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Abstract

Bicycle Wheel System Identification and Optimal Truing

by

Aaron M. Hunter

The spoked bicycle wheel is one of the most ubiquitous tensioned structures in the world and

its assembly and tensioning is largely automated. Nevertheless, the algorithms employed in the

tensioning process are heuristics that essentially mimic a skilled human worker. While these

heuristic can yield very well-tensioned wheels, they are not efficient and occasionally do not

converge, requiring manual intervention.

This work describes an in-situ empirical modeling technique of a conventional bicycle

wheel employed to determine the optimal tension adjustments necessary to align the wheel in

lateral and radial directions while targeting a desired uniform spoke tension. The technique

allows the mean tension of the spokes to be adjusted independently from variations around the

mean. Additionally, a control algorithm is developed that uses lateral feedback and predicted

intermediate wheel states to bring the wheel into alignment to the desired tension in a single

iteration of adjustments of the tension of the spokes. First the method is simulated on randomly

tensioned wheels. Then the algorithm is demonstrated experimentally on an actual bicycle

wheel.
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Chapter 1

Introduction

1.1 Introduction

This work documents a method for determining the optimal tension of the spokes of

a bicycle wheel to meet its desired specification and a method for adjusting the spoke tension

to achieve that specification. Specifically, we model the effect of a unit change in spoke tension

on the measured parameters of the bicycle wheel, namely rim displacement and tension of all

the other spokes. and provide for an optimal tensioning method for all wheels of the same type.

Although we performed all the experiments by hand, this work is intended for integration into

an automated wheel manufacturing apparatus equipped with the appropriate sensors.

1.2 Motivation

Motivation for this work came from conversations with manufacturing personnel at

a Santa Cruz, California bicycle manufacturer. They contacted the Autonomous Systems Lab
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because they wanted to improve the performance of their automated, state of the art, wheel ten-

sioning machines and to minimize the occurrence of manual interventions necessary when the

machines failed to achieve the desired specifications. We also corresponded with the manufac-

turer of the machines and observed the machines in operation. These interactions revealed that

the algorithm used to tension the wheels is an iterative method based on a geometric heuristic–

much like that of a human operator–and that this heuristic is not guaranteed to converge to an

optimum solution. Both the non-optimality and the cost of manual intervention increase the cost

of producing a wheel. The goal of this study is to provide a deterministic, optimal method to

true a bicycle wheel that improves upon the performance of the iterative method and eliminate

the need for manual intervention.

1.3 Related Work

The spoked bicycle wheel is one of the most ubiquitous tensioned structures in the

world. While much has been written about modeling the structure itself ([13], [3], [11], [7],

[14], [6]) very little has been published regarding the assembly and tensioning (known as ‘tru-

ing’) of the wheel. Brandt [2] offers one of the first finite element models of the wheel and

provides a heuristic to true the wheel that first minimizes lateral errors, then radial errors, then

increases the tension of all the spokes and iterates the process up to a maximum mean spoke

tension. Papadaplous [12] received a patent for an algorithm to determine the optimal spoke

tension adjustments using a linear least squares approach, however doesn’t provide a method

for implementing the solution nor does it allow for targeting an arbitrary mean tension. That
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is, he provides a truing solution only at the current mean spoke tension. Finally, Jambor [9]

offers a method to determine the spoke tensions necessary to true a wheel using a finite element

model, but this approach requires full knowledge of the wheel component properties and also

doesn’t implement a method for truing the wheel.

1.4 Contributions

This thesis contributes to the state of the art in the following areas. We provide a

method of system identification of the spoke tension on the measurable properties of a wheel.

We develop a linear model that predicts the state of the wheel given a set of spoke tension

adjustments using the identified system. We develop a method for determining the optimal

set of adjustments needed to meet any achievable specification (including changing the mean

tension) of the wheel. Finally, we demonstrate an algorithm that applies those adjustments

while minimizing the errors that occur during the tensioning process. Along the way we also

develop a method to digitize analog gauge measurements using computer vision techniques

and demonstrate measurement precision that exceeds the nominal resolution of the instrument.

Much of this work appears in [8]).

1.5 Thesis Organization

This thesis is developed in four parts. After this introductory chapter we delve into

details of the work itself.

In Chapter 2, we introduce the wheel structure, define the wheel state and identify
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the forces that affect the wheel state. Then we introduce the measurement apparatus and the

experimental wheel. We then define a model of the wheel as a matrix that transforms the wheel

from its current state to a new state based on a vector of spoke tension changes. We conclude

with the formulation of the problem as a weighted, multi-objective, least-squares estimation of

the optimal spoke tension vector.

In Chapter 3, we present the simulated and experimental validation of the methods.

The first experiment is a simulation of effect of different models. The second is an experi-

mental validation of the model using the simulation results. The third and fourth experiments

demonstrate the optimal tensioning of a randomly de-tensioned wheel.

In Chapter 4 we present our conclusions and discuss future areas for development.
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Chapter 2

Method

2.1 Background

The bicycle wheel structure consists of a rim, spokes, spoke nipples, and a hub.

Fig. 2.1 shows a side view of the wheel and Fig. 2.2 shows the rim cross section. The hub

anchors each spoke which in turn tensions the rim via a threaded nipple seated in the rim. The

rim is tensioned to its desired value by tightening or loosening the nipples. A wheel has n

spokes located at equal increments around the rim defined by their location θi, i ∈ [1,2, . . . ,n],

θi = θ0 +(i−1)
n

2π
(2.1)

and θ0 represents the location of the valve stem as a fixed reference point.

The spokes are offset from the plane containing the rim by the spoke angles αnd and

αd . The angle partitions the spoke tension into two components, a radial component and a

lateral one as also seen in Fig. 2.2. Radial tension provides the wheel its ability to carry a load

by putting the rim under compression. As long as the spokes remain under tension the wheel
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will support a load. The lateral component of the spoke tension provides a means to adjust

the lateral displacement of the rim in the plane of the wheel that result from natural variations

in the mechanical properties and geometry of all the components. The optimal tension of the

wheel is a balance between the two, that is, high enough radial tension to support the anticipated

load, but below the lateral value that exceeds the rim stiffness, which induces rim buckling [5].

Note that there are two other degrees of freedom for rim displacements: tangential, that is along

the rim circumference and torsion around the rim shear center. The former merely results in a

rotation of the rim around the axle and is therefore not of interest here.The latter is a concern for

wheels containing spokes that are significantly offset from the rim center and therefore generate

a twisting moment. In this work we assume that any torsion effect is minimized when the

lateral and radial variations are minimized. In practice, this effect is primarily reduced through

appropriate rim design.

Spoking patterns vary from radial to nearly tangential relative to the hub and deter-

mined by angle β . Tangential spoke patterns allow for torque transmission from the hub to the

rim due to the drive train or disc brakes. With the exception of some lightweight front wheels

on bicycles with rim brakes, all wheels are built with some degree of tangential spoking. We

define a location along the rim by its angle θ as defined earlier for the spokes.

Truing is the process of adjusting the spoke tension to minimize the lateral and radial

variations of the rim while maintaining uniform spoke tensions. The ideal wheel is perfectly

round and has the rim lie in a flat plane perpendicular to the ground, so truing is done to mini-

mize the variations away from the ideal wheel. As can be seen in Fig. 2.2, increasing the tension

of a spoke generates a lateral force, which pulls the rim towards the spoke, and a radial force,
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pulling the rim towards the center of the wheel. The typical procedure for wheel truing by hand

is a heuristic where first all the spoke nipples are tightened to tension the wheel, then the lateral

variations are iteratively reduced, followed by the radial variations. The wheel tension is then

increased incrementally and the procedure is repeated until the wheel parameter specifications

are met [2].

Provided the materials of the wheel are maintained in their respective linear elastic

regions, the wheel is a linear structure. Therefore, wheel parameter variations (in other words,

the lateral and radial displacements and the tension values) induced by changes in the spoke

tensions can be decomposed into the changes induced by each spoke and superposed, lending

itself to influence matrix approach developed in this work.
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θ

β

Figure 2.1: Wheel geometry. Side view of a wheel. We define the rim angle, θ , to define a
location on the rim. The angle, β , results from the wheel spoke pattern. Torque transmission
from the hub to the rim (from either the drive train or disc brakes) requires β 6= 0. A purely
radially spoked wheel (β = 0) is found only on front wheels with rim brakes .
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αnd αd

~u (lateral)

~v (radial)

Flat

Frad Ftension

Figure 2.2: Wheel geometry. Rim cross section. The lateral direction (denoted by ũ) is defined
to point toward the non-drive side of the wheel. The radial direction (ṽ) points outwards from
the hub. The spoke angles αd and αnd (where the subscript denotes drive or non-drive side
spokes) provide for lateral truing of the wheel and can be different from each other depending
on the wheel type. Increasing the tension of a spoke on the drive side results in radial force
inward and a lateral force towards the spoke. Truing is the process of adjusting the tension so
that the wheel is round and the rim is straight, that is, it lies in a flat plane.
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2.2 Apparatus

A Centrimaster truing stand was used for all the truing operations and rim displace-

ment measurements. It has a bearing surface contacting the rim sidewall that is connected to

an analog depth gauge to measure radial displacements. It has a similar depth gauge contact-

ing the rim edge to measure radial displacements. Both gauges have scale resolution of 0.1mm,

although interpolation between the markings allows for better precision. A Canon EOS-M cam-

era with a 22mm macro lens was used to capture the images used to digitize the analog gauge

measurements and interpolate between scale markings. We performed all the experiments on

a hand-built road bicycle wheel consisting of a Stans ZTR Alpha rim, DT Swiss butted stain-

less steel spokes and a Wheelsmith hub. The measurement setup is shown in Fig. 2.3. A

WheelFanatyk digital tensiometer (not shown) provided all spoke tension measurements.

10



Figure 2.3: Measurement setup of the Centrimaster truing stand, digitization camera and tripod.
The test wheel used for all the experiments is mounted in the truing stand. Not shown is the
WheelFanatyk tensiometer used to measure spoke tension.
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2.3 Problem Formulation

A wheel with n spokes has tension adjustments represented by an n× 1 vector d.

We would like to find the least-squares estimation of the spoke adjustment vector, d̂, that most

closely solves following relation,

Y = Φd̂+ e (2.2)

Where Y is a 3n×1 vector defined as the measured wheel state (which we’ll elaborate on in the

next section), Φ is a 3n×n matrix representing a discrete model of the system, and e is a 3n×1

vector of random measurement error. We find the optimal estimate of d̂, in the least-squares

sense, by constructing a cost function J which is the sum of the squares of the measured wheel

state minus the prediction:

J = (Y−Φd̂)T (Y−Φd̂) (2.3)

We minimize J by taking the partial derivative of J with respect to d̂ setting it to zero and solving

for d̂,

∂J
∂ d̂

= 0 (2.4)

∂

∂ d̂
(
YT Y−2YT

Φd̂+ d̂T
Φ

T
Φd̂
)
= 0 (2.5)

−2Φ
T Y+2Φ

T
Φd̂ = 0 (2.6)

Φ
T Y = Φ

T
Φd̂ (2.7)

=⇒ d̂ = (ΦT
Φ)−1

Φ
T Y (2.8)

= Φ
†Y (2.9)
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where Φ† is the pseudo-inverse of Φ. 1

So far we’ve assumed that the measurements are all of equal importance with the

same units. However, in our case we measure two displacement vectors (the lateral and ra-

dial variations) and one tension vector. To account and adjust for their relative importance in

the solution we introduce weighting factors, µv, and µt . These factors account for the different

measurement units (and therefore magnitudes) and allow flexibility in weighting the solution to-

wards one specification over the others. There are many methods that accomplish this weighted

estimation, however, to keep the form of Eq. 2.9 we define a new measurement vector, Ỹ and

new model, Φ̃:

Ỹ =


u

v√µv

t√µt

Φ̃ =


Φu

Φv
√

µv

Φt
√

µt

 (2.10)

Where u, v and t are the lateral, radial, and tension measurement vectors respectively, each of

length n, and Φu,Φv and Φt are the n×n matrix sub-models for the lateral, radial, and tension

system response. The weighted least-squares estimate, d̃ is then determined from:

d̃ = Φ̃
†Ỹ (2.11)

2.4 System Identification

Each column of Φ represents the change of the wheel state to the change in tension of

a given spoke. What we have not yet discussed is how to determine the values of each element

1There are many robust mathematical ways to compute the pseudo-inverse of a matrix; the normal equations in
Eq. eq:lsq are not normally used beyond the derivation.
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of Φ. The approach we develop in the next section treats the system as a black box, that is, we

assume that we know nothing about the system except what we can observe and linearity. To

determine the system response we make a small change to each input to the system separately

and measure the outputs of the system.

The main issue with this approach is that without a specific physical model to fit it

is difficult to distinguish the noise from the measurements. To simplify the task somewhat,

however, can determine some interesting properties from the geometry of the system. For ex-

ample, referring to Fig. 2.1, we see that a wheel may have symmetries. We can exploit these by

grouping the responses of elements with the same symmetry and fit a single response vector to

that group. This fitting can be simple averaging, but a better approach is to observe that each

column of Φ can be considered a periodic signal with a period of 2π . Fourier theory states

that any periodic signal can be approximated by the Fourier series. The Fourier series takes the

form:

y(θ) = a0 +
N

∑
n=1

an cos(nθ)+bn sin(nθ) (2.12)

where nθ is the spatial frequency of the mode of oscillation and y(θ ) is the value of the function

at angle θ . This is discussed in more detail in the next chapter.

2.5 Wheel Model

Our approach builds upon the methods presented in Papadapolous and alluded to in

[1]. It relies on an in-situ system identification method to determine the influence of a unit

tension adjustment of a spoke on the lateral, radial and tension (that is, the tension of the other

14



spokes in the wheel) parameters of a specific wheel. This is referred to as the influence func-

tion of a given spoke and forms one column vector of Φ defined in the previous section. The

superposition of the individual influence functions of the all spokes form the complete model

of Φ for how the vector, d,of tension adjustments changes the entire state of the wheel. Φ is

referred to as the influence matrix. A given wheel that is out of alignment and non-uniformly

tensioned is modeled as a linear combination of spoke tension adjustments relative to a perfectly

trued wheel at the same average tension using a weighted least squares estimation. Where this

algorithm improves upon previous approaches is to provide tension targeting and a method for

feedback control during the tensioning process to minimize cumulative adjustment errors.

To develop the model of the wheel we first determine experimentally the effect of

a unit tension change of a spoke on the lateral and radial rim displacements as a function of

rim angle of a wheel and the tension of the other spokes in the wheel. These are the influence

functions discussed previously. Once determined, the influence functions are used to model the

system behavior given an arbitrary set of spoke tension adjustments using the weighted least

squares regression technique outlined in the previous section (this is a common approach to

system identification–see for example [10]). For each experiment an initial measurement is

taken of the radial and lateral displacements at the spoke angle, θi, and the tension of each

spoke. The resulting measurements define the initial wheel state. We then loosen one spoke

by a fixed rotation to perturb the wheel state and repeat the measurement cycle. The difference

between the perturbed state and the initial state is the measured influence function for each

wheel parameter of a given spoke (see Fig. 3.2). The influence functions of a given spoke are

therefore three vectors of length n. To minimize noise these data are either averaged or fit to

15



a Fourier series. They are then placed column-wise into three n× n influence matrices such

that each column is the influence function of a given spoke and each row represents a discrete

rim angle. In other words, if u(θ),v(θ), and t(θ) are the lateral, radial, and tension influence

functions for spoke i ∈ [1,2, · · · ,n], then the influence matrices Φu,Φv and Φt for the lateral,

radial and tension parameters respectively, at the discrete rim angles θ ∈ [θ1,θ2, · · · ,θn] are

given by:

u =



u(θ1)

u(θ2)

...

u(θn)


v =



v(θ1)

v(θ2)

...

v(θn)


t =



t(θ1)

t(θ2)

...

t(θn)


(2.13)

Φu =

[
u1 u2 . . . un

]
(2.14)

Φv =

[
v1 v2 . . . vn

]
(2.15)

Φt =

[
t1 t2 . . . tn

]
(2.16)

The influence matrices are the models of the wheel for each parameter. They are combined into

the single 3n×n matrix Φ, which is exactly the form we defined in the previous section:

Φ =


Φu

Φv

Φt

 (2.17)

Now, given a vector spoke tension adjustments, d, and the initial state of the wheel, Y0, the
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predicted final wheel state after applying the adjustments is given by:

Ŷ = Y0 +Φd (2.18)

where Ŷ is the predicted state of the wheel after tensioning. This completes the development

on the wheel model, Φ.

2.6 Weighted Least Squares Estimation of d̂

To find the optimal vector of spoke tension adjustments, d̂, that transform a perfect

wheel into in a measured state, Y, at average tension T̄ , a weighted least squares approximation

is solved using a set of measurements [u,v,T− T̄ ], and the weights µv and µt :

Φ̃ =


Φu

Φv
√

µv

Φt
√

µt

 Ỹ =


u−u0

(v− v0)
√

µv

(T− T̄ )
√

µt

 (2.19)

d̂ = Φ̃
†Ỹ (2.20)

Where Φ̃† is the pseudo-inverse of Φ̃ as we defined earlier. Typically u0 and v0 are zero reflect-

ing the fact that the gauge has been set to zero at the desired lateral and radial locations during

setup.

The weights, µv and µt , are needed to account for several factors when determining

the optimal truing solution. The first and most significant is that tension is measured in New-

tons but the spoke displacements are measured in millimeters, so to first order the weighting

factors normalize the measurements to a common scale (in this case the lateral measurements).
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They also account for the magnitude of the response of each parameter due to a unit tension

adjustment. For example, the radial displacement of the rim due to a unit adjustment is much

smaller than the lateral displacement, but both parameters typically have the same desired spec-

ification (see Fig. 3.2). Similarly, the spoke tension may have a larger relative tolerance and

generally is a less precise measurement. Finally, if one type of measurement is inherently noisy

or inaccurate its weight is reduced during simulation until the solution is relatively unaffected

by the quality of the signal. The weights therefore allow the user the flexibility necessary to

meet the specifications of a given wheel. Once d̂ is found the wheel is trued to its optimal state,

Yls by applying dad j = −d̂ to the wheel, where the negative sign indicates the direction of the

adjustment necessary to “undo” the already imperfectly tensioned wheel.

Yls = Y0 +Φdad j (2.21)

2.7 Tension Targeting

In theory adjusting a wheel to a desired mean tension is accomplished by setting

T̄ = Td in Eq. 2.19, where Td is the desired tension. As we demonstrate later, however, the ten-

sion influence functions are noisy and lack the necessary precision to target tension accurately.

Additionally, we are unable to distinguish the small rim diameter compression that occurs with

changes of tension from the radial measurements. Therefore we need a better method to simul-

taneously true and tension a wheel to a tension Td that is significantly different from T̄ . For

this method we can exploit the wheel symmetry from the following observation. If every spoke

of a symmetric (αd = αnd) wheel is tightened by the same amount then the radial and lateral
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displacements are unaffected and only the average tension is changed. It is possible therefore

to decouple the average tension change from spoke tension non-uniformity.

Formally, what we wish to do is to find the vector, d, that minimizes our cost function

as before, but with the added constraint that the average radial tension of the wheel is unchanged,

that is,

n/2

∑
i=1

dndi cos(αnd)+
n/2

∑
i=1

ddi cos(αd) = 0 (2.22)

where we explicitly label the elements of d depending on whether they are from the drive-side

(ddi) or non-drive side (dndi). For our symmetric wheel this is the same as adding the constraint

that the average of the adjustment vector is zero, that is,

d̄ =
n

∑
i=1

di = 0 (2.23)

For the general case, however, we solve Eq. 2.22 and compute different values for drive-side and

non-drive side contributions to radial tension. What follows is the treatment of the symmetric

case as it corresponds to our test wheel and demonstrates the concept adequately. Extending

this concept to asymmetric wheels is left as a future development.

The approach is as follows. First calculate d̂ as in Eq. 2.20 and subtract its mean

value, d̄. This is the spoke adjustment vector which will cause a perfectly true wheel to result

in the measured wheel state, without changing T̄ . As before, d is the vector that transforms the

wheel to the trued state:

d =−(d̂− d̄) (2.24)

(2.25)
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If the adjustments, d, are applied to the spokes, the lateral, radial and tension variations are

minimized as before, but the mean tension is unchanged. We determine the necessary constant

shift, dcm, to bring the mean tension to Td by calculating the following:

dcm = (Td− T̄ )/c (2.26)

Where the proportionality constant, c, is the change in the average tension of the wheel when

all the spoke nipples are rotated by one revolution. The spoke vector that optimally trues the

wheel and at the desired tension is:

dad j = d+dcm (2.27)

Finally, to determine c, we measure the change in average tension of a wheel where we add a

constant adjustment dcm to all the spokes in the wheel. In this work we measure the average

tension for various values of d and calculate the least squares fit of the T̄ to dcm following the

same approach as developed in Section 2.3.

2.8 Optical Digitization

Although a mechatronic implementation of a wheel tensioning machine would likely

use digital gauges, optical digitization of analog gauges is a powerful technique and can result

in extremely fine resolution–often more precise than a digital gauge. Therefore, a method for

converting the analog dial gauge readings into digital measurements using computer vision

merits some discussion. Prior to taking measurements two images are collected. The first is a

reference image of the gauge with the needles outside the expected data range. The second is
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(a) (b) (c) (d)

Figure 2.4: Images used to measure analog dial gauges with computer vision. (a) Reference
image with the needles away from the normal range of the gauge. (b) Measurement image (in
this case at the zero position). (c) Result of the subtraction of the measurement image from the
reference image. (d) After masking (concentric rings) and thresholding operations. The angle
of the needles in the masked area is measured relative to the gauge center and the converted to
a displacement measurement.

of the gauge with the needles set to zero. With these two images any subsequent image of a

measurement is processed in the following manner. The measurement image is subtracted from

the reference image after appropriate smoothing (to minimize noise). The images are taken

under the same lighting conditions, therefore what remains after subtraction is a ghost image

of the needles themselves. A binary threshold is applied to the subtracted image and masked

to show the tips the needles. Finally, the centroid of the needle tips are determined and the

angle from the gauge center to the tip is calculated and compared to the zero measurement

image. The angle is then converted into displacement using the gauge resolution. This process

is demonstrated in Fig. 2.4.
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2.9 Wheel Truing Algorithm

Having determined the optimal spoke adjustments, dad j, the remaining task is to apply

them to the wheel. Although this sounds deceptively simple, there are some difficulties doing

this accurately. The main one is a problem of spoke twist. Spokes are not torsionally stiff and

will twist significantly during nipple rotation. Thus it is difficult to determine precisely how

far the spoke nipple has been adjusted based entirely on the rotation angle of the spoke nipple.

Actuator accuracy or precision may also be inadequate, leading to the accumulation of errors

over multiple spoke adjustments. This is particularly true at higher spoke tensions where the

friction of the nipple-spoke interface can cause discrete jumps in nipple rotation because of

the higher adjustment torque required to overcome the friction. Finally, even if the nipple has

been adjusted properly but the spoke is twisted, over time it can untwist resulting in a gradual

loosening of the spoke and causing the wheel to go out of true.

Although the use of high precision servos and clamping the spoke during adjustment

can improve the wheel truing process, we developed a method that minimizes these sources

of variability using lateral measurement feedback during the adjustment. The essential idea of

the method is that we predict the wheel state after each individual spoke adjustment using the

influence matrices and the spoke adjustment value. Rather than adjust the spoke nipple a fixed

rotation, instead it is adjusted until the lateral measurement at the rim location of that spoke

agrees with the prediction. In other words, the spoke tension is adjusted until the predicted state

is measured. Note that this predicted intermediate state is not the final state of the wheel at

this location. The subsequent adjustment of the remaining spokes also affect the displacement
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of the rim at this location. The power of the method is the ability to predict the intermediate

states during the truing process that ultimately results in a true wheel. The lateral feedback

is used because it is the parameter with the highest sensitivity to spoke tension. Spoke twist is

minimized simultaneously using the lateral feedback to estimate the hysteresis in the adjustment

and adjusting the spoke to the midpoint of the hysteresis band.

The following sequence of operations describes the complete truing method. First

measure the initial state of the wheel. Then compute the spoke adjustment vector, d, using

the weighted least squares algorithm. Next, using Eq. 2.18, predict the lateral wheel state after

each adjustment following a pre-defined sequence, spoke i= 1,2, . . .n. The lateral displacement

target for spoke i is the predicted state after the ith adjustment. Starting with first spoke, adjust

the nipple until the gauge measurement agrees with the lateral target. Finally, eliminate spoke

twist by measuring the spoke rotation hysteresis during adjustment (also using the lateral gauge

feedback) and set the spoke nipple angle midway in the hysteresis regime. Repeat this sequence

of steps for the remaining spokes until all the spokes have been adjusted. This is demonstrated

in the flowchart in Fig. 2.5. Fig. 2.6 shows the predicted lateral states of a wheel after each spoke

adjustment along with the lateral targets (diamond symbols). These targets were used to true the

wheel for the experiment shown in Fig. 3.11 in the next section. The dashed line represents the

lateral state of the wheel prior to tuning, the thin lines show each intermediate state prediction,

and the thick line is the prediction of the final state. In practice some adjustments are too small

to perform and can be safely ignored if the wheel state at that spoke is already near the target

value within an acceptable tolerance.
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Figure 2.5: Truing algorithm flowchart.
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Figure 2.6: Example of the truing algorithm. The dashed line is the initial lateral state. The
thin lines are the predicted states after each spoke adjustment. The diamonds are the lateral
target values.The spoke tension is adjusted until the lateral measurement agrees with the target
and proceeds from the first spoke (leftmost) to the last. Note that the diamond targets do not
represent the final wheel state, but the intermediate state after each tension adjustment at that
position. The thick line is the predicted final state with its truing target.
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Chapter 3

Results

3.1 Optical Digitization of Lateral and Radial Measurements

To validate the computer vision algorithm described in the previous section, we eval-

uated the measurement reliability using a series of four images. We first analyzed their readings

manually (through pixel level measurement of the angle of the needles) and then compared

against the results returned by the algorithm. We set both dial gauges to approximately the

following settings: 1.0 mm, 0.5 mm, 0.25 mm, and 0.0 mm. Fig. 3.1 shows the comparison

between the two methods. The estimated effective displacement resolution of the manual mea-

surement method is approximately 0.014 mm. The computer vision algorithm returned values

within ±0.007 mm of the manual measurements.
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Figure 3.1: Validation of the computer vision algorithm developed to interpret analog dial gauge
measurements. The results of the two approaches are within the estimate of the resolution of
the manual technique.

3.2 Influence Functions

We measured influence functions for every spoke, 32 in total. For each influence

function we measured the lateral and radial displacements at 64 equally spaced locations on

the rim starting at the first spoke. To minimize spoke twist in the estimation of the rotation,

we marked the spokes and nipples prior to the rotation. We averaged the curves (after rotating

them to the same rim angle) and in the case of the radial displacement, subtracted the mean

value. The subsequent influence functions are shown in Fig. 3.2. For each tension influence

function we measured the tension of every spoke, thus each tension influence function has

32 measurements. This particular spoking geometry results in four distinct tension patterns,
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depending on whether the spoke is on the drive side of the wheel, or the non-drive side, and

whether it is a ‘leading’ spoke or a ‘trailing’ spoke, that is, whether its spoke angle, β , is

positive or negative (see Fig. 2.1). Because this is a symmetric wheel, however, the non-drive

side leading spoke influence function is a mirror image of the drive side trailing one. Similarly,

the non-drive side trailing spoke influence function is a mirror image of the drive side leading

one. We exploited this symmetry to generate the four tension influence functions in Fig. 3.4,

such that each function represents the average of 16 measured curves and is mirrored when

necessary.

We fit the lateral and radial influence functions to the Fourier series Eq. 2.12 as dis-

cussed earlier and shown again for convenience.

y(θ) = a0 +
N

∑
n=1

an cos(nθ)+bn sin(nθ)

To identify the correct order of the model, that is the highest spatial frequency of these functions

we randomly divided the set of measured influence functions into two sets, a modeling set and a

testing set. We fit the modeling set to the Fourier series to find the coefficients an,bn using least

squares. We determined the highest significant spatial frequency by plotting the sum squared

residual error between the modeling and testing sets against the number of fitting coefficients,

and therefore spatial frequency. This is plotted in Fig. 3.3. It is evident from this plot that the

residual error for the lateral influence function is reduced in the testing data set up to a spatial

frequency, Nlat = 6 (i.e., 13 fitting coefficients) and up to Nrad = 13 (27 fitting coefficients) for

the radial influence function. Because the mean influence functions of Fig. 3.2 exhibit little

noise, we used them for the model in this work. To make this method practical, however, fewer
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Figure 3.2: The mean influence functions for the lateral and radial parameters. These functions
are the average of 32 measured curves after rotating them to the angle of the 16th spoke.

sets of data would be taken and the influence functions would be developed using the Fourier

fitting technique.

The tension measurements were noisy and imprecise so they were difficult to fit to a

Fourier series with any confidence, therefore, we simply used the averaged data for the tension

influence matrix.

Regardless of whether the model or the data are used in the influence functions, how-

ever, the influence matrices composed of those functions will be less than full rank. This is

because the highest order spatial frequency that appears in the model is 13, corresponding to 27

basis vectors associated with the Fourier coefficients. The wheel, though has 32 independent

inputs, that is, spokes. This satisfies an intuitive understanding of the wheel structure, namely
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Figure 3.3: Residual error vs fitting coefficient number for the lateral and radial influence func-
tions when fit to a Fourier series. We used the residual of the testing set to determine the highest
spatial frequency to be used for the model. Although difficult to discern due to the log scale, the
residual error increases in the lateral testing set for fitting coefficients beyond 13, correspond-
ing to Nlat = 6. Similarly we determined the highest mode of oscillation for the radial influence
function to be Nrad = 13.

that the mean tension of the wheel can be changed without affecting any of the displacement

parameters and thus has an infinite number of solutions. This is due to the fact that there are two

degrees of freedom that are not taken into account in the wheel model, namely the tangential

and torsional modes of the rim.

We verified this independently with a singular value decomposition of the influence

matrices composed of solely averaged data for the influence functions, shown in Fig. 3.5. It

is evident that without the inclusion of the tension influence matrix the model of the wheel is

under-determined.
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Figure 3.4: The mean influence functions for spoke tension. From top to bottom: (a) Non-drive
side leading. (b) Drive-side leading. (c) Non-drive side trailing. (d) Drive side trailing. Note
that (a) and (d) are mirror images, as are (b) and (c).

3.3 Simulation

With the influence matrices developed as in Eq. 2.17 we can predict the state of the

wheel for a given spoke tensioning vector. To predict dls however, the weighting parameters

µv and µt need to be determined through simulation. Additionally, given the relatively noisy

and coarsely discretized influence functions discuss in the previous section, we simulated an

alternative approach for finding dls using a regularization technique.

Regularization is the process of concatenating the identity matrix in place of the ten-
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Figure 3.5: The singular values associated with the singular value decomposition of the follow-
ing influence matrices: lateral, the concatenation of the lateral and the radial, and the full model.

sion influence matrix in Φ̃ and the zero vector in Ỹ in place of the tension measurements:

Φ̃ =


Φu

Φv
√

µv

IµI

 Ỹ =


u−u0

(v− v0)
√

µv

0

 (3.1)

where µI is a weighting factor for the identity matrix. Regularization has the effect of minimiz-

ing ||dls|| when solved for as in Eq. 2.20. The hypothesis for this technique is that the value of

||dls|| that is the smallest is the one that also will minimize tension variations in the solution.

We performed simulations for both the regularized influence matrices, as well as the

full model in order to determine the weighting factors. For each simulation a random vector

of spoke adjustments was generated and wheel state prediction was calculated using Eq. 2.18.
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White noise was added to simulate the uncertainty of the measurement of the wheel state and

the noise distributions were determined from the measured profiles generated during the influ-

ence function development. The initial weighting factors were developed by normalizing the

magnitude of the disturbance of each parameter relative to desired specification, chosen here to

be ±0.1mm lateral, ±0.05mm, radial, and 1000± 100N, tension. The weighted least squares

estimation of the random spoke vector dls was computed using these weighting factors and the

final state of the wheel using Eq. 2.21 was predicted. The weighting factors were modified

until the predicted performance error of each algorithm was minimized relative to actual spoke

adjustment vector. Fig. 3.6 shows the result of one such simulation. In general the full model

outperformed the regularized model by at least a factor of two. The predicted spoke vector

for the full model generally agrees to an rms of ≤ 0.1 revolutions. Under iterative simulation

we found acceptable weighting factors of: µv = 0.5, µt = 10−5(mm/N). The small value for

µt reflects the initial scaling of the unit disturbance between the lateral and tension parameter

(0.6mm to 250 N) as well as de-weighting the tension influence matrix due to its noise and

imprecision.

3.4 Model Validation

The model is separated into two parts, spoke adjustments which true the wheel but

leave the mean tension unchanged, and adjustments which affect the mean tension of the wheel

but do not affect the rim displacement parameters. We found the latter part of the model by

determining the coefficient, c, between the average of the spoke adjustment vector and the
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Figure 3.6: Example of the simulation process used to determine the weighting factors for the
multi-objective least squares approximation. The circles represent the actual spoke adjustments
for a given simulation and the other symbols represent the approximations from two different
approaches: a regularized model and the full model. On average, regularization resulted in
estimation errors 2× worse than when using the full model.

average tension change of the wheel from seven different experiments. Fig. 3.7 demonstrates

the results of seven experiments. A linear fit to these data finds c = 473 N/rev. In practice,

this constant can be derived from a single experiment where every spoke is adjusted by one

revolution.

We performed a different experiment to validate the model performance for preserv-

ing the mean tension in the solution. In this case we applied a random spoke adjustments vector

to the (manually trued) test wheel and compared the resulting measured wheel parameters to

the model predictions. Fig. 3.8 shows the result of this experiment. The rms model error of
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Figure 3.7: The average tension change of a wheel due to the average spoke adjustment. A
linear fit to the data finds c =−473N/rev.

the lateral, radial and tension parameters are 0.123mm, 0.049mm, and 33N, respectively. The

model fits the data well considering the tolerance of the lateral adjustment which is estimated

to be 0.1mm.

The need to separate the model into two parts is summarized in Table 3.1 and shown

in Fig. 3.10. For this experiment we targeted a well-trued wheel (tensioned to 780N) to a new

tension target of 1000N using the original algorithm Eq. 2.19. We applied the resulting spoke

adjustment vector to the wheel. Although the wheel is still true the tension exceeds the target

by 126N and the tension non-uniformity is 50% worse than the initial state in percentage terms

(4.2% vs 6.8%). The reason for the failure of the model in this regime appears to be related to

the tension influence functions themselves and is likely due to the relatively large discretization
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Figure 3.8: The actual and predicted lateral, radial, and tension values for the random de-truing
experiment.

errors of the tension measurement (nearly 4% at 1000N). Without finer resolution these dis-

cretization errors accumulate when a constant value is added to the spoke adjustment solution.

Although better instrumentation and rigorous analysis of the influence functions would likely

improve the model, calculating the average tension change separately is a superior solution as

the average tension change is easily measured independently.

Table 3.1: Results of Changing Tension

Parameter Inital (µ±σ ) Final (µ±σ )
Lateral [mm] −0.029±0.083 0.045±0.063
Radial [mm] −0.052±0.032 −0.056±0.039
Tension [N] 781±33 1126±76
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Figure 3.9: The model error relative to the measurements for the random de-truing experiment.
The rms errors are found to be 0.123 mm (lateral), 0.049 mm (radial), and 33 N (tension).
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Figure 3.10: Changing the tension of true wheel using the model described by Eq. 2.19. Al-
though the wheel remains true the tension target of 1000N is significantly exceeded and has
more variability. This experiment demonstrated the need to target tension independently from
tension uniformity and led to the improved algorithm of Eq. 2.27.
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3.5 Wheel Truing Validation

To validate the complete model and truing algorithm we applied it to a randomly de-

trued wheel with a target tension of 1000 N. The initial wheel state was not only substantially

out of true, with lateral variations of more than±1mm, but also at a very low average tension of

556N with tension variation of ±500N. Despite this, the algorithm trued the wheel to its target

mean tension within 9N and the improved resulting non-uniformity for all parameters by nearly

500% in a single iteration. Fig. 3.11 shows the wheel state before and after the truing operation

and Table 3.2 summarizes the measurements. The maximum variations are 0.17 mm above the

mean (lateral), 0.07 mm above the mean (radial), and 104 N below the mean (tension).

Finally, we iterated the truing algorithm to see whether the wheel truing performance

improved. The results are summarized in Table 3.3. The non-uniformity improved modestly for

every parameter and the mean tension was still within measurement error of the targeted value.

Table 3.2: Truing algorithm results

Parameter Inital (µ±σ ) Final (µ±σ )
Lateral [mm] 0.160±0.736 −0.037±0.107
Radial [mm] 0.050±0.158 −0.046±0.047
Tension [N] 556±211 1009±45

Table 3.3: Second iteration of truing

Parameter Inital (µ±σ ) Final (µ±σ )
Lateral [mm] −0.037±0.107 0.028±0.073
Radial [mm] −0.046±0.047 −0.031±0.034
Tension [N] 1009±45 989±39
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Figure 3.11: The state of the wheel is shown before and after the truing operation. The results
are summarized in Table 3.2.
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Chapter 4

Conclusion

In this work we demonstrated a method for developing a linear wheel model used for

truing and tensioning a bicycle wheel with no a-priori knowledge of the mechanical properties

of the components. This method can be easily incorporated into existing wheel manufactur-

ing machines provided they have measurement ability for lateral and radial rim displacements,

spoke tension measurement capability, and modest computational power. Weighting factors are

used to calculate the optimum truing solution and can be adjusted to account for the specifica-

tion tolerance in the three parameters. Once a characteristic wheel has been modeled this model

can be used to efficiently tension and true subsequent wheels of the same design.

Additionally we developed a truing algorithm that minimizes adjustment errors using

a prediction of intermediate wheel states after adjustment of each spoke and lateral measurement

feedback. This algorithm trues a wheel in a single iteration to any desired tension (within the

specification of the wheel components). An important consequence of this approach is that

the characterization of the influence functions doesn’t rely on an absolute perturbation of the

41



wheel state because the feedback compensates for this effect during truing and because the

model is linear. In practice, therefore, a wheel can be taken from any state, as long as it is

partially tensioned, and trued to any tension with only a single adjustment of each spoke (i.e.,

one complete iteration of the truing algorithm). The time necessary true a wheel is therefore

entirely determined by the truing machine and not the initial wheel state. To our knowledge,

this is the first publication of such an algorithm along with experimental validation.

The main limitation to the model is the inaccuracy and, perhaps more importantly, the

coarse discretization of the tension measurements. As a consequence, the tension parameter is

weighted relatively less than the radial and lateral parameters in this work. The resulting wheel

state after a truing operation reflects this weighting and therefore the tension errors approach

10%. The main limitation to the truing algorithm is the precision of the spoke tension adjust-

ment but even with the equipment employed here, lateral adjustments were controlled to better

than 0.1mm.

Future developments of this work should primarily deal with improving the tension

influence functions. The most direct approach is to model the spoke tension influence func-

tions using lateral and radial displacements, the geometry of the wheel, and the measured or

calculated spoke stiffness. We did perform an initial evaluation of this approach which showed

promise and will be developed in the future. Alternatives are to use different methods to mea-

sure spoke tension that have higher resolution and accuracy. One approach that has been sug-

gested ([12]) is to estimate the frequency of the first vibrational mode of the spoke acoustically.

Additionally, extending the methods presented here to the case of non-symmetric wheels is a

necessary and straightforward exercise for general application to any spoked wheel.
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