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INTRODUCTION
With a lifetime risk of 12.92% and an estimated 281,550 new 
cases of invasive breast cancer expected to be diagnosed in 
females in the U.S. alone in 2021,1 an early breast cancer 
diagnosis is important for successful and effective treatment. 
Detection of breast cancer at an early stage has always been 
a challenge, as small cancers are usually difficult to discover 
compared to larger ones, especially in females who have denser 
breasts. Early detection of malignancy before metastasis outside 

the breast facilitates improved outcomes and less invasive 
surgery, and surgical treatment that minimizes deformity has 
been a key strategy in breast cancer management.2–11

The potential role of dynamic contrast-enhanced (DCE) MRI 
has been reported in the detection and diagnosis of breast 
cancer.6–8,11–15 Increased capillary permeability and an enlarged 
interstitial space play a dominant role with different enhance-
ments in breast cancer.16 In order to record high-resolution 
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Objectives: The main objective of this work was to 
detect novel biomarkers in breast cancer by spreading 
the MR spectra over two dimensions in multiple spatial 
locations using an accelerated 5D EP-COSI technology.
Methods: The 5D EP-COSI data were non-uniformly under-
sampled with an acceleration factor of 8 and reconstructed 
using group sparsity-based compressed sensing recon-
struction. Different metabolite and lipid ratios were then 
quantified and statistically analyzed for significance. Linear 
discriminant models based on the quantified metabolite 
and lipid ratios were generated. Spectroscopic images 
of the quantified metabolite and lipid ratios were also 
reconstructed.
Results: The 2D COSY spectra generated using the 5D 
EP-COSI technique showed differences among healthy, 
benign, and malignant tissues in terms of their mean values 
of metabolite and lipid ratios, especially the ratios of poten-
tial novel biomarkers based on unsaturated fatty acids, 
myo-inositol, and glycine. It is further shown the potential 
of choline and unsaturated lipid ratio maps, generated from 
the quantified COSY signals across multiple locations in the 

breast, to serve as complementary markers of malignancy 
that can be added to the multiparametric MR protocol. 
Discriminant models using metabolite and lipid ratios were 
found to be statistically significant for classifying benign 
and malignant tumor from healthy tissues.
Conclusions: Accelerated 5D EP-COSI technique demon-
strates the potential to detect novel biomarkers such as 
glycine, myo-inositol, and unsaturated fatty acids in addi-
tion to commonly reported choline in breast cancer, and 
facilitates metabolite and lipid ratio maps which have the 
potential to play a significant role in breast cancer detection.
Advances in knowledge: This study presents the first eval-
uation of a multidimensional MR spectroscopic imaging 
technique for the detection of potentially novel biomarkers 
based on glycine, myo-inositol, and unsaturated fatty acids, 
in addition to commonly reported choline. Spatial mapping 
of choline and unsaturated fatty acid ratios with respect 
to water in malignant and benign breast masses are also 
shown. These metabolic characteristics may serve as addi-
tional biomarkers for improving the diagnostic and thera-
peutic evaluation of breast cancer.
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breast images, three-dimensional (3D) MRI has been used.7,8,10–15,17 
The sensitivity of DCE-MRI in detection of malignant breast 
lesions has been reported in the range of 88–100%.5,6,18 The sensi-
tivity of DCE-MRI has recently been reported to be in the range of 
92–95% and specificity in the range of 69 to 74%19 with another study 
reporting up to 100% sensitivity and 99% specificity.20

Another MR-based functional imaging technique, namely, 
diffusion-weighted imaging (DWI), probes the microstructure 
of tissues and is sensitive to the degree to which motion of water 
molecules is restricted in relation to how packed together cells 
are.6,21–28 Bogner et al demonstrated recently that an optimized 
DWI imaging protocol at 3.0 Tesla (T) provided a high diag-
nostic accuracy in 51 patients with only one false-negative lesion 
and one false-positive lesion.29 The sensitivity of DWI in breast 
cancer has been reported to be in the range of 82–85% and spec-
ificity, in the range of 75–82%30 while single-voxel spectroscopy 
has reported an overall sensitivity in the range of 64–82% and 
specificity in the range of 85–91%.31 Multivoxel spectroscopic 
techniques, on the other hand, have recently reported a sensi-
tivity of 80% and specificity of 74%.32 However, further studies 
using new MR-based technological developments are necessary 
to assess their role in breast cancer diagnosis and therapeutic 
evaluation.

MR spectroscopy (MRS) is an efficient biochemical tool for 
assaying metabolite and lipid concentrations non-invasively in 
human breast tissues.33–41 In addition to the existence of lipids, 
water, and total choline detected by in vivo MRS, in vitro MRS in 
axillary nodes of breast cancer metastases have identified choline 
(Cho) groups, lactate (Lac), alanine (Ala), and uridine diphos-
phoglucose (UDPG).39 Earlier research on breast cancer using 
MRS has focused on recording one-dimensional (1D) spectra 
from single or multiple locations in vivo33–41 ; changes in water 
to fat ratios and Cho levels have been reported in malignant and 
benign breast masses.41 Using localized correlated spectroscopy 
(L-COSY) in 1 cm3 voxels, two-dimensional (2D) spectra were 
recorded showing increased Cho and reduced lipid ratios.42–44 
Recording 2D COSY spectra in multiple locations takes several 
hours of acquisition. However, compressed sensing (CS) allows 
MR spectroscopic imaging (MRSI) data to be collected in clin-
ically feasible time-frames.45,46 Earlier we implemented five-
dimensional (5D) echo-planar correlated spectroscopic imaging 
(EP-COSI), which combined two spectral and three spatial 
dimensions. Using non-uniform undersampling (NUS) of one 
spectral and two spatial dimensions, and CS-based reconstruc-
tion, 2D COSY spectra were recorded in multiple regions in 3–4 
slices, within practical scan time durations.47

While single-voxel 1D and 2D MRS can help to analyze the 
biochemical characteristics of breast tissues, these techniques are 
generally limited by the small coverage area achievable within a 
single scan session, and by the relatively higher partial volume 
effect due to larger voxel size. Multivoxel spectroscopic imaging, 
on the other hand, covers a larger area of the breast and is usually 
acquired with a relatively higher spatial resolution due to smaller 
size of individual voxels compared to single voxel spectroscopy. 
The 5D EP-COSI technique further increases the coverage area by 

measuring 2D spectra from multiple voxels within a 3D volume, 
during a single scan session, and therefore helps to better localize 
the malignant tissues across the breast.47

Several ex vivo high-resolution magic angle spinning (HR-MAS) 
studies of excised breast tissues have reported detection of Cho 
groups, glycine (Gly), taurine (Tau), myo-inositol (mI), and other 
metabolites and lipids40,48,49 ; detection of these metabolites in 
addition to Cho in vivo is yet to be demonstrated. A recent case 
report by Bitencourt et al has shown detection of Gly and Cho in 
one biopsy-proven invasive ductal carcinoma.50 Hence, a major 
goal of this work was to evaluate the recently developed acceler-
ated 5D EP-COSI technology47 to detect these novel biomarkers 
in breast cancer by spreading the spectra over two dimensions.

METHODS AND MATERIALS
Subjects
Thirty-one malignant, twenty one benign breast masses, and 
twenty healthy volunteers were recruited and gave consent 
according to the on-site institutional review board guidelines. 
The mean sizes of benign and malignant tumors were 1.93 cm 
and 2.82 cm, respectively. The difference in mean tumor size 
between the two groups was found to be not statistically signif-
icant (p > 0.05) based on a two-sample t-test. The 5D EP-COSI 
data acquired in five malignant, four benign, and three healthy 
subjects were excluded in the analysis due to technical failures. 
Final series in the analysis included subjects with malignant 
breast masses (n = 26, mean age 52 [range:33–71] years; grade-3 
(n = 6), grade-2 (n = 11) and grade-1 (n = 9)), benign breast 
masses (n = 17, mean age 37 [range:19–60] years), and healthy 
controls (n = 17, mean age 46 (range:26–64) years). More details 
about the recruitment can be found in Table 1.

MRI and 5D EP-COSI acquisitions
All scans were acquired on a Siemens 3T Skyra scanner (Siemens 
Healthineer, Erlangen, Germany). A dedicated “receive” 
24-channel phase-array breast coil and a body “transmit” coil 
was used for all patients and healthy subjects, who were imaged 
in the prone (head-first) position. T2-weighted axial and sagittal 
scans were acquired as references for placing the field-of-view 
(FOV). Excitation of the spectroscopic volume-of-interest (VOI) 
for 5D EP-COSI was achieved with an initial 90° RF excitation 
pulse along the readout direction (x), followed by a pair of 
adiabatic full passage (AFP) pulses51 along the phase-encoding 
dimension in the anteroposterior direction (y), and a final 90° 
RF excitation along the second phase-encoded slice dimension 
(z) with crusher gradients straddling this pulse along all gradient 
axes for coherence transfer (Supplementary Figure 1A). To 
encode the indirect spectral dimension (F1), the t1 increment was 
placed between the middle 180° AFP pulse and the last 90° pulse. 
Fat saturation bands were placed around the VOI to minimize 
the contribution of extraneous lipid signals. Water suppression 
using a three-pulse sequence52 was played before the initial exci-
tation. Signal acquisition started immediately after the last set of 
crushers.

The 5D EP-COSI data were acquired with FOV of 160×160×120 mm3 
and matrix size of 16×16×8, resulting in a voxel volume of 1.5 mL. 
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The VOI was localized within the FOV and measured approximately 
6×5×4 cm3, although this volume varied from subject to subject. The 
TR/TE were 1500/35 ms, with 64 t1 points sampled at 800 µs inter-
vals, corresponding to a spectral bandwidth of 1250 Hz along F1 (47). 
The bipolar echo-planar readout gradient sampled 512 complex t2 
points with a spectral width of 1190 Hz long F2, after separation of 
even and odd echoes. A non-water suppressed 5D EP-COSI scan 
with t1 = 1 was also acquired for eddy current phase correction.53 
The total scan time for both the water and non-water suppressed 5D 
EP-COSI was 28 min, 48 sec. The average full width half maximum 
(FWHM) of the water peak was 30.4 ± 9.8 Hz over the localized VOI 
including the cancer and non-cancer locations. In addition, DCE-
MRI data was acquired with FOV of 35  ×  35  cm2, 176 slices, pixel 
size  =  0.8 ×  0.8 × 1.1  mm, TR/TE  =  4.10/1.56  ms and flip angle of 10°, 
prior to injection of 0.1  mmol/kg of gadolinium based contrast agent 
and five measurements were made after the injection for patients with 
malignant tumors only.

The T1 and T2 values of Cho in breast cancer are 1200 ms and 350 
ms, and those of water are 1200 ms and 61 ms, respectively.54 Hence, 
it may be noted that the signals may not have fully recovered when 
using a TR of 1500 ms and T2 saturation may be significant at a TE 
of 35 ms. However, these effects are minimized in the quantitation 
by reporting the ratios rather than absolute concentrations. While 

reporting absolute concentrations, these values may be considered 
for the resonances of Cho and water, while T1’s and T2’s are unknown 
for most of the other metabolite and lipid resonances.

Data reconstruction and post-processing
The 5D EP-COSI data was non-uniformly undersampled with an 
acceleration factor of 8 using an exponentially-weighted probability 
distribution applied along the ky-kz-t1 dimensions (masking scheme 
shown in Supplementary Figure 1B). The undersampled data were 
reconstructed using a Group Sparsity (GS)-based CS algorithm.47,55 
CS-based reconstruction techniques assume that the data have a 
sparse representation in a certain transform domain and under-
sampling artifacts are removed by maximizing the sparsity of the 
transform domain coefficients. GS-CS further assumes a structured 
sparsity in the transform coefficients and operates on adjacent trans-
form coefficients together as groups rather than individually. This 
approach allows the reconstruction to exploit correlations among the 
adjacent transform coefficients due to their structured sparsity, and 
leads to a more accurate reconstruction compared to other conven-
tional l1-norm-based CS reconstruction methods.

Metabolite quantitation
The individual 2D COSY spectra contained contributions from 
proton resonances along the diagonal (F1=F2), as well as off-diagonal 
which are listed in Table 2. The left and right unsaturated fatty acid 
cross-peaks (UFL and UFR, respectively) and the triglyceryl fat 

Table 1. Characteristics of lesions

Characteristics of lesions N
Malignant lesions

Number of lesions 31

 � Mean size (range), cm 3.04 (0.4–6.8)

 � Histopathological type

 � Invasive ductal carcinoma (IDC) 17

 � Invasive lobular carcinoma (ILC) 3

 � Ductal carcinoma in situ (DCIS) 2

 � IDC+DCIS 6

 � IDC+ILC 1

 � ILC+DCIS 1

 � Other 1

 � Estrogen Receptor positive 27

 � Progesterone Receptor positive 25

 � HER2 positive 5

Benign lesions

Number of lesions 21

 � Mean size (range), cm 1.93 (0.7–4.5)

 � Histopathological type

 � Fibroadenoma 4

 � Fibro adenomatous proliferation 1

 � Focal dense stromal fibrosis 1

 � Fibroepithelial lesion 1

 � Other 14

Table 2. Metabolites and lipids identified in the 2D COSY 
spectra of breast tissue

Spectral Peaks
Locations 

(F2,F1) ppm
Methyl Fat (FMETD10) (0.9, 0.9)

Methylene Fat (FAT14) (1.4, 1.4)

Methylene Fat (FAT21) (2.1, 2.1)

Methylene Fat (FAT23) (2.3, 2.3)

Methylene Fat (FAT29) (2.9, 2.9)

Choline (CHO32) (3.25, 3.25)

myo-Inositol+Glycine (MI + GLY) (3.5, 3.5)

Methylene Glycerol Backbone (MGB42) (4.2, 4.2)

Water (WAT) (4.7, 4.7)

Olefinic Fat (UFD54) (5.4, 5.4)

Unsaturated fatty acid cross-peak, right lower 
(UFR lower)

(2.4, 5.4)

Unsaturated fatty acid cross-peak, left lower (UFL 
lower)

(2.9, 5.4)

Triglyceryl fat cross-peak lower,
(TGF lower)

(4.3, 5.4)

Unsaturated fatty acid cross-peak, right 
upper(UFR upper)

(5.4, 2.4)

Unsaturated fatty acid cross-peak, left upper (UFL 
upper)

(5.4, 2.9)

Triglyceryl fat cross-peak upper
(TGF upper)

(5.4, 4.3)

www.birpublications.org/doi/suppl/ 10.1259/bjro.20220009/suppl_file/SupplementaryFigure1(1).tif
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cross-peak (TGF) from here on refer to the average of these cross-
peaks located above and below the diagonal.

We have quantified the proton 2D peaks in the 5D EP-COSI spec-
trum using an adaptive peak integration technique that corrects for 
frequency drifts and confines the integration range for each metabo-
lite on a voxel by voxel basis after eddy current phase correction. After 
Fourier transforming the non-water suppressed signal along the 
directly sampled time dimension (S(t1, t2) to S(t1, F2)), the dominant 
lipid peak around 1.4 ppm was zeroed and the resulting spectrum 
was then inverse Fourier transformed to obtain a water-dominant 
time signal for the eddy current phase correction. The peak loca-
tion of each metabolite resonance was identified within the expected 
frequency range and the magnitude of the peak was integrated above 
the noise floor within this region. The list of quantified metabolites 
is shown in Table 2. A prior-knowledge-based quantitation (ProFit) 
algorithm56 and spectrum acquired at higher field strengths can help 
to quantity additional metabolites like Taurine and other overlapping 
resonances such as mI and Gly that do not have distinctive vertices 
inside the expected frequency range. For the purpose of this work, 
however, we have quantified the combined mI+Gly peaks instead of 
quantifying them separately, since these peaks are separated by only 
0.006 ppm.50 When the ratios are computed between 2D and 1D 
peaks, the voxels are normalized to sum to unity.

Statistical analysis
Descriptive statistics including means, standard deviations, and 95% 
confidence intervals were calculated for each metabolite. Student’s 
t-tests and analysis of variance procedures including Brown-Forsythe 
and Bonferroni and Games-Howell multiple comparisons were used 
to determine the predictive values for each detectable metabolite. 
Fisher’s stepwise linear discriminant analysis was the multivariate 
procedure used to test significance concerning all combinations of 
metabolites to find the best linear combination predictive function. 
A receiver operating characteristic (ROC) analysis was used to assess 
performance of the function using area under the curve (AUC) as the 
metric. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: 
IBM Corp., was the software used to perform these analyses. The final 
statistical analysis of the metabolites and lipids was a non-parametric 
analysis known as classification and regression tree (CART) analysis, 
which is a tree-building technique that is unlike traditional data anal-
ysis methods in that there are no distributional assumptions. A recur-
sive partitioning of the data was investigated to find the optimum 
parameters to divide the cohort into malignant and healthy subjects 
using the CART algorithm (SAS 9.4 (SAS Institute, Cary, NC)).

RESULTS
Multivoxel 2D and 1D spectra from 5D EP-COSI
Shown in Figures  1–4 are the MRS VOI placements and the 
multivoxel 2D water suppressed and 1D non-water suppressed 
spectra (t1 = 1) obtained from healthy, benign, and malignant 
breast tissues.

Figure 1 shows the reconstructed spectra of healthy tissues from 
a 60-year-old female. Panel (A) illustrates a T2-weighted MR 
image with a white box representing the MRS VOI placement. 
The multivoxel 2D and 1D spectra from two regions within the 
VOI indicated by blue and red boxes are shown in panels (D) 

and (E). Panels (B) and (C) depict the metabolite maps of water 
and fat in eight slices from the non-water suppressed scan. The 
spatially varying intensities in these metabolite maps are repre-
sentative of the different levels of water and fat concentrations in 
the glandular and fatty breast tissues. Similar to what is seen in 
MRI, the water and fat maps were reconstructed by projecting 
each peak into the spatial dimensions.

Multivoxel 2D and 1D spectra from a benign lesion in a 
32-year-old female is shown in Figure  2. Panel (B) shows the 
MRS VOI placement on a T2-weighted MR image with the white 
box representing VOI. The 2D water suppressed and 1D non-
water suppressed multivoxel spectra from a region within the 
VOI (golden box) are shown in panels (A) and (C). The voxels 
highlighted in red and blue boxes point out the spectra from 
locations containing benign and healthy breast tissues, respec-
tively. These voxels were extracted and shown in panels (D)-
(G) for better clarity. Labels in the spectra show the names of 
different metabolites and lipids observed.

Multivoxel 2D and 1D spectra selected from malignant lesions 
identified in 45- and 41-year-old patients are shown in Figures 3 

Figure 1. Reconstructed spectra of healthy tissues from a 
60-year-old female. (A)T2-weighted MR image with a white 
box representing the VOI placement. (B-C) Metabolite maps 
of water and fat in eight slices from the non-water suppressed 
scan. The water and fat maps were reconstructed by projecting 
each peak into the spatial dimensions. These maps show the 
spatial variations in the water and fat concentration. (D-E) 
Multivoxel 2D and 1D spectra from two regions within the VOI 
indicated by blue and red boxes.
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and 4, respectively. The arrangement of panels in both Figures 3 
and 4 follows a similar pattern to that of Figure 2, where VOI 
localization, 2D and 1D spectra shown in the panels (A)-(C), and 
extracted voxels in panels (D)-(G). The 2D and 1D spectra from 
voxel locations containing malignant and healthy breast tissues 
are highlighted in red and blue boxes, respectively.

Metabolite quantitation and statistical analysis
Figure 5 depicts the chemical shift ratio images (spatial distri-
bution of metabolite ratios) of selected metabolites from the 
multivoxel spectra shown in Figures 3 and 4. Panels (A)-(E) and 
(F)-(J) correspond to 41- and 45-year-old females with malig-
nant breast masses as classified by our radiologists. MRS VOI 
placement for the two patients are shown in (C) and (H). Other 
panels illustrate the spatial distribution of the water-to-fat (1D) 
ratio ((A), (F)), choline-to-water ratio ((B), (G)), water-to-UFR 
ratio ((D), (I)) and water-to-UFL ratio ((E), (J)). Since the ratios 
of UFL and UFR to water tend to decrease in the presence of 
malignant tissues, the water-to-UFL and water-to-UFR ratios are 
shown for better clarity. The bright signal shows that both UFL- 
and UFR-to-water ratios are lower in the malignant tissues. This 
trend is in contrast to the Choline-to-water ratio map where the 
bright signal indicates the region with elevated Choline-to-water 
ratios.

The difference in mean tumor size between the malignant 
and benign groups was found to be not statistically signif-
icant (p > 0.05) based on a two-sample t-test. Bar graphs 
showing the means (95% CI) of different ratios of 2D metab-
olites and lipids with respect to 1D water are presented 
in Figures  6 and 7. Figure 6 compares the differences in 
malignant, benign, and healthy subjects. Because of the 
differences in variances among these three groups, Brown-
Forsythe and Welch’s test were conducted. The results from 
the Brown-Forsythe test indicated a significant difference 
among the three groups in FMETD10: p = 0.010; FAT14: p = 
0.004; FAT21: p = 0.029; FAT23: p = 0.025; FAT29: p = 0.024; 
CHO32: p = 0.041; MGB42: p = 0.048; UFD54: p = 0.024; 
UFRavg: p = 0.034 and UFLavg: p = 0.031. In addition, the 
1D fat to 1D water ratio was also found to be significant with 
p = 0.017. Games-Howell post hoc tests further indicated 
that FMETD10 and FAT14 differed significantly between 
healthy and malignant groups with p < 0.05, in addition to 
FAT14 differing significantly between healthy and benign 
groups with p < 0.05. Figure  7 illustrates the difference in 

Figure 2. Multivoxel 2D and 1D spectra from a benign lesion 
(Fibroadenoma, size: 26 mm) in a 32-year-old female. VOI 
placement on a T2-weighted MR image with the white box 
representing VOI is shown in panel (B). Panels (A) and (C) 
shows 2D water suppressed and 1D non-water suppressed 
multivoxel spectra from a region within the VOI indicated by 
the gold-colored box. The voxels highlighted in red and blue 
boxes point out the spectra from locations containing benign 
and healthy breast tissues, respectively. 2D and 1D spectra 
from these locations are shown in panels (D)-(G).

Figure 3. Multivoxel 2D water suppressed and 1D non-water 
suppressed spectra from lesions identified in 45-year-old 
malignant patient (Grade three invasive ductal carcinoma 
and ductal carcinoma in situ, estrogen receptor positive, 
progesterone receptor positive, her2 positive, ki-67 = 20% and 
BI-RADS 5, size: 33 mm). T2-weighted MR image with the white 
box representing the VOI placement is shown in panel (B). 
Panels (A) and (C) shows 2D water suppressed and 1D non-
water suppressed multivoxel spectra from a region within the 
VOI indicated by the gold-colored box. The voxels highlighted 
in red and blue boxes point out the spectra from locations 
containing malignant and healthy breast tissues, respectively. 
2D and 1D spectra from these locations are shown in panels 
(D)-(G).



6 of 11 birpublications.org/bjro BJR Open;4:20220009

BJR|Open  Joy et al

malignant Grades 1, 2, and 3. A Brown-Forsythe test for the 
equality of means, conducted due to differences in variance, 
did not indicate a statistical significance between different 
cancer grades.

Discriminant function and CART analysis
Linear discriminant analysis for healthy and malignant groups 
based on the ratios of 2D metabolites and lipids to 1D water 
yielded a statistically significant discriminant model using 
FAT14 (Wilks’s Λ = .75, F1,29 = 9.660, p = 0.004) and CHO32 
(Wilks’s Λ = .655, F2,28 = 7.387, p = 0.003) with an AUC of 0.938 
(95% CI: 0.859–1). The corresponding ROC curve is shown in 
Figure  8(A). Ratios of FAT14 and CHO32 to 1D water in the 
representative voxels containing malignant and healthy tissues 
from patients and healthy controls were used for this analysis. 
As reaffirmation of this model, a non-parametric CART analysis 
was also performed which yielded an AUC of 0.965 with 100% 
sensitivity and 80% specificity. The discriminant function anal-
ysis used leave-one-out validation and the CART analysis used 
cross-validation. Voxels from control group representing healthy 

tissues and voxels from patient group containing malignant 
tissues were used for the analyses. While the discriminant func-
tions identifying benign from malignant masses was not found 
to be statistically significant, the analysis yielded a significant 
discriminant model based on FAT14 (Wilks’s Λ = 0.789, F1,30 = 
8.035, p = 0.008) for discriminating healthy and benign groups 
with an AUC of 0.894 (95% CI: 0.782–1). The corresponding 
ROC curve is shown in Figure 8(B). The non-parametric CART 
analysis for this model yielded an AUC of 0.8961 with 94.12% 
sensitivity and 80% specificity.

DISCUSSION
In this work, prospectively undersampled 5D EP-COSI data 
were reconstructed using GS-CS, and 2D COSY spectra 
from multiple locations in malignant breast masses were 
analyzed and compared with spectra extracted from benign 
and healthy breast tissues. In addition to the spectral disper-
sion along two dimensions, which helps to distinguish and 
quantify metabolite and lipid markers such as Cho, mI + Gly, 
UFR and UFL, the multivoxel acquisition technique yields 
spatial maps of metabolite ratios, which can play a key role 
in cancer detection (Figure 5).

While variations in water and fat resonances are commonly 
observed in malignant tissues and have been reported to be 
useful in identifying malignancy,41,57 these variations can become 
ambiguous in benign tissues and healthy glandular regions, since 
these also often contain elevated water signal. In this respect, we 
have shown that the Cho ratio map, generated by quantifying the 
signal acquired from multiple locations in the breast, can serve as 
an additional marker of malignancy, complimentary to findings 
offered by DCE-MRI/DWI.6,7,11 Although the water-to-fat ratio 
tends to be elevated in the malignant tissues, the water signal 
from the surrounding glandular region can at times introduce 
a degree of ambiguity in the qualitative comparison. The Cho 

Figure 4. Multivoxel 2D water suppressed and 1D non-water 
suppressed spectra from lesions identified in 41-year-old 
malignant patient (Grade three invasive ductal carcinoma 
and Grade 2 to 3 ductal carcinoma in situ, estrogen receptor 
positive, progesterone receptor positive, her2 positive, ki-67 
= 20% and BI-RADS 5, size: 30 mm). T2-weighted MR image 
with the white box representing VOI is shown in panel (B). 
Panels (A) and (C) shows 2D water suppressed and 1D non-
water suppressed multivoxel spectra from a region within the 
VOI indicated by the gold-colored box. The voxels highlighted 
in red and blue boxes point out the spectra from locations 
containing malignant and healthy breast tissues, respectively. 
2D and 1D spectra from these locations are shown in panels 
(D)-(G).

Figure 5. Chemical shift ratio images (spatial distribution of 
metabolite ratios) corresponding to the multivoxel spectra 
shown in Figures 3 and 4. Panels (A)-(F) and (G)-(L) corre-
spond to 41- and 45-year-old females with malignant breast 
tissues as classified by radiologists. VOI placement of the 
two patients are shown in (D) and (J), and the corresponding 
contrast-enhanced MRI images are shown in (C) and (I). Other 
panels show the spatial distribution of water-to-fat (1D) ratio 
((A), (G)), Choline-to-water ratio ((B), (H)), water-to-UFR 
ratio ((E), (K)) and water-to-UFL ratio ((F), (L)).
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ratio map generated from the quantified 5D EP-COSI data, on 
the other hand, can be less ambiguous because the elevated Cho 
levels are confined to the location of malignant tissues. While 
the Cho ratio map can play a role in tumor detection similar to 
DCE-MRI, the lower spatial resolution is currently a limiting 
factor. The statistically significant linear combination predictive 
function using polymethelyne fat (1.4ppm) and Cho (3.25ppm) 
further shows the strong capacity of 5D EP-COSI for detection 
of malignant tissues.

Although not found to be statistically significant in the current 
analysis, the findings in this work also point toward the use of 
other potential bio-markers, such as the unsaturation index, 
mI, Gly and UFL or UFR spatial distribution maps. UFL-to-
water and UFR-to-water ratios decrease in malignant tissues as 
compared to healthy ones. Hence, the higher intensities in the 
inverse of the UFL- and UFR-to-water ratio maps (Figure  5) 
can ideally serve as distinctive markers for malignancy. In prac-
tice, however, the close proximity of UFR to t1 ridges from the 

Figure 6. Mean (95% CI) of different metabolite and lipid ratios with respect to 1D water comparing malignant, benign and healthy 
breasts.

Figure 7. Mean (95% CI) of different metabolite and lipid ratios with respect to 1D water comparing malignant Grade 1, 2 and 3.
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high-intensity methyl and methylene peaks makes UFL more 
reliable than UFR. This effect is seen in the spectra from the 
patient two in Figure 5.

Tumor development is reported to be associated with structural 
changes in lipids that are responsible for a significant reduction in 
their total unsaturation.58 Improved dispersion of resonances in 
the 2D COSY spectrum allows us to derive additional measures 
of fatty acid composition, particularly the unsaturation index, 
which is defined as the ratio of the cross-peak volumes of UFL-
to-UFR and is a measure of the degree of lipid unsaturation.59 
The 5D EP-COSI technique can determine the unsaturation 
indices in multiple breast regions, which provides an additional 
tool for characterizing tumor progression.

In addition to measuring lipid-based biomarkers, 5D EP-COSI 
also allows the in vivo detection and quantitation of metabolites 
like mI and Gly. Previous reports have only shown the role of 
these metabolites from ex vivo breast cancer tissues. It has been 
reported that tumors larger than 2 cm had significantly higher 
concentrations of Gly as well as Cho compared to smaller 
tumors, and this metabolic change has been suggested as a prog-
nostic biomarker since high Gly levels were associated with a 
poor prognosis.40 mI on the other hand has been shown to be 
involved in hormone signal transduction, formation of glucuro-
nate precursors for detoxification, and also function as an osmo-
regulator in the different stages of malignant transformation.60 
Unfortunately, mI and Gly cannot reliably be quantified sepa-
rately at 3T, even with prior-knowledge based quantitation algo-
rithms. Nevertheless, our analysis has shown marked differences 
in the peak volumes of mI+Gly among the malignant, benign, 
and healthy cohorts (Figures 6 and 7), although these differences 
were not proven to be statistically significant. Further analysis in 

a larger cohort of subjects may be required to show significant 
effects of these potential bio-markers.

One of the limitations of this study is due to partial volume 
effects which can affect the analysis since the size of lesions 
can be smaller than the voxel resolution used in spectroscopic 
imaging. Additional improvements in the acquisition and recon-
struction technique, such as greater robustness of the sequence 
to patient motion, are expected to make the lipid-based and 
mI+Gly biomarkers play a more significant role alongside Cho 
in cancer detection.

Another limitation of this study is the small subset of data 
within each grade and subtype of cancer, which prevents the 
finding of a more definite, statistically significant marker to 
distinguish the various cancer types and grades. Further-
more, the nature of low-grade DCIS and ILC can affect the 
sensitivity of MRS detection. DCIS, for example, generally 
appears as small splashes across various breast regions in 
MRI, while ILC is initially confined to small lobules. These 
subtypes could, therefore, become indistinguishable, espe-
cially as partial volume effects tend to confound the reso-
nances from cancerous tissues with those from surrounding 
healthy tissues, due to the low voxel resolution. Furthermore, 
the resonances due to metabolites such as mI and Gly tend to 
overlap at 3T, and require prior knowledge-based algorithms 
to quantify them separately at higher field strengths.

CONCLUSION
In this first demonstration of validating the 5D EP-COSI technique 
to detect biomarkers in malignant and benign breast lesions, we have 
shown that in addition to metabolite and lipid ratios, metabolite ratio 
maps generated by quantifying the signal from multiple locations 

Figure 8. (A) ROC curve of the FAT14+CHO32 ratios for differentiating malignant from healthy breast tissues, with an AUC of 
0.938 (95% CI: 0.859–1). (B) ROC curve of the FAT14 ratio for differentiating benign from healthy breast tissues, with an AUC of 
0.894 (95% CI: 0.782–1).
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in the breast can serve as markers of malignancy complimentary 
to those offered by DCE-MRI/DWI. In addition to choline groups, 
detection of glycine and myo-inositol can facilitate future therapeutic 
evaluation in breast cancer using these novel biomarkers.50 Statisti-
cally significant discriminant models based on metabolite and lipid 
ratios further strengthen the potential of this technique to play a 
major role in therapeutic evaluation of breast cancer.
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