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We formulate a domain-independent language for representing stochastic tasks, and show

how this representation can be synthesized from few training observations. In one experiment, 

we study how a physical robot may learn to fold clothes from a small number of visual 

observations, in contrast to big data techniques. Under the same framework, we also show how a 

virtual chat-bot may learn dialogue policies from few example transcripts, resulting in an 

interpretable dialogue model, outperforming current statistical techniques. Central to both 

examples in the concept of utility, why it's essential for generalizability, and how to learn it from 

small data.
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CHAPTER 1

Introduction

The fundamental problem we’re addressing is how to represent a task for execution on a robot.

However, that problem description, stated exactly as is, does not specify a success criteria for

representation nor execution. Plenty of details need to be disambiguated: What is a task? What

does it mean for a task be to executed? How can we know whether a robot learned the task?

Therefore, in this first chapter, we define a litmus test called the Knowledge Transfer Test

(KTT) that also serves as an organizational tool to visualize all our contributions into a cohesive

picture. Subsequent chapters are assembled to fit nicely into the mental map set up by the KTT.

Specifically, Figure 1.4 captures the complete knowledge transfer pipeline that the rest of the chap-

ters aim to solve using utility learning, non-Markovian planning, and task-oriented programming

language representation.

We begin by proposing a graphical structure, called an And-Or graph, to represent knowledge

or skills. The And-Or graph representation may model spatial, temporal, or causal relationships.

We hand-design a cloth-folding task using this representation for one robot and then test it running

on a different type of robot. This proof by example sets the scene for deeper investigations, covered

by Chapter 2.

1.1 Human-Robot Knowledge Transfer

Transferring knowledge is a vital skill between humans for efficiently learning a new concept. In

a perfect system, a human demonstrator can teach a robot a new task by using natural language

and physical gestures. The robot would gradually accumulate and refine its spatial, temporal, and

causal understanding of the world. The knowledge can then be transferred back to another hu-
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Figure 1.1: The robot performs a cloth folding task after learning from a human demonstration.

man, or further to another robot. The implications of effective human to robot knowledge transfer

include the compelling opportunity of a robot acting as the teacher, guiding humans in new tasks.

The technical difficulty in achieving a robot implementation of this caliber involves both an

expressive knowledge structure and a real-time system for non-stop learning and inference. Re-

cently, skill acquisition and representation have become some of the core challenges in achieving

robots capable of learning through human demonstration.

We propose a real-time unified learning and inference framework for knowledge acquisition,

representation, and transfer. Knowledge is represented in a Spatial, Temporal, and Causal And-Or

Graph (STC-AOG) hierarchical network [1], which can be thought of as a stochastic grammar.

The STC-AOG encapsulates the hierarchical compositional structures of physical objects, logical

deductions, and instance-based actions. Our knowledge graph manipulation framework enables

learning to be a continuous on-line process that occurs alongside inference. We view a robot as a

knowledge database, where humans may deposit and withdraw skills. These skills can be used by

both humans and robots alike.

As a proof of concept, we teach an industrial robot how to fold clothes (Figure 1.1). The robot

watches a human demonstrator and learns in real-time. To test the faithfulness of the human-robot

knowledge transfer, we propose an evaluation procedure called the Knowledge Transfer Test. Our

experiments demonstrate that our proposed framework can adequately transfer knowledge to and

from a robot. Furthermore, we illustrate our system’s interactive learning capabilities that are

backed by a Bayesian formulation.
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1.1.1 Related Works

We extend the learning of And-Or grammars and semantics from video [2] to an interactive real-

time robotics platform with a natural communication interface between humans. The And-Or data

structure has also been used in learning a visually grounded storyline model from labeled videos

[3]; however, our system requires no labeled data, and evokes a richer segmentation of spatial,

temporal, and causal concepts for more tractable queries. Miller, Van Den Berg, Fritz, Darrell,

Goldberg, and Abbeel [4] establish high standards for a cloth-folding robot, but our focus is in-

stead on novel learning, knowledge representation, and knowledge transfer. The action-planning

inference system in our STC-AOG data structure resembles closest to a Planning Graph [5], which

is essentially an STC-AOG without causal nodes. Yang, Li, Fermuller, and Aloimonos [6] learn

concrete action commands from small video clips. Unlike their system, our design allows a modi-

fiable grammar and our performance is measured on multi-step actions.

1.2 Representation

We encapsulate knowledge by an expressive graphical data structure GΩ = (Gs, Gt, Gc) which

models the compositional structures of objects Gs, actions Gt and causality Gc. A specific piece

of information or skill, such as how to fold clothes, is a subgraph G ⊆ GΩ. The goal of knowledge

transfer is to deliver G from one agent (e.g. human) to another (e.g. robot) with a minimum loss

of knowledge.

In human-robot interactions, we restrict communication to only physical actions through a

video-camera sensor V , and natural language text L. Therefore, the learner must construct an

optimal G based only on V and L, resulting in the Bayesian formulation,

G∗ = arg max
Gt

P (Gt|V, L) = arg max
Gt

P (V |Gt, L)P (Gt, L)

P (V, L)

Similar to Ha, Kim, and Zhang [7], we use a graph Monte Carlo method that assumes the graph
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Figure 1.2: STC-AOG for a cloth-folding task.

structure is determined only by that of the previous iteration.

G∗ = arg max
Gt

P (V |Gt, L)P (Gt−1, L)

The learning algorithm is similar to a marginalization-based parameter learning algorithm,

where we first marginalize our STC-AOG, and learn the S-AOG, T-AOG and C-AOG separately,

then jointly learn the conditional model between each other.

Figure 1.2 shows a small segment ofG∗, and specific details of the spatial, temporal, and causal

segments are described as follows.

1.2.1 Spatial Representation

Sensory data from the environment is encoded to form a belief representation. We use a Prime-

Sense camera to capture RGB-D (Red, Green, Blue, and Depth) information per frame. We repre-

sent every cloth by a high-level abstract understanding based off its contour shape, and a low-level

representation by specific keypoints. The keypoints and contour shape data are used as input to

the folding algorithm which generalizes to arbitrary articles of clothing. To store the hierarchical

structure of physical objects, we use an And-Or Graph data-structure, called the Spatial And-Or
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Figure 1.3: Forces associated with the simulated actuator T and other forces O sum to produce a
resulting R force, which is nearly collinear to the observed end-state E, implying that T causes S1

to become S2.

Graph (SAOG) [8]. AND nodes in the S-AOG represent structural compositionality (i.e. a vehicle

has an engine). OR nodes in the S-AOG represent variations (i.e. a car is a type of vehicle).

1.2.2 Causal Representation

The perceived model of the world is then used to learn a logical cause-and-effect type of reasoning

from a singleinstance, inspired by the Dynamics Model [9].

The Dynamics Model defines causal relationships as interpretations of force vectors. The nodes

in the S-AOG are normalized feature vectors in a higher dimensional space, and are acted on by

force vectors from the T-AOG. As per the model, if the net force on a spatial node is collinear with

the vector represented by the end-state of an action, then a causality is deduced, as shown in Figure

1.3.

The causal relationships are stored in a Causal And-Or Graph (C-AOG). AND nodes in the

C-AOG indicate that all preconditions are necessary, whereas OR nodes indicate that only one of

the preconditions is sufficient.

1.2.3 Temporal Representation

These deductive models are used to plan out the next course of action, which may affect the en-

vironment. The actuators that affect the environment, whether by the robot or the human, are

represented in another data-structure, called the Temporal And-Or Graph (T-AOG). AND nodes
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represent actions done in a series of steps. OR nodes represent variations in possible actions.

1.2.4 Joint Representation

We represent the physical models (S-AOG), the reasoning models (C-AOG), and the environment

actuators (T-AOG) all into one unified Spatial Temporal Causal And-Or Graph (STC-AOG) data

structure. As a consequence, the whole system forms a closed-loop from perception to learning to

inference, and back again to perception. Figure 2 demonstrates a small portion of the STC-AOG

applied to a clothfolding task.

1.3 Knowledge Transfer Test

One of the most useful properties of knowledge transfer is the ability to propagate the knowledge

among others. To determine the proficiency of knowledge transfer to and from an artificial agent,

we propose the following three-part test.

A human demonstrator HA will perform a chosen task to receive a task score s0 by a human

judge. In the first part of the test, HA will teach this task to a robot RA that has not been previously

trained on the task. The judge will assign a task score s1 based on RA’s performance.

Next, the second test will evaluate RA’s ability to transfer knowledge to another robot RB that

has not been previously trained on the task. Robot-to-robot knowledge transfer can be as direct

as sending over the explicit knowledge structure, which in our case is the STC-AOG. Again, the

judge will assign a task score s2.

Finally, RB must teach the task to a human HB that has no previous knowledge of the task

procedure. A task score s3 will be assigned by the judge. If all three task scores match within 10%

of s0, then RA is said to have passed the Knowledge Transfer Test (KTT). The entire process is

visualized in Figure 1.4.
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Figure 1.4: Arrows represent the direction of knowledge transfer. The judge assigns task scores at
each step.

1.4 Experimental Results

We evaluate our framework on a two-armed robot using the proposed Knowledge Transfer Test

on a cloth folding task. To benchmark real-time performance, we calculate the ratio between the

duration of the demonstration and the total time spent learning. The average speed of our robot

system is 5 fps, resulting in a system which out-performs most perception-heavy robot learning-

systems today.

Our robot was able to understand the cloth-folding task, generating a STC-AOG similar to

Figure 2, confidently enough to pass the first part of the KTT. We were able to save the graphical

structure and load it into a different type of robot to pass the second part of the KTT. The robot

was also able to teach the task successfully to a human, but since folding clothes is already a well

known skill by most humans, we set aside deeper investigation of robot-to-human teaching for

future work.
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CHAPTER 2

Learning from Demonstration

Knowledge may be acquired through learning from demonstrations (LfD), which will lay the foun-

dations for utility learning and task-oriented programming languages. LfD is one way to accom-

plish the first step of The Knowledge Transfer Test described in the last chapter. Concretely, in our

experiments, a human demonstrates a cloth-folding task, by performing a sequence of actions in

front of a video recording device. The system models the spatial, temporal, and causal relation-

ships.

With the Chomsky hierarchy of formal grammars, we can study the Spatial, Temporal, and

Causal And-Or graph (STC-AOG) as a (stochastic) context-free grammar. Doing so reminds us

that the STC-AOG has the expressive power to represent tasks in ways a finite-state machine (or

regular grammar) may never fully capture. In a later chapter, we’ll use this grammar perspective

to upgrade the STC-AOG into a programming language.

2.1 Spatial, Temporal, and Causal And-Or Graph

Writing automated software on robots is not nearly as robust as that on traditional computers. This

is due to the heavy burden of matching software assumptions to physical reality. The complexities

and surprises of the real world require robots to adapt to new environments and learn new skills to

remain useful.

In robot automation, implicit motor control is widely used for learning from human demon-

strations [10] [11] [12]. However, implicit motor control is insufficient for generalizing robot

execution. For instance, a robot can imitate a human’s demonstration to open a door; yet, it cannot

execute a similar motion trajectory such as opening a window without the explicit representation
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Figure 2.1: The Spatial And-Or Graph on the left represents the ongoing perceptual knowledge
of the world, i.e. a learned stochastic visual grammar. A specific instance of the And-Or graph is
realized in the parse graph on the right.

of the task. Intuition such as how to rotate the joints of an arm is not something easily expressible,

but rather learned through experiences. Uniting explicit and implicit knowledge allows immediate

communication through natural language [13], as well as clear grounding of abstract concepts into

atomic actions.

In this chapter, we propose a unified framework to bridge the implicit motor control with ex-

plicit high-level knowledge so the robot can understand human behavior, perform a task with feed-

back control, and reason in vastly different environments. As a proof of concept, we teach a robot

how to fold a shirt through few human demonstrations, and have it infer how to fold never-before-

seen articles of clothing, such as pants or towels. The same causality-learning framework can be

extrapolated to arbitrary tasks, not just cloth-folding. Specifically, the robot can learn different

skills (e.g. flattening, stretching) depending on which features it tracks (e.g. smoothness, elastic

stress). Moreover, since explicit knowledge is structured graphically, our framework naturally al-

lows for the merging, trimming, and addition of knowledge from various human demonstrations,

all with feedback control. The high-level concepts are human-understandable, so both the human

and robot can communicate through this intermediate language [14]. Thus, programming the robot

becomes an act of merely modifying a graph-based data structure.
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2.2 Related Works

While precisely grounding a human demonstration to atomic robot actions has been done in various

forms [6] [7] [15], we instead focus on the novel representation and generalizability of tasks.

Beetz et al. integrate robot knowledge representation into the perception processes as well, but

our framework allows alternative planning generated by probabilistic sampling to match observed

expectations. For example, there are multiple ways to fold a t-shirt, and each of these ways has

its own likelihood. Our probabilistic learning framework resembles closest to the human-inspired

Bayesian model of imitation by Rao et la. [16]. However, we instead emphasize the hierarchical

and ever-changing nature of spatial, temporal, and causal concepts in the real world.

Autonomously folding clothes has been demonstrated in various works. Wang et al. [17] were

able to successfully design a perception-based system to manipulate socks for laundry. Miller et al.

[4] have demonstrated sophisticated cloth-folding robots, and Doumanoglou et al. [18] have made

substantial progress in autonomously unfolding clothes. On the other hand, our focus is to under-

stand how to perform arbitrary tasks. There are other systems [6] that also learn concrete action

commands from small video clips, but unlike those, our design allows a modifiable grammar and

our performance is measured on multi-step long-term actions. Furthermore, our solution to knowl-

edge representation is more powerful than commonsense reasoning employed by non-stochastic

first-order logic [19], since it takes advantage of the probabilistic models under ambiguous real-

world perception.

Our work is based on the knowledge representation system incorporated by Tu et al. [1], aug-

mented heavily into the robotics domain. We extend the learning of event And-Or grammars and

semantics from video [2] to our real-time robotics framework. The And-Or graph encapsulates a

conformant plan under partial observability, enabling an architecture that is cognitively penetrable

since an updated belief of the world alters the robot’s behavior [20]. Unlike traditional graph plan-

ning [5], the hierarchical nature of the knowledge representation system enables a practical way of

generating actions for a long-term goal.
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2.3 Method

There is often a fine distinction between memorization and understanding, where the latter enables

generalizing learned concepts. In order to understand a human task from demonstrations/videos

such as cloth-folding, a knowledge representation system is necessary to ensure actions are not

simply memorized. Four types of knowledge are important for understanding and generalizing:

• Spatial knowledge expresses the physical configuration of the environment when perform-

ing the task. For a cloth-folding task, a table, cloth, and each part of the cloth, such as the

left and right sleeve of a shirt, needs to be detected.

• Temporal knowledge reveals the series of human actions in the process of the task. In cloth-

folding, the hand motion, grip opening, and grip closing actions are essential. These actions

combine together to form a fold action.

• Causal knowledge conveys the status change of an object in each dynamic human action.

For example, a shirt may be folded in various ways, either by folding the left sleeve into the

middle and then the right sleeve, or vice versa. Folding a cloth requires multiple hierarchical

steps for reasoning.

• The interplay between the spatial, temporal, and causal concepts manifests a generaliz-

able form of knowledge to be used in changing application domains. The robot must choose

an action to achieve a state change by using a causal reasoning concept. Each of the three

must work together to express learned knowledge.

2.3.1 Mathematical Formulation for Human Task

Given a set of human task demonstrations D = {D1, D2, · · · , Dn} such as cloth-folding videos

(i.e. series of RGBD images), the goal is to learn a joint model (GSTC) including Spatial, Tempo-
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Figure 2.2: The Temporal And-Or Graph on the left is a database of all actions currently known
in the real world. Each action has an associated agent and patient. The realized parse graph on the
right shows a generated sequence of actions directly executable by the robot.

ral, and Causal concepts, that we formulate as

G∗STC = argmax
GSTC

P (GSTC |D) (2.1)

= P (GS|D) · P (GT |D) · P (GC |D)

· P (R(GS, GT , GC)|D)

where GS is the model of spatial concepts, GT is the model of temporal concepts, GC is the

model of causal concepts, and R(GS, GT , GC) is the relational/conditional model between spatial,

temporal, causal concepts.

To implement this formulation, we need to define the concrete representation for each symbol

in Eq. 1. Due to the structured and compositional nature of spatial, temporal, and causal concepts,

we adopt the hierarchical stochastic grammar model, And-Or graph (AOG) [8], as the base of our

model representation which is introduced below. To simplify the learning process, we marginalized

the complex STC-AOG (GSTC) into the S-AOG (GS), T-AOG (GT ) and C-AOG (GC); thus, we can

learn the GS , GT and GC separately as the model’s initialization, then jointly learn the conditional

model between them.
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Figure 2.3: The Causal And-Or Graph encapsulates the fluent changes per action. The parse graph
on the right shows the reasoning system in action.

2.3.2 And-Or Graph Overview

The And-Or Graph is defined as a 3-tuple G = (V,R, P ), where V = V AND ∪ V OR ∪ V T consists

of a disjoint set of And-nodes, Or-nodes, and Terminal nodes respectively. R is a set of relations

between Or-nodes or subgraphs, each of which represents a generating process from a parent node

to its children nodes. P (r) is an expansion probability for each relation.

Figure 2.1 shows an example of an And-Or graph. An And-node represents the decomposition

of a graph into multiple sub-graphs. It is denoted by an opaque circle, and all the out-going edges

are opaque lines. An Or-node is a probabilistic switch deciding which of the sub-graphs to accept.

It is denoted by an open circle with out-going edges drawn in dashed lines. The Terminal node

represents grounded components, often referred to as a dictionary.

The nodes are structured into a hierarchical directed acyclic graph (DAG) structure. The AOG

is a combination of a Markov tree and Markov random field, where an And-node corresponds to a

graphic template model, and an Or-node corresponds to a switch in a Markov tree [21].

Given a set of human demonstrationsD, the graph G is composed of an AOG graph structure Ĝ

and parameters θ. The nodes and rules/edges in the graph structure aim to maximize the objective
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function, denoted by the posterior probability:

P (G|D) = P (Ĝ, θ|D) (2.2)

= P (Ĝ|D)P (θ|D, Ĝ) (2.3)

The first term models the structure of an And-Or graph G from a human demonstration D. To

solve the first term, we manually design the structure of the S-AOG, but we learn the T-AOG and

C-AOG structure automatically [2] [22] [23].

The second term models the parameters θ in the graph, given the learned knowledge graph

structure. It is reformulated as follows:

P (θ|D, Ĝ) ∝
∏
Di∈D

P (Di|θ, Ĝ) (2.4)

≈
∏
Di∈D

max
pgi

P (Di|pgi, θ, Ĝ)P (pgi|θ, Ĝ) (2.5)

where pgi is the parse graph of Di. A parse graph is an instance of G where each Or-node decides

one of its children. P (pgi|θ, Ĝ) is the prior probability distribution of parse graph pgi given G. To

simply the learning process, we set it as a uniform distribution. Thus,

P (θ|D, Ĝ) ∝
∏
Di∈D

max
pgi

P (Di|pgi, θ, Ĝ) (2.6)

And,

P (Di|pgi, θ, Ĝ) =
∏

v∈V AND

P (Chv|v, θANDv ) (2.7)

∏
v∈V OR

P (Chv|v, θORv ) (2.8)

∏
v∈V T

P (Di|v) (2.9)
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where Chv denotes the child of a non-terminal node v ∈ V AND ∪V OR. The probability derivation

represents a generating process from a parent node to its child node, and stops at the terminal nodes

to generate the sample Di. The parameters are learned in an iterative process through a Minimax

Entropy algorithm explained in more detail later.

As defined by Tu et al. [1], the energy of a parse graph is determined by the energy of the

Or-node selection and relations between the And-node children. We define the energy term as

ESTC(pg) = ES(pg)+ET (pg)+EC(pg)+
∑
ER(r). The energy terms of the model explain why

the distribution factorizes as shown in equation 1.

2.3.3 S-AOG: Spatial Concepts Model

A powerful way to capture perceptual information is through a visual grammar to produce the most

probable interpretations of observed images. Therefore, we represent spatial concepts through a

stochastic Spatial And-Or Graph (S-AOG) [8]. Nodes in the S-AOG represent visual information

of varying levels of abstraction. The deeper a node lies in the graph, the more concrete of a

concept it represents. An And-node signifies physical compositionality (i.e. a wheel is a part of a

car) whereas an Or-node describes structural variation (i.e. a car is a type of vehicle).

As demonstrated in Figure 2.1, the root node of the S-AOG encompasses all possible spa-

tial states a robot may perceive. Here, the “Indoor scene” is decomposed into “Foreground” and

“Background,” which are then further decomposed. The nodes deeper in the tree represent finer

and finer concepts until they end up the terminial nodes consisting of grounded perception units

such as the sleeve of t-shirt.

2.3.4 T-AOG: Temporal Concepts Model

The action-space of the world is often an assortment of compositional and variational sub-actions.

The hierarchical nature of actions leads us to represent actions by a stochastic Temporal And-Or

Graph (T-AOG) [2]. And-nodes correspond to a sequence of actions (i.e. close the door, then lock

it), whereas Or-nodes correspond to alternate conflicting actions (i.e. close the door, or open the
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door). The leaf nodes of this graph are atomic action primitives that the robot can immediately

perform. Different sequences of atomic actions produce different higher-level actions.

The T-AOG structure is learned automatically using techniques from Si et al. [2] establishing

an initial knowledge base of actions. Our T-AOG does not learn new atomic actions, but may learn

higher-level actions that are built from these atomic actions. By fixing the set of atomic actions,

we ensure the grounding of higher-level actions to alleviate the correspondence problem. Our

framework assumes detectors of such atomic action as input.

As shown in Figure 2.2, the root node of the T-AOG represents all possible actions. As we

traverse the tree down, the actions become less and and less abstract, until they can no longer be

simplified. Therefore, the robot can unambiguously perform the atomic actions represented by the

leaf nodes.

The T-AOG provides us a way to define the structure and sequence of actions, but how an

action causes a change in state is incorporated in the causality data structure defined next.

2.3.5 C-AOG: Causal Concepts Model

Causality is defined as a fluent change due to a relevant action. We can think of fluents as functions

on a situation x1(s), x2(s), ..., such as the state of a car’s engine (on vs. off) or its current speed

(5mph, 10mph, etc.). We use the Causal And-Or Graph (C-AOG) to encapsulate causality learned

from human demonstration [23], as shown in Figure 2.3. Each causal node is a fluent change

operator, transforming an input fluent to an output fluent by using an action from the T-AOG. As

shown in the diagram, there are various ways to reach the same state. Or-nodes capture the various

ways a fluent may change from one state to another.

From the point of view of automated planning, fluents are multi-variate observations of a state.

The fluents that change due to a relevant action are vital for predicting future actions. If a flu-

ent does not change from a change-inducing action, then it is irrelevant with respect to the action.

These time-invariant properties as defined as “attributes” of the node (i.e. color, weight). Addition-

ally, fluents that change due to an inertial action (i.e. actions that are irrelevant to a fluent change)
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are noted inconsistent.

For example, given an cloth s, let fluent x1(s) represent high-level abstract information such

as the shape of a cloth, whereas if the cloth is a shirt, fluent x2(s) represents specific keypoints for

shirts. The C-AOG structure is learned through an information projection pursuit outlined by Fire

et al [23]. We assume the observational data correlate strongly to intervention data. The STC-AOG

uses these relevant fluent changes to plan out tasks.

2.3.6 Relational Model between Spatial, Temporal, Causal And-Or Graph

Each of the three And-Or Graphs are unified into a common framework for a complete represen-

tation of the world [1]. This explicit knowledge is represented by a hierarchical graphical network

specifying a stochastic context sensitive grammar [24], called the the Spatial, Temporal, and Causal

And-Or Graph (STC-AOG) [1]. The cloth-folding task in our real-time robot framework is incor-

porated as described in Figure 2.4.

Figure 2.4: For illustrative purposes, this diagram shows simple interactions between the spa-
tial, temporal, and causal And-Or graphs. When the width w or height h of the shirt is larger
than the target width wT or height hT , the C-AOG triggers a fold action in an attempt to reach
a smaller folded shirt. The robot then folds the shirt to produce the desired width and height
(w ≤ wt AND h ≤ hT ).

Formally, the fluent functions ∀j xi(sj) partition the reals R. Two fluents xi(sa) and xi(sb)

are identical if they belong in the same partition. Each spatial or temporal situation si may have
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multiple fluents (x1, x2, ...).

x(si) =


x1(si)

x2(si)

...

 (2.10)

The fluent change between two states sj and sk is formally defined as a binary vector:

4x(sj, sk) =


4x1(sj, sk)

4x2(sj, sk)

...

 (2.11)

4xi(sj, sk) =


0 if xi(sj) = xi(sk)

1 otherwise

By accumulating human demonstrations of an action, we obtain a set of video clipsQa = {q1, q2, ...}

for a specific action a, where qi is a video clip showing action a. The score wj(a) of an action to

make a fluent change is defined as:

∀j wj(a) = P (4xj = 1 | Q) =

∑
i 14xj=1|qi

||Q||
(2.12)

with the scores normalized by
√∑

j wj(a)2.

Fluents that represent specific properties, such as keypoints, tend to be heavier weighted than

those that are broad high-level concepts, such as shape [25]. The fluents are typically hand-chosen,

but we suggest automatically generating various abstractions of fluents by varying the dimension-

ality of autoencoders. Recent work on spatial semantics [26] can also initialize nodes with a set of

useful fluents.

The STC-AOG is not just a knowledge representation system, but also a hierarchical planning

graph. Folding a shirt using shirt fluents x1(s) and x2(s) has greater affordance than that from
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using just abstract shape information x1(s). That way, causal reasoning remains specific to the

object, guaranteeing that when folding a shirt, there is less preference to use knowledge about how

to fold pants if knowledge about how to fold shirts already exists. We define the affordance of

transferring from state si to sj using action a by aff(a, si, sj) = w(a)T4x(si, sj), suggesting that

the automated planning and reasoning should only be based on the relevant features.

Unifying the three sub-graphs produces a closed-loop framework for robots learning from

demonstrations. Moreover, graphs can store relationships in an intuitive and highly regular struc-

ture, allowing for algorithms that rely on simple graph manipulations. The real world is encoded

through perception into the S-AOG to form a physical belief state of the world. The learning algo-

rithm constructs a C-AOG to understand actions from human demonstrations. And lastly, inference

combines the reasoning from the C-AOG and the actuators from the T-AOG to physically perform

the task. The energy of the joint parse graph [1] combines the energy terms of each:

ESTC(pg) = ES(pg) + ET (pg) + EC(pg) +
∑
r∈R∗

pg

ER(r) (2.13)

We use generative learning by the Minimax Entropy Principle [27] to learn the probability

distribution of STC parse graphs P (pg). Doing so assumes that the sample mean of statistics

φj(pg) should approach the true expectation sj from observations. The parameters are solved by

minimizing the Kullback-Leibler divergence between the observed distribution and the candidate

KL(f ||p) = Ef [log f(pg)] − Ef [log p(pg)]. This simplifies to a maximum likelihood estimate,

formulated by

p∗ = argmax
p∈Ω

Ef [log p(pg)] = argmax
p∈Ω

n∑
i=1

log p(pgi) + ε (2.14)

Iteratively, we choose the statistics F = {φ1, φ2, ...} that minimize the entropy of the model, and

the parameters β that yield maximum entropy.

p∗ = argmin
F

{max
β

entropy(p(pg; θ)} (2.15)

19



Effectively, the robot “daydreams” possible probability distributions of parse graphs to converge

with observations. During inference, it samples a parse graph to perform the action.

2.3.7 Learning Motor Control

The STC-AOG expresses explicit knowledge in a graphical structure easily understandable by

humans, acting as a gateway for communication. However, the STC-AOG only defines discrete

salient spatial, temporal, and causal concepts. The interpolation of how an individual action is

performed requires a specification of the fine motor skills involved as well as an assignment of

probability distribution parameters.

The explicit knowledge captured by a causal node represents a conformant plan learned by hu-

man demonstrations. The information stored in the STC-AOG only provides results from discrete

time-steps, t ∈ N. Its state-action table represents fluent changes by xt+1(s) = f(xt(s), xt(a)).

To shift paradigms from explicit to implicit knowledge, we relax the assumption of null run-time

observability, and use a finer distinction in time, xt+δt(s) = f(xt(s), xt(a)). By learning this

continuous function f , the robot system is capable of verifying, correcting, and inferring causal

relations to adapt to dynamic environments.

We make two assumptions to simplify the learning of f . First, we restrict the range of spatial

and temporal changes to adhere to spatiotemporal continuity, rendering sudden changes impossi-

ble. Second, we use a physical simulator based on perception encoded by the STC parse graph

(STC-pg) to compare with reality at rapid time intervals. When a discrepancy is detected, we point

fault at the robot’s actions. The feedback learning system uses a simplified optimization process

inspired by Atkeson et al [28] to update the control mechanics. Adjusting the parameters of the

simulator to adhere to reality also reveals useful knowledge, but it is out of scope for this study.

2.3.8 Inference

Since the STC-AOG model is generatively learned, we infer a parse graph through a simple sam-

pling process. As seen in Figure 2.5, the procedurally generated parse graph lays out a conformant
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Figure 2.5: The inference engine samples a parse graph to create a conformant action plan. There
is feedback between the plan, its simulation, and the corresponding perceived execution.

1: while camera is producing image I do
2: pgtS ← Interpret(GS, It)
3: pgtT ← Sample(GSTC , pg

t
S)

4: pgtC ← Sample(GSTC , pg
t
S, pg

t
T )

5: pgSTC ← Merge(pgtS, pg
t
T , pg

t
C)

6: PerformWithFeedback(pgSTC)
7: end while

Figure 2.6: The robot inference algorithm performs tasks on a learned STC-AOG. It interprets the
sensory input as spatial, temporal, and causal parse graphs, which are merged to formed a joint
representation that is sampled and acted on.

action plan for the robot. It then creates a simulation of the action by converting the STC-pg into

a motion plan and spatial objects into 3D meshes from point cloud.

The simulation plan is matched with reality at small interval steps to verify that the robot is at its

corresponding simulated state. In case of substantial mismatch between expected and actual states,

the robot understands the action did not complete, and that a new action plan must be generated

based on the latest perception input. Concretely, the sampling procedure is encapsulated by the

algorithm in Figure 2.6.
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2.4 Experiments

We conduct our experiments on a cloth-folding task. The S-AOG models the physical status of

the cloth, table, robot, human, and various decompositions of each. The T-AOG consists of three

atomic actions to span the action-space for this simple task: MoveArm(a), Grab, and Release.

Since unsupervised learning on And-Or graphs is not the focus of this chapter, the structure of

the S-AOG and T-AOG is fixed, and the parameters are learned. Each graph contains roughly

20 nodes. A Fold action in the T-AOG is a higher-level And-node consisting of four children:

MoveArm(a), Grab, MoveArm(b), and Release, with the corresponding textual representation:

Fold(a, b) = MoveArm(a);Grab;MoveArm(b);Release. And consequently, a specific in-

stance of folding is a series of Fold actions: FoldStyle1 = Fold(a, b);Fold(c, d); ...;Fold(y, z).

Lastly, the C-AOG nodes describe how to fold a shirt from one state to another, learned through

human demonstrations.

We use Baxter, a two-armed industrial robot to perform our cloth-folding task. Each arm

consists of 7 degrees of freedom that are adjusted through inverse kinematics relative to the robot’s

frame of reference. The robot’s primary perception sensor is an Asus PrimeSense camera that

provides an aligned RGB-D (Red, Green, Blue, and Depth) point cloud in real-time. In order to

use localization results from perception, we compute the affine transformation matrix from the

camera coordinate system to that of the robot. All components interact together through the Robot

Operating System (ROS).

The STC-AOG is stored in the platform-independent Graphviz DOT language, and used by our

platform written in C++. The hand-designed perception logic combines off-the-shelf graph-based

[29] and foreground/background [30] segmentation to localize a cloth per frame. On top of that,

we train a shirt detector model using a Support Vector Machine to facilitate narrowing down the

search for an optimal S-AOG parse graph. Each cloth node has a fluent x1 describing the low-level

shape. If a cloth is a shirt, we represent the structure of its keypoints as another fluent x2. We

simplify learning the probability distribution of parse graphs by limiting the number of statistics to
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F = {φ1}, where φ1 is the affordance cost of the action sequence in a STC-pg.

Performance on a task is measured by the percent of successful actions throughout the task.

The overall performance is the average of all task performances over multiple trials. An action is

successful if performing the action satisfies the pre- and post-conditions of the causal relationship

used.

2.4.1 Experiment Settings

In the first set of experiments, we measure the performance of representing learned knowledge

from human demonstrations. After watching human demonstrations, the robot generates an action

plan step by step. The human performs the action suggested by the robot, and at each step, the

human qualitatively verifies whether the robot’s action was indeed the intended action as per the

demonstration. If verification fails in either case, then the action is marked unsuccessful, and

otherwise it is marked successful. This performance score on learning will set the baseline for the

next set of experiments.

In the second series of experiments, we measure the quality of grounding the learned knowl-

edge to the robot’s actions. This time we let the robot, instead of the human, perform the actions.

We compare the performance of the robot folding clothes with the results from the first set of ex-

periments to evaluate the success of grounding physical actions to see how well they match that

of a human. The expected performance should be less than the ground truth established from the

previous experiment.

In the third series of experiments, we measure the improvements from a feedback system com-

pared to no feedback. We expect that the performance score calculated through this step should be

higher than that from the previous experiment, but lower than the ground truth.

Finally, we are also curious how much we can stretch the generalizability of a learned task.

After demonstrating how to fold a t-shirt, we ask the robot to infer how to fold different articles of

clothing, such as full-sleeve shirts, towels, and pants. The criteria for generalizability of knowledge

will follow the similar performance procedure as in the previous experiments.
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2.4.2 Results

On 10 trials per four sets of different t-shirt folding demonstrations D1, D2, D3, D4, we measure

the average performance of using our system to learn knowledge, ground robot actions, and control

feedback.

Figure 2.7: Our learning system successfully understood the various folding techniques. It had
some difficulty executing the task using simply a conformant plan, but with added feedback the
execution was highly successful.

As seen in Figure 2.7, our knowledge representation system was able to characterize the cloth-

folding task enough to faithfully communicate with a human, producing a learned representation

with an average performance of 90%. This sets the upper bound for the next two inference experi-

ments. As anticipated, our framework was able to ground the actions with a performance of 42.5%.

The low score indicates that although the robot knows what to do, there is still a discrepency be-

tween the human’s action and that generated by the STC-AOG. By adding feedback correction of

comparing perception to physical simulation, the performance leaped to 83.125%, also matching

our expectation.

Figure 2.8: Our knowledge framework correctly understood how to generalize a t-shirt folding
instruction to long-sleeve shirts and towels; however, it expectedly had difficulty extrapolating its
knowledge to fold pants.
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The performance of generalizability was measured after training the robot on only t-shirt fold-

ing videos. The results are visualized in Figure 2.8. For example, since a full-sleeve shirt may have

the same width and height fluents as that of a t-shirt, the inference plan for folding a full-sleeve

shirt performed very well. Moreover, the robot was able to generate reasonable action plans to fold

a towel it has never seen, since a t-shirt with both its sleeves folded resembles the same rectangular

shape of a towel. However, generating a reasonable inference result for folding pants was less suc-

cessful due to the natural lack of knowledge transferred between a shirt folding and pant folding

task. Figure 2.9 shows a few qualitative results of successful folding plans and executions.

Figure 2.9: Some qualitative results on the robot execution after learning from human demonstra-
tions.

2.5 Discussion and Future Work

The experiments show preliminary support for the expressive power of the robot learning and

execution framework laid out in this chapter. While we focus heavily in the cloth-folding domain,

the framework may be used for training any goal-oriented task. In future work, we wish to continue

improving the robustness of each spatial, temporal, and causal And-Or graph to optimize for speed

and accuracy.

The STC-AOG acts as a language to ground knowledge and reasoning into robot actions. Since

the knowledge representation and robot action planning systems share the same And-Or graph data

structure, the graph acts as a programming language for the robot, and self-updating the graph is

an act of metaprogramming.

Due to the hierarchical nature of the STC-AOG, the higher level nodes are readily articulated

and understandable by humans. are currently working on incorporating natural language state-
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ments, commands, and questions to more easily allow humans to manipulate the graph. To scale

up the graph for life-long learning, we are investigating other practical storage solutions, including

graph-based databases such as Neo4j [31]. Since the graph is sufficient to transfer knowledge, we

can upload different skills to a cloud platform and share knowledge between different robots.

Limits in physical reachability and dexterity of the robot arms played a crucial difficulty in

mapping action plans to motor control execution. If a grip location was unreachable, the confor-

mant plan would fail to execute the action at all. Fortunately, by introducing the feedback control

system, we were able to at least extend the reach as far as possible to grip a reasonable point.

Lastly, the performance of the causal learning system relies on successfully detecting fluent

changes. This requires adjusting thresholds for fluent-change detectors until the results seem just

right. We solved this problem by offline supervised learning for our chosen fluents, but we set

aside the problem of learning these threshold parameters online to future work.

2.6 Conclusions

The stochastic graph-based framework is capable of representing task-oriented knowledge for

tractable inference and generalizability. It successfully unified theoretical foundations of And-Or

perception grammars to a practical robotics platform. The experimental results support our claims

for grounding learned knowledge to execute tasks accurately. We also express the generalizability

of our framework by extrapolating from human demonstrations of folding a t-shirt to other articles

of clothing. And lastly, our novel framework can make use of perceived discrepancies between

high-level action plans and low-level motor control to verify and correct actions.
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CHAPTER 3

Situated Dialogue

The last step of the Knowledge Transfer Test is for a robot to propagate knowledge back to a hu-

man. Humans communicate through language, so we investigate a way to embed natural language

into the STC-AOG structure. Dialogue tends to have some structure: when one says thank you,

a common response is you’re welcome. We may find clusters in these pairs of utterances, and

perhaps we can also cluster those clusters to form higher levels of abstractions in a hierarchical

fashion.

3.1 Task Learning through Visual Demonstration and Situated Dialogue

As a new generation of social robots emerges into our daily life, techniques that enable robots to

learn task-specific knowledge from human teachers have become increasingly important. In con-

trast to previous approaches based on Learning from Demonstration [32] and Learning by Instruc-

tion [33], we are currently developing a framework that enables task learning through simultaneous

visual demonstration and situated dialogue. Supported by our framework, robots can acquire and

learn grounded task representations by watching humans perform the task and by communicating

with humans through dialogue. The long-term goal is to enable intelligent robots that learn from

and collaborate with human partners in a life-long circumstance.

A key element in our framework is And-Or-Graph (AOG) (Tu, Meng, Lee, Choe, and Zhu 2014;

Xiong, Shukla, Xiong, and Zhu 2016), which embodies the expressiveness of context sensitive

grammars and probabilistic reasoning of graphical models. We use AOG to build a rich represen-

tation (i.e., STC-AOG) of the Spatial, Temporal, and Causal knowledge about the real world and

the task. In addition, we are also designing an AOG-based schema (i.e., CI-AOG) to model and
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interpret the communicative intents between an agent and its human partner. These expressive and

deep representations then allow a robot and a human to efficiently and effectively establish and

increment their common ground [35] in learning real-world tasks.

This chapter provides an overview of the AOG-based framework and uses an example to illus-

trate our on-going work on joint task learning from visual demonstration and situated dialogue.

3.2 Representation

3.2.1 STC-AOG

An And-Or-Graph (AOG) [1] is an extension of a constituency grammar used in Natural Language

Processing. It is often visualized as a tree structure consisting of two types of nodes, i.e., And-

node and Or-node. An And-node represents the configuration of a set of sub-entities to form a

composite entity; An Or-node represents the set of alternative compositional configurations of an

entity. Using this general representation, three important types of task knowledge can be modeled:

• Spatial And-Or Graph (S-AOG) models the spatial decompositions of objects and scenes.

• Temporal And-Or Graph (T-AOG) models the temporal decompositions of events to sub-

events and atomic actions.

• Causal And-Or Graph (C-AOG) models the causal decompositions of events and fluent

changes.

Robots can utilize the STC-AOG knowledge representation to understand, communicate, and

perform task-oriented actions. Based on this knowledge representation framework, Xiong, Shukla,

Xiong, and Zhu (2016) has developed a statistical learning mechanism that automatically learns the

parameters (e.g., the branching probabilities of Or-Nodes) of S-/T-/C-AOGs from a set of human

demonstration videos. Furthermore, methods for learning the structures of different types of AOG

have also been studied in previous work (e.g., Pei, Si, Yao, and Zhu 2013; Fire and Zhu 2013).
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The basic idea of learning AOG-based task knowledge is to treat each demonstration as a spe-

cific instance, or a so-called “parse graph”, which is generated by selecting one of the alternative

configurations at each Or-node of an AOG model (see Tu, Meng, Lee, Choe, and Zhu (2014) for

details). Given a series of demonstrations represented as parse graphs, the structures and parame-

ters of the underlying AOG model then can be learned using statistical learning techniques.

3.2.2 CI-AOG

Since AOG in essence can be viewed as a stochastic grammar machinery, and has been shown

powerful in parsing the hierarchical structure of goal-driven events [36], we propose to use the

same mechanism for analyzing the intentional structure of knowledge transferring dialogues.

For this purpose, we first construct an AOG, which we call the “Communicative Intent” AOG

(CI-AOG) here, to describe how the intentional structure of such dialogues could possibly unfold.

Our CI-AOG is similar to the T-AOG or “event grammar” as we illustrated earlier, where an Or-

node captures different possibilities and an And-node captures sequential events, and the terminal

nodes represent the basic actions (i.e., dialogue acts) that one can perform in a dialogue.

To illustrated the idea, we have manually crafted a (partial) CI-AOG that can be used to an-

alyze the intentional structure of a task teaching dialogue as shown in Figure 3.1. We composed

this CI-AOG based on “situated learning” literature [37, 38] to model how the teacher’s and the

learner’s intents interact in a mixed-initiative dialogue. For example, we capture in this CI-AOG

the common intentions in situated learning, such as articulation (the leaner articulates what is being

understood regarding the current situation), reflection (the learner reflects what has been learned),

and assessment (the teacher provides feedback to the learner’s reflections or articulations).

Furthermore, the CI-AOG is also used to capture the unique characteristics of dialogue, in-

cluding turn-taking, initiatives, and collaborative dynamics [35, 39]. To capture the turn-taking

dynamics in dialogue, each node in CI-AOG is assigned a role (i.e., who the speaker is). This

is illustrated in Figure 3.1 by assigning different colors to the nodes (i.e., orange nodes represent

the learner and blue nodes represent the teacher). Therefore, an And-node in CI-AOG not only
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Figure 3.1: An example of Communicative Intent AOG (CI-AOG).

represents the temporal order of its children nodes, but also captures who takes the initiative of the

sub-dialogue and how the turn-taking switches between the learner and the teacher.

The expressiveness of the AOG language also allows us to capture the collaborative dynam-

ics studied in the discourse analysis literature (e.g., Clark and Schaefer (1989)). For example, as

illustrated in the left bottom part of Figure 3.1, after the learner requests the teacher for teaching

an alternative way of doing a task (i.e., the Request-One-Alternative node), the teacher should re-

spond an explicit acknowledgement, or a negation, or directly teach an alternative without explicit

acknowledging (the “relevant-next-turn” behavior).

Suppose a CI-AOG has already been constructed, it then can be used for “parsing” the under-

lying intentional structure of an ongoing dialogue. This is similar to previous work [36] that used

a Top-Down parsing algorithm to analyze the hierarchical structure of goal-driven events from an

observed sequence of atomic actions. Figure 3.2 further illustrates a parse graph on the underlying

intentional structure of the following example dialogue.

Example dialogue of a robot learning to fold a t-shirt:

R1: Could you teach me how to fold the t-shirt?

H1: Sure.

H2: First, you fold the right sleeve towards the middle of the t-shirt.
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Figure 3.2: The CI parse graph for the given example dialogue.

R2: I saw you approached the right sleeve, grasped there, then moved to a position, and released your hand

there.

R3: Is that position the middle of the t-shirt?

H3: Yes, that position is in the middle of the t-shirt.

R4: OK, what is the next step?

H4: Next, you fold the left sleeve to the middle.

R5: OK.

R6: This is what I have learned: first fold the right sleeve to the middle, and then fold the left sleeve to the

middle.

H5: You can also fold the left sleeve first, and then the right sleeve.

R7: I see.

R8: What is next?

. . . . . .

As illustrated in Figure 3.2, the overall intent of this dialogue is for the robot to learn a se-

quential task. It is initiated by the robot’s request for teaching (R1), followed by the human’s

explicit acknowledgement (H1). The following sub-dialogue is then led by the human’s intent of
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teaching the robot the first step with an instruction (H2). Following that, the robot articulates what

it understands about the current situation (R2), and tries to map the unknown concept “middle”

to a physical position in the visual context (the question asked in R3, with an intent of what we

call “ground”). The human’s positive response (H3) confirms the robot’s understanding, and also

closes the subroutine of teaching the first step. The dialogue routine then rolls back to a higher-

level of the intent hierarchy, where the robot moves on with its intent of learning the next step (R4).

In R6, after two consecutive steps have been learned, the robot issues a reflection on what has been

learned so far, which triggers human’s following intent to teach an alternative order (H5).

Now we have introduced different types of AOG as the fundamental representations of the

physical world, task knowledge, and dialogue dynamics. Next we turn our focus to discussing how

we utilize these representations to build learning agents under a unified framework.

3.3 Learning from Situated Dialogue

Natural language and dialogue can play an important role in learning task knowledge from a

human. Language provides a key source of information to gear the learned knowledge towards

how humans conceptualize and communicate about situations and tasks. Such “human-oriented”

knowledge is very necessary for facilitating human-robot communication and collaboration (for

example, Lemon, Gruenstein, and Peters (2002)).

Furthermore, dialogue provides an expedited way to learn task knowledge. This can be demon-

strated by our earlier example of learning how to fold a t-shirt. After the robot reflected (in R6)

the just learned two steps (i.e., fold-right-sleeve and fold-left-sleeve), the human further taught that

the order of the two steps could be switched and it would result into the same status of perform-

ing the task (H5). With our AOG-based representation, the robot can add this new knowledge by

directly modifying the high-level structure of the STC-AOG (i.e., create new temporal and causal

Or-Nodes to represent this alternative sequence of actions and fluent changes). Using language

makes it much easier to communicate such high-level knowledge (Figure 3.3 illustrates the STC-
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Figure 3.3: The STC-AOG representation of task knowledge that can be learned from the previous
example dialogue of learning to fold a t-shirt. Note that the S-/T-/C- components are not indepen-
dent from each other. The interplay between them provides an integrated representation of the task
knowledge.

AOG representation that can be learned thereafter).

We thus propose an AOG-based framework to enable robot learning task knowledge from nat-

ural language and visual demonstration simultaneously. Supported by this framework, the robot

can also proactively engage in human’s teaching through dialogue, and gradually accumulate and

refine its knowledge. One key advantage of our proposed framework is to provide a unified view

of modeling the joint and dynamic task learning process. Besides, since we use AOG as a common

representation basis, different components of our model can be stored and accessed using the same

format (e.g., graph database), and be processed by the same set of algorithms. It thus can greatly

ease the burden of building complex AI agents.

Figure 3.4 illustrates the basic ideas of our task learning system. It mainly consists of three

tightly connected components that are all based on AOG representation and processing:

• Language and Vision Understanding processes the visual context into a “Vision Parse Graph”

(V-PG) and the linguistic context into a “Language Parse Graph” (L-PG), and fuses them to-

gether into a “Joint Parse Graph” (Joint-PG) for a deep and accurate understanding of the
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Figure 3.4: Illustration of our AOG-based framework for supporting robot learning from situated
dialogue.

current situation. A previous work [1] has employed the same AOG-based representations

for joint text and video parsing in the question-answering domain. The processing in our

component here resembles that work. However the linguistic content of a dialogue could

require more sophisticated approaches than those for handling monologues, and our goal is

to learn generalizable task knowledge rather than just understand one situation.

• World and Task Model manages the representation and acquisition of knowledge of the phys-

ical world and tasks. As introduced earlier, we use STC-AOG to represent general knowl-

edge about the world and the tasks, while a specific situation (i.e., a Joint Parse Graph) is

represented as an instantiation (or sub-graph) of the STC-AOG. Motivated by the Common

Ground theory [35], our agent maintains three copies of models. One is the human’s model

of the world and knowledge, which is inferred from the joint parsing of language and vision.

One is the agent’s own model, and the third one is their shared/matched understanding of

the situation and knowledge of the task (i.e., their common ground). In future work, we

will further extend these models towards modeling the “Theory of Mind” in human-robot

collaboration.

• Dialogue Modeling and Management uses CI-AOG to model and analyze the intentional
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structure of the task learning dialogue, and to facilitate the agent’s decision making in knowl-

edge acquisition and dialogue engagement. Our design of the situated dialogue agent also

resembles the classical theory on discourse modeling [41]. I.e., the intentional structure

is captured by a CI- Parse Graph (CI-PG) in our dialogue management component. The

linguistic structure in our case has been extended to the joint model of the linguistic and

visual contexts (captured as STC- Parse Graphs), and the shared knowledge (captured as

STC-AOG). The attentional state is captured by linking each node in the CI-PG to a specific

node/edge in the situation or knowledge representation graphs.

As the dialogue and demonstration unfold, the agent dynamically updates its intent, situation,

and knowledge graphs. Each component can utilize the information from others through the inter-

connections between their graph representations. Based on this unified framework, sophisticated

learning agents can become easier to be designed and built.

3.4 Conclusion

This chapter provides a brief overview of our on-going investigation on integrating language, vi-

sion, and situated dialogue for robot tasking learning based on And-Or-Graphs (AOG). In particu-

lar, through an example, it demonstrates how language and dialogue can be used to augment visual

demonstration by incorporating higher-level knowledge. Here we use cloth-folding as an example,

but the same framework can be extended to other types of task learning. We are currently in the

process of implementing the end-to-end system and plan to collect realistic data to evaluate our

approach.
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CHAPTER 4

Human Utility

One condition to pass the Knowledge Transfer Test is that a robot must score sufficiently well on

performing the intended task. If we train a robot on videos of people folding t-shirts, then evaluat-

ing the robot’s performance on folding the very same t-shirt may not be indicative of grasping the

more general concept of arbitrary cloth-folding.

The STC-AOG up until now has modeled a task only by memorizing action trajectories and

state-changes from human demonstrations. We now shift our focus to learning human utility, so

that the robot can model the task of folding general articles of clothing from just a few videos

of people folding t-shirts. The complete representation of a task is therefore both the STC-AOG,

which captures what fluents change based on what actions are taken, and the utility model, which

captures the value of changing fluents. The robot is driven by the utility landscape, in a non-

Markovian planning framework we call fluent dynamics.

4.1 Learning Human Utility from Video Demonstrations

Explicitly programming service robots to accomplish new tasks in uncontrolled environments is

time-consuming, error-prone, and sometimes even infeasible. In Learning from Demonstration

(LfD), many statistical models have been proposed that maximize the likelihood of observations

[32]. For example, Bayesian formulations [42] assume a prior model of the goal, and use Bayes’

Theorem to explain the relationship between the posterior and likelihood. These Bayesian formu-

lations learn a model of the demonstrated task most consistent with training data. Such approaches

are often referred to as inductive learning [43].

In contrast, robot autonomy was originally studied as a rule-based deductive learning system
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Figure 4.1: The utility landscape identifies desired states. This one, in particular, is trained from
45 cloth-folding video demonstrations. For visualization purposes, we reduce the state-space to
two dimensions through multidimensional scaling (MDS). The canyons in this landscape represent
wrinkled clothes, whereas the peaks represent well-folded clothes. Given this learned utility func-
tion, a robot chooses from an available set of actions to craft a motion trajectory that maximizes its
utility.

[44, 45]. There is a paradigm shift in applying inductive models to deduction based inference.

In this chapter, we explore a middle-ground, where deductive rules are learned through statistical

techniques.

Specifically, we teach a robot how to fold shirts through human demonstrations, and have it

reproduce the skill under both different articles of clothing and different sets of available actions.

Our experimental results show good performance on a two-armed industrial robot following causal

chains that maximize a learned latent utility function. Most importantly, the robot’s decisions are

interpretable, facilitating immediate natural language description of plans [13].

Human preferences are modeled by a latent utility function over the states of the world. To

rank preferences, we pursue relevant fluents of a task, and then learn a utility function based on

these fluents. For example, Figure 5.1 shows the utility landscape for a cloth-folding task, obtained

through 45 visual demonstrations.

The utility landscape shows a global perspective of candidate goal states. To close the loop with

autonomous behaviour, we further design a dynamics equation to connect high-level reasoning to

low-level motion control. The primary contributions of our work include:

37



1. Learning an interpretable utility of continuous states, independent of system dynamics.

2. Deductively exploring goal-reachability under different available actions.

3. Proposing “Fluent Dynamics” to bridge low-level motion trajectory with high-level utility.

4. Teaching a robot to fold t-shirts, and have it generalize to arbitrary articles of clothing.

4.2 Related Work

Modeling and Learning Human Utility: Building computational models for human utilities

could be traced back to the English philosopher, Jeremy Bentham, in his works on ethics known

as utilitarianism [46]. Utilities, or values, are also used in planning schemes like Markov decision

process (MDP) [47], and are often associated with states of a task. However, in the literature

of MDP, the “value” is not a reflection of true human preference and, inconveniently, is tightly

dependent on the agent’s actions.

Zhu, Jiang, Zhao, Terzopoulos, and Zhu [48] first modeled human utilities over physical forces

on tools, and proposed effective algorithms to learn utilities from videos. Our work differs in 4

ways: 1) we generalize the linear SVM separator (“rankSVM”) so that the utility of each individual

fluent is dictated not by a “weight” but instead a non-linear utility function; 2) relevant fluents are

pursued one-by-one from a large dictionary; 3) we learn from external fluents, such as states of

the world, instead of internal fluents, such as states of the agent; 4) the utility function drives robot

motion.

Inverse Reinforcement Learning: Inverse reinforcement learning (IRL) aims to determine

the reward function being locally optimized from observed behaviors of the actors [49]. In the

IRL framework, we are satisfied when a robot mimics observed action sequences, maximizing

the likelihood. Hadfieldmenell, Dragan, Abbeel, and Russell [50] defined cooperative inverse

reinforcement learning (CIRL), which allows reward learning when the observed behaviors could

be sub-optimal, based on human-robot interactions. In contrast to IRL or CIRL, our method does
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not aim to reproduce action sequences, nor is our approach dependent on the set of possible actions.

It avoids the correspondence problem in human-robot knowledge transfer by learning the global

utility function over observed states, rather than learning the local reward function from actions

directly. Furthermore, our work avoids the troublesome limitations of subscribing to a Markov

assumption [51, 52].

Robot Learning from Demonstrations: Learning how to perform a task from human demon-

strations has been a challenging problem for artificial intelligence and robotics, and various meth-

ods were developed trying to solve the problem [53]. Learning the task of cloth-folding from hu-

man demonstrations, in particular, has been studied before by Xiong, Shukla, Xiong, and Zhu [34].

While most of the existing approaches focus on reproducing the demonstrator’s action sequence,

our work tries to model human utilities from observations, and generates task plans deductively

from utilities.

4.3 Model

Definition 1. Environment: The world (or environment) is defined by a generative composition

model of objects, actions, and changes in conditions [14]. Specifically, we use the stochastic

context-free And-Or graph (AOG), which explicitly models variations and compositions of spatial

(S), temporal (T ), and causal (C) concepts, called the STC-AOG [34].

The atomic (terminal) units of this composition grammar are tuples of the form (Fstart, u[1:t], Fend),

where Fstart and Fend are pre- and post-fluents of a sequence of interactions u[1:t]. Concretely, the

sequence of interactions u[1:t] is implemented by spatial and temporal features of human-object

interactions (4D HOI) [54]. See definition 9.

Definition 2. State: A state is a configuration of the believed model of the world. In our case, a

state is a parse-graph (pg) of the And-Or graph, representing a selection of parameters (ΘOR) for

each Or-node. The set of all parse-graphs is denoted Ωpg.

Definition 3. Fluent: A fluent is a condition of a state that can change over time [55]. It is
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represented as a real-valued function on the state (indexed by i ∈ N): fi : Ωpg → R.

Definition 4. Fluent-vector: A fluent-vector F is a column-vector of fluents: F = (f1, f2, ..., fk)
ᵀ.

Definition 5. Goal: The goal of a task is characterized by a fluent-change 4F . The purpose of

learning the utility function is to identify reasonable goals.

4.3.1 Utility Model

We assume human preferences are derived from a utilitarian model, in which a latent utility func-

tion assigns a real-number to each configuration of the world. For example, if a state pg1 has a

higher utility than another state pg2, then the corresponding ranking is denoted pg1 � pg2, imply-

ing the utility of pg1 is greater than the utility of pg2.

Each video demonstration contains a sequence of n states pg0, pg1, ..., pgn, which offers
(
n
2

)
=

n(n−1)/2 possible ordered pairs (ranking constraints). Given some ranking constraints, we define

an energy function by how consistent a utility function is with the constraints.

The energy function described above is used to design its corresponding Gibbs distribution.

In the case of Zhu and Mumford [56], a maximum entropy model reproduces the marginal dis-

tributions of fluents. Instead of matching statistics of observations, our work attempts to model

human preferences. We instead use a maximum margin formulation, and select relevant fluents by

minimizing the ranking violations of the model. The specific details of this preference model is

described below.

4.3.2 Minimum Violations

Let D = {f (1), f (2), ...} be a dictionary of fluents, each with a latent utility function λ : R → R.

Using a sparse coding model, the utility of a parse-graph pg is estimated by a small subset of

relevant fluents F = {f (1), f (2), ..., f (K)} ⊂ D. Denote Λ = {λ(1)(), λ(2)(), ..., λ(K)()} as the

corresponding set of utility functions for each fluent in F . For example, 12 utility functions learned

from human preferences are shown in Figure 5.3, approximated by piecewise linear functions. The
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Figure 4.2: (a) The 12 curves represent the negative utility function (−λ) corresponding to each
fluent. The functions are negated to draw parallels with the concept of potential energy. Red
marks indicate fluent values of pg0, which the learned model appears to avoid, and the green marks
indicate fluent values of the goal pg∗, which the learned model appears to favor. Notice how the y-
symmetry potential energy decreases as the cloth becomes more and more symmetric. By tracing
the change in utilities of each individual fluent, the robot can more clearly explain why it favors one
state over another. (b) The ranking pursuit algorithm extracts fluents greedily to minimize ranking
violations. As shown in the chart, the top 3 most important fluents for the task of cloth-folding are
height, width, and y-symmetry.

41



total utility function is thus,

U(pg; Λ, F ) =
K∑
α=1

λ(α)(f (α)(pg)) (4.1)

Of all selection of parameters (Λ) and fluent-vectors (F ) that satisfy the ranking constraints, we

choose the model with minimum ranking violations. In order to learn each utility function in Λ,

we treat the space of fluents as a set of alternatives [57]. Let R denote the set of rankings over the

alternatives. Each human demonstration is seen as a ranking σi ∈ R over the alternatives. We say

a �σi b if person i prefers alternative a to alternative b. The collection of a person’s rankings is

called their preference profile, denoted ~σ.

Each video v provides a preference profile ~σv. For example, we assume at least the following

ranking: pg∗ �σv pg0, where pg0 is the initial state and pg∗ is the final state. The learned utility

functions try to satisfy U(pg∗) > U(pg0).

U is treated as a ranking score: higher values correspond to more favorable states. We want

to model the goal of a task using rankings obtained from visual demonstrations. The goal model,

or preference model, of a parse-graph pg takes the Gibbs distribution of the form, p(pg; Λ, F ) =

1
Z
eU(pg;Λ,F ), where U( · ; Λ, F ) is the total utility function that minimizes ranking violations:

min
K∑
α=1

∫
x

λ′′(α)dx+ C
∑
v

ξv

s.t.
∑
α

(
λ(α)(f (α)(pg∗v))− λ(α)(f (α)(pg0

v))
)

> 1− ξv,

ξv ≥ 0.

(4.2)

Here, ξv is a non-negative slack variable analogous to margin maximization. C is a hyper-parameter

that balances the violations against smoothness of the utility functions [58]. Of all utility functions,

we select the one which minimizes the ranking violations. The next section explains how to select
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the optimal subset of fluents.

4.3.3 Ranking pursuit

The empirical rankings of states pg∗ � pg0 in the observations must match the predicted ranking.

We start with an empty set of fluents F = {}, and select from the elements of D that result in the

least number of ranking violations.

This process continues greedily until the amount of violations can no longer be substantially

reduced. Figure 5.3 shows empirical results of pursuing relevant fluents for the cloth-folding task.

The dictionary of initial fluents may be hand-designed or automatically learned through statistical

means, such as from hidden layers of a convolutonal neural network.

4.3.4 Ranking Sparsity

The number of ranking pairs we can extract from the training dataset is not immediately obvious.

For example, each video demonstration supplies ordered pairs of states that we can use to learn a

utility function. A sequence of n states (pg0, pg1, ..., pgn) allows
(
n
2

)
= n(n− 1)/2 ordered pairs.

On one end of the spectrum, which we call sparse ranking, we know at the very least that

pgn � pg0 for each demonstration. This is a safe bet since each video demonstration is assumed to

successfully accomplish the goal. However, the utility model throws out useful information when

ignoring the intermediate states.

On the other end, in dense ranking, all
(
n
2

)
are used. Despite using all information available,

this approach may be prone to introducing many ranking violations.

Figure 4.3 visualizes performance of both approaches as we increment the number of available

video demonstrations.
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Figure 4.3: The sparse and dense ranking models are evaluated by how quickly they converge and
how strongly they match human preferences. The x-axis on each plot indicates the number of
unique videos shown to the learning algorithm. The y-axis indicates two alternatives (1 vs. -1) for
7 decisions (A, B, C, D, E, F, and G) of varying difficulty. The horizontal bar-charts below each
plot show comparisons between human and robot preferences. As more videos are made available,
both models improve performance in convergence as well as alignment to human preferences (from
330 survey results).
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4.4 Utility-Driven Task Planning

The learned utility function is used to drive robot behavior. In order to perform low-level motion

control in the real world, the robot needs a concept of what actions are possible in the observed

state. First, we explicitly define the concept of relevant fluents, and then use it to describe the

preconditions of an action.

Definition 6. Relevant fluent: A fluent-vector might contain irrelevant fluents for an action. The

relevant fluents of an action are a subset of a fluent-vector, described using an element-wise mul-

tiplication of a binary vector w by the fluent-vector, w ◦ F = WF , where W is a diagonal matrix.

Definition 7. Action: An action sequence u[1:t] causes a change in fluents given a precondition.

The precondition of an action depends on relevant fluents Wu as well as a representative example

pgu. Let θ = (Wu, pgu) denote these parameters. The precondition is a probability P (X =

pg | u; θu) over a random variable X ∈ Ωpg.

A tuple of (Fstart, u[1:t] , Fend) is used to construct the compositional model of the environment.

The energy of a pg is computed by comparing the difference between the relevant fluents of the

observationWpg to the relevant fluents of the actionWpgu, Cost(pg; Wu, pgu) = ||Wu(pg−pgu)||.

4.4.1 Representing what, how, and why

Fluents provide information on the utility of the state. Therefore, a robot can identify a fluent-

change4F to maximize its utility, explaining why it acts. Figuring out how to achieve the fluent-

change requires the robot to accomplish a sequence of interactions between itself and the environ-

ment, which we call the union space. Interacting with the environment requires the robot to be

aware of the span of its own actuators, called the actuator space, where it identifies what joints

move.

The three spaces are tightly coupled, and can be used to perform real-time robot executions.

We explain each space separately, and then provide a unified dynamics formulation for robot task

planning.
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Definition 8. Actuator Space: We characterize a robot actuator by its η degrees-of-freedom. The

actuator space ΩA is a set of all valid η-dimensional vectors. At any point in time, a robot can be

represented as a point in this space, a ∈ ΩA ⊂ Rη.

For example, our robot platform is represented by a 16-dimensional vector, since each arm has

7 joints and an open/close grasp-status for each hand. As the robot moves in the real-world, this

16-dimensional point drifts in the actuator space.

Definition 9. Union Space: The interactions between an agent and object are jointly interpreted in

what we call the union space ΩU . The distance between an agent’s end-effector and the midpoint

of an object is one such example. These computed values depend of the current actuator position,

u(a) ∈ ΩU . The table below shows a possible 12-dimensional vector in the union space.

# Feature Agent Object

1 distance left end-effector cloth

2-5 θx, θy, θz, θw left end-effector cloth

6 grasp status left end-effector N/A

7 distance right end-effector cloth

8-11 θx, θy, θz, θw right end-effector cloth

12 grasp status right end-effector N/A

Examples of rows in this table include, but are not limited to, distance and orientation between

an end-effector and an object. Clearly, a robot adjusting its position in the actuator space affects its

position in the union space. A sequence of such vectors in the union space causes a fluent change.

Inferring how fluents change from a trajectory in the union space is given as a hierarchical task

plan (see Definition 1) by the domain expert. Further causal relationships are gathered through

exploration, but a deeper investigation in learning causality is beyond the scope of this chapter.

Definition 10. Fluent Space: A fluent space ΩF is the set of all possible fluent vectors F . A

sequence of vectors from the union space u[1:t] causes the value of the fluent vector to change,

F (u[1:t]) ∈ ΩF .
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Figure 4.4: After clustering fluent-changes from the training videos, 11 actions are automatically
captured. Each action is shown by 2 matrices: Finit and 4F . The rows of the matrix correspond
to a concrete example. The columns of the matrix correspond to the various fluents. The robot can
understand the relevant fluents associated per each action.
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4.4.2 Fluent Dynamics

Influenced by previous work [59] in specifying robot behavior independently of its actuators, this

chapter proposes a control formulation to unify low-level mechanics with high-level preference.

In deductive planning, the optimal selection of actions achieves a goal with minimum cost. We

define the cost of a sequence of actions V (a[1:t]) by the utility of the resulting fluent-vector. With

that in mind, the robot must use its available actionable information to maximize utility, a∗[1:t] =

arg maxa[1:t] V (a[1:t]). Optimal action sequences will satisfy ∂V/∂a[1:t] = 0. The gradient of V

with respect to a[1:t] can be computed using the chain rule,

∂V

∂a[1:t]

=
∂V

∂F

∂F

∂u[1:t]

∂u[1:t]

∂a[1:t]

(4.3)

The first factor ∂V/∂F comes immediately from the utility learning section of this chapter. The

second factor ∂F/∂u[1:t] is solved using the assumed And-Or compositional model of the world, as

explain in Definition 1. And lastly, inverse kinematics and optimal control methods directly solve

∂u[1:t]/∂a[1:t] [59].

The trajectory Γ between two robot states is arg mina[1:t]
∑

a[1:t]
|V (a[1:t]) · 4a[1:t]| [60].

The optimal trajectory of actions to achieve the highest value is estimated using beam-search

and dynamic programming. Sub-goal reachability is automatically solved through the Confident

Execution algorithm in [61] as shown in Figure 4.4.

4.5 Implementation and Experimental Results

We learn our utility function from 45 RGB-D (pointcloud) video demonstrations of t-shirt folding.

This dataset splits into 30 for training and 15 for testing. The videos were recorded on a separate

Kinect camera at a different orientation in a separate setting by different people.

At each frame, the vision processing step segments the cloth using graph-based techniques on

the 2D RGB image [29, 30], and then the extracted 3D cloth pointcloud is aligned to its principal
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axis. Next, we extract fluents from the pointcloud being tracked. Examples of a couple fluents in-

clude width, height, thickness, x-symmetry, y-symmetry, and the 7 moment invariants [62]. Width,

height, and thickness are calculated in meters, after aligning the segmented pointcloud to its prin-

cipal axis. X-, and y-symmetry scores are calculated by measuring the symmetric difference of

folding the segmented pointcloud on the first two principle axes. The Hu-moments are calculated

on the binary mask of the cloth.

We extract both automatic and hand-designed fluents to obtain a training dataset X to pursue

relevant fluents and obtain an optimal ranking. Each utility function is approximated by a piecewise

linear function. The vision processing code, ranking pursuit algorithm, and the RGB-D dataset of

cloth-folding are open-sourced on the author’s website 1.

We cross-validate the fitting of the learned utility model to ensure generalizability to the other

training videos. Furthermore, we perform external evaluations on 330 individuals to compare how

well the learned preference model matches human judgement. In this survey, each human was

asked to make a decision on 7 choices after being told, “A robot attempts to fold your clothes. Of

each outcome, which do you prefer?”

The qualitative comparisons between human and robot preferences is shown in figure 4.3.

Overall, our model quickly converges to human preferences (within 27 videos in the sparse ranking

model and just 5 videos in the dense ranking model).

To further evaluate how effectively the learned utility function assists in deductive planning,

we conduct a series of experiments on a robot platform. We solve the three factors in the dynamics

equation independently. The learned utility function gives us the first factor ∂V/∂F , the STC-AOG

units provide the second factor ∂F/∂au[1:t] , and an off-the-shelf inverse kinematics library solves

∂u[1:t]/∂a[1:t].

In the experiments, the robot is presented with a never-before-seen article of clothing, and

asked to identify a goal, plan an action sequence to achieve that goal, predict the utility gain, and

then perform the plan to compare against actual utility gain. Figure 4.5 shows how well the robot’s

1https://github.com/BinRoot/Fluent-Extractor

49

https://github.com/BinRoot/Fluent-Extractor


Figure 4.5: Robot task execution is evaluated in two ways. First, we measure how well the robot
can predict the increase in utility through deductive reasoning compared to ground truth by having
a human perform the same action. Second, we compare the prediction to actual utility gain after
executing the action sequence using Fluent Dynamics. Our experiments show strong generaliz-
ability to other articles of clothing, even though the training videos only contained t-shirt folding
demonstrations. As shown above, the robot can detect execution failure when folding shorts by
detection an anomaly in actual vs. predicted utility gain.

performance matches both its own predictions as well as the ground truth.

4.6 Conclusions and Future Work

The learned utility model strongly matches preferences of 330 human decisions, capturing the

commonsense goal. The inferred action plan is not only interpretable (why, how, and what), but

also performable on a robot platform to complete the learned task in a completely new situation.

In future work, we would like to incorporate social choice theory [63], understand inconsistencies

between human preferences [64], and learn fluents automatically using neural techniques [65].
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CHAPTER 5

Unified Representation of Tasks

If the STC-AOG is additionally given read/write access to fluents, then we can craft a structure that,

when run on a robot, can simulate a Turing machine. Consequently, we reinterpret the graphical

data-structure of the STC-AOG as a probabilistic programming language, and show how such a

language can be used to model tasks in a variety of domains. We also go a step further, and

synthesize code in this language from few observations.

We coin the term task-oriented programming language, and show how it can elegantly model

tasks by defining an action-space and utility. The AOG data-structure inherent in the abstract

syntax tree of a task-oriented programming language can leverage much of the AOG literature

(learning, inference, parsing, synthesis, etc.).

5.1 Model

Unlike a Markov Decision Process (MDP) [66, 67], our framework assumes at least a context-

sensitive model: the next action depends on both the observed state as well as the unobserved

context. While it is possible to regard both the state and context as one hyper-state, doing so defeats

the tractability of the Markov assumption. Following situation calculus convention, we regard the

aforementioned hyper-state as the situation [68], while we regard the currently observable state as

the observation.

Definition 11 (Observation). Each observation o ∈ Ωo carries some information about sensory

signals at that point in space and time. Examples of observations include: (1) there is a wrinkled

article of clothing on a table right now from my perspective, (2) the user said the utterance “hello”
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just now, and (3) the value of the variable x is currently 3.

Definition 12 (Situation and Action). A situation s is the series of actions ~a taken from an initial

situation s0 [69]. The notation do(a, s) applies an action a to a situation s, resulting in a new

situation s′. The composition of actions may be written as a′′ ◦ a′ ◦ a or a sequence (a, a′, a′′).

Definition 13 (Fluent). A fluent is a function where the last argument is a situation. Traditionally,

fluents are predicate functions: box_on_table(s), on_table(box, s), or on(table,box,s).

We extend the range to take on any real-value: num_boxes_on_table(s) ∈ R. A set of fluents

is denoted F = {f (α)}α∈{1,...,k}, whereas a fluent-vector is denoted by:

~F (s) =



f (1)(s)

f (2)(s)

...

f (k)(s)


(5.1)

Definition 14 (Internal Fluents and Internal Actions). All fluents accessible to an agent may be

thought of as internal, or cognitive, instead of physical. Correspondingly, actions that change

internal fluents are called internal actions. For example, let σ : Ωo → Ωa be a function that extracts

internal actions from observations. Then, σ is akin to “sensing” the environment, and updating an

internal fluent. Therefore, the cognitive state (i.e. internal fluents) of an autonomous agent may

diverge from physical reality.

Theorem 1 (Fluent-change). Internal fluent change due to actions. Proof : An action a at a situa-

tion s leads to a new situation s′ = do(a, s). Since a fluent is a function on a situation, a changing

situation affects the fluent.

Definition 15 (Action Pattern). As shown in equation 5.2, we introduce a function A which we

call an action pattern, that depends on both the situation and the next observation.

A(s, o; a) := do(a ◦ σ(o), s) = s′ (5.2)
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Figure 5.1: The utility landscape visualizes rankings of spatial configurations. Multiple cloth-
folding demonstrations are parsed from videos, and each cloth is represented by a 14-dimensional
vector of fluents. In this figure, we reduce the dimensionality for visualization using MDS, where
the z-axis indicates the utility. After watching human demonstrations, the wrinkled states of a
cloth end up with low utility, while well-folded clothes have high utility. The black arrow on the
landscape traces the clothing situation during a single video demonstration.

Assume observations are not deterministic, but instead sampled from a probability distribution

over the set of all observations Ωo given a situation s. An action pattern generates atomic actions:

{~a | ~a← A(s, o), o ∼ P (Ωo|s)} (5.3)

We say a task is resolved by identifying a sequence of actions ~a that achieve the goal. The goal

may not be unique or even well-defined, so we instead use the term utility to measure preference

of being at a situation.

Definition 16 (Utility). The utility V̂ is a function on the situation s, but for computational reasons,

we assume the utility depends only on the relevant fluents ~F (see equation 5.4). Figure 5.1 shows

a visualization of the utility landscape of clothes for a cloth-folding task.

V̂ : Ωs → R

V : ~F (s) 7→ v ∈ R
(5.4)

As discussed earlier, the modelM of a task is characterized by a stochastic context-sensitive
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grammar G of valid actions and the utility function V .

M = 〈G,V〉 (5.5)

Learning both the grammar and the utility are sufficient for deductive task-planning. We ex-

amine the likelihood of the model satisfying observations O in equation 5.6.

P (M|O) = P (G,V|O)

= P (G|O) P (V|O,G)

(5.6)

5.1.1 Model of utility V

If situation sa is preferred over sb, we denote it by sa � sb. An ideal ranking functionR : Ωs → R

ranks situations, such that sa � sb ⇒ R(sa) > R(sb). On the other hand, a utility function V

introduces a slack variable ξ > 0:

V(sa)− V(sb) > 1− ξ (5.7)

Let D = {f (1), f (2), ...} be a dictionary of fluents, each with a latent potential function λ :

R → R. Using a sparse coding model, the utility of a situation is estimated by a small subset of

relevent fluents F = {f (1), f (2), ..., f (k)} ⊂ D and the corresponding set of potential functions

Λ = {λ(1), λ(2), ..., λ(k)}.

V(s; Λ, F ) =
k∑

α=1

λ(α)(f (α)(s)) (5.8)

The fluents F are pursued one-by-one fromD to minimize ranking violations ξ. Each potential

function is approximated by a piece-wise-linear function with smoothness
∫
x
λ′′(α)dx taken into

account [70, 71, 64].
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5.1.2 Model of possible actions G

Since actions are hierarchical in nature and long-term plans require foresight, we employ a stochas-

tic context-sensitive grammar. Such generative models typically apply production rules defined in

a graphical network. We outline below the graphical structure and semantics, based on the At-

tributed And-Or Graph (AOG) representation [8, 72].

Definition 17 (Attributed And-Or Graph). A graph with access to fluents F (sometimes called

attributes) and the following properties about its nodes (N ) and edges (E).

• There are 3 types of nodes, denoted by sets N = NAND tNOR tNTERMINAL.

• Each non-terminal node triggers a production rule.

– The production rule for AND-nodes, ρAND, decomposes the node N into disjoint child

nodes (the set of child nodes that descend from N is denoted Ch(N)):

ρAND : N → (Ch(N), Ch(N)) (5.9)

– The OR production rule decides a child given fluents:

ρOR : (N, ~F )→ Ch(N) (5.10)

• The terminal nodes n ∈ NTERMINAL may modify the fluent attributes F .

An action pattern A models hierarchical compositions and variations of atomic actions. The

actions a ∈ Ωa are the terminal nodes of A. Shown below is a simple And-Or graph that may

model A = {(a(0), a(1)), (a(0), a(2)), ...}. An AND-node is indicated by a curved line that bridges

its children. A TERMINAL-node is indicated by a rectangle.
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A

a(0) O

a(1) a(2) a(...)

The graph G is constructed by n disjoint subgraphs A1, ..., An. Each A is an action-pattern

that represents a stochastic composition of atomic actions. Let H ⊂ G be the remaining graph

structure, and let F be the set of fluents. Then, the following characterizes the graph.

G = 〈A1, A2, ..., An, H, F 〉 (5.11)

G

Q

A(0) A(1) A(...)

G

⊥

The production rules for OR-nodes depend on the fluents. For example, the node labelled Q is

an OR-node, which selects an action patternA, but this selection depends on the current assignment

of fluents F . Performing an action sequence causes fluents to change, which in turn changes the

behavior of Q.

Theorem 2 (Turing Complete). In the supplementary material we provide an implementation of

the Rule 110 automaton [73] to prove this mechanism is Turing Complete.

Definition 18 (Policy). We define policy as a function Q : s 7→ A that maps a situation s to an

action pattern A.
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5.1.3 Planning

Influenced by previous work [74, 75] in decoupling utility from actions, this chapter proposes a

control formulation to unify low-level mechanics with high-level preference. In deductive plan-

ning, the optimal selection of actions achieves a goal with minimum cost. We define the cost

of a sequence of actions by the change in potential energy (i.e. utility of resulting situation) and

kinetic energy (i.e. action cost). With that in mind, an agent must use their available actionable

information to maximize utility,

An action a is instantiated by some concrete implementation u. For example, the dialogue

action to say a “greeting” may be the utterance “hi there!”. As another example, the robot action

to move an arm from one point to another may be implemented by inverse kinematics. An agent

performs a series of motions u[1:t] to maximize expected utility V while minimizing energy K,

u∗[1:t] = arg maxu[1:t]
(
V(st) − V(s0) −K(u[1:t])

)
. The critical points may be found by taking the

partial derivative of the utility. Using the chain rule, we factor the dynamics equation into 3 parts,

shown below.

∂V
∂u[1:t]

=
∂V
∂F

∂F

∂a[1:t]

∂a[1:t]

∂u[1:t]

(5.12)

This allows us to study the utility-function V without considering the And-Or Graph G structure

of how actions cause fluents to change.

5.2 Experiments & Results

We perform three sets of experiments to cover the various types of internal actions, and study each

of them more concretely under the same task-oriented programming language.

1. Mathematical Actions - theorems driven by axioms. For example, incrementing an integer

x is the action x← x+1. This increment action may repeat arbitrary number of times. With

just a few valid mathematical operations, we can implement the greatest common divisor
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(GCD) algorithm, as shown in Section 5.2.1.

2. Empirical Actions - patterns of reproducible measurements. For example, folding an article

of clothing in half changes fluents. However, repeating that action may change the fluents in

unpredictable ways, due to the nature of real-world interactions. We experiment with mod-

elling a cloth-folding task on a robot in section 5.2.2; furthermore, we learn an interpretable

task-model from few observations in section 5.2.2.

3. Cognitive Actions - mental mechanics. For example, remembering that a customer in a

bakery wants a particular cake may be indicated by flavor ← “chocolate”. The rules for

when or how actions may be set is very flexible. We show how to incorporate modelling

cognition into our framework in section 5.2.3; and lastly, learn an interpretable chat-bot

policy from few observations in section 5.2.3.

The modelM = 〈G,V〉 specifies the possible actions G and the utility V , which are represented

using a programming language whose grammar is specified in A [76]. The corresponding inter-

preter of this language is provided in the supplementary materials; therefore, we may interchange

the words model and code. Then, inference is the process of running the code M, and learning

is the process of synthesizing code from few training examples. The following subsections walk

through these three practical domains.

5.2.1 Mathematical Actions (Applied to Constraint Solving)

The greatest common divisor (GCD) of two numbers is the largest number that evenly divides both

of them. For example, the GCD of 8 and 12 is 4. Algorithm 1 is a well-known implementation of

GCD using traditional programming notions.

Although the Euclidean Algorithm is both succinct and efficient, it is not immediately intuitive.

An algorithm trace reveals that there are only 2 instructions that modify variables: a← a− b (line

4) and b ← b − a (line 6). Since we’re interested in a way to implement GCD without needing to

be an expert in the domain, we take note of all actions that may change variables, and list them out.
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Algorithm 1 Euclidean Algorithm for Greatest Common Divisor
1: procedure GCD(a, b)
2: while a 6= b do
3: if a > b then
4: a← a− b
5: else
6: b← b− a
7: end if
8: end whilereturn a
9: end procedure

The set of relevant actions together with a utility function on situations defines the GCD procedure,

shown in Algorithm 2, which is implemented using the syntax from A.

Running a solver on Algorithm 2 is not as computationally efficient; however, the programming

language allows for easy modifications. For example, by changing the utility definition (lines 5-

10), we can intuitively change the GCD procedure to instead solve for the least common multiple

(LCM) of a and b, as shown in Algorithm 3.

By only changing the utility, we were able to reprogram the algorithm to perform a different

task. This toy-example illustrates how we may begin to think about solving problems in other

domains, such as robot cloth-folding or virtual chat-bot.

5.2.2 Empirical Actions (Applied to Robot Folding Clothes)

An artificial agent must first identify the goal of a task in order to evoke a series of actions to

achieve it. Autonomous planning traditionally requires that a domain-expert manually define a

heuristic-, fitness-, or loss-function to estimate progress towards the goal. As such, the utility

of a situation ends up depending on hand-designed representations of the state space, such as

propositional variables. We refer to such interpretable time-varying features as fluents.

In practice, the modeling of human utilities for achieving a task hinges critically upon the

choice of relevant fluents. In fact, with appropriate fluents (i.e. with a suitable representation of the

data and the state) planning becomes easy, almost trivial. With the wrong fluents, generalization

of plans to novel situations becomes intractable, perhaps even impossible. If we represent video
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Figure 5.2: From tracking 16 keypoints on an article of clothing, there is no shortage of geometric
relationships. Some may be less interpretable than others, but nothing is completely out of bounds
of human interpretability.

demonstrations of a task through Fourier amplitude spectra or even autoencoder hidden states, the

task might be learnable due to the comprehensive representation, but the correlation to human

preferences is vague at best. In general, robust, accurate, and interpretable extraction of fluents is

a crucial and difficult problem in modeling tasks.

We tackle the problem by first preprocessing our dataset in the following manner.

1. Normalize perspective - Geometric relationships are sensitive to the camera angle, so we

transform the images such that the cloth appears to be seen from a top-down perspective.

Given four points on the table, we calculate a transformation matrix to shift them to the four

corners of the image. The same transform technique is applied across different images.

2. Obtain binary mask - Once the perspective has been warped, we begin to create a binary

mask of the shirt. We start by segmenting the image and taking the largest contour to obtain

a refined mask using the GrabCut algorithm [30].

3. Extract 16 keypoints - From the outer bounding box of the clothing, we identify points on

the its contour by their four cardinal directions (e.g. North, South, East, West), the four

intercardinal directions (e.g. North-East, etc.), and eight more divisions (e.g. North-North-

East, etc.).

The keypoints enable many types of geometric relationships, as shown in figure 5.2. For in-
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stance, the distance between the left-most and the right-most points may indicate the shirt’s width,

which is an interpretable fluent. There are thousands of fluents generated by the 16 keypoints (with

4 additional bounding box extrema points), and selecting the relevant ones is like finding a needle

in a haystack. First, in section 5.2.2, we represent robot cloth-folding in our language, then in

section 5.2.2 we simultaneously learn the utility function and relevant fluents.

Inference

We run the cloth-folding task experiments on a two-armed industrial robot. Each arm consists of

7 degrees of freedom that are manipulated through inverse kinematics relative to the robots frame

of reference. Algorithm 4 outlines how to encode the task of cloth-folding in an interpretable way.

The utility and do functions in the algorithm are defined externally. Results are summarized

in figure ??.

Learning

Given 45 videos of people folding clothes using different techniques, we model the utility func-

tion[77, 78]. The Ranking Pursuit algorithm, outlined in section 5.1.1, pursues from a medley

of fluents one-by-one in a greedy fashion to minimize pair-wise ranking violations in the training

dataset. Each fluent utility λ is estimated by a piecewise linear function. Once a handful of flu-

ents are selected from this huge dictionary, we save the model parameters (Λ, F ) for inference.

Figure 5.3 shows our experiments in further detail.

We further evaluate our utility model against a similar framework called Inverse Reinforcement

Learning (IRL). IRL is the process by which a reward function is recovered from demonstrations

in a Markov Decision Process[67]. Specifically, we show the value-function in IRL is inferior to

our ranking-based utility-function.

In order to prepare the data for use in the maximum entropy formulation of IRL[79], we first

cluster the states (with K-Means). These cluster centroids discretize the possible folded states of

the clothes. We construct a modified version of the gridworld MDP by normalizing this data, then
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Figure 5.3: (a) The 12 curves represent the negative utility function (−λ) corresponding to each
fluent. The functions are negated to draw parallels with the concept of potential energy. Red
marks indicate initial fluent values, which the learned model appears to avoid, and the green marks
indicate fluent values of the ending fluent values, which the learned model appears to favor. Notice
how the y-symmetry potential energy decreases as the cloth becomes more and more symmetric.
By tracing the change in utilities of each individual fluent, the robot can more clearly explain
why it favors one state over another. (b) The ranking pursuit algorithm extracts fluents greedily
to minimize ranking violations. As shown in the chart, the top 3 most important fluents for the
task of cloth-folding are height, width, and y-symmetry, which are inferred from the geometric
relationships.
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pass the action trajectories into IRL to find the reward function. Once we have the reward function,

we attempt to recover the value for each state space. The sum of the rewards up to and including

the state is calculated by multiplying the reward of the state by a discount factor (0.9) to the power

of the time step, averaged over the number of paths that traverse that state.

We ultimately must limit this to the observed trajectories, as it is computationally unfeasible

to calculate every single path. For a 20x20 gridworld problem, the number of possible paths is

lower bounded by
(

40
20

)
, or 137 billion. Given other possible actions, start states, and end states,

the number of paths exponentially increases. While we can apply our knowledge of cloth-folding

to restrict the state and action spaces, we cannot make general assumptions due to the nature of

varying domains. The issue, then, with this method is that only those states and actions seen in

the expert demonstrations are considered. This is in contrast to our ranking-based utility-model,

which is capable of considering states and actions regardless of whether or not they appeared in

our demonstrations.

Inverse Reinforcement Learning potentially regards intermediate states with higher reward val-

ues than the final state. This can occur anytime the same state is shared by multiple action trajecto-

ries. As a result, the reward function cannot be used by our fluent dynamics framework to suggest

plans. As seen in Figure 5.4, this reward relationship is capable of throwing off the utility of the

final state, such that the utility is improperly considered to be lower than a previous state. During

task planning, our agent would then attempt to end at the previous state, never actually reaching

the true goal state.

Although IRL’s limitations in dimensionality have been mitigated by recent work in high-

dimensional function approximation, the issue of needing a well-defined action set is a persistent

weakness [80, 81]. The time complexity of function approximation in continuous high dimensional

state spaces still scales linearly with the cardinality of the action set, showing the intertwined nature

of the action set and IRL utility learning.
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Figure 5.4: The learned reward R and value V show the limitations of using IRL for learning a
utility over states for long-term planning scenarious such as cloth-folding. From the toy example
on the right, we see that an intermediate step may be regarded higher value than the final step.

5.2.3 Cognitive Actions (Applied to Chat-bot Selling Items)

In this last set of experiments, we further emphasize the universality of the representation by apply-

ing the language to a chat-bot domain. In section 5.2.3, we first take a look at how a content-writer

might author dialogue policies to craft interactive experiences. Then, in section 5.2.3, we show

how to learn dialogue policies from a couple transcripts, so that dialogue policies may be gener-

ated automatically.

Inference

Based on work by Morbini et al. [82], we implement a goal-oriented chat-bot responsible for selling

baked goods at a store. The dialogue policy, written in our language, is supplied in B. Our chat-bot

behaves identically to its reference implementation. More interestingly, in the next section, we will

synthesize the dialogue policy from few examples.
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Figure 5.5: Each parse-graph (pg) is extracted from a dialogue transcript, and all-together merged
into an AOG. OR-nodes, shown by a dotted circle, represent when the system is listening for a
user’s response. The color of the edge from an OR-node classifies the intent of the response,
which in this case may be a positive or negative acknowledgement.

Learning

Given transcripts of dialogue, we learn the model M. As shown in C, each utterance in a di-

alogue transcript has a corresponding intent (i.e. dialogue act), and a corresponding topic label.

We construct a linear policy (i.e. parse-graph) per topic, where each user utterance corresponds

to an OR-node selection, and a sequence of actions is strung together by an AND-node. Multiple

parse-graphs in a topic are glued together naturally, as shown in figure 5.5.

The parameters Θ = {θ1, θ2, ...} characterizeM, where each θ corresponds to an atomic action

a, such as cavities ← True. Assuming there are only 20 fluents, the number of Boolean actions

is 40. Let A be the set of action patterns in G, each containing no more than 3 atomic actions.

Therefore the parameter-space is upper bounded by |ΩΘ| = 403|A|. We implement an algorithm

we call Plan-MCMC to solve for Θ, outlined below.

1. Randomly initialize Θ

2. Iterate

(a) Generate new candidates, {Θ1,Θ2, ...,Θk} ← P (Θ′|Θ). The transition from Θ to Θ′
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is simply a modification of one action θ.

(b) For each Θi:

i. Sample parse-graphs, {~asyn, ...} ←MΘi

ii. Compute the histogram h of costs for each synthesized sample by comparing it to

the observations, cost(~asyn) = min~aobs Dist(~aobs,~asyn). The distance is computed

by best global pairwise alignment [83] (with the following scoring scheme: match

1, mismatch -2, gap -1).

iii. Normalize
∫ B
c=0

h(c) = 1, where B is the number of bins (e.g. B = 20).

iv. The acceptance probability of selecting Θ is proportional to
∫ B
c=ε

h(c), where 0 <

ε < B (e.g. ε = B/3).

(c) Update Θ based on acceptance probability

In figure 5.6, we compare our approach against other techniques on both a training dataset of

4 examples and a test dataset of 3 examples. One such alternative technique is the N-Gram model

(specifically N = 4), which builds frequency counts of all 1..N contingent pairs of intents, and

then uses it to stochastically synthesize a new sequence of intents. Another common technique

is to use a sequence-to-sequence (Seq2Seq) neural network on many example sequences, which

typically fares well with big-data, but not so well on just 4 training examples. We also measure

the performance of various human content-writers, indicating the optimal performance on training

data. Lastly, we perform an experiment where our model hands off the learned policy to a human

content-writer for making further edits, and this approach outperforms all other experiments on

both the training and test dataset, showcasing the usefulness of an interpretable task model.

5.3 Discussion

Learning the utility of a task is essential for generalization. When fluents are chosen carefully,

the utility function become interpretable. The central problem is then to find fluents of a task that
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Figure 5.6: The N-Gram model memorizes the training data and ends up performing poorly
against the test data. Asking a human to author the dialogue policy ends up with excellent per-
formance on the training data. However, even a human has trouble with generalizing dialogue
policies. Our model’s generalizability performs comparably to a human. When a human context-
writer improves on our generated code, we see the performance increase greatly.

are both relevant and interpretable. No doubt, interpretable representation of a task is one of the

ultimate goals in the field of artificial intelligence, and we do not claim to have solved the problem.

However, this chapter introduces the ranking pursuit algorithm that operates on a huge dictionary

of interpretable fluents to identify relevant ones. Moreover, the Plan-MCMC algorithm introduces

a way to synthesize the representation of a task given anonymous interpretable fluents.

With the complete fluent-dynamics framework expressed in equation 5.12, we aim to formalize

the interdependence between utility, task, and motion. The utility drives the agent to perform sub-

tasks (answering “why” an action is taken), whereas a sub-task instructs the agent “what” actions

to take. Decoupling these two concepts allows us to learn the utility without an agent, or learn the

available actions without accounting for the utilities. We show the power of mixing-and-matching

utilities and actions in section 5.2.1, and in doing so, we utilize a new language defined in A.
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5.4 Related Work

Learning a task or skill from visual demonstration is a widely applicable and thoroughly studied

problem [53]. Task representation typically requires a definition of the goal state, which has been

implemented in various ways. Below, we compare and contrast common approaches.

Modeling the prior: The prior probability expresses the belief based on previous knowledge.

Traditionally, the knowledge of the goal was hand-designed by domain-experts [84]. Algorithms

that automate the construction of priors from small training data are explored by [27], and were

studied on natural images. The prior is typically modeled as a Gibbs distribution with learned

potential functions. In some applications, kernel density estimates (KDE) are a common heuristic

to model the prior [85].

However, estimating the prior based off matching frequencies is a form of inductive learning.

In our work, we pursue relevant fluents that generalize beyond the scope of demonstrations.

Maximizing the likelihood: Bayesian formulations [42] assume a prior model of the goal (G),

and use Bayes’ Theorem to explain the relationship between the posterior and likelihood of the

data (X ), P (G | X ) = P (X | G)P (G)/P (X ). The maximum likelihood mindset has been used

to justify imitation learning, where the agent finds model parameters to explain each human action

[67].

For example, in most imitation learning frameworks, the learner assumes the system dynamics

follow the assumptions of a Markov Decision Process (MDP) [75], and a reward function that

maximizes the observed sequences of actions is sufficient to model the task. In this chapter, we

learn to model a task without matching human action sequences.

Non-Markovian planning: The Markov assumption simplifies computation, but leads to trou-

blesome limitations [51, 52]. On the other hand, Bayesian Program Learning (BPL) deals with

learning how to connect compositional building blocks of a more complex target pattern to syn-

thesize plans [86]. The BPL and AOG representations are both Non-Markovian generative models

used for planning. Comparing representations between the two is beyond the scope of this chapter.
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Matching human utilities: The utilitarian perspective infers the total order of a set of alterna-

tives based on a training dataset of partial orders [64]. Unlike the local utility function in MDPs,

which are defined by aggregating local rewards based on beliefs of the current state, the utilitarian

ranking function (or global utility function) assigns a preference score to the state independent of

the agent’s set of actions.

In particular, the closest related work includes a study in modeling human preferences over in-

ternal properties of physical tools from video demonstrations [48]. Our work differs in three ways:

1) relevant fluents are pursued by simultaneously minimizing reconstruction error and ranking vi-

olations; 2) we learn from external fluents, such as states of the world, instead of internal fluents,

such as states of the agent; 3) the utility function drives robot plans.

There has also been previous work on recommender systems designed to match human prefer-

ence over pairs of clothing images that complement each other in style [87].
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Algorithm 2 Utility-Based Algorithm for Greatest Common Divisor
1: Initialize . Set up the fluents a, b, and c, with the semantic meaning c = gcd(a, b)
2: a0 ← 8
3: b0 ← 12
4: c0 ← null
5: end Initialize

. Define the utility function
6: Utility (c | a0) . If c divides a0, accumulate 1 reward
7: reward +1
8: end Utility
9: Utility (c | b0) . If c divides b0, accumulate 1 reward

10: reward +1
11: end Utility
12: Utility (c | a0 and c | b0) . If c divides both, accumulate c reward
13: reward +c
14: end Utility

. Allow the following actions
15: Action
16: a← a+ b
17: end Action
18: Action
19: b← b+ a
20: end Action
21: Action
22: a← a− b
23: end Action
24: Action
25: b← b− a
26: end Action
27: Action . Return the result
28: c← a
29: ⊥
30: end Action
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Algorithm 3 Utility Definition for Least Common Multiple
5: Utility (a0 | c) . Favor situations when a0 divides c
6: reward +1
7: end Utility
8: Utility (b0 | c) . Favor situations when b0 divides c
9: reward +1

10: end Utility
11: Utility (a0 | c and b0 | c) . Favor situations when both divide c
12: reward +1/c
13: end Utility

Algorithm 4 Utility-Based Algorithm for Robot Folding Clothes
1: Initialize
2: keypoints← null
3: end Initialize

. Compute utility using an external function
4: Utility
5: reward +utility(keypoints)
6: end Utility

. Allow the following actions
7: Action (keypoints∗ 6= null) . Use sensors to set keypoints when available
8: keypoints← keypoints∗

9: end Action
10: Action
11: keypoints← do(fold(v, 1

2
), keypoints) . Simulate a vertical fold in half

12: end Action
13: Action
14: keypoints← do(fold(v, 1

3
), keypoints) . Simulate a different vertical fold

15: end Action
16: Action
17: keypoints← do(fold(h, 1

2
), keypoints) . Simulate a horizontal fold in half

18: end Action
19: Action
20: ... . Remaining actions omitted for brevity
21: end Action
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CHAPTER 6

Task-Oriented Programming Language

Complex interactive experiences beyond flowchart-like logic are difficult to author, and an agreed

upon representation is still missing. However, there are multiple programming languages that have

been designed for representing tasks. Among them, we brand our task-oriented language Dialogue

Manager Programming Language (DMPL) which is designed specifically with conversational in-

terfaces in mind.

One of the first languages, Planning Domain Definition Language (PDDL) [88] represents

tasks by two files: a domain file, which lists available actions, and a corresponding problem file,

which defines the initial fluents and goal specifications. Each action defined in the domain file has

an entry-condition and a deterministic effect. Deterministic planning is a major limitation, since

we’re modeling tasks in interactive or unpredictable environments.

Probabilistic PDDL (PPDDL) [89] addresses that limitation by introducing stochastic effects,

so that planning may account for probabilistic outcomes of each action. The PPDDL inference en-

gine can solve for an action sequence that optimizes a user-defined utility function. Through some

careful organization and design of the domain file, it is also possible, but not intuitive, to sup-

port hierarchical planning within PPDDL. On the other hand, DMPL is designed with hierarchical

planning from the get-go, by pushing fluents to a stack once entering a new subroutine.

Unlike PPDDL, WebPPL and Stan [90] are general purpose probabilistic programming lan-

guages that offer a rich selection of statistical models and efficient MCMC sampling. These lan-

guages are used to specify general statistical models, which can model an autonomous agent in

a stochastic environment. Since they’re general purpose, like DMPL, WebPPL and Stan support

user-defined functions and external interfaces to user-defined business logic.
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Languages designed specifically for decision problems include IBAL [91] and Markov logic

decision networks (MLDN) [92], which come with approximate inference solvers. DTProbLog

[93] introduces exact solvers to compute the optimal strategy in a decision-theoretic probabilistic

language, using Algebraic Decision Diagrams (ADD) [94]. However, DTProbLog is less con-

cerned with sequential decision problems. These languages leverage the Markov Decision Process

(MDP) framework, which requires a definition of immediate reward of transitioning from one state

to another. Strategically, DMPL disallows users from defining MDP-like rewards and limits the

utility function to be defined indirectly through listing pairs of preferred situations. Doing so alle-

viates the guess-work from the user, and reduces buggy code (most common being infinite-loops

due to ill-defined rewards).

Missing from most probabilistic programming languages is the runtime of the agent. In other

words, once an action-sequence is resolved, instructions for following through with the chosen

action on an agent is run elsewhere, usually defined in a separate codebase. DMPL borrows ideas

from DTGolog [95], where both the planner (simulation engine) and evaluator (runtime) consult

the same user-written AOG (i.e. code). The AOG is used both to plan by sampling possible actions

and to execute by traversing the same graph.

The abstract syntax tree of our task-oriented programming language is explicitly defined in this

chapter. It follows the syntax of JavaScript Object Notation (JSON), so that it may easily be parsed

by web technologies, for easy prototyping. Reusing the same JSON for planning and execution

allows this language to support goal-switching, meaning the definition of the goal may be adjusted

by the agent itself. Goals are not defined explicitly by a mathematical function (akin to PPDDL,

etc.), but instead inferred (by RankSVM) from pair-wise preferences of situations. Moreover, since

our language is designed for conversational interfaces, proper handling of interruptions (handing

timeouts, barge-in, and global events) is an essential built-in component of the language.

As shown in the previous chapter, this language unifies hierarchical conformant planning

(cloth-folding), mathematical optimizations (solving greatest common divisor), and hierarchical

contingent planning (chat-bots). By reusing the same representation for both planning and execu-
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tion, the programmer can use DMPL as a one-stop solution his or her domain.

6.1 Dialogue Manager Programming Language

This specification defines the syntax and semantics of a dialogue manager programming language

(DMPL). The user specifies the states (i.e. fluents), how they change (i.e. actions), and which

are preferred (i.e. utility). These three components characterize a task, so we call DMPL a task-

oriented programming language. The interpreter of the language should resolve the task by identi-

fying and executing actions that maximize utility.

This specification aims to decouple the representation of dialogue from its execution. For

example, conversational interfaces employ artificial intelligence in different ways: finite state ma-

chines, path planning, or reinforcement learning systems. Regardless of the execution framework,

the logical representation may be shared. An agreed upon representation of dialogue allows content

writers to author and share conversational experiences without being distracted by the underlying

runtime.

This document is limited to specifying the syntax and semantics for a task-oriented language

for interactive behavior. One example application of DMPL is an authoring tool to be used on

a regular basis by a non-technical content writer. Another use-case of DMPL is exporting and

importing dialogue content authored by writers from different web platforms. Technologies closely

related to these use-cases are in scope.

6.2 Language Syntax

6.2.1 Atomic Types

A literal is a terminal atom that may be assigned to a variable, used in a dictionary, or used as an

operand to build an expression.

literal ::= string | number | boolean | ’null’

74



Figure 6.1: Literal

A boolean may take on values true or false.

boolean ::= ’true’ | ’false’

Figure 6.2: Boolean

A name is a sequence of characters conforming to those in the XML standard.

name ::= [ http://www.w3.org/TR/xml-names/#NT-NCName ]

Figure 6.3: Name

A quote start is the starting quotation mark, which indicates the beginning of a string.

quote_start ::= ’"’ ’‘’
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Figure 6.4: Start of string

A quote close is the ending quotation mark, which indicates the termination of a string.

quote_close ::= ’‘’ ’"’

Figure 6.5: End of string

A string literal represents a finite sequence of characters. It is surrounded by starting and ending

quotation marks.

string ::= quote_start name quote_close

Figure 6.6: String

A digit represents a real valued integer in the range [0-9].

digit ::= [0-9]

Figure 6.7: Digit

A number literal may represent either a positive or negative decimal value.

76



number ::= ’-’? ( digit+ ( ’.’ digit* )? | ’.’ digit+ )

Figure 6.8: Number

6.2.2 Container Structures

A variable is a named reference to the result of evaluating an expression.

variable :: = ’"’ name ’"’

Figure 6.9: Variable

Example 3. "num_correct_answers"

A variable should not be confused with a string, which uses backticks (‘) like so:

Example 4. "‘num_correct_answers‘"

A dictionary is a structure that maps data in key-value pairs. The keys and values are all

evaluated. The keys can be either strings or variables that evaluate to strings.

dictionary : : = ’{’ ( string | variable ) ’:’ expression

( ’,’ ( string | variable ) ’:’ expression )* ’}’
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Figure 6.10: Dictionary

Example 5. {"‘age‘": "x", "‘score‘": 10, "‘name‘": "‘Joe‘"}

An expression may be evaluated, and that result is stored in memory to be referenced later. An

expression may be denoted by a JSON array, in which case it is also called a function. The first

element of the array represents the operator of the function. The operator can be either a string or

a variable that evaluates to a string. All remaining elements of the array constitute the operands.

expression ::= literal

| variable

| dictionary

| ’[’ ( literal | variable ) ( ’,’ expression )* ’]’

Figure 6.11: Expression
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Table 6.1: Subset of DMPL expressions

Name Return type Operator Example

Concat string "++" ["++", "‘hello ‘", "‘world‘"]"

Add number "+" ["+", 1, 2]

Subtract number "-" ["-", 5, 3]

Multiply number "*" ["*", 2, 4]

Divide number "/" ["/", 1, 2]

Modulo number "%" ["%", 168, 2]

List list "" ["", 1, 2, 3, 4, 5]

Range list "enumFromTo" ["enumFromTo", 1, 5]

Equals boolean "==" ["==", 1, 2]

Not Equals boolean "!=" ["!=", 1, 2]

Greater Than boolean ">" [">", 2, 3]

GTE boolean ">=" [">=", 2, 3]

Less Than boolean "<" ["<", 2, 3]

LTE boolean "<=" ["<=", 2, 3]

Logical And boolean "&&" ["&&", true, false]

Logical Or boolean "||" ["||", true, false]

Logical Not boolean "!" ["!", false]

Contains boolean "in" ["in", 3, ["", 1, 2, 3]]

Input check boolean "input" ["input", "yes"]

Return check boolean "return" ["return"]

Exists boolean "exists" ["exists", "‘is_greeted‘"]

Get By Index dynamic "get" ["get", 0, ["", 1, 2, 3]]

Pick dynamic "pick" ["pick", ["", 1, 2, 3]]
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6.2.3 Statements

A statement may be a non-terminal such as do or fork, or a terminal such as effect. Optionally,

statements may contain condition, await, or once flags.

statement ::= ’{’ ( condition ’,’ )?

( await ’,’ )?

( once ’,’ )?

( effect | do | fork ) ’}’

Figure 6.12: Statement

A condition is a boolean expression that runs the statement if the expression evaluates to true.

A condition check takes priority over other parts of the statement. If a statement does not explicitly

contain a condition, then that statement’s condition is trivially true.

condition : : = ’"if"’ ’:’ expression

Figure 6.13: Condition

Example 6. "if": [">", "num_wrong_answers", 3]

An await blocks execution until a boolean expression evaluates to true.

await ::= ’"await"’ ’:’ expression

80



Figure 6.14: Await

Example 7. "await": ["input"]

A once flag specified whether the statement can only be run once. By default, the once flag is

set to false.

once ::= ’"once"’ ’:’ boolean

Figure 6.15: Once

Example 8. "once": true

An effect is a terminal node, meaning it does not produce more statements. There are 6 types

of effects.

effect ::= act | set | def | run | use | pop

Figure 6.16: Effect
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An act represents an action specified by evaluating the expression. The result is interpreted

by a client. For example, the payload of the act statement may be represented using Behavior

Markup Language (BML). The client is then responsible for realizing the behavior defined in the

act message.

act ::= ’"@act"’ ’:’ expression

Figure 6.17: Act

Example 9.

"@act": {

"‘object‘": "‘tutor‘",

"‘action‘": "‘say‘",

"‘params‘": {"‘intent‘": "‘greeting‘"}

}

A set updates the values of the variables, where the names of the variables and the updated

values are specified by evaluating the corresponding expressions. The expression specifying the

names of the variables is allowed to contain variables (although static code analysis and possible

optimizations would be more difficult), and must evaluate to a string, a list consisting of only

strings, or a dictionary consisting of only strings.

set ::= ’"@set"’ ’:’ expression ’,’ ’"val"’ ’:’ expression

Figure 6.18: Set
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Example 10. "@set": "‘is_user_greeted‘", "val": true

Example 11. "@set": ["", "‘is_user_greeted‘", "‘num_questions‘"],

"val": ["", true, 7]

A def defines a new expression operator that can be used later in the code. The signature of the

new expression operator is specified by an expression that must evaluate to a list of strings, which

maps to the operator name followed by the argument names. These argument names are valid only

for this scope, and may shadow global variables. The result is returned by a pop statement.

def ::= ’"@def"’ ’:’ expression ’,’ ’"val"’ ’:’ statement

Figure 6.19: Def

Example 12. "@def": ["", "‘inc‘", "‘x‘"], "val": {"@pop": ["+", 1, "x"]}

A run calls DMPL code in another component, optionally passing in arguments. The name

of the called component is specified by an expression that must evaluate to a string. The current

variables stored in memory are remembered later.

run ::= ’"@run"’ ’:’ expression ( ’,’ ’"args"’ ’:’ expression )?

Figure 6.20: Run
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Example 13. "@run": "‘Outro‘"

Example 14. "@run": "‘Question‘",

"args": ["", "‘What’s the largest planet?‘", "‘Jupiter‘

A use imports variables and expression operators defined in another component. The name of

the imported component is specified by an expression that must evaluate to a string. The variable

and expression operator names can be optionally specified, or all variables and expression operators

will be imported. It’s similar to from os import path notation in Python.

use ::= ’"@use"’ ’:’ expression ( ’,’ ’"import"’ ’:’ expression )?

Figure 6.21: Use

Example 15. "@use": "‘MathExpressions‘",

"import": ["", "‘inc‘", "‘square‘", "‘exp‘"]

A pop quits execution on the current DMPL code, pops the fluent-state from the stack, and

resumes execution from the previous run location.

pop ::= ’"@pop"’ ’:’ expression

Figure 6.22: Pop
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A do statement specifies a list of statements to be executed.

do ::= ’"@do"’ ’:’ ’[’ ( statement ( ’,’ statement )* )? ’]’

Figure 6.23: Do

Example 16.

"@do": [

{"@act": "a"},

{"@act": "b"},

{"@act": "c"}

]

A fork statement specifies the branch-like behavior of the list of statements that follow. Only

one is chosen, and the strategy to pick one may be provided using the scheme attribute. By default,

a greedy scheme is used, meaning the first statement whose condition is met will be chosen. More

complicated schemes, such as depth-first-search or Monte Carlo Tree Search may be indicated,

leaving the implementation up to the interpreter.

fork ::= ’"@fork"’ ’:’ ’[’

( statement ( ’,’ statement )* )?

’]’ ( ’,’ scheme )?
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Figure 6.24: Fork

When no scheme is provided, a fork is essentially the traditional if/elif/else logical flow:

Example 17.

"@fork": [

{"if": "is_user_greeted", "@act": "a"},

{"if": [">", "num_wrong_answers", 3], "@act": "b"},

{"@act": "c"}

]

Providing a scheme allows stochastic behavior to take place:

Example 18.

"scheme": {"depth": 3}, "@fork": [

{"@set": "‘do_action_1‘", "val": "true"},

{"@set": "‘do_action_2‘", "val": "true"},

{"@set": "‘do_action_3‘", "val": "true"},

{"if": "is_entry_condition_met",

"@set": "‘do_action_4‘", "val": "true"},

{"if": false, "@act": "‘never reached‘"}

]
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A scheme is associated with a fork statement, and it describes the fork branch resolution strat-

egy.

scheme ::= ’"scheme"’ ’:’ expression

Figure 6.25: Scheme

Example 19. {"depth": 3}

6.3 Semantics

The runtime of this language operates on the JSON, starting from the root statement. It traverses

down, performing actions corresponding to the terminal nodes, until there is a fork. Then, forks

are resolved by their indicated scheme, and this process continues.

Once a path through the JSON is complete, the runtime starts over from the beginning. Also,

if no entry-condition is met, then execution restarts from the root. It’s safe to assume the code

written by a user is embedded within a while-true loop.

The runtime is responsible for handling user input and system output in an asynchronous way.

Every user input triggers a re-plan, allowing for interruptions to be handelled. System outputs,

such as payloads of act statements, are sent to attached processes, as needed.
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APPENDIX A

Programming Language Syntax

A simplified syntax is specified in extended Backus-Naur form (EBNF) below; however, the com-

plete language used in our experiments follow the more verbose syntax of the W3C report [76].

bool ::= "true" | "false"

digits ::= [0-9]+

num ::= ("." digits) | (digits "." [0-9]*)

str ::= [http://www.w3.org/TR/xml-names/#NT-NCName]

op_bool ::= "and" | "or"

op_num ::= "+" | "-" | "*" | "/"

op_num_check ::= ">" | "<" | "<=" | ">=" | "==" | "!=" | "|"

str_expr ::= str | (str_expr "+" str_expr)

num_expr ::= num | num_expr op_num num_expr

bool_expr ::= bool

| ( bool_expr op_bool | "NOT" ) bool_expr

| num_expr cmp num_expr

expr ::= str_expr | op_num_check | bool_expr

say ::= "say" str_expr

set ::= str_expr "<-" expr

or_node ::= "sense" str | ( "if" bool_expr "then" and_node )+

terminal_node ::= say | set

and_node ::= (terminal_node | or_node )+

action ::= "Action" ( "(" bool_expr ")" )? ( and_node )*
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utility ::= "Utility" ( "(" bool_expr ")" )? "reward" num_expr

initialize ::= "Initialize" (set)*

program ::= initialize (utility)* (action)*
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APPENDIX B

Example Implementation of a Chat-Bot
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Algorithm 5 Utility-Based Chat-bot (Cake Vendor)
1: Initialize . Initialize the fluents
2: greeted← false
3: known cake type← false
4: known sugar sugarless← false
5: known cake flavor← false
6: end Initialize

. The program tries to maximize the following utilities
7: Utility (greeted) . The customer is greeted
8: reward 10
9: end Utility

10: Utility (known cake type)
11: reward 10
12: end Utility
13: Utility (known sugar sugarless)
14: reward 10
15: end Utility
16: Utility (known cake flavor)
17: reward 10
18: end Utility

. Only the following actions are available
19: Action (not greeted)
20: say greeting
21: greeted← true
22: end Action
23: Action (greeted)
24: say question.cake-type
25: sense cake-type
26: known cake type← true
27: end Action
28: Action (greeted and known cake type)
29: say question.cake-flavors
30: sense flavor
31: known cake flavor← true
32: end Action
33: Action (greeted)
34: say question.chocolate-cake
35: sense chocolate-cake
36: known cake type← true
37: end Action
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APPENDIX C

Example Dialogue Transcript

Agent Intent Utterance
system greeting.hello Hello
system greeting.welcome Welcome to the store.
system question.what.user-wants What would you like?

user statement.cake cake
system acknowledgement ok
system question.cavities Do you have cavities?

user answer.no no
system question.diabetic Are you diabetic?

user answer.yes yes
system statement.cake.sugarless For you we will make only

cakes sweetened with Xylitol
system question.confirmation Is that ok?

user answer.yes yup
system question.cake.type What type of cake would you

like?
user statement.flavor.lemon I want lemon

system apology.flavor I’m sorry, that flavor is not
available for the cake you re-
quested.

system answer.cake.flavor.sponge We can make chocolate or
amaretto sponge cakes

system question.cake.flavor What flavor would you like?
user statement.flavor.chocolate chocolate, please

system statement.cake.ready.chocolate.sponge Your chocolate sponge cake is
ready!

system greeting.bye Bye
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[83] A. Gogol-Döring, D. Weese, T. Rausch, and K. Reinert, “Seqan an efficient, generic c++
library for sequence analysis,” BMC Bioinformatics, vol. 9, pp. 11 –11, 2007.

[84] R. A. Brooks, “Symbolic error analysis and robot planning,” The International Journal of
Robotics Research, vol. 1, no. 4, pp. 29–78, 1982.

[85] M. D. Escobar and M. West, “Bayesian density estimation and inference using mixtures,”
Journal of the american statistical association, vol. 90, no. 430, pp. 577–588, 1995.

[86] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning through
probabilistic program induction,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[87] A. Veit, B. Kovacs, S. Bell, J. McAuley, K. Bala, and S. Belongie, “Learning visual clothing
style with heterogeneous dyadic co-occurrences,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 4642–4650.

[88] M. Fox and D. Long, “Pddl2.1: An extension to pddl for expressing temporal planning
domains,” Journal of artificial intelligence research, vol. 20, pp. 61–124, 2003.

[89] H. L. Younes and M. L. Littman, “Ppddl1. 0: An extension to pddl for expressing planning
domains with probabilistic effects,” 2004.

[90] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming language,” Journal of sta-
tistical software, vol. 76, no. 1, 2017.

100



[91] A. Pfeffer, “Ibal: A probabilistic rational programming language,” Citeseer.

[92] A. Nath and P. Domingos, “A language for relational decision theory.”

[93] G. Van den Broeck, I. Thon, M. Van Otterlo, and L. De Raedt, “Dtproblog: A decision-
theoretic probabilistic prolog,” in Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[94] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi,
“Algebric decision diagrams and their applications,” Formal methods in system design,
vol. 10, no. 2-3, pp. 171–206, 1997.

[95] C. Boutilier, R. Reiter, M. Soutchanski, S. Thrun, et al., “Decision-theoretic, high-level
agent programming in the situation calculus,” 2000.

101


	Table of Contents
	Introduction
	Human-Robot Knowledge Transfer
	Related Works

	Representation
	Spatial Representation
	Causal Representation
	Temporal Representation
	Joint Representation

	Knowledge Transfer Test
	Experimental Results

	Learning from Demonstration
	Spatial, Temporal, and Causal And-Or Graph
	Related Works
	Method
	Mathematical Formulation for Human Task
	And-Or Graph Overview
	S-AOG: Spatial Concepts Model
	T-AOG: Temporal Concepts Model
	C-AOG: Causal Concepts Model
	Relational Model between Spatial, Temporal, Causal And-Or Graph
	Learning Motor Control
	Inference

	Experiments
	Experiment Settings
	Results

	Discussion and Future Work
	Conclusions

	Situated Dialogue
	Task Learning through Visual Demonstration and Situated Dialogue
	Representation
	STC-AOG
	CI-AOG

	Learning from Situated Dialogue
	Conclusion

	Human Utility
	Learning Human Utility from Video Demonstrations
	Related Work
	Model
	Utility Model
	Minimum Violations
	Ranking pursuit
	Ranking Sparsity

	Utility-Driven Task Planning
	Representing what, how, and why
	Fluent Dynamics

	Implementation and Experimental Results
	Conclusions and Future Work

	Unified Representation of Tasks
	Model
	Model of utility V
	Model of possible actions G
	Planning

	Experiments & Results
	Mathematical Actions (Applied to Constraint Solving)
	Empirical Actions (Applied to Robot Folding Clothes)
	Cognitive Actions (Applied to Chat-bot Selling Items)

	Discussion
	Related Work

	Task-Oriented Programming Language
	Dialogue Manager Programming Language
	Language Syntax
	Atomic Types
	Container Structures
	Statements

	Semantics

	Programming Language Syntax
	Example Implementation of a Chat-Bot
	Example Dialogue Transcript
	References



