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Abstract Dynamic trafficking of G protein-coupled receptors (GPCRs) out of cilia is mediated by

the BBSome. In concert with its membrane recruitment factor, the small GTPase ARL6/BBS3, the

BBSome ferries GPCRs across the transition zone, a diffusion barrier at the base of cilia. Here, we

present the near-atomic structures of the BBSome by itself and in complex with ARL6GTP, and we

describe the changes in BBSome conformation induced by ARL6GTP binding. Modeling the

interactions of the BBSome with membranes and the GPCR Smoothened (SMO) reveals that SMO,

and likely also other GPCR cargoes, must release their amphipathic helix 8 from the membrane to

be recognized by the BBSome.

Introduction
Cilia dynamically concentrate signaling receptors to sense and transduce signals as varied as light,

odorant molecules, Hedgehog morphogens and ligands of G protein-coupled receptors (GPCRs)

(Anvarian et al., 2019; Bangs and Anderson, 2017; Nachury and Mick, 2019). Highlighting the

functional importance of dynamic ciliary trafficking, the appropriate transduction of Hedgehog signal

relies on the disappearance of the GPCR GPR161 and the Hedgehog receptor Patched 1 from cilia

and the accumulation of the GPCR Smoothened (SMO) within cilia (Bangs and Anderson, 2017).

Regulated exit from cilia represents a general mechanism to redistribute signaling molecules on

demand (Nachury and Mick, 2019). Patched 1, GPR161, SMO and other ciliary membrane proteins

are all ferried out of cilia in a regulated manner by an evolutionarily conserved complex of eight Bar-

det-Biedl Syndrome (BBS) proteins, the BBSome (Nachury, 2018; Wingfield et al., 2018). While

GPR161 and other ciliary GPCRs such as the Somatostatin receptor 3 (SSTR3) are removed from cilia

by the BBSome only when they become activated, SMO undergoes constitutive BBSome-dependent

exit from cilia in unstimulated cells to keep its ciliary levels low. Accumulation of SMO in cilia is then,

at least in part, achieved by suppression of its exit (Milenkovic et al., 2015; Nachury and Mick,

2019; Ye et al., 2018).

Membrane proteins travel into, out of, and within cilia without utilizing vesicular intermediates

and remain within the plane of the ciliary membrane (Breslow et al., 2013; Chadha et al., 2019;

Milenkovic et al., 2009; Ye et al., 2018). Thus, membrane proteins that enter and exit cilia must

cross the transition zone (TZ), a diffusion barrier at the base of cilia, by lateral transport (Garcia-

Gonzalo and Reiter, 2017). Recently, we found that regulated TZ crossing of GPR161 is enabled by

the BBSome in concert with the ARF-like GTPase ARL6/BBS3 (Ye et al., 2018), but the mechanism
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of facilitated TZ crossing by the BBSome remains a fundamental unanswered question (Nachury and

Mick, 2019).

Our recent cryo-electron microscopy (cryo-EM) structure of the BBSome revealed that the

BBSome exists mostly in an auto-inhibited, closed conformation in solution and undergoes a confor-

mational change as it is recruited to membranes by ARL6GTP (Chou et al., 2019). Given that

ARL6GTP triggers polymerization of a membrane-apposed BBSome/ARL6 coat (Jin et al., 2010) and

enables BBSome-mediated TZ crossing (Ye et al., 2018), the ARL6GTP-bound BBSome conformation

represents the active form of the complex. Here we determine high-resolution structures of the

BBSome alone and bound to ARL6GTP, and we map the BBSome–SMO interaction to model how the

membrane-associated BBSome–ARL6GTP complex recognizes its cargoes. Surprisingly, our studies

reveal that SMO must eject its amphipathic helix 8 (SMOH8) from the inner leaflet of the membrane

in order to be recognized by the BBSome. Sequence analysis suggests that this may be a general

principle for the interaction of the BBSome with its cargo GPCRs.

Results

High-resolution structure and model of the BBSome
Following on our previous strategy (Chou et al., 2019), we purified the BBSome to near-homogene-

ity from retinal extract and analyzed its structure by single-particle cryo-EM. The advent of higher

throughput direct detector cameras and faster automated data-collection procedures combined

with improvements in data processing with new tools implemented in RELION-3 (Zivanov et al.,

2018) led to a BBSome map at an overall resolution of 3.4 Å from an initial dataset of 770,345 par-

ticles (Figure 1—figure supplement 1, Figure 1—figure supplement 2A).

The BBSome is composed of 29 distinct domains characteristic of sorting complexes (Figure 1A).

a-solenoids, b-propellers, pleckstrin homology (PH) and appendage domains are all present in multi-

ple copies and our previous map made it possible to build a Ca backbone model that encompassed

25 out of 29 domains (PDB-Dev accession PDBDEV_00000018; Chou et al., 2019). For building the

current model, the previous Ca model was docked into the map, and the higher-resolution map

enabled us to confidently assign side chains for most regions (Figure 1B). The new map allowed us

to build the coiled-coil domains of BBS1 and BBS9, for which densities were not well-defined in the

previous map. Altogether, 27 out of 29 domains distributed across the 8 BBSome subunits could be

modeled. Despite the increased resolution of the current density map, the gamma-adaptin ear

(GAE) domains of BBS2 and BBS7 could not be modeled, and side chains could not be assigned for

BBS2bprop, BBS2cc, BBS7bprop and BBS7cc.

High-resolution structure of the BBSome bound to ARL6GTP

Consistent with our previous observations based on a 4.9 Å resolution map of the BBSome

(Chou et al., 2019), the new BBSome structure cannot accommodate binding to ARL6GTP. Fitting a

homology model of the bovine BBS1bprop–ARL6GTP complex (based on the X-ray structure of the

Chlamydomonas complex; Mourão et al., 2014) in either BBSome structure caused a steric clash

between ARL6GTP and a region encompassing BBS2bprop and BBS7cc. These data support a model in

which the BBSome exists in an autoinhibited form in solution and undergoes a conformational open-

ing upon recruitment to membranes by ARL6GTP, similar to other sorting complexes such as COPI,

AP-1 and AP-2 (Cherfils, 2014; Faini et al., 2013).

The membrane-associated form of the ARL6GTP-bound BBSome represents its active conforma-

tion, because ARL6GTP enables TZ crossing (Ye et al., 2018). To determine the nature and conse-

quence of the conformational change in the BBSome that takes place upon ARL6GTP binding, we set

out to determine the structure of the BBSome–ARL6GTP complex.

Mixing recombinant ARL6GTP together with the purified BBSome allowed for complex formation

in solution. The BBSome–ARL6GTP complex was analyzed by cryo-EM (Figure 2—figure supplement

1), yielding a density map at an overall resolution of 4.0 Å (Figure 1—figure supplement 2A).

Focused refinement of the top and lower lobes of the complex resulted in improved maps of 3.8 Å

and 4.2 Å resolution, which facilitated model building (Figure 2—figure supplement 1). Even

though the apparent overall resolution was nominally not as good as that of the BBSome alone, sev-

eral domains were better resolved in the density map of the BBSome–ARL6GTP complex (Figure 1—
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figure supplement 2B). In particular, the quality of the map was significantly increased for the top

b-propeller (Figure 1—figure supplement 2C). The improved map quality allowed us to correctly

place the b-propellers (bprop) of BBS2 and BBS7, which had been swapped in our previous structural

description (Chou et al., 2019) due to their extreme similarity and the limited resolution of the previ-

ous map. This new assignment is further supported by a recently published structure of the BBSome

(Singh et al., 2020).

In the BBSome–ARL6 structure, ARL6GTP is nestled in a wedge opening between BBS1bprop and

BBS7bprop. A ~ 20˚ rotation of BBS1bprop from the BBSome alone conformation allows ARL6GTP to

move away from the steric clash with BBS2bprop. This movement of BBS1bprop is accompanied by a

twisting of the first two TPR repeats from the BBS4 a-solenoid (Video 1), in line with the close asso-

ciation between the N terminus of BBS4 and BBS1bprop seen in the BBSome alone structure and con-

firmed by cross-link mass spectrometry (Chou et al., 2019). Besides the movements of BBS1bprop

and BBS4TPR1-2, ARL6GTP binding caused only subtle changes in the structure of the BBSome. The

movements of BBS4 and BBS1 are in agreement with two recently published structures of the

ARL6GTP-bound BBSome (Klink et al., 2020; Singh et al., 2020).

Figure 1. Overall structure of the BBSome. (A) Diagrams showing the domain architecture of the eight BBSome subunits. bprop, b-propeller; cc, coiled

coil; GAE, g-adaptin ear; pf, platform; ins, insert; hp, hairpin; CtH, C-terminal helix bundle; TPR, tetratricopeptide repeat; PH, pleckstrin homology. (B)

Two views of the cryo-EM map (transparent surface) and the near-atomic model of the BBSome complex shown in ribbon representation. Individual

domains are labeled with the numbers identifying the subunit and the superscripts denoting the specific domain.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cryo-EM analysis of the BBSome alone.

Figure supplement 2. Quality assessment of the BBSome density maps.
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We note that the conformational opening of the BBSome is likely spontaneous as a minor 3D

class corresponding to the open form could be detected in our previous dataset of the BBSome

alone. As the 3D class of the open conformation contained only a small percentage of the particles

in the dataset, the equilibrium between closed and open form in solution is strongly shifted towards

the closed form. Binding to ARL6GTP would thus act as a thermodynamic sink that locks the BBSome

into the open conformation.

Small GTPases of the ARF/ARL family undergo conformational changes in three regions upon

nucleotide exchange from GDP to GTP: the Switch 1 and 2 regions and the Interswitch toggle

(Sztul et al., 2019). As previously found in the crystal structure of the BBS1bprop–ARL6GTP complex

(Mourão et al., 2014), the BBS1bprop makes contacts with the Switch 2 region and with helix a3 of

ARL6GTP while the Switch 1 region of ARL6 is readily available for interacting with other, yet uniden-

tified, complexes (Figure 2B). Interestingly, the ‘backside’ of ARL6GTP (i.e., the surface on the oppo-

site side of the Switch regions) interacts with a loop that connects BBS7bprop and BBS7cc. Given the

absence of conformational changes in the backside of ARL6 upon nucleotide exchange, ARL6 bind-

ing to the BBS7bprop-BBS7cc loop will not be gated by the nucleotide state, similar to the proposed

binding of ARF1 to the g subunit of the clathrin adaptor AP-1 (Ren et al., 2013).

In addition, the physical interaction between ARL6GTP and the upper lobe removes the upper

lobe flexibility previously observed in the BBSome alone preparation, resulting in a more stable

BBSome conformation (Figure 1—figure supplement 2C).

A conceptual model for BBSome binding to cargoes and membranes
based on mapping of the SMO–BBSome interaction and the cryo-EM
structure
To gain insights into how the BBSome ferries its cargoes out of cilia, we sought to model the binding

of the BBSome to membranes and cargoes. We started by mapping the interaction of the BBSome

with its well-characterized cargo SMO. The BBSome directly recognizes the cytoplasmic tail of SMO

that emerges after the seven-transmembrane helix bundle (SMOCtail, aa 543–793; Klink et al., 2017;

Seo et al., 2011) and is required for the constitutive removal of SMO from cilia (Eguether et al.,

2014; Goetz et al., 2017; Zhang et al., 2011), p. 3). Using in vitro-translated (IVT) BBSome subunits,

we found that BBS7 was the only subunit unambiguously captured by SMOCtail (Figure 3A). BBS7

was also the sole subunit to recognize SSTR3i3 (Figure 3—figure supplement 1A). Truncations of

SMOCtail revealed that the first 19 amino acids of SMOCtail are necessary and sufficient for binding to

BBS7 (Figure 3B). The specificity of BBS7 binding to SMO was retained when BBSome subunits

were assayed against the first 19 amino acids of SMOCtail (Figure 3—figure supplement 1B). Sys-

tematic yeast two-hybrid (YTH) testing using a collection of well-validated constructs

(Woodsmith et al., 2017) identified a direct interaction between SMOCtail and a BBS7 fragment

C-terminal to the b-propeller (BBS7[326-672]; BBS7C) (Figure 3C). Again, deletion of the first 10

amino acids from SMOCtail abolished the YTH interaction with BBS7C (Figure 3D). In close agree-

ment with our findings, BBS7 is one of only two BBSome subunits associating with SMOCtail in co-IP

studies and deletion of the first 10 amino acids of SMOCtail abolishes the interaction with BBS7

(Seo et al., 2011). The congruence of co-IP, YTH and GST/IVT-capture assays strongly supports the

conclusion that the first 10 amino acids from SMOCtail and BBS7 are the major determinants of the

SMO–BBSome interaction.

The location of the BBSome-binding determinant on SMO is surprising because the crystal struc-

tures of SMO have revealed that the first 10 amino acids of SMOCtail form a membrane-parallel

amphipathic helix termed helix 8 (H8) (Byrne et al., 2016; Deshpande et al., 2019; Huang et al.,

2018; Qi et al., 2019; Wang et al., 2014; Wang et al., 2013; Weierstall et al., 2014; Zhang et al.,

2017). We thought to determine how the BBSome recognizes SMOH8 by mapping the residues of

SMOH8 required for association with BBS7. A prior study found that the BBSome recognizes motifs

consisting of an arginine preceded by an aromatic residue (Klink et al., 2017). One motif in SMOH8

is a perfect match (549WR550) and another is a looser candidate (553WCR555). Mutation of both

Trp549 and Trp553 from SMOH8 completely abolished binding to BBS7, with Trp549 being the

major determinant (Figure 4A). Similarly, mutation of Arg550 greatly diminished binding to BBS7.

We conclude that each residue within the 549WR550 motif contributes to BBSome binding. The

direct binding of BBS7 to Trp549 of SMO was unexpected, because all crystal structures of SMO

find these residues embedded within the hydrophobic core of the lipid bilayer (Figure 4B,
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Figure 2. Overall structure of the BBSome–ARL6GTP complex. (A) Two views of the cryo-EM map (transparent surface) and the near-atomic model of

the BBSome–ARL6GTP complex shown in ribbon representation. BBS2bprop and BBS7bprop were swapped in our previously published structure, as were

BBS2cc and BBS7cc. BBS1bprop, the domain that contacts ARL6GTP, is also labeled. (B) Overall view (left panel) of the BBSome–ARL6GTP complex. Right

panel: close-up view focusing on the interaction of the backside of ARL6GTP with the loop connecting BBS7cc and BBS7bprop, and with BBS1bprop.

Figure 2 continued on next page
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Figure 3—figure supplement 1D). It follows that SMOH8 must be extracted from the membrane for

the BBSome to recognize SMO.

Amphipathic helices generally fold upon insertion into the membrane and remain as random coil

in solution (Drin and Antonny, 2010; Seelig, 2004). Helix 8 is a near-universal feature of GPCRs

(Piscitelli et al., 2015) and a peptide corresponding to helix 8 of rhodopsin adopts a helical confor-

mation when bound to membranes but is a random coil in solution (Krishna et al., 2002). Such

membrane requirements for folding of helix 8 are likely generalizable to other GPCRs (Sato et al.,

2016). We therefore propose that SMOH8 exists in an equilibrium between a folded membrane-

embedded and an unfolded state, and that it is the out-of-the-membrane, unfolded state that binds

to the BBSome.

ARL6-GTP binding recruits the BBSome to the membrane, and our structure of the BBSome–

ARL6 complex (Figure 2) together with the binding assays (Figure 3) leads to a conceptual model

for how the BBSome associates with the membrane to recruit SMO. Further mapping of the SMOH8–

BBS7 interaction by GST/IVT-capture assays indicated that BBS7bprop was necessary and sufficient

for the interaction with SMOH8 (Figure 5A). In YTH, deletion of BBS7cc specifically abolished the

SMOCtail–BBS7C interaction (Figure 5B). Thus, while YTH and GST/IVT-capture assays identified dif-

ferent regions of BBS7 recognizing SMOCtail, the regions identified by YTH (BBS7cc) and GST/IVT

capture (BBS7bprop) are adjacent to one another in the BBSome structure. To unify these findings, we

propose that an extended SMOH8 is recognized by a surface encompassing BBS7cc and BBS7bprop.

We conceptualized BBSome binding to membrane and SMO based on our binding studies. Con-

sidering that Trp549 of SMO is contacted by

BBS7bprop and that the first amino acid of SMO

after the 7th transmembrane helix is Lys543,

BBS7bprop must be within 6 amino acids or ~21 Å

of the membrane. Similarly, BBS7cc must be

located within 10 amino acids of the membrane.

We note that if SMOH8 were to remain helical

once extracted from the membrane, BBS7bprop

would need to be within 9 Å of the membrane.

Because no BBSome–ARL6 orientation can be

achieved that brings BBS7bprop within less than

15 Å of the membrane, we conclude that SMOH8

must be unfolded to be recognized by the

BBSome. Secondly, ARL6GTP anchors the

BBSome to the membrane. Because ARF family

GTPases bind lipid bilayers through their amphi-

pathic N-terminal helix inserted in a membrane-

parallel orientation within the lipid-headgroup

layer, the starting point of the core GTPase

domain of ARL6 at Ser15 informs the anchoring

of the BBSome–ARL6GTP complex on mem-

branes. In the resulting conceptual model of the

membrane-associated BBSome–ARL6GTP com-

plex bound to SMO (Figure 5C), the orientation

with respect to the membrane of ARL6GTP in

Video 1. Morph of the BBSome structure from the

unbound to the ARL6GTP -bound conformation and

back to unbound conformation. BBS1bprop is blue,

BBS4 is yellow and ARL6GTP is magenta.

https://elifesciences.org/articles/55954#video1

Figure 2 continued

Bottom panel: The Switch 1 and Switch 2 regions change conformation between ARL6GDP for ARL6GTP and these regions are colored orange (ARL6GTP)

or red (ARL6GDP). ARL6GTP contacts the BBS1 b-propeller with its Switch 2 region. In contrast, ARL6 contacts BBS7 using a surface that is largely

unaffected by nucleotide binding. A homology model of bovine GDP-bound ARL6GTP (based on the crystal structure of the Chlamydomonas protein;

PDB ID: 4V0K) was aligned to the model of the GTP-bound ARL6 in our BBSome–ARL6GTP complex (ARL6GDP in light blue and ARL6GTP in lime green).

GTP is shown in stick representation.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Cryo-EM analysis of the BBSome–ARL6GTP complex.
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complex with the BBSome is similar to that of other Arf-like GTPases in complex with coat adaptor

complexes (Figure 5—figure supplement 1B; Cherfils, 2014). The BBSome–ARL6GTP complex dis-

plays a convex membrane-facing surface, defined by the N terminus of ARL6GTP and parts of BBS2pf,

BBS7bprop and BBS9bprop, that espouses the contour of the ciliary membrane modeled as a 250 nm

cylinder (Figure 5C). A convex membrane-binding surface in the GolginGRIP–ARL1GTP or MKLP1–

ARF6GTP complexes similarly allows these complexes to associate with concave surfaces

(Makyio et al., 2012; Panic et al., 2003). Importantly, a hydrophobic cluster traced through the
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Figure 3. The BBSome recognizes SMO via membrane-embedded residues in SMO helix 8. (A–B) GST-capture assays were conducted with in vitro

translated BBSome subunits tagged with a 6xMyc epitope. Bound material was released by specific cleavage between GST and the fused peptide, and

released proteins were detected using a Western blot and anti-Myc antibody (a-Myc WB). The proportions of BBSome subunits recovered in the eluate

are plotted; grey circles are individual data points and blue lines are mean values. Even loading of the glutathione beads is demonstrated by staining

for the remaining GST-tagged proteins after cleavage elution. (A) Capture of individual BBSome subunits with GST-SMOCtail (aa 543–793) identifies

BBS7 as the SMO-binding subunit. (B) Capture assays with truncations of SMOCtail find that SMOH8 is necessary and sufficient for binding to BBS7. (C)

Yeast two-hybrid (YTH) assays with SMOCtail against an array of BBS protein fragments identify an interaction between a C-terminal fragment of BBS7

(BBS7C, residues 326–672) and SMOCtail. The composition of the BBS YTH array is shown in Supplementary file 2. (D) YTH assays find that SMOH8 is

required for the interaction with BBS7C. Growth controls on diploid-selective medium for panels (C–D) are shown in Figure 3—figure supplement 1C.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Capture assays, controls for YTH and SMOH8 conformation, and BBSome-binding motif in ciliary GPCRs.
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surfaces of BBS7cc and BBS7bprop reveal a strong candidate for sheltering the critical Trp residues in

SMOH8 (Figure 5D).

Molecular interactions of the BBSome with membranes and the IFT-B
complex
Liposome-recruitment assays with pure BBSome and ARL6GTP have shown that the BBSome recog-

nizes lipid headgroups, in particular the phosphoinositide PI(3,4)P2 (Jin et al., 2010). Pleckstrin

Homology (PH) domains are prototypical PIP-recognition modules and PIP-overlay assays suggested

that BBS5PH1 might directly recognize PIPs (Nachury et al., 2007), although it has been noted that

PIP-overlay assays can report spurious interactions (Yu et al., 2004). We sought to determine

whether the PH domains of BBS5 can bind to lipid headgroups in our model of the membrane- and

cargo-bound BBSome. The canonical PIP-binding motif Kxn[K/R]xR is present in the b1-b2 loop of

nearly all PH domains that bind PIPs (Isakoff et al., 1998; Vonkova et al., 2015). BBS5PH1 contains

a perfect match to the PIP-binding motif (K41xxxxxR47xR49) but no such motif is found in BBS5PH2

(Figure 6A). Consistent with the absence of a PIP-binding motif in BBS5PH2, lipid binding is blocked

by the edge of a blade from BBS9bprop (Figure 6B). When the canonical PIP-binding site was

mapped to the structure of BBS5PH1, the lipid-binding site was occluded by a loop connecting

BBS7bprop to BBS9cc (Figure 6B). Modeling 9 distinct PH domains co-crystallized with PIP head-

groups onto BBS5PH1 showed limited variance in the lipid orientation (Figure 6C). In summary, the

PH domains of BBS5 are unable to recognize PIP through their canonical sites.

Figure 4. The BBSome BBS7 interacts with conserved SMO helix 8. (A) Capture assays of BBS7 with mutants of SMOH8 (aa 543–559) identify Trp549

and Trp553 as the major BBS7-binding determinants of SMOH8. The sequences of the peptides fused to GST after the protease cleavage site are

indicated. (B) Overlay of helix 8 from three structures of human SMO (PDB IDs: 5L7D, 6O3C, 6D32), showing that the orientation of the two tryptophan

residues into the hydrophobic core of the membrane is conserved (see additional structures in Figure 3—figure supplement 1D). For consistency with

the GST fusions used in capture assays, residue numbering corresponds to mouse SMO. (C) Sequence analysis finds a BBSome-binding motif ([W/F/Y]

R) within helix 8 in 20 of the 26 GPCRs known to localize to cilia. Sequences are listed in Supplementary file 3.
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Figure 5. A model for binding of the BBSome to membranes and cargo. (A) Capture assays of BBS7 find that BBS7bprop engages SMOH8. The

boundaries of each truncation are bprop, aa 1–332; bprop-cc, aa 1–378; cc-end, aa 326–672; and GAE-end, aa 375–672. Results are presented as in

Figure 3. (B) YTH assays show that the deletion of BBS7cc impairs the interaction of BBS7C with SMOCtail (top row), but not with a C-terminal fragment

of BBS2 (BBS2C, residues 324–712) (middle rows). BBS1C serves as non-interacting control. Growth controls on diploid-selective medium are shown in

Figure 5—figure supplement 1A. (C) Diagram illustrating the proposed interaction of SMO with the membrane-bound BBSome–ARL6GTP complex.

For clarity, ARL6GTP and the BBS7 domains involved in SMO binding (BBS7bprop and BBS7cc) are shown in solid colors with the remaining subunits

shown with reduced opacity. Helix 8 (H8) of SMO is folded in the absence of partners, and is proposed to become a random coil in the SMO–BBSome

complex. (D) Hydrophobicity surface of the BBS7bprop and BBS7cc domains, showing a plausible binding cleft for unfolded SMOH8 (shown in red).

ARL6GTP is shown in ribbon representation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Controls for YTH and membrane orientation of ARF-like GTPases in complex with trafficking complexes.
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More recently, the crystal structure of the PH domain of ASAP1 has provided singular evidence

for an atypical PIP-binding (A) site (Jian et al., 2015). In BBS5PH1, lipid binding to the predicted A

site extensively clashes with BBS8TPR8-9 (Figure 6B). In BBS5PH2, lipid binding to the putative A site

would cause no steric clash (Figure 6B). However, considering that the distance between the mem-

brane and the A site of BBS5PH2 exceeds 1 nm and considering the limited evidence for the exis-

tence of A sites in PH domains, it is very unlikely that the A site of BBS5PH2 participates in lipid

binding of the BBSome.

Besides the PH domains of BBS5, we inspected the membrane-facing surface of the BBSome for

positively charged surfaces (Figure 6—figure supplement 1A). Interestingly, the surface of the

ARL6GTP-bound BBSome exhibited considerably fewer negative charges facing the membrane than

the surface of BBSome alone (compare Figure 6—figure supplement 1A and B). While some nega-

tively charged surfaces facing the membrane remained, the surfaces closest to the membrane are

generally positively charged in the BBSome–ARL6GTP complex structure.

We next considered binding of the BBSome to IFT. IFT38/CLUAP1 is the only IFT-B subunit to

consistently interact with the BBSome in systematic affinity purification studies (Boldt et al., 2016)

and a recent study found that the C terminus of IFT38 interacts with the BBSome in visual immuno-

precipitation (VIP) assays (Nozaki et al., 2019). Using GST-capture assays with pure BBSome, we

confirmed that IFT38 directly interacts with the BBSome and that the C-terminal domain of IFT38 is

necessary and sufficient for this interaction (Figure 7A). The C-terminal tail of IFT38 (aa 329–413) is

PH1
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Figure 6. Mapping the putative interactions of lipids onto the BBSome structure. (A) Sequence alignment of the b1-loop-b2 region in structurally

characterized PH domains. Conserved residues are colored: grey shading, glycine; red, positively charged residues; blue, hydrophobic residues. (B)

Electrostatic surface of the membrane-bound BBSome–ARL6GTP complex, and close-up views of the BBS5 pleckstrin homology (PH) domains. For the

PH1 domain, the canonical (C) and atypical (A) sites for lipid binding are occluded by BBS9 (dark green ribbon) and BBS8 (gold ribbon), respectively.

For the PH2 domain, the C site is blocked by BBS9, but the A site is accessible. The lipids at the A and C sites, shown as yellow and cyan sticks,

respectively, are diC4-PtdIns(4,5)P2 and are modeled based on the structural alignment of the BBS5 PH domains with the lipid-bound ASAP1 PH

domain (PDB ID: 5C79) (C) Structural overlay of the lipids bound to the PH domains listed in the above sequence alignment (PDB IDs: 1MAI, 1W1G,

5C79, 1H10, 2UVM, 2I5C, 1FAO, 1FHW, 1U27), showing the consistency of the lipid position for both PH domains. The lipids are shown as stick models

and are overlaid on the PH1 and PH2 domains of BBS5 (orange ribbon).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Proposed binding surfaces for membranes on the BBSome.
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Figure 7. Proposed binding surfaces for IFT38 and membranes on the BBSome. (A) IFT38Ctail is necessary and sufficient for BBSome binding. GST-

capture assays were conducted with BBSome purified from bovine retina and GST fusions immobilized on glutathione sepharose. Bound material was

eluted in SDS sample buffer. 2.5 input equivalents were loaded in the capture lanes. The BBSome was detected by immunoblotting and the GST

fusions by Ponceau S staining. (B) Left panel: Diagram of the domain organization of IFT38. The calponin homology (CH) domain interacts with IFT80,

Figure 7 continued on next page
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predicted to be unstructured and is extremely acidic with 30 Glu or Asp in its 85 amino acids, giving

it a theoretical pI of 4.03 (Figure 7B). As VIP assays identified BBS9 as the major binding subunit of

IFT38C, with contributions from BBS2 and BBS1, we reasoned that a BBS9 domain in close proximity

to BBS2 and BBS1 should be responsible for IFT38C binding. The C terminus of BBS9 (GAE, pf, hp,

CtH) sits atop BBS1GAE and connects to BBS2hp and an extended positive patch is found in BBS9GAE

(Figure 7C). This positive patch is therefore a strong candidate for the IFT38C interaction and its ori-

entation away from the membrane makes it well-positioned to interact with IFT trains associated

with the axoneme.

Discussion

Biochemical properties of the open conformation
With the mapping of the cargo-binding and the IFT38-binding surfaces on the BBSome, and the

near-atomic structures of the closed and open conformation, we sought to determine whether these

interactions are gated by the activating conformational change.

First, IFT38 interacts with the BBSome in systematic immuno-precipitation/mass spectrometry

studies, in VIP assays, and in GST capture of pure BBSome. The candidate interacting region is dia-

metrically opposite from the ARL6-binding region and does not undergo any measurable change

upon conformational opening.

Second, BBS7bprop and BBS7cc appear equally accessible in the closed and open conformation

(Figures 1A and 2A and Video 1), suggesting that the conformational change is unlikely to directly

increase the affinity of BBSome for its cargo SMO. This would contrasts with findings of increased

affinity of COPI, AP1 and AP2 for their cargoes upon conformational changes induced by membrane

recruitment (Dodonova et al., 2017; Jackson et al., 2010; Ren et al., 2013). It should nonetheless

be noted that the densities for BBS7bprop and BBS7cc are much better defined in the ARL6GTP-bound

structure (Figure 1—figure supplement 2C), thus suggesting that these regions become less mobile

upon ARL6GTP binding. This change in mobility of BBS7bprop and BBS7cc are consistent with the

direct binding of the backside of ARL6 to the BBS7bprop-BBS7cc connector loop. ARL6GTP binding to

the BBSome may thus lock the cargo-binding determinants of the BBSome in an orientation that is

optimal for cargo binding.

We conclude that the biochemical interaction that is modulated by ARL6GTP binding is likely dis-

tinct from cargo or IFT binding. More sensitive biochemical assays or the discovery of novel interac-

tions may be necessary to decipher the interactions that are modulated by conformational opening

of the BBSome.

Surprisingly, deletion of the BBSome-binding domain from IFT38 in cells did not grossly alter

BBSome distribution in cilia or affect the ability of the BBSome to constitutively remove SMO from

cilia, but it did interfere with GPR161 exit (Nozaki et al., 2019). These results suggest that IFT38

assists the BBSome with a subset of its duties rather than in cohesion between BBSome and IFT

trains. It thus remains conceivable that the interaction of the BBSome with IFT-B is gated by

ARL6GTP. In support of this hypothesis, we found that the recruitment of BBSome to large retro-

grade trains depends on ARL6 (Ye et al., 2018). More recently, (Xue et al., 2020) reported that

ARL6GTP captures the BBSome together with the IFT-B complex from Chlamydomonas extracts while

ARL6GDP only captures the BBSome. This finding suggests that, in Chlamydomonas, the interaction

between the backside of ARL6 and the BBSome is sufficiently strong to produce stable binding.

More importantly, these results indicate that a BBSome–IFT-B supercomplex may be specifically

assembled in the presence of ARL6GTP.

Figure 7 continued

the coiled-coil (CC) domain with IFT20, and the C-terminal tail (Ctail) with the BBSome. Right panel: Sequence of the region of IFT38 that interacts with

the BBSome. Negatively charged residues are bold and red. (C) Top panels: Electrostatic surface of the ARL6GTP -bound BBSome showing a patch of

positive charges on a region of BBS9 that interacts with BBS1 and BBS2 and is a candidate for binding IFT38C. Bottom panels: Corresponding

orientations in ribbon diagram representations.
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Interaction of the BBSome with smoothened and other ciliary GPCRs
All our binding studies consistently identify BBS7 as the BBSome subunit responsible for the binding

to SMO H8 (Figure 3). We note the caveat that we identified this interaction based on in vitro bind-

ing experiments using individual BBSome proteins and fragments. Future experiments will aim at val-

idating this interaction by binding studies using fully assembled wild-type and mutant BBSomes, but

such experiments will only become possible once the BBSome can be produced recombinantly. Our

identification of BBS7 as the predominant cargo-binding subunit is in apparent conflict with a previ-

ous study that found that a core BBSome missing BBS7 still binds cargo (Klink et al., 2017). How-

ever, earlier co-IP studies found that the SMO C-tail interacts both with BBS7 and BBS5 (Seo et al.,

2011). Notably, while our own GST/IVT-capture assays unambiguously showed that SMO C-tail inter-

acts with BBS7, we also observe a weak band for BBS5 in these capture assays (Figure 3A and Fig-

ure 3—figure supplement 1B). It is thus possible that the cargo binding observed for the core

BBSome missing BBS7 is based on interactions mediated by BBS5.

Our results show that the BBSome can only interact with SMO if its amphipathic H8 is extracted

from the membrane. We investigated whether this binding requirement is generalizable to other

GPCRs besides SMO. Searching for the BBSome-binding motif [W/F/Y][K/R] (Klink et al., 2017)

within H8 of the 26 known ciliary GPCRs revealed that 23 of them contained a BBSome-binding

motif in their helix 8 (Figure 4C). Considering that aromatic residues will point towards the core of

the membrane in these H8, the broad distribution of BBSome-binding motifs suggests that the

BBSome may bind to extracted H8 in nearly all ciliary GPCRs.

Because of its amphipathic nature, it will be a rare event for H8 to leave the membrane and be

available for capture by the BBSome. It is thus noteworthy that the region of the BBSome involved in

SMO C-tail binding is located directly adjacent to its ARL6-binding site (Figure 5C,D). The close

proximity of the ARL6-binding site that tethers the BBSome to the membrane will ensure that the

binding site for the SMO C-tail is also close to the membrane and will thus be in the best position to

bind H8 as soon as it leaves the membrane.

SMOH8 is predicted to be capped by a palmitoylated cysteine (Cys554), similar to helix 8 in class

A GPCRs, which are frequently palmitoylated near their C termini (Piscitelli et al., 2015). More gen-

erally, a striking feature common to nearly all BBSome cargoes is the presence of palmitoyl and/or

myristoyl anchors (Liu and Lechtreck, 2018). The BBSome must thus shelter a considerable hydro-

phobic surface when it extracts helix 8 of GPCRs out of the membrane. In the case of SMO, the

BBSome has to stabilize the two tryptophan residues in SMOH8 that normally reside in the hydropho-

bic core of the lipid bilayer (Figure 3 and Klink et al., 2017) as well as the palmitoylated Cys554,

which will find itself outside of the hydrophobic core of the membrane when SMOH8 is bound to the

BBSome. Therefore, the BBSome likely contains a cavity that shelters large hydrophobic residues

and lipid anchors to hold helix 8 away from the membrane. Our structures reveal that binding of

ARL6GTP results in the formation of a cleft in the BBSome that is close to BBS7bprop and BBS7cc

(Figure 5D), the region involved in SMOH8 binding, and is thus a potential location for the predicted

cavity needed to shelter the SMO C-tail.

Materials and methods

Plasmid DNA
The plasmids for SP6-driven in vitro transcription of individual BBSome subunits are based on pCS2

+Myc6-DEST vectors and were described in Jin et al., 2010. C-terminal truncations of BBS7 were

generated by introducing stop codons using site-directed mutagenesis in pCS2+Myc6-BBS7. N-ter-

minal truncations of BBS7 were assembled by PCR and Gateway recombination.

The plasmids for bacterial expression of SMOctail, SMOH8 and IFT38 truncations are derivatives of

pGEX6P1.

Antibodies
Primary antibodies against the following proteins were used: actin (rabbit, Sigma-Aldrich, #A2066),

cMyc (mouse, 9E10, Santa Cruz sc-40), acetylated tubulin (mouse, 6-11B-1, Sigma-Aldrich), ARL6

(rabbit, Jin et al., 2010), SMO (rabbit, gift from Kathryn Anderson, Memorial Sloan Kettering Cancer

Center, New York, NY, Ocbina et al., 2011).
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Secondary antibodies for immunoblotting were: HRP-conjugated goat anti-mouse IgG (115-035-

003, Jackson Immunoresearch) and HRP-conjugated goat anti-rabbit IgG (111-035-003, Jackson

Immunoresearch).

Sequence analysis
Helix 8 sequences were collected from GPCRdb (https://gpcrdb.org, Pándy-Szekeres et al., 2018)

and manually searched for BBSome-binding motifs. Ciliary GPCRs were collected from the literature

(Badgandi et al., 2017; Berbari et al., 2008; Hilgendorf et al., 2019; Koemeter-Cox et al., 2014;

Loktev and Jackson, 2013; Marley et al., 2013; Marley and von Zastrow, 2010;

Mukhopadhyay et al., 2013; Omori et al., 2015; Siljee et al., 2018).

Recombinant protein expression
N-terminally GST-tagged ARL6DN16[Q73L] was expressed in bacteria as described (Chou et al.,

2019). GST-tagged SMOCtail and IFT38 protein fusions were expressed in Rosetta2(DE3)-pLysS cells

grown in 2xYT medium (Millipore Sigma, Y2627) at 37˚C until the optical density (OD) at 600 nm

reached 0.6. Protein expression was then induced with 1 mM isopropyl b-D-1-thiogalactopyranoside

(IPTG) at 18˚C for 4 hr (SMOCtail) or with 0.2 mM IPTG at 18˚C for 16 hr (IFT38). Cells were resus-

pended in 4XT (200 mM Tris, pH 8.0, 800 mM NaCl, 1 mM DTT) with protease inhibitors (1 mM

AEBSF, 0.8 mM Aprotinin, 15 mM E-64, 10 mg/mL Bestatin, 10 mg/mL Pepstatin A and 10 mg/mL Leu-

peptin) and lysed by sonication. The clarified lysates were loaded onto Glutathione Sepharose 4B

resin (GE Healthcare) and proteins eluted with 50 mM reduced glutathione in buffer XT (50 mM Tris,

pH 8.0, 200 mM NaCl, 1 mM DTT). Proteins were subsequently dialyzed against XT buffer with one

change of buffer and flash frozen in liquid nitrogen after addition of 5% (w/v) glycerol.

Purification of native BBSome
The BBSome was purified from bovine retina by ARL6GTP-affinity chromatography as described

(Chou et al., 2019) and the sample was processed for cryo-EM the next day.

GST-capture assays
GST pull-down assays were conducted by saturating 10 mL of Glutathione Sepharose 4B beads (GE

#17075605) with GST fusions. Binding to purified BBSome was assessed by mixing beads with a 10

nM solution of pure BBSome made in 100 mL IB buffer (20 mM HEPES, pH 7.0, 5 mM MgCl2, 1 mM

EDTA, 2% glycerol, 300 mM KOAc, 1 mM DTT, 0.2% Triton X-100) and incubating for 1 hr at 4˚C.

After 4 washes with 200 mL IB buffer, elution was performed by boiling the beads in SDS sample

buffer.

BBSome subunits and fragments thereof were translated in vitro from pCS2-Myc plasmids using

the TNT SP6 Quick Coupled Transcription/Translation system (Promega L2080). 16 mL TNT SP6

Quick Master Mix, 2 mL Methionine (0.2 mM) and 2 mL DNA (0.2 mg/mL) were mixed and incubated

at 30˚C for 90 min. 20 mL reactions were diluted into 180 mL NSC250 buffer (25 mM Tris, pH 8.0, 250

mM KCl, 5 mM MgCl2, 0.5% CHAPS, 1 mM DTT), mixed with 10 mL glutathione beads saturated

with GST fusions and rotated for 1 hr at 4˚C. After 4 washes with 200 mL NSC250 buffer, elution was

performed by addition of 7.5 mg PreScission protease in 30 mL NSC250 buffer and incubation at 4˚C

overnight. The eluates were resolved by SDS-PAGE and analyzed by immunoblotting with anti-Myc

antibody.

Yeast two-hybrid assays
The coding DNA sequences (CDSs) for various fragments of BBSome subunits were either obtained

in Gateway Entry vectors or amplified via PCR and transferred to pDONR221 by BP clonase recombi-

nation. The CDSs were shuttled to Y2H Gateway destination vectors bait pBTMcc24 (C-terminal

bait), pBTM116D-9 (N-terminal bait), pCBDU (C-terminal prey), and pACT4 (N-terminal prey) by LR

clonase recombination. Bait and prey vectors were introduced into either bait (L40ccU MATa) or

prey (L40cca MATa) yeast strains by lithium acetate transformation. Yeast were mated in a 96-well

matrix format, using at least two independently transformed colonies to test each interaction. MATa

and MATa yeast were mated on YPDA medium for 36–48 hr at 30˚C prior to diploid selection on

medium lacking tryptophan and leucine. Diploids were incubated for 2 days at 30˚C prior to transfer
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onto medium lacking tryptophan, leucine and histidine to select for positive growth of interacting

constructs.

Cryo-EM sample preparation and data collection
For BBSome alone, 3.5 mL of the peak fraction from a BBSome purification (0.4–0.6 mg/mL) was

applied to glow-discharged R1.2/1.3 holey carbon copper grids (Quantifoil) covered with a thin

homemade carbon film. The grids were blotted for 1 s at 4˚C and 100% humidity, and plunged into

liquid ethane using a Mark IV Vitrobot (Thermo Fisher Scientific). A cryo-EM dataset was collected

on a 300-kV Titan Krios electron microscope (Thermo Fisher Scientific) equipped with a K2 Summit

detector (Gatan) at a nominal magnification of 22,500x in super-resolution counting mode. After bin-

ning over 2 � 2 pixels, the calibrated pixel size was 1.3 Å on the specimen level. Exposures of 10 s

were dose-fractionated into 40 frames with a dose rate of 8 e-/pixel/s, resulting in a total dose of 80

e-/Å2. Data were collected with SerialEM (Mastronarde, 2005) and the used defocus range was

from �1.5 mm to �3.0 mm.

For the BBSome–ARL6 complex, full-length ARL6 was incubated with GTP at a molar ratio of 1:20

for 1 hr on ice, added to purified BBSome at a molar ratio of 5:1 and incubated for another hour on

ice. 3.5 mL of the sample was applied to glow-discharged R1.2/1.3 holey carbon grids (Quantifoil Au

or C-flat Cu). The grids were blotted for 3.5 s at 4˚C and 100% humidity, and plunged into liquid eth-

ane using a Mark IV Vitrobot. One cryo-EM dataset was collected on a 300-kV Titan Krios electron

microscope equipped with a K2 Summit detector at a nominal magnification of 28,000x in super-res-

olution counting mode. After binning over 2 � 2 pixels, the calibrated pixel size was 1.0 Å on the

specimen level. Exposures of 10 s were dose-fractionated into 40 frames with a dose rate of 7.52 e-/

pixel/s, resulting in a total dose of 75.2 e-/Å2. A second dataset was collected on a 300-kV Titan

Krios equipped with a K3 detector at a nominal magnification of 64,000x in super-resolution count-

ing mode. After binning over 2 � 2 pixels, the calibrated pixel size was 1.08 Å on the specimen level.

Exposures of 2 s were dose-fractionated into 50 frames with a dose rate of 29.99 e-/pixel/s, resulting

in a total dose of 51.44 e-/Å2. Both datasets were collected with SerialEM and the defocus ranged

from �1.5 mm to �2.5 mm.

Cryo-EM data processing
The movie frames collected with the K2 detector were corrected with a gain reference. All movies

were dose-weighted and motion-corrected with MotionCor2 (Zheng et al., 2017). The contrast

transfer function (CTF) parameters were estimated with CTFFIND4 (Rohou and Grigorieff, 2015, p.

4). For micrographs collected with the K2 detector, particles were picked with Gautomatch (https://

www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/); for those collected with the K3 detector, particles

were picked with RELION 3.0 (Zivanov et al., 2018). Three projections from our previous cryo-EM

map of the BBSome (EMD-7839) were used as templates for picking.

For BBSome alone, 2,218,320 particles were picked from 4733 micrographs and subjected to 2D

classification in RELION. Particles in classes that generated averages showing clear structural fea-

tures were selected (770,345 particles) for ab initio 3D reconstruction of two models in cryoSPARC

(Punjani et al., 2017). The map with clearer structural features and higher resolution was selected

for heterogenous refinement in cryoSPARC, after which 560,777 particles were selected for further

homogenous refinement. The output map was further refined in RELION by 3D refinement, CTF

refinement and Bayesian polishing, resulting in a map at 3.6 Å resolution. The base and corkscrew

modules of the BBSome, including BBS1, BBS4, BBS5, BBS8, BBS9 and BBS18, were well resolved,

but density for the top lobe, containing BBS2 and BBS7, was weak. A focused refinement, masking

out the BBS1 bprop and ins, BBS2 bprop, GAE and cc, and the BBS7 bprop, GAE, cc, pf and hp

domains, yielded a map for the remainder of the BBSome at 3.44 Å resolution.

For the BBSome–ARL6 complex, data collected with the K2 camera yielded 228,487 particles

from 1031 micrographs of a Quantifoil Au grid and 192,243 particles from 911 images of a C-flat Cu

grid. The particles from the two datasets were separately subjected to 2D classification in RELION,

and particles from classes that generated averages showing clear structural features were combined,

including 134,169 and 72,182 particles, respectively. Data collected with the K3 camera yielded

1,033,939 particles from 2680 micrographs of the Quantifoil Au grid and 688,499 particles from

1960 micrographs of the C-flat grid. After 2D classification, 185,332 and 154,503 particles,
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respectively, were selected. All selected particles were combined (546,186 particles in total) and sub-

jected to 3D classification into 6 classes, using as reference the previously determined BBSome map

(EMD-7839) filtered to 45 Å resolution. One of the resulting maps showed clear fine structural fea-

tures (209,646 particles) and was subjected to 3D refinement, yielding a density map at 4.1 Å resolu-

tion. Refinement focused on the top lobe of the BBSome, including BBS2, BBS7, BBS1 bprop, and

ARL6 yielded a map at 4.2 Å resolution. Refinement focused on the lower lobe of the BBSome

including the remaining subunits yielded a map at 3.8 Å resolution. To improve the density for the

GAE and pf domains of BBS2 and BBS7, a mask was generated for these domains and used for

focused 3D classification into 4 classes without alignment. The resulting map showing the best struc-

tural features was selected for further refinement, which resulted in a map at 4.0 Å resolution, with

improved density for the GAE and pf domains of BBS2 and BBS7.

The resolution was determined by Fourier shell correlation (FSC) of two independently refined

half-maps using the 0.143 cut-off criterion (Rosenthal and Henderson, 2003). Local resolution was

estimated from the two half-maps using the ResMap algorithm implemented in RELION. UCSF Chi-

mera (Pettersen et al., 2004) was used to visualize density maps. Statistics are listed in

Supplementary file 1.

Model building and refinement
Our previously published backbone model of the BBSome (Chou et al., 2019) was first placed into

the density map using Chimera. All manual model building was performed with Coot (Emsley and

Cowtan, 2004). BBS2GAE and BBS7GAE models were generated using SWISS-MODEL

(Waterhouse et al., 2018), using the structure of BBS9GAE as template. The generated models were

then docked into the density map using Chimera, and trimmed in Coot. Due to the weak density of

these areas in both maps, we only built secondary-structure fragments but not the connecting loops.

A model for bovine ARL6 starting was generated with SWISS-MODEL, using the crystal structure of

Chlamydomonas reinhardtii ARL6 (PDB ID: 40VN) as template. The model was then docked into the

density map of the BBSome–ARL6 complex. The atomic models were refined using phenix.real_spa-

ce_refine (Adams et al., 2010). Cryo-EM data collection, refinement and modelling statistics are

summarized in Supplementary file 1 Table S1.
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