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Supramolecular architectures of molecularly thin yet
robust free-standing layers
Mina Moradi1,2, Nadia L. Opara2,3, Ludovico G. Tulli1, Christian Wäckerlin4, Scott J. Dalgarno5,
Simon J. Teat6, Milos Baljozovic2, Olha Popova7, Eric van Genderen2*, Armin Kleibert8,
Henning Stahlberg3, Jan Pieter Abrahams9,10, Celestino Padeste2, Philippe F.-X. Corvini1,
Thomas A. Jung2†, Patrick Shahgaldian1†

Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are
desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule char-
acterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the co-
hesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent
bonds of limited directionality such as dipole-dipole (–CN⋅⋅⋅NC–) interactions act in a synergistic fashion to stabilize
crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be free-
standing, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of
conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust,
single-component, and free-standing layers via bottom-up self-assembly.
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INTRODUCTION
The ambition to produce materials with meticulous control over the
organization of molecular building blocks has, for decades, attracted
chemists and material scientists and triggered their efforts. This long-
standing challenge has beenmet, to a great extent, with the development
of reticular chemistry allowing for the design of complex and chemically
programmed crystallinematerials, namely,metal-organic and covalent-
organic frameworks (MOFs and COFs) (1, 2). The strong resurgence
of interest in two-dimensional (2D) materials triggered MOF design
strategies to be adapted for the production of 2D networks (3–10). The
2D nature of this class of materials considerably limits their stability;
however, a substrate is required. Thus, the possibility to produce stable
and, a fortiori, free-standing monolayers remains a challenge. It is re-
markable that currently existing methods do not allow for the fabri-
cation of crystalline and free-standing monolayers of organic building
units exclusively via supramolecular interactions between their con-
stituent molecules in the absence of chemical linkers. Here, we chal-
lenge the accepted paradigm endorsing strong and directional interactions
for the design of stable supramolecular architectures: We report a
strategy to construct stable and free-standing monomolecular layers
using weak noncovalent bonds of limited directionality (i.e., dipole-
dipole interactions).
RESULTS AND DISCUSSION
The design of the molecular building block chosen for our first demon-
strationof a free-standing layer architecture has been inspired by our pre-
vious work on calixarene macrocycles in their function as an organizing
molecular entity (9). At the phenolic rim of the parent calix[4]arenemac-
rocycle, short alkyl chains were attached to reinforce the hydrophobic
character of the amphiphile while preserving its interfacial crystalliza-
tion propensity. We decided to restrict the work to four-membered
ring macrocycles because of their higher level of symmetry and their
relative conformational rigidity. To endow this calixarene derivative
with the ability to form 2D supramolecular networks, chemicalmoieties
capable of dipole-dipole interactions have been introduced. Methyl-
cyano functional groups have been chosen as they have been widely
studied for their ability to establish this type of supramolecular inter-
action (11, 12). 5,11,17,23-tetra-methylcyano-25,26,27,28-tetrapropoxy-
calix[4]arene (1) was synthesized and fully characterized (see synthesis
section in the Supplementary Materials and fig. S1).

The crystallization of 1 from methanol yielded single crystals
suitable for x-ray diffraction studies with synchrotron radiation. Inspec-
tion of the structure showed that bothmolecules of 1 are in the pinched-
cone conformation and that allmethyl-cyano functionalities point away
from the calixarene cavities. Symmetry expansion reveals a bilayer sys-
tem (fig. S2) akin to those found in the vast majority of structures
containing p-sulfonatocalix[4]arene (11, 12), with hydrophobic layers
alternating within the extended structure. The relative conformational
flexibility of 1 is likely to be a contributory factor to bilayer formation;
examination of the extended structure shows that the symmetry equiva-
lents of 1 pack in an interdigitated manner, forming a series of identi-
fiable CH∙ ∙ ∙N and CH∙ ∙ ∙p interactions (tables S1 to S8).

The formation of layers of 1 at the air-water interface was studied
using the Langmuir balance technique and Brewster angle microscopy
(BAM;Fig. 1 and table S9). The compression isotherm shows that1here
forms stablemonolayers characterized by a relatively high collapse pres-
sure of 28 mN m−1 and a limiting area of 90 Å2 molecule−1. It is
noteworthy that, unlike the large majority of amphiphilic calixarenes
at the air-water interface, the interfacial behavior of 1 displays twomain
phase transitions at surface pressure values of 3.4 and 17.9 mN m−1
1 of 7
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(Fig. 1, the points labeled a and b on the isotherm, respectively).
Before monolayer compression, BAM analysis of the monolayer of
1 at the air-water interface shows no contrast; this is characteristic
of a 2D gas phase (Fig. 1D). At the isotherm takeoff (A0 = 102 Å2

molecule−1), the monolayer exhibits a homogeneous morphology in
BAM (Fig. 1D). After the first phase transition observed at 3.4 mN m−1,
themorphology of themonolayer changes to yield large needle-like crys-
talline structures (Fig. 1, E andF).Upon further compression, the second
phase transition is reached; large dendritic crystalline structures appear
and gradually cover thewhole surface available (Fig. 1, G andH). Further
compression increases the density of those crystalline domains (Fig. 1I)
until the monolayer collapses.

Notably, BAM results confirm that 1 self-assembles as a crystalline
layer at the interface in the absence of organic or inorganic nodes. The
addition of transition metal salts (i.e., CuCl2, NiCl2, and CrCl3) did
not cause any relevant change in the compression isotherm or BAM
micrographs. As cyano moieties are known to be capable of metal co-
ordination, this result strongly suggests that in-layer interactions are
Moradi et al., Sci. Adv. 2019;5 : eaav4489 22 February 2019
largely favored (fig. S3) and that the formation of the crystalline network
of 1 is due to intermolecular (–CN∙ ∙ ∙NC–) dipole-dipole interactions.
The influence of van derWaals interactions can be neglected because of
the short length of aliphatic chains at the lower rim of the macrocycle.
To further verify the nature of the intramolecular interaction stabilizing
this layer, compression isotherms were carried out in the presence of a
competitor molecule capable of (–CN∙ ∙ ∙NC–) interactions, namely,
acetonitrile (ACN), in the subphase (fig. S4). The dissociation constant
(Kd) of single dipole-dipole interactions, calculated using reported
Gibbs’ free energy of interaction values (DG0, ranging from −5 to
−20 kJ mol−1) of –CN∙ ∙ ∙NC– (13), is expected to range from 0.3 to
100mM. In our experiments, we used ACN concentrations of 10 and
10−2 mM. At the lowest tested concentration of 10−2 mM (expected to
be below Kd), the Langmuir compression isotherm did not reveal any
relevant change with regard to that measured on pure water. This
confirms that no significant interaction occurred between 1 and
ACN. Oppositely, at an ACN concentration of 10 mM, only a very un-
stable monolayer is formed (with a collapse pressure below 4mNm−1),
Fig. 1. Chemical structure and interfacial self-assembly characterizationof1. (A) Molecular structure of para-methyl-cyano-tetra-propoxy-calix[4]arene, 1. (B) Extended
structure found in the crystal structure of 1 showing methyl-cyano functionalities pointing away from macrocycle cavities. Color code: C, gray; N, blue; O, red. Hydrogen
atoms are omitted for clarity. (C) Surface pressure area compression isotherm of 1 on pure water displayed three distinct phases with phase transitions at surface
pressure values of 3.4 (a) and 17.9 mN m−1 (b), corresponding to molecular area values of 97 and 84 Å2 molecule−1, respectively. Letter labels indicate the position on
the isotherm where the corresponding BAM micrographs were acquired. (D to I) BAM micrographs of the monolayer of 1 on pure water. Large crystalline monolayer
domains grow after the first phase transition (10 mN m−1). Upon further compression, the crystalline network expands and covers the whole available area at the air-
water interface. Scale bar, 100 mm.
2 of 7
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indicating that the interactions of 1with the cyano group inACN totally
disrupted the self-assembly process. This result further confirms the
dipole-dipole nature of the intermolecular forces stabilizing the
monolayer of 1.

The monomolecular layer of 1 was transferred using the Langmuir
Schaefer (LS) method at the surface pressure of 20 mN m−1 from the
air-water interface onto two different solid substrates, i.e., highly
oriented pyrolytic graphite (HOPG) and silicon/silicon dioxide coated
with octadecyltrichlorosilane (OTS). In both cases, transfer ratio values
were close to unity; surface ellipsometry and contact angle measure-
ments confirmed the successful transfer of themonolayer onto the solid
substrates tested (table S10). To avoid interferenceswith the alkyl chains
of OTS, HOPG has been chosen as the substrate for surface analytical
experiments described hereinafter.

The element-specific chemical analysis of the monolayer of
1 transferred onto HOPG was carried out using x-ray photoelectron
spectroscopy (XPS). The N1s spectrum showed only a single peak at
399.7 eV, which is a characteristic value for the cyano CN group
attached to carbon (14). The single sharp N peak, with a full width at
half maximum of 1 eV, provides evidence that all N atoms have the
same chemical environment in the monolayer. The O:N ratio, cal-
culated from the O1s and N1s spectra, is ~1, in agreement with the
chemical structure of 1. The amount of water in the transferred mono-
layer is negligible, as calculated from the O1s spectrum. This provides
further counterevidence against H-bonding of 1 with water driving the
self-assembly of the monolayer of 1 (Fig. 2, A to C). To further explore
whether dipole-dipole interactions between the CN groups are respon-
sible for stabilizing the layer, we transferred themonolayer by LS transfer
Moradi et al., Sci. Adv. 2019;5 : eaav4489 22 February 2019
after assembly on aqueous solutions containing 10 mMCuCl2, NiCl2, or
CrCl3 (fig. S3). XPS revealed, in all these cases, the absence of any metal
linkers (fig. S5). These results confirm that theCNgroups in the calixarene
have a higher propensity to interact with one another via dipole-dipole
interactions than via coordination bond with metal ion linkers.

To further characterize 1-based networks transferred on a solid sub-
strate and to establish a molecular model of the monolayer on the sur-
face, near-edge x-ray absorption fine structure (NEXAFS)measurements
at the N-K edge were carried out (Fig. 2, D to F). The spectra exhibited a
very simple line shape consisting only of the signals of transitions into the
p* (400.6 eV) ands* (approximately 425 eV)molecular orbitals (MOs) of
CN (15, 16). Only one peak is observed because the CNMO is not hy-
bridized with the p system of the phenyl group because of the linking
sp3-hybridized carbon (17). The linear dichroism (LD) spectrum re-
vealed a slight polarization of the p* signal rising to ~4% at a 70° x-ray
incidence angle. The small negative LD implies that, on average, the
cyano groups are oriented at an angle g greater than the magic angle
(54.74°) with respect to the surface normal. The angle dependence of
the p* LD is modeled as a plane-type orbital (see NEXAFS section in
the SupplementaryMaterials) (17, 18). Also, we find an average angle
of the CN group with respect to the surface normal <g> = 57 ± 1°.

Atomic force microscopy (AFM) studies of the 2D supramolecular
systems provided a substantial challenge; this may be caused by the
weak interactions between the short apolar part of 1 (i.e., propyl chains)
and the substrate (19, 20). AFM micrographs of the monolayer of 1,
transferred onto HOPG under ambient conditions, were acquired.
(Fig. 3). The layer thickness has been determined by measuring the z
profile after scratching the layer with the AFM at high constant force.
 on O
ctober 30, 2019

.sciencem
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Fig. 2. Surface spectroscopy analysis of 1-based monolayers. (A to C) X-ray photoelectron spectra of the monolayer of 1 transferred onto HOPG by the LS method
for C1s, N1s, and O1s peaks. arb. u., arbitrary units. (C) The O1s spectrum can be fitted with two peaks, 532.5 and 533.2 eV, representing O–C of 1 and an insignificant
amount of H2O (~6% of the O1s spectrum) (14). A precise interpretation of the C1s spectrum is challenging because of multiple peaks overlapping for different C entities of 1.
(D to F) Room temperature N-K edge x-ray absorption spectra (Ev + Eh) and LD of the monolayer of 1 on HOPG. (D) The transition into the unoccupied p* MO of the CN groups
is visible as a distinct peak at 400.6 eV. (E) Integrated intensity of the LD of the p* signal as a function of the x-ray incidence angle with respect to the surface normal. (F) The
data are consistent with an average orientation of <g> = 57° of the CN groups. The dashed line corresponds to <g> = 57° ± 1°.
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The thereby obtained value of 1.0 ± 0.4 nm further confirms the pres-
ence of only a single layer of 1 on HOPG (fig. S6), also consistent with
surface ellipsometry measurements that show the value of 1.0 ± 0.2 nm.
AFM imaging at molecular resolution revealed large areas covered with
molecules of 1 packed in a square fashion with an average lattice con-
stant of 1.5 nm (Fig. 3, A and B). This confirms that the layer is suffi-
ciently stable to be transferred from the liquid to the solid surface
without being disrupted by the process despite the above evidenced ab-
sence of covalent or coordination bonding.

Combining Langmuir isotherm results, XPS, NEXAFS, and
AFM, we propose a model for the molecular packing of 1-based
monolayers (Fig. 3, C and D). In this model, every single building block
of 1 interacts with its nearest neighbors via –CN∙ ∙ ∙NC– dipole-dipole
interactions. Interatomic distances and angles of the CN groups agree
with the values reported by Allen et al. (13) for dominant antiparallel
geometry of dipole-dipole interaction of CN functional groups. The an-
gle of the CN functional groups of 1 with regard to the surface normal,
extracted from themolecularmodel, is 58.4°, which is in agreementwith
the NEXAFS data.

To further investigate the stability of the layer under different
environmental conditions, cryo–transmission electron microscopy
(TEM) investigations have been performed on the monolayer of 1 after
a successful transfer from the air-water interface onto a lacey carbon
copper grid by the LS method (Fig. 4). Lacey carbon grids are hydro-
phobic by nature and have a mesh structure displaying more than 80%
of open areas. The LS transfer was carried out using the same conditions
than in the case of HOPG, and the transfer ratio measured was again
close to unity. Cryo-TEM investigations of themonolayer of 1, shown in
Fig. 4, revealed the presence of homogeneous free-standing layers across
areas as large as 3 mm by 3 mm, without rupturing and shrinking. Thus,
the bonding between the molecules in the monolayer is sufficiently sta-
ble that it can be transferred as a free-standing film. We attribute this
remarkable level of stability to the synergistic action of the dipole-dipole
interactions. The diffraction pattern of the free-standing layer shows
only one characteristic lattice (Fig. 4B). This, together with the absence
of higher-order Laue zones and the high degree of Friedel symmetry in
the electron diffraction patterns (also in the shape of the Bragg peaks),
Moradi et al., Sci. Adv. 2019;5 : eaav4489 22 February 2019
confirms that the free-standing layers are indeed monolayers and not
ordered or disordered stacks. The electron diffraction patterns of the
free-standing monolayer (Fig. 4B) reveal a square lattice with a unit cell
size of 15 Å (fig. S7). This result is in agreement with the AFM data and
our molecular model.

It has beenwidely reported that 2Dmonolayers of organicmolecules
suffer from decomposition and loss of stability under high electron
beam intensity (21–24). Notably, our results show that the free-standing
monolayer of 1 remains intact also during extensive sessions of cryo-
TEM imaging.
CONCLUSION
In conclusion, we demonstrated the formation of a crystalline, free-
standing supramolecular organic network produced in the absence of
coordination or covalent bonds. Thereby, we go beyond the current
paradigm endorsing strong and directional interactions for the design
of stable supramolecular architectures. The remarkable stability of the
layer, despite the absence of covalent bridging of the constitutive building
blocks, is reflected in the observation of undistorted free-standing layers
and surface-supported layers with the same square crystalline lattice in
molecular-resolution AFM and high-resolution TEM, respectively. On
the basis of surface chemical analysis and a model, the cohesion between
the building blocks of the layer has been attributed to noncovalent dipole-
dipole interactions between the functionalCNgroups of1.We expect our
chemical design strategy to be versatile so that it could be expanded to a
broader range of multivalent building blocks capable of establishing in-
plane dipole-dipole interactions. These building blocks should support
multiple synergistic dipole-dipole interactions, minimize other less direc-
tional interactions such as van der Waals, and form single molecular
layers at the solid-liquid interface. The latter is important to gain single
molecular layers and not amorphous polymer layers with far less struc-
tural and thickness control. The stability of the free-standing layers
produced, when exposed to photon-, photoelectron-, and electron ir-
radiations, makes them systems suitable to serve as supporting layers
for single-protein and single-nanoparticle analyses and imaging (25).
Furthermore, the findings reported here pave theway toward the design
Fig. 3. Molecular resolution AFM imaging of the monolayer of 1. (A) AFM images of the monolayer of 1 transferred onto HOPG via the LS method. (B) The high-
resolution image of the crystalline network of the monolayer shows a highly ordered network formed from the single molecules of 1. [C (top view) and D (side view)]
Molecular model of the building blocks of 1 interacting via the proposed dipole-dipole interaction in the well-ordered monolayer.
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of robust 2D layers withmolecularly precise architectures and control-
lable physicochemical properties.
 on O
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MATERIALS AND METHODS
Synthesis of 5,11,17,23-tetramethylcyano-25,26,27,
28-tetrapropoxy calix[4]arene
Compound Cl-C4A-OC3 (fig. S1) was synthesized as previously de-
scribed (26). 5,11,17,23-tetramethylcyano-25,26,27,28-tetrapropoxy
calix[4]arene, 1, was synthesized using a modified procedure adapted
from that described for analogs nonalkylated at phenolic positions
(27), as follows. Sodium cyanide (0.38 g, 7.63 mmol) was added to a
mixture of Cl-C4A-OC3 (1 g, 1.27mmol) in dimethyl sulfoxide (150ml).
The reaction mixture was kept under N2 atmosphere and magnetic
stirring at 80°C for 3 hours. The resulting pale yellow solutionwas cooled
down and added to 500 ml of ice/water, yielding a milky solution. This
mixture was acidified with an aqueous HCl solution (2M). The resulting
white precipitate was filtered and crystallized from MeOH to yield 1 as
white crystals (0.32 g, 34%; mp 200° to 205°C).

1H NMR (nuclear magnetic resonance) (300 MHz, CDCl3): d 6.62
(s, 2, ArH), 4.45 to 4.41 (d, J= 13.3Hz, 1, Ar-CH2-Ar), 3.87 to 3.81 (t, J=
13.3 Hz, 2, O-CH2-CH2-CH3), 3.50 (s, 2, Ar-CH2-CN), 3.16 to 3.12
(d, J = 13.5 Hz, 1, Ar-CH2-Ar), 1.98 to 1.86 (m, J = 7.5 Hz, 2, O-CH2-
CH2-CH3), and1.02 to 0.97 (t, J=7.4Hz, 3,O-CH2-CH2-CH3).

13CNMR
(75 MHz, CDCl3): d 156.21, 135.39, 127.81, 123.52, 118.40, 30.87, 23.18,
22.89, 10.26. Mass spectroscopy (electrospray ionization) mass/charge
ratio: [M + Na]+, calculated for [C48H52N4O4+Na]

+ 771.4; found 771.3.
Elemental analysis (%) calculated for C, 76.98, H, 7.00; N, 7.48; found,
C (76.50, 76.52), H (7.01, 7.05), N (7.42, 7.45).

X-ray crystallography
Data were collected at 100(2) K by shutterless scans using a Bruker D8
diffractometer equipped with a PHOTON 100 detector and operating
witha silicon111monochromatorandsynchrotronradiationofwavelength
Moradi et al., Sci. Adv. 2019;5 : eaav4489 22 February 2019
0.77490 Å. Diffraction data on the crystal powder of 1 were collected
using a Bruker D8 Advance powder diffractometer, operating with
Ge-monochromated CuKa1 radiation (wavelength = 1.5406 Å) and a
LynxEye linear detector. Data were collected over the angular range of
5° to 85° in 2q.

Langmuir monolayer, BAM, and LS deposition experiments
Surface pressure area compression isotherms were recorded using a
NIMA112DLangmuir system. For each series of experiments, the trough
and barriers were thoroughly cleaned with analytical grade chloroform
and nanopure water (resistivity of 18.2 megohm∙cm). Nanopure water
was used as a subphase. The monolayer was prepared by spreading a
solution of 1 (13 ml, 0.5mgml−1) in chloroform at the water surface using
a gastight microsyringe. After solvent evaporation and equilibration of
amphiphiles at the interface (15min), barriers were symmetrically closed
at a speed rate of 5 cm2min−1. The accuracies of pc andA0measurements
were of ±0.1mNm−1 and±1Å2molecule−1, respectively. Each condition
was repeated three times to ensure reproducibility of the isotherms.

BAM was performed by using a Nanofilm_ep3 system (Accurion)
equipped with an internal solid-state laser at a wavelength of 658 nm.
The images were acquired using a charge-coupled device camera (768 ×
562 pixels) and a 10× objective, equipped with an automatic focus
scanner yielding 1-mm lateral resolution.

LS transfer was carried out using aNIMAdeposition system.HOPG
and hydrophobic silicon wafers (coated with OTS) (28) were used as
solid substrates for the LS deposition of the monolayer of 1. The sub-
strates were brought toward the interface at a controlled speed of
1 mm min−1 and touched the monolayer compressed at 20 mN m−1.
After 15 min, the substrates were slowly removed from the aqueous so-
lution at a constant speed of 1 mm min−1.

Near-edge x-ray absorption fine spectroscopy
Near edgeX-ray absorption fine spectroscopy wasmeasured at the N-K
edge at room temperature in a total electron yield mode using linearly
Fig. 4. Cryo-TEM investigation of the free-standing monolayer of 1. (A) TEM analysis of the monolayer of 1 transferred via the LS method on a lacey carbon TEM
grid [dark areas in the picture are areas of thick carbon from the “lacey carbon” substrate as it is widely used as a TEM substrate for its nonuniform and wide openings
(black arrow)]. The layer has fractured and lost contact in some areas with the lacey carbon. In these areas, the free-standing monolayer can be visualized, as shown
with white arrows. (B) The electron diffraction pattern of the free-standing monolayer of 1 confirms the squarely symmetric packing structure of the crystalline layer.
The profile lines across the diffraction pattern (fig. S7) reveal a unit cell size of 15 Å, consistent with the AFM acquired and the molecular model of the self-assembled
monolayer of 1.
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polarized x-rays (Ev and Eh) for different incidence angles a (18). a = 0°
implies normal incidence, Ev is always parallel to the surface plane, and
Eh is perpendicular to Ev. The degree of polarization is 100% (18). Each
spectrumwas divided by amatching (samepolarizations and incidence
angle a) spectrum obtained on cleanHOPG and normalized to unity at
the pre-edge (395 to 398 eV).

The angle dependence of theCN p* signal wasmodeled according to
an established procedure (17), assuming a plane-type orbital (suitable
for the cyano p* MO) for a threefold or higher substrate symmetry.
The equations for the intensities Ip and In of the absorption, where
the electric field of In is normal with respect to the surface normal (i.e.,
in the surface plane) and where Ip is perpendicular to In, are as follows

Ip ¼ 1� cos2qcos2g� 1
2
sin2q sin2g

In ¼ 1
2
ð1þ cos2gÞ

Here, g is the angle between the plane normal to the plane orbital (i.e.,
the CN vector) and the surface normal, and q is the angle between the
electric polarization of Ip and the surface normal (17). The theoretical LD
is then calculated as (In − Ip)/(In + Ip). Note that the photon energy was
not exactly calibrated.
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