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Mathematics

Abstract

This dissertation discusses several problems motivated by the simplex method, one of the most

influential algorithms in optimization.

First, every generic linear functional f on a convex polytope P induces an orientation on the

graph of P . We introduce the notions of f -arborescence and f -monotone path on P , as well as a

natural graph structure on the vertex set of f -monotone paths on the resulting directed graphs.

These combinatorial objects are proxies for pivot rules and simplex method pivot steps. We bound

the number of f -arborescences, the number of f -monotone paths, and the diameter of the graph

of f -monotone paths for polytopes P in terms of their dimension and number of vertices or facets.

We also sample the distribution of lengths of monotone paths over different classes of random

polytopes.

Second, inspired by the simplex and the criss-cross methods, we present an update on the

search for bounds on the diameter of the cocircuit graph of an oriented matroid. We review the

diameter problem and show the diameter bounds of general oriented matroids reduce to those of

uniform oriented matroids. We give the latest exact bounds for oriented matroids of low rank

and low corank, and for all oriented matroids with up to nine elements. For arbitrary oriented

matroids, we present an improvement to a quadratic bound of Finschi. Our discussion highlights

an old conjecture that states a linear bound for the diameter is possible. On the positive side, we

show the conjecture is true for oriented matroids of low rank and low corank, and, verified with

computers, for all oriented matroids with up to nine elements. On the negative side, our computer

search showed two natural strengthenings of the main conjecture are false.

Finally, we discuss a data-driven, empirically-based framework to make algorithmic decisions or

recommendations without expert knowledge. We improve the performance of the simplex method

by selecting different pivot rules for different linear programs. We train machine learning methods to

select the optimal pivot rule for given data without expert opinion. We use two types of techniques,
-iv-



neural networks and boosted decision trees. Our selection framework recommends various pivot

rules that improve overall total performance over just using a default fixed pivot rule. Here our

recommendation system is best when using gradient boosted trees. Our data analysis also shows

that the number of iterations by steepest-edge is no more than four percent from the optimal

selection.

The thesis is structured as follows: In Chapter 1 we introduce the readers to the basic notions

in Sections 1.1 and 1.2, and summarize our main results in Sections 1.3, 1.4 and 1.5. Section 2.1

through Section 2.4 prove our stated bounds on number of arborescences, monotone paths, and the

diameter of flip graphs; Section 2.5 demonstrates the distributions related to length of monotone

paths, and we conclude Chapter 2 with some open problems in Section 2.6. Chapter 3 proves

the diameter conjecture in low rank and corank oriented matroids and shows the constructions of

counterexamples. In Chapter 4 we show how we generate the training data and the comparison

between different machine learning models to select pivot rules. In Appendix, we present the

pseudocode for converting oriented matroids in different representations and for computing different

features on directed polytope graphs.
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CHAPTER 1

Introduction

1.1. Preliminaries

1.1.1. Polytopes. We will briefly introduce definitions on polytopes. For more details, readers

may refer to Barvinok [Bar02] and Chapters 1, 2 and 3 of Ziegler [Zie95]. A polytope is the

generalization of polygons in higher dimensions. In order to define polytopes formally, we first

introduce some concepts from affine linear algebra. A set S is convex if ∀x,y ∈ S, z = λx + (1 −

λ)y ∈ S, 0 < λ < 1. Let a1, a2, . . . , an ∈ R and at least one of them is not zero. Let c ∈ R be

a constant. A hyperplane is the set of all vectors x ∈ Rn such that a1x1 + a2x2 + . . . + anxn = c.

Geometrically, a hyperplane in Rn is an affine subspace with dimension n− 1. A hyperplane in Rn

separates Rn into two halfspaces, which are the sets {x ∈ Rn : a1x1 + a2x2 + . . .+ anxn > c} and

{x ∈ Rn : a1x1+a2x2+ . . .+anxn < c}. A hyperplane together with one of the halfspaces is called

a generalized halfspace.

Formally speaking, a polytope P is the convex hull of a finite number of points in Rd. A

polyhedron P is the intersection of finitely many closed half-spaces in Rd. Polytopes are bounded

polyhedra by Weyl-Minkowski Theorem [Bar02]. A d-dimensional simple polytope is a d-dimension

polytope where each vertex is included in at most d edges. Simple polytopes are corresponding

to non-degenerate LP problems [Kal97]. A polytope is called simplicial if all its proper faces are

simplices. Simple polytopes are the polar duals of simplicial polytopes.

A linear inequality a1x1 + a2x2 + . . . + anxn ≤ c is valid for a polytope P if it is satisfied

for all x ∈ P . A face is any set of the form F = P ∩ {x ∈ Rd : a1x1 + a2x2 + . . . + anxn = c}

where a1x1 + a2x2 + . . . + anxn ≤ c is a valid inequality for P . The dimension of face F is the

dimension of its affine hull. Note that both P and ϕ are faces of P (for inequality 0 · x ≤ 0 and

0 · x ≤ 1 respectively). Faces of dimensions 0, 1 and dim(P ) − 1 are called vertices, edges, and

facets respectively.

-1-



1.1. PRELIMINARIES

The vertices and edges of P form an undirected graph, which is closely related to Linear

Programming and the simplex method. The diameter of a graph is the smallest number δ such

that any two vertices can be connected by a path with at most δ edges. Denote ∆(d, n) the maximal

diameter of the graph of an d-dimension polytope P with at most n facets. The original famous

Hirsch Conjecture stated the following,

Conjecture 1.1.1. for n > d ≥ 2, ∆(n, d) ≤ n− d.

The maximum diameter of a d-dimensional polytope with n facets is achieved by simple poly-

topes since all polytopes can be perturbed into simple polytopes with diameters at least as large

[KW67]. Unfortunately, Conjecture 1.1.1 was disproved by F. Santos in [San12], by a counter-

example with 40 facets in dimension 20. However, the question of whether ∆(n, d) can be bounded

by a polynomial in n and d, or the polynomial Hirsch conjecture, remains open.

The best known general upper bound was (n − d)log d by Todd [Tod14] and is improved by

Sukegawa [Suk16]. Vershynin [Ver09] showed that every polyhedron can be perturbed by a

small random amount so that the expected diameter of the perturbed polyhedron is bounded by a

polynomial in d and log n. For some special cases, researchers have proven the polynomial Hirsch

conjecture to be true (see Naddef [Nad89] for 0/1 polytopes, Orlin [Orl97] for flow-polytopes,

Brightwell et al. [BvdHS06] for transportation polytopes). Bonifas et al. [Bon] has shown that if

the polytope can be written as P = {Ax ≤ b}, A ∈ Zn×d, its diameter is bounded by O(∆d4 log d∆),

where ∆ is the largest absolute value of sub-determinants of A. See the survey by Kim and Santos

[KS10] for more information on diameter bound.

1.1.2. Directed Polytope graphs. In this thesis we are interested in directed polytope

graphs. Consider a d-dimensional convex polytope P in Euclidean space Rd and a generic lin-

ear functional f on P , meaning a linear functional on Rd which is nonconstant on every edge of P .

The first part of the thesis investigates extremal enumerative problems about f -arborescences and

f -monotone paths on the graph of P .

The functional f , which we think of as an objective function, induces an orientation on the graph

of P which orients every edge in the direction of increasing objective value. Such orientations of

polytope graphs are called LP-admissible; they are of great importance in the study of the simplex
-2-



1.1. PRELIMINARIES

Figure 1.1. The regular dodecahedron (center), with examples of an f -monotone
path (left) and an f -arborescence (right) for one of its LP-admissible orientations.

method for linear optimization (see [Dev04, MK00] and the references given there). The resulting

directed graph, consisting of all vertices and oriented edges of P and denoted by ω(P, f), is acyclic

and has a unique source and a unique sink on every face of P . An f -monotone path on P is any

directed path in ω(P, f) having as initial and terminal vertex the unique source, say vmin, and the

unique sink, say vmax, of ω(P, f) on P , respectively. An f -arborescence is any (necessarily acyclic)

spanning subgraph A of the directed graph ω(P, f) such that for every vertex v of P there exists

a unique directed path in A with initial vertex v and terminal vertex vmax (see Figure 1.1 for

an example). As explained in the sequel, f -arborescences and f -monotone paths are important

notions in geometric combinatorics and optimization. We denote monotone height the length of

the longest f -monotone path. When the context is clear, we simply refer to them as arborescences

and monotone paths.

The set of all f -monotone paths on P can be given a natural graph structure as follows. We say

that two f -monotone paths on P differ by a polygon flip (also called polygon move, or simply flip)

across a 2-dimensional face F if they agree on all edges not lying on F but follow the two different

f -monotone paths on F , from the unique source to the unique sink of ω(P, f) on F . The graph of

f -monotone paths (also called flip graph) on P is denoted by G(P, f) and is defined as the simple

(undirected) graph which has nodes all f -monotone paths on P and as edges all unordered pairs

of such paths which differ by a polygon flip across a 2-dimensional face of P . The graph G(P, f)

is connected; its higher connectivity was studied in [AER00], where it was shown that G(P, f)

-3-



1.1. PRELIMINARIES

Figure 1.2. A polygon flip on the oriented dodecahedron and the resulting flip graph

is 2-connected for every polytope P of dimension d ≥ 3 and (d − 1)-connected for every simple

polytope P of dimension d (see Figure 1.2 for an example).

Note that the pictures in both Figure 1.1 and Figure 1.2 are computed and plotted by a MAT-

LAB software PolyPathLab we wrote. In Appendix, we will present the pseudocode of PolyPath-

Lab for each feature (including generating random 3-dimensional polytope, computing diameter,

monotone diameter, number of monotone paths and flip graphs of a polytope) and the simulated

distributions of the monotone diameters of different types of polytopes.

1.1.3. Some special polytopes. Special classes of polytopes play an important role in this

thesis, since they are optimal solutions of the extremal problems considered. A convenient way to

encode the numbers of faces of each dimension of a simple or simplicial d-dimensional polytope P

is provided by the h-vector, denoted as h(P ) = (h0(P ), h1(P ), . . . , hd(P )); see pages 8, 59 and 248

of [Zie95] for details and more information. The h-vector of a simple polytope P has nonnegative

integer coordinates which afford an elegant combinatorial interpretation: hk(P ) equals the number

of vertices of P of outdegree k in the directed graph ω(P, f), discussed in the introduction, for
-4-



1.1. PRELIMINARIES

every generic linear functional f on P (see Sections 3.4 and 8.3 and Exercise 8.10 in [Zie95]); in

particular, the multiset of such outdegrees is independent of f .

A polytope is called 2-neighborly if every pair of vertices is connected by an edge. A d-

dimensional simplicial polytope is called neighborly if any ⌊d/2⌋ or fewer of its vertices form the

vertex set of a face. Neighborly polytopes other than simplices (cyclic polytopes being distinguished

representatives) exist in dimensions four and higher. Their significance comes from the fact that

they maximize the entries of the h-vector among all polytopes with given dimension and number

of vertices (see pages 15-16, and 254-257 of [Zie95]); in particular, they maximize the numbers

of faces of each dimension among such polytopes. The h-vector of a neighborly d-dimensional

polytope P with n vertices is given by the formulas hk(P ) =
(
n−d+k−1

k

)
for 0 ≤ k ≤ ⌊d/2⌋ and

hk(P ) = hd−k(P ) for 0 ≤ k ≤ d (see Theorem 8.21 and Lemma 8.26 of [?]).

Figure 1.3. Example of the polytope X(10)

A stacked polytope is any simplicial polytope which can be obtained from a simplex by repeatedly

glueing other simplices of the same dimension along common facets, so as to preserve convexity at

each step. Equivalently, the boundary complex of a stacked polytope can be obtained combinatori-

ally from that of a simplex by successive stellar subdivisions on facets. The h-vector of any stacked

polytope P of dimension d with n vertices has the simple form h(P ) = (1, n − d, ..., n − d, 1) (see

[McM04]). A fundamental result of Barnette [Bar73] states that among all simplicial polytopes

with given dimension and number of vertices, the stacked polytopes have the fewest possible faces

of each dimension. Moreover, as a consequence of the generalized lower bound theorem, stacked

polytopes minimize the entries of the h-vector among all such polytopes (see [Kal87, MN13]).
-5-



1.1. PRELIMINARIES

Many different combinatorial types of stacked polytopes are possible. For each n ≥ 4, we

will consider a 3-dimensional stacked polytope of special type with n vertices, denoted by X(n).

This polytope comes together with a linear functional f which linearly orders its vertices as

f(v1) < f(v2) < · · · < f(vn). The associated triangulation comprises of all faces of the sim-

plices with vertex sets {v1, v2, v3, v4}, {v2, v3, v4, v5}, . . . , {vn−3, vn−2, vn−1, vn}, so the dual graph

of this triangulation is a path (these dual graphs for general stacked polytopes are trees). The

regularity of this triangulation easily implies that such polytope X(n) and linear functional f exist

for every n ≥ 4. Figure 1.3 shows an example with n = 10.

A crucial property of X(n) is that the directed graph ω(X(n), f) has as arcs the pairs (vi, vj)

for i, j ∈ {1, 2, . . . , n} with j ∈ {i+ 1, i+ 2, i+ 3}. The following combinatorial lemma establishes

the lower bound for the diameter of flip graphs, claimed in Theorem 1.3.2.

1.1.4. Oriented Matroids. Oriented matroids are combinatorial structures that generalize

many types of objects, including point configurations, vector configurations, hyperplane arrange-

ments, polyhedra, linear programs, and directed graphs. Oriented matroids have played a key role

in combinatorics, geometry, and optimization (see the book by Björner et al. [BLVS+99] for a

complete treatise and Chapter 6 of Ziegler [Zie95] for a quick introduction we assume in the rest).

In this thesis, we investigate a natural graph called the cocircuit graph of an oriented matroid.

We use standard notation about oriented matroids from Ziegler [Zie95] and the classic book

of Björner et al. [BLVS+99].

For the moment we will only provide the cocircuit axioms of oriented matroids. As with classical

matroids, there are also several cryptomorphic definitions of oriented matroids; see [BLVS+99] for

more details. We will briefly introduce some of these details later. The cocircuits and covectors of

an oriented matroid are special types of sign vectors that satisfy certain axioms:

Definition 1.1.2. An oriented matroid M = (E, C∗) consists of a finite set E and a subset

C∗ ⊆ {+,−, 0}E , called signed cocircuits, that satisfy the following conditions.

(CC0) 0 /∈ C∗;

(CC1) if X ∈ C∗, then −X ∈ C∗;

(CC2) for all X,Y ∈ C∗, if supp(X) ⊆ supp(Y ), then X = Y or X = −Y ; and
-6-



1.1. PRELIMINARIES

(CC3) if X,Y ∈ C∗, X ̸= −Y , and e ∈ S(X,Y ), then there exists Z ∈ C∗ such that Z+ ⊆

(X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y −) \ {e}.

A purely combinatorial description of oriented matroids can be given in terms of special sign

vectors. If E is a finite set, we use {+,−, 0}E to denote the set of all vectors of signs, with entries

indexed by the elements of E. We will use capital letters X,Y, Z, . . . to represent elements of

{+,−, 0}E and subscripts Xe to reference the entry of X indexed by the element e ∈ E. We can

always negate a sign vector: if X = (Xe : e ∈ E), then −X = (−Xe : e ∈ E).

The positive, negative, and zero parts of a sign vector X ∈ {+,−, 0}E are defined respectively

as X+ = {e ∈ E : Xe = +}, X− = {e ∈ E : Xe = −}, and X0 = {e ∈ E : Xe = 0}. The

support of X is defined as supp(X) = X+ ∪X−. If X and Y are sign vectors, their separating set

is S(X,Y ) = (X+∩Y −)∪ (X−∩Y +), and their composition is the sign vector X ◦Y whose entries

are given by

(X ◦ Y )e =


Xe if Xe ̸= 0,

Ye otherwise.

Given an oriented matroidM, we can consider the set V∗ = {X0◦X1◦· · ·◦Xk : Xi ∈ C∗(M)}

of all possible signed covectors, obtained by successively composing signed cocircuits. The set V∗

has a natural poset structure, which we denote by L(V∗) (in fact, L(V∗) is a graded lattice). The

order is obtained from the component-wise partial order on vectors in {+,−, 0}E with 0 < +,−.

We will revisit this poset later in a geometric setting.

The rank ofM is defined to be one less than the length of the longest chain of elements in the

poset L(V∗). Again, this is not the only way to define the rank of an oriented matroid [BLVS+99].

We say an element of E is a coloop if it is not present in the support of any signed cocircuit. For

brevity, signed cocircuits will also be called cocircuits. It is well known that every matroid has a

dual matroid. In the case of oriented matroids, this concept is more delicate, but there is also a

notion of duality. One can then talk about circuits, which are the cocircuits of the dual oriented

matroid, and the related notions of corank, loops, etc. The corank of an oriented matroid on n

elements of rank r is n− r.
-7-



1.1. PRELIMINARIES

The cocircuit graph of an oriented matroidM of rank r is the graph G∗(M) whose vertices are

the signed cocircuits ofM, with an edge connecting signed cocircuits X and Y if |X0∩Y 0| ≥ r− 2

and S(X,Y ) = ∅. An oriented matroid is uniform if |X0| = r − 1 for every cocircuit X ∈ C∗. If X

and Y are signed cocircuits inM, we use dM(X,Y ) to denote the distance from X to Y in G∗(M);

that is, the length of the shortest path from X to Y in G∗(M). We call a path P from X to Y

crabbed (introduced in [MBS06, KMBS14]), if for every cocircuit W ∈ P , W+ ⊆ X+ ∪ Y + and

W− ⊆ X− ∪ Y −. The diameter of G∗(M) is defined as diam(G∗(M)) = max{dM(X,Y ) : X,Y ∈

C∗(M)}.

An important family of oriented matroids, realizable oriented matroids, are given by hyperplane

arrangements. In this case, the cocircuit graph is just the one-skeleton of the cell complex obtained

by intersecting a central hyperplane arrangement with a unit sphere. In general, the cocircuit graph

is the graph of a combinatorial manifold and it has a rich structure. Later we review this geometry

in some detail.

For the ease of notation, let OM(n, r) be the set of all oriented matroids of rank r whose ground

set has cardinality n. Let UOM(n, r) be the set of all uniform oriented matroids in OM(n, r). Let

∆(n, r) denote the maximal diameter of G∗(M) asM ranges over OM(n, r).

General characterizations and properties of oriented matroids and their cocircuit graphs have

been explored by several authors: While it is known that the cocircuit graph does not uniquely

determine the oriented matroid (see [CF93, CFGdO00]), labeled cocircuit graphs can be char-

acterized (see [BFF01, CFGdO00]). Other topics of research have been the connectivity of the

cocircuit graph (see [CF93, BLVS+99]) and how the cocircuit graph could define the entire ori-

ented matroid and discussed the connectivity of the graph (see [FGK+11, KMBS14, MBS06]).

In this article we are interested instead in bounding the diameter of the cocircuit graph of an ori-

ented matroid. We recall that the diameter of a graph is the largest distance between a pair of its

vertices, where the distance between two vertices is the length of a shortest path connecting them.

Oriented matroids are combinatorial structures that generalize many types of objects, including

point configurations, vector configurations, hyperplane arrangements, polyhedra, linear programs,

and directed graphs. Oriented matroids have played a key role in combinatorics, geometry, and

-8-



1.1. PRELIMINARIES

optimization (see the book by Björner et al. [BLVS+99] for a complete treatise and Chapter 6 of

Ziegler [Zie95] for a quick introduction we assume in the rest).

We now introduce the geometric intuition that accompanies with the definitions of oriented

matroids. Let E = {v1, . . . ,vn} ⊆ Rr be any set of vectors. For simplicity, we will assume that E

spans Rr. We will not make a distinction between E as a set of vectors or E as a matrix in Rr×n.

In classical matroid theory, we consider the set of linear dependences among the vectors in E. In

oriented matroid theory, we consider not only the set of linear dependences on E, but also the signs

of the coefficients that make up these dependences. To any linear dependence
∑n

i=1 zi vi = 0 we

associate a signed vector (sign(zi))
n
i=1. The sign of a number z ∈ R, denoted sign(z) ∈ {+,−, 0},

encodes whether z is positive, negative, or equal to 0. If z = (z1, . . . , zn) ∈ Rn is a vector, we use

sign(z) to denote the vector of signs: sign(z) := (sign(zi))
n
i=1 ∈ {+, 0,−}n. We define the set of

signed vectors on E as

V(E) = {sign(z) : z is a linear dependence on E}.

In other words, V(E) = {sign(z) : Ez = 0}.

Among all signed vectors determined by linear dependences on E, those with minimal (and

nonempty) support under inclusion, are called the signed circuits of E. The set of such signed

circuits is denoted C(E).

Dually, for any c ∈ Rr, we can consider the signed covector
(
sign(cT vi)

)n
i=1

. The set of all

signed covectors on E is

V∗(E) = {sign
(
cTE

)
: c ∈ Rr}.

The set of signed covectors of minimal, nonempty support are called signed cocircuits and are

denoted by C∗(E). It is important to note that if X is a cocircuit, then so is −X.

Summarily, to any collection of vectors E ⊆ Rr, there are four sets of vectors that encode

dependences among E. Those are the signed vectors V(E) arising from linear dependences, the

signed circuits C(E) arising from minimal linear dependences, the signed covectors V∗(E) arising

from valuations of linear functions, and signed cocircuits C∗(E) arising from linear valuations of

minimal support. The first fundamental result in oriented matroid theory shows that any one of

-9-



1.1. PRELIMINARIES

these sets is sufficient to determine the other three [Zie95, Corollary 6.9]. Any oriented matroid

that arises from a collection of signed cocircuits in this way is called a realizable oriented matroid.

Now we are ready to motivate the definition of oriented matroids through a geometric model

that proves to be more useful than the axiomatic definition. Let E = {v1, . . . ,vn} ⊆ Rr be a

collection of vectors, and letM(E) be the oriented matroid determined by E. To each vector vi,

there is an associated hyperplane Hi := {x ∈ Rr : xT vi = 0}. Each Hi is naturally oriented by

taking H+
i := {x ∈ Rr : xT vi > 0} and defining H−

i analogously.

Therefore, the vectors in E determine a central hyperplane arrangement H in Rr. Any vector

x ∈ Rr has an associated sign vector determined by its position relative to the hyperplanes in H.

These signs can be computed as sign(xT vi) for each i; in other words, by computing sign
(
xTE

)
.

Therefore, the signed covectors of M(E) are in bijection with the regions of the hyperplane ar-

rangement H.

Further, because sign
(
xTE

)
= sign

(
(cx)TE

)
for any positive scalar c, no information from H

is lost if we intersect H with the unit sphere Sr−1, giving a collection of codimension-one spheres

{si = Hi ∩ Sr−1 : Hi ∈ H}. This induces a cell decomposition of Sr−1 whose nonempty faces

correspond to covectors of M(E) and whose vertices correspond to cocircuits of M(E). The

regions corresponding to covectors of maximal support are called topes. An example is illustrated

in Figure 1.4. In that figure, the cocircuit X is encoded by the sign vector (+,+, 0,−, 0). Similarly,

the shaded region (a tope) corresponds to the covector (+,+,+,−,+).

Not all matroids can be oriented. Determining whether a matroid is orientable is an NP-

complete problem, even for fixed rank (see [RG99]). But, a topological model provides the “right”

intuition for visualizing arbitrary oriented matroids. Every oriented matroid can be viewed as an

arrangement of equators on a sphere, as in the realizable case, provided that one is allowed to

slightly perturb the spheres determined by Hi ∩ Sr−1 in the following way.

Let Q be an equator of Sr−1; that is, the intersection of Sr−1 with some (r − 1)-dimensional

subspace of Rr. If φ : Sr−1 → Sr−1 is a homeomorphism, then the image of the equator φ(Q) ⊆ Sr−1

is called a pseudosphere. Because Q decomposes Sr−1 into two pieces, so too does φ(Q). Therefore,

we may define an oriented pseudosphere to be a pseudosphere, s, together with a choice of a positive
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s1+

s2 +
−

s3

+
−

s4

+
−

s5

+
−

X

Figure 1.4. An oriented matroid arising from an arrangement of five hyperplanes.

side s+ and negative side s−. Now we may define an arrangement of pseudospheres in Sr−1 to be

a finite collection of pseudospheres P = {se : e ∈ E} ⊆ Sr−1 such that

(1) for any subset A ⊆ E, the set SA =
⋂

e∈A se is a topological sphere, and

(2) if SA ̸⊆ se for A ⊆ E and e ∈ E, then SA ∩ se is a pseudosphere in SA with two parts,

SA ∩ s+e and SA ∩ s−e .

A pseudosphere arrangement is essential if
⋂

e∈E se = ∅. Any essential pseudosphere arrange-

ment P induces a regular cell decomposition on Sr−1. Because each pseudosphere in P has a

positive and negative side, the cells of this decomposition are naturally indexed by sign vectors in

{+,−, 0}E . We use Γ(P) to denote the poset of such sign vectors, ordered by face containment.

We have encountered this same (abstract) poset before as L(V∗) in the introduction, the poset in-

duced over the set of covectors V∗ of an oriented matroid. As it turns out the following theorem of

Folkman and Lawrence gives an exact correspondence between oriented matroids and pseudosphere

arrangements. The same sets of sign vectors appear in both cases.

Theorem 1.1.3. (Topological Representation Theorem [FL78])

Let P be an essential arrangement of pseudospheres in Sr−1. Then Γ(P) ∪ {0} is the set of

covectors of an oriented matroid of rank r. Conversely, if V∗ is the set of covectors of a loopless
-11-
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oriented matroid of rank r, then there exists an essential arrangement of pseudospheres P on Sr−1

with Γ(P) = V∗ \{0}.

If M is an oriented matroid, the pseudosphere arrangement P guaranteed by the Topological

Representation Theorem is called the Folkman-Lawrence representation ofM. Two elements e, f ∈

E are parallel if Xe = Xf for all X ∈ V∗ or Xe = −Xf for all X ∈ V∗. Note that we can eliminate

parallel elements without changing the pseudosphere arrangement P.

Remark 1.1.4. LetM be a uniform oriented matroid of rank r. If A ⊆ E(M) is any set with

|A| ≤ r−1, then SA =
⋂

e∈A se is an (r−1−|A|)-dimensional pseudosphere in the Folkman-Lawrence

representation P(M).

Let M be an oriented matroid of rank r, and let P be the Folkman-Lawrence representation

of M. Then the underlying graph of P (as a cell complex) is the cocircuit graph G∗(M). This

provides a geometric model for visualizing cocircuit graphs of oriented matroids. A coline inM is

a one-dimensional sphere in the Folkman-Lawrence representation of M. In matroidal language,

a coline is a covector that covers a cocircuit in the natural component-wise partial order where

0 < +,−. For a uniform oriented matroid of rank r, a coline is a covector U with |U0| = r − 2.

Further, in a uniform oriented matroid, for each subset S ∈
(
[n]
r−2

)
, there exists a coline U with

U0 = S. The graph of any coline is a simple cycle of length 2(n− r + 1).

The Folkman-Lawrence representation gives us a more concrete topological understanding of

the following operations on oriented matroids. Let M be an oriented matroid on ground set E

with signed covectors V∗(M), and let A ⊆ E. The restriction of a sign vector X ∈ {+,−, 0}E to

A is the sign vector X|A ∈ {+,−, 0}A defined by (X|A)e = Xe for all e ∈ A. The deletion M\A is

the oriented matroid with covectors

V∗(M\A) = {X|E\A : X ∈ V∗(M)} ⊆ {+,−, 0}E\A.

The contraction M /A is the oriented matroid with covectors

V∗(M /A) = {X|E\A : X ∈ V∗(M), A ⊆ X0} ⊆ {+,−, 0}E\A.

The fact thatM\A andM /A are oriented matroids is proved in [BLVS+99, Lemma 4.1.8].
-12-
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The deletionM\A is also referred to as the restriction ofM to E\A. Geometrically,M\A is

the oriented matroid of the same rank as M obtained by removing pseudospheres {se : e ∈ A}.

The contractionM /A is the oriented matroid obtained by intersecting SA with {se : e ∈ E\A}.

Note also that the pseudosphere arrangement of an oriented matroid of rank r lies on the

sphere Sr−1. The topes correspond to the regions, homeomorphic to balls of dimension r − 1, that

partition the sphere. For realizable oriented matroids coming from a hyperplane arrangement,

topes are actual convex polytopes.

Given a tope T of an oriented matroid M, we define its graph as the subgraph of G∗(M)

induced by the cociruits of M in T . Next, we show the graph of a tope T in a uniform oriented

matroidM of rank r on n elements, is isomorphic to a graph of an abstract polytope of dimension

r − 1 on n elements. Abstract polytopes, an abstraction of simple polytopes, were introduced by

Adler and Dantzig [AD74] for the purpose of studying the diameter of their graphs. Abstract

polytopes have been further generalized in recent years by several authors (see [EHRR10, San13]

and references there for details).

Definition 1.1.5. Let T be a finite set. A family A of subsets of T (called vertices) forms a

d-dimensional abstract polytope on the ground set T if the following three axioms are satisfied:

(i) Every vertex of A has cardinality d.

(ii) Any subset of d− 1 elements of T is either contained in no vertices of A or in exactly two

(called neighbors or adjacent vertices).

(iii) Given any pair of distinct vertices X,Y ∈ A, there exists a sequence of vertices

X = Z0, Z1, . . . , Zk = Y in A such that

(a) Zi, Zi+1 are adjacent for all i = 0, 1, . . . , k − 1, and

(b) X ∩ Y ⊂ Zi for all i = 0, 1, . . . , k.

The graph Gabs(A) of an abstract polytope A is composed of nodes corresponding to its vertices,

where two vertices are adjacent on the graph as specified in axiom (ii).

Consider a simple polytope P of dimension d which is the intersection of n facet-defining half-

spaces. Then, indexing the n facets by 1, . . . , n, the family of all sets of indices that define a vertex

of P is an abstract polytope of dimension d on the ground set {1, . . . , n}. In particular, the three
-13-
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axioms of abstract polytopes state that the graph G(P) associated with the vertices of P has the

following three properties:

(i) G(P) is regular of degree d (as all the hyperplanes corresponding to the half-spaces are in

general position.)

(ii) All edges of G(P) have two vertices as end points (as P is bounded).

(iii) For any two vertices X,Y that lie in a face F of P, there exists a path between the nodes

corresponding to X and Y on G(P) composed entirely of nodes corresponding to vertices

on F (as F is also a polytope.)

Interestingly, while the axioms of abstract polytopes represent only three basic properties related

to graphs of simple polytopes, a substantial number of the results related to diameter of simple

polytopes in [KW67] have been proved in [AD74] for abstract polytopes.

Next, we show that these properties are satisfied by the graph of topes of uniform oriented

matroids. The graph of a tope, its connectivity, and the relation to pseudomanifolds has been

studied in [CF93].

Lemma 1.1.6. Given a uniform oriented matroid M = (E, C∗) of rank r ≥ 2 and a tope T of

M, let

CT = {X ∈ C∗ : X < T }, and A = {X0 : X ∈ CT }.

Then, A is a d-dimensional abstract polytope on the ground set E, where d = r− 1. Moreover, the

graph G(T ) of T is isomorphic to the graph Gabs(A) of A.

Proof. We show that A satisfies the three axioms of abstract polytopes:

(i) Axiom (i) holds becauseM is a uniform oriented matroid of rank r.

(ii) Let E′ ⊂ E such that |E′| = d−1, and assume that there exists X ∈ CT such that E′ ⊂ X0

(otherwise, no vertex of A contains E′ and we are done). Let U = {W ∈M∗ : E′ ⊂W 0},

then U is a coline of M whose graph is a simple cycle. Let Y1, Y2 be the two adjacent

cocircuits to X in U . Then, there exists an element e ∈ E \ E′ such that S(Y1, Y2) = e

and S(X,Yi) = ∅ (i = 1, 2), implying that exactly one of Y1, Y2, say Y1, is in T . However,

no other cocircuit in U is in T . Suppose, to the contrary, that there exists Z ∈ U , distinct
-14-
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from X and Y1 that belongs to T . Then by definition

|X0 ∩ Y 0
1 | = |X0 ∩ Z0| = |Y 0

1 ∩ Z0| = d− 1, and S(X,Y1) = S(X,Z) = S(Y1, Z) = ∅.

This means that X, Y1, and Z, are all adjacent on U . As the graph of U is a simple cycle

of size 2(n− r + 1), this leads to contradiction.

(iii) By [FGK+11, Theorem 2.3], for any X,Y ∈ C∗ there exists an (X,Y ) crabbed path

on G∗(M). That is, there exists a path X = Z0, Z1, . . . , Zk = Y on G∗(M) such that

Z+
i ⊆ X+ ∪ Y + and Z−

i ⊆ X− ∪ Y − for all 0 ≤ i ≤ k. This implies that if X,Y ∈ CT ,

then for i = 1, . . . , k − 1, Zi ∈ CT (as Zi < T ), so Z0
i ∈ A, and X0 ∩ Y 0 ⊆ Z0

i . Now, let

G(T ) be the graph of T . Note that as S(X,Y ) = ∅ for any X,Y ∈ CT , X and Y share

an edge on G(T ) if and only if |X0 ∩ Y 0| = d− 1. However, the two vertices on Gabs(A)

corresponding to X0, Y 0 are adjacent if and only if |X0 ∩ Y 0| = d− 1. Thus, we conclude

that G(T ) is isomorphic to Gabs(A), so Axiom (iii) is satisfied.

Note that by the proof of part (iii) above we have that the graph G(T ) of T is isomorphic to the

graph Gabs(A) of A. □

1.2. Linear Programming and the Simplex Method

This dissertation is mostly motivated by trying to understand the simplex method, and thus we

introduce some standard definitions related to linear programming and the simplex algorithm. This

introduction is meant to be brief, and we refer to textbooks (see [Sch98, Dan98]) for more extensive

background knowledge. For the remainder of this section we let A ∈ Rm×n,b ∈ Rm, c ∈ Rn be

given.

Linear programming (LP) is a method for maximizing or minimizing a linear objective function

with respect to the constraints, which are a system of linear equations or inequalities. It can be

written in the canonical form as:
-15-
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maximize cTx

subject to Ax ≤ b

x ≥ 0,

.

Each constraint can be viewed as a generalized half-space, so the constraints of the LP form a

convex polyhedron.

The simplex method, invented and developed by George Bernard Dantzig in 1947 (see the

book [Dan90] for more information on the origins of of the simplex method), changed the field of

optimization dramatically. When introduced, the simplex method became the basis of many further

branches of LP, such as integer linear programming and nonlinear programming. Even today, the

simplex method can outperform and compete with more recent algorithms [Tod11].

We now briefly recall how the simplex method works. We use the notation [n] := {1, 2, . . . , n}

for any positive integer n. We say that B ⊆ [n] with |B| = m is a basis if and only if the columns

of AB are linearly independent, or equivalently AB is non-singular. We say xB a basic feasible

solution with basis B if AxB = b,xB ≥ 0 and for all j ̸∈ B: xj = 0. The vector of reduced costs

for a basis B is defined as

zB = c−AA−1
B cB.

We say j ∈ [n] is an improving pivot with respect to B if and only if zBj > 0.

With the definition of an improving pivot, the simplex method can be summarized as a process

of starting with a feasible basisB and updating with improving pivots until no such improving pivots

exist. When performing the simplex method, we usually have more than one possible improving

edges during one iteration. Thus, we need to use a pivot rule to tell us which edge the simplex

method will go along. Note that when the LP problem is degenerate, the simplex method may run

into a cycle, which means that the simplex method will revisit a vertex. However, if a “good” pivot

rule is chosen, the simplex method does not cycle and terminates at the optimum. Examples of

such rules include Bland’s rule [Bla77].
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There are dozens of famous pivot rules [TZ93, DL11], but we present three basic pivot rules

that our experiment consider:

(1) Dantzig: this rule was suggested by Dantzig [Dan98]. In every iteration Dantzig’s rule

picks the non-basic variable with the largest positive reduced cost to be the entering

variable.

(2) Greatest Improvement: this rule picks the improving pivot that results in the largest

increment of the objective function.

(3) Steepest edge: this rule performs the improving pivot with the largest rate of increment of

objective function per distance traveled along the improving edge.

In the following example we briefly explain how different pivot rules choose different pivots

using tableaux.
Variables

z

w1

w2

w3



z x1 x2 x3 w1 w2 w3 b

1 −5 −4 −3 0 0 0 0

0 2 3 1 1 0 0 5

0 4 1 2 0 1 0 11

0 3 4 2 0 0 1 8


We can see that x1, x2, x3 have negative coefficients and are the potential entering variables. For

Dantzig’s rule, we pick x1. For greatest improvement, we pick x2 since the increment of objective

function by each variable is x1 : 12.5, x2 : 20
3 , x3 : 12. And for steepest edge, we pick x3 since the

rate of each variable is x1 : 5√
30
, x2 :

4√
27
, x3 :

3√
10
.

We study the pivoting strategies for primal simplex algorithm implemented in DOcplex [oCt].

These include Dantzig’s rule, hybrid (DOcplex’s default), greatest improvement, steepest edge and

devex. Hybrid is a pivot rule DOcplex implemented as default, which uses Dantzig’s rule in the

earlier iterations when there are a lot of choices of improving pivots and switch to steepest edge

later. Devex is an approximate version of steepest edge developed by P. Harris [Har73]. DOcplex

also implemented a steepest edge with slack initial norms, which is slightly cheaper in computation.

But in our testing, it usually is not better than steepest edge. As a consequence it was not included

in the algorithm portfolio.
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1.3. Results in Directed Polytope Graphs

The main questions addressed in this section ask to determine:

• the minimum and maximum number of f -arborescences on P ,

• the minimum and maximum number of f -monotone paths on P , and

• the minimum and maximum diameter of the graph G(P, f),

where P ranges over all convex polytopes of given dimension and number of vertices and f ranges

over all generic linear functionals on P . We will also consider these (or similar) questions when P

is restricted to the important class of simple polytopes.

There are good reasons, from both a theoretical and an applied perspective, to study these

problems. One motivation comes from the connection of f -arborescences and f -monotone paths to

the behavior of the simplex method [Sch86]. The simplex method produces a partial f -monotone

path, traversing ω(P, f) from an initial vertex to the optimal one. The simplex method has to

make decisions to choose the improving arcs via a pivot rule. It is an open problem to find the

longest possible simplex method paths and little is known about bounds (see [BDLL21] and

references therein). Clearly, the lengths of f -monotone paths are of great interest, as they bound

the number of steps in the simplex algorithm. A pivot rule gives a mapping from the set of

instances of the algorithm to the set of f -arborescences of ω(P, f). Two pivot rules are equivalent

if they always produce the same f -arborescence. Therefore, given P and f , there are only finitely

many equivalence classes of pivot rules and counting f -arborescences is a proxy for the problem of

counting pivot rules. See also [BDLLS22] for a recent found geometric structure on pivot rules.

Another motivation comes from enumerative and polyhedral combinatorics, especially from the

theory of fiber polytopes [BS92]. The flip graph of f -monotone paths on P contains a well behaved

subgraph, namely that induced on the set of coherent f -monotone paths (these are the monotone

paths which come from the shadow vertex pivot rule [DH16]). This subgraph is isomorphic to

the graph of a convex polytope of dimension d − 1, where d = dim(P ), which is a fiber polytope

known as a monotone path polytope [BS92, Section 5] [BKS94]. Monotone paths, monotone path

polytopes and flip graphs of polytopes of combinatorial interest often have elegant combinatorial

interpretations. For example, the monotone path polytope of a cube is a permutohedron [BS92,
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Example 5.4], while the flip graph of the latter encodes reduced decompositions of a certain per-

mutation and the braid relations among them [BLVS+99, Section 2.4]. More generally, monotone

paths on zonotopes [AS01, RR13] correspond to certain galleries of chambers in a central hyper-

plane arrangement and the problem to estimate the diameter of the flip graph in this important

special case has been intensely studied in [Edm15, EJLM18, RR13]. The diameter of flip graphs

of fiber polytopes has also been studied in [Pou14, Pou17]. Moreover, certain zonotopes are in

fact monotone path polytopes coming from projecting cyclic polytopes [ADLRS00, Section 3], or

polytopes which look like piles of cubes [Ath99]. Monotone path polytopes are also related to

fractional power series solutions of algebraic equations [McD95]. The combinatorial properties

of f -monotone paths and flip graphs have thus been studied in comparison to those of coherent

f -monotone paths, but also because of their own independent interest.

A special role in our results is played by a distinguished member X(n) of the family of stacked

3-dimensional simplicial polytopes with n vertices. As it turns out, this polytope maximizes the

number of both f -arborescences and f -monotone paths, and possibly the diameter of the flip graph

too, in this dimension. We refer to Section 1.1.3 for a discussion of stacked polytopes and the precise

definition of X(n), which we always consider endowed with the specific LP-allowable orientation

given there. We will typically denote by n (and sometimes by n+1) and m the number of vertices

and facets of P , respectively. Let us also denote by

• τ(P, f) the number of f -arborescences on P ,

• µ(P, f) the number of f -monotone paths on P ,

• diam(G) the diameter of the graph G = G(P, f).

Our first two main results provide a fairly complete description of tight bounds for the numbers

of f -arborescences and f -monotone paths and the diameter of the graph of f -monotone paths on

a 3-dimensional polytope with given number of vertices. The upper bound for the number of f -

monotone paths involves the sequence of Tribonacci numbers (sequence A000073 in [Slo]), defined

by the recurrence T0 = T1 = 1, T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.
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Theorem 1.3.1. For n ≥ 4,

2(n− 1) ≤ τ(P, f) ≤ 2 · 3n−3(1.3.1) ⌈n
2

⌉
+ 2 ≤ µ(P, f) ≤ Tn−1(1.3.2)

for every 3-dimensional polytope P with n vertices and every generic linear functional f on P . The

upper bound is achieved by the stacked polytope X(n) in both situations.

The lower bound of (1.3.1) can be achieved by pyramids and that of (1.3.2) by prisms, when n

is even, and by wedges of polygons over a vertex, when n is odd. In particular, prisms minimize the

number of f -monotone paths over all simple 3-dimensional polytopes with given number of vertices.

Moreover,

τ(P, f) = 3 · 2(n−2)/2 = 3 · 2m−3

for every 3-dimensional simple polytope P with n vertices and m facets.

Theorem 1.3.2. For every n ≥ 4,

(1.3.3) ⌈(n− 2)2

4
⌉ ≤ maxdiam G(P, f) ≤ (n− 2)⌊n− 1

2
⌋,

where P ranges over all 3-dimensional polytopes with n vertices and f ranges over all generic linear

functionals on P .

Our results are substantially weaker in dimensions d ≥ 4 and leave plenty of room for further

research. The upper bounds for the number of f -arborescences and the number of f -monotone

paths are almost trivial, but are included here for the sake of completeness.

Theorem 1.3.3. (a) For n > d ≥ 4,

τ(P, f) ≤ (n− 1)!

µ(P, f) ≤ 2n−2

for every d-dimensional polytope P with n vertices and every generic linear functional f on

P . These bounds are achieved by any 2-neighborly d-dimensional polytope with n vertices.
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(b) For m > d ≥ 4,

d · ((d− 1)!)m−d ≤ τ(P, f) ≤
⌊ d
2
⌋∏

i=1

i(
m−d+i−1

i )
d∏

i=⌊ d+1
2

⌋

i(
m−i−1

d−i )

for every simple d-dimensional polytope P with m facets and every generic linear functional

f on P . The lower and upper bounds are achieved by the polar duals of stacked simplicial

polytopes and the polar duals of neighborly simplicial polytopes, respectively, of dimension

d with m vertices.

The proofs of the results on f -arborescences, given in Section 2.2, rely on the fact that τ(P, f)

is equal to the product of the outdegrees of the vertices of the directed graph ω(P, f) other than the

sink (see Proposition 2.2.1). This has the curious consequence that τ(P, f) is independent of f for

every simple polytope P . The proofs of the results on f -monotone paths and the diameter of flip

graphs, given in Sections 2.3 and 2.4, respectively, use ideas from [AER00, Section 4] [BKS94],

reviewed in Section 2.1, to construct G(P, f) as an inverse limit in the category of graphs and

simplicial maps.

1.4. Results in the Cocircuit Graphs of Oriented Matroids

The motivation for our investigations is again the complexity of the simplex method [BT97,

Sch86] and of the criss-cross method [FT97, FT99]. Both algorithms are pivoting methods that

jump from cocircuit to cocircuit along edges of the cocircuit graph. Bounds on the diameter are

relevant for understanding their running time. The following conjecture is the oldest and the most

ambitious open challenge about the diameter of oriented matroids today. It motivated a big part

of this thesis.

Conjecture 1.4.1. Let M be an oriented matroid of rank r on n elements, and let G∗(M) be

its cocircuit graph. Then diam(G∗(M)) ≤ n− r + 2.

Prof. K. Fukuda (personal communication) kindly informed us that Conjecture 1.4.1 is an old

folklore problem that goes back at least 25 years. We hope to revive interest in this conjecture

with this article. Conjecture 1.4.1 bears a striking resemblance to the famous Hirsch conjecture for
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convex polytopes. Let P ⊆ Rd be a d-polytope defined by n hyperplane inequalities. Lifting P to

Rd+1 (and setting r = d+1) determines a central hyperplane arrangement in Rr, one of whose cones

is the nonnegative span of P . Therefore, P gives rise to an oriented matroid M whose cocircuit

graph contains the graph of P as an induced subgraph (see Figure 1.5). Substituting r = d+ 1 in

Figure 1.5. A polytope in R2 (left), its lifting to R3 (center), and the intersection
with the resulting hyperplane arrangement on S2 (right).

Conjecture 1.4.1 gives an upper bound of n− r+2 = n− d+1, which differs from the conjectured

Hirsch bound by 1. The reason for this is that each signed cocircuit X has an antipodal cocircuit

−X. We will see later that whenM is uniform, the distance between antipodal cocircuits is exactly

n− r + 2.

Conjecture 1.4.1 has appeared in the literature in several forms. Babson, Finschi, and Fukuda

[BFF01, Lemma 6] established Conjecture 1.4.1 for uniform oriented matroids of rank 2 and rank 3,

showing further that only antipodal cocircuits can have distance n−r+2. Felsner et al. [FGK+11,

Lemma 4.1] also showed that the conjecture is true for uniform oriented matroids with rank at most

3 and stated again the famous Conjecture 1.4.1 in [FGK+11, Question 4.2] with a strong emphasis

on the important role of antipodal cocircuits. Finschi [Fin01, Open Problem 5] asked whether

diam(G∗(M)) ≤ c · n for some constant c that is independent of n and r. Aside from the results

of Babson, Finschi, and Fukuda in low rank, the most general progress that has been made on

Conjecture 1.4.1 seems to have come from Finschi’s Ph.D thesis.

Theorem 1.4.2. (Finschi [Fin01, Proposition 2.6.1])
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Let M be a uniform oriented matroid of rank r on n elements. Then

diam(G∗(M)) ≤ n− r + 2 +

min(r−2,n−r)∑
k=1

(⌊
n− r − k

2

⌋
+ 1

)
.

The bound in Theorem 1.4.2 is tight when r = 2 or r = n, but in general it is not.

Lemma 1.4.3. Let M be an oriented matroid of rank r on n elements. Then there exists a

uniform oriented matroid M′ of rank r on n elements such that

diam(G∗(M)) ≤ diam(G∗(M′)).

Moreover, when M is realizable, then M′ can be taken to be realizable as well.

Lemma 1.4.3, reduces Conjecture 1.4.1 to studying uniform oriented matroids. Therefore, for

the purposes of studying Conjecture 1.4.1, it suffices to consider only uniform oriented matroids.

The following auxiliary lemma shows that the discrepancy between the diameter given in Con-

jecture 1.4.1 and the classical Hirsch bound cannot be improved. Essentially, Conjecture 1.4.1

cannot be improved because the distance between antipodal cocircuits is exactly n− r + 2.

Lemma 1.4.4. Let M be a uniform oriented matroid of rank r on n elements, and let X,Y ∈

C∗(M). Then

(1.4.1) dM(X,Y ) ≥


|S(X,Y )|+ |X0 \ Y 0| if X ̸= −Y,

n− r + 2 if X = −Y.

Moreover, if |X0\Y 0| ≤ 1, then the inequality (1.4.1) holds with equality: dM(X,Y ) = 1+|S(X,Y )|,

and in particular, when X = −Y , then dM(X,Y ) = n− r + 2.

We then move on to establish Conjecture 1.4.1 in low rank. Babson, Finschi, and Fukuda

[BFF01, Lemma 6] and Felsner et al. [FGK+11, Lemma 4.1] gave proofs of Conjecture 1.4.1 for

r ≤ 3. We present a new geometric proof of that same result (see Theorem 3.2.2). We explain why

our method does not generalize for rank four matroids. Finally, we also settle the conjecture for

oriented matroids of low corank (i.e. n− r). In summary, we have the following theorem:

Theorem 1.4.5. Let M be a uniform oriented matroid of rank r on n elements.
-23-



1.4. RESULTS IN THE COCIRCUIT GRAPHS OF ORIENTED MATROIDS

a. If n ≤ 9, then diam(G∗(M)) = n− r + 2.

b. If r ≤ 3, then diam(G∗(M)) = n− r + 2.

c. If n− r ≤ 4, then diam(G∗(M)) = n− r + 2.

Theorem 1.4.6. LetM be an oriented matroid of rank r on n elements, and let X,Y ∈ C∗(M)

with X ̸= −Y . Then

(1.4.2) dM(X,Y ) ≤ n− r + 1 +

|X0\Y 0|−1∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
.

In particular, when r ≥ 4 and n− r ≥ 2,

(1.4.3) diam(G∗(M)) ≤ n− r + 1 +

min(r−2,n−r)∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
.

This bound contrasts the best-known upper bounds on polytope diameters, which are linear

in fixed dimension, but grow exponentially in the dimension (e.g., [KK92] and [EHRR10]). For

a survey of the best bounds and more updates about diameters of polytopes see [CS17, CS19,

EHRR10, San13, Suk19] and the references therein. To start, one may hope that dM(X,Y ) ≤

n − r + 1 when X and Y are not antipodal cocircuits. In fact, Finschi posed a similar question

in his thesis [Fin01, Open Problem 2], as did Felsner et al. [FGK+11, Question 4.2]. Here we

answer this question. We show the answer is negative by considering Santos’s counterexample to

the Hirsch conjecture.

Proposition 1.4.7. There is a uniform oriented matroid M of rank 21 on 40 elements that

has a pair of non-antipodal cocircuits X and Y such that dM(X,Y ) ≥ 21 = n− r + 2.

It is not immediately clear whether bounds on the diameter of the cocircuit graph of a realizable

oriented matroid imply bounds on polytope diameters. This possible connection has been discussed

before. For example, a connection of the (original) Hirsch conjecture to Conjecture 1.4.1 was stated

in Remark 4.3 of [FGK+11]. Their proof of their remark shows that, thanks again to Santos’s

counterexample, there is an example of two cocircuits in the same tope that cannot be connected

by a crabbed path of length n − r + 1. Their remark also suggests two natural strengthenings of
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Conjecture 1.4.1, both of which would imply the polynomial Hirsch conjecture is true for convex

polytopes:

First, if X and Y are vertices in a tope T , does the shortest path from X to Y in the supergraph

G∗(M) of cocircuits leave the tope T ? The question is already interesting for a realizableM where

a tope T corresponds to a polytope. If the shortest path between X,Y always stays in a tope

containing both, then a quadratic bound on the diameter of polytopes follows from the quadratic

bound for oriented matroids. This would prove the famous polynomial Hirsch Conjecture for those

polytopes in the arrangement (recall the polynomial Hirsch conjecture states that the diameter of

all convex polytopes is bounded by a polynomial in terms of the number of facets and the dimension,

see [San13]).

Second, even more strongly, is there always a crabbed path from X to Y whose length is no

bigger than the length of any path from X to Y in the entire cocircuit graphM? Again, if this was

true, the diameter computed over the topes that contain X,Y is always no larger than the diameter

of the entire cocircuit graph. Unfortunately, we show the two strengthenings of Conjecture 1.4.1 are

false. This is the content of Theorem 1.4.8. We used a computer search to find the counterexamples

and to show they are smallest possible.

Theorem 1.4.8. There is a realizable rank 4 uniform oriented matroid M with 9 elements and

a pair its cocircuits X,Y ∈ C∗(M), whose distance dM(X,Y ) is smaller than the length of any

crabbed path from X to Y . We prove that no such example with fewer than 9 elements is possible.

Moreover, by adding another element to M, we construct a realizable rank 4 oriented matroid M′

on 10 elements with two cocircuits X,Y inside a common tope T , such that dM′(X,Y ) < dT (X,Y ).

1.5. Machine Learning for improving the simplex method

It is obvious that we are living in an era where huge amount of data have been continuously

generated at increasing scales. Machine learning techniques have been widely adopted in a number

of massive and complex data-intensive fields such as medicine, astronomy, biology, and so on, for

these techniques provide possible solutions to mine the information hidden in the data. In this part

of the thesis we explain how machine learning improves algorithms and in particular the simplex

method.
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What is the best way to select an algorithm? Two different algorithms for the same compu-

tational task have difference performances: one algorithm is better on some inputs, but worse on

the others. Over the years there have been various theoretical frameworks answering this ques-

tion. Worst-case analysis aims to find the extreme instances that strain the performance the most.

Average-case analysis on the other hand assumes that input instances come from a fixed probability

distribution, thus we can talk about average running time or average complexity. More recently,

the Smooth analysis is a hybrid of the worst-case and average-case analysis of algorithms where

one measures the maximum over inputs of the expected performance of an algorithm under small

random perturbations of that input. The performance of many algorithms varies dramatically on

the types of input one provides, thus the theoretical evaluations often say nothing useful for the

non-expert user. How is a non-expert user supposed to make the right algorithmic choices when

a large number of choices are possible? How can someone make reasonable consistent choices of

parameters for tuning complicated algorithms?

In this thesis we consider the very famous simplex method. Researchers have found the worst-

case behavior of the simplex algorithm is exponential, for most known deterministic pivot rules

[KM72, Jer73, GS79, AC09, Mur80, AZ99, Fri11] and randomized pivot rules [GK07,

Kal97]. On the other hand, under a specific probability distribution for input instances, the aver-

age running time of simplex algorithm is polynomial in terms of the input size [Bor82]. Similarly,

the smooth analysis shows that the Simplex method is efficient [DH18]. Despite the theoretical

success, neither of the three theoretical evaluations matches the empirical performance of the sim-

plex method, which is known to be very fast in practice. Today the simplex method has been

investigated and improved enormously from its original version [Bix01]. It is known that the run-

ning time or number of iterations for the Simplex method depends not just on the input data, but

how we tune the algorithm itself. E.g., what choice of pivot rule shall we make? This is a question

that has been answered by experts by fixing a default pivot rule, which often performs well, but

may not be always the optimal choice.

In Chapter 4 we will discuss a pragmatic framework for empirical algorithm selection tuning

and comparison. We demonstrate a machine learning-based selection and tuning of algorithms. Our

framework is data-driven, empirically-based, and can help non-experts make reasonable consistent
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algorithmic decisions without prior knowledge of the algorithms. Users of algorithmic methods often

have no knowledge of the worst-case examples, nor can they assume to know the exact distribution of

their data. Users only have access to data sets. The simple principle we propose here is that, if one

has sufficiently many data instances, one can create a practical machine learning recommendation

system to efficiently automate the selection of algorithms or their parameter configurations for

concrete data sets, with the intention to speed up computation.

We picked the case study of simplex method to illustrate the framework, but it would apply

almost in the same way to other algorithms where the input is based on matrices. Algorithm

selection has seen a strong surge in both practical and theoretical research and we only touch the

fraction of the literature that we know deals with algorithm similar to our case studies (for much

more we recommend [LL00, YAKU19, GR17, BNVW17, LJD+18] and the many references

therein). Several authors have been directly concerned with algorithm selection and tuning for

discrete algorithmic problems (see e.g., [KDN+17, BDSV18, ADG+16] and the many refer-

ences therein). The papers [BLP18, Smi99] are great surveys of uses of learning in combinatorial

optimization. In [BS20] the authors redefine mixed integer convex optimization problems as a

multi-class classification problem where the machine learning predictor gives insights on the op-

timal solution. Dai et al. [KDZ+17] develop a method to learn heuristics over graph problems.

Several authors have proposed ways to use machine learning to select the best branching rules (see

[ALW17, KDN+17]). Machine learning methods have also been useful in aiding the selection

of reformulations and decompositions for mixed-integer optimization [BLZ18, KLP17]. Some li-

braries organize data for various NP-hard tasks (where the aim is to predict how long an algorithm

will take to solve concrete instances of NP-complete problems, or to choose best approximation

schemes tailored by instances) [NDSLB04, BKK+16, KHO17]. In fact the approach we present

here is a simplification of the empirical hardness model to predict the running time of algorithms

applied to improve logic Satisfiability (SAT) solvers [LHHX14, ELH18]. There are also now a

number of well-established software implementations for algorithm tuning (see [ELH19, FKE+19]

and the many references therein).

The simplex method is widely used in solving linear programming (LP) problems. Geometri-

cally, simplex algorithm starts on a vertex of the feasible region (which is a polytope), and generates
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a path via improving edges until optimum is reached. A pivot rule helps to decide which improving

edge to pick if there are multiple choices. In this case, we are interested in applying different

machine learning models to study and improve the choice among five pivoting rules for the simplex

algorithm on linear programming based on features of different LP instances.

We demonstrate that the total performance of algorithms, when guided by Machine Learning

(ML) decision-making, is clearly faster than using a single static choice for these algorithms. We

implemented two ML methodologies, gradient boosting decision trees and neural networks. We

tested two different schemes of predicting the fastest algorithm: direct classification and run time

prediction. In direct classification a machine learning method is trained to predict which algorithm

will run the fastest. In the run time prediction setting, a machine learning method is trained to

estimate how long an algorithm will run on a particular instance, then we pick the algorithm that

is expected to run the quickest. In addition, we tested different data representations and features.

Our best performing model is able to choose the best pivot rule in 69.06% total instances, with

178.6 iterations on average, better than any single pivoting strategies we tested.

To end this section, we give a brief review of machine learning techniques that we used. For

more detailed model definitions see The Elements of Statistical Learning [HTF09].

Generally machine learning is divided into supervised learning, unsupervised learning and rein-

forcement learning. Supervised learning is the most common subbranch of machine learning today.

Supervised machine learning algorithms are designed to learn by example. When training a super-

vised learning algorithm, the training data will consist of inputs paired with the correct outputs.

During training, the algorithm will search for patterns in the data that correlate with the desired

outputs. After training, a supervised learning algorithm will take in new unseen inputs and will de-

termine which label the new inputs will be classified as based on prior training data. The objective

of a supervised learning model is to predict the correct label for newly presented input data. At its

most basic form, a supervised learning algorithm can be written simply as Y = f(x). Supervised

learning can be split into two subcategories: classification and regression.

During training, a classification algorithm will be given data points with an assigned category.

The job of a classification algorithm is to then take an input value and assign it a class, or category,

that it fits into based on the training data provided. On the other hand, regression is a predictive
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statistical process where the model attempts to find the important relationship between dependent

and independent variables. The goal of a regression algorithm is to predict a continuous number.

A typical example of a classification task is to predict whether an incoming email is a spam or not.

A regression task will be predicting sales of some products.

Decision trees create a model that predicts the label by evaluating a tree of if-then-else true/false

feature questions, and estimating the minimum number of questions needed to assess the probability

of making a correct decision. Decision trees can be used for classification to predict a category, or

regression to predict a continuous numeric value. Ensemble algorithms combine multiple machine

learning algorithms to obtain a better performing model. Similar to random forest, a gradient

boosting decision tree is a decision tree ensemble learning algorithm. We use XGBoost [xd21] for

our training.

The other training model we used in our case study is neural networks (or multi-layer per-

ceptrons). The goal is not to create realistic models of the brain, but instead to develop robust

algorithms and data structures that we can use to model difficult problems. Neural networks

learn a mapping, and mathematically they are capable of learning most functions and thus being

a universal approximation algorithm.

The building block for neural networks are called neurons. These are simple computational

units that have weighted input signals and produce an output signal using an activation function.

A neural network usually consists of at least three layers of neurons, an input layer, a hidden layer

and an output layer. An activation function is a simple mapping of summed weighted input to

the output of the neuron. It is called an activation function because it governs the threshold at

which the neuron is activated and strength of the output signal. Non-linear functions such as the

sigmoid function are often used as activation functions. Neural networks utilize back propagation,

a supervised learning technique for training.

-29-



CHAPTER 2

Enumerative Problems on Directed Polytope Graphs

In this chapter we are going to prove the bounds on arborescences, monotone paths and diameter

of monotone paths as stated in Theorem 1.3.1, 1.3.2 and 1.3.3. First, we prove a lemma for the

diameter bound of stacked polytopes.

Lemma 2.0.1. The diameter of the graph of f -monotone paths on X(n) is bounded below by

⌈(n− 2)2/4⌉ for every n ≥ 4.

Proof. Let G be the graph of f -monotone paths on X(n). Denoting f -monotone paths as

sequences of vertices, we set

γ =


(v1, v3, v5, . . . , vn−1, vn), if n ≡ 0 (mod 2)

(v1, v2, v4, . . . , vn−3, vn−1, vn), if n ≡ 1 (mod 4)

(v1, v3, v5, . . . , vn−2, vn), if n ≡ 3 (mod 4)

and δ = (v1, v2, v3, . . . , vn). We claim that γ and δ are at a distance of ⌈(n − 2)2/4⌉ apart in G.

Clearly, the lemma follows from the claim.

We only consider the case that n is even, the other two cases being similar. By passing to

the complement of the set of vertices appearing on an f -monotone path on X(n), such paths

correspond bijectively to the subsets of {v2, v3, . . . , vn−1} containing no three consecutive ele-

ments vk−1, vk, vk+1. The subset which corresponds to γ, for instance, is {v2, v4, . . . , vn−2} and

the one which corresponds to δ is the empty set. The 2-dimensional faces of X(n) have vertex sets

{v1, v2, v3}, {vn−2, vn−1, vn} and {vk−1, vk, vk+2} and {vk−1, vk+1, vk+2} for 2 ≤ k ≤ n − 2. From

these facts it follows that polygon flips on f -monotone paths on X(n) correspond to the following

operations on the corresponding subsets:

• removal of v2 or vn−1, if present,

• inclusion of v2, if absent and not both v3 and v4 are present,
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• inclusion of vn−1, if absent and not both vn−2 and vn−3 are present,

• removal or inclusion of one of vk, vk+1, if the other is present but vk−1 and vk+2 are absent.

Since the subsets which correspond to f -monotone paths on X(n) contain no three consecutive

elements, their maximal strings of consecutive elements are either singletons, or contain exactly two

elements. Moreover, the strings cannot be merged with these operations, they cannot be removed

except for {2} and {n − 1}, and each operation affects only one of them. To reach the empty set

from {v2, v4, . . . , vn−2}, one needs to remove each of v2, v4, . . . , vn−2. Regardless of the order in

which operations are performed, at least one is needed to remove v2, at least three more are needed

to remove vn−2, at least five more are needed to remove v4, and so on. For example, to remove

vn−2 in at most three steps one needs to first include vn−1, then remove vn−2 and finally remove

vn−1 and to remove v4 in at most five steps one needs to first include v3, then remove v4, include

v2, remove v3 and finally remove v2. This yields a distance of 1+ 3+5+ · · ·+(n− 3) = (n− 2)2/4

between γ and δ in G. □

Remark 2.0.2. Perhaps it is instructive to visualize the process of flipping γ to δ, described

in the previous proof. The two f -monotone paths are shown on Figure 2.1 for n = 10 and the

sequence of 2-dimensional faces (recording only vertex indices, for simplicity) across which the

flips occur could be {1, 2, 3}, {7, 9, 10}, {7, 8, 10}, {8, 9, 10}, {2, 3, 5}, {2, 4, 5}, {1, 2, 4}, {1, 3, 4},

{1, 2, 3}, {5, 7, 8}, {5, 6, 8}, {6, 8, 9}, {6, 7, 9}, {7, 9, 10}, {7, 8, 10} and {8, 9, 10}. □

Figure 2.1. Two monotone paths on X(10)
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Finally, we consider prisms and wedges of polygons. Given a (d − 1)-dimensional polytope Q,

the prism over Q is the d-dimensional polytope defined as the Cartesian product Q × [0, 1]. The

wedge of Q over a face F of Q is the d-dimensional polytope W obtained combinatorially from the

prism Q× [0, 1] by collapsing the face F × [0, 1] to F × 0. Note that Q becomes a facet of W and

that if F is a facet and Q is simple, then so is W . We will apply the wedge construction in the

special cases that Q is a polygon and F is one of its vertices or edges.

F

F
2

F
1

Figure 2.2. The wedge of a pentagon over an edge

2.1. The graph of f-monotone paths

Let P be a d-dimensional polytope and f be a generic linear functional on P . We will assume

that f does not take the same value on any two distinct vertices of P .

To investigate the graph of f -monotone paths on P , we will describe another way to construct

it from simpler graphs, arising in the fibers of the restriction of the projection map f on P . The

technical device needed, which we now review, is the inverse limit in the category of graphs and

simplicial maps. This concept was introduced in [AER00, Section 4] (with motivation coming

from [BKS94]) to study the higher connectivity of G(P, f); it leads to various more general graphs

of partial f -monotone paths on P , a useful notion which allows for inductive arguments.

Let us linearly order the vertices v0, v1, . . . , vn of P so that f(v0) < f(v1) < · · · < f(vn). We

recall that for every interior point t of the interval f(P ), the fiber P (t) := f−1(t) ∩ P of the map

f : P → R is a (d−1)-dimensional polytope and thus it has a well defined graph. Setting ti = f(vi)

for 0 ≤ i ≤ n, we may thus consider the graph Gi of P (ti) for 0 ≤ i ≤ n and the graph Gi,i+1 of

P (t) for some ti < t < ti+1, for 0 ≤ i ≤ n − 1 (the precise value of t being irrelevant because, by

construction, the other choices of t in the same interval give a normally equivalent fiber P (t)); see
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Figure 2.3 for an example. Considering these graphs as one-dimensional simplicial complexes, we

have a diagram

(2.1.1) G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · βn−2←− Gn−2,n−1
αn−1−→ Gn−1

βn−1←− Gn−1,n

of graphs and simplicial maps for which αi : Gi−1,i → Gi and βi : Gi,i+1 → Gi result from the

degeneration of the fiber P (t) when t approaches ti, with ti−1 < t < ti or ti < t < ti+1, respectively

(recall that a simplicial map of one-dimensional simplicial complexes maps vertices to vertices and

either maps edges linearly onto edges, or contracts them to vertices; in particular, such a map is

determined by its images on vertices).

The inverse limit G of this diagram is defined as follows. The nodes are the sequences

(v0,1, v1,2, . . . , vn−1,n),

where vi−1,i is a vertex of Gi−1,i for all i ∈ [n] and αi(vi−1,i) = βi(vi,i+1) for all i ∈ [n−1]. Two such

sequences, say (u0,1, u1,2, . . . , un−1,n) and (v0,1, v1,2, . . . , vn−1,n), are adjacent nodes in G if there

exists a nonempty interval I ⊆ [n] such that:

• ui−1,i and vi−1,i are adjacent in Gi−1,i for i ∈ I,

• ui−1,i = vi−1,i for i ∈ [n]∖ I, and

• the edges {ui−1,i, vi−1,i} and {ui,i+1, vi,i+1} are mapped homeomorphically onto the same

edge of Gi by αi and βi, respectively, whenever i, i+ 1 ∈ I.

This construction associates an inverse limit graph to any diagram of graphs and simplicial

maps (2.1.1). As explained in [AER00, Section 4] (see [AER00, Proposition 4.1]), the graph G is

isomorphic to G(P, f) when the diagram comes from a polytope P and linear functional f , as just

described. The inverse limit of a subdiagram of (2.1.1) of the form

Gk−1,k
αk−→ Gk

βk←− Gk,k+1
αk+1−→ · · · βℓ−1←− Gℓ−1,ℓ

αℓ−→ Gℓ
βℓ←− Gℓ,ℓ+1,
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considered in Sections 2.3 and 2.4, has nodes which can be viewed as partial f -monotone paths

on P , starting at the fiber P (t) with tk−1 < t < tk and ending at P (t′) with tℓ < t′ < tℓ+1, and

adjacency given by a suitable extension of the notion of polygon flip, presented in the introduction.

Figure 2.3. A combinatorial cube and some of its fibers

Now we are ready to prove bounds as stated in the Introduction.

2.2. On the number of arborescences

As explained in the introduction, we are interested in counting f -arborescences on a polytope P ,

meaning oriented spanning trees in the directed graph ω(P, f) which are rooted at the unique sink

vmax. Recall that τ(P, f) denotes the number of f -arborescences on P . The following statement

provides an explicit product formula for this number.

Proposition 2.2.1. Given a d-dimensional polytope P and generic linear functional f , let

outf (v) denote the outdegree of the vertex v of P in the directed graph ω(P, f). Then,

τ(P, f) =
∏

v ̸=vmax

outf (v),
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where the product ranges over all vertices of P other than the sink vmax. In particular, if P is

simple, then

τ(P, f) =

d∏
i=1

ihi(P )

is independent of f .

Proof. Since ω(P, f) is acyclic, an f -arborescence is uniquely determined by a choice of edge

coming out of v for every vertex v of ω(P, f) other than the sink vmax. Since there are exactly

outf (v) choices for every such v, the proof of the first formula follows. The second formula follows

from the first and the combinatorial interpretation of the h-vector of a simple polytope P , mentioned

in Section 1.1.3. □

Remark 2.2.2. Since every edge of ω(P, f) has a unique initial vertex, the sum of the outdegrees

outf (v) of the vertices of P in the directed graph ω(P, f) is equal to the number of edges of P .

Corollary 2.2.3. For m > d ≥ 4, the maximum number of f -arborescences over all simple

d-dimensional polytopes with m facets is achieved by the polar duals of neighborly polytopes and is

given by the formula

max τ(P, f) =

⌊ d
2
⌋∏

i=1

i(
m−d+i−1

i )
⌊ d−1

2
⌋∏

i=0

(d− i)(
m−d+i−1

i ).

Similarly, the minimum number of f -arborescences in this situation is achieved by the polar duals

of stacked polytopes and is given by the formula

min τ(P, f) = d · ((d− 1)!)m−d .

For 3-dimensional simple polytopes P with m facets, τ(P, f) = 3 · 2m−3.

Proof. The case d ≥ 4 follows from the last sentence of Proposition 2.2.1, the upper and

lower bound theorems for the h-vector of a simplicial polytope, discussed in Section 1.1.3, and

the formulas for the h-vectors of d-dimensional neighborly and stacked simplicial polytope with m

vertices given there. The case d = 3 follows again from the second formula of Proposition 2.2.1,

since h0(P ) = h3(P ) = 1 and h1(P ) = h2(P ) = m − 3 for every 3-dimensional simple polytope P

with m facets. □
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The following two statements apply to general polytopes. Combined with Corollary 2.2.3, they

imply the results about f -arborescences stated in the introduction.

Theorem 2.2.4. For n > d ≥ 3, the maximum number of f -arborescences over all d-dimensional

polytopes with n vertices is achieved by the stacked polytope X(n) for d = 3 and by any 2-neighborly

polytope for d ≥ 4. This number is equal to 2 · 3n−3 and (n− 1)! in the two cases, respectively.

Proof. Let us order the vertices v1, v2, . . . , vn of the d-dimensional polytope P so that f(v1) ≤

f(v2) ≤ · · · ≤ f(vn), where vn = vmax. Then, arcs of the directed graph ω(P, f) can only be pairs

(vi, vj) with i < j and hence outf (vi) ≤ n− i for every i ∈ [n]. Thus, in view of Proposition 2.2.1,

we get

τ(P, f) =

n−1∏
i=1

outf (vi) ≤
n−1∏
i=1

(n− i) = (n− 1)!

and equality holds if and only if P is 2-neighborly.

Since no such polytopes other than simplices exist in dimension d = 3, this case has to be

treated separately. Setting di = outf (vi) for i ∈ [n − 1], we have positive integers d1, d2, . . . , dn−1

such that dn−1 = 1 and dn−2 ∈ {1, 2}. Since P can have no more than 3n − 6 edges, we have

d1+d2+· · ·+dn−1 ≤ 3n−6 by Remark 2.2.2. It is an elementary fact that, under these assumptions,

the product τ(P, f) = d1d2 · · · dn−1 is maximized when dn−1 = 1, dn−2 = 2 and di = 3 for every

i ∈ [n− 3]. Exactly that happens for the stacked polytope X(n) and the proof follows. □

Theorem 2.2.5. For all n ≥ 4, the minimum number of f -arborescences over all 3-dimensional

polytopes with n vertices is equal to 2(n− 1). This is achieved by any pyramid P and any generic

linear functional f which takes its minimum value on P at the apex.

Proof. As a simple application of Proposition 2.2.1, we have τ(P, f) = 2(n − 1) for every

pyramid P over an (n − 1)-gon and every generic functional f which takes its minimum value on

P at the apex.

We now consider any 3-dimensional polytope P with n vertices and any generic functional f

on P . We need to show that τ(P, f) ≥ 2(n−1). We may linearly order the vertices v1, v2, . . . , vn of

P in the order of decreasing outdegree in the directed graph ω(P, f) and denote by k the number

of those vertices which have outdegree larger than one. Then, k ≥ 2 and the respective outdegrees
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d1, d2, . . . , dn of v1, v2, . . . , vn satisfy d1, d2, . . . , dk ≥ 2, dn = 0 and di = 1 for every other value of i.

Letting D1, D2, . . . , Dn be the degrees of v1, v2, . . . , vn in the undirected graph of P , respectively,

we have τ(P, f) = d1d2 · · · dk and

2 ·
n∑

i=1

di =

n∑
i=1

Di

by Remark 2.2.2. Clearly, Di = di for one value of i ∈ {1, 2, . . . , k} (the one corresponding to

the source vertex), Di ≥ di + 1 for every other such value and Di ≥ 3 for all k < i ≤ n. These

considerations result in the inequality d1 + d2 + · · ·+ dk ≥ n+ 1 and thus, it remains to show that

d1d2 · · · dk ≥ 2(n− 1) for every k ≥ 2 and all d1, d2, . . . , dk ∈ {2, 3, . . . , n− 1} summing at least to

n+ 1. Indeed, from the inequality ab > (a− 1)(b+ 1) for integers a ≤ b, applied repeatedly when

b is the largest of d1, d2, . . . , dk and a is any other number from these larger than 2, we get

d1d2 · · · dk ≥ (d1 + d2 + · · ·+ dk − 2k + 2) · 2k−1 ≥ (n− 2k + 3) · 2k−1.

Applying repeatedly the fact that 2m ≥ m+ 2 for m ≥ 2, we conclude that d1d2 · · · dk ≥ 2(n− 1)

and the proof follows. □

More generally, for any d ≥ 3, the (d− 2)-fold pyramid P over an (n−d+2)-gon has n vertices

and dimension d. Moreover, if f is chosen so that every cone vertex has smaller objective value

than any of the vertices of the (n− d+ 2)-gon, then the number of f -arborescences on P is equal

to 2(n− 1)(n− 2) · · · (n− d+ 2).

Question 2.2.6. What is the minimum number of f -arborescences over all d-dimensional poly-

topes with n vertices, for d ≥ 4? Does it equal 2(n− 1)(n− 2) · · · (n− d+ 2) for all n > d ≥ 4?

2.3. On the number of monotone paths

This section investigates the smallest and largest possible number of f -monotone paths on

polytopes. For notational convenience, we let v0, v1, . . . , vn be the vertices of a polytope P , linearly

ordered so that f(v0) < f(v1) < · · · < f(vn), as in Section 2.1. We recall that µ(P, f) denotes the

number of f -monotone paths on P and that we refer to general directed paths in ω(P, f) as partial

f -monotone paths, i.e., they may start or end at vertices other than vmin or vmax.

The following formula is the key to most results in this section.
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Lemma 2.3.1. The number of f -monotone paths on P can be expressed as

µ(P, f) = 1 +

n−1∑
k=0

(dk − 1)µk(P, f),

where dk = outf (vk) is the outdegree of vk in ω(P, f) and µk(P, f) stands for the number of partial

f -monotone paths on P with initial vertex v0 and terminal vertex vk.

Proof. Let P (t) = f−1(t) ∩ P be the fibers of the map f : P → R, as in Section 2.1, and

ti = f(vi) for 0 ≤ i ≤ n. For 0 ≤ k ≤ n − 1 let Hk(P, f) be the set of partial f -monotone paths

on P having initial vertex v0 and ending in the fiber P (t) with tk < t < tk+1. Formally, these are

essentially the nodes of the inverse limit of the part

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · αk−→ Gk
βk←− Gk,k+1

of the diagram (2.1.1). Let ηk(P, f) be the number of these partial f -monotone paths. We

claim that

(2.3.1) ηk(P, f)− ηk−1(P, f) = (dk − 1)µk(P, f)

for every k ∈ [n− 1]. Since η0(P, f) = outf (v0) = d0 and µ0(P, f) = 1, this implies that

ηk(P, f) = 1 +
k∑

i=0

(di − 1)µi(P, f)

for 0 ≤ k ≤ n− 1. Since ηn−1(P, f) = µn(P, f) = µ(P, f), the desired formula follows as the special

case k = n− 1 of this equation.

To verify (2.3.1), let φk : Hk(P, f)→ Hk−1(P, f) be the natural map obtained by restriction of

diagrams. More intuitively, φk(γ) is obtained from γ ∈ Hk(P, f) by removing its last edge. Paths

in Hk−1(P, f) and Hk(P, f) either pass through vertex vk or not, depending on whether or not

their last edge maps to vk under the map αk or βk, respectively. Clearly, for every δ ∈ Hk−1(P, f)

which passes through vk there are exactly dk paths γ ∈ Hk(P, f) such that φk(γ) = δ, obtained by

choosing an edge of ω(P, f) coming out of vk and attaching it to δ, while for every δ ∈ Hk−1(P, f)

which does not pass through vk there is a unique path γ ∈ Hk(P, f) such that φk(γ) = δ. These

observations imply directly Equation (2.3.1) and the proof follows. □
-38-



2.3. ON THE NUMBER OF MONOTONE PATHS

Recall that the Tribonacci sequence (Tn) is defined by the recurrence relation T0 = T1 = 1,

T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

Theorem 2.3.2. The maximum number of f -monotone paths over all 3-dimensional polytopes

with n + 1 vertices is equal to the nth Tribonacci number Tn for every n ≥ 3. This is achieved by

the stacked polytope X(n).

Proof. We proceed by induction on n. The result holds for n = 3, since there are exactly

T3 = 4 monotone paths on any 3-dimensional simplex. We assume that it holds for integers less

than n and consider a 3-dimensional polytope P with n+ 1 vertices v0, v1, . . . , vn, linearly ordered

as in the beginning of this section by a generic functional f .

We wish to apply Lemma 2.3.1. Since partial f -monotone paths on P with initial vertex v0 and

terminal vertex vk are f -monotone paths on the convex hull of v0, v1, . . . , vk, we have µk(P, f) ≤ Tk

for k ∈ {3, 4, . . . , n−1} by the induction hypothesis. Since this bound holds trivially for k ∈ {0, 1, 2}

as well, from Lemma 2.3.1 we get

µ(P, f) ≤ 1 +
n−1∑
k=0

(dk − 1)Tk.

To bound the right-hand side, we note that

dn−k + dn−k+1 + · · ·+ dn−1 ≤ 3k − 3

for k ∈ {2, 3, . . . , n − 1}, since dn−k + dn−k+1 + · · · + dn−1 is equal to the number of edges of P

connecting vertices vn−k, vn−k+1, . . . , vn and hence to the number of edges of a planar simple graph

with k + 1 vertices. From these inequalities and the trivial one dn−1 ≤ 1, and setting T−1 := 0, we
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get

n−1∑
k=0

dkTk =

n∑
k=1

(dn−1 + dn−2 + · · ·+ dn−k)(Tn−k − Tn−k−1)

≤ (Tn−1 − Tn−2) + (3k − 3)

n∑
k=2

(Tn−k − Tn−k−1)

= Tn−1 + 2Tn−2 + 3Tn−3 + 3Tn−4 + · · ·+ 3T0

=

n∑
k=1

Tk,

where the last equality comes from summing the recurrence Tk = Tk−1 + Tk−2 + Tk−3 for k ∈ [n].

We conclude that

µ(P, f) ≤ 1 +
n−1∑
k=0

(dk − 1)Tk = 1 +
n−1∑
k=0

dkTk −
n−1∑
k=0

Tk ≤ Tn.

This completes the induction.

Finally, it is straightforward to verify that the number of f -monotone paths on X(n+1) satisfies

the Tribonacci recurrence (or alternatively, that all inequalities hold as equalities in the previous

argument) and is thus equal to Tn for every n. □

Remark 2.3.3. The number of f -monotone paths on a polytope P with n + 1 vertices is no

larger than the number of subsets of its vertex set containing the source and the sink and hence at

most 2n−1. Equality holds exactly when P is 2-neighborly, meaning that the 1-skeleton of P is the

complete graph on n+ 1 vertices, since then every such subset is the vertex set of an f -monotone

path on P . As a result, the maximum number of f -monotone paths over all d-dimensional polytopes

with n+ 1 vertices is equal to 2n−1 for all n ≥ d ≥ 4. □

The following statement completes the proof of the results about the number of f -monotone

paths, stated in the introduction.

Theorem 2.3.4. The minimum number of f -monotone paths over all 3-dimensional polytopes

with n vertices is equal to ⌈n/2⌉+2. This is achieved by prisms, when n is even, and by wedges of

polygons over a vertex, when n is odd.
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In particular, prisms minimize the number of f -monotone paths over all simple polytopes of

dimension three with given number of vertices.

Proof. Applying Lemma 2.3.1 and noting that µk(P, f) ≥ 1 for every k, we get

µ(P, f) ≥ 1 +
n−2∑
k=0

(dk − 1) =
n−2∑
k=0

dk − n+ 2.

Since
∑n−2

k=0 dk is equal to the number of edges of P (see Remark 2.2.2), which is bounded below by

⌈3n/2⌉, it follows that µ(P, f) ≥ ⌈n/2⌉+ 2. It is straightforward to verify that prisms achieve the

minimum when n is even and wedges of polygons over a vertex (obtained from prisms by identifying

two vertices at different levels which are connected by an edge) achieve the minimum when n is

odd. □

The lower bound for the number of f -monotone paths in any dimension, given in the following

statement, is not expected to be tight.

Proposition 2.3.5. The number of f -monotone paths on any polytope of dimension d with n

vertices is bounded below by ⌈dn/2⌉ − n+ 2.

Proof. Once again, this follows from the inequality
∑n−2

k=0 dk ≥ ⌈dn/2⌉ and Lemma 2.3.1. □

We end this section with a conjecture for the maximum number of monotone paths on simple

3-dimensional polytopes. The proposed maximum can be achieved by wedges of polygons over an

edge whose vertices are the source and the sink, and all vertices of the polytope lie on a monotone

path. We recall that the Fibonacci sequence (Fn) is defined by the recurrence F1 = F2 = 1 and

Fn = Fn−1 + Fn−2 for n ≥ 2.

Conjecture 2.3.6. We have µ(P, f) ≤ Fn+2 + 1 for every simple 3-dimensional polytope P

with 2n vertices.

The argument in the proof of Theorem 2.3.2 yields the following weaker result.

Proposition 2.3.7. We have µ(P, f) ≤ 2Fn for every 3-dimensional simple polytope P with

n+ 1 vertices and every generic linear functional f on P .
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Figure 2.4. An example of a polytope on 8 vertices conjectured to be the maximizer
of the number of monotone paths among simple polytopes. f(v1) < f(v2) < · · · <
f(v8).

Proof. Let (an) be the sequence of numbers defined by the recurrence relation a0 = a1 = 1,

a2 = 2, a3 = 4 and an = an−1 + an−2 for n ≥ 4. Note that an = 2Fn for n ≥ 2. We mimick the

proof of Theorem 2.3.2 to show that µ(P, f) ≤ an for all n ≥ 3. For the inductive step, since P is

simple, we have d0 = 3, d1, d2, . . . , dn−2 ≤ 2 and dn−1 = 1 and compute that

µ(P, f) ≤ 1 +

n−1∑
k=0

dkak −
n−1∑
k=0

ak ≤ 1 + an−2 + an−3 + . . .+ a1 + 2a0

≤ an−1 + an−2 = an,

since an−1 = 1 + an−3 + · · ·+ a1 + 2a0. □

2.4. On the diameter of monotone path graphs

The main goal of this section is to prove Theorem 1.3.2.

The lower bound of (1.3.3) for the maximum diameter follows from Lemma 2.0.1. The upper

bound will be deduced from the following result. Clearly, given a polytope P and a generic linear

functional f , every f -monotone path on P meets each of the fibers f−1(t) ∩ P , where t ∈ f(P ),

in a unique point. For f -monotone paths γ and γ′ on P , let us denote by ν(γ, γ′) the number of

connected components of the set of values t ∈ f(P ) for which γ and γ′ disagree on f−1(t) ∩ P .

For example, for the two monotone paths, say γ and γ′, shown on Figure 2.1 we have ν(γ, γ′) = 4.

Note that ν(γ, γ′) = 0⇔ γ = γ′.
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Theorem 2.4.1. Let P be a 3-dimensional polytope and f be a generic linear functional on P .

The distance between any two f -monotone paths γ and γ′ in the graph G = G(P, f) satisfies

(2.4.1) dG(γ, γ
′) ≤ ν(γ, γ′)

2
· f2(P ),

where f2(P ) is the number of 2-dimensional faces of P .

Remark 2.4.2. Theorem 2.4.1 gives a diameter bound for all three-dimensional polytopes.

Cordovil and Moreira had studied bounds for three-dimensional zonotopes and rank-three oriented

matroids [CM93], which they gave in terms of the dual pseudo-line arrangements.

We will first state a technical result (see Proposition 2.4.3) which constructs a walk in G(P, f)

between two monotone paths γ and γ′ with the required properties from walks on the fibers,

assuming that the latter satisfy certain necessary compatibility conditions. To allow for all possible

ways that γ and γ′ may intersect each other, we consider the following general situation. Let F

be a connected polygonal complex in Rd having vertices v0, v1, . . . , vn and f : Rd → R be a linear

functional such that f(v0) < f(v1) < · · · < f(vn). The graph of f -monotone paths on F , denoted

by G(F , f), having initial vertex v0 and terminal vertex vn, can be defined with adjacency given

by polygon flips just as in the special case in which F is the 2-skeleton of a convex polytope (see

Section 2.1). Alternatively, and in order to relate it to the graphs of the fibers of f , we may view

G(F , f) as the inverse limit associated to a diagram

(2.4.2) G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · βn−2←− Gn−2,n−1
αn−1−→ Gn−1

βn−1←− Gn−1,n

of graphs and simplicial maps. This is defined as in Section 2.1 provided the fiber f−1(t) ∩ P

is replaced with f−1(t) ∩ ∥F∥, where ∥F∥ is the polyhedron (union of faces) of F . Thus, the

Gi and Gi,i+1 are graphs of (one-dimensional) fibers f−1(t) ∩ ∥F∥ and the αi and βi are natural

degeneration maps.

Given an f -monotone path γ on F and i ∈ [n], let us denote by πi(γ) the node of Gi−1,i in which

the union of the edges of γ intersects the corresponding fiber f−1(t) ∩ ∥F∥. Then, πi : G(F , f)→
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Gi−1,i is a simplicial map. Given a walk P in a graph G, thought of as a sequence of edges, and a

simplicial map φ : G→ H of graphs, let us denote by φ(P) the walk in H which is formed by the

images of the edges of P under φ, disregarding those edges of P which are contracted to a node by

φ.

Proposition 2.4.3. Let γ and δ be f -monotone paths on F . Suppose that for every i ∈ [n]

there exists a walk Pi in Gi−1,i with initial node πi(γ) and terminal node πi(δ) which traverses each

edge in Gi−1,i exactly once, so that

(2.4.3) αi(Pi) = βi(Pi+1)

for every i ∈ [n− 1]. Then, there exists a walk P in G(F , f) with initial node γ and terminal node

δ which traverses each 2-dimensional face of F exactly once, such that πi(P) = Pi for every i ∈ [n].

We first illustrate the proposition with an important special case and then use it to prove

Theorem 2.4.1.

Example 2.4.4. To motivate the proof of Theorem 2.4.1, consider the special case in which the

monotone paths γ and γ′ do not have common vertices, other than those on which f attains its

minimum and maximum value on P . Then, ν(γ, γ′) = 1 and the edges of γ and γ′ form a simple

cycle C which divides the boundary of P into two closed balls, say B+ and B−, having common

boundary C. Let F+ and F− be the two subcomplexes of the boundary complex of P which

correspond to these balls. We wish to show that for each ε ∈ {+,−}, there exists a walk in G(P, f)

joining γ and γ′ which traverses each 2-dimensional face of Fε exactly once. This would imply the

desired bound for dG(γ, γ′). Such a walk must traverse every edge of each fiber f−1(t)∩Bε exactly

once and thus induce walks on these fibers with the same property.

Let us consider the diagram (2.4.2) for the polygonal complex Fε. Clearly, the fiber f−1(t)∩∂P

is the boundary of a polygon for every interior point t of the interval f(P ), where ∂P denotes the

boundary of P . Since, by the f -monotonicity of γ and γ′, this fiber intersects the cycle C, which is

the boundary of the ball Bε, in exactly two points, its intersection with Bε must be homeomorphic

to a line segment. Thus, all graphs appearing in the diagram (2.4.2) for Fε are path graphs, where

Gi−1,i has endpoints πi(γ) and πi(γ
′) for every i ∈ [n]. As a result, there are unique walks Pi, as
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in the statement of Proposition 2.4.3, where condition (2.4.3) holds by the degeneration of fibers.

Thus, Proposition 2.4.3 implies the existence of a walk in G(Fε, f) with initial node γ and terminal

node γ′ which traverses each 2-dimensional face of Fε exactly once. □

Proof of Theorem 2.4.1. We first observe that it suffices to prove the special case ν(γ, γ′) = 1.

Indeed, given f -monotone paths γ and γ′ on P and setting ν = ν(γ, γ′), it is straightforward to

define f -monotone paths γ = γ0, γ1, . . . , γν = γ′ on P satisfying ν(γi−1, γi) = 1 for every i ∈ [ν−1].

Then, the triangle inequality and the special case imply that

dG(γ, γ
′) ≤

ν∑
i=1

dG(γi−1, γi) ≤ ν · f2(P )

2
,

as claimed by (2.4.1).

So let γ, γ′ be f -monotone paths on P such that ν(γ, γ′) = 1. Let u and v be their unique

common vertices, satisfying f(u) < f(v), for which γ and γ′ disagree on each fiber f−1(t) ∩ P

with f(u) < t < f(v) and agree on the other fibers; in the special case of Example 2.4.4, u and v

are the unique vertices vmin and vmax on which f attains its minimum and maximum value on P ,

respectively. As in that special case, the edges of γ and γ′ joining u and v form a simple cycle C

which divides the 2-dimensional sphere ∂P into two closed 2-dimensional balls B+ and B− having

common boundary C. Moreover, the f -monotonicity of γ and γ′ implies that for each ε ∈ {+,−}

and every interior point t of the interval f(Bε), the fiber f−1(t) ∩ Bε is homeomorphic to a line

segment or a circle. We wish to apply Proposition 2.4.3 to the subcomplex Fε of the boundary

complex of P which corresponds to Bε.

We claim that there exist unique walks Pi satisfying the assumptions of the proposition. Indeed,

according to our previous discussion, every graph Gi−1,i appearing in the diagram (2.4.2) for Fε is

either a path graph, with endpoints πi(γ) and πi(γ
′), or a cycle. As a result, there exists a unique

walk Pi in Gi−1,i with initial node πi(γ) and terminal node πi(γ
′) which traverses each edge in

Gi−1,i exactly once, if the latter is a path graph, and exactly two such walks, corresponding to the

two possible orientations of Gi−1,i, if the latter is a cycle. There are the following cases, illustrated

in Example 2.4.5, to consider:
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Case 1: The relative interior of Bε contains neither vmin nor vmax. Then, all the Gi−1,i are path

graphs and conditions (2.4.3) hold by degeneration of fibers, as in the special case u = vmin and

v = vmax of Example 2.4.4.

Case 2: The relative interior of Bε contains exactly one of vmin and vmax, say vmin. Then, the

Gi−1,i associated to fibers f−1(t) ∩ Bε with t < f(u) are cycles and all others are path graphs

which degenerate to cycles as the value of f approaches f(u). Clearly, the cycles can be uniquely

oriented, so that the resulting walks Pi satisfy conditions (2.4.3).

Case 3: The relative interior of Bε contains both vmin and vmax. Then, the Gi−1,i associated to

fibers f−1(t) ∩ Bε with f(u) < t < f(v) are path graphs and the rest are cycles which can be

uniquely oriented, so that the resulting walks Pi satisfy conditions (2.4.3).

Thus, Proposition 2.4.3 applies in all cases and we may conclude that dG(γ, γ
′) ≤ f2(Fε) for

each ε ∈ {+,−}. Hence,

dG(γ, γ
′) ≤ f2(F+) + f2(F−)

2
= f2(P )/2

and the proof follows. □

Example 2.4.5. Let P = X(10) be the stacked polytope shown in Figure 1.3. The following

two situations illustrate the three cases within the proof of Theorem 2.4.1.

(a) Consider the f -monotone paths on P

γ = (v1, v3, v6, v9, v10),

γ′ = (v1, v3, v5, v8, v9, v10),

presented as sequences of vertices. Then, the cycle C has edges with vertex sets {v3, v5}, {v5, v8},

{v8, v9}, {v6, v9} and {v3, v6}, and one of the Fε consists of the faces of the facets of P with vertex

sets {v3, v5, v6}, {v5, v6, v8} and {v6, v8, v9} and falls in the first case of the proof, while the other

consists of the faces of the remaining thirteen facets of P and falls in the third case. Three flips

are needed to reach γ′ from γ across Fε in the former case, and thirteen flips in the latter.
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(b) Consider also the f -monotone paths

γ = (v1, v3, v6, v9, v10),

γ′′ = (v1, v3, v4, v5, v8, v9, v10).

Now C has six edges with vertex sets {v3, v4}, {v4, v5}, {v5, v8}, {v8, v9}, {v6, v9} and {v3, v6},

and one of the Fε consists of the faces of the facets of P with vertex sets {v1, v2, v3}, {v1, v2, v4},

{v1, v3, v4}, {v2, v3, v5}, {v2, v4, v5}, {v3, v5, v6}, {v5, v6, v8} and {v6, v8, v9}, while the other consists

of the faces of the remaining eight facets of P . Both fall in the second case of the proof. The fibers

f−1(t) ∩ Bε are path graphs for f(v3) < t < f(v9) in either case, and cycles for t ≤ f(v3) or

t ≥ f(v9) in the two cases, respectively. □

Proof of Theorem 1.3.2. As we have already mentioned, the lower bound of (1.3.3) follows from

Lemma 2.0.1. The upper bound follows from Theorem 2.4.1 and the obvious inequalities ν(γ, γ′) ≤

⌊(n− 1)/2⌋ and f2(P ) ≤ 2n− 4. □

Question 2.4.6. What is the exact value of the maximum diameter in Theorem 1.3.2? In

particular, is it equal to the lower bound given there for every n?

Proof of Proposition 2.4.3. Consider indices 0 < k ≤ m ≤ ℓ < n and denote by K and L the graphs

of partial f -monotone paths on F which arise as inverse limits of the subdiagrams

(2.4.4) Gk−1,k
αk−→ Gk

βk←− Gk,k+1
αk+1−→ · · · αm−1−→ Gm−1

βm−1←− Gm−1,m

and

(2.4.5) Gm,m+1
αm+1−→ Gm+1

βm+1←− · · ·
βℓ−1←− Gℓ−1,ℓ

αℓ−→ Gℓ
βℓ←− Gℓ,ℓ+1

of (2.4.2), respectively. Let us call a polygon any 2-dimensional face of F which intersects the

fiber f−1(t) ∩ ∥F∥ for some tk−1 < t < tm in the case of (2.4.4) and any 2-dimensional face of F

which intersects the fiber f−1(t) ∩ ∥F∥ for some tm < t < tℓ+1 in the case of (2.4.5). Thus, the
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polygons are exactly the 2-dimensional faces of F in the case of the entire diagram (2.4.2) and are

in one-to-one correspondence with the edges of Gm−1,m in the special case k = m of (2.4.4). Define

similarly the graph H of partial f -monotone paths on F and its polygons from the subdiagram

(2.4.6) Gk−1,k
αk−→ · · · βm−1←− Gm−1,m

αm−→ Gm
βm←− Gm,m+1

αm+1−→ · · · βℓ←− Gℓ,ℓ+1

of (2.4.2) and note that there are natural restriction maps πK : G(F , f) → K, πL : G(F , f) → L

and πH : G(F , f)→ H.

We assume that there exist a walk Q in K with initial node πK(γ) and terminal node πK(δ)

which traverses each polygon of (2.4.4) exactly once and a walk R in L with initial node πL(γ) and

terminal node πL(δ) which traverses each polygon of (2.4.5) exactly once, such that πi(Q) = Pi for

k ≤ i ≤ m and πi(R) = Pi for m < i ≤ ℓ+ 1. As a consequence, there exists a walk P in H with

initial node πH(γ) and terminal node πH(δ) which traverses each polygon of (2.4.6) exactly once,

such that πi(P) = Pi for k ≤ i ≤ ℓ+1. The proposition then follows by applying the claim several

times, for instance when k = 1 and m = ℓ, for m ∈ [n− 1].

To prove the claim, we only need to patch Q and R along the walk αm(Pm) = βm(Pm+1) in

Gm. Any two nodes ζ of K and η of L produce by concatenation a node ζ ∗ η of H, provided that

the terminal edge of ζ and the initial edge of η have equal images under αm and βm, respectively.

Let ζ0, ζ1, . . . , ζq be the successive nodes of Q and η0, η1, . . . , ηr be the successive nodes of R. By

our assumptions, we have ζ0 ∗ η0 = πK(γ) ∗ πL(γ) = πH(γ) and ζq ∗ ηr = πK(δ) ∗ πL(δ) = πH(δ).

We define P to have nodes of the form ζi ∗ ηj , starting with ζ0 ∗ η0, so that the node immediately

following ζi ∗ ηj is

(2.4.7)


ζi+1 ∗ ηj , if well defined,

ζi ∗ ηj+1, if well defined but ζi+1 ∗ ηj is not,

ζi+1 ∗ ηj+1, otherwise.
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We leave to the reader to verify that, because αm(Pm) = βm(Pm+1), this is a well defined walk in

H with initial node ζ0 ∗ η0 = πH(γ) and terminal node ζq ∗ ηr = πH(δ). By construction, we have

πi(P) = πi(Q) for k ≤ i ≤ m and πi(P) = πi(R) for m < i ≤ ℓ + 1, and hence πi(P) = Pi for

k ≤ i ≤ ℓ + 1. Finally, we note that P traverses the polygons traversed by Q or R which do not

intersect the fiber f−1(tm)∩∥F∥ by steps which move ζi ∗ηj to the first two paths shown in (2.4.7),

respectively, each exactly once by our assumptions on Q and R, and the 2-dimensional faces of

F which intersect f−1(tm) ∩ ∥F∥ by steps which move ζi ∗ ηj to the third path shown in (2.4.7),

each exactly once by our assumptions on Pm and Pm+1, and that these are precisely the polygons

of (2.4.6). □

2.5. Distribution of Lengths of Monotone Paths

Monotone diameters and monotone heights are closely related to the number of iterations in

the simplex method. In this section, we randomly sample paths from three different classes of

polytopes: 3-dimensional simple polytopes, Birkhoff polytopes and Traveling Salesman polytopes.

We present histograms of the distribution of certain statistics computed from monotone diameters

and monotone heights of polytopes for these classes. The distributions might help us to establish

some understanding on the behavior of the simplex method.

2.5.1. The Monotone Diameter and the Monotone Height of 3-dimensional Simple

Polytopes. We use the random 3-dimensional polytope generator, which applies cutting plane

method to generate 50,000 random 3-dimensional simple polytopes. The polytopes generated by

this method will be roundish and will not have a similar behavior of polytopes of special design,

like a Klee-Minty cube. By adjusting the number of cuts, we are able to sample polytopes with

different numbers of facets, ranging from eight facets to 80 facets. We separate these polytopes into

groups, and keep the groups that contain at least 30 different polytopes, which are groups from

eight facets to 72 facets.

Then, we apply a fixed set of 26 objective functions on each polytope to obtain the character-

istics. These objective functions come from the set F = {[x1, x2, x3] s.t. x1 = 0,±1 ; x2 = 0,±1 ;

x3 = 0,±1} \ [0, 0, 0] with a little perturbation to reduce the possible degeneracy.
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In this sampling, we are interested in two ratios: the monotone diameter ratio (monotone

diameter divided by number of facets) and the monotone height ratio (monotone height divided

by number of facets). Figure 2.5, 2.6 and 2.7 are the results for the monotone diameter ratio, and

each subgraph is a normalized histogram, representing the ratio for the polytopes with the same

number of facets. The x-axis of each subgraph represents the monotone diameter ratio, and the

y-axis shows the percentage of occurrence.

Figure 2.5. The monotone diameter ratio for polytopes with 8-31 facets.

From these graphs, we can see that each subgraph looks like a skewed normal distribution.

Hence, we observe that, in general, as the number of facets increases, the mean of the monotone

diameter ratio decreases. From this observation, we find it to be interesting to put all these ratios

into one normalized histogram. We decide to give an equal weight to each number of facets from

eight to 72. Figure 2.12 shows the histogram of the occurrence of each ratio:
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Figure 2.6. The monotone diameter ratio for polytopes with 32-55 facets.

Figure 2.7. The monotone diameter ratio for polytopes with 56-72 facets.

If our observation is correct that the mean of the monotone diameter ratio decreases as the

number of facets increases, we will see more bars on the left side of the 0.2 on the x-axis, and the

ratio may approach zero or a small number as the number of facets increases.
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Figure 2.8. Weighted monotone diameter histogram.

The monotone height ratio also follows a similar pattern, and the results of the monotone height

ratio are shown in the Figure 2.9, 2.10 and 2.11. The x-axis represents the monotone height ratio,

and the y-axis represents the percentage of occurrence. Similarly, each subgraph looks like skewed

normal distribution, and the mean is decreasing as the number of facets increases:
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Figure 2.9. The monotone height ratio for polytopes with 8-31 facets.

Figure 2.10. The monotone height ratio for polytopes with 32-55 facets.
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Figure 2.11. The monotone height ratio for polytopes with 56-72 facets.

We also aggregate the ratios into one normalized histogram presented below, and it seems to

follow the pattern we observed in the monotone diameter ratio:

Figure 2.12. Weighted monotone diameter histogram.

2.5.2. The Monotone Height of Birkhoff Polytope. Bn is a convex polytope that comes

from an n× n doubly stochastic matrix, a matrix with non-negative real entries and every column
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sum and every row sum equal to 1. It is also called the Birkhoff Polytope [DLLY08]. We want

to explore some features of the Birkhoff Polytope, with a focus on the monotone height. We

generated B3, B4, B5, and B6 based on the idea in [DLLY08]. Then, we applied 500 different

objective functions on B3, B4, and B5, as well as 150 different objective functions on B6. The

following table is what we get:

Birkhoff Polytope # of runs # of facets # of vertices diameter monotone
diameter

monotone
height # of paths # of arborescences

B3 500 9 6 1 1 5 16 120
B4 500 16 24 2 2 15 to 23 188340 to 2812400 0.75e21 to 1.83e21
B5 500 25 120 2 2 80 to 107 9.26e25 to 3.79e30 0.16e180 to 4.36e180
B6 150 36 720 2 2 to 3 453 to 514 2.13e138 to 5.99e150 Out of bound

Among these numbers, we are interested in the distribution of the monotone height, so we ran

more experiments on B4, B5, and B6. The distributions are shownin Figure 2.13, 2.14 and 2.15

respectively. The x-axis represents the monotone height, and the y-axis represents the number of

occurrences of each monotone height:

Figure 2.13. The monotone height distribution of B4.
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Figure 2.14. The monotone height distribution of B5.

Figure 2.15. The monotone height distribution of B6.

We also tried to compute the features for B7. Unfortunately, B7 requires too much computation

power. Instead of calculating the exact monotone height, we choose to calculate the monotone
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height divided by ten to speed up the process. Below is what we get for 60 runs. The numbers in

x-axis times ten is roughly the monotone height:

Figure 2.16. The monotone height distribution of B7.

From these figures, we can see that the monotone height of Bn based on randomly generated

objective functions is normally distributed with a mean is growing exponentially in terms of n.

In particular, there can be a monotone path traveling through all the vertices of the directed

polyhedral graph coming from B4 and special objective functions.
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2.5.3. The Monotone Height of the Traveling Salesman Polytope. Traveling salesman

problem (TSP) is an NP-hard problem, and there is no known efficient algorithm for solving the

TSP. The setting of the problem is that a salesman wants to minimize the cost to travel all n cities

and return to the starting city, without going into the same city twice. In the traveling salesman

polytope (TSP polytope for short), each vertex represents a solution to the TSP (a Hamiltonian

cycle in a complete graph of n nodes), and each entry in the objective function represents the cost

to travel between a pair of cities. By varying the objective functions, we obtain TSPs with different

costs between cities.

We are interested in the distribution of the monotone height of the TSP polytope. However,

the computation power needed for the n-city TSP polytopes is exponential, and we could only

compute the features for the 5-city and the 6-city TSP polytopes, as well as the distribution of the

monotone height of the 6-city and the 7-city TSP polytope. The following table shows the features

for the 5-city and the 6-city TSP polytopes:

TSP Polytope # of runs # of facets # of vertices diameter monotone
diameter

monotone
height # of paths # of arborescences

5-city 500 20 12 2 2 10 682 1.81e7
6-city 500 100 60 2 2 39 to 55 7.69e12 to 2.08e15 9.15e71 to 3.49e72

From the features, we can see that the 5-city TSP polytope is not very interesting. Therefore, we

run more experiments to compute the monotone height for the 6-city and the 7-city TSP polytopes.

The histogram of the distribution of the monotone height are shown below in Figure 2.17 and Figure

2.18, with the x-axis representing the monotone height and the y-axis representing the number of

occurrences of each monotone height.

One thing interesting for the 6-city TSP polytope is that the maximum of the monotone height

of the 6-city TSP polytope is 58, which means that, starting from one vertex, the simplex method

needs to go through all except one vertex (59 in total except the starting vertex) to reach the

optimum, which is very inefficient. The minimum of the monotone height is 32, and we do not

know if it could be lower. The mean is 46.58, the standard deviation is 2.69, and the median is 47.

The minimum for the monotone height for the 7-city TSP polytope in 8800 runs is 193, and the

max is 266. The mean is 223.3, the standard deviation is 9.43, and the median is 223.
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Figure 2.17. The distribution of the monotone height for 6-city TSP polytope
using 10,000,000 random objective functions.

Figure 2.18. The distribution of the monotone height for 7-city TSP polytope
using 8,800 random objective functions.
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2.6. Open Problems for Directed Polytope Graphs

Based on our sampled distributions for monotone heights of Birkhoff polytopes and TSP poly-

topes, it is natural to ask why all these distributions look unimodal. Is it possible that for cer-

tain classes of polytopes, the monotone heights will follow a normal distribution? For general

3-dimensional polytopes, it is less obvious that the monotone diameter ratio comes from uniform

distribution. However, it will be an interesting question to consider under what conditions will

monotone diameter ratios follow a bimodal distribution or even a multimodal distribution?

Apart from the distribution of monotone paths, the following tables summarize our extremal

results on monotone paths and arborescences and indicate the problems which remain open.

# of arborescences all polytopes simple polytopes

d = 3
upper bound Theorem 2.2.4 Corollary 2.2.3lower bound Theorem 2.2.5

d ≥ 4
upper bound Theorem 2.2.4 Corollary 2.2.3
lower bound Question 2.2.6 Corollary 2.2.3
Table 2.1. Summary for f -arborescences

# of monotone paths all polytopes simple polytopes

d = 3
upper bound Theorem 2.3.2 Conjecture 2.3.6, Proposition 2.3.7
lower bound Theorem 2.3.4

d ≥ 4
upper bound Remark 2.3.3 open
lower bound Proposition 2.3.5

Table 2.2. Summary for f -monotone paths

diameter of flip graph all polytopes simple polytopes

d = 3
upper bound Theorem 1.3.2, Question 2.4.6 open
lower bound Conjecture 2.6.1

d ≥ 4
upper bound open open
lower bound open open

Table 2.3. Summary for the diameter of flip graphs
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We have no reason to doubt that Question 2.2.6 on the minimum number of f -arborescences

in dimensions d ≥ 4 and Question 2.4.6 on the maximum diameter of flip graphs in dimension 3

have positive answers. For the minimum diameter of flip graphs, we expect that the diameter of

G(P, f) is bounded below by the integral part of half the number of facets for every 3-dimensional

polytope P . In particular, we expect that the following conjecture is true.

Conjecture 2.6.1. The minimum diameter of G(P, f), when P ranges over all 3-dimensional

polytopes with n vertices and f ranges over all generic linear functionals on P , is equal to ⌊(n+ 5)/4⌋

for every n ≥ 4. This can be achieved by simple polytopes for every even n.

The outdegrees of the vertices of ω(P, f) play an important role in the proofs of Theorems 1.3.1

and 1.3.3. It seems a very interesting problem to characterize, or at least obtain significant infor-

mation about, the possible multisets of these outdegrees when P ranges over all polytopes of given

dimension and number of vertices and f ranges over all generic linear functionals on P . Finally, it

would be interesting to address the questions raised in this thesis for coherent f -monotone paths

as well. Their number typically grows much slower than the total number of f -monotone paths

[ADLRS00].
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CHAPTER 3

Diameters of Cocircuit Graphs of Oriented Matroids

In this chapter we will first prove Lemma 1.4.3 and Lemma 1.4.4 in Section 3.1. Then we discuss

diameter for oriented matroids of small rank and corank as stated in Theorem 1.3.5 in Section 3.2.

We finish by showing the connection between the diameter bound for oriented matroids and the

diameter bound for polytopes in Section 3.3.

3.1. Reductions and Lower Bounds

Klee and Walkup [KW67] showed that the maximal diameter among all d-dimensional poly-

topes with n facets is achieved by a simple polytope. Their argument was straightforward: if P is

a d-polytope with n facets that is not simple, then slightly perturbing the facets of P will produce

a simple polytope whose diameter is at least as large as that of P . Our goal in this section is to

prove an analogous result for oriented matroids. First we require some definitions, see [BLVS+99,

Section 7.1 and 7.2] for more details.

Let M be an oriented matroid on ground set E. An extension of M is an oriented matroid

M̃ on a ground set Ẽ that contains E, such that the restriction of M̃ to E isM. We say M̃ is a

single element extension if |Ẽ\E| = 1. For any single element extension M̃, there is a unique way

to extend cocircuits ofM to cocircuits of M̃. Specifically, there is a function

σ : C∗(M)→ {+,−, 0}

such that σ(−Y ) = −σ(Y ) for all Y ∈ C∗(M) and

{(Y, σ(Y )) : Y ∈ C∗(M)} ⊆ C∗(M̃).

That is, (Y, σ(Y )) is a cocircuit of M̃ for every cocircuit Y ofM. The functions σ : C∗ → {+,−, 0}

that correspond to single element extensions are called localizations. Furthermore, M̃ is uniquely
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determined by σ, with

C∗(M̃) = {(Y, σ(Y )) : Y ∈ C∗(M)}∪

{(Y 1 ◦ Y 2, 0) : Y 1, Y 2 ∈ C∗(M), σ(Y 1) = −σ(Y 2) ̸= 0, S(Y 1, Y 2) = ∅, ρ(Y 1 ◦ Y 2) = 2}.

Here ρ is the rank function and ◦ is the composition of covectors.

Now we are ready to define the perturbation map on non-uniform oriented matroids.

Definition 3.1.1. [BLVS+99, Theorem 7.3.1] Let M be an oriented matroid of rank r ≥ 2

on E. If f ∈ E is not a coloop, thenM is a single element extension of a rank r oriented matroid

M0 := M\f , with localization σf . Let W ∈ C∗(M0) be a cocircuit with σf (W ) = 0, meaning

W = (W, 0) is a cocircuit ofM. Then the local perturbationM′ ofM can be defined as a single

element extension ofM0 with localization

σLP (Y ) =


+ if Y = W,

− if Y = −W,

σf (Y ) otherwise.

We can now reduce the general diameter problem to the case of uniform oriented matroids, as

promised by Lemma 1.4.3.

Proof. (of Lemma 1.4.3)

Let M be a non-uniform oriented matroid. We may assume without loss of generality that,

M does not have any loops, coloops or parallel elements since removing them will not affect the

cocircuit graph of M. Note that there exists W ∈ C∗(M) with |W 0| > r − 1. Pick an arbitrary

f ∈ W 0. Let M0 := M\f and let M′ be the perturbed oriented matroid defined in Definition

3.1.1. We will show diam(M) ≤ diam(M′). In addition, ifM is realizable, then we will show the

perturbedM′ can also be made realizable. From this, it will follow that for all n and r, the optimal

bound ∆(n, r) is achieved by a uniform oriented matroid.

Denote by {X1, X2, . . . , Xk} = {X ∈ C∗(M0) : σf (X) = −, S(W,X) = ∅, ρ(W,X) = 2}.

Note that X1, . . . , Xk are exactly the cocircuits that are adjacent to W in G∗(M0) before the

extension with σf (X
i) = −. Let Zi = (Xi ◦W, 0). After the perturbation by σLP , W is mapped
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W

−W

W ′

−W ′

Z1
Z2

−Z1
−Z2

W ′

−W ′

Z1
Z2

−Z1 −Z2

Figure 3.1. A non-uniform oriented matroid (left), a local perturbation (center),
and a realizable local perturbation (right).

to W ′ = (W,+). Since σLP and σf only differ on ±W , it follows that ±Z1, . . . ,±Zk are all the

cocircuits created by this perturbation. After the perturbation, each edge of the form {W,X i} in

G∗(M) is subdivided into two edges {W,Zi} and {Zi, Xi} (similarly {−W,−Xi} is subdivided

into {−W ′, Zi} and {−Zi,−Xi}).

Now let X,Y ∈ C∗(M) be any two cocircuits of M such that X,Y ∈ C∗(M′) (X,Y could

be ±W , in this case we just consider ±W ′ in M′). Take a minimal path between X and Y on

G∗(M′), and replace any elements of {±W ′,±Z1, . . . ,±Zk} with ±W respectively. This gives us a

path (potentially having repeated elements and not necessarily shortest) between X and Y inM.

Now if we pick X,Y ∈ C∗(M) that realize the diameter of M, since dM(X,Y ) ≤ dM′(X,Y ), we

have diam(M) = dM(X,Y ) ≤ dM′(X,Y ) ≤ diam(M′).

Now suppose M is realizable. Let H = {H1, . . . , Hn} be the hyperplane arrangement cor-

responding to M (with f corresponding to Hn). Let Hi = {x : xT vi = 0}, and w be the

vector realizing W . Note that we have wT vn = 0 since the last entry of W is 0. Consider y,

the minimizer of xT vn over all cocircuits of M subject to xT vn > 0. Now we replace Hn by

H ′
n = {x : xT ((1− ϵ)vn+ϵy) = 0}, in which the choice of ϵ will be made later. Note that,

xT ((1− ϵ)vn+ϵy) = xT vn−ϵxT vn+ϵxT y .

We first pick the sign of ϵ so that ϵwT y > 0; as a result, w ∈ H ′+
n and −w ∈ H ′−

n . Then we take

|ϵ| small enough such that |xT vn | > |ϵ(xT vn−xT w′)| for all x vectors that realize a cocircuit in

M (this choice of ϵ exists since the number of cocircuits is finite and we may scale the vector). The
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construction ensures that all cocircuits, except those that lie on Hn with degeneracy, will have the

same sign as defined in Definition 3.1.1. As a result H′ = {H1, . . . , Hn−1,H
′
n} corresponds to some

realizable oriented matroid M′ after some local perturbations (the composition of perturbation

maps on all cocircuits with degeneracy on Hn (including W ) as defined in Definition 3.1.1).

To conclude, we have decreased the number of pairs of (W,f) with |W 0| > r − 1 and Wf =

0 without decreasing the diameter. By continuing this procedure, we will eventually obtain an

oriented matroid in which no such pair of (W,f) can be found, or equivalently |X0| = r − 1 for all

X ∈ C∗(M). Hence ∆(n, r) will be achieved by a uniform oriented matroid. □

Hence it suffices to study uniform oriented matroids for the purpose of bounding ∆(n, r).

The bound in Conjecture 1.4.1 can be rewritten as ∆(n, r) ≤ n − (r − 1) + 1. For polytopes,

n − (r − 1) + 1 = n − d + 1. It may seem mysterious that the bound here is one more than the

Hirsch bound, so we will pause for a moment to discuss this. We begin by proving Lemma 1.4.4

from the Introduction.

Proof. (of Lemma 1.4.4)

Recall that if cocircuits Z and W are adjacent in G∗(M), then there are elements e ∈ Z0 \W 0

and e′ ∈ W 0 \ Z0 such that Z0 = (W 0 \ {e′}) ∪ {e}. In other words, when we move from Z to W ,

we see Ze = 0 change to become We ̸= 0 and Ze′ ̸= 0 change to become We′ = 0. Therefore, we

will say that each edge in G∗(M) encodes two “basic transformations”, which are changes to the

cocircuit that transform a nonzero entry into a zero entry or vice versa.

Now we consider the differences in the sign patterns of X and Y . For each e ∈ S(X,Y ) we

require two basic transformations to move from X to Y : one to transform Xe to 0, and another to

transform 0 to −Xe = Ye. For each e ∈ X0 \ Y 0, we require one basic transformation to transform

0 to Ye. Similarly, for each e ∈ Y 0 \ X0, we require one basic transformation to transform Xe

to 0. Therefore, moving from X to Y requires at least 2|S(X,Y )| + |X0 \ Y 0| + |Y 0 \ X0| =

2|S(X,Y )|+ 2|X0 \ Y 0| basic transformations. Thus dM(X,Y ) ≥ |S(X,Y )|+ |X0 \ Y 0|.

Now we examine the case where X = −Y more closely. In this case, S(X,Y ) = supp(X) and

X0 = Y 0. Pick a shortest path from X to Y in G∗(M) and let Z be the neighbor of X on this
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path. Then |S(Y, Z)| = n− r and |Z0 \ Y 0| = 1, so dM(Y, Z) ≥ n− r + 1 by the above argument.

Therefore, dM(X,Y ) = 1 + dM(Y, Z) ≥ n− r + 2.

Next, consider the case |X0 \ Y 0| ≤ 1. We show that the equality holds for expression (1.4.1).

Let A ⊆ X0∩Y 0 have cardinality r−2. If |X0\Y 0| = 1, then A = X0∩Y 0; otherwise, X = −Y

and we can pick r − 2 elements arbitrarily from X0 = Y 0. Let {se : e ∈ E} be the pseudospheres

in the Folkman-Lawrence representation of M and let SA =
⋂

e∈A se. Because M is uniform, we

know SA ≈ S1.

We saw above that in general dM(X,Y ) ≥ 1 + |S(X,Y )|. On the other hand, the elements of

S(X,Y ) are in bijective correspondence with cocircuits along the shortest path from X to Y in SA.

Indeed, if Z is such a cocircuit, then Z and −Z are antipodal vertices on SA, so they constitute

a 0-dimensional pseudosphere whose positive side contains one of X or Y and whose negative side

contains the other. Thus the distance from X to Y on SA is exactly 1 + |S(X,Y )|. This proves

dM(X,Y ) ≤ 1 + |S(X,Y )|. □

3.2. Results for small oriented matroids

3.2.1. Computer-based results for oriented matroids with few elements.

Finschi and Fukuda [FF01a] computed the exact number of isomorphism classes of uniform

oriented matroids, and gave a representative of each isomorphism class, when n ≤ 9 and in small

rank/corank when n = 10. We established Conjecture 1.4.1 for all of these examples using com-

puters.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
r = 2 1 1 1 1 1 1 1 1 1
r = 3 1 1 1 4 11 135 4382 312356
r = 4 1 1 1 11 2628 9276595 unknown
r = 5 1 1 1 135 9276595 unknown
r = 6 1 1 1 4382 unknown
r = 7 1 1 1 312356
r = 8 1 1 1
r = 9 1 1
r = 10 1

Table 3.1. Number of uniform oriented matroids for n ≤ 10.
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Each isomorphism class is encoded by its chirotope representation. Chirotopes, or basis orien-

tations, are one of the equivalent axiomatic systems for oriented matroids (see [BLVS+99, Section

3] for more details). For a given oriented matroid on ground set E, the chirotope defines a mapping

χ : Er → {−, 0,+}. For a realizable oriented matroid with vector configuration {v1, . . . ,vn},

χ(λ1, . . . , λr) = sign(det(vλ1 ,vλ2 , . . . ,vλr)).

The data can be found on Finschi and Fukuda’s Homepage of Oriented Matroids [FF01b]. Given

a chirotope map χ of an oriented matroid of rank r on E = {1, 2, . . . , n}, we can generate the

cocircuits by computing the set C∗(χ) = {(χ(λ, 1), χ(λ, 2), . . . , χ(λ, n)) : λ ∈ Er−1}. Since M is

uniform, we add an edge between X,Y ∈ C∗(M) if and only if |X0∩Y 0| = r−2 and |S(X,Y )| = 0.

For n = 9, r = 5 and n = 10, r = 7, the chirotope maps are missing in the original dataset.

However we can look at their duals (n = 9, r = 4 and n = 10, r = 3) and consider the set of circuits

instead. See Appendix for the pseudocode of computing the set of cocircuits and circuits.

After finding all the cocircuits and edges, we used the Python NetworkX package [Dev18] to

construct the cocircuit graph. This package has a method for computing the diameter of a graph,

and also for determining the distance between any pairs of vertices. Table 3.1 shows the number of

isomorphism classes (up to reorientation) of uniform oriented matroids of cardinality n and rank

r. We used a MacBook Pro with quad-core 2.2GHz Intel i7 processor, as well as UC Davis Math

servers to construct the cocircuit graphs and compute their diameters. When n = 9, r = 4, 5

the algorithm takes the longest to terminate. On average, each instance of an oriented matroid

takes about 0.36 seconds to compute, resulting in around 38.7 days to complete the checking of all

oriented matroids of cardinality nine and rank four.

We investigate other interesting questions such as whether the shortest path between two cocir-

cuits on the same tope stays on the tope. Our code is available on Github.1 Based on our explicit

computations, we derive the following theorem for small matroids, as promised in the introduction.

Theorem 3.2.1. Let r ≤ n ≤ 9 and M ∈ UOM(n, r), then diam(G∗(M)) = n − r + 2.

Moreover, if X,Y ∈ C∗(M) with X ̸= −Y and n ≤ 9, then dM(X,Y ) ≤ n− r + 1.
1https://github.com/zzy1995/OrientedMatroid
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3.2.2. Results in low rank.

As a next step, we explore Conjecture 1.4.1 in low rank. IfM∈ UOM(n, 2), then the cocircuit

graph G∗(M) is a cycle on 2n vertices, so its diameter is n = n − r + 2. Thus Conjecture 1.4.1

holds trivially when r = 2. Now we move on to study uniform oriented matroids of rank three.

Theorem 3.2.2. Let M∈ UOM(n, 3), then diam(G∗(M)) = n− r + 2 = n− 1.

Proof. LetM∈ UOM(n, 3) and X,Y ∈ C∗(M). If X = −Y , then dM(X,Y ) = n− r + 2 by

Lemma 1.4.4. If |X0 \ Y 0| = 1, then dM(X,Y ) ≤ n − r + 1 by Lemma 1.4.4. So we only need to

consider the case that |X0 \ Y 0| ≥ 2. But |X0| = |Y 0| = r − 1 = 2, so this means X0 ∩ Y 0 = ∅.

Identify the elements of E(M) with {1, 2, . . . , n}. Let P(M) be the Folkman-Lawrence repre-

sentation ofM with pseudospheres {s1, . . . , sn}.

Without loss of generality we can assume X0 = {1, 2} and Y 0 = {3, 4}. Let M′ denote the

restriction ofM to {1, 2, 3, 4} ⊆ E. The Folkman-Lawrence representation ofM′ is obtained from

P(M) by removing si for all i > 4. Up to relabeling and reorientation, there is only one uniform

oriented matroid of rank three on four elements. We can further assume X3 = X4 = Y1 = Y2 = +.

In particular, there are cocircuits W and Z such that W 0 = {1, 3}, Z0 = {2, 4}, and W2 = W4 =

Z1 = Z3 = +. Consider the region, D = s+1 ∩ s+2 ∩ s+3 ∩ s+4 ⊆ P(M). This is the quadrilateral

region bounded by cocircuits X, Y , Z, and W in Figure 3.2.

We claim that for each i > 4, the pseudosphere si can intersect the boundary of D in at

most two points. Indeed, suppose si intersects the boundary of D at a point p0 ∈ sj for some

j ∈ {1, 2, 3, 4}. BecauseM is uniform, p0 /∈ {X,Y, Z,W}, so sj is unique. Let φi : [0, 1] → P(M)

be a parametrization of si. We can assume φi(0) = p0 and φi(t) passes into the interior of D for

sufficiently small t > 0. Let t1 be the next time when φi(t1) is on the boundary of D. Assume

φi(t1) ∈ sk. Once again, sk is unique becauseM is uniform. Further, k ̸= j because otherwise sj

would intersect si in at least four points: φi(0), φi(t1), and their antipodes.

When t > 0 is sufficiently small, φi(t) ∈ s+j ∩ s+k . When t > t1 and t − t1 is sufficiently small,

φi(t) ∈ s+j ∩ s−k . By the definition of a pseudosphere arrangement, the image of φi cannot cross

back into s+k before it crosses into s−j . However, any other points where the image of φi could
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X

W

Z

Y

s1+

s2
+

s3
+

s4
+

si

p0

1

Figure 3.2. The unique rank-3 pseudosphere arrangement with four pseudolines.

intersect the boundary of D lie in s+j ∩s
+
k . Thus φi(0) and φi(t1) are the only points of intersection

of si with the boundary of D.

Now we consider two paths from X to Y in G∗(M). The first path PW travels from X to W

along s1, then from W to Y along s3. The second path PZ travels from X to Z along s2, then

from Z to Y along s4. Let ℓ(PW ) and ℓ(PZ) denote the lengths of these paths. Initially, in M′,

ℓ(PW ) = ℓ(PZ) = 2.

For each i > 4, the pseudosphere si meets the boundary of D in at most two points. This

means ℓ(PW ) + ℓ(PZ) increases by at most two when we add si back into P(M). Thus, inM,

ℓ(PW ) + ℓ(PZ) ≤ 4 + 2(n− 4) = 2n− 4.

By the pigeonhole principle, either ℓ(PW ) ≤ n− 2 or ℓ(PZ) ≤ n− 2, so dM(X,Y ) ≤ n− 2. □

Corollary 3.2.3. Let r ≥ 3 and M∈ UOM(n, r). If X,Y ∈ C∗(M) and |X0 \ Y 0| = 2, then

dM(X,Y ) ≤ n− r + 1.

Proof. LetA = X0∩Y 0. Let {se : e ∈ E(M)} be the pseudospheres in the Folkman-Lawrence

representation ofM and let SA =
⋂

e∈A se. BecauseM is uniform, |A| = r−3 and hence SA ≈ S2 is

the Folkman-Lawrence representation of the uniform oriented matroidM /A ∈ UOM(n− r+3, 3).
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Both X and Y are cocircuits on SA and clearly X ̸= −Y , so by Theorem 3.2.2,

dM(X,Y ) ≤ dM /A(X,Y ) ≤ (n− r + 3)− 2 = n− r + 1.

□

Recall that in the proof of Theorem 3.2.2 for oriented matroids of rank three, the two cocircuits

we choose lie on four different hyperplanes, and they form a combinatorial square. Each additional

hyperplane will intersect the square twice, which implies that one of the two paths will at most

increase by one. Santos (personal communication) has pointed out that this cannot be directly

extended to establish Conjecture 1.4.1 in rank four. For a realizable uniform oriented matroid of

rank four, six hyperplanes will enclose a combinatorial cube. For concreteness, we can consider the

cube with −1 ≤ xi ≤ 1 for all i = 1, 2, 3.

Figure 3.3 illustrates three edge-disjoint paths, colored red, green, and blue, from (−1,−1,−1)

to (1, 1, 1). Here, (−1,−1,−1) is the vertex incident to the three dotted edges, and (1, 1, 1) is its

polar opposite. The three images show slices of the cube by hyperplanes xi+xj = (2−εk)xk for all

choices of {i, j, k} = {1, 2, 3} and with ε1, ε2, and ε3 all distinct. Each plane intersects two edges

incident to (−1,−1,−1) and two edges incident to (1, 1, 1), and hence increases the total length of

all three paths by at least four. If each of the remaining n − 6 hyperplanes has one of the three

illustrated types (with the εk generic) then the total length of the red, blue, and green paths will

be at least 4(n− 6) + 9. If there are approximately n−6
3 hyperplanes of each type, then each of the

red, green, and blue paths will have length at least
⌊
4
3n

⌋
− 5.

Figure 3.3. Hyperplanes xi + xj = (2− εk)xk slicing the ±1 cube for {i, j, k} = {1, 2, 3}.

3.2.3. Results in low corank.
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Recall that the corank of an oriented matroid of rank r on n elements is equal to n− r.

Lemma 3.2.4. Let M∈ UOM(n, r) with n− r = k for k ≥ 0. Then

diam(G∗(M)) ≤ max{diam(G∗(M′)) :M′ ∈ UOM(r′ + k, r′), 2 ≤ r′ ≤ k + 2}.

Proof. Let M be a uniform oriented matroid of corank k, and let X,Y ∈ C∗(M) such that

diam(G∗(M)) = dM(X,Y ). If Y = −X, we are done, since by, Lemma 1.4.4 the diameter of any

uniform oriented matroid of corank k is at least k + 2, and dM(X,−X) = k + 2. So we assume

that Y ̸= −X.

Consider the contraction M′ = M /(X0 ∩ Y 0), and let X ′ and Y ′ be the images of X and

Y under this contraction. Let r′ = rank(M′) and n′ = |E(M′)|. We know that M′ is uniform

becauseM is. Note that (X ′)0 ∩ (Y ′)0 = ∅ by construction, so supp(X ′) ∪ supp(Y ′) = E(M′). In

addition, sinceM′ is uniform, | supp(X ′)| = | supp(Y ′)| = k + 1. This shows |E(M′)| ≤ 2(k + 1).

Further, supp(X ′) ̸= supp(Y ′) because Y ̸= −X, so | supp(X ′) ∪ supp(Y ′)| ≥ k + 2, which implies

2 ≤ r′ ≤ k + 1, as |E(M′)| = r′ + k.

Then, as X ′, Y ′ ∈ C∗(M′) and G∗(M′) is a subgraph of G∗(M), we have that diam(G∗(M)) =

dM(X,Y ) ≤ dM′(X ′, Y ′) ≤ diam(G∗(M′)). Thus, we conclude that for every matroidM of corank

k, there exists a matroidM′ ∈ UOM(r′ + k, r′), where 2 ≤ r′ ≤ k + 2, such that diam(G∗(M)) ≤

diam(G∗(M′)). □

Theorem 3.2.5. Let M∈ UOM(n, r) with n− r ≤ 4. Then diam(G∗(M)) = n− r + 2.

Proof. If n− r ≤ 3 the theorem follows directly from Lemma 3.2.4 and Theorem 3.2.1.

When n− r = 4, by Lemma 3.2.4 we have ∆(r+4, r) ≤ max2≤r′≤6{∆(r′ +4, r′)}. However, by

Theorem 3.2.1, for 2 ≤ r′ ≤ 5, max{∆(r′+4, r′)} ≤ r′+4− r′+2 = 6. So we only need to consider

M ∈ UOM(10, 6). Let X,Y ∈ C∗(M) be such that diam(G∗(M)) = dM(X,Y ). If Y = −X,

the result holds by Lemma 1.4.4. If X0 ∩ Y 0 ̸= ∅, then as in Theorem 3.2.4, the contraction

M′ = M /(X0 ∩ Y 0) satisfies dM(X,Y ) ≤ diam(M′). Since |E(M′)| ≤ 9, the result holds by

Theorem 3.2.1. So we may assume that X0 ∩ Y 0 = ∅.

Define T = X ◦ Y . Then, by Lemma 1.1.6 the graph G(T ) of T is isomorphic to the graph

GA(A) of A, where A is the abstract polytope on the covector of T with dimension 5 on 10 elements.
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However, by [AD74, Theorem 7.1] the diameter ofGA(A) is 5, implying that dM(X,Y ) = 5. Noting

that dM(X,−X) = 6, we conclude that diam(G∗(M)) = 6 which completes the proof. □

Note that while the theorems about coranks in this subsection are for uniform oriented matroids,

they are valid for general oriented matroids due to Lemma 1.4.3. Now we are ready to combine all

the results in this section to prove Theorem 1.4.5.

Proof. (of Theorem 1.4.5)

The proof of part (a) for small oriented matroids is in Theorem 3.2.1. The proof of part (b)

for rank three oriented matroids is in Theorem 3.2.2. The proof of part (c) for oriented matroids

of corank no more than four is in Theorem 3.2.5.

□

3.3. An Improved Quadratic Diameter Bound

Proof. (of Theorem 1.4.6)

By Lemma 1.4.3, it suffices to consider the case that M is uniform. We prove the claim by

induction on |X0\Y 0|. If |X0\Y 0| = 1, then dM(X,Y ) ≤ n−r+1 by Lemma 1.4.4. If |X0\Y 0| = 2,

then dM(X,Y ) ≤ n− r + 1 by Corollary 3.2.3.

Now we move on to the inductive step. Suppose |X0\Y 0| = ℓ ≥ 3. Pick any element e ∈ Y 0\X0,

and consider the coline U , with U0 = Y 0 \ {e}. Note that |U0 \X0| = ℓ− 1.

Now we look more carefully at the coline U , which is a cycle on 2(n − r + 2) cocircuits. We

distinguish ℓ pairs of these cocircuits. For each element f ∈ X0 \ U0, there is a cocircuit Zf with

(Zf )0 = U0 ∪ {f}. Because |X0 \ U0| = ℓ, there are ℓ such pairs of antipodal cocircuits, which we

denote as ±Z1, . . . ,±Zℓ for simplicity.

The cocircuits Y and −Y are antipodal on U , and hence partition U into two halves, each of

which contains n − r + 1 cocircuits. Assume without loss of generality that Z1, . . . , Zℓ all lie on

one half of the coline (as it is partitioned by Y and −Y ), and further that Z1, . . . , Zℓ are ordered

by their distance from Y , with Z1 closest to Y and Zℓ farthest.

Because there are (n− r+ 2)− (ℓ+ 1) = n− r− ℓ+ 1 remaining pairs of antipodal circuits on

U , and at most one element from each pair can lie on the arc from Z1 to −Zℓ that contains Y , it
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follows that there exists a path of length at most
⌊
n−r−ℓ+1

2

⌋
+1 from Y to one of Z1 or −Zℓ along

U . For simplicity, let Z denote whichever of Z1 and −Zℓ is closer to Y along U .

In summary, we have shown that there exists a cocircuit Z whose distance to Y is at most⌊
n−r−ℓ+1

2

⌋
+ 1 with |X0 \ Z0| = ℓ − 1. Because ℓ − 1 ̸= 0, we know Z ̸= −X as well. The result

now follows by induction, and after reindexing with k = ℓ− 1 we have

dM(X,Y ) ≤ n− r + 1 +

|X0\Y 0|−1∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
.

To get Eq. (1.4.3), note that |X0 \Y 0| ≤ min(r−1, n− r+1), because |X0 \Y 0| ≤ |X0| = r−1

and |X0 \ Y 0| ≤ |E \ Y 0| = n− r + 1. So, when r ≥ 4 and n− r ≥ 2,

diam(G∗(M)) ≤ n− r + 1 +

min(r−2,n−r)∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
.

□

3.4. Similarities to the diameter of polytopes problem and two conjectures

One could hope that dM(X,Y ) ≤ n−r+1 provided X,Y ∈ C∗(M) are not antipodal cocircuits.

However, this is not the case. Matschke, Santos, and Weibel [MSW15] built on the methodology

of Santos’s original non-Hirsch polytope [San12] to construct a simple polytope P20,40 of dimension

20 with 40 facets which has diameter 21. Let M20,40 be the oriented matroid obtained by lifting

P20,40 into R21 and intersecting its hyperplane arrangement with the unit sphere. Since P20,40 is

simple, M20,40 is uniform, and one of its topes is P20,40. We will show that the oriented matroid

M20,40 ∈ UOM(40, 21) has a pair of non-antipodal cocircuits X and Y such that dM20,40(X,Y ) ≥

21 = n− r + 2.

Proof. (of Proposition 1.4.7) LetX,Y be the pair of cocircuits that are of distance 21 in P20,40.

Let E = {1, . . . , 40}. After reorientation and relabeling, we may assume that X0 = {1, 2, . . . , 20},

X+ = {21, . . . , 40} and Y 0 = {21, . . . , 40}, Y + = {1, . . . , 20}.

Consider a shortest path, γ, from X to Y inM20,40. If each cocircuit on γ belongs to the tope

P20,40, then its length is 21. So we may suppose instead that γ contains a cocircuit Z that does

not belong to P20,40. This means Z− ̸= ∅.
-73-



3.4. SIMILARITIES TO THE DIAMETER OF POLYTOPES PROBLEM AND TWO
CONJECTURES

Recall the notion of a “basic transformation” from the proof of Lemma 1.4.4. Each edge in

the cocircuit graph accounts for two basic transformations, which change some entry on a cocircuit

from +/− to 0 or from 0 to +/−.

Let i ∈ Z−. If Xi = + and Yi = 0, then walking from X to Y via Z requires at least

20+19+3 = 42 basic transformations. This is because each j ∈ X0 requires one basic transformation

to become an element of Y +; each j ∈ X+ \ {i} requires one basic transformation to become an

element of Y 0, and i ∈ X+ requires two basic transformations to become an element of Z− and

one additional transformation to subsequently become an element of Y 0. Similarly, if Xi = 0 and

Yi = +, then walking from X to Y via Z also requires at least 42 basic transformations. This tells

us dM20,40(X,Y ) ≥ 21 = n− r + 2. □

We now prove Theorem 1.4.8. LetM be a uniform oriented matroid. We say a pathX1, X2, . . . , Xk

in the cocircuit graph G∗(M) stays on a tope T if each cocircuit Xi is a vertex of T .

Proof. (of Theorem 1.4.8) We used computers to look over all (chirotopes) oriented matroids

with n ≤ 10 computed by Finschi and Fukuda [FF01a] (we used them already earlier in the thesis).

We used the Python package NetworkX [Dev18] to find all shortest paths between a given pair

of cocircuits and verify that one of the shortest paths between them is a crabbed path. We also

checked when shortest paths stay on a common tope. We found that for all M ∈ UOM(n, r)

with n ≤ 8, there exists a crabbed path from X to Y whose length is no bigger than the length

of any path from X to Y in the entire cocircuit graph M. But we eventually found a smallest

counterexample in our search. This is an oriented matroid with 9 elements in rank 4. The chirotope

mapping of this counterexample is

+++++++++++++++++++++++++++++++++−−++++++++

+++++++−++−−+++++−+−−−+−−−−++−++−+−+++−+−−+−

−+++−−−−+−−++−−++++−−−−+−−++−−++−−−+−

shown here ordered by reverse lexicographical order. That is, the first two and the last two

signs in the list (shown in red there) are χ(1, 2, 3, 4, 5) = +, χ(1, 2, 3, 4, 6) = +, χ(4, 6, 7, 8, 9) =

+, χ(5, 6, 7, 8, 9) = −.
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Figure 3.4. The subgraph induced by the tope containing X12 and X37 (left) and
a realization of the tope as a 3-polytope (right).

Cocircuit X12 = (0, 0,−,−,−,−,−,−, 0) and cocircuit X37 = (0,−,−,−, 0, 0,−,−,+) lie on

the same tope. But as shown in Figure 3.4, the shortest path between X12 and X37 goes through

cocircuits X85 and X79, where

X85 = (+, 0,−,−, 0,−,−,−, 0), X79 = (+, 0,−,−, 0, 0,−,−,+).

Note that X+
85 = {1} ̸⊆ X+

12 ∪X+
37, and thus the shortest path is shorter than any crabbed path.

Next, we take a hyperplane arrangement that realizes the tope in Figure 3.4 as a polytope and

add a tenth hyperplane that cuts through (among others) the edge between X37 and X79, X85 and

X12, as shown in Figure 3.5. By lifting all these hyperplanes (see Figure 1.5 for intuition of what

is happening, we go from three to four dimensions), we obtain the central hyperplane arrangement

that yields a (realizable) uniform oriented matroidM′ of rank 4 with 10 elements. Below are the

explicit equations of these ten hyperplanes of the arrangement:
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Figure 3.5. The subgraph after the tenth hyperplane is added, creating cocircuits
X ′

A, . . . , X
′
H (left) and a realization of the tope and the hyperplane (right). The

relevant shortest path is X ′
37 → X ′

C → X ′
79 → X ′

85 → X ′
G.

H0 : −8x1 − 15.99x2 − 9x3 + 160z = 0,

H1 : −56x1 + 112x2 − 39x3 + 672z = 0,

H2 : 56x1 − 112x2 − 39x3 + 448z = 0,

H3 : 8x1 + 16x2 − 9x3 = 0,

H4 : −2x2 − x3 + 12z = 0,

H5 : 280x1 − 31x3 = 0,

H6 : x3 = 0,

H7 : 2x2 − x3 + 4z = 0,

H8 : −280x1 − 31x3 + 3360z = 0,

H9 : x1 + 2x2 + 100x3 − 300z = 0.

After constructing the cocircuit graph of M′, we find that the path X ′
37 → X ′

C → X ′
79 →

X ′
85 → X ′

G, going from X ′
37 to X ′

G, leaves the tope they share. Their common tope is composed

by the red and yellow vertices in Figure 3.5 (these are points with indices A to H). The path we

proposed is shorter than any path from X ′
37 to X ′

G staying on their common tope. This shows two
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cocircuits on a common tope while the shortest path between them leaves the tope. This completes

the proof of the second part of the theorem.

□

For polytopes��, it is natural to ask the following question: if two vertices lie on a common facet,

does there exist a shortest path between them that stays within that facet? One can show that

this property implies the non-revisiting path property [KK87], and therefore implies the (linear)

Hirsch conjecture. The linear Hirsch conjecture was disproved by Santos, thus we know the polytope

version of must be false starting in dimension 20. But Aviv Adler (personal communication) pointed

out to us that already in three dimensions it is possible to have two vertices on a common facet

while the shortest path between them leaves the facet. Our Theorem 1.4.8 demonstrates this fails

for oriented matroids too and here we provided the smallest counterexample.
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CHAPTER 4

Machine Learning to Improve the Simplex Method

In this chapter we are going to present the case study on how machine learning and the simplex

method are related to each other. We will present several trained machine learning models on

choosing pivot rules for the simplex method.

4.1. Data Generation

The existing libraries (MIPLIB 2017 [mip18], netlib [Don97] etc.) of linear programming or

integer programming are too small for our training purpose. Hence we generated our own data for

training and testing. We adapted the algorithms introduced by Bowly et al [BSMBM20]. Their

method involves generating constraint matrix A, and a solution pair (α, β). They used A, α, β to

generate the final linear problem maximizing cTx subject to Ax ≤ b. For simplicity, we replaced

the generation of variable constraint graph by generating Erdos-Renyi (ER) random graphs. For

training and validation set, we generated 24634 instances of linear programming problems with

number of constraints ranging from 120 to 200 and number of variables ranging from 50 to 100.

For testing, we generate 7279 more instances. Note that these linear programs will most likely be

characterized as “easy” problems by MIPLIB 2017. For the ER random graphs, the parameter p

was drawn from U{0.2, 0.8}. For other hyperparameters in generating the LP instances, we draw

the coefficient mean µA from normal distribution N (0, 1), coefficient standard deviation σA from

uniform distribution U{1, 10}, primal versus slack basis γ from U{0.2, 0.8}, fractional primal λ from

N (0, 1) and Beta fraction a = 0.5.

After generating the LP instances, we solve our LP problems using primal simplex solver in

DOcplex with default initialization. We store the number of iterations for each instance using

different pivot rules. Note that the LP instances we generate may have degeneracy, and empirically

there is a high likelihood of degeneracy where the constraint matrix is low-density.
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4.2. Feature selection

We have two different ways of choosing features for the linear programming instances. The

first method we use is a bag-of-features, where we add features based on heuristics from previous

studies on the simplex method. Apart from m,n the number of constraints and the number of

variable, we add three sets of features: variable constraint graph features, coefficient values, and

normalized coefficients. Variable constraint graph features include the minimum, maximum, mean,

and standard deviation of the degree sequences of variable nodes and constraint nodes. Coefficient

values include the statistics of the coefficient matrix A, the constraint vector b, and the objective

function c (i.e. he minimum, maximum, mean, standard deviation, norm of the vector, and the

smallest non-zero absolute value). Finally, normalized coefficients are the statistics of row and

column normalized coefficients ({Aij

bj
|bj ̸= 0} and {Aij

cj
|cj ̸= 0}) and degree normalized coefficients

({ bj

deg(uj)
} and { ci

deg(vi)
}).

The other way we have implemented features related to the coefficient matrix A, is the Trun-

cated Singular Value Decomposition (SVD), which is a method of dimension reduction [MRS08].

The truncated SVD of a matrix A ∈ Rm×n returns three matrices U,Σ, V such that:

A ≈ UΣV

where U ∈ Rm×k,Σ ∈ Rk×k, and V ∈ Rk×n, where k is the number of top singular values to keep.

Multiplying U by Σ allows for the computation of an m× k matrix. Applying this procedure again

to (UΣ)T will then compute a k × k matrix with similar features to the original matrix A. We

choose k = 20 in this experiment for the best performance. We still include the features of statistics

of the constraint vector b and objective function c.

4.3. Experiments

We train four models to choose which pivoting strategies will perform the best on each LP

instance. Two models use the bag of features that we choose for LP problems, and the other two

use the SVD to replace the features of the coefficient matrix A.

4.3.1. Gradient Boosting Decision Tree. We train two gradient boosting decision tree to

predict the best pivot rule for each LP instance. The first one is an empirical hardness model,
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Hyperparameters Dantzig Hybrid Devex Steepest Greatest
learning rate 0.1 0.1 0.1 0.1 0.05
# estimators 271 137 173 173 371
max depth 5 6 4 6 6
min child weight 6 6 5 4 1
γ 0 0 0 0 0.3
subsample ratio 1 0.8 0.8 0.9 0.8
column subsample 1 1 1 0.8 0.9
regularization α 100 10 1e-5 100 1e-5

Table 4.1. Hyperparameters for each regressor.

that is, for all five pivot rules, we use regression on the features we selected to predict number of

iterations that the solver will take using certain pivot rule. The second model is a GBDT classifier

using truncated SVD as features.

Bag-of-features GBDT The first model is an empirical hardness model, where we use GBDT

to do regression and predict the number of iterations each pivot rule would cost. Table 4.1 shows

the hyperparameters for different pivot rules. This model results in a 67.78% accuracy on the test

set with 178.5934 iterations on average.

Figure 4.1. The gain of features for GBDT regressors.

Figure 4.1 shows the gain of features for GBDT regressors. We can see that apart from number of

constraints and number of variables, some of the common features that are important are: maximum

number of constraint degree, max and mean of variable degree, min and mean of coefficient matrix

A, min, mean, norm and standard deviation of objective function c etc. One could take the
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subset of important features to train smaller models, which makes the training much faster, but

the accuracy will drop to 66.44% with 178.7804 iterations on average.

GBDT classifier The other GBDT uses the truncated SVD with k = 20 as part of the features

while keeping the features of constraint vector and objective function. This random forest contains

102 trees with minimum child weight of 5, maximum depth of 5, learning rate of 0.1, subsample

and column subsample by tree ratio of 0.8. This model results in a 67.15% accuracy on the test set

with 179.0714 iterations on average. The feature importance is shown in Figure 4.2.

Figure 4.2. The gain of features for GBDT classifier.

As we can see, number of variables and constraints (the first and second feature), as well as

features related to constraint vector and objective function are of great importance. Meanwhile,

the diagonal entries of the SVD matrix have a relatively high importance.

4.3.2. Neural Networks. We train two models to classify which pivoting strategies will per-

form the best on each LP instance. The first model uses the bag of features that we choose for

LP problems, and the second model uses the truncated SVD matrix to replace the features of the

coefficient matrix A.

Bag-of-features Neural Network We first train a neural network using features of LP in-

stances we pre-selected. The architecture of the network consists of four hidden layers of ReLU

activation function with 64 neurons. Each hidden layer has a dropout of 0.1. The output layer

contains five neurons with the softmax activation function. We train the neural network to min-

imize the categorical cross-entropy loss with the RMSProp optimizer with a learning rate of 0.01

and momentum of 0.2. We train with a batch size of 64 for 50 epochs. This model results in a
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62.2% accuracy on the test set with 179.279 iterations on average. Figure 4.3 plots the accuracy

and loss during each epoch.

Figure 4.3. The accuracy and loss of the bag of features classification against
number of epochs

Truncated SVD Neural Network We then train a neural network using truncated SVD

matrices as features for coefficient matrix A while keeping the features of constraint vector and

objective function. The architecture consists of four layers of 512 hidden units with ReLU activation

function. The output layer contains 5 neurons with the softmax activation function. We train the

neural network to minimize the categorical cross-entropy loss with the ADAM optimizer with a

learning rate of 0.001. We train with a batch size of 64 for 100 epochs. This model results in a

72.78% accuracy on the test set with 179.18 iterations on average. Figure 4.4 plots the accuracy

and loss during each epoch. Here we summarize the performance of our models. Table 4.2 shows

Figure 4.4. The accuracy and loss of the SVD20 classification against number of epochs

the average number of iterations (from the most to the fewest) if we use certain pivot rule or follow

our models to solve the LP instances in the test set. It also demonstrates the prediction accuracy

of our models. Table 4.3 shows the instance-wise comparison between our model recommendations

with the most popular steepest edge pivot rule. We can see that the best performance of our four

models is 69.06% of the number of iterations steepest edge will take. And they vary on the worst
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case behavior, with our GBDT regressor being the most consistent: their worst case will only cost

174.19% of what steepest edge will perform.

Classifier Average iterations on test set Accuracy
Greatest Improvement 326.1419 -
Dantzig 319.7501 -
Devex 262.2335 -
Hybrid 217.2856 -
Steepest edge 179.4161 -
Bag-of-features NN 179.279 62.2%
SVD-20 NN 179.18 72.78%
XGBClassifier 179.0714 70.15%
XGBRegressor 178.5934 67.78%
Best in theory 173.1783 100%

Table 4.2. Summary of average number of iterations and accuracy of each model.

Classifier Best Worst
Bag-of-features NN 69.06% 258.91%
SVD-20 NN 69.06% 210.25%
XGBClassifier 69.06% 318.06%
XGBRegressor 69.06% 174.19%

Table 4.3. Comparison between our models and steepest edge on test set per instance.
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5

Appendix: Pseudocode for PolyPathLab and Oriented Matroid

5.1. PolyPathLab

We developed PolyPathLab, a MATLAB-based package, that takes in polytopes in cdd/cdd+

format and computes the following features:

• the diameter

• the monotone diameter

• the monotone height

• the number of monotone paths

• the number of directed arborescences

• characteristics related to four famous pivot rules: Dantzig’s rule, greatest descent, steepest

edge, and Bland’s rule

• the flip graph and the diameter of the flip graph

To run PolyPathLab, users need to know how to use cdd/cdd+. The process of using PolyPath-

Lab is:

(1) Create an inequality file or a vertices file for cdd/cdd+.

(2) Run cdd/cdd+ to obtain the files needed for the input of PolyPathLab, including *.ine,

*.ead, *.ext files. We will call these the polytope files.

(3) Create an objective function file *.txt for the input of PolyPathLab.

(4) Put the polytope files with the correct file-naming convention and the objective function

file into the input folder under the package directory.

(5) Run “main_general.m” or “flip_graph.m” based on what users want to compute and follow

the instructions to set up the settings. Collect the outputs.
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We will use the dodecahedron and a fixed objective function f for examples we use in this

chapter. The dodecahedron has 20 vertices, 12 facets, and 30 edges. Each facet of the dodecahedron

is a regular pentagon.

Figure 5.1. A picture of the dodecahedron [Wik20] and the directed 1-skeleton
of the dodecahedron.

Besides computation of the above features, PolyPathLab has two functions, “generate_3d_CuttingPlane.m”

and “generate_3d_PointOnSphere.m,” to generate random 3d polytopes, which we use to test some

properties of 3d polytopes. The functions are described below.

5.1.1. Random 3-dimensional Polytope Generator. We have two ways to generate ran-

dom 3d polytopes: random cutting planes and random points on a sphere. The polytopes created

by the cutting plane method are simple polytopes, while the points on sphere method may generate

non-simple polytopes when the number of vertices is large.

For the cutting plane method, we first construct a random cuboid that is bigger than a 2×2×2

cube in any direction. We then generate cutting planes one to two unit lengths away from the

center of the cuboid. This ensures that we get a polytope with moderate size which increases the

possibility of having effective cutting planes (cutting planes that produces one of the facets of the

polytope). If we do not have a limit on the distance, there might be some “deep” cuts that are

very close to the center of the cuboid and make many other cuts ineffective.

For the points on sphere method, we first generate a sphere of radius two, then select points at

random. The these points form a polytope.
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Here is the code to generate a random point on a sphere of radius two:

%n i s the number o f v e r t i c e s o f the polytope

%se t the rad iu s to 2

r = 2 ;

%c r ea t e random theta and phi

theta = 2 ∗ pi ∗ (2 ∗ rand (n , 1) − ones (n , 1 ) ) ;

phi = pi ∗ ( 2 ∗ rand (n , 1) − ones (n , 1 ) ) ;

%obta in the coo rd ina t e s o f the v e r t i c e s

x = r . ∗ cos ( theta ) . ∗ s i n ( phi ) ;

y = r . ∗ s i n ( theta ) . ∗ s i n ( phi ) ;

z = r . ∗ cos ( phi ) ;

v e r t i c e s = [ x , y , z ] ;

This code is a usage of spherical coordinate system. If we have 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π,

we can obtain all the possible points on the sphere by fixing the radius r to equal the radius of

the sphere. If we randomize θ and ϕ, we can obtain all the possible points on the sphere, thus

randomizing the coordinates of the vertices.

5.1.2. Diameter. The diameter of a polytope shows us how efficient is the simplex method

on the polytope. There are two ways to get the diameter of a polytope. First, MATLAB has a

function called “distances” which measures the distances between any two pair of vertices [MAT].

For a polytope P with n vertices, it outputs an n× n matrix where each entry corresponds to the

distance between the vertices of the row and column of the entry. The maximum number of the

matrix produced by the distance function is the diameter according to definition. Second, we can

multiply the matrix of n×n identity matrix In by adjacency matrix A plus an n×n identity matrix

In, or (A+ In). Repeat multiplying the current matrix by (A+ In) until all of its entries become
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bigger than zero. Then, we record the number of times we have multiplied. The idea is that,

every time the new matrix has an entry that turns from 0 to some positive number, the vertices

represented by the row and column of the entry are connected by a path. For example, if Ak
i,j = 1,

there is a path from i to j with length k. By adding In to A and raise (A+ In) to the power k, we

allows the vertices to have self-loops so that if there is a zero in the ij entry of the current matrix,

it must be that there is no path from i to j with length k. If the matrix has only non-zero entries,

all the vertices are connected to each other with paths that have lengths less than the number of

times we multiply.

In our program, we implemented the second method, matrix multiplication, to keep it consistent

with the methods we used for the monotone diameter and the monotone height. Here is the

pseudocode that computes the diameter.

%A i s the n−by−n adjacency matrix . I i s the n−by−n i d e n t i t y matrix .

%R i s the matrix that r e co rd s the e n t r i e s

%i n i t i a l i z e R as the i d e n t i t y matrix

R = I ;

diameter = 0 ;

%mult ip ly un t i l a l l the e n t r i e s are g r e a t e r than 1

whi l e ismember (0 , R) %i f the re i s 0 in R

R = R ∗ (A + I ) ; %mult ip ly R by (A + I )

diameter = diameter + 1 ; %record the i n c r e a s e in the diameter
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end

For the dodecahedron, which has 20 vertices, A is the matrix shown in the next page:
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A =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0



.

If we multiply the identity matrix by (A+I20)
4, we obtain a matrix that only has a few zeros; if

we multiply the current matrix by (A+ I20) again, we have a non-zero matrix. Thus, the diameter

of the dodecahedron is five, meaning that any vertex is connected to any other vertices in a path

with length less than five.

5.1.3. Monotone Diameter. Recall that the monotone diameter of DG is the maximum

monotone distance between any two vertices in DG that are connected by monotone paths. The

monotone diameter is not the same as the monotone distance between the source and the sink.

Figure 5.2 is an example where the source s does not have a longer monotone distance to the sink
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t than some other vertex i. The monotone distance from s to t is two, but the monotone distance

from i to t is four.
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Figure 5.2. A directed graph where the monotone distance between the source s
and the sink t is smaller than the monotone distance between i and t.

To get the monotone distance for vertex i, we multiply In by the matrix (D+ In), the directed

adjacency matrix with diagonals being all 1. We repeat multiplying the current matrix by (D+ In)

until the column of the sink t has non-zero values on i-th row for the first time. The number of

multiplications ki means that there is at least one monotone path from i to t with length ki. We

take the maximum ki among all vertices to get the monotone diameter. In other words, we multiply

the starting matrix In again and again by (D+In) and record the number of times of multiplication

k when the column of the sink has all non-zero values.

Here is the pseudocode for computing the monotone diameter:

%D i s the d i r e c t ed adjacency matrix ; I i s the i d e n t i t y matrix ;

%R i s the cur rent matrix ; t i s the index o f the s ink

%i n i t i a l i z e R as the i d e n t i t y matrix

R = I ;

monotone_diameter = 0 ;

%mult ip ly un t i l a l l the e n t r i e s in column t are nonzero
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whi le ismember (0 , A2 ( : , t ) ) == 1 %i f the re i s a zero in column t

R = R ∗ (D + I ) ;

mono_diameter = mono_diameter + 1 ;

end

For the same dodecahedron with an objective function f , the directed adjacency matrix is

shown below:
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D =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



D is calculated from the adjacency matrix A and the objective function f by comparing the

objective values of the two connected vertices. If i is connected with j, Ai,j = Aj,i = 1. Then, we

compare the objective value of i and that of j. If the objective value of i is less than that of j,

Di,j = 1 and Dj,i = 0.

The sink of this example is vertex 10. If we raise (D+ I20) to the fourth power, there are zeros

in the tenth column; if we raise (D + I20) to the fifth power, there is no zero in the tenth column,

which means that there is at least one path from any vertex to the sink with the length less than

five. Thus, the monotone diameter of this dodecahedron with the objective function f is five.
-93-



5.1. POLYPATHLAB

5.1.4. Monotone Height. Recall that the monotone height of DG is the length of the longest

monotone path on DG. Equivalently, monotone height is the maximum length of the monotone

path from the source s to the sink t. We can prove this equivalence by contradiction. Let i be a

vertex that is not the source or the sink. Assume the maximum length of the monotone path from

i to t is k, which is longer than the maximum length of the monotone path from s to t. There is

a monotone path of length bigger than one from s to i because of the property of DG. Then, we

can build a new monotone path from s to i to t, which has the length at least (k + 1). This is a

contradiction to our assumption.

To get the monotone height, we raise D to power k, where k is the first time that the matrix

becomes a zero matrix. For all i and j, Dk
i,j = 0, meaning that there is no monotone path with

length k between any pair of vertices. Thus, the monotone height is equal to (k − 1) because the

maximum length of the monotone paths will be (k − 1).

%D i s the d i r e c t ed adjacency matrix ; R i s the r e co rd ing matrix ;

%I i s the i d e n t i t y matrix

R = I ;

mono_height = −1;

%s t a r t s from −1 s i n c e when the matrix becomes a l l zero , we have no monotone path

%Mult ip ly R by D un t i l a l l the e n t r i e s are zero

whi l e ~ismember (0 , R) %i f the cur rent matrix i s a l l zero , stop

mono_height = mono_height + 1 ;

R = R ∗ D;
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end

Using the directed adjacency matrix D from the same dodecahedron and the same objective

function f , we see that, for D7, there are still ones in the matrix; for D8, the matrix becomes a

zero matrix for the first time. Thus, there is at least one path with length equals seven. Therefore,

The monotone height of this dodecahedron with the same objective function f is seven.

5.1.5. Number of Monotone Paths. The number of monotone paths (from the source to

the sink) tells us how many ways can the source s go to the sink t. The number of monotone paths

is recorded when PolyPathLab computes the monotone height. Every time when the recording

matrix is multiplied with the directed adjacency matrix, the entry st of the resulting matrix tells

us how many monotone paths with the current length from s to t. When the matrix becomes all

zero, we sum the values to get the number of total monotone paths.

For the dodecahedron and the same objective function, the recorded values in entry st are:

0, 0, 0, 0, 6, 6, 2. Summing these values, we get that the number of monotone paths is 14. There are

only seven values because the monotone height is seven, so anything after the last value will be

zero.

5.1.6. Number of Arborescences. Because the pivot rule picks one improving edge from

every vertex of DG that is not the sink, it creates a directed tree, which is a subgraph of DG.

Furthermore, there is a monotone path from every non-sink vertex to the sink, so the subgraph is an

arborescence. We say two pivot rules are equivalent on DG if they produce the same arborescence.

Then, the number of arborescence is the number of the equivalence groups of pivot rules, and we

can estimate the number of pivot rules by computing the number of arborescences [ADLZ21].

Figure 5.3 shows one arborescence of the dodecahedron with objective function f .

To compute the number of arborescences, we multiply the number of outgoing edges of each

vertex except the sink (which has 0 outgoing edges) because changing the outgoing edge from a

vertex will give us a different arborescence.

For the dodecahedron and the objective function f , if we count the outgoing edges of each

vertex and put the numbers into a vector, we get:
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Figure 5.3. An arborescence of the dodecahedron. From each vertex, the pivot
rule picks only one outgoing edge.

[
2 2 1 2 1 2 1 1 1 0 1 1 2 2 1 3 2 1 2 2

]
If we multiply the nonzero entries, we get 1536, which is the number of arborescences of the

dodecahedron with the objective function f .

5.1.7. Characteristics Related to Pivot Rules. In our program, we include four pivot

rules: Dantzig’s rule, Greatest Descent, Steepest Edge, and Bland’s rule. Based on these four

pivot rules, we collect characteristics related to the arborescences outputted by these pivot rules

to see the performance of each pivot rule on the polytope P with the objective function f . The

characteristics include: the average length of the monotone paths, the standard deviation of the

length of the monotone paths of the arborescence, the standard deviation of the indegrees of the

arborescence, the length of the monotone path between the source and the sink, the maximum

length of the monotone paths of the arborescence, and the number of leaves in the arborescence.
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We did not include the average indegree of the arborescence for a polytope with n vertices because

it is always n−1
n .

5.1.8. Flip Graph. One interesting combinatorial feature of a polytope with an objective

function is the flip graph. The flip graph tells us how are the monotone paths related to each other.

Since the flip graph is 2-connected, we are also interested in the diameter of the flip graph because

the diameter tells us how many flips do the furthest pair of monotone paths differ.

To compute the flip graph, first, PolyPathLab uses a code called getpaths (see [Ans]) to obtain

all the monotone paths. Then, to find out if two monotone paths, pi and pj , are connected by a

flip, we find out the first vertex u and the last vertex v that the two monotone paths differ from

each other. Collecting all the vertices in between, we obtain a set of vertices between u − 1 and

v + 1 for pi and pj .

If pi and pj differ by a polygon flip, then this set of vertices belong to the same 2-dimensional

face. In order to compare to the faces, We put the coordinates of the vertices into a matrix V with

each row being a vertex in the set. Then, we compute AV T , with A being the inequalities in the

form Ax ≤ b. If there is a zero in the entry ij of the resulting matrix, vertex j is on the facet

represented by the i-th row of A; if the i-th row is a zero vector, all the vertices between u− 1 and

v + 1 are on the facet represented by the i-th row of A. For dimension d, the intersection of d− 2

hyperplanes will provide us a 2-dimensional face. Therefore, if there are d − 2 rows that are zero

vectors, we know pi and pj differ by a polygon flip.

5.2. Oriented Matroid

We wrote code in Python to construct cocircuits graphs and run experiments on different

oriented matroids to look for new conjectures. The code has the following features:

• compute the cocircuits given the chirotope of the oriented matroid

• compute the cocircuits given the hyperplane arrangement for a realizable oriented matroid

• compute the circuits given the chirotope of the oriented matroid

• construct the circuit/cocircuit graphs given the set of circuits/cocircuits

• compute the diameter of the graph and the pair of vertices whose distance is equal to the

diameter
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• check whether the shortest path between two cocircuits is a crabbed path.

The code is available at the Github directory at https://github.com/zzy1995/OrientedMatroid.

To run the code, users only need to run “python3 OM.py” plus the text files containing oriented

matroid in chirotope representations in the terminal. If the user wishes to explore on single in-

stances, play around with the code or investigate certain conjectures, then running “python3 -i

OM.py” would bring the user into python interaction command lines.

We illustrate how we implement each functions below:

5.2.1. Circuits and Cocircuits from chirotopes. Recall that the oriented matroids on

Finschi and Fukuda’s homepage [FF01b] are stored in the representation of chirotopes. In order

to compute the cocircuit graph, we need to obtain the set of cocicruits. Recall that we can generate

the cocircuits by computing the set C∗(χ) = {(χ(λ, 1), χ(λ, 2), . . . , χ(λ, n)) : λ ∈ Er−1}.

Here we attach the pseudocode for computing the set of cocircuits and the set of circuits from

the chirotope of the oriented matroid. See the functions circuits and cocircuits in the source code

for more details on the implementation.

Algorithm 1 Construct cocircuits set given the chirotope map
Input Cardinality n, rank r ofM and χ the chirotope map

Output A list containing all cocircuits C∗(M)

for A ⊆ [n] and |A| = r − 1 do
Initialize v = 0 ∈ Rn

Sort and vectorize A to λ
for i = 1 to n do

if i ̸∈ A then
v[i]← χ(i, λ)

end if
end for
Add ±v to the set of cocircuits

end for

5.2.2. Cocircuits from hyperplane arrangement. In the findings of counter-examples,

we often want to realize an oriented matroid directly from a hyperplane arrangement. In our

representation, the central hyperplane arrangement is Hx = 0 where H ∈ Rn×r. The intersection

of every r − 1 hyperplanes shall give a pair of cocircuits. Here we attach the pseudocode for
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Algorithm 2 Construct circuits set given the chirotope map
Input Cardinality n, rank r ofM and χ the chirotope map

Output a list containing all circuits C(M)

for A ⊆ [n] and |A| = r − 1 do
Initialize v = 0 ∈ Rn

Sort and vectorize A to λ
for i = 1 to n do

if i ∈ A then
if i = minA then
v[i]← 1

else
v[i]← −χ(min(A), λ)× χ(i, λ)

end if
end if

end for
Add ±v to the set of circuits

end for

computing the set of cocircuits with this strategy. See the function cocircuits_from_arrangement

for more details on the implementation.

Algorithm 3 Construct cocircuits set given the hyperplane arrangement
Input Cardinality n, rank r ofM and the matrix H for the central hyperplane arrangement

Hx = 0
Output A list containing all cocircuits C∗(M)

for A ⊆ [n] and |A| = r − 1 do
Initialize HA containing rows of H as in A
Compute vA in the null space of HA

Add ± sign(HA · vA to the set of cocircuits
end for

5.2.3. Constructing graphs. Recall that given two cocircuit signed vectors X,Y , X and Y

are connected in cocircuit graph if |X0 ∩ Y 0| ≥ r − 2 and X ̸= ±Y . Thus, once we have the set of

cocircuits, we are able to construct the cocircuit graph. We utilize python package NetworkX for

constructing the graph. We first add cocircuits as vertices of the graph, then add edges based on

this condition. See functions make_graph and construct_graph for detailed implementation.

5.2.4. Diameter. Given the cocircuit graph in NetworkX, we are able to compute the diameter

of the graph, as well as finding which pairs of cocircuits have the distance of the diameter. See
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functions find_diameter and find_pairs for detailed implementation. There are also other functions

built in NetworkX to compute things such as shortest path between two cocircuits.

5.2.5. Crabbed paths. Recall that a path P fromX to Y crabbed if for every cocircuitW ∈ P ,

W+ ⊆ X+ ∪ Y + and W− ⊆ X− ∪ Y −. The diameter of G∗(M) is defined as diam(G∗(M)) =

max{dM(X,Y ) : X,Y ∈ C∗(M)}. For any pairs of cocircuits X and Y , we use the function

all_shortest_paths from NetworkX to find all shortest path between them. We then check if at least

one of the paths is crabbed. See function is_crabbed, check_crabbed_graph and check_crabbed_file

for detailed implementation.
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