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Abstract

Antiproton and positron dynamics in antihydrogen production

by

Chukman So

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Jonathan S. Wurtele, Chair

The asymmetry between matter and antimatter in the universe and the incompatibility be-
tween the Standard Model and general relativity are some of the greatest unsolved questions
in physics. The answer to both may possibly lie with the physics beyond the Standard
Model, and comparing the properties of hydrogen and antihydrogen atoms provides one of
the possible ways to exploring it. In 2010, the ALPHA collaboration demonstrated the
first trapping of antihydrogen atoms, in an apparatus made of a Penning–Malmberg trap
superimposed on a magnetic minimum trap. Its ultimate goal is to precisely measure the
spectrum, gravitational mass and charge neutrality of the anti-atoms, and compare them
with the hydrogen atom. These comparisons provide novel, direct and model–independent
tests of the Standard Model and the weak equivalence principle. Before they can be achieved,
however, the trapping rate of antihydrogen atoms needs to be improved.

This dissertation first describes the ALPHA apparatus, the experimental control sequence
and the plasma manipulation techniques that realised antihydrogen trapping in 2010, and
modified and improved upon thereafter. Experimental software, techniques and control
sequences to which this research work has contributed are particularly focused on. In the
second part of this dissertation, methods for improving the trapping efficiency of the ALPHA
experiment are investigated. The trapping efficiency is currently hampered by a lack of
understanding of the precise plasma conditions and dynamics in the antihydrogen production
process, especially in the presence of shot–to–shot fluctuations. This resulted in an empirical
development for many of the plasma manipulation techniques, taking up precious antiproton
beam time and resulting in suboptimal performance. To remedy these deficiencies, this
work proposes that simulations should be used to better understand and predict plasma
behaviour, optimise the performance of existing techniques, allow new techniques to be
explored efficiently, and derive more information from diagnostics.



2

A collection of numerical models for Penning–Malmberg trap plasmas are introduced,
which are designed to simulate a major subset of the plasma manipulation techniques used
in ALPHA, targeted at the plasma conditions available therein, and with near–real–time
experimental usability in mind. The first of these is a zero–temperature plasma solver,
which exploits the water bag model to compute the density and potential of a cold, stationary
plasma with a given radial profile and electrode excitations. It is suited to analysing slow
(or stationary) processes, where the variations applied are on a much slower time scale than
the typical time between collisions in the plasma. The density and electric potential output
by the solver inform the programming of the electrode voltages, which is of particular value
when plasma bunches need to be weakly confined in shallow wells.

The second numerical model developed for this work is a radially–coupled Vlasov–Poisson
solver, which evolves the axial phase space distribution of a plasma under the influence of
(time-dependent) electrode excitations, from a given initial state. It takes into account the
plasma self–field and the radial variations in potential and density, and assumes that radial
transport is negligible. This model simulates processes where the dynamic behaviour of the
plasma is critical to their outcome. It allows for tests of plasma manipulation techniques over
a wide range of tunable parameters and plasma conditions prior to an actual experiment,
potentially reducing the need for empirical tuning.

The third numerical model is an azimuthally averaged, energy–conserving Fokker–Planck
solver for a discrete, non-regular grid distribution. It simulates the effects of weakly magne-
tised collisions on the bulk parallel and perpendicular velocity distributions of a plasma, as
the particles collide among themselves. The collision coefficients are analytically calculated
by azimuthally averaging the derivatives of the Rosenbluth potentials. This model is ap-
plicable to plasmas where self–collisions of antiprotons have a non-negligible effect, possible
examples of which include the antiproton–positron mixture which exists during antihydrogen
formation, and the antiproton cloud captured from the Antiproton Decelerator, the source
of ALPHA’s antiprotons.

The fourth numerical model is an azimuthally averaged Fokker–Planck model for in-
termediately magnetised collisions. It generalises the preceding model to study Fokker–
Planck–type collisions of electrons, positrons and antiprotons in magnetic fields of arbitrary
strength. Unlike the previous model, analytic solutions for collisions in arbitrarily strong
magnetic fields are not known. The collision coefficients are therefore computed numerically
via an adaptive Monte Carlo averaging of the colliding particles’ changes in parallel and
perpendicular velocities, over their impact parameter and their velocity phase angles. The
collision process itself is simulated via a variable–time–stepping Boris particle pusher. This
model is applicable to a wide range of processes involving cooling and thermalisation, which
are critical to the ALPHA experiment.

The water bag and Vlasov models are employed to simulate the excitation of antipro-
tons during the antiproton–positron mixing process, which produces antihydrogen atoms and
determines whether they can be confined by the magnetic minimum trap. The agreement
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between the simulation and experimental measurements, analytic predictions and other ex-
isting simulations is demonstrated. The simulation is then used to optimise the excitation
under various plasma conditions, and novel excitation techniques are proposed and explored.

The models developed throughout this work lay the foundation for a systematic analysis
of the plasma phenomena in the experiment. Future work includes extending the result of
the mixing simulation to study collisional and recombination effects, as well as applying the
models to other processes in the experiment. It is also of interest to apply the collisional
formulations in this work to particle–in-cell (PIC) models and to explore three–dimensional
plasma effects.
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Chapter 1

Introduction

The ALPHA experiment, along with other antihydrogen experiments, aims to produce anti-
hydrogen atoms and measure their physical properties in an attempt to discover discrepan-
cies between matter and antimatter. This is essential, as the universe is matter–dominated
according to astronomical observations, which implies that a level of asymmetry between
matter and antimatter must have contributed to the Big Bang’s process of equilibrating
matter–antimatter and energy. However, laboratory– and accelerator–based experiments
have so far failed to observe the level of asymmetry required. Moreover, the theory which
summarises these particle physics experiments, the Standard Model, is incompatible with
Einstein’s theory of gravity. It is therefore essential for experiments to probe for the physics
beyond the Standard Model, and to discover new asymmetries between matter and antimat-
ter, to further our understanding of fundamental physics.

The core of the ALPHA apparatus is made of a Penning–Malmberg trap, which confines
charged particles with a uniform axial magnetic field and an electric field created by a stack
of independently controlled, hollow cylindrical electrodes. Antiprotons and positrons are
captured, manipulated and cooled in the Penning–Malmberg trap, and subsequently mixed
in a region of the electrode stack surrounded on the outside by a pair of mirror coils and an
octupole magnet. These magnets form an magnetic minimum trap, which confines neutral
particles via their magnetic moment by creating a magnetic minimum. The antihydrogen
atoms created from the mixing of cold antiprotons and positrons come into being inside the
magnetic minimum trap. Those anti-atoms with sufficiently low kinetic energy are confined
by it. The long lifetime of the trapped anti-atoms allows them to decay from their highly
excited states at recombination to their ground states. This in turn should allow their
physical properties, such as spectrum and mass, to be precisely measured.

While ALPHA has demonstrated the long–duration trapping of antihydrogen atoms, the
numbers obtained to date is not conductive of precision measurements. A higher number
of trapped antihydrogen atoms is desirable as it improves the signal–to–noise ratio of the
measurements, and reduces the impact of machine fluctuation. To improve the trapping
rate, the production method of antihydrogen must be made more efficient. In this chapter,



2

we first give a brief summary of the history of antihydrogen research, the basic principle
of the Penning–Malmberg trap on which the ALPHA experiment (as well as many other
antihydrogen and plasma experiments) is based, the obstacles we face in achieving precision
measurements, and how we propose to overcome them through plasma simulation. In Ch. 2
we describe in depth the hardware and experimental control sequences of the experiment, to
provide a full picture of the processes we can simulate and improve. Many of the hardware
and sequence developments were also made with our contribution. In Ch. 3 to 6 we outline
the numerical models that can simulate various important aspects of the plasma physics in
the experiment. In Ch. 7 we apply these models to one of the most critical and sensitive parts
of the experimental sequence — the mixing of antiprotons and positrons — to demonstrate
the capability our simulation models offer.

1.1 A history of antihydrogen research

Discovery of antimatter

The earliest scientific mention of the concept of antimatter dates surprisingly from the 1880’s,
before the era of quantum mechanics and relativity. Theoretical physicists attempted to ex-
plain the action–at–a–distance of classical gravity and electromagnetism with hydrodynam-
ical models of the ether, an all–permeating, tenuous substance that mediates these forces
[1]. For instance, Carl Pearson proposed the “ether squirt” theory in the 1880’s, which
suggested that ether emerges from particles, and these gravitational and electromagnetic
forces originate from the interaction between these outflows. To conserve the total amount
of ether, sinks for the ether must also exist which would behave in an opposite manner to
normal particles under gravity and electromagnetism. He called these sinks “antimatter”.
The physicist William Hick also raised the concept of antimatter in the same period in his
ether vortex theory. Naturally their classical attempts were made obsolete by Max Planck,
whose proposal of the quantisation of photons in an attempt to explain the black body radi-
ation spectrum ushered in the era of quantum physics. The concept of antimatter had fallen
into obscurity.

In the early 1930s, the concept of antimatter emerged as we know it today due to the
English physicist Paul Dirac. In 1928 he proposed an extension to Schrödinger’s quantum
wave equation [2] to take into account special relativistic effects. His theory explained the
magnetic moment of the 1/2–spin electron, and gave accurate prediction of the fine struc-
ture splitting of the hydrogen spectrum. However, in addition to the electron solution, his
equation had a solution for a positively charged particle with the same mass. Robert Op-
penheimer and Igor Tamm further proved [3] in 1930 that this positively charged particle
and an electron can combine and annihilate, leaving behind two energetic photons. Initially
reluctant, Dirac finally identified this positive particle to be a new type of particle [3] in
1931, which he called an “anti-electron”. It was also realised later that the Dirac equa-
tion predicted the presence of an antimatter partner to every particle with a half–integer
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spin (fermions). These anti-particles would have the same spin and mass as their matter
counterparts, but with opposite charges. A particle and a corresponding anti-particle would
annihilate each other when put in close contact, leaving behind highly energetic photons.
Conversely, photons with sufficient energy can create a particle–antiparticle pair out of the
vacuum, a process called pair creation.

Soon after Dirac’s prediction of a new positive particle, experimentalist Carl Anderson
discovered [4] Dirac’s particle in 1932 in a cloud chamber experiment measuring cosmic
rays, proving the existence of antimatter. Anderson named this particle the positron, a
convention still used today. With the advent of modern accelerators in the 1950s and the
ability to accelerate particles to ever higher energies, other more massive antiparticles have
been artificially produced. Antiprotons were first produced [5] at the Bevatron at Lawrence
Berkeley National Laboratory in 1955, by smashing a beam of 6.2 GeV protons into a
copper target, and detecting the scattered products in a bubble chamber. Antineutrons
were produced at the same accelerator [6] in 1957, by first colliding the proton beam into
a beryllium target to produce antiprotons. These antiprotons were subsequently allowed to
interact with protons inside another downstream target. Some of them underwent a charge
exchange collision, which led to antineutrons.

Astronomical observations

Parallel to these developments in quantum and particle physics, breakthroughs were also
made in astronomy in the 1920s [7]. In 1924 the American astronomer Edwin Hubble mea-
sured the distances of what was then known as “spiral nebulae” by observing the relative
brightness of a type of variable star in these nebulae. These variable stars, the Cepheid
variable, have a highly regular correlation between their absolute brightness and pulsation
period, and acted as standard candles with which Hubble deduced their distances. He proved
that these spirals were indeed distant galaxies just like our own, and by comparing the mea-
sured distance of these galaxies to their receding speeds (which were measured earlier by
Vesto Slipher in 1912 through the Doppler shift of their spectra), he discovered that more
distant galaxies receded more rapidly. The universe is expanding. There were several com-
peting theories to account for this expansion, but in 1964 astronomers Arno Penzias and
Robert Wilson discovered the cosmic microwave background radiation exactly as predicted
by the Big Bang model, hence confirming its validity. In the Big Bang model, the primordial
universe started as a rapidly expanding microscopic point with immense energy and temper-
ature. Matter and radiation existed in equilibrium through pair creation and annihilation.
The expansion caused the temperature of this equilibrium to decrease, and fundamental par-
ticles of various masses became “frozen out” at various points in time, when the energy of
the radiation was no longer sufficient to create a pair of that species. Eventually the radia-
tion decreased to below the energy scale of the lightest species — electrons and positrons —
and radiation and matter became fixed. The universe continued to expand, and the matter
collapsed around fluctuations in density due to gravitational instability and formed all the
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astronomical bodies we see today. The radiation on the other hand was “stretched” by the
expansion of the universe, ever decreasing in temperature, and became the 2.7 K microwave
background radiation observed by Penzias and Wilson.

The exact composition of the matter resulting from the Big Bang depends on pair cre-
ation, annihilation and decay dynamics. This allows particle models to be examined against
astronomical observations of the matter composition of the universe. For instance, a parti-
cle model that is symmetric around matter and antimatter requires them to be present in
exactly equal numbers in our universe. However, attempts to observe the astronomical pres-
ence of antimatter though the detection of either the cosmic ray from antimatter stars and
galaxies (c.f. the BESS experiment [8]) or the activity along the interface between matter
and antimatter domains have yielded no evidence of the missing antimatter. This indicates
that some particle physics processes must have created an asymmetry between matter and
antimatter in the early universe, in a process called baryogenesis. A successful particle model
must provide mechanisms that can adequately explain baryogenesis and the composition of
the universe.

More recent observations concerning the spinning of spiral galaxies, gravitational lensing
around galaxies, the detailed structure of cosmic microwave background and the accelerating
expansion of the universe indicate that a significant amount of gravitational mass and energy
is present in our universe, but not directly observed. The lack of direct observation of these
dark matter and energy means they must either be extremely weakly interacting, or highly
scarce. This adds to the challenge of constructing a particle model which can explain the
composition of the universe. A model has to account for these so far unobserved matter and
energy, in addition to the observed (matter) stars and galaxies. Numerous experiments are
currently being carried out in an attempt to detect these dark matter and energy, or to set
bounds on the possible contribution from various particle species.

The Standard Model

There are three basic symmetries in fundamental physics: parity (P), charge (C) and time
(T). An interaction is considered parity–symmetric if the physical law governing it remains
the same upon a reversal of all coordinate vectors. Similarly, a charge–symmetric interaction
remains invariant upon flipping the signs of all charges, and a time–symmetric interaction
stays unchanged upon the reversal of time. These symmetries are observed in almost all
common interactions, but Andrei Sakharov showed [9] in 1967 that there are at least three
necessary conditions for baryogensis: 1. That there exist interactions which violate baryon
number conservation, causing an excess of one type of matter to emerge from a net balance
between matter and antimatter; 2. That C and CP–symmetries are violated, meaning the
interactions favouring matter creation are not completely cancelled by their C or CP conju-
gates, which favour antimatter creation; 3. That these interactions happen out of thermal
equilibrium, so as to prevent those matter-favouring interactions from being cancelled by
their CPT conjugates.
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The first observation of an interaction which violates at least some of these symmetries
was carried out in 1956 by C. S. Wu et al. [10], regarding the beta decay of a 60Co atom.
They cooled and aligned cobalt atoms in a strong magnetic field, and observed whether there
is any preference between the two possible decay modes (Fig. 1.1), which are mirror images
of each other. If parity is observed in the weak interaction, decays should happen in equal
frequency in both modes, but Wu et al. only observed electrons whose spin is anti-parallel
to the cobalt atom’s (mode 1 in Fig. 1.1), thus proving parity can be violated. However the
joint CP symmetry is still obeyed in this interaction.

60Co
e- ve

60Co
e-ve

Decay mode 1

Decay mode 2

magnetic field

Figure 1.1: Two possible decay modes of a 60Co atom.

Subsequently in 1964, Christenson et al. observed [11] the first CP–violating interaction
in the decay of neutral K–mesons. The states of definite half–life for K–meson, KL and
KS, are superpositions of the particle eignestates K0 and K̄0. If CP symmetry is valid in
K–meson’s decay, the particle and antiparticle eigenstates of K–meson should be symmetric,
and KL and KS should equal (K0 − K̄0)/

√
2 and (K0 + K̄0)/

√
2 respectively. The anti–

symmetric superposition of KL prevents it from decaying into two pions, which KS is capable
of, leading to the latter’s much shorter half–life. However, Christenson et al. observed the
rare two–pion decay of KL, thus showing that K0 and K̄0 are not exactly CP–symmetric.

The Standard Model is a quantum field theory which unifies electromagnetism, weak and
strong interactions, and it is the state–of–the–art model in particle physics. It embeds the
discovery of these (and many other) symmetry–breaking interactions and provides mecha-
nisms to explain their existence. Every laboratory– and accelerator–based experiment so far
is in agreement with the prediction of the Standard Model, which illustrates its extraordinary
success.

However, the Standard Model is not a “theory of everything” — it has deficiencies both
in its cosmological implications and incompatibility with gravity. The level of C and CP
symmetry–breaking present in the Standard Model is well below that which is required to
explain the predominance of matter over antimatter. Indeed according to the Standard
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Model the amount of matter imbalance in the universe after Big Bang can at most only form
“a single cluster of stars” [3]. The species and quantity of matter predicted by the Model also
fail to explain the recent indirect observation of dark matter and dark energy. Moreover, the
Standard Model is incompatible with Einstein’s general theory of relativity, which on its own
is highly successful in describing the fourth fundamental force of gravity. These are some
of the most profound unsolved questions in physics, and their answers require the study
of physics beyond the Standard Model. In particular, laboratory– and accelerator–based
evidence of the break–down of the Standard Model or general relativity would help identify
the way in which they are incomplete, and elucidate the more fundamental, unified law.

Tests of the Standard Model

One way to explore the physics beyond the Standard Model is to look for new CP or CPT
violations, or to set the bounds thereof, in the four fundamental interactions. Numerous ex-
periments have been or are currently being conducted to this end, each looking for violations
in different particles and interactions. A few examples are as follow:

Mesons

Decays of accelerator–produced mesons are used to search for CP violations in weak in-
teractions, since the energy scale in these machines means electromagnetic and gravitation
interactions are relatively unimportant, and these particles are short–lived. For instance the
KTeV experiment at Fermilab [12] and the NA48 experiments at CERN [13] discovered CP
violations in rare K–meson decays in 1999; in 2001, the BaBar experiment at SLAC [14] and
the Belle experiment at KEK [15] in Japan discovered CP violations in B–meson decays; and
In 2011, the LHCb experiment at CERN discovered possible indications of CP violations in
D–meson decays [16]. The violations discovered in these experiments so far fall within the
predictions of the Standard Model.

Positron

A precision measurement of the positron magnetic moment can be compared to that of the
electron, and deviation between the two would indicate a violation of CPT symmetry in
the electromagnetic interaction of positrons. The Gabrielse group at Harvard is currently
constructing a device for this purpose [17].

Antiproton

The TRAP experiment at CERN performed [18] a precision measurement of the charge–
to–mass ratio of antiprotons in 1999 via a magnetic spectrometer, and compared it to that
of proton, confirming their equality (and thus CPT compliance) within experimental limits.
Subsequently the APEX experiment at Fermilab showed [19] in 2000 that the half–life of
antiproton must be longer than 800,000 years with 90% confidence, again showing no CPT
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violations up to this level. The ATRAP experiment at the AD at CERN measured [20]
the magnetic moment of antiprotons in 2013, and showed it is compatible to that of proton
within experimental error.

Positronium

Positronium is a short–lived bound system between an electron and a positron, which, much
like the hydrogen atom, possesses various excited states and a spectrum. Since the electron
and positron are structureless fundamental particles in the Standard Model, its spectrum
is simple and can be predicted highly accurately. CPT violations would be revealed if its
spectrum is measured to be different from the prediction of the Standard Model. M. Deutsch
and S. Brown first measured [20] the Zeeman and hyperfine splitting of positronium in 1952,
in agreement with the Standard Model prediction. However its short life time (∼ 100 ns)
prevented highly precise measurements.

Antihydrogen

The antihydrogen atom is a bound state between an antiproton and a positron. Intrinsically
stable, its lifetime is only limited by vacuum and confinement quality. It is electrically neutral
theoretically (see below for experimental measurement), and is made entirely of antimatter.
These properties mean a precision measurement of its spectrum is feasible, since antihydro-
gen can be accumulated and cooled in a much longer time scale compared to positronium.
Given that the spectrum of hydrogen has been measured [21] to extraordinary precision, and
the Standard Model prediction of hydrogen (and therefore antihydrogen) spectrum is also
highly precise, the antihydrogen spectrum offers a sensitive, model–independent test of CPT
symmetry in a purely antimatter electromagnetic interaction. The ALPHA experiment has
demonstrated [22] the first measurement of the hyperfine splitting of the antihydrogen atom
in 2012, and the ALPHA, ASACUSA and ATRAP experiments at CERN are all attempting
to perform precision spectral measurement on antihydrogen atoms.

The antihydrogen atom can also be used to test the gravitational weak equivalence prin-
ciple. This principle states that the dynamics of a point mass in a gravitational field is
solely determined by its mass, and independent of its composition and internal structures.
In other words, under general relativity, matter and antimatter should behave in exactly the
same manner. If antimatter is observed to behave differently under gravity compared to nor-
mal matter, general relativity must be incomplete. Non–neutral particles are not suitable for
gravitational tests since any stray electromagnetic fields would overwhelm their gravitational
responses, and the position or momentum of decaying systems cannot be sufficiently altered
by gravity within their life–time compared to their initial spread. Antineutrons are difficult
to manipulate due to their neutrality. This leaves the antihydrogen atom as the simplest
candidate for antimatter gravity tests. The ALPHA experiment has established [23] a first
bound on the gravitation mass of the antihydrogen atom in 2013, by measuring the grav-
itation bias of antihydrogen trajectories in a magnetic minimum trap during its shut–off.
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The AEgIS experiment at CERN aims [24] to perform a measurement on the free fall of
antihydrogen atoms in a moiré deflectometer in the near future. The GBAR experiment,
also at CERN, aims [25] to directly measure the vertical free fall of ultra-cold (∼ 20µK)
antihydrogen atoms down a vertical space a few tens of centimetres.

The electrical neutrality of the antihydrogen atom also serves to compare the charges
of antiprotons and positrons, which, according to the Standard Model, should be exactly
opposite. The presence of any fractional charge on an antihydrogen atom would open up
physics beyond the Standard Model. This can be tested by measuring the response, if any, of
antihydrogen atoms to a strong electric field, which is relatively simple and highly sensitive
given the ease of creating a strong electric field and the stability of the anti-atom. The
ALPHA experiment has set [26] a bound on the fractional charge of antihydrogen atom in
2014, consistent with the Standard Model’s prediction of neutrality.

Producing antihydrogen

Relativistic

Antihydrogen was first produced in the LEAR antiproton decelerator in 1995 by Oelert et al.
[27]. In that experiment, a beam of antiprotons was targeted at a cluster of Xenon atoms.
Some of the antiprotons would collide with the Xenon nuclei, and part of that energy is
consumed by the pair creation of electrons and positrons (among other possibilities). Some
of these positrons would in turn be captured by antiprotons and form a highly–excited bound
state. These anti-atoms were then detected in a magnetic spectrometer where the neutral
species would show no deflection. These antihydrogen atoms were travelling at relativistic
speeds and lasted for as long as the time taken to cover their beam path to the spectrometer,
which is less than 100 ns.

Non–relativistic

In order to precisely measure the properties of antihydrogen, they must be at a sufficiently
low temperature, which cannot be achieved with antihydrogen atoms moving at relativistic
speeds. To overcome this, the ATHENA and ATRAP experiments used separate sources of
antiprotons and positrons, cooled them individually to cryogenic temperatures in a Penning–
Malmberg trap, and combined them to form low temperature antihydrogen. This method-
ology ensures the antiprotons, relatively easy to manipulate due to its charge, are as cold as
possible before recombination with a positron. ATHENA first produced slow–moving anti-
hydrogen in 2002 [28], followed by ATRAP in the same year [29]. In ATHENA, antiprotons
from the AD were degraded using a thin foil to increase their energy spread, the slow-
est fraction of which were captured in a Penning–Malmberg trap using high voltage gates.
They were subsequently cooled sympathetically with preloaded electrons. On the other end,
positrons emitted from a radioactive 22Na source were captured using a buffer gas, and ac-
cumulated in a Surko–type accumulator [30]. These positrons were then transferred to the
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Penning–Malmberg trap and combined with the antiprotons to form slow–moving antihy-
drogen atoms. The anti-atoms were no longer confined due to their neutrality, and drifted
to the Penning trap walls and annihilated. The annihilation products were detected in a
silicon vertex detector and identified as the signature of an antihydrogen atom.

1.2 The basics of the Penning–Malmberg trap

Penning–Malmberg traps are used by ALPHA, ATRAP, AEgIS, and many plasma and ion
trapping experiments to manipulate charged particles. These traps are compatible with
the ultra–high vacuum (UHV) environment necessary for long–term antimatter storage, and
the cryogenic temperatures necessary for particle cooling. A Penning–Malmberg trap is
composed of a uniform solenoidal magnetic field and a stack of hollow cylindrical electrodes
forming a long tube, aligned along the direction of the magnetic field (Fig. 1.2 a). The
voltage of each electrode is individually controlled through external circuitry.
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Figure 1.2: A schematic view of a basic three–electrode Penning–Malmberg trap, showing the a)
physical geometry and b) the potential along the trap axis. A single particle is shown trapped.

Single particle dynamics

When voltages are applied to the electrodes in a Penning–Malmberg trap, they create an
electrostatic field within the bore volume. Particles are usually confined near the axis of the
electrodes, and in that region the field has a negligible radial component compared to the
axial component. Ignoring collective effects, particle motion near the axis is simply given by
the Lorentz force law and Newton’s second law:{

v̇ = ωCv × ẑ

z̈ =
q

m
Ez(z)
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where v is the perpendicular velocity in the x-y plane as labelled in Fig. 1.2. The uniform
magnetic field is given by B = B0ẑ, and ωC ≡ qB0/m. The parallel and perpendicular
degrees of freedoms are completely decoupled, with the perpendicular motion a circular one
at the cyclotron angular frequency ωC , and the axial motion that of a free particle moving
according to the axial electric field. The confinement of particles in a Penning–Malmberg
trap therefore works in two parts: 1. Radially, particles are prevented from venturing far
outward since trajectories are deflected into circles by the magnetic field; 2. Axially, the
electrodes are biased to create an electrostatic well which deflects the axial movement of
the particles towards the potential minima (Fig. 1.2 b). As long as the axial energies of
the particles do not exceed the maximum deflection strength of the potential well (the well
depth), they remain confined.

If the particle is not situated exactly on the trap axis, it experiences a radial component
in the electric field. This radial component must point outward when positive particles
are confined, since the Laplace equation requires the axial minimum of the potential to
also be a radial maximum. The radially outward electric field causes the centre of the
cyclotron motion (the gyrocentre) to drift in the θ̂ direction at a velocity of vD = Err̂ ×
B0ẑ/B

2
0 , but the gyrocentre remains approximately confined at a fixed radius. The accuracy

of this approximation relies on the cyclotron radius being much smaller than the radius
of the electrodes, such that the electric field across one cyclotron orbit is mostly uniform.
This is usually the case in a Penning–Malmberg trap, given the strong magnetic field and
low–temperature particles, both decreasing the size of the cyclotron orbit. In the ALPHA
apparatus, the cyclotron radius of a typical positron and antiproton are ∼ 2 × 10−7 m and
∼ 2× 10−5 m respectively, which are much smaller than the electrode radius ∼ 2× 10−2 m,
the scale of variation for the electric field.

The cyclotron motion of the particle also leads to cyclotron radiation, causing the per-
pendicular energy of the particle to decrease. This radiative cooling continues until the
power emitted via radiation is balanced by the power absorbed from the radiation in the
environment. The cooling power is given by the Larmor formula for radiation [31]

dE

dt
= −µ0q

2a2

6πc
= −µ0q

4

3πc

B2

m3
E.

Here E is the kinetic energy contained in the perpendicular gyromotion, which decays with
a time scale proportional to B2/m3. Therefore, the radiative cooling process is more rapid
for lighter particles in stronger magnetic fields. Note that in an azimuthally symmetric trap,
there is no single–particle mechanism for the cyclotron radiation to effect cooling to the
axial movement, since these two degrees of freedom are decoupled (up to the uniform E-field
approximation above). Collisions are required to help transfer the cooling effect to the axial
degree of freedom.
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Space charge and Debye shielding

The leading effect of having more than one particle in the trap is the mutual electrostatic
repulsion of the particles, which tends to counter the confinement and eject the particles. The
Penning–Malmberg trap, however, is able to confine multiple particles even in the collective
regime. The outward acceleration due to the axial self–field, as well as the axial energies of
the particles, is balanced by the compressive force due to the external field applied through
the electrodes. The radial self–field, on the other hand, enhances the net radially electric
field, and results in a more rapid E ×B drift in the θ̂ direction (compared to the single–
particle case). However, as long as the scale of variation of the net radial electric field is
much bigger than the size of the cyclotron orbits of the particles, the E × B drift still
guarantees the gyrocentres do not move radially. The overall result is an ellipsoidal “cloud”
of particles (plasma) confined along the trap axis. Each particle undergoes cyclotron motion
while bouncing axially within the electrostatic trap formed by the combination of the external
and self–field, and the gyrocentre drifts in the θ̂ direction.

In steady–state and sufficiently deep inside the plasma, the net axial electric field (the
sum of the self–field and external field) must be zero since the net axial particle flux is, by
the definition of “steady state”, zero, and particles move freely in ẑ. This means the total
potential φ(r, z) is only a function of r within the plasma and far away from the surface. Near
the surface, and along a line of fixed radius, φ increases as one moves away from the bulk of
the plasma. This increasing potential provides the axial deflecting force that keeps particles
trapped. The more energetic particles can move further outward against this potential before
eventually being turned back. This means the density of a plasma gradually decreases to
zero near the surface as the total potential rises. Since the potential on the plasma surface
varies like ∼ qn0z

2/ε0 (n0 being the bulk density of the plasma), a typical particle with
charge q travelling with an axial energy of kBT (T being the plasma temperature) would
stop within a distance of

√
ε0kBT/(q2n0) into the sheath. This distance, the characteristic

thickness of the transitional sheath, is known as the Debye length λD. The net axial electric
field vanishes within a few Debye lengths into the plasma.

The idea described above is quantitatively modelled by the Poisson–Boltzmann equation
∇2φ(r, z) = −qn(r, z)

ε0

n(r, z) = N (r) exp

(
−qφ(r, z)

kBT

)
,

(1.1)

where n(r, z) is the number density of the particles, φ(r, z) is the net electric potential, and
N (r) is the normalisation factor which sets the amount of particles at each radius. The
Poisson equation uses the charge distribution to deduce the potential, while the Boltzmann
factor describes how a group of thermal particles would arrange themselves according to a
potential — locations of higher potential are exponentially less populated since particles are
exponentially unlikely to have the energy to reach these locations. The Poisson–Boltzmann
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equation is a non-linear differential equation due to the exponential Boltzmann factor, and
has no general analytic solution. We will study the numerical solution to the equation in
the limit of T → 0 in Ch. 3.

Confinement

The Penning–Malmberg trap is well–suited to the long–term confinement of particles; anti-
matter particles are routinely confined for hours or even days [32]. This long lifetime is due
to the conservation of the total canonical angular momentum of the plasma [33]

Pθ =
N∑
i

(
mrivθi +

qB0r
2
i

2

)
≈ qB0

2

N∑
i

r2
i .

The approximation on the last step is under the condition that the angular momentum
due to the magnetic vector potential is much greater than the kinetic part, in the strongly
magnetised limit. The angular momentum must remain conserved as long as the system
is rotationally symmetric (i.e. no source of external torque), regardless of collisions. This
requires

∑
r2
i to remain constant, which means the plasma cannot diffuse radially outward.

1.3 Future experimental objectives and obstacles

The ALPHA apparatus has demonstrated an average trapping rate of one antihydrogen atom
per attempt, each taking approximately 15 minutes. Measurements of some physical prop-
erties have been obtained from such a low trapping rate because the silicon vertex detector
provided spatially and temporally resolved antihydrogen detection down to a single–atom
sensitivity. However, we do not expect the precision achieved so far in these measurements
to be able to discern the minute asymmetry between matter and antimatter, should any
exist. The precision of the three types of measurement currently being pursued — spectral,
gravitational and charge — depends critically on the number and temperature of the trapped
anti-atoms:

• For a spectral measurement, a low antihydrogen temperature reduces the thermal
motion of the anti-atoms, and decreases the Doppler spread of the spectrum (for the
transitions susceptible to Doppler effects), making the lines more sharply defined.

• For a deflectometer–type gravitational measurement (e.g. the AEgIS experiment [24]),
a low antihydrogen temperature helps reduce the thermal spread of the antihydrogen
beam and allows a sharper moiré pattern to be resolved using finer gratings.

• For a trap escape–based gravitational or charge neutrality measurement, antihydrogen
atoms with a lower temperature are more sensitive to small external forces. This allows
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any external influence on their escape trajectory to be more clearly detected. For in-
stance, in a gravitational measurement, a lower–temperature antihydrogen population
would result in fewer anti-atoms being ejected from the trap in the “wrong” upward
direction by simply having sufficient inertia to overcoming gravity. Any biasing of the
mean vertex height would therefore be more prominent.

• Having a higher number of the anti-atoms in the trap increases the signal in all the
above experiments, which helps to overcome background noise, reduce the relative
impact of systematic error, and decrease the number of false signals from the cosmic ray
background. These false signals, which originate mainly from cosmic muons scattering
off the trap structure while passing through the experiment, occur at a constant rate
and cannot be distinguished from antihydrogen annihilations by the detector.

• A stronger signal means data accumulation can be performed across fewer cycles of the
experiment, which reduces the chance of machine fluctuations impacting the results.

Improving the trapping efficiency is a challenging task, given the difficulty in trapping
antihydrogen. A number of factors have impeded improvement in the trapping rate:

• The greatest percentage loss of useful antiprotons occurs during the mixing of an-
tiprotons and positrons, in which only one anti-atom is trapped, on average, out of
the ∼ 104 antiprotons used in the mixing process. Improving this efficiency requires
reducing the temperature of the antiprotons and positrons, as well as improving the
mixing scheme to minimise the velocity in which antiprotons are introduced into the
positron plasma (which is currently achieved by an autoresonant [34] excitation of the
axial oscillation of the antiprotons). The former is limited by cryogenic technology,
electrical noise and other factors that are not yet fully understood, while the latter
is difficult due to the fact that the self–potential of the plasmas is much greater than
the 0.5 K magnetic minimum trap depth. Any small, shot–to–shot fluctuation in the
particle numbers in either plasma can create a potential misalignment of O(10) mV or
higher. If a mixing scheme fails to account for this fluctuation, the energy gained by
an antiproton traversing from the antiproton to the positron plasma can be of O(100)
K or higher, which eliminates any chance of producing a trappable anti-atom.

• Diagnostic access to a Penning–Malmberg trap plasma is limited by the trap geome-
try. For instance, the multi-channel plate imaging device, which measures the radial
distribution of the particles by capturing the charges ejected axially from the trap,
cannot provide any axial information. The temperature diagnostic, which deduces the
axial temperatures by ejecting particles through a slow shallowing of the confining
electrostatic well and correlating their escape timing to the well depth, does not yield
the radial temperature. The self–potential of plasmas, knowledge of which is essential
during the mixing of antiprotons and positrons, also cannot be measured directly.
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• The special techniques used in the experimental sequence, like the rotating wall or
evaporative cooling (Sec. 2.9), involve numerous tunable parameters, and are in most
cases developed empirically. This means their development is time–consuming and
the tuning is often incomplete due to the large parameter space. When new plasma
conditions arise (due to machine fluctuations or improvement in prior manipulations),
redevelopment is often required. This results in a slow development cycle that adds
complexity to the experiment.

• Not all antiprotons available from the AD are captured for antihydrogen production.
The AD delivers an antiproton bunch every ∼ 100 s, while a production cycle of the
apparatus typically takes 15 minutes. That means only one in about nine shots is
captured, with the remainder rejected.

• Improving trapping yield by using more intense antiproton and positron bunches is
difficult due to shot–to–shot fluctuations. The fluctuation of their self–potential grows
with the number of particles, making an accurate, minimal energy mixing more difficult.

In order to make the most use of the antiproton available from the AD, ALPHA is
commissioning a new apparatus with significant modifications to its structure and modes
of operation (Fig. 1.3). Antiproton capture and storage has been moved to a separate
Penning trap — the catching trap — which enables more long-term stacking and storage of
antiprotons, independent of the positron and antihydrogen production cycle. A fraction of
the stored antiprotons are to be ejected on demand, and delivered to the mixing trap for
antihydrogen production. This uncouples the productions cycle from the AD, allowing more
antiprotons to be used in each cycle, and potentially permits production while the AD is
unavailable.

These innovative features necessitate new modes of operation for the apparatus and
present new challenges. A longer–distance transfer of antiprotons between the catching trap
and the mixing trap is necessary. Loading and removing cooling electrons are potentially
obstructed in the catching trap due to the presence of a previously stored plasma. Diagnostic
access is likewise limited. Experimentally it was observed that antiproton accumulation
saturates at ∼ 1 M antiprotons. Keeping the stored antiprotons at a low temperature and
high density is a potential obstacle. The more intense antiproton bunches available to the
mixing trap will require different manipulation techniques in light of its enhanced space
charge.

To adapt the established antihydrogen trapping sequence to, and exploit the capabilities
of the new hardware design, the detailed plasma dynamics for various techniques used in
the Penning-Malmberg trap must be better understood. This requires a degree of predictive
power for determining how the optimum parameters for a given technique vary with the
plasma conditions (such as density or temperature). Such predictive capability reduces the
parameter space that needs to be explored by experimental tuning, identifies the limits of
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a process, and helps determine when new techniques must be sought. Diagnostics like the
multi–channel plate imaging and temperature measurement can be better analysed and may
provide more information on the state of plasmas.

1.4 Overview of plasma simulations

The dynamics of a plasma is dictated by the interaction between the distribution of particles
and the electromagnetic field, which is created by their charges and any externally controlled
electrodes and magnets. At the most fundamental level, the system is described by the
Lorentz force law and the Maxwell equations. The latter is usually simplified into the Poisson
equation and a radiative cooling Larmor formula, assuming the particles are non-relativistic,
which is mostly the case in antihydrogen experiments. Solving these equations for an N–
particle plasma is, however, highly impractical due to the number of degrees of freedom
and widely diverging spatial and temporal scales of the motion. It is therefore essential to
separate the physics by their spatial and time scales, and develop separate models for them.
We can then select and combine the models relevant to a process of interest, and construct
a simulation that yields physically interesting results and is computationally manageable.

The first such separation concerns the force felt by each particle. This force can be divided
into two components: the strong, sudden electrostatic force when another point charge passes
nearby, and the much weaker bulk force due to other more distant particles in the plasma,
the electrodes and the magnetic field. In this separation, we assume the chance of three (or
more) particles all being in close proximity at the same time is negligible compared to the
that of binary collisions, and that the collisions are uncorrelated to each other. Since the
bulk force originates from the bulk plasma, it varies on a bigger spatial scale compared to the
microscopic collisions. This means that nearby particles in the plasma all behave similarly
under its influence. This allows the us to model the plasma as a smooth distribution instead
of individual, singular particles. The evolution of the distribution is driven by the bulk
forces, calculated self–consistently as a smooth field, as well as the statistical average of the
collisional influences.

Further separation of the bulk motion is possible. Under the plasma conditions available
in ALPHA, the following are the most important of the separated regimes of motion:

• Cyclotron motion
The cyclotron motion in the r and θ directions is typically the fastest motion in the
trap. For positrons this typically has a period of ∼ 4 × 10−11 s, and for antiprotons
∼ 7×10−8 s. Due to the high frequency of the cyclotron motion, very few perturbations
address this degree of freedom. For perturbations at a much lower frequency than the
cyclotron motion, the magnetic moment of the particles’ cyclotron motion is conserved.

• Axial bounce
In the z–direction particles move freely under the influence of the smoothed macro-
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scopic electric field, which is created by the smoothed charge distribution and the
boundary condition imposed by the trap electrodes. For positive (negative) particles
the electrodes are biased such that a minimum (maximum) potential exists along the
z axis. Positrons in a typical trap have an axial bounce period of ∼ 3× 10−7 s, and for
antiprotons it is ∼ 3× 10−6 s. If an external perturbation is applied close to this time
scale, the particles would respond dynamically and be accelerated in the z direction.
This behaviour can be described by the Vlasov model, which resolves the detailed time
evolution of the particles’ phase space distribution subject to the action of time–varying
forces (see Ch. 4). In contrast, if the perturbation is much slower than the axial bounce
frequency (“much slower” being on the order of, or much longer than, the mean free
time between collisions), these particles have enough time to equilibrate with the slow
perturbation and behave quasi-statically. This is described by the Poisson–Boltzmann
model (see Ch. 3).

• E×B drift
The gyrocentres of these particles moves in the θ direction around the trap axis due to
the E×B drift. The azimuthal motion only depends on the radial electric field and is
uncoupled from the axial motion. A typical rotation period around the trap axis due
to the E×B drift is ∼ 1× 10−5 s for positrons, and ∼ 7× 10−5 s for antiprotons. This
motion is solely determined by the net perpendicular electric field.

• Self–collision
Collisions lead to a gradual relaxation of the parallel (z) and perpendicular (r and θ)
velocity distributions into thermal equilibrium, both within and between them. The
relaxation process has different rates between the parallel and perpendicular directions,
since the axial magnetic field introduces directionality to the microscopic collision
process. The mean free time between collisions is ∼ 8 × 10−7 s for positrons, and
∼ 7 × 10−4 s for antiprotons. For phenomena with a time scale much shorter than
the mean free time, collisional effects can be ignored. For phenomena with a time
scale similar to the mean free time, the effect of collisions on the particles must be
taken into consideration. Depending on the strength of the magnetic field, the effect
of these collisions are described by either the weakly (Ch. 5), intermediately (Ch. 6)
or strongly magnetised collision operator. If the phenomenon happens on a time scale
much longer than the mean free time, one can assume there is sufficient time for the
plasma to equilibrate through collision between each infinitesimal change, and the
plasma is approximately always in equilibrium.

• Radial transport
The bulk motion in the r direction is slow compared with all the other motions de-
scribed above, driven by collisions with background gas, contaminating ions or broken
azimuthal symmetry in the trap.
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• Radiative cooling
The electromagnetic interaction of each point charge to its own field, which is relativis-
tic in nature, is not negligible in the very longest time scale. It leads to a radiative
loss of energy in the perpendicular directions in the form of cyclotron radiation, taking
energy away from the cyclotron motion. The cooling time scale for positrons is ∼ 3 s,
and ∼ 2× 1010 s for antiprotons [35].

In the case of a multi-species plasma, e.g. an antiproton–electron mixture or a antiproton–
positron mixture, there are extra physics that result from the interaction between the two
species:

• Inter–species collision
Collisions between the two species can transfer momentum from one species to an-
other, and can lead to a equilibration between their temperatures. The effect of this
type of collision is also dependent on the magnetic field strength. The intermediately
magnetised collision operator (Ch. 6) is designed for inter–species collision as well as
self–collisions.

• Recombination
When oppositely charged species collide, they sometimes combine into a bound–state.
The initial antihydrogen momentum is determined by the antiproton momentum at
the instant of recombination. Instead of being under the influence of the Penning–
Malmberg trap, the new neutral anti–atom is now under the influence of the magnetic
minimum trap. Recombination cannot happen in free–space due to the conservation
of momentum; it has to either lose some of that momentum by emitting a photon
(a radiative capture) or to a nearby third–party, e.g. another positron (a three–body
recombination).

In this work we have developed four models: an axial equilibrium “water bag” model
which solves for plasma shapes, an axial Vlasov–Poisson model which dynamically simulates
the axial motion of a plasma distribution, and two Fokker-Planck models which give the
statistical influence of collisions on distributions under two magnetisation regimes. They aim
to cover the axial bounce and collisional regimes in the list above. While this is by no means
exhaustive, these models are capable of simulating a diverse range of plasma manipulation
techniques in ALPHA when suitably combined. Figure 1.4 shows the time scales of the
motion regimes above, and the range of applicability of the models we have developed. For
instance, the autoresonant excitation of antiprotons during the mixing of antiprotons and
positrons has a frequency of ∼ 250 kHz (the frequency of the antiproton axial oscillation)
and lasts for ∼ 1 ms, which puts it at a time scale between the two dashed red lines in
Fig. 1.4. This means the positrons are best modelled with the Poisson–Boltzmann equation,
as the self–collision of positrons is sufficient to ensure the positrons stay in quasi-equilibrium.
The antiprotons are best modelled with the Vlasov equation, and the self–collision of the
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antiprotons is mostly negligible. The two species interact through collision and recombination
once the antiprotons and positrons overlap. The application of the models to the mixing
process is further developed and tested in Ch. 7. Note that while the self–collisional effect of
antiprotons seems negligible from Fig. 1.4, we have still developed its model, for two reasons.
First, we are most interested in the slowest–moving antiprotons from which the trappable
antihydrogen atoms form, and collisional effects are more significant for these slow–moving
antiprotons. Second, the mean free time of antiprotons is inversely proportional to their
density, which means an increase of antiproton density (for which the ALPHA-2 apparatus
was designed) would also increase collisional effects.

Cyclotron
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E × B drift
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Figure 1.4: A schematic diagram of the time scales of various plasma physics dynamics in the
ALPHA experiment, and the applicable range of time scales of various physics models. The periods
of the cyclotron motion, axial bounce and E×B drift, as well as the mean free time between collisions
and radiative cooling time scales for both species are marked on the axis.
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Chapter 2

The ALPHA experiment

The main core of the ALPHA apparatus is functionally a multi–electrode Penning–Malmberg
trap, with an magnetic minimum trap superimposed around the central region (see Fig. 2.1).
Physically, an outer superconducting solenoid generates a uniform magnetic field required for
the Penning–Malmberg trap. The bore of the solenoid is occupied by three layers of cylin-
drical structures which perform the majority of the experiment’s functions: the outer silicon
vertex detector, the middle cryostat, and the central ultra–high vacuum (UHV) chamber.
The silicone vertex detector identifies the annihilation of antihydrogen atoms. The cryostat
contains and cools the two mirror coils and the octupole coil which create the magnetic
minimum trap. The UHV chamber contains the electrodes for the Penning–Malmberg trap,
and is where the antiparticles are manipulated. The UHV chamber is open on both ends.
A positron accumulator is situated to the right to provide positrons, while the Antiproton
Decelerator (AD) beamline injects antiprotons from the left. A vertically articulated assem-
bly of small devices (the Stick) can be placed onto the beamline between the main trap and
the positron accumulator to perform various diagnostic functions, as well as to introduce
electrons or radiation into the trap. The operation of these components are controlled by a
sequencing system.

In the following we give a description of each of these components of the experiment, and
outline its operation in a typical antihydrogen production cycle.

2.1 The outer solenoid

A warm bore superconducting solenoid manufactured by Kurchatov Institute [36] forms the
outermost structure of the ALPHA apparatus, which generates a uniform magnetic field
(maximum field strength of 1 T) within the bore and along its axis. The solenoid is kept at
a superconducting temperature of 4.2 K by externally filled liquid helium and shielded by
a liquid nitrogen jacket and a vacuum layer. The magnet is capable of persistent operation
where the current in the solenoid windings forms an enclosed loop internally and does not
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require an external power supply. A small heater is attached to a short segment of the
windings. The persistent mode of the magnet can be switched off by activating the heater,
which terminates the superconductivity of the segment. The internal current would instead
go through a path parallel to the heated, non-superconducting segment, on which a power
supply can control the current through the windings. A Lakeshore power supply unit is
used to control the persistence operation of the solenoid, and provide the current to (extract
the current from) the solenoid when the magnetic field of the solenoid is being increased
(decreased). Note that the power supply needs to be set to the same current level as the
magnet before the persistence switch can be turned off to prevent an inductive spike across
the power supply.

2.2 The silicon detector

The outermost silicon vertex detector is made of 60 rectangular silicon wafers, arranged
into three cylindrically concentric layers and two axial sets (see Fig. 2.2). Each pixel on
these wafers registers the energy deposited by energetic particles passing through them,
returning the position of such passage when read by an external readout system. When a
particle pierces all three layers, the three coordinates registered in close temporal proximity
are identified and used to reconstruct the direction and curvature (due to the solenoidal
magnetic field) of the trajectory.

z,B

inner layer (8 pedals)
middle layer (10 pedals)
outer layer (12 pedals)

inner layer (8 pedals)
middle layer (10 pedals)
outer layer (12 pedals)

axial se
t 1

axial se
t 2

Figure 2.2: The silicon vertex detector, with the wafer pedals arranged into three radial layers and
two axial sets.

To detect a trapped antihydrogen atom, the magnetic minimum trap is turned off and
the anti-atom is allowed to annihilate. By measuring and extrapolating the trajectories
of pi–mesons emanating from the annihilation between antiproton and proton, the exact
position and time of the annihilation can be identified. The annihilation of the positron is
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not detected, and at least two pi–meson tracks must be reconstructed to form an intersecting
vertex. This annihilation vertex is then recorded as an antihydrogen atom, subject to various
rejection criteria (“cuts”) to eliminate mis-identifications [37]:

• The tracks being extrapolated must not be too close to co-linear, which makes them
very likely to be the result of cosmic muons passing through the experiment. The
silicon vertex detector does not distinguish muons from pi–mesons.

• The position of the vertex must be on the inner electrode wall (relaxed to take account
of reconstruction inaccuracies) upon which antiprotons annihilate. Vertices which are
not on the wall are likely to be from cosmic muons scattered by the structural material
of the apparatus between their two passes through the detector.

• The axial position of the vertex must be within the two mirror coils of the magnetic
minimum trap, between which the anti-atoms are originally trapped. While it is possi-
ble that antihydrogen atoms have drifted outside the mirror coils before annihilating,
this should not impact the detection rate greatly since the silicon pedals do not extend
too far beyond the coils. The reduced solid angle coverage near the ends means anti-
hydrogen detection in that region is inefficient anyway. Vertices from far beyond the
mirror coils are more likely to be cosmic muons than antihydrogen atoms.

• The timing of the annihilation must be within ∼ 30 ms after the magnetic minimum
trap shutdown, which is long enough for the current in the magnetic minimum trap
coils to fully decay (see the next section). This small temporal window of detection
minimises the chance of cosmic muon mis-identification since cosmic ray arrives at a
constant rate, while antihydrogen escape falls off rapidly as the trap current is drained.

2.3 The cryostat

The middle cryostat is a “wet” volume of liquid helium, insulated on the outside face by
the outer vacuum chamber (OVC) and a heat shield such that the silicon detector remains
at room temperature. Immersed in the cryogenic volume are four magnet coils of various
geometries [38], fabricated at Brookhaven National Laboratory. The coils are wound with
an Niobium–Titanium wire (see Fig. 2.3), which become superconducting at temperatures
below 10 K. A solenoidal coil on the left compliments the magnetic field of the outer solenoid,
and increases the field strength inside its bore by 2 T when energised. This solenoid is used
during antiproton capture and cooling (see Sec. 2.9). A race–track octupole coil surrounds
the centre of the trap, and two mirror coils are positioned on the octupole’s two axial limits.
Together, the three latter coils form the magnetic minimum trap which, when energised,
produces a region of minimum magnetic field strength at the centre. The octupole, with a
maximum field strength of ∼ 4 T on its inner surface, creates the radial field gradient, while
the mirror coils, with a maximum axial field strength of ∼ 1.2 T, create the axial gradient.
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Neutral species can be trapped around the minimum by their magnetic moment, due to the
magnetic force F = −∇(µ ·B) felt by a dipole [39]. The ALPHA magnetic minimum trap
can confine ground state antihydrogen atoms with a maximum of ∼ 0.5 K kinetic energy.

capture
solenoid

mirror coil 2
mirror coil 1

octupole layer 2
octupole layer 1

z,B

Figure 2.3: A schematic view of the cryostat magnet coils, showing the current directions in the
four magnet coils. The octupole is made of layers of oppositely wound race–track coils such that
the azimuthal currents on the two ends cancel out to the first order, and that the octupole would
have no axial magnetic field contribution. Only two layers are shown in this schematic view, while
the physical octupole contains eight counter–winding layers.

The cryostat coils do not have an internal persistent mode — i.e. their current is always
driven through an external, non–superconducting circuit. This design is warranted since
these coils require frequent ramp up and shut down during antihydrogen trapping operation.
The current on these coils can be redirected from their original path through the power
supplies to across a resistor array by high power switches made of IGBTs (insulated–gate
bipolar transistors) and SCRs (silison–ctonrolled rectifiers), and dissipated as heat. This
switching is either deliberately triggered, as in a rapid shutdown of the neutral trap (with
a current time constant of ∼ 10 ms), or automatically triggered due to the detection of a
spike in voltage across the coils. This spike is indicative of some part of the coil having
transitioned into a normally conductive state. If unchecked, the resistive heating in this
segment would cause a run–away loss of superconductivity throughout the whole coil, and
results in massive heating as all the magnetic energy stored in the field is converted into
heat. This process, known as quenching, can potentially damage both the superconducting
coils (from mechanical and thermal stress) and the cryostat (due to the loss of cryogen).
A rapid shutdown of the magnet before the thermal runaway deposits the magnetic energy
externally and protects the magnets against quench damage.

The liquid helium in the cryostat boils off due to the thermal load from imperfect insula-



25

tion, electrical connections from room temperature and infrared radiation through windows.
To replenish the boil–off, liquid helium is fed into the cryostat from a vertical helium reser-
voir (the “tower”), which ensures the cryostat is fully immersed in liquid at all times. The
liquid level in the tower is maintained by an inflow of liquid helium from an external 1000
litre storage dewer. The flow is regulated by a PID–controlled valve on the feed line, which
responds to the liquid level inside the tower (as measured by a superconducting liquid helium
level probe). The 1000 litre dewer is in turn manually refilled periodically with shipments
of liquid helium arriving from the CERN liquefaction plant on standard 500 litre dewers.
The cold gaseous helium exhaust, which is still at very low temperature, is used to pre–cool
the current connections for the superconducting coils before they come into contact with
liquid helium, thereby minimising the thermal load on the liquid — a configuration known
as vapour–cooled leads. After cooling the connections, the now somewhat–warmer gaseous
helium is returned to the CERN liquefaction plant on helium gas line for reuse.

2.4 The UHV chamber

The inner cylindrical UHV chamber is kept at a cryogenic temperature through direct ther-
mal contact with the cryostat (as they are separated only by a non-insulated stainless steel
wall). The volume is evacuated by a turbopump backed by a scroll pump during the ini-
tial pumping and baking after exposure to atmosphere, and kept at an ultra–high vacuum
(� 10−13 torr) by two ion pumps as well as the cryopumping action of the cold surfaces
during steady state operation. The UHV chamber contains a stack of gold–plated copper
electrodes which, together with the outer solenoid, form the Penning–Malmberg trap. To
allow particle and diagnostic access, the cylindrical UHV volume is open on two ends.

The left UHV opening

The left opening of the electrode stack is capped by a 218 µm–thick aluminium foil, beyond
which is a UHV–compatible gate valve and the AD beamline. The thin Al foil serves as
a degrader foil which lets through antiprotons from the AD and increases their kinetic en-
ergy spread, which is essential in capturing antiprotons in the Penning–Malmberg trap (see
Sec. 2.9). It separates the vacuum of the ALPHA apparatus and the AD beamline (which
is also at UHV), when the gate valve is opened during normal operations. The foil also
acts as a charge collector (a Faraday cup) that captures charged species being ejected from
the Penning–Malmberg trap. These charges are then collected by an externally connected
capacitor, the voltage across which indicates the absolute quantity of charges deposited on
the foil.

The Faraday cup can also be used to analyse the axial temperature of a trapped plasma
by slowly lowering the trap wall on one side (as opposed to a quick ejection when a simple
charge count is desired). As the wall is lowered, the most energetic particles first escape,
followed by slower–moving particles. By correlating the trap depth with the number of
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particles escaped, the axial energy distribution of the plasma can be deduced, thus giving
its temperature [40]. This simple picture is somewhat complicated by the self–field of the
plasma, which decreases when particles escape, preventing a simple calculation of the trap
depth purely based on the external voltages applied on the electrodes. However, if the plasma
is assumed to be in thermal equilibrium, the temperature of the plasma can be deduced by
the first few escaping particles. During the escape of these first particles, the self–field of the
plasma remains essentially unchanged. This means that the net trap depth can be expressed
as d0−rt−ε, where the self–potential ε remains approximately constant in time, d0 represents
the initial vacuum trap depth, and r its rate of decrease . The rate of particle escape is then
given by

r(t) = N exp

(
−d0 − rt− ε

kBT

)
log(r(t)) = log(N ) +

ε− d0

kBT
+

r

kBT
t.

Fitting the log of the rate of escape against time to a straight line during the escape of the first
few particles, therefore, gives the temperature of the plasma. Note that this approximation
relies on the fact that the amount of charge escaped is small compared to the overall charge
in the plasma. Experimentally this is hampered by the limited sensitivity of the Faraday
cup, due mainly to electrical noise. This forces the fitting to be done to the more lately
escaping particles which rise above the noise background. Greater sensitivity of the Faraday
cup therefore improves the accuracy of the temperature diagnostic, especially for bunches
with a small number of particles.

The right UHV opening

The right end of the UHV chamber opens into a six–way cross, under the same vacuum (see
Fig. 2.1). This cross is located outside the bore of the outer solenoid, but the latter’s fringe
field ensures that charged particles leaving or entering the Penning–Malmberg trap would
follow the field lines. Particle sources and diagnostic tools placed in the cross can therefore
inject and receive particles when placed on the correct field line which connects with the
axis of the trap. A vertical assembly of small–sized devices called The Stick is therefore
positioned in the cross. The assembly is actuated from the top by a step motor, and it
places any one of the following devices along the axial field line:

1. A electron gun which injects electrons into the trap.

2. A micro–channel plate (MCP) which receives particles ejected by the trap. The plate
is made of a microscopic honeycomb structure, with the “holes” facing the incoming
particles, and the “comb walls” aligned at an oblique angle to the incoming particles.
The “entrance” side of the plate is biased at a highly negative voltage compared to the
“exit” side (of the order of 1 kV), creating a strong electric field. Particles ejected by the
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trap travel along magnetic field lines determined by their in–trap transverse position.
Upon ejection, all particles residing on the same line enter one channel on the MCP
and strike the comb wall, knocking off electrons. These electrons are accelerated by
the strong electric field and hit the comb wall again further downstream, giving rise to
more electrons. This avalanche eventually exits on the exit side of the MCP, resulting
in a strong electron pulse which number is proportional to the number and energy of
the incoming particles received by the channel. These electrons are then converted
into visible light upon impacting a phosphor screen at the back of the MCP. With each
channel receiving all particles on its connected field line, the resultant image on the
phosphor screen is therefore the axially integrated distribution σ(r, θ) =

∫
n(r, θ, z) dz

of the plasma being ejected. A 45◦ mirror behind the phosphor screen allows a CCD
camera positioned outside the front vacuum window on the cross to capture the image.
In addition to the image, by measuring the net current drawn by the MCP (on the lines
providing the MCP with high voltages), the amount of charge arriving on the plate can
be sensitively determined due to the avalanche amplification in the honeycomb. The
MCP therefore doubles as a Faraday cup with enhanced sensitivity, making it preferable
to the “traditional” Faraday cup on the left opening for temperature diagnostics.

3. A microwave mirror which reflects microwave injected through the back vacuum win-
dow on the cross into the trap, used to stimulate some modes in plasmas and the
hyperfine transition of antihydrogen atoms.

4. A microwave horn (antenna) which also injects microwave into the trap. Instead of
passing the microwave through a window, a microwave waveguide directs the wave
through a UHV feed–through into the horn, giving a better transmission efficiency.

5. A pass–through position, which is simply an empty space that allows the positron
accumulator on the right of the cross to inject positrons into the trap.

2.5 The positron accumulator

The positron accumulator, first designed and developed by Surko et al. [30], is positioned
to the right of the main apparatus, and contains a 22Na source which decay provides a
steady stream of positrons. These positrons are slowed through collision with neon atoms
which are solidified on a 5 K cryocooler coldhead around the sodium source. These slowed
positrons are then guided into a Penning–like trap with a converging axial magnetic field,
generated with coils and solenoids. The trap, functioning as an accumulator for positrons, is
made of a conventional water–cooled solenoid and five cylindrical electrodes, one of which is
segmented azimuthally. The injection beam path and the trap volume is filled with a gradient
of nitrogen buffer gas, with the highest pressure around the former and lowest around the
latter. Incoming positrons collide with and excite these gas molecules, losing kinetic energy
in the process and become trapped. Subsequent collisions causes the positron to lose energy
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progressively, and migrate towards the bottom of the trap well. The pressure gradient is
designed such that the injected beam and the more energetic positrons would venture into
areas with higher nitrogen gas pressure, thus enhancing their slowing rate, while the slower
positrons would remain at a low pressure region, enhancing their lifetime. Upon demand
from the main apparatus, the nitrogen gas inflow is shut, the trap is evacuated to UHV by
two cryopumps, the gate valve separating the positron accumulator and the main apparatus
is opened, and the positrons are ejected. Positrons would stream through the cross into
the main Penning–Malmberg trap. Additional pulsed magnet coils are energised during this
transfer to ensure the field lines, along which the positrons follow, correctly connect the
positron trap and the main trap without excessive divergence (which can result in a loss of
positrons).

2.6 The central electrodes

There are four types of electrodes within the stack: high–voltage, thin–walled, segmented
and normal (Fig. 2.4). High voltage electrodes have the smallest inner radius of 14.80
mm, and contain extra ceramic electrical insulation which allows them to reach a maximum
voltage of ∼ 2 kV without sparking. Thin–walled electrodes have the biggest inner radius
of 22.28 mm, while normal and segmented electrodes both have an inner radius of 16.80
mm. All electrodes are rotationally continuous, except the segmented electrodes. Each of
the segmented electrodes is azimuthally divided into sectors, and each sector is electrically
isolated from one another. These four types of electrodes are assembled to form three distinct
zones in the electrode stack: the antiproton catching trap on the left, the positron trap on
the right, and the mixing trap at the centre (Fig. 2.4). The antiproton catching trap is tasked
with cooling and tailoring antiprotons, and contains a pair of high voltage electrodes to act
as gates for antiproton capture. It also contains one segmented electrode for rotating wall
compression (see Sec. 2.9). Similarly, the positron trap receives and manipulates positrons,
and it contains one high voltage electrode and one segmented electrode. Antiprotons and
positrons are recombined to form antihydrogen in the central mixing trap, which is made
exclusively of thin–walled electrode to maximise the neutral trap depth (since the octupole
field strength is stronger the closer antihydrogen atoms can approach the windings without
annihilating). Thin–walled electrodes are used only in the mixing trap but not the other
two regions to leave room outside the latter for electrical connections, mechanical tensioning
structures and thermal and magnetic sensors.

2.7 The sequencing system

The voltages on the electrodes dictates the trapped particles’ motion inside the Penning–
Malmberg trap. In the ALPHA apparatus electrode voltages is programmed through a
sequencing system (Fig. 2.5). This system controls the slow (' 10µs) variation of the
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electrode voltages through five general purpose 16–bit analogue voltage output cards and a
bank of amplifiers, while variations faster than this time scale is generated through other
specialised components. These components include:

1. Rotating wall generator, which generates six phase–locked waves with sweepable fre-
quency and amplitude. The generator is capable of storing three preset waves, triggered
on two digital input lines. A wave output is either stopped according to the preset, or
via a trigger on a third digital input line. It also returns its state (running or idle) on
an output line. The presets are programmable through a COM port.

2. Pulser, which is an externally triggered fast solid state relay switch, with rise and fall
time of ∼ 10 ns, but cannot stay closed for longer than ∼ 100µs.

3. Gate pulser, which is similar to a pulser except that it can stay closed indefinitely.

4. High–voltage power supply, which provides a set voltage up to ∼ 3 kV upon trigger.

5. Signal generator, which generates simple frequency–sweepable waveforms. The wave-
forms are programmable through a COM port.

6. Arbitrary waveform generator, which outputs an arbitrary waveform according to a
pre–stored, timed array of voltages upon trigger from a digital input line. It also has
a digital output line which indicates its state (running or idle). The generator sits in
a realtime PXI chassis, and is programmable through an network connection and the
National Instruments DAQmx interface.

The sequencing system comprises of two halves, controlling the antiproton and the mixing
/ positron trap respectively. Each half contains a master sequencer software, which reads
a pre–written sequence file and converts it into two arrays: an array of voltage states, and
a timed array of digital trigger states. The latter indicates, in each timed state, whether
the output trigger lines should be set high or low, and whether a sequence should wait for
input trigger lines to become high or low. These two arrays are fed, via network connections,
to the analogue and digital drivers on a real–time National Instruments PXI system. The
drivers then convert and store these two arrays on the analogue output card and the digital
input/output (I/O) card respectively. When the sequence is executed, the digital card
manages the timing, advances through its array of timed states according to its internal clock
and the state of input lines, and sends triggers to the various devices on its output lines. It
also sends a trigger to the analogue output card each time the electrode voltages should be
advanced to the next state, at which point the analogue card loads the next row on its voltage
array and outputs new voltages on its channels ranging from -10 to 10 V. These voltages are
then amplified by 14 times on specialised low–noise differential voltage amplifiers, except for
four channels which are amplified by modified amplifiers with a stronger filtering, a slower
response time and a gain of 7.2 instead of 14. These voltages from the amplifiers are then
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passed through a low–pass (≤ 50 kHz) filter to further isolate electrical noise. Meanwhile
the output from the high–frequency specialised devices are passed through a high–pass filter
and combined with the low–pass signal. These voltages are then conducted via D–sub style
vacuum feed–throughs to the electrodes. The four lower gain channels are connected to
E16 through E19, at where antiprotons and positrons are mixed during antihydrogen. The
highly filtered amplifiers sacrifices the voltage dynamic range on these electrodes in exchange
of minimising electrical noise in the the region, and ensures the two plasmas can be kept as
cold as possible to maximise antihydrogen production.

The two halves of the sequencing system can operate independently, or synchronise with
each other via two digital trigger channels, going in both directions, if required. The sequenc-
ing system also communicate with other particle sources, detectors and diagnostic devices
via digital lines:

1. The AD: the AD sends trigger signals on two lines to the antiproton trap sequencer,
one ∼ 100 s before the delivery of an antiproton beam, and one on beam delivery. The
antiproton sequencer can also send a trigger to the AD, called a “veto”, to prevent
beam delivery by preventing a electrostatic kicker on the AD ring from firing and
diverting the ring’s beam into the extraction line towards ALPHA. This is useful when
the experiment has already captured antiprotons and needs to prevent new energetic
particles from entering the trap.

2. The positron accumulator: one trigger line from the accumulator to the mixing /
positron sequencer indicates that the accumulator has finished one accumulation cycle
and is ready to deliver its positron bunch. A trigger on a second line from the trap
would then acknowledge it is ready to receive, and a third line carries a trigger to the
trap indicating a positron bunch is being ejected. The mixing / positron sequencer
also controls the firing of the magnet coil along the positron transfer beamline on a
fourth trigger line.

3. The Stick and its devices: these devices are shared between the antiproton and mixing /
positron sequencers, and a handshaking system is necessary to prevent both sequencers
from accessing these devices at the same time. When a sequencer needs to take control
of the stick, it would set a trigger line to the stick controller to the high state, and
wait for an acknowledgement from the stick controller on a second trigger line before
proceeding. For its part, the stick controller would only send out an acknowledgement
when it is no longer occupied. To relinquish the control of the stick, the sequencer
would set the first line to low, and wait for another acknowledgement. Lines three
through eight are all trigger lines from the sequencer to the stick controller, which
pass a bit pattern to select the state of the stick. A trigger on a ninth line from
the sequencer then executes that selection, with a acknowledgement returned from
the stick controller. Only commands from the controlling sequencer are executed and
acknowledged. The state of the stick specifies the device to place onto the trap axis,
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as well as the status of the aligned device. This includes whether the electron gun is
on or off, and the voltage setting for the MCP–phosphor screen (to accommodate the
imaging of different particle species, number and ejection energy).

4. MCP camera: it is also shared between the two sequencers, and triggered by one
digital line from each sequencer to the camera. No collision avoidance handshaking
is implemented for the camera since the shutter time is very short (∼ 10 ms), and
collisions are unlikely under normal operation.

5. Degrader Faraday cup: similar to the MCP camera, it is shared between the two
sequencers, and triggered by one line from each. A second line is used to send a
simultaneous trigger to the Faraday cup controller if a temperature diagnostic is being
carried out instead of a simple count of charge.

6. Microwave: the microwave generator is capable of storing multiple preset waveform
programmes, programmable through a network interface. One trigger line from the
mixing / positron sequencer signals the generator to output the first pre–programmed
microwave waveform, and additional triggers on the same line causes the generator
to step to subsequent pre–programmed waveforms. Another trigger line controls a
microwave switch on the waveguide to the microwave horn on the Stick, which is
opened only while microwave is being injected through the horn. It helps to prevent
unwanted radio frequency noise from entering the trap and interfering with the stored
particles.

7. MIDAS: it is the detector data–logging software for the silicon vertex detector, and
numerous other detectors, probes and gauges (e.g. scintillaor counts, NaI gamma ray
detector levels, temperatures, pressures, voltages, cryogen levels, valve states, flow
rates, etc). To be able to synchronise the timing of sequence execution with the
data logged, the sequencers can send triggers to MIDAS to indicate when particular
processes are being carried out, e.g. while ejecting particles or energising magnets,
such that the detector data can be analysed later on.

8. Capture solenoid: the inner capture solenoid, wrapped around the antiproton trap, is
controlled by the antiproton sequencer. The sequencer would set a trigger line to the
magnet power controller to high, at which point the power supply would ramp up the
solenoid current at a preset rate to a preset final value. When the trigger is returned
to low, the solenoid is ramped back to zero.

9. magnetic minimum trap magnets: the three coils of the magnetic minimum trap are
controlled separately through three trigger lines by the mixing / positron sequencer, in
a similar fashion to the capture solenoid. Another three trigger lines initiate the rapid
shutdown for these magnets.
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2.8 Antihydrogen synthesis sequence

The following is a typical sequence involved in producing antihydrogen atoms in the ALPHA
apparatus. This process is used, with minor variations, in the results published by ALPHA
from 2009 to 2014 [22, 23, 26, 41, 42].

First the stick is moved to the electron gun position, and the capture solenoid is ener-
gised. The antiproton sequencer waits for the AD pre-trigger, which signals the arrival of an
antiproton beam in 100 seconds. The electron gun is then activated to load electrons into
the antiproton region. Typically ∼ 20 million electrons are captured. The electron plasma is
then split in half axially by lowering the voltage of the central electrode in a three–electrode
trap. Half of the electron plasma is ejected, leaving ∼ 10 million electrons behind. The
electron plasma is further processed. The sequencer then waits for the AD trigger.

Upon receiving the AD trigger, which indicates the arrival of the antiproton beam, the
high voltage power supplies for E1 and E9 are triggered through delay units while the
antiprotons pass through the degrader foil. E9 is first energised in time to reflect the incoming
antiprotons with KE‖ ≤ 3.4 keV, and E1 is energised with a small delay to trap the reflected
particles. Out of the ∼ 3× 107 antiprotons provided by the AD, ∼ 50 thousand are trapped
by the HV electrodes. The antiprotons trapped by the HV electrodes collide with the pre–
loaded electrons and lose energy. This sympathetic cooling process is allowed to take place
over 80 seconds. The high voltage on E1 is then turned off, allowing antiprotons which
has not lost enough energy to escape to the degrader and annihilate. Annihilations on the
detectors are recorded on the scintillating detectors. ∼ 20 thousand antiprotons remains at
this point, at around 800 to 1000 K. The high voltage on E9 is turned off thereafter, and the
sequencer turns on the AD veto to prevent further antiproton beam arrival. The rotating
wall is triggered to compress the antiproton–electron mixture. The antiproton sequencer
then waits for a synchronisation signal from the positron / mixing sequencer.

At the same time the antiproton region is processing the AD delivery, the stick control is
transferred to the positron / mixing sequencer, which instruct the stick to move to the pass–
through position to allow positrons passage. The voltage of E13 is raised, and the positron
accumulator is triggered to deliver positrons, which are reflected by E13. The voltage of E34
is then raised in time through the gate pulser to trap the reflected positrons. ∼ 10 million
positrons are typically captured between the two electrodes. The captured positrons are
then compressed axially into a smaller well in the positron region. Any contaminating ions
introduced by the accumulator during the transfer is expelled, and the positron number is
cut in half via a similar procedure as above. Other manipulations are done on the positron
plasma, after which typically ∼ 5 million positrons remain, at around 100 K. The rotating
wall is then triggered to compress the positron plasma, and allowed to run indefinitely. A
synchronisation signal is then sent to the antiproton sequencer, and the positron / mixing
sequencer itself awaits the next synchronisation signal.

Upon receiving the signal, the antiproton sequencer proceeds with removing the cooling
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electrons from the antiproton–electron mixture, by applying a fast electric pulse to a electrode
nearby. The fast–moving electrons respond to the pulse and are ejected from the trap, while
the heavy antiprotons are too slow to escape the well during the duration of the pulse.
After this, the capture solenoid is powered down, and a synchronisation signal is sent to
the positron / mixing sequencer. The signal is immediately followed by the ejection of the
antiproton bunch towards the mixing region.

The positron / mixing sequencer, upon receiving this signal, stops the indefinite rotating
wall on the positron plasma, and receives the antiproton bunch in the mixing region. The
positron bunch is also transferred there. The two bunches are further processed, and the
antiprotons are cooled via evaporative cooling. This is achieved by lowering one side of the
antiproton confinement barrier, allowing the most energetic particles to escape. The remain-
ing particles re-thermalise to a lower temperature. Typically ∼ 16 thousand antiprotons
remain at this point, at a temperature of ∼ 250 K and a mean radius of ∼ 0.4 mm. The
antiprotons and positrons are then moved immediately next to each other. A nested well is
formed to contain the two species, and allow the injection of antiprotons into positrons later
(see Fig. 2.6). The magnetic minimum trap is energised, and the positrons are evaporatively
cooled. ∼ 3 million positron remains at this point, at ∼ 40 K and a mean radius of ∼ 0.5
mm. A frequency–chirped, sinusoidal perturbation is then applied on E16 through the ar-
bitrary waveform generator to autoresonantly excite the axial oscillation of the antiprotons.
The antiprotons gains axial energy and oscillate in increasing amplitude until they cross into
the positron plasma. Most of the injected antiprotons recombine with positrons to become
antihydrogen atoms. A small fraction of them are slow enough that they are confined by
the magnetic minimum trap, while the majority escape and annihilate on the electrode wall.
These annihilations are recorded by the scintillation detectors.

After the antihydrogen formation, the electrodes E1–17 are biased to eject negative parti-
cles (such as residual antiprotons or re-ionised antihydrogen atoms) to the left. Annihilations
are recorded on the scintillating detectors. The electrodes E19–34 are then biased to eject
negative particles to the right. Annihilations are also separately recorded. At this point the
only remaining particles, beside the trapped antihydrogen atoms, are the positive unused
positrons, which are ejected to the right onto the MCP and detected there. Four cycles of
strong alternating electric field are then applied along the entire trap to clear any remaining
charged particles.

Finally, the magnetic minimum trap is triggered to undergo a rapid shut–down. Pi–
mesons are recorded on the silicon vertex detectors to reconstruct the annihilation vertex.
Vertices that pass the cuts are identified as antihydrogen atoms. On average one anti-atom
is detected per run.
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Figure 2.6: A view of the a) antiproton and positron positions in the trap and b) on–axis electro-
static potential during antiproton–positron mixing (step 18–22 in the mixing sequence), showing the
contribution of the vacuum potential due solely to the electrodes (φext), the positron self-potential
(φe+) and the antiproton self potential (φp̄). Insert c) shows the detail of the potential around the
antiproton well.

2.9 Special techniques

Antiproton cooling

The difficulties in synthesising and trapping antihydrogen motivates the hardware design
and the trapping sequence development of the apparatus. One of the biggest challenges
is the difference in energy scale between the antiprotons delivered by the AD, and the
shallow depth of the magnetic minimum trap. The AD delivers a beam of mostly mono-
energetic antiprotons at an energy of 5.3 MeV, or 6 × 1010 K. These antiprotons have to
be aggressively cooled since their velocities dominate the velocities of any antihydrogen
atoms produced (positrons being much lighter than antiprotons), and the octupole field,
which provides the radial confinement in the 0.5 K–deep magnetic minimum trap, cannot be
significantly strengthened due to magnet technology limits and the restricted space. (The
mirror coils are not as straightly restrained by space or winding design, making the octupole
the limiting factor.) This means the antiprotons have to be cooled by a factor of 1011 within
the apparatus.

Given the initial and target antiproton energies of 5.3 MeV and 0.5 K, a number of cooling
techniques are used in the ALPHA apparatus to bring the antiprotons from one extremum to
another while attempting to preserve the maximum number of anti-particles. These includes
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the degrader foil, sympathetic cooling, evaporative cooling and collisional equilibration with
positrons. Firstly, the degrader foil convert the mono-energetic beam from the AD into one
with a wide spread of energy, when the antiprotons collide with the Al nuclei in the foil.
Those antiprotons with energy below ∼ 3.4 keV are then trapped by a pair of timed high
voltage electrodes. This affords a ∼ 1600–fold decrease in energy while retaining ∼ 0.17%
of the antiprotons.

Subsequently, the antiprotons are cooled further via sympathetic cooling [43], in which the
heavy antiprotons collide with a pre-loaded electron plasma and lose energy. The electrons
in turn lose energy via cyclotron radiation. The electrons’ cyclotron radiation provides a
more rapid cooling mechanism compared with the antiprotons’ own radiation, since the
power of cyclotron emission is proportional to m−3. The electrons therefore radiate energy
6 × 109 times more rapidly than the antiprotons. This process cools the antiprotons by a
factor of ∼ 50000 while retaining ∼ 40% of them. This sympathetic cooling technique, while
efficient, creates other issues. The cooling electrons need to be eventually discarded, which is
accomplished via a fast electric pulse applied on a trap electrode. The fast electrons respond
to the pulse and are ejected, while the slow antiprotons are too massive to be accelerated
sufficiently to escape. This, however, does mean the antiprotons is heated by the pulse. It is
therefore important to balance the cooling power of the electrons with the heating resulting
from their removal. The pulse also needs be carefully programmed and applied appropriately
to minimise heating (while still ensuring a full removal of electrons). If left standing with
the electrons for too long, the antiprotons would also radially separate from the electrons in
a manner similar to a centrifuge [44]. This can lead to an unstable plasma when the central
electrons are removed. The hollow tube of antiprotons retained after the electron removal
becomes azimuthally unstable due to the shear instability, leading to expansion and particle
loss. We have therefore applied the sympathetic cooling technique in conjunction with the
rotating wall (see below) to suppress the expansion and improve the antiproton density.

Further decrease in antiproton energy is accomplished via evaporative cooling [45]. This
is achieved by lowering one side of the electrostatic barrier, such that the most energetic
antiprotons can escape. These particles carries away a disproportionately large amount
of the total energy in the antiproton bunch, and the remaining particles re-thermalise to
a lower temperature. The shallowing of the well as a result of this barrier lowering also
affords cooling via adiabatic expansion, as the particles on the two axial ends of the plasma
climb up a stronger electrostatic well, and are accelerated back down by a weaker one. The
temperature is decreased by a factor of ∼ 2 while 80% of the antiprotons are retained. The
resultant antiproton bunch is at ∼ 250 K.

The final cooling happens when the antiprotons are injected into the positron plasma,
which is accomplished by an autoresonant excitation of the antiprotons’ axial oscillation (see
below). As the antiprotons cross into the positron plasma, they equilibrate in temperature
with the cold positrons through collisions. This process competes with recombination, in
which an antiproton form a bound state (antihydrogen) with the positrons, taking itself
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out of the collisional equilibration process. The momentum of the antihydrogen atom is
determined by the momentum of the antiproton at the moment of recombination. The
majority of antihydrogen atoms formed escape the magnetic minimum trap, and only those
at the low–energy end of the distribution (< 0.5 K) result in trapped antihydrogen. On
average one anti-atom is trapped, which gives a retention ratio of 0.006%.

Machine fluctuation tolerance

Another challenge to trapping antihydrogen is machine fluctuations. The antiproton bunches
delivered by the AD numbers at ∼ 3 × 107 on average, but can fluctuate by ±30% or
above from shot to shot, depending on its maintenance schedule and the behaviour of the
upstream accelerators (from which the AD obtains the protons to create antiprotons with).
The positron accumulator also has a shot–to–shot fluctuation of ±10% over a base of ∼ 10
M positrons, depending on the condition of the Ne modulator and N2 buffer gas, among
many variables. These fluctuations causes the space–charge level of the plasmas in each
run to be different from the last, and the processes in the apparatus must be designed to be
robust against these fluctuations for the experiment to work. This consideration is especially
important during the mixing of antiprotons and positrons: a 10% fluctuation in the positron
space–charge corresponds to a ∼ 0.2 V change in potential. If the mixing technique fails
to take account of the fluctuation, the voltage of the wells can become misaligned, and the
charges being ejected from one well into the other can be accelerated by a potential difference
of that magnitude. This corresponds to a heating of 2000 K, which would effectively suppress
all antihydrogen production and/or trapping.

The mixing of antiprotons and positrons is currently achieved by an autoresonant exci-
tation of the antiprotons’ axial oscillation [46]. A sinusoidal voltage perturbation is applied
on E16 to create a small oscillating axial force on the antiproton plasma (see Fig. 2.6).
The oscillation begins at a frequency above the antiproton axial bounce frequency in their
E17 well (the linear resonance), and gradually decreases to a frequency below resonance.
The response of the antiproton plasma is minimal at the beginning due to the off-resonance
perturbation. As the perturbation frequency passes resonance, the bounce motion becomes
phase–locked to the perturbation and grows in magnitude. Due to the non–linear nature of
the E17 well, the bigger the antiproton bounce amplitude, the lower its frequency becomes.
The phase–locking means the bounce amplitude stays in sync with the perturbation such
that their frequencies match. This phase–locking happens regardless of the detailed shape
of the well or the exact frequency of linear resonance, as long as the rate of change of the
perturbation frequency is below a certain threshold, and the perturbation frequency range
envelopes the resonance. Eventually the antiprotons gain enough energy to cross the separa-
trix and enter the positron plasma. Phase–lock is lost at this point due to the sudden change
of bounce frequency, and antiprotons stop gaining energy. This mechanism allows for an ac-
curate excitation of antiprotons up to the potential of the positron plasma, regardless of the
shot–to–shot fluctuation of either species. It minimises the energy at which the antiprotons
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transverse the positron plasma, and maximises the number of trappable antihydrogen atoms
produced.

Radial control

A third challenge to trapping antihydrogen is the radial expansion of the plasmas in the
Penning–Malmberg trap. As shown in Sec. 1.2, a single species plasma cannot expand radi-
ally in an axi-symmetric manner due to the conservation of the canonical angular momentum.
This ensures a good confinement for plasmas. However, experimentally there are mechanisms
which promote radial expansion, like scattering with background gas or contaminating ions,
radial separation of antiproton–electron mixture, diocotron instability, imperfect azimuthal
symmetry of the electrodes, or resistive energy loss. This expansion must be countered to
prevent particle loss and to decrease the radius of the antiproton and positron bunches. The
latter is important during the last stages of the particle preparation process, when the mag-
netic minimum trap is energised. The octupole component of the magnetic minimum trap
destroys the azimuthal symmetry of the Penning–Malmberg trap, and particles at higher ra-
dius sees more of this asymmetry (as the octupole field increases like r3). These higher–radius
particles heat and escape the Penning–Malmberg trap rapidly [47, 48], and it is therefore
essential that plasma be compressed radially to minimise this effect. Another motivation for
radial compression is the fact that the magnetic minimum trap produces the minimum on
the trap axis. Antihydrogen atoms produced off–axis due to radially dispersed antiproton
and positron bunches come into being higher in the “dipole potential” µ ·B. They therefore
see less of a barrier from the magnetic minimum trap, and this reduces the likelihood that
the anti-atoms can be trapped. To maximise the trapping rate, antihydrogen atoms should
therefore be produced as close to the minimum of the magnetic minimum trap as possible.

The rotating wall technique [49] is used to compress the positron plasm. A rotating,
approximately uniform electric field is applied in the x–y plane, through the segmented
electrodes E26 (see Fig. 2.7). The rate of rotation of this electric field is chosen to couple
with the frequencies of various collective modes of perpendicular motion of the plasma,
such that the perpendicular energy of the plasma increases. This energy goes into both
the cyclotron motion and the azimuthal momentum of the plasma. The former leads to an
increase in perpendicular temperature of the plasma, which is slowly radiated away through
cyclotron radiation; the latter results in the radial contraction of the plasma. This is because
the azimuthal momentum is caused by the E×B drift of the particles. For this motion to
speed up, the E component must increase, which is achieved by a decrease in plasma radius
and an increase in the radial self–field.

The rotating wall is also used to compress the mixture of antiprotons and electrons. The
frequency of the rotating wall is chosen to compress the electron portion of the mixture, and
the antiprotons are observed to follow the electrons and decrease in radius as well [50].
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Figure 2.7: A cross-sectional view of the vacuum electric field (black arrows) and potential (red
contour lines) of the segmented electrode contributed by the rotating wall generator. The five
snapshots are taken at five different times covering a quarter of a period of the rotating wall. The
voltages applied on the electrodes are as labelled.

2.10 Recent ALPHA results

Using the basic sequence described above (and its variations), the ALPHA experiment has
demonstrated the long–time trapping of antihydrogen atoms and made the first measure-
ments of the anti-atoms’ spectrum, established a rough bound on their gravitational mass,
and made a precision measurement of their charge neutrality:

Trapped antihydrogen

The ALPHA experiment first demonstrated [41] the trapping of antihydrogen atoms in 2010.
In a total of 335 runs, 38 reconstructed annihilation vertices were consistent with that from
trapped antihydrogen atoms. As a control, 246 runs were also conducted where extra positron
heating was introduced. A strong perturbation was applied on the positrons immediately be-
fore they were mixed with antiprotons, which heated the former to ∼ 1100 K. This strongly
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suppressed recombination and made the resultant antihydrogen atoms unlikely to be trap-
pable. One reconstructed vertex was observed to be consistent with trapped antihydrogen,
which is consistent with the expected signal–to–noise ratio of the antihydrogen detection
method.

1000 second trapping and temperature measurements

Subsequently, in 2011, the experiment demonstrated [42] the confinement of antihydrogen
atoms for a maximum of 2000 s, and more reliably for 1000 s, by holding the anti-atoms
in the magnetic minimum trap before its shut down. The 1000 s confinement time was
sufficient to ensure that the anti-atoms have enough time to reach their ground states through
spontaneous emission (antihydrogen atoms exist in an excited state after recombination).
The presence of ground state antihydrogen is essential for future spectroscopic measurements.

In the same paper, the timing of antihydrogen escapes from the magnetic minimum trap
during its rapid shutdown was correlated to its velocity distribution, using the fact that
anti-atoms with higher kinetic energy escapes the shallowing neutral trap barrier earlier
than lower–energy ones. By simulating the timing of annihilation [42, 51] with various
initial antihydrogen velocity distributions, it was shown that the trapped anti-atoms’ energy
distribution is consistent with the tail-end of a Gaussian of a much higher temperature, i.e.
f(E) ∝

√
Ee−E/kBT ∼

√
E for T � 0.5 K. This means the antihydrogen atoms were most

likely created at a much higher temperature, and that only those with energy of 0.5 K or
below were confined by the magnetic minimum trap. This measurement is consistent with
the fact that ∼ 1 anti-atoms are trapped from an initial population of ∼ 104 created.

Hyperfine resonant interaction

In 2012 the experiment performed [22] the first–ever spectroscopic measurement on antihy-
drogen atoms, by subjecting them to microwaves that inverted the positron spin state. The
anti-atoms were initially created in either the low–magnetic field seeking or high–magnetic
field seeking states. The magnetic minimum trap only confined the low–field seeking anti-
atoms. The high–field seeking anti-atoms were ejected upon formation. With microwave
radiation of a suitable frequency (which is determined by the field experienced by the anti-
atom), a low–field seeking anti-atom undergoes a stimulated transition and the positron spin
state is inverted. This converts the low–field seeker into a high–field seeker, and causes the
anti-atom to be immediately ejected from the magnetic minimum trap and annihilate.

In the experiment, three combinations of magnetic fields and microwave frequencies were
attempted. In the first combination, the magnetic minimum trap was energised to its usual
setting, and microwave resonant with the positron spin–flipping transition in that field (from
low–field seeking to high–field seeking state) was injected after the charged particle clearing.
In the 79 runs attempted, 1 antihydrogen atom was detected on trap shut–down (a rate of
0.01 anti-atoms per run), indicating that most antihydrogen atoms had been flipped and
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ejected earlier. In the second configuration, the microwave remained at the same frequency,
but the magnetic field was slightly increased in strength by 3.5 mT, which meant the mi-
crowave was no longer resonant with the (modified) spin–flipping frequency. In the 110 runs
attempted, 23 antihydrogen atoms were detected (0.21 anti-atoms per run). In the third
configuration, the microwave frequency was raised to match the increase magnetic field. In
24 attempts, 1 anti-atom was detected (0.04 anti-atoms per run). As a control, 52 runs were
attempted without any microwave at the usual magnetic minimum trap settings, and 17
anti-atoms were detected (0.33 anti-atoms per run). Also, 48 runs were attempted without
microwave at the higher octupole current, yielding 23 trapped anti-atoms (0.48 anti-atoms
per run). Comparing these rates, it is obvious the on–resonance microwave has ejected
nearly all anti-atoms. The off–resonance runs yields a lower trapping rate compared to the
no–microwave control runs, since the off-resonance microwave can still flip the positron spin
state of some of the trapped anti-atoms situated in regions of higher magnetic field strength
inside the magnetic minimum trap.

Gravity

The trajectory of antihydrogen atoms during the magnetic minimum trap shutdown is influ-
enced by gravitational force. If the weak equivalence principle is valid, antihydrogen atoms
fall under gravity in the same manner as hydrogen atoms. For the horizontal trap orientation
of ALPHA, this means the depth of the magnetic minimum trap is fractionally reduced on
the bottom side compared to the top, and the anti-atoms preferentially escape downwards
during the shutdown. This preferential escape is the most prominent for particles that es-
cape late in the shutdown process since these particles have the lowest energy and gravity
has the longest time to act on them. However, late–escaping particles are rare due to the
distribution f(E) ∼

√
E, which reduces their statistical power. In 2013 ALPHA proposed

[23] a statistical method to compare experimental vertices with Monte Carlo simulations of
annihilations under various antihydrogen gravity scenarios. It compares the time–binned
graphs of the vertices’ average vertical position between the experiment and Monte Carlo
simulations, and makes the best statistical use of both early– and late–escaping particles to
set a bound on the gravitational mass of the antihydrogen atom. At the 95% confidence
level, a gravitational mass for antihydrogen above 75 times of mH , based on statistical ef-
fects alone, or 110 times of mH , including worst–case systematic effects, can be ruled out for
gravity, where mH is the gravitational mass of the hydrogen atom. Similarly, a gravitation
mass above 65 times of mH can be ruled out for anti-gravity, where combined systematic
and statistical effects are accounted for.

Charge neutrality

The overall charge neutrality of antihydrogen atoms can be tested by applying an electro-
static field on the anti–atoms and measuring their deflection. In 2014 ALPHA established
[26] the fractional charge of the antihydrogen atom as (−1.3± 1.1± 0.4)× 10−8e, where e is
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the elementary charge and the two bounds represent statistical and systematic errors. This
was achieved by biasing the electrode stack during the magnetic minimum trap shutdown
to produce a strong axial electric field. Similar to the effect of gravity, this would reduce
the depth of the magnetic minimum trap on one end if the antihydrogen atoms possessed
fractional charge, and cause the anti-atoms to preferentially escape in that direction. This
would create an offset in the distribution of annihilation vertices along the axis. By simu-
lating this process assuming various fractional charges, and comparing the resultant vertex
distributions with the experimental one, the fractional charge of the antihydrogen atom was
established.
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Chapter 3

The water bag model for equilibrium
plasma

The Poisson–Boltzmann equation (Eq. 1.1) describes a plasma in axial thermal equilibrium
with its self-electric field and external fields in a Penning–Malmberg trap. It is applicable
when the system is perfectly stationary, or when the time scale of the perturbations ap-
plied to the plasma is on a much longer time scale than the plasma’s axial relaxation time.
Equation 1.1 is formulated in such a way that only an axial equilibrium is assumed, and the
radial profile (the amount of material in each cylindrical shell in the plasma) can be arbi-
trarily specified. This is because radial diffusion and advection is strongly suppressed in a
Penning–Malmberg trap due to the strong magnetic field, and the time scale for radial–spatial
equilibration is much longer than most manipulations in the trap. (Thermal equilibration
in the perpendicular directions, on the other hand, involves no bulk spatial movement and
occur much more rapidly.) It is therefore appropriate to treat the radial profile as fixed, and
only solve for an axial equilibrium. This radial profile can be directly measured in ALPHA
using the MCP imaging diagnostic.

A solver for the Poisson–Boltzmann equation requires a numerical solution to both the
Poisson equation (the electrostatic field) and the the Boltzmann equation (the spatial dis-
tribution). The numerical solution to these two equations are described in the following
sections. These solutions are designed for maximum efficiency and minimal hardware re-
quirement, such that they can give near–real time results. This allows the resultant solver
to be adopted in experimental operations to help design the electrode voltages necessary to
confine various plasma bunches or to let escape particles from a electrostatic well.

3.1 Electrostatic field solver

The electrostatic potential φ(r) in the Penning–Malmberg trap is the solution to the Poisson
equation ∇2φ(r) = −ρ(r)/ε0, where ρ(r) is the space charge density due to the trapped
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species. The boundary condition of φ(r) is specified by the voltages applied on the inner
electrode surfaces. There are well–established finite element and finite volume methods
for solving the Poisson equation numerically in cylindrical coordinates with arbitrary and
irregular boundary conditions, which is advantageous since the electrodes have different radii.
However these methods require re-computation on every grid point when the space charge
distribution or the electrode voltages are altered. In the following we develop an approximate
analytic solution to the Poisson equation which can be evaluated more efficiently to give
quicker simulations.

For simplicity, the electrode stack is assumed to have a uniform inner radius, ignoring
the different radii of the mixing trap and catching trap electrode. The eelctrode stack is
also assumed to extend axially to ±∞. The cylindrical walls before E01 and after E34 are
considered to be grounded. These simplifications give good approximation for processes near
the trap axis and not in the immediate vicinity of the radial steps at E11–12 and E24–25 or
the two ends of the electrode stack. In this case φ is the solution to the system ∇

2φ = − ρ
ε0

φ(r = rw, z) = Vn for z ∈
[
zn−1/2, zn+1/2

]
,

(3.1)

where zn+1/2 is the z–position of the gap between the n-th and (n + 1)-th electrodes, Vn is
the voltage applied on the n-th electrode, and rw is the inner radius of the electrodes.

While straight forward, Eq. 3.1 can be further simplified by decomposing φ into two
parts:

1. The vacuum potential, φvac, is the potential due to the voltages on the electrodes alone
without any space charges. This is the homogeneous solution to Eq. 3.1 given by ∇2φvac = 0

φvac(r = rw, z) = Vn for z ∈ [zn−1/2, zn+1/2, ].

2. The self-potential, φch, is the potential due to the space charges alone with a grounded
boundary (i.e. all the electrodes are at 0 V). This corresponds to the particular solution
to Eq. 3.1 given by ∇

2φch = − ρ
ε0

φch(r = rw, z) = 0.

Adding the two contributions, it is obvious that φvac + φch is a solution to Eq. 3.1. By the
uniqueness theorem, it therefore must be the sole solution.
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Figure 3.1: Boundary condition used to calculate the potential contribution from the n-th electrode
in the Penning–Malmberg trap. The grounded cylinders on the left and right extend to infinity.

Vacuum potential

The vacuum potential can be obtained by solving the Laplace equation with the step-wise
boundary condition on the electrodes. However, this requires a complete recalculation of
the potential every time the voltages are altered. A more efficient method is to calculate
the potential created by each electrode raised to a voltage of 1 V with all other electrodes
grounded, i.e.

∇2φv,n = 0

φv,n(r = rw, z) =

{
1 for z ∈ [−Ln/2, Ln/2]

0 otherwise
,

(3.2)

where Ln ≡ zn+1/2−zn−1/2 is the length of the n-th electrode. Figure 3.1 shows the geometry
for calculating φv,n. The potential of a particular set of electrode voltage configuration {Vn}
is then given by

φvac(r, z) =
34∑
n=1

Vn φv,n

(
r, z −

zn−1/2 + zn+1/2

2

)
.

This allows the individual φv,n to be computed only once to generate all possible φvac under
any electrode voltage configuration.

We solve Eq. 3.2 using separation of variables to decompose φv,n into Fourier–Bessel
components [52]. The solution is

φv,n(r, z) =
2

π

∫ ∞
0

dk
I0(2kr/Ln)

I0(2krw/Ln)
sinc(k) cos

(
2kz

Ln

)
, (3.3)

where I0(x) is the zeroth order modified Bessel function of the first kind, and sinc(x) =
sin(x)/x. This integral has no closed–form analytic solution, and must be numerically in-
tegrated. We have elected to numerically evaluate the integral using the simple trapezoidal
rule, for each coordinate (r, z). This numerical integration converts the integral into a sum-
mation of the integrand evaluated at close intervals in k, across the entire domain k ∈ [0,∞).
The spacing between evaluations δk needs to be sufficiently small such that the function does
not change drastically between them. This requires a close examination of the behaviour of
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the integrand against k. As k increases from zero, the sinc function oscillates with a period
of ∼ 2π, while the cosine oscillates with a period of πLn/z. The ratio of the two Bessel
functions decays exponentially at large k, forming an envelope around the two oscillations
that eventually decay to zero. This asymptotic decay has a scale of Ln/(rw − r)/2, which
means for points close to the wall (r / rw), the integrand remains large at big k. Conversely,
for points close to the axis, the decay is fast, and the integrand approaches zero for relatively
small k. Knowing these scales, δk is chosen as

δk = min

(
0.01× 2π, 0.01× πLn

z
, 0.04× Ln

2(rw − r)

)
to ensure a good resolution on the integrand. The numerical evaluation starts with the
evaluation of the integrand at k = δk/2 as the first term in the summation, and more terms
are added at each increment in k of δk. The summation continues until the fractional change
to the final answer due to new terms being added become smaller than a desired precision,
at which point the summation is truncated. Due to the oscillating nature of the integrand,
the fractional change to the final answer is monitored every ∆k to ensure the fast oscillation
is averaged over between each comparison, where

∆k = min

(
max

(
0.25× 2π, 0.25× πLn

z

)
, 10× Ln

2(rw − r)

)
.

This prevents a premature truncation of the summation.

To evaluate the integrand, I0(x) is approximated using the algorithm described by Press
et. al [53]. The sinc(x) function is evaluated simply as sin(x)/x, except for x < 10−3. In the
latter case the sinc function is evaluated using the series expansion

∑
i=0 ai, where a0 = 1

and ai = −ai−1x
2/(4(i+ 1)(i+ 1.5)).

Potential due to space charge

Using the same logic behind the vacuum potential computation, the space charge potential
is also decomposed into contributions which are linearly superposed to yield φch. The charge
distribution, assumed to be azimuthally symmetric, is specified on a (r, z) grid of regular
spacing ∆r and ∆z in each direction. Each cell on the grid physically represents a charged
ring with thickness ∆z and width ∆r, located inside a grounded cylinder (see Fig. 3.2).
The potential contribution created by this cell is constructed in steps. First the potential of
an infinitesimal ring is calculated. It is then integrated radially to yield the potential of a
circular annulus. The result is subsequently integrated axially to finally yield the potential
of the cell. Explicitly, using eigenfunction expansion [52], the potential of an infinitesimally
thin ring carrying a unit charge with radius r′′ at z = 0 inside a grounded cylinder of radius
rw and infinite length is given by

φring(r′′; r, z) =
1

4πε0

4

rw

∞∑
n=1

exp(−χ0nz/rw)

χ0n

J0(χ0nr/rw)J0(χ0nr
′′/rw)

J2
1 (χ0n)

, (3.4)
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Figure 3.2: The boundary condition and charge distribution used in calculating the potential
contribution from one pixel of charge density on the (r, z) grid. The grounded cylindrical boundary
extends to infinity at both ends.

where Ji(x) is the i-th order Bessel function of the first kind, and χmn is the n–th zero of
the m–th order Bessel function of the first kind. Integrating this expression from r′′ = r′ to
r′ + ∆r, one obtains the potential due to a flat annulus with finite radial width. Expanding
that integral to first order in ∆r, and using the identity J ′0(u) = −J1(u), we arrive at the
potential of an annulus with unit charge and radius from r′ to r′ + ∆r at z = 0:

φannu(r′; r, z) ≈ 1

4πε0

4

rw

∞∑
n=1

exp(−χ0nz/rw)

χ0n

J0(χ0nr/rw)

J2
1 (χ0n)

×(
J0(χ0nr

′/rw)− r′∆rχ0n

rw(2r′ + ∆r)
J1(χ0nr

′/rw)

)
. (3.5)

Finally, the potential of one cell is given by a sum of the contributions from the subdivision
annuli, as shown in Fig. 3.2. Subdivision is used instead of analytic integration of Eq.( 3.5)
because of the better numerical convergence of the former. The potential due a cell with
unit charge, radial extent from r′ to r′+ ∆r, and axial extent from −∆z/2 to ∆z/2 is given
by

φpixel(r
′; r, z) =

1

N

N−1∑
s=0

φannu

(
r′; r, z − s− (N − 1)/2

N
∆z

)
, (3.6)

where N is the number of subdivisions (which should be even). Using this, the potential of
a discrete charge distribution ρij can be expressed as

φch(r, z) =
∑
i,j

ρij2πri∆r∆z φpixel

(
ri −

∆r

2
; r, z − zj

)
, (3.7)

where the indices i and j runs through the grid in r and z dimensions respectively, and
(ri, zj) is the centre of the (i, j) pixel.

Computationally, Eq. 3.5 is evaluated by first computing the summand at n = 1. Terms
are added incrementally thereafter, and is truncated when the fractional change to the sum
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Figure 3.3: a) The geometry of a discretised water bag plasma model, where a plasma is divided
into cylindrical shells indexed by i. The leftmost and rightmost boundary of each shell are denoted
by zLi and zRi respectively, and zCi is the middle point between the two. b) The radial profile of
the plasma, given by the axial integral of the number density n(r, z). The radial profile determines
the amount of charge in each cylindrical shell, and is experimentally obtained from an MCP image.

due to additional terms decreases below a desired precision. This convergence is usually
quite rapid due to the exponential decay factor χ0nz/rw, which increases with n. When
evaluating the terms in the summation, the Bessel functions of the first kind J0(x) and J1(x)
are evaluated using the algorithm described by Press et. al [53], and χmn is precomputed
and stored as a table.

3.2 Equilibrium distribution solver

Nonlinear solvers for Eq. 1.1 are well–established. However, a typical positron plasma in
the ALPHA apparatus has a length of ∼ 20 mm, and a Debye length of ∼ 0.05 mm. These
solvers offers impractical performance in these plasma conditions since they require a grid
resolution of a fraction of the plasma Debye length. An alternative to solving the Poisson-
Boltzmann equation directly is to exploit the water bag model, which applies to plasmas in
the zero temperature limit. In this limit, plasmas have perfect Debye shielding and a zero
Debye length, which means the thickness of the transition from the “bulk” of the plasma
to the “outside” vacuum is vanishingly small, and the axial electric field Ez within the bulk
must be zero. Particles lying on a line of constant radius ri inside the plasma bulk, therefore,
would see local translational symmetry along the line (since the net force is zero everywhere).
This local symmetry requires the number density of the plasma to be a constant along this
line, and the density must drops abruptly to zero at the leftmost and rightmost boundaries
of the plasma, zLi and zRi. (Here and henceforth, the index i is used to specify the radial
grid point; see Fig. 3.3.)

Since the total charge at each radius is measurable experimentally using the MCP imaging
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diagnostic, and since the density at each radius must be a boxcar function (i.e. the density
is zero except inside the plasma, where the density is a constant), a plasma is fully specified
by the boundaries zLi and zRi for all i. The “correct” solution for the boundary should
result in a net potential (the sum of the vacuum potential φvac due to the electrodes, and
the self–potential φch) that is constant between zLi and zRi for each i. An algorithm which
iteratively evolves the boundary to efficiently converge to this solution is developed. The
algorithm first makes an initial guess for the plasma boundary (a simple ellipsoid centred
around the minima of the vacuum potential, for instance), then solves for the corresponding
total potential using the method described in Sec. 3.1. At each ri, a test particle put at zLi or
zRi would move according to the z component of the total electric field at its position. Given
that the plasma is itself a collection of charged particles, the boundary is expected to move
in the same manner if a plasma is somehow initiated in this non-equilibrium shape. Based
on this idea, the algorithm pushes the boundary at each i according to the axial electric field
at the boundary; the proportionality between the field strength and the distance moved is
chosen to maximise the “flatness” of the total potential inside the plasma achieved by that
step. Practically, the algorithm proceeds thus:

1. For a given boundary {zLi, zRi} for i ∈ [0, Nr − 1], the corresponding space charge
density is given by

ρ(ri, z) =


σ(ri)

zRi − zLi
for z ∈ [zLi, zRi]

0 otherwise.

Here σ(ri) is the radial charge density at ri given by the MCP image. The self–
potential φch(r, z) can then be computed from the space charge, and the vacuum po-
tential φvac(r, z) computed using the trap voltages applied on the electrodes, using the
method described in Sec. 3.1. This gives the total potential φ = φvac + φch.

2. Using the total potential, the average axial electric fields in the left and right halves of
the plasma are defined as

ĒLi = −φ(ri, zCi)− φ(ri, zLi)

zCi − zLi
,

ĒRi = −φ(ri, zRi)− φ(ri, zCi)

zRi − zCi
,

where zCi ≡ (zLi + zRi)/2 is the mid–point of the plasma.

3. The test boundary, which are slight modifications of the original boundary based on
the average electric field, are then given by

z′Li = zLi + ΛĒLi,

z′Ri = zRi + ΛĒRi,

z′Ci = (z′Li + z′Ri)/2,
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where Λ is an arbitrary number with the same sign as the plasma’s charge.

4. Using the test boundaries, the test space charge density is given by

ρ′(ri, z) =


σ(ri)

z′Ri − z′Li
for z ∈ [z′Li, z

′
Ri]

0 otherwise.

Using this, the test self–potential φ′ch and the test total potential φ′ = φvac + φ′ch are
computed using the method described in Sec. 3.1. (Note that φvac is unchanged.)

5. From this test total potential, the following are defined:

Ē ′Li = −φ
′(ri, z

′
Ci)− φ′(ri, z′Li)
z′Ci − z′Li

Ē ′Ri = −φ
′(ri, z

′
Ri)− φ′(ri, z′Ci)
z′Ri − z′Ci

Ê ′ =
∑
i

(∣∣Ē ′Li∣∣+
∣∣Ē ′Ri∣∣) .

The value Ê ′ is a measure of the “flatness” of the net potential — a figure of merit for
the choice of Λ.

6. Return to step 3 with another choice of Λ and obtain another Ê ′, until the Λ cor-
responding to the minimum Ê ′ is found. The search algorithm we use is a simple
geometric search, with Λ divided or multiplied by 1.5 each time until a minimum is
observed. An interpolation is then used to determine the optimal Λ.

7. Return to step 1, with zLi := z′Li and zRi := z′Ri for all i, until Ê ′ becomes smaller than
a desired tolerance.

The efficiency of this algorithm is maximised when used in conjunction with the electro-
static solver in Sec. 3.1. Unlike the finite volume or finite element methods for computing
the potential from the space charge density, which must solve the entire domain, the solver
described in Sec. 3.1 can evaluate the potential at individual points. This means that in
steps 2 and 4, the potential at only 3×Nr points has to be evaluated (at φ(ri, zLi), φ(ri, zCi)
and φ(ri, zRi) for all i), thus cutting the time required for the algorithm significantly.

Note that the total potential so obtained remains a function of r within the plasma
boundary. In using the experimental radial charge density σ(r) from the MCP imaging
diagnostic as the input of this algorithm, no assumption on whether the plasma has reached
radial thermal equilibrium is made. Only an equilibrium in the axial direction is assumed.
The actual potential difference across r inside the plasma is determined by the state of
the physical plasma. Figure 3.4 shows the convergence of the algorithm when applied on
the positron plasma in Fig. 2.6, just before the antiprotons and positrons are mixed during
antihydrogen production.
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Figure 3.4: The convergence of the water bag solver, computing the positron plasma boundary and
potential in the mixing trap just before mixing. a) The algorithm evolving the plasma boundaries
zLi and zRi from the initial ellipse in grey, to the final solution in black. The kinks in the boundary
at the top and bottom of the figure are artefacts created by small errors in the outer tail of the
radial charge density used as input for this solution. They contain little charge and have little effect.
b) The corresponding total potential at r = 0 at each step of the convergence process, leading to
the expected perfect Debye shielding of a zero-temperature plasma.
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Chapter 4

The radially–coupled Vlasov solver for
dynamic plasmas

While the Poisson–Boltzmann equation is valid when the external forces applied are suffi-
ciently slow that a plasma responds quasi-statically, many manipulations in the experiment
occur on a shorter time scale, e.g. the autoresonant excitation of antiprotons during mixing,
or the axial ejection of positrons during a temperature diagnostic. In this case, a model
has to follow the time–dependent particle motion in order to reproduce the behaviour of the
physical system. As described in Sec. 1.4, the particle motion is separated into the local
binary interaction and the bulk collective motion. The modelling of the binary interaction
(collision) is deferred to Chs. 5 and 6, while the modelling of the bulk motion is discussed
here. This bulk dynamics is dominated by axial motion; radial motion is negligible due to the
strong magnetic field, and the azimuthal motion is decoupled. We ignore the radial diffusion
in coordinate space due to collisions, and assume the system is azimuthally symmetric. This
means diocotron modes are ignored, and non-axi-symmetric electric fields due to misaligned
electrodes or the rotating wall are not modelled.

It is worth noting that, while radial motion is negligible, the axial motion does have radial
dependence: particles at higher radii see a more shallow (axial) vacuum trap compared the
on-axis ones due to the nature of the Laplace equation, and the former also see a weaker
outward axial field due to the plasma’s space charge compared to the latter. In order to
capture this radial dependence of the axial motion, the plasma is modelled as a series of
concentric cylindrical shells, with particles in each confined to move in the z direction.
The bulk “flow” of material in the cylindrical shell at r and at time t is described by the
distribution function f(r, z, vz; t), where z is the axial position and vz is the axial velocity.
The distribution function is defined such that σ(r)f(r, z, vz; t)2πrδr δz δvz gives the number
of particles at radial position between r and r+ δr, axial position between z and z+ δz, and
axial velocity between vz and vz + δvz. Here σ(r) is the radial profile of the plasma, which
is measured experimentally through the MCP imaging diagnostic.

The evolution of the phase–space distributions is described by the Vlasov–Poisson–
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Fokker–Planck equation

0 =
∂f

∂t
+

inertial︷ ︸︸ ︷
vz
∂f

∂z
+

acceleration︷ ︸︸ ︷
a(r, z; t)

∂f

∂vz
−

collisional drift︷ ︸︸ ︷
∂

∂vz
(ν(r, z, vz; t)f)−

collisional diffusion︷ ︸︸ ︷
∂2

∂v2
z

(D(r, z, vz; t)f), (4.1)

Equation 4.1 contains no term which leads to an exchange of material between radial shells.
Within this equation, the particle motion at one radius has no influence on that at another
radius. There is, however, radial coupling through the coefficients a, ν and D, which are com-
puted separately. The four terms in the equation influence the evolution of the distribution
in the following manner:

1. The inertial operator shifts the distribution in the z–direction at a rate of vz. This cor-
responds to particles with axial velocity vz free–streaming in the z–direction according
to their inherent velocity.

2. The acceleration operator shifts the distribution in the vz–direction at a rate of a(r, z; t) ≡
−q/m ∂zφ(r, z; t). This represents the change in axial velocity afforded to the parti-
cles at (r, z) by the axial electric field at that position. The net potential φ(r, z; t)
is obtained through the Poisson equation, using the space charge density ρ(r, z; t) =
qσ(r)

∫
f(r, z, vz; t) dvz, and the boundary condition given by the electrode voltages.

The acceleration due to electric field is the primary mechanism through which the
particles at different radii couple with each other, as the charges at each radius has a
global influence on the electric field at all points.

3. The collisional drift term comes from the Fokker–Planck formulation of collisional
effects (see Chs. 5 and 6). The drift term shifts the distribution at each (r, z, vz) in the
vz–direction, and reflects the momentum transferred to the particles at (r, z, vz) due
to the collisions with other particles at the same (r, z) but different vz.

4. Similar to the collisional drift term, the collisional diffusion term reflects the broadening
of the distribution at (r, z, vz) in the vz–direction due to the collisions with other
particles at the same (r, z) but different vz.

There are existing solvers for Eq. 4.1, e.g. a spectral solver by Barth et al. [54] or a real space
solver by Filbet et al. [55]. These implementations, however, have limitations in the way
the coefficient a is evaluated (i.e. the method in which the Poisson equation is solved), and
they cannot simulate the radial dependence of the plasma behaviour, being limited to the
dynamics at r = 0. The error of these solvers and their computational requirements are also
too high for our intended application. In order to develop a more suitable solver for Eq. 4.1,
we opt to apply operator splitting, which separates the four operations into independent ones
that act on the distribution consecutively in each time step. The distribution f(r, z, vz; t)
is discretised on a 3–D phase space grid {ri, zj, vz k}, and by discrete time steps {tl}. Here
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i ∈ [0, Nr−1], j ∈ [0, Nz−1] and k ∈ [0, Nvz−1] (see Fig. 4.2). The positions ri = (i+0.5)∆r,
zj = zmin + (j + 0.5)∆z and vz k = vzmin + (k + 0.5)∆vz denote the centre of the grid point
(i, j, k). The value of the distribution at time tl in cell (i, j, k) is labelled by f li,j,k.

4.1 The flux balanced method

The three advection operators in Eq. 4.1 take the general form of the advection operator in
the PDE

∂ψ(x, t)

∂t
+

∂

∂x
(u(x, t)ψ(x, t)) = 0, ψ(x, 0) = ψ0(x), (4.2)

where ψ0(x) is a given initial condition for ψ. This equation can be solved formally using the
method of characteristics. Consider a starting point of (x0, t0). The ‘flow’ of the advection
carries it to a new position at time t, labelled as χ(t;x0, t0). These χ are called the curves
of characteristics, and are the solutions to the differential equation

∂χ(t;x0, t0)

∂t
= u(χ, t), χ(t0;x0, t0) = x0. (4.3)

Qualitatively this states that the movement of the point χ follows the velocity field u(χ, t).
Using the resultant characteristics curve, the solution of the advection Eq. 4.2 can be ex-
pressed as

ψ(x0, t0) = ψ(χ(t;x0, t0), t)
∂χ(t; y, t0)

∂y

∣∣∣∣
y=x0

. (4.4)

This solution encapsulates the Lagrangian picture of fluid motion: a parcel of fluid initially
at point x0 and time t0 retains its material content as it is carried by the flow along the curve
of characteristics χ(t;x0, t0), for all time t. The density in the parcel would, however, change
as the parcel increase or decrease in size. The partial derivative factor in Eq. 4.4 accounts
for this, as parcels cannot penetrate each other, and converging characteristics means the
parcels are compressed, causing their density to increase.

The flux balanced method [56] makes use of the formal solution Eq. 4.4 to solve the
advection Eq. 4.2 on a discrete grid, where ψji = 1/∆x

∫ xi+1/2

xi−1/2
dxψ(x, tj). The spatial index

i increases in the x direction, such that xi = xmin + (i + 0.5)∆x. Integer i denotes the
centre of a cell, while i− 1/2 and i+ 1/2 are the left and right boundaries of that cell. The
temporal index j increases at every time step. Integrating Eq. 4.2 from t = tj to tj+1 and
from x = xi−1/2 to xi+1/2 gives

0 =∆x
(
ψj+1
i − ψji

)
+

∫ tj+1

tj

dt′ u(xi+1/2, t
′)ψ(xi+1/2, t

′)

−
∫ tj+1

tj

dt′ u(xi−1/2, t
′)ψ(xi−1/2, t

′). (4.5)
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Substituting x0 → xi+1/2, t0 → t′ and t → tj in Eqs. 4.3 and 4.4, using them to replace
dtm u(xi+1/2, t

′) and ψ(xi+1/2, t
′) respectively in the first integral of Eq. 4.5, and repeating a

similar procedure for the second integral, one arrives at the flux balance equation

∆xψj+1
i = ∆xψji −Q

j
i+1/2 +Qj

i−1/2, (4.6)

where the flux across the cell boundary xi+1/2 is given by

Qj
i+1/2 =

∫ xi+1/2

χ(tj ;xi+1/2,tj+1)

dxψ(x, tj). (4.7)

This puts into mathematical form the idea that fluid exiting a cell must enter the next one,
and the quantity exchanged is given by ‘retracing’ the characteristic curve from (xi+1/2, tj+1)
to (χ, tj). Since fluid elements cannot overtake each other, everything between χ and xi+1/2

must have exited cell xi and entered xi+1. Also note that no approximation has been made
up to this point. Eq. 4.6 is the exact solution of the time-stepping. However, it is incomplete
as a numerical method, since in Eq. 4.7 ψ(x, tj) is not known for all x, but only as the cell
averages ψji . Moreover χ(tj;xi+1/2, tj+1) needs to be solved using Eq. 4.3.

4.2 Reconstruction methods

As its name implies, a reconstruction method interpolates a function discretised on a grid
and recreates a continuous function. This is used to reconstruct ψ(x, tj) from the discretised
values of ψji to allow the evaluation of the flux integral Eq. 4.7. A reconstruction scheme is
centrally important to the behaviour of a numerical advection operator, and there exist nu-
merous schemes with distinct advantages and disadvantages. In the following we summerise
some of the more well–known reconstruction schemes and compare their behaviour when
used in an advection operator. We suppress the time index j in this section for simplicity;
all quantities refer to the time step tj.

Continuous linear reconstruction

The simplest first order interpolation scheme is

ψ(x) = ψi
xi+1 − x

∆x
+ ψi+1

x− xi
∆x

for x ∈ [xi, xi+1), (4.8)

which is an interpolation using the cell centres as pivots. Figure 4.1 b shows the recon-
struction of a distribution using this scheme. The reconstruction within cell i requires the
data at i − 1, i and i + 1, called the “stencil” of this interpolation scheme. In Fig. 4.1 a
a 1–D distribution is advected in a uniform velocity field using this reconstruction scheme,
and several moving window snapshots of the distribution is shown. The window follows
the distribution at the field’s velocity, and a perfect reconstruction scheme is expected to
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yield perfectly identical waveforms on the plot at all times. As evident from Fig. 4.1 a, how-
ever, this reconstruction method results in significant numerical defects during the advection
process. In particular, these common problems are observed:

• Positivity: Areas in the distribution become negative as the pulse is advected, which
is unphysical for a distribution function.

• Oscillation: The “downstream” tail of the distribution develops an oscillation which
is not present in the initial distribution. This is due to the reconstruction scheme
consistently underestimating (overestimating) the flux leaving convex (concave) regions
of the distribution.

• Phase error: The peak of the distribution shifts to the left in Fig. 4.1 a, which indicates
that the speed at which the distribution is shifted to the left is less than the actual
velocity of the advection field.

• Numerical diffusion: The pulse is seen to grow in width and decrease in height upon
advection in Fig. 4.1 a. Narrow details of the initial pulse is lost upon advection.
These behaviours are indicative of the numerical diffusion introduced to the advection
operator by this reconstruction scheme.

Many of the subsequent reconstruction methods are designed to counter these defects using
various numerical techniques.

Piecewise linear reconstruction

Used by Fijalkow [56] in the discretisation of the Vlasov equation, this simple linear recon-
struction scheme uses a piecewise linear discontinuous interpolant:

ψ(x) = ψi + (ψi+1 − ψi−1)
x− xi
2∆x

x ∈ [xi−1/2, xi+1/2). (4.9)

This scheme also has a stencil of {i − 1, i, i + 1}. Figures 4.1 c demonstrates the advection
effect of this scheme and Fig. 4.1 d shows a reconstructed distribution. This scheme improves
on the continuous linear reconstruction in most aspects, but the positivity of the distribution
is not preserved. The numerical diffusion quickly erases the minor peak in the distribution
in Fig. 4.1 c.

Uniformly non-oscillatory reconstruction (linear)

First described by Harten and Osher [57], this scheme uses a piecewise linear interpolant,
but with its slope obtained through a more sophisticated process than the one used in the
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piecewise linear reconstruction. First introduce the “modified minimum” function

minmod(a, b) ≡

 sign(a) min(|a|, |b|) if sign(a) = sign(b)

0 otherwise.

Next define the convexity at cell centre i and cell boundary i+ 1/2, respectively, as

Di ≡ ψi+1 + ψi−1 − 2ψi

Di+1/2 ≡ minmod(Di, Di+1).

The slope of the interpolant in cell i is then

Si ≡ minmod

(
ψi+1 − ψi

∆x
−
Di+1/2

2∆x2
,
ψi − ψi−1

∆x
+
Di−1/2

2∆x2

)
,

which in effect equates the slope in cell i with either that at i − 1/2 or i + 1/2, whichever
is smaller. In case the slope on the two sides differ in sign (e.g. at a local extremum), the
interpolant is set to have a zero slope. The reconstructed function is then

ψ(x) = ψi + Si
x− xi

∆x
x ∈ [xi−1/2, xi+1/2). (4.10)

This scheme has a stencil of {i − 2, i − 1, i, i + 1, i + 2}, and its use is demonstrated in
Figs. 4.1 e and 4.1 f. As its name suggests, the uniformly non-oscillatory scheme prevents
spurious oscillations, thus preserving the positivity of the distribution. There is still some
level of phase error and numerical diffusion, however, as the small feature on the left is
completely smoothed out by t = 9000 in Fig. 4.1 e.

Piecewise parabolic reconstruction

The Piecewise Parabolic Method (PPM) was developed by Colella and Woodward [58] for
advection operators in hydrodynamic and Vlasov simulations. First define the slope Si in
cell i as a modification over the “usual” centre-difference slope (ψi+1 − ψi−1)/2:

Si ≡sign (ψi+1 − ψi−1)×

min

(∣∣∣∣ψi+1 − ψi−1

2

∣∣∣∣ , 2 |ψi+1 − ψi| , 2 |ψi − ψi−1|
)

if (ψi+1 − ψi) (ψi − ψi−1) > 0,

≡0 otherwise.

This modification enhances the representation of a steep slope; in the case cell i is a local
extremum, the slope Si is set to zero. Using this slope, the half–point is defined as

ψi+1/2 ≡
ψi + ψi+1

2
− Si+1 − Si

6
.
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Now that we have the centre, the left–boundary and the right–boundary values of cell i
(namely ψi, ψi−1/2 and ψi+1/2), there is sufficient information to fit a piecewise parabola
in cell i. This is indeed the procedure in most cases; however, in some particular cases
this would cause the interpolant in cell i to create extra local extremums that does not
exist in the original discrete function (see Fig. 4.1 f) due to Runge’s phenomenon, as higher
order interpolations can oscillate between data points. This would lead to instability and
oscillation in the advection operator. To prevent this, the interpolant in cell i is fitted to
the “corrected” centre, left–boundary and right–boundary values ψi, ψL,i and ψR,i, which
are obtained through the following procedure:

1. ψL,i := ψi−1/2

2. ψR,i := ψi+1/2

3. if (ψR,i − ψi)(ψi − ψL,i) ≤ 0 :

ψL,i := ψi

ψR,i := ψi

4. if (ψR,i − ψL,i)(6ψi − 3ψL,i − 3ψR,i) > (ψR,i − ψL,i)2 :

ψL,i := 3ψi − 2ψR,i

5. if (ψR,i − ψL,i)(6ψi − 3ψL,i − 3ψR,i) < −(ψR,i − ψL,i)2 :

ψR,i := 3ψi − 2ψL,i.

The corrected boundary values ensure that the parabola inside cell i does not contain any
internal extremum. In the case cell i itself is an extremum in the discrete grid, the parabola
is set to horizontal. The PPM algorithm then interpolates between the three points with a
parabolic function, from which ψ(x) takes its value in cell i. This gives

ψ(x) =ψL,i + (ψR,i − ψL,i) δ
+ (6ψi − 3ψR,i − 3ψL,i) (1− δ)δ x ∈ [xi−1/2, xi+1/2), (4.11)

where δ = (x − xi−1/2)/∆x. The piecewise parabolic scheme has a stencil of {i − 2, i − 1,
i, i + 1, i + 2}, and its effect is shown in Figs. 4.1 g and 4.1 h. This reconstruction scheme
preserves positivity of the distribution, does not introduce spurious oscillations, and has
small phase error and numerical diffusion compared to the other schemes tested.

Positive flux conserving reconstruction (linear)

Introduced by Filbet et al. [55] for discretising the Vlasov equation, this method uses a piece-
wise linear interpolant. The slope of the interpolant is obtained using centre–differencing,
similar to the piecewise linear reconstruction, but includes an extra slope corrector εi to
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preserve positivity of the distribution. It is given by

εi =


min

(
1, 2

ψi
ψi+1 − ψi

)
if ψi+1 > ψi

min

(
1,−2

ψmax − ψi
ψi+1 − ψi

)
otherwise,

where ψmax = max({ψi}) is the global maximum of the distribution. Using this correction
factor the reconstructed function is

ψ(x) = ψi + εi(ψi+1 − ψi)
x− xi

∆x
x ∈ [xi−1/2, xi+1/2). (4.12)

The linear positive flux conserving scheme has a stencil of {i, i+ 1}, and its effect is demon-
strated in Figs. 4.1 i and 4.1 j. The scheme, as its name implies, preserves positivity of the
distribution, but it leads to a significant phase error and numerical diffusion for the smaller
peak on the left of the distribution in Fig. 4.1 i.

Positive flux conserving reconstruction (parabolic)

An extension of the previous scheme, this method is also introduced by Filbet et al. [55]. It
uses a piecewise parabolic interpolant instead of a linear one, and instead of one correction
factor, this scheme employs two:

ε+i =


min

(
1, 2

ψi
ψi+1 − ψi

)
if ψi+1 > fi

min

(
1,−2

ψmax − ψi
ψi+1 − ψi

)
otherwise

ε−i =


min

(
1, 2

ψmax − ψi
ψi − ψi−1

)
if fi > fi−1

min

(
1,−2

ψi
ψi − ψi−1

)
otherwise,

where δ = (x − xi−1/2)/∆x. Using these two correction factors, the reconstructed function
is given by

ψ(x) = ψi + ε+i (ψi+1 − ψi)
2(x− xi)(x− xi−3/2) + (x− xi−1/2)(x− xi+1/2)

6∆x2

+ε−i (ψi − ψi−1)
2(x− xi)(x− xi+3/2) + (x− xi−1/2)(x− xi+1/2)

6∆x2
x ∈ [xi−1/2, xi+1/2).

(4.13)

The parabolic positive flux conserving scheme has a stencil of {i− 1, i, i+ 1}, and its effect
is demonstrated in Figs. 4.1 k and 4.1 l. This scheme displays strong numerical diffusion and
is not suitable for our use with the Vlasov equation.
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Essentially non-oscillatory reconstruction (arbitrary order)

The essentially non-oscillatory reconstruction introduced by Filbet et al. [55] is slightly
different from the previous schemes, in that it does not attempt to reconstruct ψ(x) from
the grid points and integrate it according to Eq. 4.7. Instead, this scheme first integrates ψ
discretely. The discrete distribution ψi is specified at the cell centres xi, which means the
primitive is specified on the cell boundaries, i.e.

Ψi+1/2 =
i∑

k=0

ψk ∆x.

The discrete primitive is then interpolated to give the reconstructed Ψ(x) ≡
∫
ψ(x) dx,

which in turn gives the flux as

Qi+1/2 = Ψ(xi+1/2)−Ψ(χ(tj;xi+1/2, tj+1)).

The essentially non-oscillatory scheme reconstructs Ψ(x) from the grid averages {Ψi+1/2}
using a piecewise Newton polynomial of arbitrary order, which is fitted over a flexible stencil
to achieve the smoothest curve. The lowest order reconstruction scheme (n = 2) has an
interpolation stencil fixed at {i− 1/2, i+ 1/2}, which gives

Ψ(x) = [Ψi−1/2] + [Ψi−1/2,Ψi+1/2](x− xi−1/2) x ∈ [xi−1/2, xi+1/2), (4.14)

where the divided differences, denoted by the square brackets, are defined iteratively by

[F1] = F1,

[F1, · · · , Fn] =
[F2, · · · , Fn]− [F1, · · · , Fn−1]

xn − x1

.

For the next order of interpolation, the stencil of the piecewise interpolant can either be
extended to the left or to the right. Labelling the first two points i− 1/2 and i+ 1/2 of the
stencil as p1 and p2 respective, the choice of the third point is determined by

p3 =

 i+ 3/2 if |[Ψp1,Ψp2,Ψi+3/2]| < |[Ψp1,Ψp2,Ψi−3/2]|

i− 3/2 otherwise.

Using this choice of extension, the reconstructed primitive to the next order (n = 3) is
expressed as

Ψ(x) =[Ψp1] + [Ψp1,Ψp2](x− xp1)

+ [Ψp1,Ψp2,Ψp3](x− xp1)(x− xp2) x ∈ [xi−1/2, xi+1/2).
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This process can be repeated iteratively, choosing to extend the stencil to either the left or
right at each increase of the interpolation order. The resultant reconstructed primitive, up
to n-th order, is

Ψ(x) =
n∑
k=1

(
[Ψp1, · · · ,Ψpk]

k−1∏
l=1

(x− xpl)

)
x ∈ [xi−1/2, xi+1/2). (4.15)

The effect of this reconstruction scheme for n = 2, 3 and 4 is shown in Figs. 4.1 m to
4.1 r. There is obvious improvement to the fidelity of the advection scheme with increasing
interpolation order, and oscillation is suppressed. Numerical diffusion on prominent features
is small at n = 4; however smaller details are still smoothed out quickly.

Barycentric reconstruction (arbitrary order)

In contrast to the local reconstruction methods introduced above, all of which which have a
finite stencil, the Barycentric interpolation method [59] is a global method — all the points
in the domain contribute to the reconstruction in each cell. The reconstructed distribution
is given by

ψ(x) =

(
N−1∏
i=0

(x− xi)

)(
N−1∑
i=0

wi
x− xi

ψi

)
(4.16)

where the weight wi is given by

wi =
1

N−1∏
j=0, j 6=i

(xi − xj)
.

The result of the interpolation is shown in Fig. 4.1 t. This method suffers from Runge’s
phenomenon and is unsuitable for use with the Vlasov equation. Computationally this
method requires O(N2) operations per time step, which is expensive compared to the other
schemes.
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Figure 4.1: (Continued on next page)
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Figure 4.1: Snapshots of a distribution advected by a uniform velocity field, using various recon-
struction schemes. A distribution with an initial shape shape shown in solid grey is advected by a
uniform velocity field in the positive x–direction. In each plot several windowed snapshots of the
distribution are displayed, with the window moving together with the pulse at the uniform velocity.
The extent of the full simulation domain is much larger than shown, such that the distribution is
not affected by boundary effects. An ideal advection scheme is expected to perfectly preserve the
shape of the distribution as it is advected; the deterioration in its shape reflects the reconstruction
error of the algorithm (the flux balanced method itself is analytically exact). The grid spacing and
time steps of the advection equation simulated are both 1, in dimensionless units, and the velocity
of the field is 0.2. The inset figures on the right show the reconstructed distribution at t = 0. In
each plot, each grey band corresponds to one cell in the grid, and the orange points correspond to
the centre of the cells.
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4.3 Advection operator

Among the various reconstruction schemes tested, we selected the piecewise parabolic method
(Eq. 4.11) to evaluate the flux integral Eq. 4.7, due to its numerical and computational
performance. Using this flux, the distribution can be advanced to the next time step as per
Eq. 4.6, which gives a numerical solution to the advection operator Eq. 4.2. Note that the
choice of PPM reconstruction means advancing ψji to ψj+1

i requires the values of ψji−2, ψji−1,

ψji , ψ
j
i+1 and ψji+2 — i.e. a stencil of five cells, symmetrically stretching along the axis of

advection xi. In the case of advection in a higher–dimensional distribution, each column
of pixels along the direction of advection can be considered as a 1–D distribution, and the
operator shifts the distribution along the column according to the flow field. The various
columns spanning the directions orthogonal to the direction of advection are independent of
each other as far as the advection operator is concerned, since the stencils of the operator
do not span across columns.

On a practical computational grid, each of these columns of pixels is of finite length,
which means boundary conditions are need for the two ends of the column. For a boundary
where the flow carries material into the simulation domain, an insulating boundary condition
is applied, i.e. ψj+1

0 = max(0, ψj0 − Q
j
1/2). For a boundary where the flow carries material

out of the domain, an absorbing boundary condition is applied, i.e. ψj+1
N−1 = ψjN−1− (ψjN−1−

ψjN−2)ujN−1/2(tj+1−tj)/(xN−1−xN−2). The simulation domain is chosen to cover the majority
of the distribution, such that the flow into or out of the boundary is negligible.

To apply this general formulation to each specific advection operator in the Vlasov Eq. 4.1,
the variables in Eq. 4.2 are replaced by appropriate quantities:

1. Inertial operator: The advection column lies in the z–direction, and the different
columns at various r and vz are independent of each other. The characteristic curve
ending at zj+1/2 at tl+1 starts from zj+1/2 − vz k(tl+1 − tl) at tl. i.e.

x := z

u := vz

χ(tj; (ri, zj+1/2, vz k), tj+1) =
(
ri, zj+1/2 − vz k(tl+1 − tl), vz k

)
.

2. Acceleration operator: The advection column lies in the vz–direction, and the columns
at various r and z are independent. The characteristic curve ending at vz k+1/2 at tl+1

approximately starts from vz k+1/2−ali,j(tl+1−tl) at tl. The acceleration ali,j is evaluated
at the “start” time tl, which is equivalent to using an explicit time–stepping scheme.
This simplification is necessary since a = −q/m∂z(φvac +φch), and for a time–stepping
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from tl to tl+1, φch is only available explicitly at tl.

x := vz

u := a

χ(tj; (ri, zj, vz k+1/2), tj+1) =
(
ri, zj, vz k+1/2 − ali,j(tl+1 − tl)

)
.

3. Drift operator: The advection column lies in the vz–direction, and the columns at
various r and z are independent. The characteristic curve ending at vz k+1/2 at tl+1

starts from vz k+1/2 + νli,j,k+1/2(tl+1 − tl) at tl. This is also an explicit stepping scheme
as ν is evaluated at the “old” time.

x := vz

u := −ν
χ(tj; (ri, zj, vz k+1/2), tj+1) =

(
ri, zj, vz k+1/2 + νli,j,k+1/2(tl+1 − tl)

)
.

4.4 Diffusion operator

Given the diffusion term is usually small compared with other terms in the Vlasov Eq. 4.1,
a simple, explicit forward–time–centred–space (FTCS) scheme [53] is used to discretise the
diffusion operator after using the chain rule to expand the product Df inside the second
derivative:

f l+1
i,j,k = f li,j,k +

tl+1 − tl
2∆x2

(
(2Dl

i,j,k+1 + 2Dl
i,j,k−1 − 8Dl

i,j,k)f
l
i,j,k

+(2Dl
i,j,k +Dl

i,j,k+1 −Dl
i,j,k−1)f li,j,k+1

+(2Dl
i,j,k −Dl

i,j,k+1 +Dl
i,j,k−1)f li,j,k−1

)
,

(4.17)

where Dl
i,j,k ≡ D(ri, zj, vz k; tl). Note that the diffusion operator has a stencil stretching three

cells in the vz–direction, i.e. the time–stepping of one cell only requires information from its
vz neighbours. The various columns at different (r, z) are independent of each other.

4.5 Implementation

The discretised phase space distribution f li,j,k is a three dimensional table of numbers, span-
ning the r, z and vz directions. To advance this table in time from tl to tl+1, the four
operators in the Vlasov equation Eq. 4.1 are applied sequentially using operator splitting in
the following procedure:

1. Solving for potential: The distribution is flattened in vz to obtain the charge distri-
bution in (r, z) at time tl (see Fig. 4.2 b), and the corresponding total potential φ is
obtained using the method outlined in Sec. 3.1.
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2. Acceleration operator: Using this potential, the axial acceleration at time tl at each
point (r, z) is known. This acceleration modifies the velocity of each particle according
to their (r, z) position. In the phase space picture, the acceleration operator shifts the
distribution in each (r, z) column in the vz–direction independently of each other.

3. Collision drift operator: The drift operator is next applied, which advects the distri-
bution in vz. The operation, like the acceleration operator, works on each vz column
individually, and the columns at various (r, z) are independent of each other.

4. Collision diffusion operator: The diffusion operator is next applied, which causes a
spread of the distribution in vz. The operation is independent between columns at
different (r, z). After this operator, the velocity–aspect of the distribution is now
updated to tl+1, but the spatial aspect is still at tl since all the advection and diffusion
in vz causes no movement of material in (r, z).

5. Inertial operator: Lastly the inertial operator is applied to advect the distribution
along z in each (r, vz) column independently, according to that column’s axial velocity
vz. After this final operator, the distribution is now fully updated to tl+1, and the
time–stepping cycle can start over again.

4.6 Parallelisation

As summarised above, the four operators in the Vlasov equation work on columns either in
the vz– or z–direction, and each operator can be applied on orthogonal columns at the same
time without requiring sophisticated synchronisation. No operator requires access to cells at
multiple r positions (since there are no ∂r terms in Eq. 4.1), which means that in terms of the
Vlasov equation, the (z, vz) planes at various r are decoupled from each other. This presents a
natural two–level parallelisation scheme to maximise the computational resource addressable
by the Vlasov simulation. Here we consider a common configuration of high performance
computer clusters, where multiple machines are linked through high–speed interconnects
and each machine contains multiple Central Processing Unit (CPU) cores. These cores have
symmetric access to the memory within that machine, but data stored on different machines
must be passed through the interconnects.

In our parallelisation scheme, each of these machines store one “slice” of the phase space
distribution at a single r in its memory (Fig. 4.2 c). In steps 2 through 5 each machine applies
the four operators along either z or vz columns on its slice of the phase space, without having
to retrieve information from other machines. Within one machine, each operator is further
parallelised to work on multiple columns simultaneously through the OpenMP application
programming interface (API), with each CPU core assigned to work on a fraction of the
columns within that slice. It should be noted that there are operators along both z and
vz directions, which means the distribution within one slice is fully coupled and cannot be
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Figure 4.2: a) The geometry of the discretised phase space distribution. b) This distribution
is flattened in vz to produce the (r, z) distribution, from which the electric potential φ can be
calculated from the Poisson equation. c) Each radial “slice” of the distribution at a fixed r is acted
on by the four operators in the Vlasov equation to advance it in time. The direction of action of the
operators is indicated in the figure, and each operator only requires the values of the distribution
along the column of pixels it is acting on to advance the column in time.

further separated in the same manner as the radial dimension. But since the CPU cores
have symmetric access to the machine’s memory (and thus the full slice), this inter-machine
parallelisation still offers full performance scaling. The implementation of step 1, in contrast,
is more complex. In order for each machine to calculate the electric field acting on its radial
slice, the full ρ(r, z) is required. We choose to flatten the (z, vz) distribution in each machine
into a 1–D z–distribution (at a fixed r), and use the Open MPI library to circulate each
machine’s z–distribution to everyone else. Each machine then comes to possess the full (r, z)
distribution, and can solve for the total potential using the method described in Sec. 3.1.
While not computationally optimal, this approach is simple to implement compared to more
sophisticated solutions.

This parallelisation scheme is equally applicable to a single asymmetric many–core ma-
chine, e.g. AMD’s Bulldozer or Origin’s Scalable Shared Memory Multi–Processor archi-
tecture. In these machines, a group of cores (a node) have access to its dedicated memory
bank, and communication between the nodes is handled by a high–bandwidth inter-nodal
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bus. There is no direct access by one node to another node’s memory. The code assigns one
radial slice to each node, and that node’s cores will handle the four operators. The bus, on
the other hand, synchronises the copy of the space charge distribution on each node before
solving the Poisson equation.

4.7 Reduced domain

Computation efficiency is further increased by applying the operators only in areas of phase
space with significant density. A convex profile on each phase space slice demarcates the
area of computation (see Fig. 4.3), reducing the simulation domain. This does not alter the
applications of the operators during time–stepping, except that each column of pixels can
have different length. The shape of the boundary is dynamically adjusted to respond to the
changing shape of the distribution. Upon the application of each operator, the amount of flux
near the two boundaries of each column is monitored, and the boundaries are moved outward
if the flux towards them exceed some threshold in order to keep the distribution within the
domain. Conversely, if the flux depletes the cells near the boundaries, the boundaries would
be moved inward to save computational resource. This ensures that the profile envelopes the
area with significant density as closely as possible, and the flux hitting the computational
boundary is minimal. The reduced computational domain has the added advantage that the
extent of the phase space slices in z and vz can be made arbitrarily big, and the algorithm
can dynamically determine the area that requires actual computation.

vz

z

Figure 4.3: The convex profile, plotted in blue dotted line, restricts the simulation domain for each
radial slice and conserves computational resource. Note that the profile has to be convex so that
there is only one z column for each vz, and vice versa.

4.8 Annealing initialisation

The initial phase space distribution f 0
i,j,k needs to be set before the time–stepping begins.

Under most situations, this initial condition is a plasma in an axial thermal equilibrium,
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before perturbations are applied inside the simulation time. For low temperatures this
equilibrium can be solve for using the waterbag solver described in Ch. 3. However, a more
general and convenient method is available through the use of the collisional terms in the
Vlasov equation Eq. 4.1. By setting the collisional drift and diffusion coefficients

D(r, z, vz; t) = constant ν(r, z, vz; t) = D
m

kBT
vz,

the plasma will gradually settle from any arbitrary initial distribution into an equilibrium
with axial temperature T . The speed of equilibration depends on the choice of the constant
D. This process is known as numerical annealing, and can be used to generate a self-
consistent equilibrium initial condition before the “proper” time–dependent simulation. This
can be important as any error in the initial condition can introduce extra energy (and thus
temperature) into the distribution. Numerical annealing can also be used as a standalone
equilibrium solver for plasma of arbitrary temperature.

4.9 Comparison with numerical and analytic models

To benchmark our model, we simulated the autoresonant axial excitation of an antiproton
plasma, and compared the result to other existing numerical Vlasov solvers’ results, as well as
first–order, single–particle analytic predictions which ignore the collective effects of a plasma.
This is deferred to Sec. 7.2, where we observed a good agreement between our model and
others.
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Chapter 5

The weakly magnetised collisional
operator

In Sec. 1.4 we qualitatively described the strategy of separating the microscopic collisions
from the bulk interaction in plasma simulations. Under the binary collision approximation,
the forces felt by a particle in a plasma is split into the averaged bulk force due to distant
particles, and the short–range force felt during a binary collision. In this approximation,
the bulk influence during the short duration of a collision is negligible as the collisional
force acting on the two particles is much stronger than the bulk forces — with the possible
exception of the magnetic force. In a Penning–Malmberg trap the uniform magnetic field
acts on the pair of colliding particles during the collision process. The level of influence this
magnetic force has on the outcome of the collision depends on the comparison of a number
of scale lengths:

• the cyclotron radius of the incoming particle v̄ 1/ωC 1

• the cyclotron radius of target particle v̄ 2/ωC 2

• the mean distance of closest approach q1q2/(2πε0µv̄
2), where µ is the reduced mass

1/(1/m1 + 1/m2)

If the cyclotron radii of both particles are much bigger than the distance of closest approach,
the trajectories of the colliding particles would closely resemble those in free space, as the
magnetic force does not significantly alter the trajectories within the scale of the collision.
This is known as a weakly magnetised collision. On the other hand, if any of the two cyclotron
radii is comparable to the distance of closest approach, special treatment is necessary. In this
chapter we present an analytical proof to the qualitative picture above for handling weakly
magnetised collisions. We also develop an efficient, energy–conserving numerical scheme to
simulate the cumulative effect of collisions on the macroscopic distribution in the weakly
magnetised regime. The simulation of intermediately magnetised collisions is deferred to the
next chapter.



72

5.1 Rutherford scattering

bb

Δb

ϕϕq1 , μ v

Δσ = b Δb Δϕ

ΔΩ = sin θ Δθ Δϕ 

θ
θ−Δθθ−Δθ

q2

→
∞

a)

b)

q1 , μ

q2

x

y
ϕ(t) ϕ∞

ϕϕ
r(t)r(t) rmin

r

b v

θθ

Figure 5.1: a) The coordinates and variables used to describe a Rutherford scattering, in the
reduced–mass frame. The particle with charge and (reduced) mass q1 and µ collides with a fixed
collision centre with charge q2, at an incoming relative speed of v and impact parameter b. The
polar coordinates (r, φ) tracks the reduced mass during the collision process, and φ∞ is the polar
angle as r → ∞. b) The definition of the collisional cross–section. Particles that are injected
through the red patch with area ∆σ on the left must exit through the red patch on the right, which
sustains a solid angle of ∆Ω.

To study the collective effect of collisions we first need to calculate the effect of individual
collisions. Consider two particles of mass and charge (m1, q1) and (m2, q2) respectively,
travelling towards each other at a relative speed v and impact parameter b. In the centre–
of–mass frame, this problem can be described by µr̈ = k/r2r̂, where r ≡ r2 − r1 is the
relative distance vector between the two particles, µ = (1/m1 + 1/m2)−1 is the reduced
mass, and k = q1q2/(4πε0) is the coefficient for the electrostatic interaction between the two
particles. In the polar coordinates defined in Fig. 5.1 a, r̈ = (r̈ − rφ̇2)r̂ + (2ṙφ̇+ rφ̈)φ̂, and
the equation of motion can be written as

r̈ − rφ̇2 =
k

µr2

d

dt
(r2φ̇) = 0.

The second of these two equations can be expressed as µr2φ̇ ≡ L =constant, which is simply
a statement of the conservation of angular momentum. Using the incoming particle’s initial
velocity, the angular momentum can also be expressed as L = µbv. This allows us to
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eliminate φ̇ in the first equation to yield

r̈ − L2

µ2r3
=

k

µr2
. (5.1)

The conservation of angular momentum also allows time derivatives to be replaced as ∂t =
φ̇∂φ = L/(µr2)∂φ. Using this to replace the time derivatives in Eq. 5.1, and defining the
variable u ≡ 1/r, we have

d2u

dφ2
+

(
u+

kµ

L2

)
= 0. (5.2)

Equation 5.2 has the solution u(φ) + kµ/L2 = α cosφ + β sinφ. By the symmetry of the
coordinate system defined in Fig. 5.1 a, β = 0 since u should be symmetric around φ =
0. Another boundary condition is available at the point of closest approach, where, by
conservation of energy,

1

2
µv2 =

k

rmin

+
µ

2

(
L

µrmin

)2

⇒ 1

rmin

=
µ

L2

(√
k2 + v2L2 − k

)
We thus have the second boundary condition (u = 1/rmin, φ = 0). Putting this into Eq. 5.2,
the resultant trajectory curve is

1

r(φ)
=
µk

L2

√1 +

(
vL

k

)2

cosφ− 1

 . (5.3)

As defined in Fig. 5.1 a, the deflection angle θ is equal to π−2φ∞, where φ∞ corresponds
to the angle where r → ∞. Setting the right side of Eq. 5.3 to zero, we can solve for these
two angles as

cosφ∞ =
k√

k2 + (vL)2
⇒ tan

θ

2
=

k

vL
=

q1q2

4πε0bµv2
. (5.4)

To obtain the differential cross–section of Rutherford scattering, we first take derivative
of Eq. 5.4 against b to obtain dθ/ db = − sin θ/b. Using the definition of the differential area
dσ and differential solid angle dΩ in Fig. 5.1 b, we can then write down the well–known
Rutherford scattering cross–section∣∣∣∣dσdΩ

∣∣∣∣ =

∣∣∣∣ b

sin θ

db

dθ

∣∣∣∣ =

(
q1q2

8πε0µv2

)2
1

sin4(θ/2)
. (5.5)

The absolute value sign is necessary since b and θ go in opposite sense: high impact parameter
leads to small deflection angle and vice versa. However, as far as the cross–section area is
concerned, the sign is not important.



74

5.2 Liouville’s equation and BBGKY hierarchy

In this section we develop the general statistical description of collisions, following the ap-
proach by Moore [60]. At the most fundamental level, the N particles in a plasma can be
described by the 6N dimension phase space distribution function g(z1, · · · , zN), where the
vector z1 ≡ {r1,v1} corresponds to the phase space position of one particle. Note that the
particles in the distribution are considered indistinguishable, which means exchanging any
zi in the argument of g yields the same value. The distribution is the product of 6N Dirac
delta functions, meaning only one point in the 6N phase space is non-zero, that being the
exact state of the plasma. The evolution of the distribution g is given by Liouville’s equation

∂g

∂t
+

N∑
i=1

(
vi · ∇rig +

Fi
m
· ∇vig +

N∑
j=1, j 6=i

Kij

m
· ∇vig

)
= 0,

where Fi = −∇riφ is the bulk electrostatic force on particle i, and Kij = −∇riφij is the
pairwise force by particle j on particle i. The magnetic force on the particles are ignored since
we are concerned with weakly magnetised collisions, and the bulk motion of the particles
can be constrained to ẑ a posteriori. The Liouville’s equation can be rewritten as(

∂

∂t
+ h(z1, · · · , zN)

)
g = 0, (5.6)

where the operator h is defined as

h(z1, · · · , zN) =
N∑
i=1

(
vi · ∇ri +

Fi
m
· ∇vi

)
+

1

2

N∑
i,j=1

Kij

m
· (∇vi −∇vj). (5.7)

The binary interaction term involving Kij has been symmetrised by swapping the indices i
and j.

Next we define the n-body distribution function

fn(z1, · · · , zn) =
N !

(N − n)!

∫
g(z1, · · · , zn, zn+1, · · · , zN) d6zn+1 · · · d6zN ,

which averages over the position of the last N −n particles. Given that the particle labels in
g are exchangeable, the one–body distribution f1(z1) gives the phase space particle density
at z1, and the two–body distribution f2(z1, z2) gives the correlated probability of finding
any two particles at z1 and z2 simultaneously. To derive a equation of motion for fn, we
integrate the Liouville’s equation (Eq. 5.6) over the last N − n variables and multiply both
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sides by N !/(N − n)! to obtain

−∂fn
∂t

=
N !

(N − n)!

∫
h(z1, . . . ,zn)g d6zn+1 · · · d6zN

+
N !

(N − n)!

∫
h(zn+1, . . . ,zN)g d6zn+1 · · · d6zN

+
N !

(N − n)!

∫ n∑
i=1

N∑
j=n+1

Kij

m
· (∇vi −∇vj)g d6zn+1 · · · d6zN . (5.8)

The first integral in Eq. 5.8 is over variables not involved in the operator h, which means
the operator can be commuted with the integral. The second integral is zero, which can be
proven using the fact that g is zero outside of some bounded region in phase space. This
means that

∫
vi · ∇rig d3ri = vi ·

∫
∇rig d3ri has to be zero as g is evaluated at g(ri → ∞)

using the gradient theorem. Similarly,
∫
Fi · ∇vig d3vi = 0, and

∫
Kij · ∇vig d3vi = 0. The

third integral can be simplified by dropping the ∇vj term, as the j index runs over the
integration variables, which means it is zero by the gradient theorem. The third integral is
further simplified as follows:

N !

(N − n)!

∫ n∑
i=1

N∑
j=n+1

Kij

m
· ∇vig d6zn+1 · · · d6zN

=
N !

(N − n)!

n∑
i=1

(N − n)

∫
Ki,n+1

m
· ∇vig d6zn+1 · · · d6zN

=
n∑
i=1

∫
Ki,n+1

m
· ∇vi

(
N !

(N − n− 1)!

∫
g d6zn+2 · · · d6zN

)
d6zn+1

=
n∑
i=1

∫
Ki,n+1

m
· ∇vifn+1(z1, · · · , zn+1) d6zn+1.

The first step is accomplished by swapping the indices j and n + 1 in each term of the
summation over j. This does not alter the value of g since g(· · · , zn+1, · · · , zj, · · · ) =
g(· · · , zj, · · · , zn+1, · · · ). The second step is done by commuting Ki,n+1 and ∇vi with the
integral over the variables zn+2 to zN , given they have no overlap. The last step uses the
definition of fn+1. Putting these three integrals together, we have converted the Liouville’s
equation into(

∂

∂t
+ h(z1, · · · , zn)

)
fn(z1, · · · , zn)

= −
n∑
i=1

∫
Ki,n+1

m
· ∇vifn+1(z1, · · · , zn+1) d6zn+1. (5.9)

This is the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, which gives the
evolution of the n-particle distribution in terms of the next order n+ 1-particle distribution.
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5.3 Boltzmann collision integral

Usually the first two equations in the BBGKY hierarchy are of the greatest physical interest,
which we will analyse in this section using the approach described by Huang [61]. Explicitly,
the first equation in the hierarchy, which is given by Eq. 5.9 with n = 1, is(

∂

∂t
+ v1 · ∇r1 +

F1

m
· ∇v1

)
f1(r1,v1)

= −
∫
K12

m
· ∇v1f2(r1,v1, r2,v2) d3r2 d3v2 ≡

(
∂f1

∂t

)
col

. (5.10)

This is the most important equation in the hierarchy. The left hand side of this equation
contain the “streaming” terms which describe the bulk evolution of the one-particle distri-
bution / phase space density according to the bulk force. This is the Vlasov equation, which
we have in effect derived. The right hand side, on the other hand, represent the effects
two–body correlations have on the evolution of the phase space density. The right hand side
is therefore defined as the collisional operator (∂tf1)col.

The second equation, given by substituting n = 2 into Eq. 5.9, is(
∂

∂t
+ v1 · ∇r1 +

F1

m
· ∇v1 + v2 · ∇r2 +

F2

m
· ∇v2 +

K12

m
· ∇v1

)
f2(r1,v1, r2,v2)

= −
∫ (

K13

m
· ∇v1 +

K23

m
· ∇v2

)
f3(r1,v1, r2,v2, r3,v3) d3r3 d3v3. (5.11)

This equation describes the evolution of the the two–body correlation in terms of the three–
body correlation. This is qualitatively different from Eq. 5.10 in that there is no bulk
streaming term; both sides describe collisional effects. The evolution of the two–body dis-
tribution on the left is expressed in terms of the three–body distribution on the right. Since
the possibility of three particles being in close proximity simultaneously is generally much
lower than the possibility of two particles being in close proximity, the magnitude of the right
hand side of Eq. 5.11 involving f3 is much smaller than the magnitude of the left hand side.
The right hand side of Eq. 5.11 is therefore set to zero, as is customarily done in collision
analysis. This terminates the BBGYK hierarchy and restricts our model to including only
binary collisional effects.

Our objective is to eliminate f2 altogether from Eqs. 5.10 and 5.11, and obtain a closed
equation purely in terms of f1. For this to be possible, simplifications have to be made.
We first assume that particles only interact when their distance is within one Debye length,
within which the two particles’ trajectories are correlated. When the particles leave the
interaction range, they become uncorrelated again. Mathematically, this means the two–
body correlation f2 is separable outside of the interaction range, i.e. f2(r1,v1, r2,v2) =
f1(r1,v1)f1(r2,v2) when |r2 − r1| > λD. Using this, the integral on the right hand side
of Eq. 5.10 is non-zero only when |r2 − r1| < λD. Secondly, the effect of collisions on
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the macroscopic distribution is assumed to be slow in comparison to the time scale of the
collisions themselves. For each combination of z1 and z2 for a collision, there is a constant
inflow of particles at z1 and a constant supply of targets at z2 into the collision region, as
these flows are provided by the “outside” macroscopic distribution, which is slow–varying.
This allows the ∂t term on the left hand side of Eq. 5.11 to be dropped, as the effect of the
collisions is quasi-steady state, compared to the magnitude of the other terms in Eq. 5.11.
Thirdly, we assume that the bulk forces are negligible during the course of a collision, as the
close–range interaction is much stronger than the bulk force. This means terms involving the
bulk force F1 and F2 on the left hand side of Eq. 5.11 can be dropped when |r2 − r1| < λD.
Putting all these simplifications together, Eq. 5.11 becomes(

v1 · ∇r1 + v2 · ∇r2 +
K12

m
· ∇v1

)
f2(r1,v1, r2,v2) ≈ 0 for |r2 − r1| < λD.

Inserting this back into Eq. 5.10 to replace K12, while noting the integral is non-zero only
over the domain |r2 − r1| < λD, we can rewrite the collision operator as(

∂f1

∂t

)
col

=

∫
|r2−r1|<λD

(v1 · ∇r1 + v2 · ∇r2) f2(r1,v1, r2,v2) d3r2 d3v2.

Introducing the centre of mass coordinates R = (r1 + r2)/2 and r = r2 − r1, and the
corresponding V = Ṙ and v = ṙ, we can rewrite the gradients and the integral over r2 in
the collisional integral into(

∂f1

∂t

)
col

=

∫
d3v2v ·

∫
r<λD

d3r∇rf2.

The ∇R term is omitted assuming the background distribution is uniform over the collisional
scale. Now define a cylindrical coordinate for the integral over r, where the z axis is aligned
in the direction of v, and the cylindrical radius and azimuthal angle are labelled b and φ
respectively. Since v is the relative velocity of the incoming particle, this coordinate system
is also the one used in Fig. 5.1. In this coordinate, v · ∇r becomes |v|∂z. The collision
operator then becomes(

∂f1

∂t

)
col

=

∫
d3v2 |v|

∫
b<λD

b db dφ (f2,exit − f2,entry) ,

where f2,entry refers to the distribution at the point where the collision trajectory enters
the interaction range λD, and f2,exit refers to the exit point. Since these points are on
the boundary of the interaction range, f2,exit and f2,entry should equal to n2

0f1(v1)f1(v2) and
n2

0f1(v′1)f1(v′2) respectively to preserve continuity with the outside uncorrelated region. Here
v′1 and v′2 are the final velocities of two particles after they collide with initial velocities v1 and
v2 and impact parameter b. The 6–D distribution f1(r,v) is replaced with n0f1(v), where
n0 is the spatial density of the particles, since the distribution is approximately uniform in
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the collisional scale. Using the Rutherford scattering cross–section Eq. 5.5 to rewrite the
integral over area into one over solid angle, we have(

∂f1

∂t

)
col

=

∫
d3v2n0 |v2 − v1|

∫
θ>θmin

dΩ
dσ

dΩ
(f1(v′1)f1(v′2)− f1(v1)f1(v2)) , (5.12)

which is the Boltzmann collision integral. The integral over the scattering angle θ has a lower
limit of θmin, which corresponds to an upper limit of the impact parameter b (recall that the
scattering angle increases as the impact parameter decreases). We have thus converted
Eqs. 5.10 and 5.11 into a closed equation which involves only f1.

5.4 Collisional Fokker–Planck equation

While the Coulomb collision integral forms a closed system that describes the evolution of f1,
it is not completely suitable for numerical computation. In this section we use the approach
outlined by Montgomery and Tidman [62] to convert Eq. 5.12 into a differential instead of
an integral–differential equation.

In the course of collision, the initial velocities of the two colliding particles v1 and v2

become v′1 and v′2 respectively when they leave the interaction range. Defining the change
in velocity ∆v1 ≡ v′1 − v1 and ∆v2 ≡ v′2 − v2, conservation of momentum requires that
∆v1 + ∆v2 = 0. Furthermore, conservation of energy requires that the magnitude of the
relative velocity before collision v ≡ v2−v1 and after collision v′ ≡ v′2−v′1 have to be equal.
This means in the coordinates system of Fig. 5.1 b,

∆v2 =
∆v

2
∆v1 = −∆v

2
∆v = |v| ((cos θ − 1)ẑ + sin θ cosφ x̂+ sin θ sinφ ŷ) .

In the last section we have shown that the collision integral is bounded below by a minimum
scattering angle, due to Debye shielding. It can be shown that the integral can also be
bounded above by θmax � π/2, since the cumulative effect of large angle scattering (ones
which changes v by an angle comparable to π) is much less than that of small angle scattering.
This means we can consider ∆v1 and ∆v2 as small parameters without significantly changing
the value of the collision integral (given appropriate lower and upper limits for θ). Expanding
Eq. 5.12 to second order in ∆v1 and ∆v2, we have(

∂f1

∂t

)
col

=

∫
d3v2n0 |v2 − v1|

∫
θmin<θ<θmax

dΩ
dσ

dΩ
×{

f1(v1)∆v2 ·
∂f1(v2)

∂v2

+ f2(v2)∆v1 ·
∂f1(v1)

∂v1

+
1

2
f1(v1)∆v2∆v2 :

∂2f1(v2)

∂v2∂v2

+
1

2
f1(v2)∆v1∆v1 :

∂2f1(v1)

∂v1∂v1
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+ ∆v1∆v2 :

(
∂f1(v1)

∂v1

∂f1(v2)

∂v2

)}
. (5.13)

As only ∆v1 and ∆v2 depend on the scattering angles θ and φ, f1 and its gradients can
be extracted outside the integral over the solid angle Ω. Using the differential cross–section
Eq. 5.5, and assuming the ordering π/2� θmax � θmin > 0, we have∫

θmin<θ<θmax

dΩ
dσ

dΩ
∆v = − q4

4πε20µ
2|v|3

log

(
θmax

θmin

)
ẑ∫

θmin<θ<θmax

dΩ
dσ

dΩ
∆v∆v =

q4

4πε20µ
2|v|2

log

(
θmax

θmin

)
(x̂x̂+ ŷŷ),

where µ = m/2 is the reduced mass. All small terms of O(θ2
min) or O(θ2

max) and higher
have been dropped, leaving only the logarithmic terms. Rewriting the unit vectors in a
coordinate–independent form, Eq. 5.13 becomes(

∂f1

∂t

)
col

=− n0q
4 log(θmax/θmin)

4πε20µ
2

1

2

∫
d3v2

v

|v|3
·
(
f1(v1)

∂f1(v2)

∂v2

− f1(v2)
∂f1(v1)

∂v1

)
+
n0q

4 log(θmax/θmin)

4πε20µ
2

1

8

∫
d3v2

(
Î

|v|
− vv

|v|3

)
:(

f1(v1)
∂2f1(v2)

∂v2∂v2

+ f1(v2)
∂2f1(v1)

∂v1∂v1

− 2
∂f1(v1)

∂v1

∂f1(v2)

∂v2

)
. (5.14)

The first of the two integrals in Eq. 5.14 can be simplified as follows:∫
d3v2

v

|v|3
·
(
f1(v1)

∂f1(v2)

∂v2

− f1(v2)
∂f1(v1)

∂v1

)
=

∫
d3v2f1(v2)

(
−f1(v1)

∂

∂v2

− ∂f1(v1)

∂v1

)
· v
|v|3

=

∫
d3v2f1(v2)

(
f1(v1)

∂

∂v1

· v
|v|3
− ∂f1(v1)

∂v1

· v
|v|3

)
=

∫
d3v2f1(v2)

(
∂

∂v1

·
(
f1(v1)

v

|v|3

)
− 2

∂f1(v1)

∂v1

· v
|v|3

)
=

∂

∂v1

·
(
f1(v1)

∂

∂v1

∫
d3v2f1(v2)

1

|v|

)
− 2

∂f1(v1)

∂v1

·
∫

d3v2f1(v2)
v

|v|3
.

In going from the first line to the second, we have used integration by parts to convert the
∂v2 acting on f1(v2) into one acting on v/|v|3. The boundary term is ignored since f1(v2) is
bounded. In the third line we used the fact that ∂v2 = −∂v1 when it is acting on a function
purely of v = v2 − v1. The fourth line exploits the chain rule. The fifth uses the vector
equality ∂v1(1/|v|) = v/|v|3.
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The second integral in Eq. 5.14, on the other hand, can be simplified as∫
d3v2

(
Î

|v|
− vv

|v|3

)
:

(
f1(v1)

∂2f1(v2)

∂v2∂v2

+ f1(v2)
∂2f1(v1)

∂v1∂v1

− 2
∂f1(v1)

∂v1

∂f1(v2)

∂v2

)

=

∫
d3v2f1(v2)

(
f1(v1)

∂2

∂v2∂v2

+
∂2f1(v1)

∂v1∂v1

+ 2
∂f1(v1)

∂v1

∂

∂v2

)
:

(
Î

|v|
− vv

|v|3

)

=

∫
d3v2f1(v2)

(
f1(v1)

∂2

∂v1∂v1

+
∂2f1(v1)

∂v1∂v1

− 2
∂f1(v1)

∂v1

∂

∂v1

)
:

(
Î

|v|
− vv

|v|3

)

=

∫
d3v2f1(v2)

{
∂2

∂v1∂v1

:

(
f1(v1)

∂2|v|
∂v1∂v1

)
− 4

(
∂f1(v1)

∂v1

∂

∂v1

)
:

(
Î

|v|
− vv

|v|3

)}

=
∂2

∂v1∂v1

:

(
f1(v1)

∂2

∂v1∂v1

∫
d3v2f1(v2)|v|

)
− 8

∂f1(v1)

∂v1

·
∫

d3v2f1(v2)
v

|v|3
.

In going from the first line to the second, integration by parts is used on derivatives against
v2. The third line uses ∂v2 = −∂v1 when the derivative acts on a function purely of v. The
fourth makes use of the chain rule, and the identity ∂v1∂v1 |v| = Î/|v| − vv/|v|3. The fifth
exploits the identity ∂v1 · (Î/|v| − vv/|v|3) = 2v/|v|3.

Putting these two simplifications back into Eq. 5.14, we notice that the second term com-
ing from the simplification of the two integrals cancel each other. The resulting expression
can be written as(

∂f1

∂t

)
col

=
∂

∂v1

·
(
f1(v1)

∂h(v1)

∂v1

)
+

∂2

∂v1∂v1

:

(
f1(v1)

∂2g(v1)

∂v1∂v1

)
(5.15)

where the Rosenbluth potentials [63] h(v1) and g(v1) are defined by

h(v1) = −2Γ

∫
d3v2f1(v2)

1

|v2 − v1|
(5.16)

g(v1) =
Γ

2

∫
d3v2f1(v2)|v2 − v1|, (5.17)

and Γ = log(θmax/θmin)n0q
4/(4πε20m

2). This is the collision operator expressed as a Fokker–
Planck equation, which describes the collective velocity space drift and diffusion caused by
collisions. The derivatives of the Rosenbluth potentials give the drift and diffusion coeffi-
cients.

5.5 Velocity–cylindrical coordinates

In our weakly magnetised system, the particles undergo gyro-rotation in between collisions.
Assuming the gyromotion is uncorrelated, the polar angle of the velocities of particles are
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randomised. This means we can express the phase space density f1 as a function of vz and
v ≡

√
v2
x + v2

y , and not of θ ≡ tan−1(vy/vx). (Here the z axis is along the magnetic field.)
In the cylindrical coordinates, the vector and tensor ∇ operators are generally expressed as

∂F (r, θ, z)

∂r
= r̂

∂F

∂r
+ θ̂

1

r

∂F

∂θ
+ ẑ

∂F

∂z

∂

∂r
· V =

1

r

∂(rVr)

∂r
+

1

r

∂Vθ
∂θ

+
∂Vz
∂z

∂2F (r, θ, z)

∂r∂r
= r̂r̂

(
∂2F

∂r2

)
+ θ̂θ̂

(
1

r2

∂2F

∂θ2
+

1

r

∂F

∂r

)
+ ẑẑ

(
∂2F

∂z2

)
+ 2r̂θ̂

(
∂2

∂r∂θ

F

r

)
+ 2r̂ẑ

(
∂2F

∂r∂z

)
+ 2θ̂ẑ

(
1

r

∂2F

∂θ∂z

)
∂2

∂r∂r
:
↔
T =

1

r

∂2(rT rr)

∂r2
+

(
1

r2

∂2

∂θ2
− 1

r

∂

∂r

)
T θθ +

∂2T zz

∂z2

+
1

r2

∂2(rT rθ)

∂r∂θ
+

1

r

∂2(rT rz)

∂r∂z
+

1

r

∂2T θz

∂θ∂z
.

Applying these to rewrite the Fokker–Planck equation (Eq. 5.15), we first discard the ∂θ
terms since f1 is considered to have no θ–dependence. Labelling v1 ≡ (τ cos θ, τ sin θ, ξ) and
v2 ≡ (τ ∗ cos θ∗, τ ∗ sin θ∗, ξ∗), we have(

∂f1

∂t

)
col

=
1

τ

∂

∂τ

(
τf1

∂h

∂τ
− f1

τ

∂g

∂τ

)
+

∂

∂ξ

(
f1
∂h

∂ξ

)
+

1

τ

∂2

∂τ 2

(
τf1

∂2g

∂τ 2

)
+

∂2

∂ξ2

(
f1
∂2g

∂ξ2

)
+

2

τ

∂2

∂τ∂ξ

(
τf1

∂2g

∂τ∂ξ

)
.

Averaging both sides by 1/(2π)
∫ 2π

0
dθ, it can be shown that(

∂f1

∂t

)
col

= −
(

1

τ

∂

∂τ
τ

)
Jτ − ∂

∂ξ
Jξ (5.18)

where Jτ and Jξ are the phase space fluxes in the radial and axial directions. These fluxes
are given by

Jτ = f1ν
τ +

(
1

τ

∂

∂τ
τ

)
(f1D

ττ ) +

(
∂

∂ξ

)
(f1D

τξ) (5.19)

Jξ = f1ν
ξ +

(
∂

∂ξ

)
(f1D

ξξ) +

(
1

τ

∂

∂τ
τ

)
(f1D

τξ). (5.20)

The variables ν and D are essentially the advection and diffusion coefficients, which deter-
mines the flow and diffusion of the distribution in the (τ, ξ) phase space. These coefficients
are defined by

ντ (τ, ξ) =

∫
2πτ ∗ dτ ∗ dξ∗f1(τ ∗, ξ∗) Cτ (τ, τ ∗, ξ∗ − ξ) (5.21)
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νξ(τ, ξ) =

∫
2πτ ∗ dτ ∗ dξ∗f1(τ ∗, ξ∗) Cξ(τ, τ ∗, ξ∗ − ξ) (5.22)

Dττ (τ, ξ) =

∫
2πτ ∗ dτ ∗ dξ∗f1(τ ∗, ξ∗) Cττ (τ, τ ∗, ξ∗ − ξ) (5.23)

Dξξ(τ, ξ) =

∫
2πτ ∗ dτ ∗ dξ∗f1(τ ∗, ξ∗) Cξξ(τ, τ ∗, ξ∗ − ξ) (5.24)

Dτξ(τ, ξ) =

∫
2πτ ∗ dτ ∗ dξ∗f1(τ ∗, ξ∗) Cτξ(τ, τ ∗, ξ∗ − ξ). (5.25)

Here the “interaction” coefficients C(∗) specify the advective and diffusional influence felt by
the distribution at (τ, ξ), when the particles in that region of the phase space collide with
particles in another region at (τ ∗, ξ∗). These coefficients are given by

Cτ (τ, τ ∗, ξ∗ − ξ) ≡ Γ

4π2

∫∫
dθ dθ∗

(
2
∂

∂τ

1

|v2 − v1|
+

1

2τ 2

∂

∂τ
|v2 − v1|

)
(5.26)

Cξ(τ, τ ∗, ξ∗ − ξ) ≡ Γ

4π2

∫∫
dθ dθ∗

(
2
∂

∂ξ

1

|v2 − v1|

)
(5.27)

Cττ (τ, τ ∗, ξ∗ − ξ) ≡ − Γ

4π2

∫∫
dθ dθ∗

(
1

2

∂2

∂τ 2
|v2 − v1|

)
(5.28)

Cξξ(τ, τ ∗, ξ∗ − ξ) ≡ − Γ

4π2

∫∫
dθ dθ∗

(
1

2

∂2

∂ξ2
|v2 − v1|

)
(5.29)

Cτξ(τ, τ ∗, ξ∗ − ξ) ≡ − Γ

4π2

∫∫
dθ dθ∗

(
1

2

∂2

∂τ∂ξ
|v2 − v1|

)
. (5.30)

These can be explicitly evaluated using the relation |v2 − v1|2 = τ ∗2 + τ 2 + (ξ∗ − ξ)2 −
2τ ∗τ cos(θ∗ − θ), which yields

Cτ (τ, τ ∗, ξ∗ − ξ) =
Γ

π

{
∂

∂τ

(
2√

2ττ ∗
R2(k)

)
+

1

4τ 2

∂

∂τ

(
2
√

2ττ ∗R1(k)
)}

(5.31)

Cξ(τ, τ ∗, ξ∗ − ξ) =
Γ

π

∂

∂ξ

(
2√

2ττ ∗
R2(k)

)
(5.32)

Cττ (τ, τ ∗, ξ∗ − ξ) = − Γ

4π

∂2

∂τ 2

(
2
√

2ττ ∗R1(k)
)

(5.33)

Cξξ(τ, τ ∗, ξ∗ − ξ) = − Γ

4π

∂2

∂ξ2

(
2
√

2ττ ∗R1(k)
)

(5.34)

Cτξ(τ, τ ∗, ξ∗ − ξ) = − Γ

4π

∂2

∂τ∂ξ

(
2
√

2ττ ∗R1(k)
)
, (5.35)
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where k = (τ ∗2 + τ 2 + (ξ∗ − ξ)2)/(2ττ ∗), and the complete elliptic integrals R1 and R2 are
defined by

R1(k) ≡
∫ 1

−1

dβ√
1− β2

√
k − β

= −2(k2 − 1)

3
(RD(2k, 2(k + 1), k + 1) +RD(2k, 2(k − 1), k − 1)) + 4

√
(k)

R2(k) ≡
∫ 1

−1

dβ√
1− β2

√
k − β

= 2RF (0, k + 1, k − 1).

In the second equality for both R1 and R2, we used the table of elliptic integrals by Carlson
[64] to express R1 and R2 in terms of the symmetric elliptic integrals RD and RF . This is par-
ticularly useful since these functions can be numerically evaluated using existing algorithms
[53]. It can also be shown that R′1(k) = 1/2R2(k) and R′2(k) = −R1(k)/(2(k2 − 1)). Using
these relations, we can explicitly evaluate the derivatives against τ and ξ in C(∗) (Eqs. 5.31
to 5.35), and rewrite these coefficients into forms which can be readily computed:

Cτ = − Γ

2πτ 3/2
√

2τ ∗

{(
2
τ/τ ∗ − k
k2 − 1

− τ ∗

τ

)
R1(k) +

(
1 +

τ ∗

τ
k

)
R2(k)

}
(5.36)

Cξ =
Γ

π
√

2(ττ ∗)3/2

ξ∗ − ξ
k2 − 1

R1(k) (5.37)

Cττ = −Γ
√

2τ ∗

4πτ 3/2

(
−1

2

(
1 +

(τ/τ ∗ − k)2

k2 − 1

)
R1(k) + kR2(k)

)
(5.38)

Cξξ = − Γ

2π
√

2ττ ∗

(
(ξ∗ − ξ)2

2(k2 − 1)ττ ∗
R1(k) +R2(k)

)
(5.39)

Cτξ = − Γ(ξ∗ − ξ)
4πτ 3/2

√
2τ ∗

(
τ/τ ∗ − k
k2 − 1

R1(k) +R2(k)

)
, (5.40)

Equations 5.18 to 5.25 and 5.36 to 5.40 form the collisional Fokker–Planck equation in
azimuthally–averaged cylindrical coordinates. The relatively cumbersome explicit expres-
sions allow for direct discretisation of the derivatives and integrals, which we develop in the
following section.

5.6 Discretisation scheme

Discretisation schemes for the advection and diffusion operators have previously been de-
veloped in Ch. 4 for the Vlasov equation. However, the magnitude of the advection and
diffusion operators in the collisional Fokker–Planck equation (Eqs. 5.18 to 5.20) are compa-
rable, while the Vlasov equation is dominated by the advection terms. The conservation of
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momentum and energy is much more important for a numerical solution to the collisional
Fokker–Planck equation, while the solution to the Vlasov equation has a greater need to
preserve the phase space structures of the distribution while it is distorted by the flow field.
The difference in the numerical requirements necessitates a new discretisation scheme for the
collisional Fokker–Planck equation. Here, we modify the approach by Chacón et al. [65] to
develop an energy–conserving scheme for the collisional Fokker–Planck equation.

Consider a rectangular grid spanning the τ and ξ phase space, indexed i ∈ [0, Nτ − 1]
and j ∈ [−Nξ, Nξ − 1] respectively. The grid is specified as follows, and also illustrated in
Fig. 5.2:

1. First define ∆τi+1/2 and ∆ξj+1/2 which are the distance in τ and ξ directions between
cell centres. These spacings do not need to be uniform, but the list of lengths for ξ
should be symmetric around ξ = 0, i.e. ∆ξj+1/2 = ∆ξ−j−3/2.

2. The cell centres are then defined as τi+1 ≡ τi + ∆τi+1/2 and ξj+1 ≡ ξj + ∆ξj+1/2. The
first radial cell centre is defined to be τ0 ≡ 1/2∆τ−1/2, and the first axial cell centre is
similarly defined as ξ0 ≡ 1/2∆ξ−1/2.

3. The cell boundaries are defined as the midpoint between cell centres, i.e. τi+1/2 ≡
(τi+1 + τi)/2 and ξj+1/2 ≡ (ξj+1 + ξj)/2. The first boundary in the axial and radial
directions are τ−1/2 ≡ 0 and ξ−1/2 ≡ 0 by definition.

4. The cell widths ∆τi and ∆ξj are defined as the distance between the boundaries, i.e.
∆τi ≡ τi+1/2 − τi−1/2 and ∆ξj ≡ ξj+1/2 − ξj−1/2.

5. The “alternative” cell centre is defined as the midpoint between cell boundaries, i.e.
τ̄i ≡ (τi+1/2 + τi−1/2)/2 and ξ̄j ≡ (ξj+1/2 + ξj−1/2)/2. Note that τ̄i = τi and ξ̄j = ξj if
the cell widths are constant.

6. Noting that a cell in (τ, ξ) is actually a torus in velocity–space, the cell (i, j) has a
volume of ∆Ωij = 2πτ̄i∆τi∆ξj. The area of the annulus separating cell (i, j) and
(i, j + 1) is ∆Ai,j+1/2 = 2πτ̄i∆τi, and the area of the cylindrical wall between cell
(i− 1, j) and (i, j) is ∆Wi−1/2,j = 2πτi−1/2∆ξj.

The discrete distribution takes on values of fij ≡ f1(τi.ξj) at the centre of each cell. The
distribution is also assumed to be symmetric in ξ, i.e. the same number of particles travelling
at a positive axial velocity is the same as the number travelling at the opposite negative
velocity. This means fij = fi,−j−1, and the axial flux Jξ should be zero at ξ = 0 by
symmetry. Similarly Jτ is also zero at τ = 0 since there can be no flux through a zero–area
line.



85
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Figure 5.2: a) The definition of the radial τ grid spacing and position variables. The axial ξ grid
is similarly defined, except that it extends to negative indices, and is symmetric around ξ = 0. b)
The definition of the volume and area elements associated with cell (i, j).

Using this grid, we can discretise Eq. 5.18 by considering the total flux that passes into
or out of a cell through the annulus or cylindrical walls. This means

fij(t+ ∆t) = fij(t) +
∆t

∆Ωij

(Jτi−1/2,j∆Wi−1/2,j − Jτi+1/2,j∆Wi+1/2,j

+ Jξi,j−1/2∆Ai,j−1/2 − Jξi,j+1/2∆Ai,j+1/2). (5.41)

The first (second) term in the brackets refers to the radial flux flowing into (out of) cell (i, j)
through the inner (outer) cylindrical wall, and the third (fourth) term refers to the axial flux
flowing into (out of) cell (i, j) through the lower (upper) annulus. These fluxes come from
the discretisation of Eqs. 5.19 and 5.20, which we choose to write as

Jτi+1/2,j =(fντ )i+1/2,j +
1

τi+1/2∆τi+1/2

(
(τ̄ fDττ )i+1,j − (τ̄ fDττ )i,j

)
+

1

∆ξj

(
(fDτξ)i+1/2,j+1/2 − (fDτξ)i+1/2,j−1/2

)
(5.42)

Jξi,j+1/2 =(fνξ)i,j+1/2 +
1

∆ξj+1/2

(
(fDξξ)i,j+1 − (fDξξ)i,j

)
+

1

τ̄i∆τi

(
τi+1/2(fDτξ)i+1/2,j+1/2 − τi−1/2(fDτξ)i−1/2,j+1/2

)
, (5.43)

where the non-cell centre points for f are given by the interpolations

(fντ )i+1/2,j ≡ (fνττ∆τ)i,j + (fνττ∆τ)i+1,j

2τi+1/2∆τi+1/2

(5.44)

(fνξ)i,j+1/2 ≡ (fνξξ∆ξ)i,j+1 + (fνξξ∆ξ)i,j
2ξj+1/2∆ξj+1/2

(5.45)

(fDτξ)i+1/2,j+1/2 ≡

(
i+1∑
i′=i

j+1∑
j′=j

(fDτξ∆Ω)i′,j′

)/(
i+1∑
i′=i

j+1∑
j′=j

∆Ωi′,j′

)
(5.46)
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and the advection and diffusion coefficients are discretised as

ντi,j =
∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗Cτ (τi, τi∗ , ξj∗ − ξj) (5.47)

νξi,j =
∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗Cξ(τi, τi∗ , ξj∗ − ξj) (5.48)

Dττ
i,j =

∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗Cττ (τi, τi∗ , ξj∗ − ξj) (5.49)

Dξξ
i,j =

∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗Cξξ(τi, τi∗ , ξj∗ − ξj) (5.50)

Dτξ
i,j =

∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗Cτξ(τi, τi∗ , ξj∗ − ξj). (5.51)

This choice of discretisation and interpolation is chosen so that the total energy of the
distribution, E ≡

∑
∆Ωijfij(τ

2
i +ξ2

j )/2, remains unchanged between time steps. To see that
is the case, we use Eq. 5.41 to write the change in total energy in one time step as

∆E

∆t
=
∑
i,j

τ 2
i

2

(
Jτi−1/2,j∆Wi−1/2,j − Jτi+1/2,j∆Wi+1/2,j

)
+
∑
i,j

ξ2
j

2

(
Jξi,j−1/2∆Ai,j−1/2 − Jξi,j+1/2∆Ai,j+1/2

)
=
∑
i,j

(
τ 2
i+1 − τ 2

i

2
Jτi+1/2,j∆Wi+1/2,j +

ξ2
j+1 − ξ2

j

2
Jξi,j+1/2∆Ai,j+1/2

)
= 2π

∑
i,j

(
Jτi+1/2,jτ

2
i+1/2∆τi+1/2∆ξj + Jξi,j+1/2τ̄iξj+1/2∆τi∆ξj+1/2

)
. (5.52)

In the first summation in the first equality, we eliminated the ξ2 term since the flux Jτ

cannot change the “flattened” distribution in ξ, and the axial energy is therefore unchanged.
Similarly the τ 2 term in the second summation is dropped. In the second equality we shifted
the indices, and used the fact that Jτ−1/2,j = 0 by symmetry. JτNτ−1/2,j, J

ξ
i,−Nξ−1/2 and Jξi,Nξ−1/2

are zero, assuming the distribution is entirely contained inside the simulation domain. In
the third equality we used the grid definitions. Inserting Eqs. 5.42 and 5.43 into Eq. 5.52,
we obtain

∆E

2π∆t
= ετ + εττ + ετξ + εξ + εξξ + εξτ

where the first three ε terms are contributed by Jτ and the last three by Jξ. These are given
explicitly by

ετ =
∑
i,j

(fντ )i+1/2,jτ
2
i+1/2∆τi+1/2∆ξj
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=
∑
j

∆ξj

∑
i τi+1/2(fνττ∆τ)i+1,j +

∑
i τi+1/2(fνττ∆τ)i,j

2

=
∑
i,j

(fνττ τ̄∆τ∆ξ)i,j

εττ =
∑
i,j

(
(τ̄ fDττ )i+1,j − (τ̄ fDττ )i,j

)
τi+1/2∆ξj

= −
∑
i,j

fi,jD
ττ
i,j (τi+1/2 − τi−1/2)τ̄i∆ξj

= −
∑
i,j

(fDττ τ̄∆τ∆ξ)i,j

ετξ =
∑
i,j

(
(fDτξ)i+1/2,j+1/2 − (fDτξ)i+1/2,j−1/2

)
τ 2
i+1/2∆τi+1/2

=
∑
i

τ 2
i+1/2∆τi+1/2

(∑
j

(fDτξ)i+1/2,j+1/2 −
∑
j

(fDτξ)i+1/2,j−1/2

)
= 0

εξ =
∑
i,j

(fνξ)i,j+1/2τ̄iξj+1/2∆τi∆ξj+1/2

=
∑
i

τ̄i∆τi

∑
j(fν

ξξ∆ξ)i,j+1 +
∑

j(fν
ξξ∆ξ)i,j

2

=
∑
i,j

(fνξ τ̄ ξ∆τ∆ξ)i,j

εξξ =
∑
i,j

(
(fDξξ)i,j+1 − (fDξξ)i,j

)
τ̄iξj+1/2∆τi

= −
∑
i,j

fi,jD
ξξ
i,j(ξj+1/2 − ξj−1/2)τ̄i∆τi

= −
∑
i,j

(fDξξ τ̄∆τ∆ξ)i,j

εξτ =
∑
i,j

(
(τfDτξ)i+1/2,j+1/2 − (τfDτξ)i−1/2,j+1/2

)
ξj+1/2∆ξj+1/2

=
∑
j

ξj+1/2∆ξj+1/2

(∑
i

(τfDτξ)i+1/2,j+1/2 −
∑
i

(τfDτξ)i−1/2,j+1/2

)
= 0.

The total energy change per time step is then

∆E

∆t
=
∑
i,j

(2πτ̄∆τ∆ξf)i,j(τν
τ −Dττ + ξνξ −Dξξ)i,j

=
∑
i,j

(f∆Ω)i,j(τν
τ −Dττ + ξνξ −Dξξ)i,j
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=
∑
i,j

∑
i∗,j∗

(f∆Ω)i,j(f∆Ω)i∗,j∗(τiCτi,j,i∗,j∗ − Cττi,j,i∗,j∗ + ξjCξi,j,i∗,j∗ − C
ξξ
i,j,i∗,j∗).

Substituting Eqs. 5.26 to 5.30 for the coefficients C(∗), this becomes

∆E

∆t
=

Γ

4π2

∫∫
dθ dθ∗

∑
i,j

∑
i∗,j∗

(f∆Ω)i,j(f∆Ω)i∗,j∗

(
2τ

∂

∂τ

1

|v2 − v1|

+2ξ
∂

∂ξ

1

|v2 − v1|
+

1

2

∂2

∂τ 2
|v2 − v1|+

1

2τ

∂

∂τ
|v2 − v1|+

1

2

∂2

∂ξ2
|v2 − v1|

)†
=

Γ

4π2

∫∫
dθ dθ∗

∑
i,j

∑
i∗,j∗

(f∆Ω)i,j(f∆Ω)i∗,j∗×(
2v1 ·

∂

∂v1

1

|v2 − v1|
+

1

2

∂

∂v1

· ∂

∂v1

|v2 − v1|
)†
.

Here the † superscript indicates that the expression in the braces is evaluated at v1 =
(τi cos θ, τi sin θ, ξj) and v2 = (τi∗ cos θ∗, τi∗ sin θ∗, ξj∗). In the second equality we used the
fact that the integral over θ means we can freely re-introduce the ∂θ terms in the gradient
and Laplacian operator — these terms integrate to zero due to azimuthal continuity. Using
the identities ∂v1(1/|v2 − v1|) = (v2 − v1)/|v2 − v1|3 and ∂v1 · ∂v1 |v2 − v1| = 2/|v2 − v1|, we
thus have

∆E

∆t
=

Γ

4π2

∫∫
dθ dθ∗

∑
i,j

∑
i∗,j∗

(f∆Ω)i,j(f∆Ω)i∗,j∗

(
2
v1 · (v2 − v1)

|v2 − v1|3
+

1

|v2 − v1|

)†
=

Γ

4π2

∫∫
dθ∗ dθ

∑
i∗,j∗

∑
i,j

(f∆Ω)i∗,j∗(f∆Ω)i,j

(
2
v2 · (v1 − v2)

|v1 − v2|3
+

1

|v1 − v2|

)†
=

Γ

4π2

∫∫
dθ dθ∗

∑
i,j

∑
i∗,j∗

(f∆Ω)i,j(f∆Ω)i∗,j∗
1

2

(
−2
|v2 − v1|2

|v2 − v1|3
+

2

|v2 − v1|

)†
= 0.

In the second equality we have simply swapped the starred and the un-starred indices, and
in the third we take an average of the first two lines, which turns out to be zero. This
discretisation scheme therefore ensures that the total energy of the distribution is conserved
by the collisional Fokker–Planck operator.

5.7 Computational implementation

Equations 5.41 to 5.51 form the numerical scheme of the simulation. Upon every time
step, Eq. 5.41 is evaluated for each cell, and each evaluation involves the summation of the
coefficients C(∗) over the whole distribution. This means each time step requiresO((Nτ×Nξ)

2)
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evaluations of the C(∗), which makes the collisional Fokker–Planck equation computationally
expensive.

The first technique we used to reduce the computational requirement is to store and evolve
the j ≥ 0 half of the distribution only, given that we assumed the distribution is symmetric
around ξ. This requires a modification to Eqs. 5.47 to 5.51 to include the “mirrored half”
of the distribution that is omitted:

ντi,j =
∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗
(
Cτ (τi, τi∗ , |ξj∗ − ξj|) + Cτ (τi, τi∗ , ξj∗ + ξj)

)
νξi,j =

∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗
(
sgn(j∗ − j)Cξ(τi, τi∗ , |ξj∗ − ξj|)− Cξ(τi, τi∗ , ξj∗ + ξj)

)
Dττ
i,j =

∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗
(
Cττ (τi, τi∗ , |ξj∗ − ξj|) + Cττ (τi, τi∗ , ξj∗ + ξj)

)
Dξξ
i,j =

∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗
(
Cξξ(τi, τi∗ , |ξj∗ − ξj|) + Cξξ(τi, τi∗ , ξj∗ + ξj)

)
Dτξ
i,j =

∑
i∗,j∗

∆Ωi∗,j∗fi∗,j∗
(
sgn(j∗ − j)Cτξ(τi, τi∗ , |ξj∗ − ξj|)− Cτξ(τi, τi∗ , ξj∗ + ξj)

)
.

where the sign function sgn(x) = x/|x| if x 6= 0 or 0 otherwise. We have used the fact that
Cτ , Cττ and Cξξ are symmetric in their third argument, while Cξ and Cτξ are anti-symmetric.
These expressions for the advection and diffusion coefficients limit the evaluation of C(∗) to
only positive third argument values.

The second speed–up technique is to pre-compute the coefficients C(∗) and store them as
three–dimensional tables in memory. The three dimensions span the three arguments of the
C(∗). The particular values at which the first two arguments are evaluated simply follow the
radial grid, i.e. τ ∈ {τi} and τ ∗ ∈ {τi}. The third argument ξ∗ − ξ is more complicated as
it is the axial distance between any two cells (including the mirrored half). Given that the
grid size is not necessarily uniform, there are potentially Nξ(2Nξ − 1) possible values for the
third argument. This exceeds the memory capacity of most systems. We therefore construct
the axial grid such that the spacing at small ξ are uniform, and only progressively enlarge
the spacing for the few most outward cells at large ξ. This reduces the number of possible
distances between cells significantly. All of these possible axial distances are then calculated,
sorted, and used as the values for the third argument of C(∗) to build the tables.

The third speed–up technique is to use a Crank–Nicolson style implicit stepping [53]
instead of the explicit one as described by Eqs. 5.41 to 5.43. These three equations can be
written into the general form of

fij(t+ ∆t)− fij(t)
∆t

=
i+1∑

k=i−1

j+1∑
l=j−1

M(ij),(kl)fkl(t),
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where the value of cell (i, j) after a time step depends on the closest 3 × 3 cells on the
step prior, and M is a linear combination of the ν and D coefficients. The Crank-Nicolson
stepping simply replaces fkl(t) on the right by the time–symmetric (fkl(t) + fkl(t + ∆t))/2.
This leads to the implicit scheme(

↔
I − ∆t

2

↔
M

)
f(t+ ∆t) =

(
↔
I +

∆t

2

↔
M

)
f(t).

Here the 2–D grid spanned by (i, j) is flattened into a 1–D list indexed by a ≡ Nξi+ j, and
M is a band–diagonal matrix with band width 2Nξ+3. For each time step, the matrix on the
right is inverted using existing algorithms like LU decomposition [53], and the vector f(t+∆t)
is solved. This scheme has the advantage of allowing much larger time steps to be taken
without introducing numerical instability, and therefore reducing the overall computational
requirement. Note that this scheme is not completely implicit, as the coefficients ν and D
involved in M are still evaluated using the explicit f(t). It is not possible to construct a
complete implicit scheme as the collisional Fokker–Planck operator is not a linear differential
equation.

5.8 Comparison with analytic model

As a benchmark of our simulation scheme, we compare it with an analytic solution. While
the simulation model is applicable to all distributions, analytic solution of the collisional
Fokker–Planck equation exists only for a few special cases. One of the analytic solutions,
first obtained by Ichimaru and Rosenbluth [66], is applicable when the distribution is thermal
(Gaussian) in both the parallel and perpendicular directions, but at different temperatures.
The distribution relaxes through weakly magnetised collisions, and the temperatures in the
two directions equilibrate in an exponential decay. The analytic solution for the temperatures
is given by

dT (t)

dt
= γ(Tz − T ), Tz(t) + 2T (t) = Tz(0) + 2T (0),

where the second equation comes from energy conservation. The decay factor γ is given by

γ =
8
√
π

15

n0q
4

(4πε0)2
√
mT

3/2
eff

log

(
λD
b̄

)
.

The effective temperature is defined as

1

T
3/2
eff

=
15

4

∫ 1

−1

da
a2(1− a2)

((1− a2)T (0) + a2Tz(0))3/2
,

which lies between the initial parallel and perpendicular temperatures Tz(0) and T (0). The
value b̄ is twice the distance of closest approach, given by

b̄ = 2bmin, bmin =
q2

4πε0kBTeff

.
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Comparing this analytic solution with the numerical model, we use the initial distribution

fij(0) = N exp

(
− mτ 2

i

2kBT (0)
−

mξ2
j

2kBTz(0)

)
N = 1/

(∑
i,j

∆Ωij exp

(
− mτ 2

i

2kBT (0)
−

mξ2
j

2kBTz(0)

))

and compute the coefficients C(∗) coefficients using

Γ ≡ n0q
4

4πε20m
2

log

(
θmax

θmin

)
=

n0q
4

4πε20m
2

log

(
λD
bmin

)
.

The logarithmic term is simplified using Eq. 5.4, together with the fact that θmin and
θmax are both much smaller than π/2. This means that θmin and θmax are approximately
2q2/(4πε0λDµv̄

2) and 2q2/(4πε0bminµv̄
2) respectively.

Figure 5.3 compares the evolution of the parallel and perpendicular temperatures during
the equilibration process in an antiproton plasma, predicted by both the analytic model and
our numerical model, where Tz(0) = 800 K and T (0) = 250 K. The density of the antiproton
plasma is at 8 × 1012m−3, which is typical in the ALPHA apparatus. A good agreement is
observed.
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Figure 5.3: The equilibration of parallel and perpendicular temperatures of a plasma due to weakly
magnetised collisions. The solid coloured lines show the result from the numerical model, and the
dashed lines show the analytic solution.
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Chapter 6

The intermediately magnetised
collisional operator

As discussed in Ch. 5, collisions are considered weakly magnetised when the magnetic field is
sufficiently weak that the curvature of the particles’ trajectories are much bigger than their
distance of closest approach. In this case the effect of the magnetic field is negligible. In
the other extreme, the magnetic field can be so strong that that the particles can complete
numerous gyro-cycles during the course of a collision. If this is the case, the magnetic
moments of their gyromotion stay approximately conserved throughout the collision, and
the motion of the gyrocentres can be obtained by averaging the forces acting on the particles
over the cyclotron motion. This regime of strongly magnetised collision is treated by O’Neil
[67]. Collisions involving positrons in the ALPHA apparatus are, however, neither weakly
nor strongly magnetised, since the typical positron cyclotron radius is ∼ 2× 10−7 m, which
is very close to the typical distance of closest approach ∼ 4 × 10−7 m. In the length scale
of a closest approach, a positron would have undergone ∼ 0.3 cycles of gyromotion. This
means for processes involving positron collisions (e.g. the collisional equilibration between
antiprotons and positrons during antihydrogen production), a different numerical model is
required to solve for their effects.

The intermediately magnetised regime of collisions is a difficult regime to study, as the
outcome of collision events cannot be written down analytically in closed expressions. We
have therefore chosen to evaluate the collision outcome numerically, and average their effects
in a Fokker–Planck equation assuming weak collisions dominate the bulk collisional effects.

6.1 The phase–randomised collisional Fokker–Planck

equation

In Ch. 5 we derived a collisional Fokker–Planck equation by exploiting the fact that the
collective effect of the collisions is dominated by small–angle scattering, and in these cases
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the change in velocity on each collision is small. The first difficulty in extending this model
for intermediately magnetised collisions is the magnetic rotation of the perpendicular ve-
locity through the course of the collision (see Fig. 6.1). The rotation is negligible in the
weakly magnetised case, while in the strongly magnetised case the phase introduced to the
perpendicular velocity is close to that of the zeroth order gyromotion. In the intermediately
magnetised case, however, this phase is large but not easily predicable, even when consid-
ering small-angle scattering. It is therefore desirable to write down a equation in terms of
the change in the magnitude of the perpendicular velocity, rather than in terms of the polar
components of the change in the velocity vector.

x
Δv

τ

Δv τ

Δv
θ

θ

y

vv’

v’–v

τ
θ

Figure 6.1: The coordinates and variables describing the change in perpendicular velocity of a
particle in a collision. The perpendicular velocities before and after a collision are given by v and
v′ respectively. The change in perpendicular velocity, v′−v , can be written in polar coordinates in
terms of ∆vτ and ∆vθ. However, due to the magnetic field–induced rotation of the velocity during
the course of the collision, neither ∆vτ nor ∆vθ are small quantities. The true small quantity, ∆v ,
is the different between the magnitude of the initial and final perpendicular velocities.

Firstly we define the change in the magnitude of v as

∆v ≡
√

(τ + ∆vτ )2 + ∆v2
θ − τ, (6.1)

where τ is the magnitude of the initial perpendicular velocity, and ∆vτ and ∆vθ are the radial
and azimuthal components of the (vector) change in perpendicular velocity (see Fig. 6.1).
Expending ∆v in powers of ∆vτ and ∆vθ, it can be shown that

∆v

v
=
∞∑
i=1

i∑
j=0

j∑
k=0

(−1)i−1(2i− 2)!

2i+j−1(i− 1)!(j − k)!k!(i− j)!

(
∆vτ
τ

)i+j−2k (
∆vθ
τ

)2k

. (6.2)
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Restructuring the summations such that each distinct combination of powers for ∆vτ and
∆vθ appears only in one combination of the summation indices, and using the relations

t−1∑
j=s

(−1)j(4t− 2j − 4)!

(2t− j − 2)!(j − s)!(2t− 2j − 1)!
=

22t−2s−1(−1)s(2t− 3)!

(2t− 2s− 1)!(s− 1)!
t ≥ 2 , s ≤ t (6.3)

t∑
j=s

(−1)j+1(4t− 2j − 2)!

(2t− j − 1)!(j − s)!(2t− 2j)!
=

22t−2s(−1)s−1(2t− 2)!

(2t− 2s)!(s− 1)!
t ≥ 1 , s ≤ t, (6.4)

it can be shown that

∆v

τ
=

∆vτ
τ
−
∞∑
t=1

t∑
s=1

(−1)s

22s−1s!(s− 1)!

[
− (2t− 1)!

(2t− 2s+ 1)!

(
∆vτ
τ

)2t−2s+1(
∆vθ
τ

)2s

+
(2t− 2)!

(2t− 2s)!

(
∆vτ
τ

)2t−2s(
∆vθ
τ

)2s ]
. (6.5)

The lone ∆vτ term on the right hand side of Eq. 6.5 originates from the i = 1, j = 0, k = 0
term of Eq. 6.2. This term has to be singled out since Eq. 6.3 is not valid for t = 1.

Next, defining the operators

Ôτ ≡
1

τ

∂

∂τ
τ, Ôθ ≡ −

1

τ

∂

∂τ
= −Ôτ

1

τ
, Ôξ ≡

∂

∂ξ
,

we obtain several important relations which will become useful later. The most important
is the permutation relation

1

τn
Ôτ = Ôτ

1

τn
+

n

τn+1
.

This permutation allows the operator Ôτ to be gathered to the left hand side of expressions.
Using this, it can be shown that

Ômθ Ônτ = (−1)m
m+n−1∑
i=0

km,ni

n!

i!
Ôi+1
τ

1

τ 2m+n−i−1
(6.6)

where the coefficient km,ni is given by the iterative relation

km+1,n
i =

m+n−1∑
j=i−1

(j + 1)km,nj k1,n
j = 1.

Equation 6.6 is another gathering operation which moves all the operators to the left hand
side of expressions. Closer inspection of Eq. 6.6 reveals that the compound operator Ômθ Ônτ
gives rise to a series of derivatives against τ , with orders ranging from 1 to m+n. As argued
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later, we are only interested in the Ôτ and Ô2
τ terms. Writing out these terms explicitly, we

have from Eq. 6.6

Ômθ Ônτ = (−1)m
(2m+ n− 2)!

2m−1(m− 1)!

(
Ôτ

1

τ 2m+n−1
+ Ô2

τ

1

τ 2m+n−2
+ · · ·

)
, (6.7)

for m + n ≥ 2. For m + n = 1, the right hand side of Eq. 6.7 is still definite, but does not
give the correct expansion.

Now that we have the necessary relations, we can move onto the derivation of the collision
model. In Ch. 5 we used the BBGKY hierarchy to derive the collisional Fokker–Planck
equation; here we base our derivation on an equivalent but simpler method by Bellan [33].
Consider the collisional transfer function F (v,∆v), which gives the probability a particle
with initial velocity v would come to possess the velocity v+∆v due to collisions with other
particles in a time of ∆t. Since a particle must possess some velocity after ∆t,∫

F (v,∆v) d3∆v = 1. (6.8)

Using the transfer function, the time evolution of a distribution can be written as

f(v, t) =

∫
f(v −∆v, t−∆t)F (v −∆v,∆v) d3∆v. (6.9)

Expanding the integrand in powers of ∆v and ∆t, we have

f(v −∆v, t−∆t)F (v −∆v,∆v)

= f(v, t)F (v,∆v) + (−∆t)
∂

∂t
(f(v, t)F (v,∆v))

+
∞∑
i=0

∞∑
j=0

∞∑
k=0

1

i!j!k!
(−∆vx)

i(−∆vy)
j(−∆vz)

k ∂
i

∂vix

∂j

∂vjy

∂k

∂vkz
(f(v, t)F (v,∆v)), (6.10)

where we retain terms only up to the first order of ∆t as ∆t is arbitrarily small. In contrast,
all orders of the velocity–space expansion are retained since the quantities ∆vx and ∆vy are
not necessarily small in the intermediately magnetised regime. Putting Eq. 6.10 back into
Eq. 6.9, and making use of Eq. 6.8, we have

∂f

∂t
=

∫
d3∆v

∆t

[ ∞∑
i=0

∞∑
j=0

∞∑
k=0

1

i!j!k!

∂i

∂vix

∂j

∂vjy

∂k

∂vkz
(−∆vx)

i(−∆vy)
j(−∆vz)

k

]
f(v, t)F (v,∆v)

≡
〈

1

∆t

[ ∞∑
i=0

∞∑
j=0

∞∑
k=0

1

i!j!k!

∂i

∂vix

∂j

∂vjy

∂k

∂vkz
(−∆vx)

i(−∆vy)
j(−∆vz)

k

]
f(v, t)

〉
. (6.11)
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Here, the angled brackets denote the operation
∫

d3∆vF (v,∆v), keeping in mind that F is
acted on by the derivatives.

Introducing the cylindrical coordinates (vx, vy, vz) = (τ cos θ, τ sin θ, ξ) as depicted in
Fig. 6.1, we replace the rectilinear quantities in Eq. 6.11 using the relations

∂

∂vx
= cos θ

∂

∂τ
− sin θ

τ

∂

∂θ
,

∂

∂vy
= sin θ

∂

∂τ
+

cos θ

τ

∂

∂θ
,

∂

∂vz
=

∂

∂ξ

∆vx = cos θ∆vτ − sin θ∆vθ, ∆vy = sin θ∆vτ + cos θ∆vθ, ∆vz = ∆vξ.

Applying these in Eq. 6.11, and after some arithmetic, we arrive at

∂f

∂t
=

〈〈
1

∆t

(
Ôτ (−∆vτ )f + Ôξ(−∆vξ)f

+
1

2
Ô2
τ (−∆vτ )(−∆vτ )f +

1

2
Ô2
ξ(−∆vξ)(−∆vξ)f + ÔτÔξ(−∆vτ )(−∆vξ)f

+
∞∑
t=1

t∑
s=1

[
(2s− 1)!!

(2s)!(2t− 2s)!
ÔsθÔ2t−2s

τ (−∆vτ )
2t−2s(−∆vθ)

2s

+
(2s− 1)!!

(2s)!(2t− 2s+ 1)!
ÔsθÔ2t−2s+1

τ (−∆vτ )
2t−2s+1(−∆vθ)

2s

]
f

+ Ôξ
∞∑
t=1

t∑
s=1

[
(2s− 1)!!

(2s)!(2t− 2s)!
ÔsθÔ2t−2s

τ (−∆vτ )
2t−2s(−∆vθ)

2s

+
(2s− 1)!!

(2s)!(2t− 2s+ 1)!
ÔsθÔ2t−2s+1

τ (−∆vτ )
2t−2s+1(−∆vθ)

2s

]
(−∆vξ)f

+ · · ·
)〉〉

. (6.12)

A number of important assumptions and simplifications have been made here. Firstly, the
double angle brackets indicate that both sides of Eq. 6.12 have been averaged by 1/2π

∫ 2π

0
dθ.

Assuming the collisions are uncorrelated, the velocity phase angles introduced by collisions
randomise the distribution f in the θ–direction. We have therefore assumed f to have no
θ–dependence, in which case ∂f/∂t remains unchanged upon the phase angle averaging.
For the right hand side, the phase angle averaging eliminates all terms involving ∂θ due to
the continuity condition in θ. Furthermore, we discarded terms which contain Ônτ Ô

p
ξ where

n + p ≥ 3, as well as those which contain Ômθ Ônτ Ô
p
ξ where m + n ≥ 1 and p ≥ 2, a choice

which we will justify later. The two (identical) summations in Eq. 6.12 can be simplified as

∞∑
t=1

t∑
s=1

[
(2s− 1)!!

(2s)!(2t− 2s)!
ÔsθÔ2t−2s

τ (∆vτ )
2t−2s(∆vθ)

2s

− (2s− 1)!!

(2s)!(2t− 2s+ 1)!
ÔsθÔ2t−2s+1

τ (∆vτ )
2t−2s+1(∆vθ)

2s

]
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=
1

2
Ôθ(∆vθ)2 − 1

2
ÔθÔτ (∆vτ )(∆vθ)2

+
∞∑
t=2

t∑
s=1

[
1

(2t− 2s)!2ss!
ÔsθÔ2t−2s

τ (∆vτ )
2t−2s(∆vθ)

2s

− 1

(2t− 2s+ 1)!2ss!
ÔsθÔ2t−2s+1

τ (∆vτ )
2t−2s+1(∆vθ)

2s

]
= −1

2
Ôττ

(
∆vθ
τ

)2

+
1

2
(Ôτ + Ô2

ττ)τ

(
∆vτ
τ

)(
∆vθ
τ

)2

+
∞∑
t=2

t∑
s=1

(−1)s

22s−1(s− 1)!s!

[
(2t− 2)!

(2t− 2s)!
(Ôτ + Ô2

ττ)τ

(
∆vτ
τ

)2t−2s(
∆vθ
τ

)2s

− (2t− 1)!

(2t− 2s+ 1)!
(Ôτ + Ô2

ττ)τ

(
∆vτ
τ

)2t−2s+1(
∆vθ
τ

)2s
]

=
1

2
Ô2
ττ

2

(
∆vθ
τ

)2

+ (Ôτ + Ô2
ττ)τ

∞∑
t=1

t∑
s=1

(−1)s

22s−1(s− 1)!s!

[
(2t− 2)!

(2t− 2s)!

(
∆vτ
τ

)2t−2s(
∆vθ
τ

)2s

− (2t− 1)!

(2t− 2s+ 1)!

(
∆vτ
τ

)2t−2s+1(
∆vθ
τ

)2s
]

=
1

2
Ô2
ττ

2

(
∆vθ
τ

)2

+ (Ôτ + Ô2
ττ)τ

(
∆vτ
τ
− ∆v

τ

)
=

1

2
Ô2
τ∆v

2
θ + (Ôτ + Ô2

ττ)(∆vτ −∆v ).

In the first equality we have explicitly written out the t = 1 terms. In the second equality
the compound operator Ômθ Ônτ is expanded using Eq. 6.7, which is applicable since now
m+ n ≥ 2. In applying Eq. 6.7 we choose to discard terms with Ô3

τ and above, in line with
our previous choice of retaining terms. In the third equality we re-introduce the explicitly
written terms back into the summation as the t = 1 term, with the compensation of the
(∆vθ)

2 term. In the fourth equality we use Eq. 6.5 to replace the summation. Putting this
back into Eq. 6.12, and using the fact that (∆v )2 = (∆vτ )

2 + (∆vθ)
2 + 2τ∆vτ − 2τ∆v , we

have

∂f

∂t
=

〈〈
1

∆t

(
− Ôτ∆v f − Ôξ∆vξf

+
1

2
Ô2
τ (∆v )2f +

1

2
Ô2
ξ(∆vξ)

2f + ÔτÔξ∆v ∆vξf + · · ·
)〉〉

=− Ôτ
〈〈

∆v

∆t

〉〉
f − Ôξ

〈〈
∆vξ
∆t

〉〉
f
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− Ô2
τ

〈〈
− 1

2

(∆v )2

∆t

〉〉
f − Ô2

ξ

〈〈
− 1

2

(∆vξ)
2

∆t

〉〉
f

− 2ÔτÔξ
〈〈
− 1

2

∆v ∆vξ
∆t

〉〉
f + · · · . (6.13)

In the second equality we used the facts that
∫

d3∆v and 1/2π
∫ 2π

0
dθ commute with Ôτ

and Ôξ, and that the distribution f contains no dependence on ∆v and θ, to move the
double angle brackets. Equation 6.13 is formally the same as a Fokker–Planck equation in
polar coordinates, but with the perpendicular evolution determined by the change in the
magnitude of perpendicular velocity in collisions. Here our choice of discarding terms in
Eqs. 6.7 and 6.12 is finally justified: these discarded terms can be gathered using a similar
technique as demonstrated above, and be expressed in terms of ÔiτÔ

j
ξ(∆v )i(∆vξ)

j where
i + j ≥ 3. Under the assumption that the collective effects of collisions is dominated by
small–angle scattering, ∆v and ∆vξ are small quantities, and these third and higher order
terms are discarded, as is customarily done in the derivation of Fokker–Planck equations.

Defining the advection coefficients

ντ (τ, ξ) ≡
〈〈

∆v

∆t

〉〉
=

1

∆t

∫ 2π

0

dθ

2π

∫
d3∆vF ((τ cos θ, τ sin θ, ξ),∆v)∆v (6.14)

νξ(τ, ξ) ≡
〈〈

∆vξ
∆t

〉〉
=

1

∆t

∫ 2π

0

dθ

2π

∫
d3∆vF ((τ cos θ, τ sin θ, ξ),∆v)∆vξ (6.15)

and the diffusion coefficients

Dττ (τ, ξ) ≡− 1

2

〈〈
(∆v )2

∆t

〉〉
=− 1

2∆t

∫ 2π

0

dθ

2π

∫
d3∆vF ((τ cos θ, τ sin θ, ξ),∆v)(∆v )2 (6.16)

Dξξ(τ, ξ) ≡− 1

2

〈〈
(∆vξ)

2

∆t

〉〉
=− 1

2∆t

∫ 2π

0

dθ

2π

∫
d3∆vF ((τ cos θ, τ sin θ, ξ),∆v)(∆vξ)

2 (6.17)

Dτξ(τ, ξ) ≡− 1

2

〈〈
∆v ∆vξ

∆t

〉〉
=− 1

2∆t

∫ 2π

0

dθ

2π

∫
d3∆vF ((τ cos θ, τ sin θ, ξ),∆v)∆v ∆vξ, (6.18)

we can express Eq. 6.13 as

∂f

∂t
= −1

τ

∂

∂τ
τJτ − ∂

∂ξ
Jξ, (6.19)
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where the fluxes Jτ and Jξ are given by

Jτ = ντf +
1

τ

∂

∂τ
τ(Dττf) +

∂

∂ξ
(Dτξf), (6.20)

Jξ = νξf +
∂

∂ξ
(Dξξf) +

1

τ

∂

∂τ
τ(Dτξf). (6.21)

Comparing Eqs. 6.19 to 6.21 with the weakly magnetised collisional Fokker–Planck equation
in Ch. 5 (Eqs. 5.18 to 5.20), we see that they share exactly the same numerical structure, and
we can therefore reuse the discretisation scheme in Ch. 5 for the intermediately magnetised
regime. The only major difference here is that the advection and diffusion coefficients in
Ch. 5 are analytically calculated, while in the intermediately magnetised regime they are
numerically evaluated, the method for which is described in the next section.

6.2 Evaluating the collision coefficients

From Eqs. 6.14 to 6.18, it is obvious that the advection and diffusion coefficients are various
averages of the change of parallel and perpendicular velocities suffered by a particle travelling
at an initial velocity of (τ cos θ, τ sin θ, ξ). The average is over all possible changes in velocity,
and weighted by its likelihood of occurrence. As depicted in Fig. 6.2, a unique collision
between two particles is specified by eight parameters: the incoming particle’s parallel and
perpendicular velocities (ξ and τ) and its phase angle (θ), the target particle’s parallel
and perpendicular velocities (ξ∗ and τ ∗) and its phase angle (θ∗), and their relative impact
position (b and φ). The change of parallel and perpendicular velocities, ∆v and ∆vξ, are
fully specified by these eight parameters:

∆v = ∆v (τ, θ, ξ; τ ∗, θ∗, ξ∗; b, φ), ∆vξ = ∆vξ(τ, θ, ξ; τ
∗, θ∗, ξ∗; b, φ).

To compute the probability of a certain change in velocity happening, it is therefore necessary
to know the probability of the target being in the vicinity of some velocity (τ ∗ cos θ∗, τ ∗ sin θ∗,
ξ∗) first. This latter probability is given by f ∗(τ ∗, ξ∗)τ ∗ dτ ∗ dθ∗ dξ∗, where f ∗ is the velocity
distribution for the target particle (keeping in mind that it can be a different species). Here
we assume the target species has a uniform θ∗ distribution, just as the incoming species does.
Using this, we can express the advection and diffusion coefficients as

ντ (τ, ξ) =

∫
2πτ ∗ dτ ∗

∫
dξ∗f ∗(τ ∗, ξ∗)Cτ (τ, ξ; τ ∗, ξ∗) (6.22)

νξ(τ, ξ) =

∫
2πτ ∗ dτ ∗

∫
dξ∗f ∗(τ ∗, ξ∗)Cξ(τ, ξ; τ ∗, ξ∗) (6.23)

Dττ (τ, ξ) =

∫
2πτ ∗ dτ ∗

∫
dξ∗f ∗(τ ∗, ξ∗)Cττ (τ, ξ; τ ∗, ξ∗) (6.24)

Dξξ(τ, ξ) =

∫
2πτ ∗ dτ ∗

∫
dξ∗f ∗(τ ∗, ξ∗)Cξξ(τ, ξ; τ ∗, ξ∗) (6.25)
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Dτξ(τ, ξ) =

∫
2πτ ∗ dτ ∗

∫
dξ∗f ∗(τ ∗, ξ∗)Cτξ(τ, ξ; τ ∗, ξ∗) (6.26)

where the C(∗) coefficients are given by

Cτ =
1

∆t

∫ 10λD

0

∫ 2π

0

b db dφ

π(10λD)2

∫ 2π

0

dθ

2π

∫ 2π

0

dθ∗

2π
∆v (τ, θ, ξ; τ ∗, θ∗, ξ∗; b, φ) (6.27)

Cξ =
1

∆t

∫ 10λD

0

∫ 2π

0

b db dφ

π(10λD)2

∫ 2π

0

dθ

2π

∫ 2π

0

dθ∗

2π
∆vξ(τ, θ, ξ; τ

∗, θ∗, ξ∗; b, φ) (6.28)

Cττ =− 1

2∆t

∫ 10λD

0

∫ 2π

0

b db dφ

π(10λD)2

∫ 2π

0

dθ

2π

∫ 2π

0

dθ∗

2π
(∆v (τ, θ, ξ; τ ∗, θ∗, ξ∗; b, φ))2

(6.29)

Cξξ =− 1

2∆t

∫ 10λD

0

∫ 2π

0

b db dφ

π(10λD)2

∫ 2π

0

dθ

2π

∫ 2π

0

dθ∗

2π
(∆v (τ, θ, ξ; τ ∗, θ∗, ξ∗; b, φ))2

(6.30)

Cτξ =− 1

2∆t

∫ 10λD

0

∫ 2π

0

b db dφ

π(10λD)2

∫ 2π

0

dθ

2π

∫ 2π

0

dθ∗

2π
∆v (τ, θ, ξ; τ ∗, θ∗, ξ∗; b, φ)×

∆vξ(τ, θ, ξ; τ
∗, θ∗, ξ∗; b, φ). (6.31)

Here the integral over the impact parameter b is bound above by 10λD, since the electrostatic
interaction between the particles is exponentially shielded on a length scale of λD by Debye
shielding. At distances beyond a few multiples of λD (which we choose to be 10λD) the
interaction between the particles is negligible, and ∆v and ∆vξ go to zero.

The expressions for C(∗) contain the term 1/∆t, which is necessary as the functions
∆v (τ, θ, ξ; τ ∗, θ∗, ξ∗; b, φ) and ∆vξ(τ, θ, ξ; τ

∗, θ∗, ξ∗; b, φ) give the change in velocity per col-
lision, while the C(∗) give the collisional effect per time. The quantity ∆t is therefore the
conversion factor between the two — the number of collisions per time. Using the geometry
in Fig. 6.3, we have

1 = n∗π(10λD)2|ξ − ξ∗|∆t,

where n∗ is the number density of the target particles in real space. In the reverse situation
where the incoming and the target particles’ species are exchanged, we also define

1 = nπ(10λD)2|ξ − ξ∗|∆t∗.

The evaluation of Eqs. 6.27 to 6.31 cannot be done analytically, since there exists no closed
analytic solution to the trajectory of intermediately magnetised collisions. The simplest
way to evaluate Eqs. 6.27 to 6.31 numerically is to discretise the four–dimensional integral
over b, φ, θ and θ∗ into a four–dimensional sum, using the basic trapezoidal rule. This is
numerically impractical though, since the number of evaluations of the integrand (i.e. the
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θ
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Magnetic fieldGyrocentre

Gyrocentre

q

Figure 6.2: The geometry of the initial condition of two particles colliding in a magnetic field. The
two particles have the initial velocities (τ cos θ, τ sin θ, ξ) and (τ∗ cos θ∗, τ∗ sin θ∗, ξ∗)) respectively.
The relative impact position is given by the impact parameter b and the angle φ, and the particles
are initially positioned 20λD apart.

ξ

|ξ − ζ *|Δt

ζ *

10 λD

Incoming

Target
Density: n*

Figure 6.3: The geometry of magnetised collisions between two species of particles. The number
of collisions within a time interval of ∆t is given by the number of target particles contained within
the shaded volume. Here 10λD is the maximum impact parameter within which two particles are
considered to have interacted.
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number of simulated collisions) required is of O(N4), where N is the number of divisions per
dimension.

A well–known method of efficiently evaluating higher–dimensional integrals is the Monte
Carlo method. Instead of regularly dividing and sampling the four dimensions, the integrand
is evaluated at points drawn randomly from within the integration domain, and the average
of these evaluations is multiplied by the volume of the integration domain to give the value
of the integral. This method is generally suited to higher dimensional integrals, but it is
still slow to converge in our case. This is mainly due to the collisions’ strong and sharp
dependence on the relative impact position (b, φ) and phase angles θ and θ∗. A small offset
in any of them can change the helical gyro-orbit of the two particles, and heavily alter the
relative distance of closest approach between them. In addition, the upper bound of the
impact parameter b is chosen to be 10λD, a large distance compared to the fall–off of the
interaction strength, which means most evaluations of the integrand are essentially “inert”.
It is therefore inefficient to sample the integration domain at uniform density.

To further improve the efficiency of computation, we first recognise that rotational sym-
metry means φ is a cyclic variable when the impacting particles are evenly distributed across
all possible phase angles (see Fig. 6.2). Instead of sampling it, we can set φ = 0 for simplicity.
For the remaining three variables b, θ and θ∗, we have chosen to apply an adaptive Monte
Carlo method, which adjusts the sampling density of the integration space, such that more
points are concentrated at regions where they would minimise the error of the integration.
The prerequisite of such a scheme is a method of estimating statistical error. We have cho-
sen the bootstrapping method for this purpose, due to its ease of implementation, and the
fact that it makes no assumption about the shape of the underlying distribution. In our
bootstrapping scheme, consider a set of samples ai and their associated weights wi, where
i ∈ [0, N − 1]. The weighted average of the set is given by

〈a〉 =

(
N−1∑
i=0

aiwi

)/(
N−1∑
i=0

wi

)
.

To estimate the statistical error of this average, we first generate a new set of samples a′i and
weights w′i, where i ∈ [0, N − 1]. This new set is generated from the old set via sampling
with replacement, i.e. a′i = agi and w′i = wgi where gi is a uniform random number between
0 and N − 1. The average corresponding to the new set can be computed as

〈a〉′ =

(
N−1∑
i=0

a′iw
′
i

)/(
N−1∑
i=0

w′i

)
.

This re-sampling is then repeated a large number of times (which we choose to be 1,000),
yielding 1,000 distinct values for 〈a〉′. As the re-sampling imitates the different possibilities
the ai would have turned out had the process of generating them been redone, the distribution
of the values for 〈a〉′ represents an estimate of the statistical spread of the average 〈a〉. The
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1,000 values for 〈a〉′ are then sorted, and the 49th and 950th entries in the sorted list are
identified as the lower and upper bounds for the average at the 90% confidence level. It
should be noted that these bounds are independent of the number of samples N , as long as
N is large enough that the distribution of a is well sampled.

During the computation of the collision coefficients, note should be taken concerning
our assumption that ∆v and ∆vξ are small values. This assumption is required in order
to express the collisional effect as a Fokker–Planck–type operator, which means large–angle
scatterings needs to be excluded from the averaging process. This exclusion is also present in
Ch. 5 for weakly magnetised collisions in the form of the upper limit imposed on the scattering
angle. In the case of intermediately magnetised collisions, these large–angle scatterings come
from “reflecting” collisions, where the colliding particles reflect off each other in the axial
direction instead of passing by. We exclude these cases from the averaging by rejecting
collisions where ∆vξ/(Ξ− ξ) > 1, where Ξ ≡ (mξ + m∗ξ∗)/(m + m∗) is the centre–of–mass
axial velocity of the particles. This is equivalent to rejecting collisions where the change
of axial velocity of one particle is over half of that in a perfectly reflecting collision. For a
treatment of collisions that includes the large–angle scattering effect, see the work of Glinsky
et al. [68].

We can now describe the adaptive Monte Carlo method used to compute Cτ , Cξ, Cττ ,
Cξξ and Cτξ. Here, the values for τ , ξ, τ ∗ and ξ∗ are given as the arguments for these C(∗)

coefficients, while the values for b, θ and θ∗ are sampled by the Monte Carlo method. The
value of φ is fixed at zero due to symmetry.

1. Initialise the refinable 3–D parameter space by dividing it in a rectangular pattern,
forming an array of boxes as shown in Fig. 6.4. The boxes are indexed by m, and each
is associated with a weight

Vm ≡ (bm,max − bm,min)(θm,max − θm,min)(θ∗m,max − θ∗m,min).

2. For each box m, prepare a set of initial conditions

sm,n = {τ, dran[θm,min, θm,max], ξ, τ ∗, dran[θ∗m,min, θ
∗
m,max], θ∗, dran[bm,min, bm,max], 0},

where n ∈ [0, Nm− 1], and the dran function returns a random real number within the
range specified at a uniform probability. The first three numbers in each entry specify
the velocity of the incoming particle, the fourth to sixth numbers specify the velocity
of the target particle, and the last two numbers specify the relative impact position.
From each of these initial conditions, a particle pusher is used to simulate the collision
process, which yields the change in perpendicular and parallel velocities of both the
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incoming and target particles after the collision. Using these, we can compute

cm,n =

{
∆v ,∆vξ,−

1

2
(∆v )2,−1

2
(∆vξ)

2,−1

2
∆v ∆vξ,

∆v∗,∆v∗ξ ,−
1

2
(∆v∗)2,−1

2
(∆v∗ξ )

2,−1

2
∆v∗∆v∗ξ

}
.

3. Compute the averages within each box

〈c〉m[[r]] =
Nm−1∑
n=0

passing

cm,n[[r]]sm,n[[6]]

Nm

,

where r ∈ [0, 9]. The “passing” condition indicates that only terms where cm,n[[1]]/(Ξ−
ξ) ≤ 1 are included in the summations. The sm,n[[6]] factor is included to account for
the fact that the impact parameter b is a radial variable in polar coordinates. Using the
bootstrapping method described above, the lower and upper bounds at 90% confidence
level, 〈c〉5%

m [[r]] and 〈c〉95%
m [[r]] are also calculated. The average impact parameter

〈b〉m =
Nm−1∑
n=0

passing

sm,n[[6]]

Nm

is also calculated.

4. Compute the solutions

〈〈c〉〉[[r]] =
(∑

m

Vm〈c〉m[[r]]
)/(∑

m

Vm〈b〉m
)
.

5. Calculate, for each box, the error

errm[[r]] =
Vm

(
〈c〉95%

m [[r]]− 〈c〉5%
m [[r]]

)/(∑
m Vm〈b〉m

)
|〈〈c〉〉[[r]]|

.

This gives the percentage error contributed by each box to the ten solutions.

6. Scan through errm[[r]] for all m and r to locate several of the biggest entries. The
number of biggest entries sough depends on the parallelisation scheme — see Sec. 6.4.
If all entries originate from the same r, this r is recorded and skipped over on the next
iteration while scanning for the biggest errm[[r]], to ensure all coefficients are examined
across the iterations. The indices of the boxes from which these biggest entries originate
are recorded.
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7. A fixed number of extra collisions are launched from each of these boxes. The number
of collisions launched per box depends on the parallisation scheme (Sec. 6.4). The
outcome of the collisions are appended to the lists sm,n, cm,n and wm,n, and Nm is
correspondingly incremented.

8. The 〈c〉m[[r]], 〈c〉5%
m [[r]] and 〈c〉95%

m [[r]] for these boxes must be recomputed after the
addition of extra collisions.

9. Scan through all boxes m, and identify those where Nm exceeds a chosen threshold.
These boxes are split into eight by dividing them into two equal halves in each of the
three dimensions, as shown in the red–highlighted box in Fig. 6.4 a. The events in the
old, undivided box are sorted into the eight new boxes, according to the values in sm,n.
Note that the boundaries, the weight Vm and the number of events Nm for the newly
created boxes have to be updated. The 〈c〉m[[r]], 〈c〉5%

m [[r]] and 〈c〉95%
m [[r]] for these newly

created boxes are also recomputed.

10. Go to step 4, until a desired accuracy is reached.

box m

a) b)

θ

θm,min

θm,min

θm,maxbm,min bm,max

θm,max

0
0

0b
θ*

2π

2π
10 λD

*
*

Figure 6.4: A schematic view of the subdivision structure of the adaptively sampled 3–D parameter
space. The space is initially divided into a rectangular pattern, and boxes which contribute the
most to the error in the final answer is subdivided, an example of which is shown in the red box.
The extent of box m is labelled in b).

Qualitatively, this scheme launches collisions from the regions in the b–θ–θ∗ parameter
space where their bootstrapping error contribution to the answers is the greatest. As the
number of collisions from these regions increase, they are subdivided to allow for more fine–
grained resolution, such that the peak error region can be targeted more accurate by the sam-
pling. One execution of this numerical scheme yields the solutions 〈〈c〉〉[[r]], where r ∈ [0, 9].
The first five of these solutions (r = 0 to 4), when divided by ∆t, correspond to the coef-
ficients Cτ (τ, ξ; τ ∗, ξ∗), Cξ(τ, ξ; τ ∗, ξ∗), Cττ (τ, ξ; τ ∗, ξ∗), Cξξ(τ, ξ; τ ∗, ξ∗) and Cτξ(τ, ξ; τ ∗, ξ∗).
The last five of the solutions (r = 5 to 9), divided by ∆t∗, correspond to Cτ∗(τ, ξ; τ ∗, ξ∗),
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Cξ∗(τ, ξ; τ ∗, ξ∗), Cττ∗(τ, ξ; τ ∗, ξ∗), Cξξ∗(τ, ξ; τ ∗, ξ∗) and Cτξ∗(τ, ξ; τ ∗, ξ∗), which are the coef-
ficients for the collisional Fokker–Planck equation describing the evolution of the “target”
species due to collisions with the “incoming” species.

6.3 Boris particle pusher

The task of a particle pusher in the context of computing Eqs. 6.26 to 6.31 is to simulate
the collision of two particles with the given parameters (τ, θ, ξ; τ ∗, θ∗, ξ∗; b, φ), and obtain the
resultant change in perpendicular and parallel velocities for both particles after the collision
is complete. We consider two particles with charge and mass (q,m) and (q∗,m∗) being
launched into each other in a uniform magnetic field B = Bẑ. The two particles’ positions
and velocities are labelled (r,v) and (r∗,v∗), and the simulation is executed in a frame which
moves along z at a velocity of Ξ = (mξ+m∗ξ∗)/(m+m∗). This does not affect the outcome
of the simulation, as the magnetic field lies in the z–direction. The initial z positions of the
particles are chosen such that they would meet at z = 0 (barring interaction). On the x-y
plane the gyrocentre of the starred particle is fixed at the origin, while the gyrocentre of
the un-starred is at (b cosφ, b sinφ) (see Fig. 6.2). The actual x-y positions of the particles
includes the radius and phase of the gyro-rotation. Quantitatively, the initial condition of
the two particles are given in Cartesian coordinates by

ri =

(
b cosφ− ωC

τ
sin θ, b sinφ+

ωC
τ

cos θ, sgn(ξ∗ − ξ)20λD
Ξ− ξ
ξ∗ − ξ

)
r∗i =

(
−ω

∗
C

τ ∗
sin θ∗,

ω∗C
τ ∗

cos θ∗,−sgn(ξ∗ − ξ)20λD
ξ∗ − Ξ

ξ∗ − ξ

)
vi = (τ cos θ, τ sin θ, ξ − Ξ)

v∗i = (τ ∗ cos θ∗, τ ∗ sin θ∗, ξ∗ − Ξ),

where the cyclotron radii ωC = qB/m and ω∗C = q∗B/m∗.

To evolve the initial condition forward in time, the Boris particle pusher scheme [69]
is used, which is a leapfrog algorithm where the position and velocity of the particles are
offest from each other by half a time step, as shown in Fig. 6.5 a. The forwarding of the
position from n − 1/2 to n + 1/2 makes use of the velocity at n, while the forwarding of
the velocity from n to n + 1 makes use of the electric and magnetic fields evaluated at the
particle’s position at n + 1/2. To keep the half–step staggering consistent, ∆t has to be
constant in this scheme. A slight modification, shown in Fig. 6.5 b, splits the stepping of
the position and allows both the particle position and velocity to be updated synchronously.
This makes adjusting ∆t more convenient. The synchronous scheme starts with an update
of the positions from n to n+ 1/2:

rn+1/2 = rn +
∆t

2
vn, r∗n+1/2 = r∗n +

∆t

2
v∗n.
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Figure 6.5: A schematic view of the Boris particle pusher scheme, showing the a) time–staggered
leapfrog scheme suitable for uniform time–stepping, and the b) time–synchronous scheme suitable
for non-uniform time–stepping. Only the position and velocity of one particle is shown.

Next we define

u = vn +
∆t

2

F

m
, u∗ = v∗n −

∆t

2

F

m∗
.

Using them, the velocities are updated from n to n+ 1:

vn+1 = u+
ωC∆t

1 + (ωC∆t/2)2

(
u× ẑ +

ωC∆t

2
(u× ẑ)× ẑ

)
+

∆t

2

F

m

v∗n+1 = u∗ +
ω∗C∆t

1 + (ω∗C∆t/2)2

(
u∗ × ẑ +

ω∗C∆t

2
(u∗ × ẑ)× ẑ

)
− ∆t

2

F

m∗
.

Here F is the electrostatic force from the starred particle to the un-starred particle, evaluated
using the positions at step n+ 1/2:

F =
qq∗

4πε0

e−R/λD

R3

(
1 +
R
λD

)
(rn+1/2 − r∗n+1/2), R = |rn+1/2 − r∗n+1/2|.

The exponential and (1+R/λD) factors originate from the Debye shielding of the electrostatic
potential. Finally the position is updated again from n+ 1/2 to n+ 1:

rn+1 = rn+1/2 +
∆t

2
vn+1, r∗n+1 = r∗n+1/2 +

∆t

2
v∗n+1.

During the simulation, the two particles spend most of the time undergoing simple gy-
romotion without much interaction, as they are launched from well beyond the interaction
cut–off λD. As the Boris particle pusher is a sympletic scheme which preserve magnetic mo-
ment where the electric field negligible, relatively large time steps can be taken in the outer
region to conserve computational effort. However, within the region of interaction the time
steps need to be resolved much more finely, especially when the particles come sufficiently
close to each other. We choose to monitor the total energy

En =
1

2
mv2

n +
1

2
m∗v∗n

2 +
qq∗

4πε0

e−|r
∗
n−rn|/λD

|r∗n − rn|
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and look for its non-conservation between time steps. If the error |En − En−1| exceeds a
chosen threshold, the step size ∆t is decreased, and if the error is below a (usually smaller)
threshold the step size is increased. We impose an upper limit of min(0.11× 2π/ωC , 0.11×
2π/ω∗C , 0.0005 × λD/|ξ∗ − ξ|) on the step size, such the the cyclotron motion is adequately
simulated at the maximum step size, and the time stepping do not become so broad that
the closest approach between the two particles is entirely bypassed between steps.

The collision is considered “complete” when the relative z distance between the two
particles has decreased as they are launched towards each other, reached a minimum during
collision, and increased to above 20λD again, as the two passes by each other. At this point
the time–stepping is terminated, and the change of the velocities are returned:

∆v =
√

(vf · x̂)2 + (vf · ŷ)2 −
√

(vi · x̂)2 + (vi · ŷ)2, ∆vξ = vf · ẑ − vi · ẑ

∆v∗ =
√

(v∗f · x̂)2 + (v∗f · ŷ)2 −
√

(v∗i · x̂)2 + (v∗i · ŷ)2, ∆v∗ξ = v∗f · ẑ − v∗i · ẑ

where vf and v∗f here are the final velocities of the particles.

6.4 Parallelisation on Graphical Processing Units

Using the adaptive Monte Carlo sampling technique described in Sec. 6.2, each computation
of the C(∗) at a specific (τ, ξ; τ ∗, ξ∗) on average requires the simulation of O(106) particles,
each of which consists of O(106) time steps. This level of computation effort requires special
hardware and parallelisation to keep the time requirement at a practical level. In light of the
recent advances in general purpose computing in Graphical Processing Units (GPUs), and
the computational power available in these units, we have chosen to exploit GPU computing
using the NVIDIA CUDA platform. The CUDA platform offers a C–like language environ-
ment, where ordinary codes are executed on the CPU and stored in the system memory
as usual. In addition, it contains extensions which allow data and computation tasks to
be transferred to the GPU upon request, on which a large number of parallel tasks can be
computed simultaneously. Each of these tasks is executed on a CUDA core on the GPU,
and has access to a local memory private to that task. These tasks are organised into groups
called “blocks”, the members of which have access to a block–wide shared memory, and the
tasks in a block are guaranteed to be executed simultaneously on the hardware (which is
otherwise not guaranteed, if there are more tasks than cores). Most default numerical C
functions are supported on the GPU.

During step 2 and 7 in the adaptive sampling process in Sec. 6.2, collisions are launched
with a variety of randomised initial conditions, and simulated using the Boris pusher. These
are the most computationally intensive steps in the whole scheme, with minimal memory
operations, which makes them ideal candidates for off–loading onto the GPU. The hardware
structure and driver design of the GPU means it is necessary to provide a very high number of
collisions to the GPU for simultaneous computation to fully exploit its computational power.
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On an NVIDIA GeForce GTX 780 GPU, we have identified 214 = 16, 384 collisions, separated
into 64 blocks, as an optimal number. (As the collisions in our case are unrelated to each
other, and do not require simultaneous comutation or shared memory, common sense suggests
a block size of 1 would give the GPU maximum flexibility in assigning the tasks to the
processors. However practical experiment indicates a block size below 16 would significantly
degrade performance, possibly due to overheads in block allocation in the hardware.) For
step 2, this number of simultaneous collisions computed is achieved by requesting 1024
collisions to be launched from each box, and processing 16 boxes at a time. For step 7, we
have chosen to first identify 16 boxes that require further refinement in step 6, and request
1024 collisions to be launched from each of them.

As CUDA is a relatively new technology, its usage is not completely streamlined. Several
observations of its behaviour should be mentioned as a precaution: 1. Double precision (64
bit) computation is a necessity in the Boris pusher to ensure its accuracy. Double precision
is supported by CUDA 1.3 or above; however the current version of the compiler defaults to
CUDA 1.0, which only supports single precision (32 bit) real numbers, and double precision
variables declared on the GPU are automatically degraded to single precision without warn-
ing messages. 2. The gaming version of the NVIDIA GPUs handles the graphical rendering
of the operating system’s interface, even when it is executing a CUDA programme. If a batch
of tasks transferred to the GPU for one simultaneous computation take longer than ∼ 2 s
(which the Boris pusher typically does), the operating system will identify the unresponsive
card as having crashed, and reset its driver, hence terminating the computation on it. It is
therefore advisable to disable the driver reset function in the operating system before using
CUDA. 3. In Microsoft Windows the GPU driver is replaced by a software rendering driver
when a user logs in through Remote Desktop Connection, which will disable CUDA function-
ality. It is necessary to have physical access to the computer to start a CUDA programme
using the local display. One proven workaround for this issue is to use third party remote
control programmes like VNC, which does not replace the GPU driver.

Apart from the Boris particle pusher, the other aspects of the scheme are executed on
the CPU in normal C code. Most operations have negligible computation requirement, apart
from the bootstrapping error estimate, which can be efficiently parallelised on the multi-core
CPU by computing the 1,000 bootstrapped samples for the average on various CPU cores
in parallel.

6.5 Sampling the collision coefficients

In Sec. 6.2 we established a method of evaluating C(∗) at specific values of τ , ξ, τ ∗ and ξ∗.
From the numerical scheme described in Ch. 5 (Eqs. 5.41 to 5.46), and the definitions for
the advection and diffusion coefficients for intermediately magnetised collisions (Eqs. 6.22
to 6.26), it is evident that we require the evaluation of C(∗) at all possible combinations of
the grid points for the un-starred species, (τ, ξ) = (τi, ξj), and the grid points in the starred
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species, (τ ∗, ξ∗) = (τi∗ , ξj∗). However, computing C(∗) for all these possible combinations is
computationally prohibitive. We have chosen to sample the arguments for C(∗) adaptively
and interpolate between them. As stated in Sec. 6.3, the change of the parallel and perpen-
dicular velocities for the un-starred and starred particles are only a function of the relative
parallel velocity vz − v∗z between them due to the translation symmetry in the z-direction,
which allows us to express

C(∗)(τ, ξ; τ ∗, ξ∗) = C(∗)(τ, ξ − ξ∗; τ ∗, 0).

Furthermore, the mirror symmetry in the z-direction means

Cτ (τ,−ξ; τ ∗, 0) = Cτ (τ, ξ; τ ∗, 0) Cτ∗(τ,−ξ; τ ∗, 0) = Cτ∗(τ, ξ; τ ∗, 0)

Cξ(τ,−ξ; τ ∗, 0) = −Cξ(τ, ξ; τ ∗, 0) Cξ∗(τ,−ξ; τ ∗, 0) = −Cξ∗(τ, ξ; τ ∗, 0)

Cττ (τ,−ξ; τ ∗, 0) = Cττ (τ, ξ; τ ∗, 0) Cττ∗(τ,−ξ; τ ∗, 0) = Cττ∗(τ, ξ; τ ∗, 0)

Cξξ(τ,−ξ; τ ∗, 0) = Cξξ(τ, ξ; τ ∗, 0) Cξξ∗(τ,−ξ; τ ∗, 0) = Cξξ∗(τ, ξ; τ ∗, 0)

Cτξ(τ,−ξ; τ ∗, 0) = −Cτξ(τ, ξ; τ ∗, 0) Cτξ∗(τ,−ξ; τ ∗, 0) = −Cτξ∗(τ, ξ; τ ∗, 0).

These relations allow C(∗) to be fully explored by limiting the evaluations to within (τ, ξ; τ ∗, 0),
where all three arguments are restricted to non-negative values. The first and third argu-
ments range from zero to the maximum of the un-starred and starred species’ grids in the
perpendicular direction respectively, while the second argument ranges from zero to the sum
of the maximum of the un-starred and starred species’ grids in the parallel direction. In
order words,

τ ∈ [0, τmax], τ ∗ ∈ [0, τ ∗max], ξ ∈ [0, ξmax + ξ∗max].

To sample these three dimensions, we discretise the parameter space firstly along ξ into
{ξk, k ∈ [0, N − 1]}. At each ξk, the two remaining dimensions τ and τ ∗ are discretised into
a grid of {τk,l, l ∈ [0, Nk − 1]} and {τ ∗k,m,m ∈ [0, N∗k − 1]} (see Fig. 6.6). The ten C(∗) are
evaluated at the grid points as

C
(∗)
k,l,m ≡ C(∗)(τk,l, ξk; τ

∗
k,m, 0),

using the method outlined in Sec. 6.2. To obtain C(∗) in between these evaluation points, we
first interpolate on the τ − τ ∗ plane (Fig. 6.6 b) using two dimensional linear interpolation
to compute the values for C(∗) at the queried value of τ and τ ∗, and then linearly interpo-
late between the planes for the queried value of ξ. Linear interpolation is used instead of
higher order schemes to prevent Runge’s phenomenon, since the evaluation grid has limited
resolution due to computational limitations.

To improve the accuracy of this discrete representation of C(∗), the grid can be refined
by either introducing additional columns or rows in the τ − τ ∗ plane at a particular k, or
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Figure 6.6: The coordinates for evaluating and interpolating the collision coefficients C(∗). The
three dimensional parameter space is first discretised in ξ into “horizontal” slices, as shown in a),
and at each value for ξ a non-uniform grid specifies the points of evaluation, shown as black dots in
b). The grid in τ−τ∗ space can be refined by considering the difference between the first and second

order interpolation within each cell in b), which is shown in blue and has a value of G
(∗)
k,l+1/2,m+1/2.

by inserting additional slices in ξ. For the first type of refinement, we require a way to
determine the columns and rows which require refinement most urgently. This is achieve by
first introducing the slopes in the τ and τ ∗ directions

s
(∗)
k,l+1/2,m =

C
(∗)
k,l+1,m − C

(∗)
k,l,m

τk,l+1 − τk,l
, s

(∗)
k,l,m+1/2 =

C
(∗)
k,l,m+1 − C

(∗)
k,l,m

τ ∗k,m+1 − τ ∗k,l
,

from which we can define the averaged second derivatives

a
(∗)
k,l+1/2,m =

s
(∗)
k,l+3/2,m − s

(∗)
k,l+1/2,m

τk,l+2 − τk,l
+
s

(∗)
k,l+1/2,m − s

(∗)
k,l−1/2,m

τk,l+1 − τk,l−1

,

a
(∗)
k,l,m+1/2 =

s
(∗)
k,l,m+3/2 − s

(∗)
k,l,m+1/2

τ ∗k,m+2 − τ ∗k,m
+
s

(∗)
k,l,m+1/2 − s

(∗)
k,l,m−1/2

τ ∗k,m+1 − τ ∗k,m−1

.

This in turn gives the volume contained in the “gap” between a linear and quadratic in-
terpolation on the τ − τ ∗ plane, which we use to indicate the fidelity of the the discrete
representation of C(∗):

G
(∗)
k,l+1/2,m+1/2 =

∆τk,l+1/2∆τ ∗k,m+1/2

24

∣∣∣∣ (a(∗)
k,l+1/2,m + a

(∗)
k,l+1/2,m+1

)
(∆τk,l+1/2)2

+
(
a

(∗)
k,l,m+1/2 + a

(∗)
k,l+1,m+1/2

)
(∆τ ∗k,m+1/2)2

∣∣∣∣,
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where ∆τk,l+1/2 = τk,l+1 − τk,l and ∆τ ∗k,m+1/2 = τ ∗k,m+1 − τ ∗k,m. Note that here the (∗) super-
script can be replaces by τ , ξ, ττ , ξξ, τξ, τ∗, ξ∗, ττ∗, ξξ∗ or τξ∗, for a total of ten values.
If we were to introduce an extra column mid-point between τk,l and τk,l+1 in the ξk slice, the
improvement to the overall accuracy of the representation is proportional to

ξk+1 − ξk−1

2

N∗k−2∑
m=0

G
(∗)
k,l+1/2,m+1/2.

Similarly, if we were to introduce an extra row between τ ∗k,m and τ ∗k,m+1 in the ξk slice, the
improvement is proportional to

ξk+1 − ξk−1

2

Nk−2∑
l=0

G
(∗)
k,l+1/2,m+1/2.

By comparing these numbers for all k, l and m, one can determine the priority in which
additional columns and rows should be inserted to achieve the best improvement in fidelity.

For the second type of refinement — inserting a new slice at a new ξ — we first define
the two–dimensional linear interpolation on the τ−τ ∗ plane in the ξk slice, C

(∗)
k (τ, τ ∗). From

this, we can define the slope

s
(∗)
k+1/2(τ, τ ∗) =

C
(∗)
k+1(τ, τ ∗)− C(∗)

k (τ, τ ∗)

ξk+1 − ξk

and the second derivative

a
(∗)
k+1/2(τ, τ ∗) =

s
(∗)
k+3/2(τ, τ ∗)− s(∗)

k+1/2(τ, τ ∗)

ξk+2 − ξk
+
s

(∗)
k+1/2(τ, τ ∗)− s(∗)

k−1/2(τ, τ ∗)

ξk+1 − ξk−1

.

The “area” contained between a linear and quadratic interpolation in the ξ direction is then
given by

G
(∗)
k+1/2(τ, τ ∗) =

(∆ξk+1/2)3

12

∣∣a(∗)
k+1/2(τ, τ ∗)

∣∣,
where ∆ξk+1/2 = ξk+1−ξk. The improvement to the fidelity of the discrete C(∗) representation
when an extra slice is introduced at the mid–point between ξk and ξk+1 is then proportional
to ∫ τmax

0

τ dτ

∫ τ∗max

0

τ ∗ dτ ∗G
(∗)
k+1/2(τ, τ ∗).

By comparing this quantity for all k, we can determine at where additional slices should be
inserted.
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6.6 Energy conservation

Using a similar methodology to Sec. 5.6, it can be shown that the net energy change caused
by the discrete Fokker–Planck operator per time step for the collision between two species
is given by

∆E

∆t
=
∑
ij

∑
i∗j∗(f∆Ω)i,j(f

∗∆Ω∗)i∗,j∗
[
m
(
τiC

τ
i,j,i∗,j∗ − Cττ

i,j,i∗,j∗ + ξjC
ξ
i,j,i∗,j∗ − C

ξξ
i,j,i∗,j∗

)
+m∗

(
τ ∗i∗C

τ∗
i,j,i∗,j∗ − Cττ∗

i,j,i∗,j∗ + ξ∗j∗C
ξ∗
i,j,i∗,j∗ − C

ξξ∗
i,j,i∗,j∗

)]
. (6.32)

The first four terms inside the square brackets arise from the energy change in the distribution
f of the un-starred species, while the last four terms arise from the energy change in f ∗ of
the starred species. Using the definitions of the C(∗), Eqs. 6.27 to 6.31, it is easy to show
that

∆E =
∑
ij

∑
i∗j∗

(f∆Ω)i,j(f
∗∆Ω∗)i∗,j∗

∫ 10λD

0

∫ 2π

0

b db dφ

π(10λD)2

∫ 2π

0

dθ

2π

∫ 2π

0

dθ∗

2π

×
[
m

(
τ∆v +

1

2
(∆v )2 + ξ∆vξ +

1

2
(∆vξ)

2

)
+m∗

(
τ ∗∆v∗ +

1

2
(∆v∗)2 + ξ∗∆v∗ξ +

1

2
(∆v∗ξ )

2

)]†
=
∑
ij

∑
i∗j∗

(f∆Ω)i,j(f
∗∆Ω∗)i∗,j∗

∫ 10λD

0

∫ 2π

0

b db dφ

π(10λD)2

∫ 2π

0

dθ

2π

∫ 2π

0

dθ∗

2π

× 1

2

[
m

(
(τ + ∆v )2 + (ξ + ∆vξ)

2 − τ − ξ
)

+m∗
(

(τ ∗ + ∆v∗)2 + (ξ∗ + ∆v∗ξ )
2 − τ ∗ − ξ∗

)]†
.

The dagger superscript indicates the changes to velocity are evaluated for a pair of particles
with initial velocities (τi, θ, ξj) and (τ ∗i∗ , θ

∗, ξ∗j∗), colliding at impact parameter b and impact
angle φ. The expression in the square bracket is obviously the change to the total energy
of the particle pair after the collision. As two–particle collisions in a uniform magnetic field
must preserve the total energy of the particles, we have shown that our discretisation scheme
is energy conserving.

Numerically, if we calculate all the collision coefficients C
(∗)
i,j,i∗,j∗ for all combinations of

{i, j, i∗, j∗} through the adaptive Monte Carlo algorithm, the precision of the energy conser-
vation of the collisional Fokker–Planck operator only depends on the Boris particle pusher’s
ability to conserve energy while simulating individual collisions. As we adaptively adjust
the Boris pusher’s time–step size using the total energy error as an indicator, we have direct
control over the precision of energy conservation.
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However, as we cannot directly compute all C(∗) due to computational constrains, inter-
polation is necessary. Special attention is require during the interpolation to preserve energy
conservation. From Eq. 6.32, and using the symmetry conditions for C(∗), the Fokker–Planck
equation is energy–conserving if the following are satisfied for all τ , τ ∗ and ξ:

0 =m(τCτ (τ, ξ; τ ∗, 0)− Cττ (τ, ξ; τ ∗, 0) + ξCξ(τ, ξ; τ ∗, 0)− Cξξ(τ, ξ; τ ∗, 0))

+m∗(τ ∗Cτ∗(τ, ξ; τ ∗, 0)− Cττ∗(τ, ξ; τ ∗, 0)− Cξξ∗(τ, ξ; τ ∗, 0)) (6.33)

0 =mCξ(τ, ξ; τ ∗, 0) +m∗Cξ∗(τ, ξ; τ ∗, 0). (6.34)

The first condition corresponds to the conservation of energy, while the second corresponds
to the conservation of momentum in the axial direction. These conditions are automatically
satisfied at the τ , τ ∗ and ξ where the coefficients are directly evaluated, barring the small
numerical error in the Boris pusher.

Multiplying Eq. 6.34 on both sides by ξ, we have

0 = mξCξ(τ, ξ; τ ∗, 0) +m∗ξCξ∗(τ, ξ; τ ∗, 0). (6.35)

Using the fact that the linear superposition of Eqs. 6.33 and 6.35 at different τ , τ ∗ and ξ still
yields zero on the left hand side, we see that if we linearly interpolate between two directly
evaluated points a and b using

Cτ (τ, ξ; τ ∗, 0) =
waτaC

τ (τa, ξa; τ
∗
a , 0) + wbτbC

τ (τb, ξb; τ
∗
b , 0)

τ

Cξ(τ, ξ; τ ∗, 0) =
waξaC

ξ(τa, ξa; τ
∗
a , 0) + wbξbC

ξ(τb, ξb; τ
∗
b , 0)

ξ

Cττ (τ, ξ; τ ∗, 0) = waC
ττ (τa, ξa; τ

∗
a , 0) + wbC

ττ (τb, ξb; τ
∗
b , 0)

Cξξ(τ, ξ; τ ∗, 0) = waC
ξξ(τa, ξa; τ

∗
a , 0) + wbC

ξξ(τb, ξb; τ
∗
b , 0)

Cτξ(τ, ξ; τ ∗, 0) = waC
τξ(τa, ξa; τ

∗
a , 0) + wbC

τξ(τb, ξb; τ
∗
b , 0),

and

Cτ∗(τ, ξ; τ ∗, 0) =
waτ

∗
aC

τ∗(τa, ξa; τ
∗
a , 0) + wbτ

∗
bC

τ (τb, ξb; τ
∗
b , 0)

τ ∗

Cξ∗(τ, ξ; τ ∗, 0) =
waξaC

ξ∗(τa, ξa; τ
∗
a , 0) + wbξbC

ξ∗(τb, ξb; τ
∗
b , 0)

ξ

Cττ∗(τ, ξ; τ ∗, 0) = waC
ττ∗(τa, ξa; τ

∗
a , 0) + wbC

ττ∗(τb, ξb; τ
∗
b , 0)

Cξξ∗(τ, ξ; τ ∗, 0) = waC
ξξ∗(τa, ξa; τ

∗
a , 0) + wbC

ξξ∗(τb, ξb; τ
∗
b , 0)

Cτξ∗(τ, ξ; τ ∗, 0) = waC
τξ∗(τa, ξa; τ

∗
a , 0) + wbC

τξ∗(τb, ξb; τ
∗
b , 0),

where wa and wb are the interpolation weights, energy and momentum conservation for the
interpolated point is preserved.
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6.7 Comparison with analytic model

As is the case with the weakly magnetised collisional Fokker–Planck model in the previous
chapter, analytic solutions and approximations to intermediately magnetised collisions only
exist for a few special cases. Glinsky et al. [68] obtained the thermal equilibration rate
of a plasma’s parallel and perpendicular temperatures through intermediately magnetised
collisions, assuming the velocity distribution is Gaussian in both degrees of freedom, and the
temperature difference between them is small. This rate was obtained through a Monte Carlo
simulation of the collisions, and the result converged to the weakly and strongly magnetised
equilibration rates in the limiting cases. The equilibration of the parallel and perpendicular
temperatures, Tz and T , of a plasma with density n, particle mass m and charge q is
described by

dT (t)

dt
= γ(Tz − T ), Tz(t) + 2T (t) = Tz(0) + 2T (0),

where the second equation comes from energy conservation. The decay factor γ is given by

γ = nv̄b̄2I(κ̄),

where v̄ ≡
√

2kBT̄ /m is the average speed of the particles. The mean temperature is
T̄ ≡ (2T (0) + Tz(0))/3, and is conserved through time. The quantity b̄ is twice the distance
of closest approach, given by

b̄ = 2bmin, bmin =
q2

4πε0kBT̄
.

The value κ̄ is a dimensionless number reflecting the degree of magnetisation of the plsama,
and is defined as

κ̄ =
ωC b̄

v̄
=
qBb̄

mv̄
.

The function I(κ̄) reflects the magnetisation effect on the equilibration rate, and its value is
tabulated in Table 6.1, reproduced from Glinsky et al. [68]. For values of κ̄ other than what
is available in Table 6.1, we have chosen to interpolate the function I in the Log–Log scale.

We apply this result to the thermal equilibration of a positron plasma with Tz(0) = 40
K, T (0) = 20 K, and a density of n = 7.0 × 1013m−3, in a magnetic field of B = 1 T,
which is a typical condition in the ALPHA apparatus. The magnetisation number for this
plasma is κ̄ = 11.9, which is neither weakly nor strongly magnetised, and the corresponding
interpolated value for I(κ̄) is 6.57 × 10−3. This should be compared to the near–unity
magnitude for when the collisions are weakly magnetised. Equilibration is suppressed by the
presence of the magnetic field.

Comparing this with our collisional Fokker–Planck model, we first sample the collision
coefficients in the three–dimensional space spanned by τ , τ ∗ and ξ, in the range which is
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κ̄ I(κ̄)
1.00× 10−4 1.753(63)× 100

1.00× 10−3 1.335(44)× 100

1.00× 10−2 9.26(45)× 10−1

1.00× 10−1 5.90(36)× 10−1

3.33× 10−1 3.81(18)× 10−1

9.99× 10−1 1.927(46)× 10−1

1.25× 100 1.572(38)× 10−1

2.50× 100 8.17(16)× 10−2

5.00× 100 3.34(20)× 10−2

1.25× 101 5.91(37)× 10−3

2.50× 101 9.19(38)× 10−4

5.00× 101 7.42(27)× 10−5

1.00× 102 2.74(13)× 10−6

2.00× 102 2.94(11)× 10−8

5.00× 102 9.48(44)× 10−12

1.00× 103 2.527(61)× 10−15

2.00× 103 5.16(24)× 10−20

5.00× 103 1.531(57)× 10−28

1.00× 104 2.90(50)× 10−37

Table 6.1: The numerical values of the function I(κ̄), which reflects the magnetisation effect on
collisional equilibration. The digits inside brackets indicates the statistical error in the last two
digits of the mantissa. Reproduced from Glinsky et al. [68].

relevant to the Tz(0) = 40 K, T (0) = 20 K plasma. The sampled points are shown in Fig. 6.7.
It should be noted that as we are studying the self–collisions of positrons, the un-starred
and starred species refer to the same population. This symmetry means that the collision
coefficients must be diagonally symmetric in the τ–τ ∗ space. By limiting the evaluations to
the lower half triangle, and mirroring the results to the upper half, computational resources
can be saved.

Interpolating these coefficients between the evaluated points using the energy–conserving
scheme described above, and putting them into the discrete, energy–conserving Fokker–
Planck equation, we can simulate the equilibration of a heterogeneous positron plasma with
an initial distribution f(0) ∝ exp(−mv2/(2kBT (0)) −mv2

z/(2kBTz(0))). Preliminary com-
parison shows that the time scale of the behaviour between the two models agree with each
other, although our model predicts an equilibration curve which is somewhat different in
shape from the exponential decay predicted by Glinsky et al. This difference may be the
result of an insufficient resolution of the collision coefficients. The true cause of the difference
is being investigated. The application of the intermediately magnetised collision operator to
the equilibration between positrons and antiprotons is also being pursued.
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Figure 6.7: The adaptively sampled points in the collision coefficients’ argument space, where they
are directly evaluated. Here the self–collisions of a positron plasma at around T = 40 K is being
studied, and vT =

√
2kBT/m.
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Chapter 7

Mixing simulation

One of the possible — and most important — applications of the numerical models devel-
oped above is to simulate the mixing of antiprotons with positrons. As explained in Sec. 2.9,
ALPHA achieved antihydrogen trapping using an autoresonant perturbation to excite the
axial oscillation of antiprotons neighbouring a positron plasma. This method of mixing the
two species is tolerant to machine fluctuations and minimises the energy of the resultant
antihydrogen atoms. Despite this, the mixing and trapping process still result in the great-
est percentage loss of particle in the entire experimental sequence. To improve antihydrogen
yield, it is imperative to understand the details of the mixing and recombination process and
how it can be improved. Qualitatively, the process starts with an autoresonant perturbation
applied on the antiprotons, which excites their axial oscillation until they cross into the
neighbouring positron plasma. The positrons, on the other hand, remain quasi-static since
the perturbation is far below their bounce frequency. The self–field of the two species and
the vacuum field from the electrodes (including the time–dependent perturbation) interact
with each other during this excitation. Upon injection, the antiprotons usually travel at
much higher speeds than the positrons (by virtue of their thermal motion), and the collision
between them tend to cool the former and heat the latter. At the same time recombination is
under progress, which depletes antiprotons and positrons and results in antihydrogen atoms.
The cross–section of recombination is a function of the relative speed between the two par-
ticles, and the momentum of the antiproton at the instant of recombination determines the
momentum of the resultant antihydrogen. This means there is a competition between colli-
sional equilibration and recombination. If recombination is more rapid, antihydrogen atoms
are formed soon after antiprotons are injected, and the energy spectrum of the antihydro-
gen is whatever the injected antiprotons’ is. If the collisional equilibration happens more
rapidly, on the other hand, there is stronger heating on the positrons and the antiprotons are
better thermalised and cooled. Antihydrogen formation would be delayed due to the higher
positron temperature, and their energy spectrum is closer to a thermal distribution (which
is probably cooler than the first scenario, but it is unclear if the number of antihydrogen
atoms with energy below 0.5 K has increased).
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Figure 7.1: A schematic view of the interaction between various physics elements in the two
phases of the injection simulation, with a) phase 1 simulating the excitation process, and b) phase
2 simulating the collisional equilibration and recombination between the two species. An arrow
indicates the interaction between two objects, and its label indicates the numerical model used to
simulate that interaction. Greyed–out arrows indicate interactions that are not significant in the
time scale of that phase, and is thus ignored. The red arrow highlights the corrective algorithm
used.

To qualitatively understand the detailed balance between these disparate processes, we
have opted to simulate the mixing and recombination in a two–phase simulation separated
by the collisional equilibration time scale of antiprotons, as explained below and also shown
in Fig. 7.1.

Phase 1: the water bag – Vlasov hybrid model. This phase is focused primarily on
solving for the spatial evolution of the plasmas during the antiproton excitation process.
The antiprotons have an axial bounce period of ∼ 3 µs, which is also the time scale of the
perturbation applied, and the temporal resolution required of the simulation. The typical
duration of this phase (the duration of the perturbation) is ∼ 1 ms.

• The positron plasma has sufficient time to axially equilibrate with the external per-
turbation through collision. The positron plasma’s low temperature of ∼ 40 K, it is
modelled quasi-statically using the waterbag equilibrium solver (Ch. 3), with the elec-
trodes providing the background field φvac (including the perturbation). The influence
from the antiprotons on the positrons is ignore for now, since the former is much fewer
in number. This means the positron distribution is solved for as fe+(r, z), with the
distribution in vz and v assumed to remain Gaussian at 40 K, as a function of the per-
turbation (in this case the voltage of electrode E16). This decoupling of positrons from
antiprotons allows the waterbag solution to be pre-computed, thus saving computer
time.

• The antiprotons are simulated dynamically using the Vlasov model (Ch. 4), with the
electric field φ ≡ φvac + φe+ + φp̄ (the former two fields pre-computed by the waterbag
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solver). The antiprotons’ initial condition at the start of the simulation is obtained
using the numerical annealing technique (Sec. 4.8), with T = 250 K. This means the
antiproton distribution is solved for as fp̄(r, z, vz), with the distribution in v assumed
to remain Gaussian at 250 K.

• The time scale of the self–collision between antiprotons is much longer than the time
scale in this phase of the simulation, and its effect is thus ignored (see Fig. 1.4). The
cross–collision between antiprotons and positrons is also ignored since the two species
only overlap each other momentarily towards the end of this phase. The self–collision
between positrons is implicitly handled through the water bag solver. Since the external
perturbation is slow compared to both the cyclotron frequency and the axial bounce,
the energy in the positrons’ axial and perpendicular motion remains unchanged, and
the collisional operator takes no effect on the velocity distribution in either direction.

• The influence from antiprotons to positrons is small due to the former’s comparative low
number. However this does have a non-negligible effect in terms of the Debye shielding
afforded on the antiprotons by the positrons when the two start to overlap. The
positrons will rearrange themselves in response to the antiproton self-field to maintain
the overall zero–field inside the bulk of the positron plasma. This can have an important
impact on antiproton energy at the moment of injection. To simulate this small but
important positron response, a correction algorithm is placed in the simulation that
modifies the positron potential according to the antiproton self–field, and forces the
total potential φ to be a constant against z within the modified positron boundary.
For each radial slice at ri, we first define Λi ≡

∫ Ri
Li
φp̄(ri,z) dz/(Ri−Li). Also define the

function

φG(ri, z) ≡ (φe+ + φvac)(ri, (Li +Ri)/2)− (φvac + φp̄)(ri, z) + Λi

The modified boundaries L̃i and R̃i are defined as the roots of

φG(ri, L̃i) =φe+(ri, Li)

φG(ri, R̃i) =φe+(ri, Ri),

that are closest to Li and Ri respectively. Further introduce Li and L̃i, which equal
Li and L̃i respectively if ∂zφe+(ri, Li) ≥ ∂zφG(ri, L̃i). Otherwise they are the solutions
of the simultaneous equations φG(ri, L̃i) = φe+(ri,Li)

∂zφG(ri, L̃i) = ∂zφe+(ri,Li),

which satisfy L̃i ∈ [Ξi, L̃i], where Ξi is the z value of the first maximum of φG(ri, z)
left of L̃i. If multiple solutions exist, the one corresponding to the largest L̃i is chosen.
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If no such solution exists, L̃i is set to Ξi, and Li is the root of φG(ri,Ξi) = φe+(ri,Li)
cloest to Ξi. A similar procedure is repeated for Ri and R̃i. The modified positron
self–potential is then given by

φ̃e+(ri, z) =


φe+(ri, z + (Li − L̃i)) for z < L̃i
φG(ri, z) for L̃i ≤ z ≤ R̃i

φe+(ri, z + (Ri − R̃i)) for z > R̃i.

This φ̃e+ is then used in place of φe+ in the Vlasov solver, and completes the red arrow
in Fig. 7.1 a.

• Alternatively, and possibly more simply, the water bag solver can be executed upon
every time-stepping in the Vlasov solver to derive the quasi-equilibrium state of the
positrons, with the electrostatic influence from the antiprotons properly taken account
of. This is possible with sufficient speed–up in the water bag solver, and indeed neces-
sary when antiproton space charge start to become comparable to the positrons’.

Phase 2: the collision–recombination model. This phase is focused on the evolution
of the velocity–space distribution of the two species due to collisional equilibration and
recombination, which happen over a time scale of ∼ 20 ms. After phase 1, the perturbation
is terminated, and the system reaches a steady state where the antiprotons stream through
the positron plasma at a constant rate while undergoing a wide axial bounce. The Debye
shielding of the positrons means the positron density is also a constant against z within the
plasma. These means the variation in z for both species’ distribution can now be discarded
as long as the overlapping region of the two species is concerned, and the phase 2 of the
model will focus on this volume.

• Discarding the axial dependence, the antiproton distribution from the end of the phase
1 simulation is converted from fp̄(r, z, vz) to fp̄(r, vz, v ) by averaging over z within the
positron plasma. The v degree of freedom is initially assumed to follow a Gaus-
sian at 250 K. Similarly, for positrons, the distribution is converted from fe+(r, z) to
fe+(r, vz, v ) by averaging it over z within the positron plasma, and the vz and v
degrees of freedom are initially assumed to follow a Gaussian at 40 K.

• The weakly magnetised collision operator (Ch. 5) is used to model the effect of collisions
between antiprotons on fp̄. The weakly magnetised version is used since the typical
distance of closest approach between antiprotons is much smaller than their cyclotron
orbit radius. This operator reflects how the self–collision of antiprotons transfers energy
from the axial degree of freedom to the perpendicular one, and also thermalises the
shape of the distribution within each degree of freedom as well.
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• The more general intermediately magnetised collision operator is used to model the
effect of collisions between positrons and antiprotons on both fe+ and fp̄. Since the
antiprotons are usually at a higher temperature than the positrons, and the energy
equilibration is more efficient in the axial than the perpendicular direction, the colli-
sions mainly lead to an axial cooling of the antiprotons and heating of the positrons.

• The intermediately magnetised collision operator is also used to model the effect of
collisions within the positrons on fe+ , which tends to transfer energy from the positron’s
axial degree of freedom (which is heated by the antiprotons) to the perpendicular.

• The recombination operator takes away particles from both distributions according
to the recombination cross–section, and give the timing and energy spectrum of the
antihydrogen atoms formed.

This separation of the collisional time scale has the distinction of restricting the number
of degrees of freedom in the distribution to only three or less, which is essential in terms
of computation. It is in principle possible to construct a numerical scheme combining the
Vlasov equation and the collisional operators, but this would require handling a full 4–D
distribution f(r, z, vz, v ). Assuming each dimension apart from r is discretised to O(N) grid
points (r gridding can be sparse to O(1)), each time step would require O(N3) operations
for the Vlasov equation, and O(N5) operations for the collision operators. Compared with
the split scheme, in phase 1 the Vlasov equation requires O(N2) operations per time step,
and in phase 2 the collision operators require O(N4) operations per time step. The size of
the time step in phase 2 can be increased as well since only collisional and recombination are
simulated, which are comparatively slow processes. The speed–up is significant. Note that
this clear–cut separation of the two phases is only approximate: collision and recombination
occurs during the excitation process when the two species start to overlap, and the spatial
dynamics still plays a part as the space charge of the two species recombine and deplete.

In this chapter we first present a simple single–particle picture of the autoresonant exci-
tation process, then go on to use the water bag – Vlasov model to simulate the autoresonant
excitation of the antiproton plasma, and study the resultant energy spectrum of the injected
antiprotons. The results presented in this chapter has previously been published in [70].

7.1 Basic principle of autoresonance

Autoresonant excitation has been applied to, and observed in, a wide variety of systems [34].
The principle of autoresonant excitation is most transparent in the case of a single particle in
an anharmonic well. Autoresonant excitation only works when there is a monotonic relation
between the amplitude and frequency of an oscillator; here we assume it is monotonically
decreasing, which is the case for the antiproton well in Fig. 2.6. The oscillation frequency at
vanishing amplitude is called the linear resonance, and is denoted by ω0. A fixed frequency
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perturbation at this ω0 results in a limited excitation since, as the particle is excited, its
oscillation frequency changes with amplitude and consequently loses phase lock with the
drive. An autoresonant perturbation instead starts at a frequency above ω0, and is chirped
towards a lower frequency. As the frequency passes through ω0, the particle becomes phase–
locked to the perturbation, provided certain conditions are satisfied. The amplitude of
the oscillator motion changes such that its frequency automatically matches that of the
perturbation. Fajans and Friedland [71] gave an analytic treatment of the autoresonant
excitation process for an oscillator with an equation of motion of

z̈ + ω2
0

(
1− 4

3
βz2

)
z = ε cos (θD(t)) = εRe

(
eiθD(t)

)
, (7.1)

and derived the conditions that must be met in order for phase–locking to occur. Here ε
denotes the drive amplitude, θD(t) = ω0t − αt2/2 the drive phase angle, −α the rate of
change of the drive frequency, or chirp rate, and β the nonlinearity of the oscillator. The
motion starts at a large negative t with z = ż = 0, and the perturbation passes through the
linear frequency at t = 0. The derivation starts by separating the fast and slow motion of
the oscillator:

z(t) = Re
(
a(t)eiθP (t)

)
. (7.2)

Here a(t) is the slowly varying time–dependent oscillator amplitude and θP (t) is its phase.
The amplitude a(t) and phase difference δ(t) ≡ θP − θD vary on a timescale � 1/ω0.

For t near zero, and ignoring higher harmonics, substituting Eq. 7.2 into Eq. 7.1 gives

İ = − ε√
2ω0

√
I sin(δ) (7.3)

δ̇ = αt− ω0βI −
ε

2
√

2ω0

1√
I

cos(δ), (7.4)

where I(t) ≡ a2(t)/2. The phase difference δ(t) becomes locked near π. This is a stable
phase, since if δ becomes smaller than π, the perturbation begins to do positive work on
the oscillator, accelerating it back to δ = π; when δ becomes larger than π, negative work is
done, slowing it down.

Given δ is expected to stay around π and only change slowly, we define, from Eq. 7.4, the
solution of δ̇ = 0 as I0(t). Next, we define S(t) ≡ ω0β+ε/(2

√
2ω0I

3/2
0 ) and ∆(t) ≡ I0(t)−I(t).

The coupled Eqs. 7.3 and 7.4 are then simplified into the Hamiltonian

H(δ,∆) = S∆2/2 + Vpseudo(δ), (7.5)

Vpseudo(δ) = −α
S
δ +

ε√
2ω0

√
I0 cos(δ). (7.6)

For the pseudo-particle to remain trapped in the pseudo-potential, Vpseudo must have parts
with positive and negative slopes against δ for all times. The cosine part of Eq. 7.6 has a
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slope varying between −ε
√
I0/(
√

2ω0) and ε
√
I0/(
√

2ω0), while the linear part has a slope
of −α/S. This means |ε/(

√
2ω0)
√
I0| > |α/S| is required at all times to maintain phase

locking. At I0 = (ε/(2
√

2ω2
0β))3/2 the inequality becomes most difficult to satisfy, at which

point the requirement for phase locking becomes

ε > εcr ≡ 2
√

2

√
ω0

β

(α
3

)3/4

. (7.7)

Generalizing the single particle dynamics above to the excitation of a antiproton bunch
in a nested Penning–Malmberg trap is not trivial. If a test particle is placed in the potential
formed by the external electrodes and the space charge, and subject to the autoresonant
perturbation, it will not exhibit the behaviour above since the net electrostatic well does not
have a monotonic relationship between amplitude and frequency. It is therefore important
to analyse the collective behaviour of the plasma to understand its autoresonant excitation.
Barth et al.[54] presented theoretical results showing that the self–field causes the plasma to
remain coherent during an autoresonant perturbation. The first experimental observation of
phase–locking and excitation in the collective regime was presented by Andresen et al.[46].

7.2 Comparisons with numerical and analytic models

In this section, the water bag – Vlasov model is compared with (1) the analytic model
(Eqs. 7.5, 7.6 and 7.7), (2) a leap–frog single particle pusher that neglects the self–field of
the antiproton bunch and treats it as a single particle, but evolves it under the same positron
and vacuum fields as in the water bag – Vlasov model, and (3) a 1–D collisionless spectral
Vlasov–Poisson model used by Barth et al.[54], which does not model any radial variation
and solves the Poisson equation using an approximate radial cut–off in place of a true radial
profile.

Time–resolved autoresonant excitation

The different models are applied to the autoresonant excitation of a 250 K, 10,000 antiproton
bunch with a radius of ∼ 0.7 mm (defined by the 90% material–inclusive equi–density con-
tour). The particles are confined by an anharmonic electrostatic well with a linear bounce
frequency of 412.7 kHz, created by the electrodes as shown in Fig. 7.2. The antiproton bunch
is excited by an autoresonant perturbation applied to an electrode to the right of the bunch.
The perturbation frequency changes linearly from 420 kHz to 200 kHz at a chirp rate of −200
MHz/s, and an amplitude of 0.14 V. A 10–period transition is present before the start of the
chirp, where the perturbation amplitude is linearly increased from 0 to its full amplitude, at
the starting frequency. Similarly, the perturbation amplitude is linearly decreased to 0 after
the chirp at the stopping frequency in 10 periods. In the simulation, a further 20 periods
are present (measured in terms of the stopping frequency), during which no perturbation



125

is applied, before the simulation is terminated. The results from the different models are
displayed in Fig. 7.3, showing similar predicted behaviour between the models, in terms of
both the energy and the phase of the antiproton bunch. The analytic model prediction shows
a slightly higher excitation at late time and high amplitude, since it includes only the 4th
order non–linearity of the confining well, while other models include all orders by using a
physical confining potential. Also note that only the two Vlasov–based models can predict
the spread in energy, since they take account of the finite–size effect of the antiproton bunch.
The energy spread predicted by the spectral Vlasov model is higher than the water bag –
Vlasov model, possibly due to the much lower resolution allowed in the former, leading to
stronger numerical diffusion.
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Figure 7.2: Potentials and geometry for measuring the autoresonant excitation of a antiproton
bunch. a) The physical setup; the perturbation is applied on electrode E16. b) The external
potential created by the electrodes at r = 0. c) A close–up of b, emphasizing the effect of various
antiproton space charges. d) The perturbation created at r = 0 when 1 V is applied to E16. The
potentials used in the water bag – Vlasov model are deduced by solving the 2D Poisson equation as
outlined in Sec. 3.1. Those in the spectral Vlasov solver are analytic fits up to z6. The background
vacuum potential φvac in the analytic model is a fit up to z4, while the perturbative force is assumed
to be a constant.

Perturbation amplitude threshold for pickup

In Fig. 7.4, the analytic prediction for the critical drive amplitude εcr (Eq. 7.7) is compared
with the single particle model and the water bag – Vlasov model. The set up is identical
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Figure 7.3: Time evolution of a) the energy and b) phase angle of the antiproton distribution, as
predicted by different numerical and analytic models. The colour bands around the water bag –
Vlasov and spectral Vlasov results indicate the lower 5% and upper 95% boundaries of the spread
in energy of the phase space distribution. The phase difference is defined as θP−θD, where θP is the
phase angle of the centre of charge of the distribution, and θD the phase angle of the autoresonant
perturbation.

to that shown in Fig. 7.2, with a 250 K, 10,000 antiproton bunch subjected to different
perturbations. These perturbations all start from 420 kHz with the 10–period ramp–up,
and end at 360 kHz with the 10–period ramp–down, but with various amplitudes and the
chirp rates. At each chirp rate on the horizontal axis of Fig. 7.4, multiple simulations with
different drive amplitudes are executed, and a sudden jump in the final averaged antiproton
energy is observed when the drive amplitude exceeds the critical value. This critical drive
amplitude is plotted in the vertical axis of Fig. 7.4, together with the analytical prediction.
Good agreement between the models is again observed.
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Figure 7.4: Critical autoresonant perturbation amplitude for various chirp rates. The prediction
of the analytic model and the results from the single particle and water bag – Vlasov model are
compared.



127

7.3 Comparisons with experiment

The results of experimental runs are compared with predictions of the water bag – Vlasov
model and the single particle model. In the first comparison, a antiproton bunch is subjected
to an autoresonant perturbations in an anharmonic well without any neighbouring positrons,
and the resultant antiproton axial energy gain is analysed. In the second comparison, a
antiproton bunch is subjected to perturbations next to an positron plasma. Some fraction
of the antiprotons obtain sufficient energy to enter the positron plasma. The distribution of
the kinetic energy of the injected antiprotons predicted by simulation is compared with the
number of antihydrogen measured from experiment.

Final antiproton energy distribution versus drive amplitude and
stopping frequency

A 250 K, 3000±1000 antiproton bunch is prepared in the anharmonic well shown in Fig. 7.2,
which has a linear frequency of 412.7 kHz. The particles are subjected to various autores-
onant perturbations, all of which start from 420 kHz, have a chirp rate of -200 MHz/s and
include the 10–period ramp–up and ramp–down. In the first series of runs, the stopping
frequency is fixed at 360 kHz, and the drive amplitude varies between 0 V and 0.161 V.
In the second series of runs, the drive amplitude is fixed at 0.15 V and the stopping fre-
quency varies between 355 kHz and 390 kHz. From the simulations, the final energy of the
antiprotons post–perturbation is derived from the final phase space distributions / single
particle states, while experimentally, the final energy is measured by a temperature analysis
ejection. The final energies obtained from the models and the experiment are compared in
Fig. 7.5. Simulations with a lower initial antiproton temperature of 30 K are included to
demonstrate temperature effects. The centres of charge of the bunch predicted by the mod-
els agree well with experimental measurements, but the water bag – Vlasov model predicts
a broader energy distribution than observed in experiment when using a 250 K antiproton
bunch.

Note that the experimental data in Fig. 7.5 have been fitted to correct for experimental
systematics:

1. There is a time synchronization mismatch between the voltage controller for the elec-
trodes and the silicon vertex detector, expected to be within 0.1 ms, introducing a
possible offset between the escape time reported by the detector and the actual escape
time with respect to the voltage changes being made on the electrodes during a dump.
This is accounted for by a time shift of the detector signal such that the detector count
from the 0 V drive amplitude experiment in Fig. 7.5 b corresponds to an average energy
in well of 0 eV. This time offset is then fixed for all other experimental measurements
of energy distributions.
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2. The experimental drive amplitude quoted hitherto is the amplitude on the electrode,
which is 0.54 times the amplitude at the waveform generator, due to the wiring
impedance and high–pass filter between the generator and the electrodes (see Fig. 2.5).
This conversion factor is derived by fitting the horizontal position of the jump in
Fig. 7.5 a between the experiment and the simulation. This factor is then used in the
analysis of all other experimental runs.
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Figure 7.5: The final energy of an antiproton bunch after various autoresonant perturbations,
as measured in the experiment and predicted by the single particle and the water bag — Vlasov
models. a) The final antiproton energy after autoresonant perturbations of various amplitudes and
a fixed stopping frequency of 360 kHz. The dotted lines indicate the lower 5% and upper 95%
boundaries of the antiproton energy distribution. b) The energy distribution function for each of
the data points in a. c) The final antiproton energy after autoresonant perturbations of various
stopping frequencies and a fixed amplitude of 0.15 V. d) The energy distribution function for each
of the data points in c. The experimental data have been altered to correct for experimental
systematics — see main text.
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Injection ratio versus stopping frequency

Figure 2.6 shows the experimental setup injecting antiprotons into a positron plasma. A
250 K, 16,000 antiproton bunch is placed in a nested well next to a 40 K, 3 × 106 positron
plasma, and subjected to an autoresonant perturbation. The antiproton well has a linear
frequency of 297.4 kHz, and the perturbation starts at 325 kHz with a 10–period ramp–
up to an amplitude of 0.08 V. It is then chirped down to 250 kHz at −120 MHz/s, and
ends with a 10–period ramp–down. A fraction of the antiprotons gain enough energy to
enter the positron plasma. Due to Debye shielding, the total potential within the positron
plasma is a constant (in z), and therefore each of the injected antiprotons moves across the
positron plasma at a constant speed. The simulated distribution of the axial speed of the
injected antiprotons as they travel through the positron plasma after the perturbation is
plotted in Fig. 7.6 a, together with several snapshots of the antiproton distribution during
the autoresonant perturbation in Fig. 7.6 b.

In the experiment, the speed distribution of the injected antiprotons cannot be measured
directly. Instead they collide and recombine with positrons. Most of the resultant antihydro-
gen are not confined by the magnetic minimum trap. They drift and eventually annihilate
on contact with the electrode wall. These annihilations are recorded by the silicon vertex
detector, and the total number of annihilations within a 1 s window after the perturbation
is plotted in black in Fig. 7.7 c, against the stopping frequencies of the perturbation. This
number of annihilation indicates the fraction of antiprotons that enters the positron plasma
and successfully forms antihydrogen. Figures 7.7 a and b show the simulated fraction of
antiprotons which successfully injects and has a kinetic energy or radius below various val-
ues. For instance, the “KE < 100 K” curve in Fig. 7.7 a plots the fraction of antiproton,
out of the original 16,000, that successfully enters the positron plasma and travels across it
with a kinetic energy below 100 K as a function of the perturbation’s stopping frequency.
Qualitatively, the simulation shows that a chirp stopping below ∼ 290 kHz is necessary for
injection. The injected fraction increases as increasingly long chirps are used, but the frac-
tion injected at lower energies (< 100 K) slowly saturates when the stopping frequency is
below ∼ 240 kHz. The simulation also shows that antiprotons at smaller radii are injected
earlier, while those at the outer radii require a longer chirp to reach injection. It is also
observed that stopping frequencies much lower than 200 kHz (not shown in Fig. 7.6) cause
the speed distribution of the injected antiprotons to broaden, which is expected since the
perturbation, having no frequency relation to the bounce orbits of the injected population,
only acts as a heating signal. The number of antihydrogen formed, as measured in the exper-
iment, increases with the length of the perturbation, until saturating at a stopping frequency
of ∼ 250 kHz (see Fig. 7.6 c). This roughly agrees with the simulation.
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Figure 7.6: a) The simulated distribution in speed of injected antiprotons as they travel across
the positron plasma, conditioned on the radius. The blue dotted curve shows a reference thermal
distribution of antiprotons at 800 K, that has the same area under the curve as the all–radii curve.
The total number of injected antiproton is 7,400 (out of the 16,000 initial antiprotons). b) Snapshots
of the simulated antiproton distributions at various t during the perturbation, which starts at t = 0.
The contours are lines of constant total energy, and increase by 0.25 eV (2900 K) per contour. At
each time the (z, vz) phase space at r = 0 is displayed, together with the (x, z) charge density.

7.4 Injection limits

The main adjustable parameters of an antihydrogen production and trapping run in ALPHA
are the numbers, radial sizes and temperatures of the positron plasma and antiproton bunch,
as well as the ending frequency, chirp rate and amplitude of the autoresonant perturbation.
To maximize the production rate of trappable antihydrogen, it is instructive to know which
of the parameters the rate is most sensitive to, and what limit these parameters pose to the
rate. Within the confines of the water bag – Vlasov model, one can predict the kinetic energy
distribution of injected antiprotons as a function of the initial antiproton parameters; the
results are relatively insensitive to positron parameters since the positron plasma is assumed
to evolve according to the quasi–static water bag model. Their impact is most keenly seen
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Figure 7.7: The performance of autoresonant injection against the sweep’s stopping frequency,
compared between simulation and experiment. a) The fraction of antiprotons injected into the
positron plasma, conditioned on their kinetic energy in the positron plasma. b) Same as a, except
the curves are conditioned on the radius. c) The number of antiprotons from experiment that
successfully inject into the positron plasma and form antihydrogen, divided by the estimated initial
number of antiprotons.

after the injection, in the second phase of the overall simulation. Still, some qualities of
the injected antiprotons can be safely assumed to lead to better antihydrogen trapping.
Here we assume the trappable antihydrogen come mainly from the low–energy portion of
the injected antiprotons (defined as < 500 K; other definitions yield similar results), since
the portion with significantly higher energy would have a small collision and recombination
cross–section with positron. At best, these high–energy antiprotons have no impact on the
number of trappable antihydrogen produced, and at worst they lead to the heating of the
positron plasma and delay the recombination of the low–energy antiprotons, during which
time they can heat up by equilibrating with positrons.

This motivates us to study the impact these antiproton and perturbation parameters have
on the fraction of antiproton injected at below 500 K, which is shown in Fig. 7.8. Different
antiproton bunches with various initial numbers and temperatures are fed into the model
in the configuration shown in Fig. 2.6. At each initial number and temperature, various
perturbations are applied. The optimal stopping frequency and strength, defined as that
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which yields the highest fraction of antiprotons injected with energy < 500 K, is identified.
The corresponding fraction of antiprotons injected below various energies is then plotted as
a function of the initial antiproton number and temperature. (The starting frequency and
chirp rate are kept constant at 325 kHz and -120 MHz/s respectively to keep the parameter
space manageable.)
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Figure 7.8: The performance of autoresonance injection against antiproton number and tempera-
ture, according to simulation. Each plot shows the fraction of antiprotons injected by a perturbation
into the positron plasma with energy below the indicated value, for various initial antiproton num-
ber and temperature. Each antiproton bunch with a specific initial number and temperature is
injected using the optimal perturbation that leads to the highest injection ratio at KE < 500 K —
i.e., these contours reflect the best–case capability of a conventional autoresonant perturbation.

The self–field of the antiprotons tends to equalize the electric field felt by different parts
of the bunch during the perturbation. The fraction of antiprotons that can be excited by
the autoresonant perturbation is therefore a function of the density of the bunch [54], which
is, in turn, determined by the initial number and temperature. This explains the drop in
the injected fraction on the upper left corner in the plots in Fig. 7.8: the thermal spreads
of these bunches are too great compared with their self–field to remain coherent during the
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perturbation, and some parts of these bunches fail to be excited.

The low–energy injected fraction decreases as the antiproton number increases. This is
caused by a mixing of the antiproton’s self–field into the energy of the injected antiprotons,
due to the electrostatic interaction between the main bulk of the positrons and antiprotons.
The overall injected fraction does not decrease since the antiprotons are injected into the
positron plasma at higher energies. This trend means the absolute number of antiprotons
injected at low energies increases sub–linearly with an increasing initial number of antipro-
tons.

That the low–energy injected fraction does not significantly improve once the initial
antiproton temperature reaches below ∼ 250 K indicates the energy spread of the injected
antiprotons is dominated by space charge effects rather than by their initial temperature,
once the latter is below ∼ 250 K. The autoresonant injection technique fails to make full use
of the low temperatures of the initial bunch.

7.5 Incremental injection

Various schemes to overcome the limitations of the autoresonance injection have been inves-
tigated using the water bag – Vlasov model, and one of these ideas, the so–called incremental
injection technique, offers some interesting injection characteristics. This type of scheme has
been studied in ALPHA before [72, 73], but under different plasma conditions and with a
somewhat different procedure. In this scheme, a antiproton bunch is positioned next to an
positron plasma in the configuration shown in Fig. 2.6. An autoresonant perturbation, with
an amplitude of 0.08V and starting at 325 kHz, is then applied on electrode E16 to excite the
axial oscillation of the antiproton bunch, but is stopped before the whole bunch is injected.
The voltage on E16 is subsequently decreased linearly to reduce the voltage separation be-
tween the positron and antiproton wells, until the rest of the antiproton bunch is entirely
injected into the positron plasma. (The rate of the linear ramp is assumed to be slow enough
that the positron plasma can redistribute radially through diffusion in case of evaporative
escape.) The main tunable parameters in this scheme are the stopping frequency of the
perturbation and the stopping voltage of the linear ramp. For a fixed stopping frequency,
the optimal ramp depth — that which yields the highest injection ratio at KE < 10 K, a
choice that will be justified later — is determined by running multiple simulations. This
optimal ramp depth depends on the stopping frequency, but typically lies within -6 to -7 V.
The resultant optimised injection statistics are shown in Fig. 7.9, for a stopping frequency
between 250 and 325 kHz (with the upper limit corresponding to a zero–length perturba-
tion). The sudden shift in injection behaviour at around 290 kHz is expected, since that is
where the perturbation passes the linear resonance of the antiproton well (297.4 kHz) and
starts to excite the antiproton bunch.

From Fig. 7.9 a, the total (unconditioned) injection fraction of antiproton is observed to
increase as a longer perturbation is used. Figure 7.9 b further shows that the increase in
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Figure 7.9: The performance of incremental injection against the sweep’s stopping frequency,
according to simulation. a) The fraction of antiprotons injected, out of an initial 16,000, conditioned
on their kinetic energy in the positron plasma. b) Same as a, except that the ratios are conditioned
on radius. c) Same as a, except that 160,000 antiprotons are used. (d) Same as c, except that the
ratios are conditioned on radius.

the injected fraction comes from improved injection fractions at the outer radii. This can be
explained as follows: when only a short chirp is used, the antiprotons reside, more or less,
at the bottom of the antiproton well. The antiproton well becomes shallow as the electrode
is ramped. However, this decreasing antiproton well depth is not constant across all radial
shells. This is not due to the fall–off of the vacuum field (the antiproton bunch only has
a radius of ∼ 0.8 mm, which is much smaller than the 22.3 mm radius of the electrode
wall), but rather to the fall–off of the positron self–field. This fall–off causes the outer radial
shells to have a higher antiproton well depth than the inner ones (see Fig. 7.10). When the
antiproton well depth at the centre reaches zero (or, more accurately, reaches the level of
the thermal spread of the antiprotons), the antiprotons on that shell start to inject, but the
outer shells are still confined. Continuing the ramp further will not help inject the outer
radii antiprotons. Instead, positrons start to evaporate since the left wall of the positrons
(being also the antiproton well) now has a hole at small r. This self–adjusting process of
the positrons causes the shape of the antiproton well to remain constant so long as there is
still a significant remnant positron population. The autoresonant perturbation pre-excites
the antiprotons at the outer radii, and helps them overcome the residual well by giving them
more energy beforehand, thereby allowing their injection.
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Figure 7.10: Four snapshots of the external potential seen by the antiprotons during incremental
injection. The numbers displayed on top of each plot are the voltages applied on E16, and the
number of remaining positrons (the rest being lost to evaporative escape). The curves in each plot
display the potential at different radii, as indicated.

However, Fig. 7.9 a shows that this increase in the total injection fraction comes mostly
from an increase in the fraction at high kinetic energy; the low energy injection fraction
actually decreases, indicating a strong broadening in the energy distribution of the injected
antiprotons due to the application of the autoresonant pre-excitation. This broadening
becomes more pronounced with more antiprotons (see Fig. 7.9 c). A purely linear ramp
without any pre–excitation (the rightmost limit in Fig. 7.9) is eventually going to produce
more trappable antihydrogen than a ramp with pre–excitation, as the initial antiproton
number increases. This is possible because the injected fraction at the outer radii increases
with antiproton number. The enhanced space charge of the antiproton bunch fills the residual
antiproton well at the outer radii, and causes the antiprotons on those radii to inject in higher
numbers in a pure linear ramp. Using antiproton space charge to overcome the residual well
rather than pre–excitation also prevents the broadening associated with it. Apart from these
two techniques, one can also conceive of a scheme using a antiproton bunch with smaller
radial size, so that the variation of the antiproton well depth among the radii of interest
is reduced. A positron plasma with a larger radial size can also reduce the variation of
the antiproton well depth for the radii with a significant antiproton population. Each of
these possibilities has its experimental difficulty. In an antihydrogen production run the
neutral trap is energised, the increased antiproton bunch size associated with higher particle
numbers might lead to octupole–induced heating or particle loss [74]. An antiproton bunch
with a smaller radius can be realised using a strong rotating wall compression, but there are
technical and theoretical limits. A larger positron plasma is easily prepared experimentally,
but the octupole–induced heating of the bunches is sensitive to their radial size. These
are some of the technical issues that must be resolved to achieve a higher antihydrogen
production rate.

Finally, Fig. 7.11 shows the performance of a pure linear ramp injection (without pre–
excitation) when applied to antiprotons of various initial numbers and temperatures. The
final ramp depth for each antiproton bunch is optimised to give the highest injection fraction
at KE < 10 K. As argued above, the low–energy injection ratio improves with higher initial
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antiproton number due to the space charge filling of the residual antiproton well. However,
the converse is also true: low–energy injection performance deteriorates for a lower number
of antiprotons. At below ∼ 20k antiprotons, the autoresonant injection technique offers a
better performance than the pure linear ramp injection. One can also see from Fig. 7.11 that
the energy distribution of the injected antiprotons is much “colder” than its autoresonance
counterpart: there is hardly any difference between the fractions at KE < 100 K and at
KE < 105 K. Having a cold distribution of injected antiprotons should significantly improve
the production rate of trappable antihydrogen, both in terms of more rapid recombination
and minimal heating on the positrons. This is the motivation for the initial choice of looking
at antiprotons injected at KE < 10 K: we have demonstrated that it is possible to have both
a higher total injected fraction for antiprotons, and a “colder” distribution of them.
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Figure 7.11: The performance of incremental injection against the number and temperature of the
antiprotons, according to simulation. Each plot shows the fraction of antiprotons injected into
the positron plasma with kinetic energy below the indicated value, for various initial antiproton
number and temperature. Each antiproton bunch with a specific initial number and temperature
is injected using the optimal ramp that leads to the highest injection ratio at KE < 10 K.

Comparing the quantitative advantage, when using an autoresonant perturbation to in-
ject a 250 K, 16k antiproton bunch into a positron plasma, ∼ 1.4k are injected at a KE < 10
K, with an overall energy distribution fitted to a Maxwellian of 800 K. When using a pure
linear ramp to inject the same bunch, ∼ 2.7k are injected at a KE < 10 K, with an overall
energy distribution fitted to 40 K. When using a pure linear ramp to inject a 250 K, 160k
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antiproton bunch, ∼ 40k are injected at a KE < 10 K, with an overall energy distribution
fitted to 60 K.
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Chapter 8

Conclusions

The ALPHA experiment has demonstrated the first trapping of antihydrogen atoms in 2010,
and the first measurement of the hyperfine splitting of the antihydrogen spectrum in 2012,
both major steps forward in the field of antihydrogen research. They provided the proof–of–
concept that the design of the ALPHA apparatus, the manipulation techniques, the diagnos-
tics and the detector system are suited to antihydrogen studies. We are, nonetheless, quite
far from the ultimate goal of precision antihydrogen measurements, limited by the number
and temperature of the trapped anti-atoms. If there exists any difference between the prop-
erties of hydrogen and antihydrogen, it is most likely present at a very small level. The
spectral lines of the hydrogen atom has been measured to the 10−14 level of precision, and
the measurement process requires access to numerous ultra-cold atoms. Replicating it for
antihydrogen will be a highly challenging prospect. Experimentally, progress is being made
with the commissioning of the ALPHA-2 apparatus, which enables more efficient catching
and utilisation of antiprotons. The additional laser access and new neutral trap magnets are
designed to allow more accurate laser and microwave spectral measurements. Beyond the
hardware, however, progress is also needed in terms of the plasma manipulation techniques
and the way they are developed, so that we can exploit the new apparatus as efficiently as
possible. These developments are currently hampered by a lack of information on the state
of plasmas, and the lack of tools to predict plasma behaviour. Currently, every time plasma
conditions changes due to fluctuations in the particle sources (the AD and the positron accu-
mulator) or improvement in the upstream processes in the apparatus, time–consuming and
sub-optimal empirical tuning of downstream manipulation techniques are required.

Several numerical solvers have been developed to model a range of common plasma
processes in the apparatus. These models lay the foundation for a more systematic analysis
of the plasma phenomena in the apparatus, and their parallelised computational design
allows some of them to have near–real–time usability in the experiment. The objective of
their development is to improve our understanding of the plasma conditions in the trap (via
enhanced diagnostic analysis), to predict the effects of manipulations on plasmas, and to
speed up the development process of sequences. They can also help discover new techniques
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which can qualitatively improve the synthesis process. The efficacy of these numerical tools
will be tested during the commissioning and development of the ALPHA-2 apparatus.

The first model developed is a water bag solver, applicable to equilibrium plasmas at the
zero–temperature limit. It iterates the boundary of a plasma to solve for a density distribu-
tion which yields the perfect Debye shielding expected of a zero–temperature plasma. This
code has a numerical kernel Poisson solver, which allows the potential to be calculated for
individual points, and maximises the scheme’s performance. Given that a significant portion
of the plasmas in the ALPHA experiment are at cyrogenic temperatures, this solver gives a
good approximation of their equilibrium density and potential inside the Penning–Malmberg
trap. A LabVIEW interface has been written for this solver which enables users to examine
the confinement and geometry of plasmas given the plasma radial profile and the voltages
of the electrodes. It provides an essential, and often used, functionality during sequence–
programming when shallow wells for plasmas are being designed, for instance during the
evaporative cooling of positrons.

The second model is a radially–coupled Vlasov–Poisson solver, applicable to dynamic
plasmas with negligible radial transport. The solver decomposes the plasma into radially
concentric shells, and evolves the z–vz distributions in each shell using the Vlasov equation
according to the electric field created by the plasma and the electrodes. The advection
operators in the Vlasov equation are discretised using the flux balance method, in conjunction
with the piecewise parabolic reconstruction method. The electric field is solved for using
the numerical kernel method developed for the previous model. For optimal performance,
a two–level parallelisation scheme using openMP and MPI is employed to give the code
access to multiple cores in multiple server nodes. The simulation domain is dynamically
adjusted in response to the phase space distribution to maximise computational efficiency.
This model is suitable for simulating dynamic plasma processes with time scales near the
axial bounce frequency, which includes a wide range of plasma manipulation techniques in
ALPHA: species separation, mixing, temperature diagnostic, evaporative cooling, etc. In
addition, the numerical annealing function embedded into the Vlasov–Poisson model allows
it to solve for equilibrium plasma density at arbitrary temperatures. This generalises the
zero–temperature water bag solver, and provides more accurate solutions to ill–confined or
higher temperature plasmas. A LabVIEW interface has been developed for convenient access
to this functionality during experimental operation.

The third model is an implicit, energy-conserving, azimuthally averaged Fokker–Planck
solver for weakly magnetised collisions. It simulates the effect self–collisions have on the
parallel and perpendicular velocity distributions of a plasma in which the magnetic effect
during binary collisions is negligible. For the plasma parameters in the ALPHA apparatus,
this corresponds to the self–collisions of antiprotons. The collision coefficients are computed
by azimuthally averaging the derivatives of the Rosenbluth potentials. The solver is paral-
lelised using openMP to address multiple cores on a single computer. This model is primarily
devised to study the effects of antiproton–antiproton collision during the mixing and antihy-
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drogen formation process. It is anticipated that the improved antiproton numbers available
in ALPHA-2 may cause self–collisions to have a significant influence on the slow–travelling
antiprotons in the mixture, from which trappable antihydrogen atoms form.

The fourth model generalises the previous weakly magnetised collision model. It simulates
the effect of Fokker–Planck–type collisions between particles of different species, in magnetic
fields of arbitrary strength. It reuses the discretisation scheme of the Fokker–Planck equation
from the weakly magnetised model, but implements new collision coefficients appropriate
for general collisions in arbitrary magnetic fields. Since analytic solutions to these general
collisions are not known, the collision coefficients are calculated numerically using an adaptive
Monte Carlo averaging algorithm. The algorithm evolves many pairs of colliding particles
across all possible impact parameters and velocity phase angles. The sampling density in
the impact parameter and phase angles space is dynamically adjusted, such that areas of
higher bootstrapping error are sampled more densely. It then averages the change of the
colliding particles’ parallel and perpendicular velocities to yield the collision coefficients, as
functions of the colliding particles’ initial velocities. The collisions are simulated using an
adaptive–time–stepping Boris pusher, which is parallelised on a GPU using the NVIDIA
CUDA platform for maximum performance. This model is devised to simulate the effects
of collisions in the antiproton–positron mixture that are not weakly magnetised — namely,
those among positrons and between positrons and antiprotons. These collisions are expected
to have an important effect on the velocity distribution of the antiprotons, and thus the
antihydrogen atoms.

Two of these models are used in a detailed investigation of the antiproton–positron mixing
process. The Vlasov model is used to simulate the autoresonant excitation of a standalone
antiproton plasma, and the post–excitation energy distribution of the particles are compared
to the results from existing solvers, analytic models and experiment measurements, yield-
ing good agreement. The waterbag and the Vlasov–Poisson models are then combined to
simulate the autoresonant axial excitation of the antiprotons adjacent to a positron plasma,
a technique used to mix the two species and create antihydrogen. The excitation process
directly influences the number of antihydrogen atoms trapped, and maximising the trap-
ping efficiency requires minimising the axial energy of the antiprotons which cross into the
positron plasma, among other dependencies that are not yet fully understood. The combined
model is used to optimise the autoresonant perturbation for various plasma conditions, such
that the antiprotons are injected at minimal energy. It is shown that the autoresonant tech-
nique becomes increasingly ineffective as more antiprotons are used in the mixing process.
The model is then used to investigate novel mixing techniques, showing that in the high–
antiproton intensity scenario, a slow and smooth merging of the antiproton and the positron
well injects more antiprotons at low energies than the autoresonant excitation technique
does.

Further work should extend the result of the antiproton excitation simulation using the
collisional models to study the collisional and recombination interaction between the two
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species. The ultimate goal is to develop a combination of models which provides a full pre-
diction of the number of trapped antihydrogen given an excitation technique and a set of
plasma conditions. Achieving this will serve two purposes: for a given plasma condition
created in the experiment, the simulation can study and optimise excitation techniques; and
for a given excitation technique that is known to be feasible experimentally, the simulation
can predict the optimal plasma conditions for it. The latter informs the development of the
plasma preparation sequence before mixing, which is important as many plasma manipula-
tions trade off one desirable plasma characteristic for another. For instance, the rotating wall
technique increases density while increasing the plasma temperature, and the evaporative
cooling technique yields plasma of lower temperature, but with few numbers.

Future work should also include applying the models to simulating other processes, and
improving the usability of these codes by developing graphical interfaces. Candidates pro-
cesses suited to these models include the temperature diagnostic, axial species separation
(by either electric pulse or resonant excitation), and sympathetic and evaporative cooling.
For the temperature diagnostic, the Vlasov model can be used to simulate the slow ejection
of particles and calculate the space charge effect on the inferred temperature. Detailed mea-
surement and simulation may allow a more accurate analysis of the experimental particle
escape timing, and yield a better estimate of the axial velocity distribution in the plasma.
For the species separation and sympathetic and evaporative cooling, the simulation allows
for numerical studies of different choices of particle numbers, timing and electrode voltages,
identifying those that lead to improved separation or cooling.

Other numerical tools that may extend our ability to simulate important plasma processes
in the ALPHA apparatus include three–dimensional particle–in–cell (PIC) codes and N–
body codes. Their ability to simulate non-axisymmetric plasmas and radial transport is
essential for processes like the rotating wall, diocotron instability and radial separation.
Particle codes are more suited to these processes since distribution function–based algorithms
(like the Vlasov equation) become computationally infeasible for higher–dimensional motion.
The effects of non-Fokker–Planck collisions in strong magnetic fields, where vz exchanging
collisions are not negligible, should also be investigated.
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