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ABSTRACT 
 

Age is the strongest breast cancer risk factor, with overall breast cancer risk increasing steadily 

beginning at approximately 30 years of age.  However, while risk of breast cancer is lower among younger 

women, young women’s breast cancer tends to be more aggressive.  Though several genomic and 

epidemiologic studies have shown higher prevalence of aggressive, estrogen-receptor negative breast cancer in 

younger women, the age-related gene expression that may predispose to these tumors is poorly understood.  

Characterizing age-related patterns of gene expression in normal breast tissues may provide insights on etiology 

of distinct breast cancer subtypes because it is from these tissues that the tumors arise.  To identify age-related 

changes in normal breast tissue, 96 tissue specimens from reduction mammoplasty patients aged 14 to 70 were 

assayed by gene expression microarray.  Significant associations between gene expression levels and age were 

identified for 802 probes (481 increased, 321 decreased with increasing age). Enriched functions included 

‘aging of cells’, ‘shape change’, and ‘chemotaxis’, and enriched pathways included Wnt/beta-catenin signaling, 

Ephrin Receptor Signaling, and JAK/Stat Signaling. Applying the age-associated genes to publicly available 

tumor datasets, the age-associated pathways defined two groups of tumors with distinct survival.  The hazard 

rates of young-like tumors mirrored that of high grade tumors in the Surveillance, Epidemiology and End 

Results Program, providing a biological link between normal aging and age-related tumor aggressiveness.  

These data show that studies of normal tissue gene expression can yield important insights about the pathways 

and biological pressures that are relevant during tumor etiology and progression.   
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INTRODUCTION 
 

Age is the strongest demographic risk factor for human cancer overall (1, 2), with breast cancer rates 

steadily increasing with age.  However, while tumors are less common in young women, younger women are 

more likely to have aggressive tumors.  Young women’s breast cancer is more often estrogen receptor negative, 

while estrogen receptor positive cancers are more prevalent in postmenopausal, older women (3, 4). Two 

previous gene expression studies have compared molecular features of breast cancer in younger and older 

women, focusing on the tumor gene expression (5, 6).  These tumor gene expression studies have shown that 

tumors in younger women are associated with unique gene expression features, but many of these differences 

ultimately reflect the molecular subtypes of breast cancer.  Because different types of breast cancers are more 

common in each age group, analyses across all tumors appeared to have been confounded by tumor subtype; 

after adjusting for grade and subtype, age-associated gene expression changes were no longer evident (7).   

Persistent gaps in our understanding of age-associated changes in tumor aggressiveness remain.  

Research is needed to distinguish between characteristics of the malignancy and characteristics of the host (5, 

8).  As stated by Benz et al., “whether aging produces background effects from which the malignancy must be 

differentiated or contributes to the carcinogenic process is of fundamental importance” (9).  Also, how the host-

tumor interface changes with aging is poorly understood (7).  To address these gaps, studies on normal breast 

tissue are needed.  The aging of normal breast tissue has not been well studied, beyond changes such as 

postmenopausal involution (10).  Aging-associated changes occur throughout lifespan, and not just at the onset 

of menopause, with potentially important consequences for the microenvironment of a nascent tumor.  Indeed, 

there is widespread recognition that normal cellular environment, or tissue microenvironment, plays a role in 

tumor development and progression (11-13), but how aging may play a role in modifying this 

microenvironment is not known.   
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A conceptual model of cancer as an evolutionary process may be helpful in framing questions about how 

aging affects tumor etiology and progression.   Evolutionary theories of cancer use language and principles 

from ecology, arguing that there are barriers to carcinogenesis that must be overcome by populations of tumor 

cells (14).  Barriers to carcinogenesis derive from host biology and from normal tissue conditions that are 

present in the environment of the cancer cell prior to, or early in, disease (15).  Because tumors evolve with 

selective pressure from their surrounding stroma, studies of normal breast tissue, which is typically more than 

90% stroma by volume, may provide insights regarding the selective pressures faced by tumors during 

development and progression.  In the current study, we hypothesized that age is associated with changes that 

may raise or lower barriers for tumor cell survival and evolution. Older vs. younger tissues represent distinct 

evolutionary environments, resulting in distinct cancer subtypes at different ages. According to this hypothesis, 

the signaling patterns present in the normal tissue of young women would be reflected in the signatures of 

aggressive tumors that are more common in young women.   

To evaluate our hypothesis, we characterized gene expression in normal tissue using whole genome 

microarrays on 96 normal tissue specimens from reduction mammoplasty patients.  We identified patterns and 

signaling changes that are associated with age in normal tissue of premenopausal women.  We used whole 

tissue to allow for sufficiently large sample sizes to characterize the degree of inter-individual variation in 

aging, and we then tested whether our signature predicted age in isolated epithelium-enriched glands of normal 

tissue from women of different ages.  We then evaluated the age-associated signature using publicly available 

tumor tissue gene expression data, asking whether age-associated gene expression from normal tissue can 

define distinct tumor groups with statistically significant differences in relapse-free and overall survival.  The 

results of this investigation support the hypothesis that gene expression in young women’s breast tissue creates 

an environment conducive to more aggressive tumor phenotypes.   
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METHODS 

Patient characteristics.  This study included women age 14 – 70 who were free of pathological 

diagnoses of the breast and who underwent reduction mammoplasty surgery at Baystate Medical Center in 

Springfield, Massachusetts between 2007 and 2009.  Patient age and menopausal status are presented in Table 

1.  Institutional Review Boards (IRBs) at Baystate Medical Center and University of Massachusetts Amherst 

approved the study.  Women consented to provide excess tissues not needed for diagnostic purposes and age 

and other demographic variables were measured by a telephone interview administered following surgery.  

Tissues from all patients were snap frozen and stored at -80° C prior to RNA isolation.  To test age-associated 

signatures derived from microarrays on whole tissue, an independent data set of histologically normal breast 

tissues, obtained from surgically discarded reduction mammoplasty specimens, was provided by the UCSF 

Cancer Center and the Cooperative Human Tissue Network.  These patients provided informed consent under 

an Institutional Review Board approved protocol.  These samples were processed to isolate glands as described 

below. 

 
RNA isolation and microarrays.  Frozen specimens were cut over dry ice (approximately 100 mg 

whole tissue specimens) and RNA was isolated using standard manufacturer protocols for RNeasy midi kits or 

these same kits with a Qiazol extraction step.  Higher yields were obtained with fatty, reduction mammoplasty 

tissues when using the Qiazol extraction.  To test reproducibility of different extraction methods, a subset of 

samples were used to isolate RNA under both protocols.  Cross-method intraclass correlation coefficients were 

similar to those obtained from replicate samplings by a single method.  Agilent whole genome 4X44K catalog 

microarrays were used for all samples, with replicate samples assayed on the same platform or on custom 244k 

arrays.  Only 4X44K probes were utilized in these analyses.  All arrays were performed according to 

manufacturer protocols for linear amplification and two-color hybridization. 
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 Reduction Mammoplasty Microarray Data Analysis.  Spots that had an intensity of greater than 10 

units in at least 80% of samples were selected for subsequent analyses.  Data were lowess normalized and 

missing data were imputed using k-nearest neighbors with k=10.  Duplicate arrays (N=15) were averaged, with 

those arrays with low correlation (< 0.7) removed from analysis (1 duplicate patient + 2 single of triplicate 

patients).  A total of 114 microarrays representing 99 patients were included in the current analyses.  All 

statistical analyses were performed in R, using Bioconductor packages.  For each of the two analyses (age-

associated gene expression and menopause-associated gene expression) using the full dataset (n=76 and n=99, 

respectively), the following prefiltering steps were applied:  First, probes with no corresponding Entrez gene ID 

were eliminated.  Second, probes with low variability, those with variability less than median variability across 

all probes, were eliminated.  Linear regression was performed using LIMMA (16) to identify the maximum 

number of significant probes associated with chronological age (in decades) or menopausal status (pre- and 

perimenopausal vs. postmenopausal).   Unadjusted p-values from LIMMA were used in conjunction with the 

qvalue package from Bioconductor to estimate q-values.  A q-value < 0.10 (corresponding to a false discovery 

rate of 10%) was selected as evidence of statistical significance.  Hierarchical clustering was used to visualize 

the data for age-associated genes, with samples ordered according to chronological age, and genes clustering 

according to Pearson correlation.  Gene ontology analyses were performed using Ingenuity Pathway Analysis 

(IPA, Redwood City, CA).  

We additionally tested a second dataset of isolated glands from reduction mammoplasty patients   

(N=30) against our signature.  Tissue samples were minced and enzymatically dissociated using 0.1% w/v 

collagenase I in Dulbecco’s Modified Eagle Medium at 37 °C for 12 to 18 h.  Small tissue fragments 

(organoids), remaining after digestion, were collected by centrifugation at 100 g for two minutes.  These 

organoids were stored frozen prior to RNA extraction.  RNA was extracted using Qiagen RNeasy and 
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Affymetrix GeneChip Human Gene 1.0 ST microarrays were performed at University of Wisconsin, Madison.  

Microarray data was processed using Robust Multiarray Average in Bioconductor.   

Confirmation of Age-Associated Expression Changes by Quantitative Reverse Transcription PCR. 

To confirm expression changes for CDKN2A and TP53 as identified in microarray data, 1 ug RNA per sample 

for 26 samples with remaining RNA was treated with genomic DNA Wipeout Buffer and reverse transcribed 

using the QuantiTect® Reverse Transcription kit (Qiagen) according to the manufacturer’s protocol.  Resultant 

cDNAs (10 ng) were plated, in triplicate, into a 96-well plate.  Mastermix from the miScript SYBR Green PCR 

Kit (Qiagen) and miScript-derived primers for p16 (CDK2NA), p53 or GAPDH, were added to each well and 

real-time, quantitative PCR was performed on an Applied Biosystems 7900HT thermocycler.  The q-RT-PCR 

program used was 15 minutes at 95°C, 40 cycles of 15 seconds each at 94°C, 30 seconds at 55°C, and 30 

seconds at 72°C, with a denaturation cycle at the end.  One statistical outlier was detected in regression 

diagnostics, and was removed from each of the p16 and p53 datasets to yield final datasets with 25 patients. 

Analysis of Public Microarray Datasets and Test Sets of Isolated Glands.  Our objective was to 

assess whether age-associated gene expression segregated tumors into clinically meaningful groups, based on 

the previous evidence that increasing age is associated with qualitative shifts in tumor subtype (5, 17).  We 

hypothesized that gene expression patterns from normal aging would manifest themselves across different 

groups of tumors, such that more aggressive tumors would be more similar to younger, normal tissue.  To test 

this hypothesis we projected the age-associated gene set onto two publicly available microarray datasets.  These 

datasets were the NKI295 (18), Naderi et al. (19), and the UNC337 (20). To classify tumors as young-like or 

older-like, we applied methods described in Creighton et al. (21) to obtain a correlation coefficient describing 

the relation between each sample and the 802-probe age associated signature, we collapsed 802 probes by 

statistical mean to a list of unique entrez ids (N=719 genes).  The vector summarizing the age signature on these 

genes was constructed by computing the difference in median gene expression in reduction mammoplasty 
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patients older than 39 versus those younger than 30 (median expression in younger minus median expression in 

older).  Genes with differences less than zero (lower expression in young) were set to -1 and genes with 

differences larger than zero (higher expression in young) were set to 1.   This vector of expected values was 

compared with the sample gene expression data and Pearson correlation coefficients were calculated. If 

Creighton correlations for a given tumor sample was positive, the patients were classified as young-like; if the 

correlation was negative, the patient was classified as older-like.  Since all of the patients in the reduction 

mammoplasty data set and the NKI dataset were 55 or younger, all three tumor datasets were restricted to this 

age range for the combined analysis.  Data for age restricted datasets were median-centered by gene and filtered 

to include only those genes with top 50% variability prior to performing correlation analysis.  The 719 genes 

mapped to 380 variable genes in the NKI dataset, 2) 317 variable genes in the Naderi dataset, and 268 variable 

genes in the UNC337 dataset.  Following classification, all samples were aggregated to a single dataset 

including 459 tumors.   

Because we hypothesized that individuals with young-like tumors would mirror patterns of more 

aggressive tumors, we compared young-like tumors to aggressive tumors in SEER data.  Data for women 55 or 

younger were selected from the SEER registry, years 1973-2009, [ASCII file: yr1973_2009.seer9], 

Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Research Data (1973-

2009), National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, 

released April 2012, based on the November 2011 submission.  To evaluate whether patterns of age at incidence 

and hazard rate over time in young-like tumors paralleled aggressive tumors in SEER, hazard curves were 

generated using the muhaz library in R. Young-like tumor behavior was compared with ‘aggressive’ (grade 3) 

tumors and ‘less aggressive’ SEER tumors (grade 1 or 2).  Previous manuscripts (3) have demonstrated that for 

the SEER data as a whole, several clinical characteristics (ER status, PR status, race, grade, tumor size) 

duplicate the same general patterns for age at incidence and hazard rate, so grade was selected as representative.  
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Creighton correlation-based classification methods were also used for analyzing age-associated gene 

expression in an independent test set of isolated glands.  The Entrez IDs (144 genes) from the fold-change age 

signature were mapped to the University of Wisconsin data, with 138 probes identified in the isolated gland 

Affymetrix dataset.  Creighton correlations were computed for each sample relative to the 144-gene age 

signature. The association between the Creighton correlation (coded as ‘positive’ if  >= 0 or ‘negative’ if < 0) 

and the true age of tissue (< 30, 30-39, >39) was estimated using the nonzero correlation statistic, a 1 degree of 

freedom, Cochran-Mantel-Haenszel statistic, obtained from PROC FREQ in SAS 9.2.   

Comparison of Age-Associated Signature with Previously Published Signatures.  Previously, a 

signature of aging was published based on tumor gene expression data (5).   In addition, a meta-analysis of 

common signatures of aging across many tissues was published (22).  These two signatures, representing 

important previous work on aging in breast and across tissue types, were evaluated in our RM samples to test 

whether they also predicted age in these normal human breast tissues and to assess correlation with our aging 

signature.  These published signatures were first mapped to our filtered dataset of reduction mammoplasty 

patients, resulting in 85 genes for the 145-gene Yau et al. (5) signature and 52 genes for the 73-gene de 

Magalhaes signature (22).  A Creighton correlation was computed where genes with high expression in young 

were coded as 1 and high expression in older were coded as -1.  If correlation was positive, these patients were 

young-like for a given signature.  These signature based classes were then evaluated for association with patient 

age and for association with our RM-based young-like and older-like signature. Chi-square tests, or Fisher exact 

where cell counts were <5, were used to evaluate the statistical significance of these associations. 

 

RESULTS 

Age-associated gene expression in reduction mammoplasty patients.  A substantial proportion of 

genes examined by microarray had expression changes associated with age.  A False Discovery Rate (FDR) of 5 
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or 10% is commonly used in supervised analysis of microarray data, and at that level 2 or 4%, respectively, of 

genes are significantly associated with age.  A striking 15% of genes were associated with age at FDR of 20%, 

demonstrating the broad change induced by aging.  Figure 1A shows a one-dimensional (genes clustered only) 

heat map of gene expression for 802 age-associated genes (with FDR<10%) across 76 samples (representing 62 

patients), ordered according to chronological age, with colored bars representing the age group by decade.  The 

figure illustrates that there appears to be a qualitative shift in gene expression in the late thirties, with substantial 

inter-individual variation across individuals in any given age group.   

To test this gene set in an independent dataset, we used gene expression data from isolated glands 

(enriched for mammary epithelia as described in Methods) of reduction mammoplasty patients.  Because whole 

tissue was used in training, evaluation of this second epithelium-enriched dataset helped to evaluate whether 

age-related signatures were reflective of changes within epithelium or changes in tissue composition overall.  

Results in this independent test set shows that even in microdissected epithelium, the age-related changes 

observed in whole tissue are largely preserved.  Figure 1B shows that the age-associated signature also is 

significantly associated with age in this dataset. There is a strong correlation between age and the expression of 

the aging signature, with young women (shown in green) tending to show positive correlation with the younger 

women’s signature (9 of 14 samples positively correlated with the young signature) and the older women 

(shown in magenta) showing negative correlation (12 of 16 negatively correlated with young signature).  Across 

all of the independent test samples, there was a strong trend toward decreasing correlation with the young age 

signature as age increases (odds ratio for young expression is 5.4 [95% CI: 1.1-26.0] comparing younger to 

older women).  The association with age in this independent test set is particularly striking given the distinct 

specimen processing methods, microarray platform, and collection and processing at separate institutions.  

These data suggest that the signature we detected does not simply mirror changing tissue composition with age, 

but rather, it reflects age-related change within cellular compartments. 
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To evaluate the pathways that were differentially expressed with increasing age, we used Ingenuity 

Pathway Analysis as described in Methods. Among the 802 differentially expressed probes, several processes 

and pathways were associated with age (Table 2). Aging of cells, cell flattening, and shape change were 

significant processes, while JAK2-associatied hormone-like cytokine signaling, Wnt/β-catenin signaling, and 

Ephrin Receptor Signaling were significant pathways. The complete list of significant genes depicted in Figure 

1, are shown in Supplemental Table 1 along with the average fold change comparing the median centered data 

for the youngest patients (< 30, n=20) to that of the oldest patients (>49, n=6).   

Two genes were of particular interest: CDKN2A (p16) and TP53.  We confirmed the direction of change 

for both of these genes by performing Q-RT-PCR on a subset of samples with remaining RNA (Supplemental 

Figure 1).  The p16INK4a tumor suppressor has an established role in aging and its expression is known to 

increase with increasing age (23, 24).  The links between p53 and aging are complex.  While p53 plays a critical 

role in determining cellular senescence and in vitro lifespan (25), levels of activity decline with aging in rodents 

(26).  The basis for loss of p53 function with aging could be attributed to the progressive impairment of 

mitochondrial OxPhos which was shown to abrogate p53 (27).  And while aging causes decreased p53 activity, 

hyperactive p53 is associated with accelerated aging phenotypes (28).  Our microarrays showed p53 levels 

decreasing with increasing age, which was also qualitatively confirmed by QPCR. 

Menopause-associated gene expression in reduction mammoplasty patients.  In contrast to the large 

number of genes found to be associated with age, there were relatively few that were associated with 

menopausal status. In a comparison between 76 pre/peri-menopausal women and 23 post-menopausal women, 

only 273 genes were statistically significant given an unadjusted p-value < .05.  After adjustment for multiple 

testing (as was done for age-related genes), no genes were significantly associated with menopausal status (q 

value > 0.10 for all genes).  Despite the weak association between menopausal status and gene expression, we 

performed an IPA analysis with the 273 genes that were significant given an unadjusted p-value less than 0.05.  
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We identified no Functional Annotation or Canonical Pathway categories that were differentially expressed 

with Benjamini-Hochberg p<0.05, further suggesting that these genes were not biologically significant.  These 

results show that for the age range we studied (20-70), menopausal status did not strongly dichotomize the 

biological characteristics of breast tissue.  However, our dataset contained a relatively small number of 

postmenopausal women (n=23) and a larger study with more balanced representation of pre- and post-

menopausal women may be better powered to detect differences by menopausal status. 

 Age-associated gene expression in the breast cancer patients. According to evolutionary theories of 

cancer (12), tumors take advantage of the transcriptional programs and pathways that are active in normal 

tissue, leveraging existing programs to advance growth and survival.  Thus we expected that pathways that 

showed age-associated expression in normal tissue would also be dysregulated in tumors.  By applying the age-

associated gene set from Figure 1 to three publicly available breast tumor microarray datasets, we identified two 

groups of patients.  Similar to SEER data for ‘aggressive’ high grade vs. ‘less aggressive’ low grade tumors 

(Figure 2A), patients with young-like gene expression showed an left shift in the incidence distribution, 

documenting an earlier age at incidence pattern (Figure 2B).  Aggressive tumors and those that had young-like 

expression also had peak hazard ratios early following diagnosis, followed by a declining hazard rate after 

peaking; this pattern was not observed for ‘less aggressive’ SEER tumors or older-like tumors, both of which 

had increasing hazard rates over time (Figure 2C and 2D).  In sum, the patterns of age at incidence and hazard 

rate over time for young-like breast tumors are very similar to patterns presented for aggressive breast cancers 

based on SEER data (3).   

We also evaluated whether young like vs. older-like were correlated with particular tumor characteristics 

(Table 3).  In fact, young-like tumors were more likely to have clinically aggressive characteristics, with 

statistically significant associations in the largest of the three datasets (NKI dataset): ER negative (p=0.02), high 

grade (p=0.005), larger (p=0.04).  Substantial, though non-significant, associations in the same direction (more 
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aggressive tumors given young-like gene expression class) were observed for Naderi et al. and UNC 337 

datasets.  Considering the combined dataset, significant associations held with numerous clinically aggressive 

phenotypes (large size, high grade, and young age).  The strongest association was for high tumor grade, which 

was moderately associated with being young-like in all three datasets, including UNC (p=0.17) and Naderi 

(p=0.09) data sets, and in the combined analysis (p=0.01). Young-like tumors were also more prevalent among 

young women in all datasets except for the Naderi et al., where the young-like signature did not correlate with 

patient age.  However, this dataset (n=52) had an older patient population (mean age of 47 compared with UNC 

and NKI which both had mean age of 44).  These results document that the normal biology of younger women 

is reflected in more aggressive tumors that are more common in this age group.    

 Evaluation of correlations with previous age-related signatures.  A previous study had evaluated 

common signatures of aging, across 27 different studies including mouse, rats and humans (22).  While 

mammary gland/breast was not specifically studied in these datasets, common signatures were identified for 

tissues such as heart, lung, brain, muscle, kidney and liver.  We evaluated whether this aging signature was 

correlated with normal aging human breast signatures in our RM study.  As shown in Table 4, young-like 

samples based on the de Magalhaes signature, were both younger chronologically and more likely to be young-

like according to our signature.  While previous studies of aging human breast were not available for 

comparison, we evaluated one tumor-based signature that carefully evaluated age-related gene expression 

among breast tumors (5).  This tumor-based age signature was selected because it restricted to only ER positive 

tumors, potentially avoiding some of the problems of confounding by tumor subtype as described in Anders et 

al. (7).  The Yau et al. signature also was significantly associated with our young-like signature, but was not 

associated with patient age when projected onto normal tissues.  The weaker correlation with age for this 

signature may reflect the fact that the tumor biology evolves and diverges from the normal age-related biology 

as the tumor progresses. 
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CONCLUSIONS 

 Molecular and cellular studies of breast tissue clearly show that there are important compositional and 

morphometric changes in aging breast tissue (29).  During the premenopausal period, a decline in ovarian 

function causes regressive changes in both epithelial structures and in stroma, with declining epithelial tissue 

and lobular volume from the third to sixth decades of life, independent of previous reproductive history  (30).  

The observation that aging-associated change is a process spanning decades rather than a simple dichotomy is 

also reflected by our observation that self-report of menopausal symptoms was not strongly associated with 

changes in breast tissue.  Pre- versus post-menopausal status is categorized on the basis of menopausal 

symptoms in most studies and not on the basis of tissue level change.  Future research should consider 

misclassification error induced by using menopausal status as a surrogate for tissue level change or should 

consider alternative measures of ovarian function, rather than using reported menopausal symptoms as the basis 

for dichotomizing complex tissue-level biological processes. 

Age-associated changes in gene expression in histologically normal breast tissue have not been reported 

previously.  This is a striking gap in the literature given that aging-associated gene expression profiles have 

been reported previously for human fibroblasts and lymphocytes (31, 32) as well as brain (33), kidney (34), and 

skeletal muscle (35, 36).  A recent meta-analysis has compared aging-related changes across species and tissues, 

but without inclusion of mammary gland (22).  In our data, age-associated gene expression was functionally 

linked with previous ‘aging’ gene expression categories (as shown in our ontological analyses), but also 

included individual genes of particular interest.  CDKN2A (p16) is recognized as a biomarker and effector of 

mammalian aging (24), and its upregulation is accompanied by changes in telomere length.  As expected from 

the previous association studies in other tissues and mechanistic studies conducted in vitro (Bazarov et al., 

2010), we found increasing expression of p16 with age and decreasing expression of TERT with age.  

Transcripts of the gene coding tumor suppressor p53 (TP53) also changed with age, with p53 expression 
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declining in older patients.  Links between p53 and aging have focused largely on studies in mouse models of 

breast cancer (26), but it has been demonstrated in human studies that p53 mutations are more common in 

younger women and the basal-like tumors that occur more frequently in the young (37).  These observations 

raise the hypothesis that increased mutation frequency in young women may reflect both greater activity of p53 

in young women and a resulting pressure to inactivate p53 in young women.  Further, as reviewed in Reinhardt 

and Schumacher, p53 and its target genes function as important regulators of cancer prevention and aging (38).   

Other interesting developmentally-regulated pathways were also altered with age in adult breast tissue.  

The JAK2-associated hormone-like cytokine signaling, Wnt/β-catenin signaling, and Ephrin Receptor signaling 

were differentially expressed in older versus younger women.  The hormone-dependent JAK2 signaling 

alterations (including higher expression of STAT5A), may reflect changes in ovarian function/estrogen 

signaling over time; this pathway regulating mammary gland development is responsive to estrogen and 

progesterone in mouse models (39). The latter two pathways (Wnt/β-catenin and Ephrin receptor signaling) are 

known to be involved in maintaining stem cell dynamics in cancer (40, 41), but their specific roles in 

histologically normal human breast tissue are relatively unexplored. Given that mammary progenitor cells are a 

rare cell population, these signals are unlikely to be derived specifically from stem cell populations, but may 

reflect the role of both pathways (and cross talk between them) in tissue architecture or cellular differentiation 

[reviewed in (42) and (43), for Ephrins and Wnt pathway, respectively]. While the details of mechanism are not 

enlightened by our results, we hypothesize that the changes we observe reflect alterations in survival and 

proliferation potential of the normal cell types that are susceptible to carcinogenesis. Alteration of these signals 

and normal tissue homeostasis with age may dictate pathways to malignancy and determine the aggressiveness 

of resulting tumors.  A recent interesting commentary has emphasized the importance of altered homeostasis in 

age-dependent cancer rates, countering the previous notion that oncogenic mutation rates alone limit 

carcinogenesis at young ages (44).    
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 Our study also identified trends that are relevant for the epidemiology of breast cancer and aging.  

Previous analyses of epidemiologic data have used breast cancer incidence data to draw inferences about the 

rate of aging of breast tissue (45, 46). These papers have suggested that the rate of aging is most rapid in the 

early years after menarche and before the first pregnancy, decreases with each subsequent birth, and decreases 

further with menopause.  Use of very large datasets and anchoring of changes to particular reproductive events 

allowed for resolution of these trends in spite of substantial inter-individual variability.  While aging-related 

changes in undiseased tissue are a more direct route to studying aging in tissue, these studies are currently 

underpowered to try to dissect the composite and interactive effects of multiple demographic and exposure 

variables as correlates of age-related phenotypes.  However, by examining the gene expression in Figure 1, it is 

clear that there is substantial heterogeneity in the population.  Some young patients’ tissues show gene 

expression patterns more similar to older women.  Premature expression of signatures reflective of older 

biology might predict earlier increased risk of breast cancer.  In the future, it may be possible to evaluate age-

related signatures as biomarkers of early breast cancer risk, particularly given that a larger number of 

epidemiologic studies are now collecting histologically normal tissue from both diseased and unaffected 

individuals.  Recent studies with peripheral blood T-lymphocytes have demonstrated that molecular markers of 

aging do show associations with health behaviors such as physical activity and smoking status (24).  Perhaps 

even more importantly, though, the biomarkers of aging can give us greater understanding of mechanisms of 

etiology. 

  If a group of tumors has distinct mechanisms of etiology, then the progression of these tumors may 

depend upon the degree to which mechanistically relevant pathways are expressed in the normal tissue from 

which these tumors arise.  In other words, if gene expression microenvironments in younger tissue apply 

selective pressures or create optimal conditions for specific subtypes, then (1) these subtypes would be more 

common in younger women, and (2) the tumors would be expected to differentially express the pathways 
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common to young breast tissue. Regarding the first point, several papers have documented that different 

subtypes of tumors are more prevalent in younger women (e.g. ER-negative and basal-like cancer), which is 

echoed in our data showing that tumors with young-like signatures were more likely to have aggressive clinical 

features. Regarding the second point, our work illustrates that the young-like tumors have distinct age at 

incidence patterns and hazard rates over time, similar to the incidence and hazard rate patterns produced by 

stratifying on aggressive clinical characteristics.  Thus our work provides a strong biological link between aging 

processes and the etiology of aggressive breast cancer subtypes. 

While links between age-associated gene expression and epidemiologic age at incidence patterns are 

informative, there are several caveats to our analysis.  First, we used public microarray datasets to evaluate our 

age-associated signature classes in comparison with high grade/aggressive tumors in SEER data.  While the data 

convincingly recapitulate the SEER patterns for age-at-incidence and hazard rate over time, it must be noted 

that these public datasets are not population-based samples and therefore may have substantial distributional 

differences from SEER in both age and tumor characteristics. While we restricted the age-range of tumors in 

our analysis to improve the comparability across datasets, the lack of a population-based tumor gene expression 

data for evaluating age-dependent signatures limits our comparability with SEER data.  Second, all of the 

microarray datasets used were modestly sized.  Therefore, it was impossible to stratify on relevant demographic 

variables such as race, and we were unable to detect weaker changes in gene expression with age. However, 

these analyses are an important first step toward characterizing some of the strongest changes induced in aging 

breast tissue.  Third and finally, our reduction mammoplasty tissues were not microdissected prior to analysis 

and therefore it is likely that we identified only changes that are common to both stromal and epithelial cell 

types.  Given that our signature derived from stroma-rich whole tissue predicted chronological age in isolated 

epithelium, we expect these changes are shared between tissues.  Indeed aging changes may be highly 

stereotyped across tissue and cell types and highly conserved across organisms, given that our signature 
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correlated with a signature derived from multiple species and multiple tissues, both stroma and epithelium rich 

(22).   

Continued and future research may consider whether other breast cancer risk factors perturb particular 

breast-cancer related pathways in normal tissue.  For example, if particular pathways are altered in normal 

breast tissue according to body mass index (47) or parity (48), epidemiologic studies could assay these 

pathways in tumors and stratify cases according to whether they express these pathways.  This would help to 

delineate the distinct causal paths that contribute to heterogeneous phenotypes of breast cancer.  Case-only 

studies have been used to identify etiologic heterogeneity with respect to particular pathways (49), and more 

recently, concordance of phenotypes between first and second primary cancers has been used to establish 

etiologic distinctiveness (50).  Our work demonstrates that evaluating pathways in both normal tissue and in 

tumors can help advance our understanding of etiologic distinctiveness. 
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TABLE 1: Demographic characteristics of women* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Only included individuals >= 20 who are not menopausal 
† 23 women who were postmenopausal were analyzed in pre/peri vs. postmenopausal analyses, but excluded from age analyses and 
from Table 1. 
‡ Premenopausal if reports regular periods, or very young age on exogenous hormones, or very young age with hysterectomy, both 
ovaries preserved  
§ Perimenopausal if last menstrual period < 1 year before interview 
# excluded are those < 20 years of age. 
 
TABLE 1a: Average Body Mass Index (BMI) by age category 
 
   N BMI

Age    
20-29   15 30.4
30-39   16 29.4
40-49   13 30.1
>= 50   2 30.5

Missing   30 
 
 

   Cases  
   N %

Menopausal Status†      
  

Premenopausal‡ 
   

62
 
81.6

Perimenopausal§    14 18.4
Missing   0

Race & Hispanic Ethnicity   
White, non-Hispanic   48 63.2
Black, non-Hispanic   6 7.9

Hispanic   19 25.0
   Other   3 3.9
Missing   0

Age#   
20-29   20 26.3
30-39   33 43.4
40-49   17 22.4
>=50   6 7.9

Missing   0
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Table 2.  Gene Ontology Categories Enriched Among Age-Associated Genes 
Ingenuity Category p-valuea Molecules 
Functions Annotation   
Aging of cells 9.4e-5 NOX4, PDCD4, SOD1, TBX2, TP53 
Cell flattening of cell lines 9.4e-5 CDKN2A, FIS1, PLD1, SMARCA4, 

SMARCB1 
Shape change 1.2e-4 ANGPT1, AP1S2, ARFIP2, ARHGAP15, 

CASP10, CD28, CDC42EP4, CDKN2A, 
DLC1, EFNA1, EPHA2, EPHB4, FADD, 
FIS1, KITLG, MARK2, MYH9, NEDD4L, 
PACSIN2, PLD1, PLXNB1, RAP1B, 
RAP2C, ROCK2, RPS6KB1, SEMA3A, 
SLIT2, SMARCA4, SMARCB1, TEK, 
TNFSF11 

Developmental process of melanocytes 3.2e-4 CTNNB1, EFNA1, KITLG, MITF, TP53 
Nectortizing enterocolitis 3.2e-4 PDE11A, PDE3B, PDE4A, PDE4D, TLR4 
Assembly of cellular protrusion 5.8e-4 ARFIP2, CCDC88A, RALA, RHOQ, 

SLC9A3R1, SLIT2 
Retraction of cellular protrusion 6.6e-4 ARHGAP32, EFNA1, IL6R, ITGA3, MYH9, 

RHOQ, ROCK2 
   
Canonical Pathways   
Role of JAK2 in Hormone-Like Cytokine Signaling 1.1e-3 SHC1, STAT5A, GHR, TYK2, SOCS2, JAK2
Wnt/β-catenin Signaling 2.9e-3 TP53, SOX4, CDKN2A, SOX12, MARK2, 

SOX17, CSNK1E, FZD8, FZD4, SOX8, 
DVL2, CTNNB1, ACVR1C, WNT5B, SOX5 

Ephrin Receptor Signaling 5.2e-3 RAP1B, ACTR2, EPHB4, ANGPT1, 
GNB2L1, LIMK2, JAK2, ITGA3, GNG7, 
GNG10, EFNA1, ROCK2, SHC1, SDCBP, 
GRIN2C, EPHA2 

aBenjamini-Hochberg, multiple testing adjusted p-value. 
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Table 3.  Characteristics of young (≤55 years old) breast cancer patients according to young-like and old-like signature class, 
public microarray datasets from NKI , Naderi et al., and UNC. 
  NKI   Naderi et al.  UNC 337 Combined 

 
Young-
like (N) Old-like (N) p-value 

Young-
like (N) 

Old-like 
(N) p-value 

Young-
like (N) 

Old-like 
(N) p-value 

Young-
like (N) 

Old-like 
(N) p-value 

ER status             

Positive 106 120  17 15  29 27  150 164  

Negative 44 25 0.02 8 12 0.52 31 23 0.69 87 56 0.07 

Missing       0 2  0 2  

Size             

< 2 cm 49 65  15 17  12 15  78 95  

>= 2 cm 101 80 0.04 10 10 0.95 48 36 0.35 159 126 0.02 

Missing       0 1  0 1  

Tumor Grade             

Well differentiated/1 31 44  9 5  2 5  42 54  

Intermediate/2 45 56  5 13  20 10  70 79  

Poorly differentiated/3 74 45 5.0 e-3 11 9 0.09 37 30 0.16 122 84 0.01 

Missing       1 7  1 7  

Subtype             

Basal 31 15  4 3  22 14  57 32  

ERBB2 20 29  4 7  12 7  36 43  

Luminal A 42 44  10 13  16 16  68 73  

Luminal B 44 37  4 3  9 11  57 51  

Normal 13 20 0.05 3 1 0.66 1 4 0.34 17 25 0.05 

             

Age             

< 30 1 3  0 0  3 2  4 5  

30-39 35 24  2 2  13 10  50 36  

40-49 102 81  13 15  31 25  146 121  

50-55 12 37 1.2 e-4 10 10 1 13 15 0.87 35 62 6.5e-3 
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Table 4: Association between published age signatures based classification (columns), chronological age, 
and reduction mammoplasty age signature class.  
 Older-like (N) Young-like (N) p-value 
de Magalhaes*    

RM Older-like 28 10  
RM Young-like 13 25 1.3 e-3 

    
20-29 4 16  
30-39 15 18  
40-49 12 5  

50+ 2 4 0.018 
    
Yau†    

RM Older-like 22 16  
RM Young-like 11 27 0.02 

    
20-29 11 9  
30-39 14 19  
40-49 11 6  

50+ 5 1 0.21 
*de Magalhaes et al. (22) meta-analysis of aging signature includes 52 intersecting genes with RM signature. 
† Yau et al (5) includes 85 intersecting genes with RM signature. 
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FIGURE LEGENDS 
 
Figure 1.  Age-associated gene expression in whole tissue (n=76) and in isolated glands (n=30).  (A) 802 
probes were collapsed to unique genes by averaging and a hierarchical cluster analysis (genes-only) shows two 
distinct gene expression groups.  Some heterogeneity is observed within groups, but an overall trend is evident.  
(B) The gene expression signature was then used to predict age in an independent test set of isolated glands.  
Glands from younger patients were more likely to show positive correlation with the young signature from 
whole glands, while older patients were more likely to have negative correlations. 
 
Figure 2.  Age-at-incidence distribution and hazard rate over time are similar for aggressive tumors in 
Surveillance Epidemiology and End Results and young-like tumors in public tumor gene expression data.  
(A) Grade was used to stratify ‘aggressive’ (poorly differentiated, grade 3) tumors and ‘less aggressive’ tumors, 
with a left shift in the age distribution for ‘aggressive tumors.  (B) The young-like tumors mirror the left shift 
seen with aggressive tumors, providing a biological link between age and tumor aggressiveness.  (C)  
Aggressive tumors have a unique hazard function in SEER data, with an early peak in hazard rate (2-5 years 
depending on tumor characteristic modeled) followed by a decreasing hazard rate, while less aggressive tumors 
(grade 1 or 2 in this example), have linearly increasing hazard rate with years following diagnosis.  (D) 
Similarly, young-like tumors have a peak hazard early (prior to 5 years following diagnosis).  Tumors with 
older-like gene expression show the characteristic linear increase in hazard rate over time.  These hazard rate 
curves show that young-like tumors represent more aggressive breast cancer.      
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