin (BSA powder; Sigma-Aldrich) in 5% LPDS media. 400 mM oleic acid was

prepared as a complex with BSA (OA/BSA) at molar ratio of 2:1. Cells were treated with

OA/BSA complex overnight. For controls, three different dishes of HeLa cells were cultured

in normal media and 5% LPDS media. For imaging, the cells were plated in glass bottom

dishes (Matek Corporation, Ashland, Massachusetts). Prior to FLIM imaging, the oleic acid

fed cells were washed with 1X Dulbeccos Phosphate Buffered Saline, DPBS (Sigma-Aldrich).

For CARS imaging, media was replaced with DPBS. 4% Paraformaldehyde (Sigma- Aldrich)

solution was prepared to fix the cells for Raman spectroscopy measurements.

White adipose tissue was obtained from 5 month old adult female mice. Approximately 3
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mm diameter portions of fat from perigonadal and flank white adipose tissue depots were

freshly excised from the mice and subsequently embedded in 1% low melt agarose in HBSS

heated to 37◦C between coverslips separated by 0.2 mm spacers. All imaging were strictly

performed within 1 hour of tissue extraction. All animal procedures were performed with

strict adherence to NIH OLAW and institutional IACUC guidelines.

Imaging instrumentation

Fluorescence lifetime imaging measurements of HeLa cells were performed on the Zeiss LSM

710 microscope described in chapter 2. FLIM data was acquired using A320 FastFLIM

FLIMbox (ISS, Champaign, IL).

FLIM and third harmonic generation (THG) imaging of tissue sample were acquired using

a custom-built upright deep tissue imaging microscope. The operation principle has been

discussed previously218. For FLIM measurements, tissue sample was excited at 740 nm and

the emission filter employed was a bandpass 405 - 590 nm. For THG, excitation at 1038

nm was used and signal was collected with a bandpass filter 320 - 390 nm. Both FLIM and

THG signals were collected in transmission geometry on the same sample. For FLIM and

THG data acquisition and processing, the SimFCS software developed at the Laboratory of

Fluorescence Dynamics (LFD, UC Irvine) was used.

Coherent anti-Stokes Raman scattering (CARS) images were obtained with the microscope

described in chapter 2. Spontaneous Raman spectra from the lipid droplets present in

the cells were acquired with a commercial Raman microscope (InVia Confocal; Renisahw,

Wotton- under-Edge, Gloucestershire, UK). The excitation wavelength at 523 nm was fo-

cused into the sample with a 50x objective, and the scattered light was sent into the spectrom-

eter that contained a 2400 l/mm grating. The autofluorescent lipid droplets were identified

based on morphology. The Raman spectrum was then taken with 10 s integration time, and
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the baseline was estimated by minimizing a non-quadratic cost function.

6.3.3 Results and discussion

FLIM phasor signature of a long lifetime species

We detect a strong and unique long lifetime species (LLS) in freshly excised white adipose

tissue (figure 6.9) on the order of 7.89 ns. This contribution is found on the universal circle of

the phasor plot, suggesting it is the result of a single exponential decay, which indicates the

existence of a pure chemical species within the lipid droplets of the adipocytes, different from

the autofluorescent NADH, which has a shorter lifetime in cells (1-2 ns). The NADH and

LLS contributions from the adipose tissue marked in the phasor plot (figure fig:LLS1 C) with

a red and a blue circle, respectively, are mapped back onto the fluorescence intensity image

of the adipose tissue (figure fig:LLS1 A) to generate a binary FLIM map (figure fig:LLS1 B).

The LLS areas fall exclusively within the big lipid droplets of the adipocytes (in red) and

the areas surrounding the droplets are depicted in blue, indicating the presence of NADH.

This LLS signal was not found in brown adipose tissue. White adipose tissue has been linked

to high levels of oxidative stress implicated in obesity and type 2 diabetes, and fluorescent

lipid peroxidation products have been identified in these adipocytes with big lipid droplets219.

The emitted fluorescence spans a wide range from 430 to 490 nm220, in which we detect the

LLS signals.

Therefore, we suggest that this strong signal from the LLS define an oxidative stress axis

on the phasor plot that branches off of the metabolic trajectory, defined by free and bound

NADH lifetimes (figure 6.10). Together with the phasor distribution of free NADH (0.4 ns)

and NADH bound to lactate dehydrogenase (LDH; ∼ 3.4 ns), we can define a triangle in

the phasor plot that contains any mixture of the three components as a linear combination
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Figure 6.9: Unique fluorescence long lifetime signature (LLS) in white adipose tissue. A)
Average fluorescence intensity image of white adipose tissue excited at 740 nm. Scale bar
= 20 µm. B) FLIM pseudo-colored map with red and blue corresponding to the phasor
contribution form the LLS and NADH, respectively, as selected in the phasor plot. C) Cor-
responding phasor distribution. The red circular cursor selects the long lifetime distribution
while the blue circular cursor highlights the NADH phasor contributions.

of the lifetimes from the separate species, as dictated by the law of phasor addition92.

Long lifetime species in HeLa cells treated with oleic acid

In order to further characterize the origin of the LLS associated with lipid, we treated HeLa

cells with oleic acid to stimulate the formation of lipid-rich areas, or lipid droplets. Oleic

acid has been linked to increased generation of ROS and oxidative stress221,222. As control,

we also cultured HeLa cells in regular media and lipoprotein deprived serum (LPDS), which

are not expected to generate elevated numbers of lipid droplets, nor cause additional stress.

Figure 6.11 shows two HeLa cells, one treated with oleic acid (OA) and another one in regular

culture media. Figure 6.11 A shows the brightfiled transmission images, figure 6.11 B the

autofluorescence intensity, and figures 6.11 C and D highlight the areas that have a lifetime

rich in LLS component (in red) and rich in NADH (in blue), respectively. Note that the

red areas are confined in very specific regions, which the transmission image suggest might

be lipid droplets. The cell treated with oleic acid shows a larger red area than the one in

regular medium, and the phasor distribution highlighted by the red cursor is more prominent
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Figure 6.10: LLS FLIM signature defines a new oxidative stress axis on the phasor plot. The
phasor plot features a triangle formed by the FLIM fingerprints of free 2.5 mM NADH in
solution, NADH bound to 0.75 U/ml lactate dehydrogenase (LDH) enzyme, and the unique
LLS FLIM signature from lipid droplets in perigonadal white adipose tissue of female mouse.
From the law of phasor addition, a system containing mixtures of these three species will
fall within the triangle joining the three phasors. In addition to the metabolic trajectory
defined by the NADH axis, a new oxidative stress axis is defined, which branches off of the
metabolic trajectory and points towards the LLS phasor.
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Figure 6.11: FLIM phasor of an oleic acid fed HeLa cell (top row), and a regular medium
fed HeLa cell (bottom row). A) Transmission image, B) fluorescence intensity image, C)
oxidative stress FLIM map, D) NADH FLIM map, and E) corresponding phasors for two
HeLa cells. Scale bar = 10 µm

than the corresponding regular medium. Over all, the cells treated with oleic acid exhibit

more areas with the long lifetime species contribution, but the control HeLa cells cultured in

normal media also displayed the LLS phasor distribution in few occasions, usually in areas

with lipid droplets near the cellular membrane.

Figure 6.12 A shows the average phasor distribution from a population of 55 HeLa cells in

OA (distributed in 12 images), which exhibit a tail that follows the oxidative stress axis,

depicted in a red doted line. The average phasor of cells in regular medium (58 cells from

12 images; figure 6.12 B), or in LPDS (54 cells form 12 images; figure 6.12 C) do not have

that extra component pointing towards the LLS species, or it is negligible. The total average

phasor plot of all the cells is included in figure 6.12 D. The LLS rich area is selected with a

red window, and the number of pixels per each cell treatment that fall within the selected

lifetime is quantified. OA treated cells have over a 6-fold increase in the percentage of pixels

with this long lifetime (figure 6.12 E).
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Figure 6.12: LLS contribution increases in oleic acid treated HeLa cells. Phasor distribution
of HeLa cells A) treated with 400 mM oleic acid (OA) for 24 hours, B) in regular media,
and C) in lipoprotein deficient serum (LPDS). The red dotted line shows the oxidative stress
axis. D) Joint phasor plot of the above culture conditions with LLS window (red square)
selecting pixels with longer lifetime. E) Percentage of pixels within lifetime in the LLS red
window in the three groups.
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Use of nonlinear label-free microscopy techniques to determine the origin of the

autofluorescence signal

In order to further characterize the source of the long lifetime signal we combined FLIM

imaging with CARS on the same cells. The CARS images verify the presence of lipid droplets

in the areas that exhibit this long lifetime (Figure 6.13), especially in the OA treated group.

Interestingly though, the LLS signature does not emerge from all the lipid droplet areas in

the cells equally, but rather from a subpopulation of them. What makes these lipid droplets

subpopulation different remains to be investigated.

Additional test that prove the correlation of the LLS signal with lipid droplets were done

in this study by means of third harmonic generation (THG) microscopy. THG is sensitive

to the interfaces between media with different optical properties such as the third order

nonlinear susceptibility, refractive index, and dispersion. In particular, it has been shown

that the interface between lipid droplets and the cellular surroundings produces strong THG

contrast223.

Chemical analysis by Raman spectroscopy

For chemical characterization of the lipid associated species with the long lifetime autoflu-

orescent signal we obtained Raman spectra from regions in oleic acid treated cells that

displayed the LLS FLIM signature. An example is shown in figure 6.14, where two HeLa

cells loaded with oleic acid are features. Figure 6.14 A shows the autofluorescence intensity

image, figure 6.14 B shows the FLIM map highlighting in red the presence of the long life-

time species, and figure 6.14 C shows the corresponding phasor plot with the LLS phasor

distribution selected with a red circle. The top Raman spectrum in figure 6.14 D corresponds

to the big lipid droplet indicated by the red arrow in figure 6.14 B. For reference, the Raman

spectrum of pure oleic acid has been included in the bottom of figure 6.14 D. The only clear
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Figure 6.13: Images of HeLa cells in A) oleic acid-rich medium (OA), B) regular medium,
and C) lipoprotein deprived serum (LPDS). Top panels show fluorescence intensity images,
middle panels LLS FLIM maps in red, overlapped to the fluorescence intensity images in
gray-scale, and bottom panels belong to corresponding CARS images.
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Figure 6.14: Chemical characterization of LLS by Raman spectroscopy. A) Fluorescence
intensity image of fixed oleic acid fed HeLa cells. Scale bar = 10 µm B) LLS FLIM map
in red. Red arrow points to the big lipid droplet with LLS signal from where the Raman
spectrum was acquired. C) Phasor plot of the corresponding cells, with the LLS distribution
selected in a red circle. D) The red curve is the Raman spectrum from the lipid droplet of
interest (marked by a red arrow in B), the black curve is the Raman spectra from 90% pure
oleic acid.

difference between the two spectra is the additional peak at 1746 cm−1 that is assigned to

C=O stretching mode of the ester bonds present in the lipid droplet spectrum, signal of

esterified fatty acids, as it is expected within lipid droplets. The spectra shown in figure 6.14

D have been independently normalized by sections. The fingerprint region was normalized

to the 1646 cm−1 Raman band, whereas the CH stretching region was normalized to the

2845 cm−1 Raman band.
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6.3.4 Concluding remarks

This work identifies an autofluorescent species with a unique long lifetime around 7.8 ns,

which is distinct form the common NADH lifetime found in most cells (1-2 ns). We encounter

that most of the long lifetime fluorescence emerges from lipid-rich areas with granular struc-

tures, which CARS and THG identified as lipid droplets.

The lifetime was quantified from a pure chemical contribution found in adipocyte lipid

droplets from freshly excised mice white adipose tissue. FLIM phasor analysis of these

samples revealed a prominent contribution off from the common NADH cellular signal placed

along the metabolic trajectory. This new phasor was situated on the long lifetime side on top

of the universal circle, which implies this chemical species’ fluorescent temporal evolution is

characterized by a single exponential decay.

As previously mentioned in the last section, aliphatic lipids are not fluorescent. However,

lipid droplet associated autofluorescence has been identified in the past, including lipofuscin

granules and retinosomes. Lipofuscin granules are found in human retinal pigment epithe-

lial cells, fibroblasts among other cell types, and have been suggested as an indicator of

oxidative stress224,225. Stringari et al reported existence of long lifetime species (∼ 8 ns) in

human embryonic stem cells and co-localized these lipid granules with 4,4-difluoro- 1,3,5,7,8-

pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY493/ 503), which is a stain for neutral

lipids226. They established that the autofluorescent species with long lifetime were not as-

sociated to lipofuscin, which has a much shorter lifetime (∼ 385 ps227). It is thus unlikely

that the LLS reported in this study is related to lipofuscin. Retinosomes are lipid droplets

containing retinol or any of its derivatives (retinoic acid, retinyl esters, etc.), which also aut-

ofluoresce166,228. The lifetime fingerprint of pure retinol and retinoic acid is shorter than the

LLS lifetime, which makes them poor candidates for the LLS species. Furthermore, retinol

and retinoic acid have a very prominent Raman band in the 1590 - 1600 cm−1 range that
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was not observed in our Raman spectra144. Other isoprenoids, such as carotenoids, would

also exhibit this intense Raman band associated to the conjugated double bond system.

We hypothesize that the detected long lifetime signature originates from products of lipid

peroxidation220, thus providing an indirect measure of oxidative stress. Due to the om-

nipresence of ROS in pathological conditions, a biomarker for oxidative stress could be used

to elucidate pathways of disease development. Autofluorescence of oxidized lipid has the

potential to be such a biomarker and in this work we show a unique detection approach by

employing two-photon FLIM imaging. Even though multiphoton microscopy still has lim-

ited application in clinical settings, it improves penetration for deep tissue imaging and in

vivo animal models. Moreover, this method can be applied to imaging live cells and freshly

excised tissue, as we have demonstrated.

The long lifetime species FLIM signature of oxidized lipids detected using the phasor ap-

proach is a promising, non-invasive tool to detect oxidative stress in biological systems. As

far as we know, this is the first time a label-free fluorescent technique has been proposed

for this purpose. As shown in this work, phasor analysis of FLIM allows an efficient way to

uniquely identify intrinsic, autofluorescent marker of oxidative stress in cell cultures as well

as tissue samples.
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Chapter 7

Cholesterol, an elusive player

Cholesterol is a ubiquitous molecule involved in multiple physiological pathways. Altered

cholesterol metabolism has a major impact that manifests in a wide range of disease form

cardiovascular to neurological disorders229,230. Free cholesterol is found in the plasma mem-

brane and other intracellular membranes and is believed to regulate the fluidity of the mem-

brane. Larger concentrations of cholesterol are stored in form of cholestryl esters in lipid

droplets. These deposits are the primary focus of investigation in this section, we present

two approaches to detect cholesterol in intracellular lipid droplets.

First, a purely spectroscopic approach reveals a cholesterol marker in form of a subtle shoul-

der at about 1670 cm−1. This contribution is detected in lipid droplets from a specific

hepatitis C virus infected group of cells, which is linked to fatty liver disease. The choles-

terol shoulder marker also appears in a different system, namely human retinal pigment

epithelial cells from patients with dry age-related macular degeneration disease. The second

approach consists on the characterization of a more robust cholesterol marker. The shoulder

at 1670 cm−1 is systematically detected in confocal Raman spectroscopy, but it is too weak

and close to the 1655 cm−1 prominent peak to be used for imaging with CRS microscopy.
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Thus, the use of isotope labels that strongly vibrate in a clear region of the Raman spectrum

is considered. In the last section we analyze the performance of highly deuterated cholesterol,

and use it to study cholesterol intracellular distribution.

7.1 A label-free cholesteryl ester marker

7.1.1 HCV 3a core protein increases lipid droplet cholesteryl ester

content

This work has been published in the following paper:

Loizides-Mangold, U., Clment, S., Alfonso Garcia, A., Branche, E., Conzelmann, S., Parisot,

C., et al. (2014). HCV 3a Core Protein Increases Lipid Droplet Cholesteryl Ester Content

via a Mechanism Dependent on Sphingolipid Biosynthesis. PLoS ONE, 9(12), e115309.

Introduction

Hepatitis C virus (HCV) infections alter the lipid metabolism of the host. As a result, some

HCV patients develop steatosis, also known as fatty liver disease. That accumulation of fat

in the liver can result in liver failure. The mechanisms by which HCV promotes hepatic

steatosis are still unclear and is the focus of a big field of research. It is not the aim of our

contribution to this project to elucidate the mechanisms by which HCV is link to fatty liver,

but to provide tools that might aid in that task. This project was done in collaboration

with a group of researchers of the University of Geneva School of Medicine, in Geneva,

Switzerland.

HCV is a blood-borne virus that is mainly transmitted via intravenous injection (of drugs),

or blood transfusions/haemodialysis. About 2.8% of the global population is estimated to

151



be infected with HCV231, and 80% of these patients develop fatty liver (or steatosis)232,233.

There are 7 types of hepatitis C viruses, also known as genotypes. That means that there

are 7 families of HCV sharing common genetic information. The genetic information of

each family determines how the virus performs, and thus how it responds to treatment, for

example. It has been shown that all genotypes interfere with lipid metabolism, but the family

with higher prevalence of developing hepatic steatosis is genotype 3a234. There is something

in those genes that makes this particular genotype special to alter how the liver processes fat.

In particular, HCV 3a genotype is related to hepatic cells (hepatocytes) with very large lipid

droplets, and with increased levels of a specific set of lipids, namely cholesteryl esters235.

Experimental details

Our collaborators at the University of Geneva performed lipidomic profiling of HCV core

protein expressing-Huh-7 cells and examined the lipid content of purified lipid droplets iso-

lated from HCV 3a core expressing cells. They found increased levels of cholesteryl esters

and ceramides, but not of triglycerides and free cholesterol, in cells expressing the steatogenic

HCV 3a core protein. They saw a reduction of the cholesteryl ester levels in 3a transduced

Huh-7 cells upon treatment with statins, such as lovastatin, pravastatin or fluvastatin. These

treatments also reduced the average lipid droplet size. These measurements were done by

staining the cells with Oil Red O, which we know might result in artifacts, including the

labeling of non lipid structures or the fusion of lipid droplets.

Our particular task was to corroborate the presence of large lipid droplets in the cells trans-

fected with HCV-3a, and analyze possible lipid content variations among the lipid droplets

of cells infected with different HCV genotypic families. We used label-free coherent Raman

scattering microscopy to visualize the lipid droplets, and confocal Raman spectroscopy to

examine the lipid composition of individual lipid droplets in each group of transfected cells.
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Results and discussion

Figure 7.1 A shows the average Raman spectra of lipid droplets found in Huh-7 cells that were

either oleic acid-loaded, untransduced, transduced with GFP, HCV 3a, or 2a core. CARS

images of Huh-7 cells showed that oleic acid-loaded cells exhibited the highest number of

intracellular lipid drolets, whereas HCV 3a-transduced cells contained mostly large size lipid

droplets (figure 7.1 C). The Raman spectra of lipid droplets found in cells transduced with

HCV 3a core mimicked that of oleic acid-loaded cells with the exception of a small, but

identifiable shoulder at 1670 cm−1 (second curve in figure 7.1 A), situated besides the more

prominent peak at 1655 cm−1. The 1670 cm−1 band is evident in the oleic acid/ HCV 3a

difference spectrum (green dotted line). This contribution is less prominent or nonexistent

in the other groups. The 1670 cm−1 band, which is prominently present in the Raman

spectrum of pure cholesterol (7.1 B), can be attributed to the C=C stretching vibration in

the 6-membered cycloalkane ring of the steroid. Pure oleic acid has a strong contribution at

1655 cm−1, corresponding to the C=C stretching vibration in the unsaturated lipid chain in

triglycerides (7.1 B). This peak is seen in all the groups, indicating that triglycerides are the

major component of lipid droplets in each of the groups. The Raman spectrum of cholesteryl

esters, such as cholesteryl oleate exhibits a combination of the 1655 cm−1 and 1670 cm−1

bands, producing a double-peak band structure (7.1 B). Thus, the presence of the 1670 cm−1

shoulder is an indication of the presence of cholesteryl ester, which appears more prominent

in HCV 3a core lipid droplets.

Concluding remarks

In conclusion, it was determined that cells infected with the steatogenic HCV 3a core protein

accumulate more choleteryl esters, but not triglycerides, in large lipid droplets. They also

found increased levels of ceramides, which do not accumulate in lipid droplets, but promote
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Figure 7.1: A) Average Raman spectra of the lipid droplets found in oleic acid loaded (OA),
transduced with HCV core 3a-lentivector (HCV-3a), transduced HCV core 2a-lentivector
(HCV-2a), transduced with GFP and untransduced hepatoma Huh-7 cells in the fingerprint
band. Notice the region of interest from 1600cm−1 to 1800cm−1 where the HCV-3a shows
an extra shoulder at 1670cm−1, besides the oleic acid peak at 1655cm−1. This contribu-
tion is made more evident when the oleic acid contribution is subtracted from the HCV-3a
spectrum, a little peak appears at 1670cm−1 as the difference between the two spectra. B)
Raman spectra and molecular structure of oleic acid, free cholesterol and cholesteryl oleate.
C) Coherent anti-Stokes Raman scattering (CARS) images of the hempatoma Huh-7 cells
trated with 200µM oleic acid, untransduced, and transduced with the HCV core 2a- and
3a-lentivectors, respectively. Scale bars = 25µm
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the increase in cholestryl esters possibly serving as signaling messengers. These findings

provide new mechanistic insights into HCV-induced statosis.

Our contribution is in accordance with the lipidomic studies performed by our collabora-

tors, and serves yet as another example as how label-free microscopy techniques, such as

Raman spectroscopy and coherent Raman scattering microscopy, provide biological insight

that complements traditional biochemical assays in biomedical studies.

7.1.2 Age-related macular degeneration linked to cholesterol path-

ways

Introduction

Age-related macular degeneration (AMD) causes loss of vision. Macular degeneration can

be either dry, when the center of the retina degrades, or wet, when blood vessels grow ab-

normally under the retina236. Humans from specific population origins have been found to

have increased risk or particular protection against AMD. These populations differ in their

mitochondrial haplogroups, which are different patterns of mitochondrial DNA (mtDNA)

single nucleotide polymorphisms. It has been suggested that mtDNA may act as modifiers

of the effects that nuclear genes and environmental factors cause related to AMD. To isolate

the effects of different mtDNA haplogroups, our collaborators at the Gavin Herbert Eye

Institute, at the University of California Irvine, lead by Dr. Cristina Kenney, have devel-

oped a model of human cytoplasmic hybrids, or cybrids, with identical nuclei but different

mitochondrial DNA. They are examining the cholesterol biosynthesis and transport path-

ways in these cybrids coming from different haplogroups, in particular the K and the H

haplogroups. Multiple studies suggest that the K haplogroup mtDNA may create a unique

micro-environment that contributes to disease susceptibility237–244.

155



Experimental details

Raman spectra from intracellular lipid droplets present in each cybrid group were acquired

with a commercial Raman microscope (InVia Confocal; Renisahw, Wotton-under-Edge,

Gloucestershire, UK). Spectra were taken with a 532 nm excitation laser beam focused to the

sample by a 100x 1.3NA oil immersion objective. For each group, seven to ten lipid droplets

were investigated in the fingerprint region (1200 - 1800 cm−1) and the CH stretching region

(2700 - 3100 cm−1). Each spectrum had the fluorescence baseline manually subtracted, and

was subsequently smoothed with a Savitzky-Golay filter implemented in Matlab. Finally,

the Raman spectra were averaged together within each group, and normalized to the peak of

maximum intensity (fingerprint: 1657 cm−1, CH: 2851 cm−1) for each region independently.

Results and discussion

Again in this case we provide additional information to the biochemical assays by means

of label-free microspectroscopy. We used Raman spectroscopy to reveal the chemical com-

position of the intracellular lipids droplets in retinal pigment epithelial (RPE) cells from

different cybrid groups. The H cybrids and the K cybrids examined in this section show

analogous lipid signatures (figure 7.2). The most prominent bands in the fingerprint region

(1200 - 1800 cm−1) are located at 1265 cm−1 (C=C stretching), 1300 cm−1 (CH2 deforma-

tions), 1657 cm−1 (C=C stretching), and 1439 cm−1 (CH2 deformations) and indicate the

presence of both saturated and unsaturated lipids (see table 7.1). There is an additional

band at 1744 cm−1 from the esterified lipids. In the higher wavenumber range, we find the

CH stretching band with a dominant peak at 2851 cm−1 (CH2 symmetric stretches of lipids)

and a contribution from the =CH vibrations at 3011 cm−1, again sign of unsaturated lipids.

We found no difference between the lipid content of intracellular lipid droplets in cybrids

created from the first three different patients we examined. However, the investigation of a
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Figure 7.2: Average Raman spectra of lipid droplets in CYB#13-49H, CYB#11-25K and
CYB#13-57K in the fingerprint (1200 - 1800 cm−1) and the CH stretching (2700 - 3100
cm−1) regions. Prominent lipid bands are marked.

Raman shift (cm−1) Bond assignation molecular assignment
1300 δ(CH2)
1439 δ(CH2) saturated lipids
2851 νs(CH2)
1265 δ(= CH)
1657 ν(C = C) unsaturated lipids
3011 νss(= CH)
1744 ν(C = O) esterl carbonyl

Table 7.1: Raman bands present in the lipid droplets spectra and their bond and molecular
assignments245
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Figure 7.3: Retinal pigment epithelial cells with no associated disease (14.131 none), with
dry AMD (14.130 dry AMD), and with wet AMD (14.145 wet AMD) were analyzed with
confocal Raman spectroscopy. Brightfield transmission images of the cells are shown for
each group, with a small area highlighted in which confocal Raman imaging was performed.
The colors in the small area are the result of the vertex component analysis of the spectral
information of the region. The lipid droplet content has the end-member spectra depicted
in the plots beneath the images.

set of patients with and without AMD yielded a new set of RPE cybrid cells with interesting

differences in their cholesterol content.

Raman maps of small areas of the RPE cells with intracellular lipid droplets identify typical

lipid profiles within the droplets (figure 7.3). We examined samples coming from healthy

patients (labeled none), and from patients with dry and wet AMD. While the three groups

look remarkably similar, the dry AMD cell showed an extra shoulder at 1670 cm−1, due to

C=C vibrations of an aromatic structure, that we identified as a possible cholesterol marker

in the HCV study246. The shoulder is located besides the 1650 cm−1 peak, assigned to C=C

vibrations of aliphatic substances.
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The Raman maps were analyzed with vertex component analysis to extract the main chemical

components of the imaged samples. A prominent contribution was extracted from the lipid

droplet areas which matched the individual Raman measurements taken on the same cells,

see figure 7.4, which shows a collection of Raman spectra from 9-10 individual lipid droplets

in each group. Note that all the spectra collected from lipid droplets in the dry AMD group

exhibit the shoulder mode at 1670 cm−1.

Concluding remarks

The cybrids examined in this study derive from a limited number of patients. It would

be premature to conclude that dry AMD has clear consequences on cholesterol pathways

based on the one patient examined, as cybrids created from other dry AMD patients may

not have the same cholesterol contribution. If the same trend cannot be reproduced, this

cholesterol marker could be linked to other attributes of the particular patients that display

it. Contrarily, if the cholesterol assigned shoulder appears consistently in this variation

of AMD diseased cells, or it appears for a specific subset of patients sharing the same

haplogroups, cholesterol pathway alterations could be drawn, together with the biochemical

assays performed on the same samples.

At this point more data needs to be acquired and thoroughly inspected to establish cor-

relations with the haplogroup origin of each patient, in order to draw conclusions. But

once again, this preliminary results illustrate the potential for a consistent cholesterol es-

ter marker that appears clearly in Raman spectra of lipid droplets, without the need of

additional exogenous labels.

159



14.131 none (n=9)  

14.130 dry AMD (n =7+3)   

14.145 wet AMD (n = 9)  

1670cm-1

1200 1300 1400 1500 1600 1700 1800 
0

2000 

4000 

6000 

8000 

10000 

12000 

14000 

 

1670cm-1

1200 1300 1400 1500 1600 1700 1800 
0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

1200 1300 1400 1500 1600 1700 1800 

0 

0.5 

1 

1.5 

2 

2.5 
x 104

1200 1300 1400 1500 1600 1700 1800 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 
x 10 

4 

In
te

ns
ity

 (a
.u

.)

Raman shift (cm -1) Raman shift (cm -1)

In
te

ns
ity

 (a
.u

.)

Raman shift (cm -1) Raman shift (cm -1)

Figure 7.4: Raman spectra of individual lipid droplets (LDs) in retinal pigment epithelial cells
from a healthy patient (14.131 none, 9 LDs examined), a patient with wet AMD (14.145 wet
AMD, 9 LDs examined), and a patient with dry AMD (14.130 dry AMD, 10 LDs examined
in two different sessions). Arrows point to the 1670 cm−1 shoulder contribution, that is only
present in the dry AMD patient.
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7.2 D38-cholesterol as a Raman active probe for imag-

ing intracellular cholesterol storage

This work has been published in the following paper:

Alfonso Garcia, A., Pfisterer, S. G., Riezman, H., Ikonen, E., and Potma, E. O. (2016).

D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. Jour-

nal of Biomedical Optics, 21(6), 061003.

7.2.1 Introduction

Cellular cholesterol storage and transport has been visualized mostly using fluorescence tech-

niques. Measurements based on dehydroergosterol, a fluorescent cholesterol analog, have

been helpful in elucidating cholesterol trafficking mechanisms247. Other fluorescent labels

including filipin248, which associates with cholesterol in membranes, and fluorescently tagged

cholesterols, such as BODIPY-cholesterol33, have unveiled information on recruitment of

cholesterol to membranes41. Nonetheless, the use of fluorescent lipids can produce unwanted

artifacts50,168,249, including altered lipid metabolism and detachment of the fluorescent label

from the sterol.

Raman active labels offer an alternative to fluorescent probes. Unlike fluorescent labels,

Raman markers are unaffected by photobleaching effects, enabling sustained imaging of cells.

More importantly, the spatial extent of Raman active modes is limited to a single or a few

chemical bonds, which is much smaller than the chemical structure of fluorescent moieties.

Raman labels can be chosen from spectral signatures of the endogenous compound or from

chemically modified probes that enhance the Raman response and selectivity. The Raman

spectrum of endogenous cholesterol exhibits several spectral features that can be utilized as

marker bands. This notion has been used to selectively visualize cholesterol crystals in tissues
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using nonlinear Raman imaging techniques, such as coherent anti-Stokes Raman scattering

(CARS)115,250,251 and stimulated Raman scattering (SRS)252,253 microscopy.

However, non-crystalline pools of cholesterol in cells are often complex mixtures of lipophilic

constituents, rendering the intrinsic spectral signatures of the compound insufficient for

uniquely identifying cholesterol in intracellular environments. To improve selectivity, chemi-

cal analogues of cholesterol may be used, selected for their unique Raman response61. Several

Raman labels with large Raman cross sections and signatures in quiet spectral regions, such

as alkyne tags57,58, have been shown to be tolerated by live cells, enabling the rapid visualiza-

tion of selected metabolites, nucleotides and protein residues in cells with SRS imaging59,60.

Recently, this principle has been extended to imaging cholesterol by substituting part of the

molecules aliphatic tail with a phenyl capped diyne moiety254. The phenyl-diyne choles-

terol exhibits a very high Raman cross-section and, relative to a terminal alkyne group,

phenyl-capping gives rise to reduced cytotoxicity.

Nonetheless, although alkyne moieties are structurally small, they represent a chemical group

that is foreign to the intracellular environment. While a Raman probe like phenyl-diyne

cholesterol may display limited cytotoxicity, it is unknown how the foreign chemical struc-

ture may affect various downstream processes relevant in cholesterol homeostasis. In order

to minimize artifacts beyond cytotoxicity, Raman probes that display minimal chemical dis-

similarities with natural cholesterol are of interest. In this regard, probes based on the

substitution of hydrogen by deuterium are particularly attractive, as the chemical prop-

erties of deuterated isotopologues closely resemble those of their endogenous counterparts.

Deuterium-based Raman labels have been successfully used in nonlinear optical imaging

applications to help increase specificity to water dynamics51, selected phospholipids52,53,

neutral lipids69,80,255, and protein metabolism56,256.

Labels based on stable isotopes, including deuterium, have found widespread use in clinical

applications. Because the level of toxicity of pharmacological substances and their deuter-
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ated analogues is typically identical, deuterated substances are widely used in clinical studies

aimed at studying metabolism and movement of drugs in humans257. Similarly, deuterated

cholesterol has been clinically administered to humans without harmful side effects, under-

lining the biocompatibility and usefulness of deuterated cholesterol probes.

In this work, we explore the utility of deuterated cholesterol as a Raman probe. Despite

the fact that deuterated cholesterol is commercially available, only a maximum of seven

hydrogen atoms are replaced by deuterium (D7-cholesterol). Hence, the retrieved Raman

response in the spectral range characteristic of the C-D stretching mode is found to be

relatively weak, reducing the effectiveness of the probe. To boost the sensitivity, we have

optimized a procedure for producing D38-cholesterol, a probe that features an average of

38 C-D bonds and an improved Raman cross section in the 2100 cm1 spectral range. With

this increase in the degree of deuteration, we show that D38-cholesterol can be detected at

physiologically meaningful levels in cells using rapid SRS imaging. Using hyperspectral SRS

and multivariate analysis, we demonstrate that D38-cholesterol is readily internalized by cells

and is naturally esterified and stored in lipid droplets. In addition, we use D38-cholesterol

to study heterogeneity in cholesterol storage in steroidogenic cells.

7.2.2 Experimental details

D38-Cholesterol

Deuterated cholesterol was produced by a yeast strain (RH6829) engineered to produce

cholesterol instead of ergosterol258. An overview of the cholesterol biosynthetic pathway

and principles of biosynthetic isotopic labeling has been published259.Yeast growth media

for isotopic labeling was 0.7% yeast nitrogen base (US Biological), 0.5% yeast extract (BD),

1.25% glucose, 30 mg/l uracil and leucine in deuterium oxide (99.8%, ARMAR, Switzerland).

Precultures (1 ml) in this medium were used to inoculate 2 liters of media, which were grown
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Figure 7.5: A) Commercial cholesterol and B) deuterated cholesterol purified from yeast
were analyzed by GC-MS and the GC profiles are shown. The higher masses, representing
unfragmented deuterated cholesterol (peak in B), are shown in C, with an average around
424.6, denoting an average replacement of 38 H by D

to stationary phase with shaking (3-4 days) at 30◦C. The D-cholesterol was purified from

harvested cells and analyzed by GC-MS as described258. The yield was approximately 10

mg purified D-cholesterol per liter of cell culture. Analysis of the GC-MS profile of the D-

cholesterol showed a GC profile (figure. 7.5 B) identical to commercial cholesterol (figure7.5

A), except that the retention time of D-cholesterol was slightly faster than cholesterol. Ex-

amination of the high range of intact ions under the peak (figure 7.5 C) showed an average

m/z of 424 denoting an average substitution of 38 hydrogen atoms by deuterium. Analysis

of the D-cholesterol by NMR confirmed its purity and showed that all positions were substi-

tuted between 70 and 90%, consistent with the average of 82% substitution calculated from

the MS profile. D7-cholesterol was obtained from Sigma-Aldrich and used without further

purification.

Reagents

Cell culture reagents were obtained from Life Technologies or Lonza. Methyl-β-cyclodextrin,

oleic acid, fatty acid free BSA and cholesterol were purchased from Sigma. D38-cholesterol
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or cholesterol / methyl-β-cyclodextrin stock complexes were prepared as described previ-

ously260, using a methyl-β-cyclodextrin to cholesterol (D38-cholesterol) ratio of 6.2 to 1 and

a final concentration of 45-50mM for D-38 cholesterol. Lipoprotein deprived serum (LPDS)

was prepared from fetal bovine serum by potassium bromide density ultracentrifugation261.

Oleic acid was complexed to fatty acid free BSA in a 8:1 ratio34.

Cell culture and lipid administrations

Y1 cells were cultured in DMEM/F12 (1:1) with 15% horse serum and 2,5% FBS. Culture

medium was supplemented with penicillin/streptomycin (100 U/ml each) and L-glutamine

(2 mM). For lipid loadings Y1 cells were seeded in culture medium for 24 hours. Cells were

washed three times with phosphate buffered saline (PBS) and incubated with DMEM/F12

medium containing 5% LPDS and 50 µM cholesterol/cyclodextrin, 45-50 µM D-38 choles-

terol/cyclodextrin, 400 µM oleic acid/BSA (bovine serum albumin) or 400 µM oleic acid/BSA

plus 50 µM D-38 cholesterol/cyclodextrin for 24 hours.

Lipid extraction and quantifications

Lipid extraction and quantifications were performed as described previously262. Lipids were

extracted using chloroform:methanol in a 1:1 ratio. Solvents were evaporated under nitrogen

and dried lipids were dissolved in chloroform:methanol (2:1 ratio). Lipid solutions were

spotted on thin layer chromatography (TLC) plates and cholesteryl ester, triacylglycerols

and free cholesterol were resolved by phase separation using hexane: diethylether: acetic

acid 80:20:1. Cholesteryl ester, triacylglycerols and free cholesterol were quantified using

ImageJ and normalized to protein content, measured by Bio-Rad protein determination.
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pump (nm) Raman shift (cm−1)
CH range 820 - 803 2796.6 - 3054.8
CD range 880 - 855 19565.1 - 2297.4

Table 7.2: Pump wavelengths corresponding to the Raman shifts of interest for SRS hyper-
spectral interrogation at the C-H and C-D stretching ranges.

Sample preparation for SRS microscopy

Cells grown on coverslips were washed 2x with PBS and fixed with 4% paraformaldehyde

for 15 minutes. Coverslips were rinsed several times with PBS, mounted in PBS and sealed

with epoxy glue to prevent cells from drying.

Hyperspectral imaging with SRS microscopy

Stimulated Raman scattering (SRS) signals were obtained with the CRS microscope de-

scribed in chapter 2. The pump wavelength for this experiment was tuned to two areas of

interest noted in table 7.2, namely the deuterated stretching (CD) Raman window and the

CH stretching Raman window. Hyperspectral scan were acquired from both windows, as

well as individual images at the most prominent Raman shifts for each region, 2120 cm−1

and 2841 cm−1, respectively. Images off resonance (∼ 2500 cm−1) were also acquired and

subtracted from the resonant images to avoid background contributions in the analysis.

Additional spontaneous Raman spectra of pure cholesterol were acquired with a commercial

Raman microscope (InVia Confocal; Renishaw, Wotton-under-Edge, Gloucestershire, UK).

Spectral analysis with vertex component analysis

Hyperspectral coherent Raman scattering imaging has been previously used to acquire si-

multaneous chemical and spatial information of biological samples80,252,263. In combination
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with multivariate analysis we can extract the spectral information form the hyperspectral

stacks. In this case, we chose vertex component analysis to retrieve the most prominent

spectral features in the hsSRS images119,264, as described in chapter 3. The result can be

nicely visualized in RGB color maps in which the colors denote the spectral class of each

pixel.

7.2.3 Results

Characterization of D38-cholesterol

Deuterated lipids increase specificity for Raman, SRS and CARS imaging due to their specific

C-D vibrational frequencies from 2000 to 2300 cm−1, situated in a silent region of the Raman

spectrum. The blue line in figure 7.6 shows the Raman spectrum of cholesterol. The strongest

peaks in the spectrum are found at 2700 - 3100cm−1 (C-H stretching modes), with additional

peaks at 1670 cm−1 (C=C stretching modes) and 1440 cm−1 (CH2 scissoring mode). The

Raman spectrum of commercially available D7-cholesterol, which has 7 hydrogen atoms

replaced by deuterium, is shown in red in figure 7.6. The frequency of the C-D modes is

shifted relative to the CH stretching band, giving rise to a Raman band in an otherwise silent

region of the Raman spectrum from 2000 - 2300 cm−1. However, because only 7 out of 46

possible positions are substituted with deuterium, the C-D spectral features of D7-cholesterol

are relatively weak, while the C-H region remains the dominant contribution to the spectrum.

The yellow line in figure 7.6 represents the Raman spectrum of D38-cholesterol.

By substituting 38 sites with deuterium (82.6% deuteration), the response in the 2000 - 2300

cm−1 is significantly improved, whereas the magnitude of the C-H stretching bands is con-

siderably reduced. D38-cholesterol shows two main peaks in the CD band, centered at 2120

cm−1 and at 2211 cm−1. The heavily deuterated cholesterol also exhibits a shift of the C=C

stretching band to 1656 cm−1, relative to natural cholesterol. A similar shift has previously
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Figure 7.6: Raman spectra of cholesterol (blue), D38-cholesterol (yellow), and D7-cholesterol
(red) are shown in the range from 1400 to 3100 cm1. Inset: the SRS intensity of D38-
cholesterol in cyclohexane relative to the noise floor increases linearly with the concentration
of solute. The detection limit was found to be 220 µM .

been reported for the deuterated fatty acid D6-arachidonic acid255. Note that besides a sig-

nificant reduction of the CH band, the spectral profile of the CH stretches of D38-cholesterol

is markedly different from the spectral bandshape of natural cholesterol in this range. The

contribution of the symmetric CH2 stretching mode at 2845 cm−1 in D38-cholesterol is rel-

atively weak, whereas the strongest contribution in this range is found at 2925 cm−1. This

characteristic bandshape provides an additional handle to identify D38-cholesterol, and, as

shown below, can be utilized to discriminate lipid droplets with predominantly esterified

cholesterol from lipid droplets with a high concentration of unesterified cholesterol.

The sensitivity of the SRS microscope to D38-cholesterol is depicted in the inset of figure 2.

Here the SRS signal is measured relative to the noise floor of the experiment, as determined

by the photothermal signal of glass. At 2120 cm−1, we find a detection limit of 220 µM in

cyclohexane at a pixel dwell time of 10 µs, when the SRS signal of D38-cholesterol approaches

the noise floor. As expected, there is a linear dependence of the SRS signal on D38-cholesterol
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concentration49.

D38-cholesterol: Uptake, metabolic processing and storage in lipid droplets

To examine the biocompatibility of D38-cholesterol in mammalian cells, we treated Y1

adrenal cells with 50 µM D38-cholesterol/cyclodextrin for 24 hours. Cyclodextrin forms

a complex with cholesterol and transfers it to cells via the plasma membrane265. This treat-

ment results in efficient cellular uptake of D38-cholesterol with a 2.9 fold increase in total

cholesterol and 3.5 fold for cholesteryl esters (figure 7.7 A) compared to LPDS control. Using

TLC, we determined that approximately 58% of the sequestered D38-cholesterol was ester-

ified (figure 7.7 A), confirming enzymatic processing of D38-cholesterol and highlighting its

superiority to fluorescent sterol analogs in regard to metabolic processing33,254. Importantly,

we find that the levels of esterified D38-cholesterol are similar to the levels of esterified natu-

ral cholesterol under similar treatment conditions (figure 7.8) indicating that the deuterated

probe does not affect acylCoA:Cholesterol acyltransferase (ACAT)-mediated esterification.

Next, we performed SRS imaging of D38-cholesterol loaded cells. Figure 7.7 B-D show a

cell treated with D38-cholesterol imaged at three different frequencies: 2325 cm−1 (off reso-

nance), 2120 cm−1 (CD2 stretches), and 2841 cm−1 (CH2 symmetric stretches), respectively.

The strongest signal at 2120 cm−1 derives from droplet-like structures, as does the more in-

tense signal at 2841 cm−1, indicative of intracellular lipid droplets. This observation provides

evidence that D38-cholesterol has been processed by the cell and is stored in lipid droplets.

To compare the levels of esterification between natural cholesterol and D38-cholesterol, Y1

cells were loaded for 24 hours with sterol/cyclodextrin complex, and the content of free and

esterified cholesterol was analyzed using TLC. The TLC results are shown in figure 7.8. We

find that the levels of esterified D38-cholesterol are identical to the levels of esterified natural

cholesterol under a similar treatment.
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Figure 7.8: Esterification levels of D38-cholesterol match those of natural cholesterol.
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To further prove the presence of D38 cholesterol in intracellular lipid droplets, we show the

result of a hyperspectral SRS multivariate analysis (VCA) in both the CD and CH spectral

regions. The CD range spanned from 1965 to 2297 cm−1, with a step size of 8.5 cm−1,

whereas the CH region ranges from 2797 to 3055 cm−1, with a step size of 6.6 cm−1. The

yellow areas in figure 7.7 E represent the spectrum depicted in figure 7.7 G. These locations

indicate the presence of D38-cholesterol and spatially correlate with the lipid droplet areas,

confirming that D38-cholesterol is stored in lipid droplets. A corresponding analysis in the

CH range shows that the same droplets also contain non-deuterated lipids, whose spectral

profile is depicted in red (figure 7.7 F and figure 7.7 H). These lipids largely represent, fatty

acids esterified to D38-cholesterol, some pre-existing non-deuterated cholesterol, and a small

fraction of triglycerides (5.1% of total neutral lipids), as confirmed by TLC. The green areas

in figures 3F and 3H correspond to the protein-rich content of the cell, which is shown here

for context. Hence, these combined results show that D38-cholesterol is processed by the

cells, is esterified to a similar degree as natural cholesterol, and is stored in lipid droplets.

Hyperspectral SRS imaging of D38-cholesterol identifies subpopulations of es-

terified and unesterified cholesterol.

Besides identifying cholesterol in lipid droplets, the unique Raman spectrum of D38-cholesterol

can be utilized to reveal additional information about the degree of cholesterol esterification.

To access this information, we used hyperspectral-SRS imaging combined with VCA. Figure

4 shows a cell that contains two subsets of lipid droplets with different spectral profiles. The

CD range reveals droplets that contain D38-cholesterol (figures 7.9 A and 7.7 C). A subset

of these lipid droplets, depicted in blue, exhibit a CH spectrum that resembles the Raman

spectrum of unesterified D38-cholesterol. In red, we show the subset of droplets that are

represented by a spectrum indicative of both esterified D38-cholesterol and non-deuterated

lipids (figures 7.9 B and 7.9 D). These droplets most likely consist of fatty acids esteri-
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fied to cholesterol and a small amount of triglycerides and/or pre-existing non-deuterated

cholesterol.

The CD range of the spectrum contains limited information about cholesterols state of ester-

ification. However, the spectral information acquired in the CH range helps to discriminate

between esterified and free cholesterol accumulations. By combining C-D imaging with hy-

perspectral analysis of the C-H region we thus demonstrate that lipid droplet heterogeneity

may not only occur at the level of cholesterol ester and triglyceride partitioning, but also

at the level of cholesterol esterification. Some lipid droplets show higher enrichment for free

cholesterol than others.
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Distinct cholesteryl ester and triacylglycerol containing lipid droplets visualized

by D38-cholesterol and oleic acid administration

Studies based on fluorescent tracers have suggested that steroidogenic cells can store triglyc-

eride and cholesterol esters in distinct lipid droplets resulting in lipid droplet heterogene-

ity260. However, this might result from altered properties of BODIPY labeled lipid analogs

as compared to natural lipids80. Here we demonstrate lipid droplet heterogeneity without

fluorescent lipid analogs by means of stimulated Raman scattering microscopy and D38-

cholesterol.

Y1 cells were treated with 50 µM D38-cholesterol and 200 µM oleic acid for 24 hours.

TLC analysis shows that this treatment results in a 5.8 fold increase in the accumulation of

cholesteryl esters (131 ng/µg protein) and a 38 fold increase in the level of triglycerides (107

ng/µg protein) (figure 7.10 A). Cells subjected to this treatment are depicted in the SRS

images shown in figure 7.10 (B-F). Lipid droplets containing D38-cholesterol are visualized

at the 2120 cm−1 Raman shift in figure 7.10 C. The overall population of lipid droplets

is visualized by tuning to the Raman shift of 2841 cm−1, shown in figure 7.10 D, which

marks lipid droplets irrespective of the presence of D38-cholesterol. Comparing the 2120

cm−1 and 2841 cm−1 images makes clear that the concentration of D38-cholesterol in the

available droplets varies significantly. This is made clearer in the hyperspectral image of

figure 7.10 E, which highlights the D38-cholesterol containing lipid droplets in yellow (see

the corresponding spectra in figure 7.10 G). Some lipid droplets, irrespective of size, are

seen to contain D38-cholesterol at appreciable levels, whereas others appear devoid of D38-

cholesterol. The hyperspectral image obtained in the CH stretching range, shown in figure

7.10 F, reveals furthermore two subsets of droplets with different spectral profiles (figure 7.10

H). Most of the droplets depicted in red are those that also contain D38-cholesterol, while the

droplets that appear in green in the CH range exhibit little to no CD signal. A third subset

contains a mixture of both green and red spectra. These results show that intracellular lipid
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Figure 7.10: Y1 adrenal cells were treated with 50µM D38-cholesterol/cyclodextrin together
with 200µM oleic acid for 24 hours. Cells were either used for lipid quantification (A) or
subjected to SRS imaging [(B) 2325 cm1, off resonance; (C) 2120 cm1, CD2 stretches; and (D)
2841 cm1, CH2 symmetric stretches]. (Note that LPDS control treatment is the same as in
figure 7.7) The result of hyper- spectral SRS imaging and multivariate analysis is depicted in
yellow for D38-cholesterol in the CD region (E and G), and in red and green for the lipids in
the CH region (F and H). The results are overlaid on the maximum intensity projection of the
CH spectral range, shown in gray scale, which outlines the cellular morphology. Normalized
spectra. Scale bar = 20 µm.

droplets are heterogeneous in terms of chemical composition, and that cholesterol partitions

inhomogenously among the available lipid reservoirs.

7.2.4 Discussion

The ability to identify cholesterol and follow its movement in cells is important for un-

derstanding changes in cellular cholesterol levels and distribution, and its implications in

cholesterol related diseases. The availability of biocompatible probes that minimally inter-

fere with the cells natural physiology is a critical component in studying cholesterol home-
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ostasis. Given that fluorescent analogues to cholesterol have been shown to alter key aspects

of cholesterol metabolism, most notably the level of ACAT-mediated esterification266,267,

the search for alternative probes has become a relevant research focus. In this regard, Ra-

man labels are prime candidates for replacing fluorescent probes, as they are insensitive to

photobleaching and can be engineered such as to improve biocompatibility while reducing

cytotoxicity. Recent successes include the development of phenyldiyne cholesterol254, which

exhibits an exceptional Raman cross-section and was shown to be well tolerated by cells.

Compared to phenyl-diyne cholesterol, the Raman cross section of deuterated cholesterol

is weaker. However, deuterated labels remain attractive because they generally exhibit

excellent biocompatibility and very low cytotoxicity levels, as underlined by the widespread

use of deuterated probes in clinical studies. It is known that deuterated cholesterol is non-

toxic to humans265,267, rendering D-cholesterol also a reliable Raman probe for in-depth

studies at the cellular and small organism level. To improve the Raman cross-section of

D-cholesterol, we produced D38-cholesterol using engineered yeast cells, which boosts the

Raman signal intensity at 2100 cm−1 about 5 times relative to commercially available D-

cholesterol. With this improvement, the SRS detection sensitivity of D38-cholesterol is

∼220 µM at a 10 µs pixel dwell time, which allows its detection at physiologically relevant

concentrations in the cell. Our production procedure allows for cheap, batch produced D38-

cholesterol in large quantities, which further accentuates the practical utility of this probe.

We have confirmed the biocompatibility of D38-cholesterol. We find that internalized D38-

cholesterol is esterified by Y1 cells and stored in lipid droplets. Unlike BODIPY-cholesterol,

D38-cholesterol does not appear to alter the ACAT-mediated esterification process. Concen-

tration levels of cholesteryl esters stored in lipid droplets are well within SRS detection levels

of D38-cholesterol under all conditions studied here. Therefore, using D38-cholesterol as an

SRS probe offers an opportunity to study details of cellular cholesterol storage processes that

have so far remained under-illuminated.
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Besides using D38-cholesterols biocompatibility and its detectability in SRS imaging, we have

extracted additional information about cholesterol storage through examining the spectral

SRS content in both the vibrational range of the CD and CH stretching modes. In particu-

lar, spectral variations in the CH stretching range can be used to distinguish distributions

of esterified D38-cholesterol from free D38-cholesterol. In this capacity, we have used hy-

perspectral SRS imaging of D38-cholesterol to highlight unanticipated heterogeneity in the

chemical composition of stored neutral lipids between individual lipid droplets. First, hy-

perspectral SRS imaging of D38-cholesterol in Y1 adrenal cells revealed the presence of lipid

droplets that contained a high concentration of unesterified cholesterol adjacent to lipid

droplets containing predominantly esterified cholesterol. Moreover, in these cells cholesterol

and triacylglycerols were deposited in distinct lipid droplets. Note that such heterogeneous

distribution of neutral lipids was not detectable by hyperspectral SRS imaging in the absence

of deuterated cholesterol69.

Note also that it is not straightforward to discriminate subpopulations of lipid droplets based

on the degree of cholesterol esterification by using Raman spectroscopy without the use of

the D38-cholesterol probe. The characteristic C=O stretching mode of ester groups at 1740

cm−1, which serves as a marker for cholesteryl esters268, is not only weak but also overlaps

spectrally with ester group vibrations of triacylglycerols. Given that triacylglycerols are

ubiquitous in lipid droplets, the 1740 cm−1 marker band cannot be readily used as a unique

probe for cholesteryl esters. Similarly, in the CH stretching range, the spectral signatures

of free cholesterol are insufficiently different from esterified cholesterol to unambiguously

discriminate subpopulations of lipid droplets with markedly different levels of esterification.

The D38-cholesterol probe, on the other hand, exhibits a unique and characteristic bandshape

in the CH stretching range, which enabled the identification of lipid droplet heterogeneity

in terms of cholesterol esterification by using hyperspectral SRS imaging.

The non-uniform distribution of lipid droplet associated proteins between individual droplets
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is well appreciated269. Instead, the plausible heterogeneity in the distribution of the stored

lipids has so far received little attention. This has largely been due to the lack of reliable

imaging methods, with SRS imaging of D38-cholesterol now providing a novel approach. The

accumulation of cholesteryl esters in lipid droplets is thought to act as a buffering mechanism

to reduce the toxicity of excess free cholesterol in cellular membranes270. Here, we observed

in addition to cholesteryl esters, free cholesterol deposition in a subset of lipid droplets. It is

conceivable that this acts as an additional cholesterol detoxicifation mechanism, for instance,

during atherogenesis when macrophages are challenged with large amounts of cholesterol.

We also report that cells specialized in steroid hormone production from cholesterol store

triacylglycerols and cholesteryl esters in different lipid droplets. Whether such lipid sort-

ing occurs in other cell types should be addressed in future studies. Overall, lipid droplet

heterogeneity is a highly interesting phenomenon and has important implications for the

mechanisms of lipid droplet formation and utilization as well as the biophysical properties of

lipid droplets. For instance, we have recently observed that cholesteryl ester enrichment of

lipid droplets increases their ordering262. Furthermore, lipid droplet heterogeneity necessi-

tates the segregation of regulatory proteins, as shown for lipid droplet coat proteins260. This

concept should also apply for the enzymes involved in neutral lipid metabolism.

7.2.5 Concluding remarks

In this work, we have generated D38-cholesterol and shown its utility for SRS imaging

studies of cholesterol storage in cells. The main advancements of this work are as follows: 1)

a procedure for the efficient and affordable production of D38-cholesterol; 2) demonstration

of the cellular uptake and processing of D38-cholesterol with efficiencies that are similar to

those of natural cholesterol; 3) the use of hyperspectral SRS to visualize D38-cholesterol

while also providing insight into lipid metabolism through bandshape analysis in the CH-
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stretching range; and 4) the application of D38-cholesterol as a probe for heterogeneity in

cholesterol storage among the pool of lipid droplets. We expect that the availability of D38-

cholesterol will lead to new discoveries of cholesterol movement and distribution in cells, as

exemplified here for the case of lipid droplet heterogeneity.

Deuterated low-density lipoprotein particles: next step

A sensible next step includes the examination of cholesterol distribution upon physiolog-

ical administration. The present study forces cholesterol uptake by mediated methyl-β-

cyclodextrin administration. A physiologically relevant rout in the the cellular uptake of

cholesterol via LDL receptor-mediated endocytosis, as described in chapter 1. Cholesterol

travels in the blood stream packed in low-density lipoproteins (LDL) that the cells uptake

through the LDL receptor15 . Imaging synthesized deuterated LDL, with D38-cholesterol on

them, with hyperspectral SRS, or simply tuned to the 2120 cm−1 Raman mode, would pro-

vide visual information of the intracellular cholesterol trafficking and compartmentalization

pathways.

Reconstruction of low-density lipoproteins has been successfully achieved for decades271–273,

usually to incorporate specific or labeled cholestryl esters in order to track their performance

with biochemical assays. Theoretically, reconstruction with deuterated cholesterol should

be analogous to those methods and would permit direct visualization of the cholesterol

pathways.

A tentative protocol to label LDL with D38-cholesterol has been adapted from previous

successful strategies to incorporate other labeled cholesteryl esters271,274, and is depicted

in figure 7.11. Free cholesterol however is present in very small concentration in the LDL

particles, which contain high quantities of esterified cholesterol. Therefore, esterifying D38-

cholesterol first, and then incorporating it into the LDL particles seems as a better strategy

178



Lipid microemulsion  Lipoporteins 

Protein mediated  
transfer of  

D38cholesterol 

0.21mg Trioleoylglycerol 
0.16mg D38cholesterol 
0.71mg Cholesteryl oleate 
0.42mg Dipalitoylphophatidylcholine 

+ Dry isopropanol 

Inject into (with pre-warmed 100ul Hamilton syringe) 

Tris buffer solution:  
0.15M NaCl + 10mM Tris-HCl (ph 7.4) + 0.3mM EDTA 

Immediately mix on a vortex 

Whole plasma 
(0.1mM NaN3) OR Isolated LDL + >1.21 plasma 

(= lipoprotein free plasma) 

Incubate at 37deg during 24 h 
(label of LDL by D38chol should happen now) 

Centrifuge at  1.006 for 18hr 40.3 rotor @ 38000rpm Microemulsions out 

Centrifuge at  1.019  Intermediate-Density Lipoprotein (IDL) out 

Centrifuge at  1.019 – 1.063  Low-Density Lipoprotein (LDL) out 

1. D38-cholesterol-rich microemulsions 2. LDL and plasma (wth transfer proteins)

3. Mix together D38-cholesterol microemulsions and LDL particles

Figure 7.11: Schematic protocol to synthesize deuterated low-density lipoproteins (d-LDL)
with D38-cholesterol. Adapted from271,274.

if we aim for detectable SRS signals.

The first step consists on creating D38-cholesterol microemulsions. In parallel, the second

step required the preparation of the LDL particles, which can be obtained from plasma.

Whole plasma can be used as well, which might increase transfer efficiency, due to the pres-

ence of proteins that mediate the process. Otherwise, the LDL particles can be isolated and

used in a lipoprotein free-plasma version. Finally, the microemulsions and the LDL particles

are mixed together via incubation to let the transfer take place. A series of centrifugation
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steps would extract the labeled LDL particles with D38-cholesterol from the mixture debris.

Our first attempts failed to produce labeled LDL particles, as no dueterated cholesterol

signal was found when the mixture was examined with Raman spectroscopy. Fine-tuning

the parameters, and probably esterifying the D38-cholesterol, are required for a successful

production of d-LDL, before imaging experiments take place.
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Chapter 8

Conclusion

Visualizing the omnipresent lipids

Lipids are among the biomolecular components that enable life. They provide cellular struc-

tural support, energy, and hormonal signaling. Lipid metabolism is tightly regulated to

ensure proper body function. Disruption of lipid homeostasis may result in life-threatening

disease. Tools that enable in situ lipid visualization may provide valuable information about

the altered elements of the physiological pathways.

Visualizing lipid metabolism is however a challenging task. Traditional biochemical assays

provide quantitative information on lipid cellular composition at the expense of destroying

the sample. Fluorescence microscopy enables the detection of general lipid classes and the

tracking of certain lipid-related properties, such as membrane fluidity. But the lack of lipid-

specific fluorophores and the disruption of the cellular integrity by some of the probes difficult

a detailed analysis.

Label-free nonlinear optical microscopy techniques provide quantitative imaging with min-

imal sample perturbation. Among them, coherent Raman scattering (CRS) microspec-
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troscopy enables lipid visualization in its natural environment, by probing the molecular

vibrations of the sample. CRS microspectroscopy offers diffraction limited chemical maps

with depth sectioning capabilities, and videorate detection. Such properties allow for in situ,

three-dimensional, dynamic analysis that can be used alone or in combination with other

nonlinear optical microscopy techniques, confocal fluorescence, or posterior biochemical as-

says.

Specific lipid Raman signatures

CRS chemical specificity derives from the Raman resonances of the molecules. Lipids are

composed of carbon and hydrogen covalent bonds arranged in a finite number of motifs that

generate strong vibrational signals, in particular when found at high concentrations, such as

in lipid droplets. Different lipids exhibit different Raman spectra, offering a means of label-

free identification. However, the cellular environment contains complex mixtures of several

components that are probed together with a diffraction limited focal spot. Nonetheless,

prominent lipids stand out and mixtures can be disentangled to a certain degree.

Some compilations of Raman spectra of specific components have been made available. Such

compilations provide guidance to identify different components one encounters on the sam-

ples, but the lack of standard acquisition protocols prevent a reliable interpretation. In the

case of lipids, Raman spectra in the literature are sparse and cumbersome to analyze in

detail. To contribute to amend this situation, we started an online Raman spectra library of

lipids, with a well-defined acquisition protocol, and with the capability of zooming in and out

along the spectra to analyze its details. This is currently limited to a handful of lipids, but

it allows expansion by other contributors. I believe this can be a good tool for newcomers

to the Raman technique, as well as for specialist who need rapid references.

Hyperspectral CRS imaging, in particular hyperspectral stimulated Raman scattering imag-
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ing, reconstructs the Raman spectrum of samples by acquiring images at consecutive vi-

brational frequencies. The resulting big datasets contain spatial resolution that provide

morphological cues of the sample, and chemical information that describes its composition.

Multivariate analysis facilitates the extraction of meaningful information form these datasets,

and new approaches implement machine learning methods that automate the analysis and

retrieve statistical descriptions difficult to attain otherwise.

Coherent Raman scattering imaging was applied in this thesis to investigate the role of lipids

in a variety of biological systems.

Meibum secretions characterized by multivariate analysis of hyperspectral SRS

Dry eye disease affects millions of elderly citizens and may result in vision loss. The causes

of dry eye are related to the tear film lipid layer, that protects the cornea from evaporation,

but the mechanisms that alter the teat film lipid layer remain unknown. As the major source

of lipid on the tear film, Meibomian glands are at the center of interest. These glands in the

upper and lower eyelids produce the lipids secreted to the eye upon blinking. Alterations in

its lipid composition have previously been related to Meibomian gland dysfunction. In par-

ticular, it has been hypothesized that the protein content increases in the meibum secretions

of unhealthy glands, and potentially contributes to the progression of dry eye disease. Stim-

ulated Raman scattering microscopy imaging of meibum secretions from healthy subjects

and dry eye diseases patients of varying severity were acquired to describe their biochemical

composition. Due to the large dataset obtained in this experiment, imaging over a hundred

samples, the analysis greatly benefited from a tailored multivariate analysis and machine

learning based classification system. With the robust data analysis infrastructure designed

specifically for this project, we expect to draw correlations with the clinical parameters that

aid an objective diagnosis of dry eye disease, or even spurs treatment to alleviate it.
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Lipid droplets as a target for exploring lipid metabolism

Lipid droplets are central in lipid metabolism. They act as reservoirs of cellular energy

and building blocks to use upon demand. The liver in a major organ in lipid homeostasis,

so much so, that it constitutes the starting and ending points of the body-lipid transport

system. With the surge of extraterrestrial adventures, the effects of microgravity and spatial

radiation on human health became a topic of interest. Bone density loss and muscle atrophy

have already been characterized in spaceflight travels. Lipid metabolism however remains

mysterious. A study performed on livers of mice aboard a spaceflight mission concluded

that lipid metabolism may as well be altered. We analyzed the lipid droplet properties of

the livers of spaceflight mice and those of control mice on Earth. Not only we found an

increased lipid droplet size of the spaceflight mice, but also a loss of retinol that was related

to the activation of hepatic stellate cells in the liver and to the upregulation of metabolic

pathways that may lead to nonalcoholic fatty liver disease, which may have dramatic health

consequences. This study included analysis from multiple biochemical assays in combination

with CRS microscopy, Raman spectroscopy, and other imaging techniques, illustrating the

power of synergistic multimodal analysis, and the potential for nonlinear optical microscopy

for visualizing effects of anomalous expression of metabolic pathways.

CRS combined with FLIM for label-free metabolic markers

Macrophages are cells of the immune system present in inflammatory processes. Atheroscle-

rosis is a prevalent chronic inflammatory process that results in the build-up of lipid-rich

plaque within the arterial wall. Macrophages scavenge the lipid present in plaque to mitigate

the lesion, but in some occasions they become foam cells that contribute to atheroprogression.

Combining CARS microscopy and machine learning segmentation algorithms, we quantified

the lipid storage capabilities of macrophages with opposing phenotypical traits. We found
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that, according to popular belief, proinflammatory macrophages rapidly become foam cells

upon exposition to lipid-rich media, contrarily to prohealing macrophages. Despite this gen-

eral trend, we encountered a fraction of prohealing macrophages that were not resistant to

foam cell formation, which was a controversial observation also made by other groups.

Motivated by the lack of tools to assess the phenotype of macrophages at any give time, we

implemented fluorescence lifetime imaging microscopy (FLIM) on these samples. Prohealing

and proinflammatory macrophages differ in their glycolytic state, and this is reflected in the

FLIM phasors, that identify different overall cellular lifetimes for each group, providing a

label-free marker for probing cellular metabolic state in living cells. FLIM was also used to

probe products of lipid oxidation without labels in adipose white tissue and stressed cells.

A thorough characterization of these markers under different scenarios could lead to the

standardization of their use for fundamental research and in vivo applications.

Label-free and minimally perturbing markers for cholesterol

Cholesterol is a particularly interesting lipid. Its altered homeostasis has a major impact in

pathological disorders, including atherosclerosis. Methods to specifically detect cholesterol in

living cells are scarce. We have observed a timid but robust Raman feature in lipid droplets of

cells with upregulated cholesterol pathways, missing in the control counterparts. Its presence

was found in the Raman spectra of lipid droplets from hepatitis C virus infected cells, and in

some specific strains of retinal pigment epithelial cells with age-related macular degeneration

diseased. Once again, biochemical assays were preformed in parallel and support the findings.

Despite cholesterol has a distinct Raman peak, it is too weak to efficiently target it with

CRS microscopy. In need for stronger cholesterol markers, a highly deuterated cholesterol

analog (D38-cholesterol) was synthesized by our collaborators, and we used it to track sterol

compartmentalization in adrenal cells. Imaging in the deuterated stretching window of
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the Raman spectra, which is devoid of endogenous cellular signals, in combination with

the CH stretching band, to detect triglycerides and other naturally occurring lipids, we

demonstrated heterogeneous subpopulations of lipid droplet within the same cell. We expect

that the availability of D38-cholesterol will lead to new discoveries of cholesterol movement

and distribution in cells.

Biomedicine benefits from biophotonics developments

Overall this contribution illustrates the potential of label-free nonlinear optical microscopy

techniques for unveiling complex physiological processes by direct visualization of the main

elements in play, focused here on the omnipresent lipids. Advances on instrumentation and

image processing strategies may permit a wide implementation of coherent Raman scattering

microspectroscopy as one standard additional tool to investigate and quantify fundamental

biology. Its combination with other linear and nonlinear microscopy techniques is poised to

reveal complex dynamics of interactions among different classes of biomolecules. Nonlinear

optical microscopy techniques are also translated to clinical settings. More successful imple-

mentations will rise from fundamental understanding of the underlying biological processes,

the origin of the proposed label-free marker signals (and more to come), and new technical

developments.

The advance of biophotonic sciences and engineering is an exciting pathway with direct

repercussion in the advance of biomedicine. Optical microscopy is the gentlest way to observe

biology as it unveils in front of our eyes, and I can’t wait to see what we will accomplish

next.
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Fontaine, Gabin Sihn, Michael Bader, Amrita Ahluwalia, and Johan Duchene. CXCL5
limits macrophage foam cell formation in atherosclerosis. Journal of Clinical Investi-
gation, 123(3):1343–1347, February 2013.

[162] L J H van Tits, R Stienstra, P L van Lent, M G Netea, L A B Joosten, and A F H Stal-
enhoef. Oxidized LDL enhances pro-inflammatory responses of alternatively activated
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[223] D Débarre, W Supatto, A M Pena, and A Fabre. Imaging lipid bodies in cells and
tissues using third-harmonic generation microscopy - Nature Methods. Nature, 2006.

[224] N Sitte, K Merker, T Grune, and T Von Zglinicki. Lipofuscin accumulation in prolif-
erating fibroblasts in vitro: an indicator of oxidative stress. Experimental gerontology,
2001.

[225] Martin L Katz, Graig E Eldred, and W Gerald Robison, Jr. Lipofuscin autofluores-
cence: Evidence for vitamin A involvement in the retina. Mechanisms of Ageing and
Development, 39(1):81–90, June 1987.

[226] Chiara Stringari. Label-free separation of human embryonic stem cells and their differ-
entiating progenies by phasor fluorescence lifetime microscopy. Journal of Biomedical
Optics, 17(4):046012, April 2012.

205



[227] Dietrich Schweitzer, Elizabeth R Gaillard, James Dillon, Robert F Mullins, Stephen
Russell, Birgit Hoffmann, Sven Peters, Martin Hammer, and Christoph Biskup. Time-
Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with
Significant Extramacular Drusen. Investigative Opthalmology & Visual Science, 53(7):
3376, June 2012.

[228] Tivadar Orban, Grazyna Palczewska, and Krzysztof Palczewski. Retinyl Ester Stor-
age Particles (Retinosomes) from the Retinal Pigmented Epithelium Resemble Lipid
Droplets in Other Tissues. Journal of Biological Chemistry, 286(19):17248–17258, May
2011.

[229] Elina Ikonen. Mechanisms for cellular cholesterol transport: defects and human disease.
Physiological reviews, 86(4):1237–1261, 2006.

[230] Kai Simons and Robert Ehehalt. Cholesterol, lipid rafts, and disease. Journal of
Clinical Investigation, 110(5):597–603, September 2002.

[231] Khayriyyah Mohd Hanafiah, Justina Groeger, Abraham D Flaxman, and Steven T
Wiersma. Global epidemiology of hepatitis C virus infection: New estimates of age-
specific antibody to HCV seroprevalence. Hepatology, 57(4):1333–1342, 2013.

[232] M V Machado and A G Oliveira. Hepatic steatosis in hepatitis B virus infected patients:
Meta-analysis of risk factors and comparison with hepatitis C infected patients. Journal
of Gastroenterology and Hepatology, 2011.

[233] J Grebely and G J Dore. What is killing people with hepatitis C virus infection?
Seminars in Liver Diseases, 2011.

[234] Laura Rubbia-Brandt, Rafael Quadri, Karim Abid, Emiliano Giostra, Pierre-Jean
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