
UC Berkeley
UC Berkeley Previously Published Works

Title
Concurrency Analysis for Parallel Programs with Textually Aligned Barriers

Permalink
https://escholarship.org/uc/item/2nc3f04f

ISBN
978-3-540-69329-1

Authors
Kamil, Amir
Yelick, Katherine

Publication Date
2006

DOI
10.1007/978-3-540-69330-7_13
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2nc3f04f
https://escholarship.org
http://www.cdlib.org/


Concurrency Analysis for Parallel Programs with
Textually Aligned Barriers

Amir Kamil Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick}@cs.berkeley.edu

Abstract. A fundamental problem in the analysis of parallel programs is to de-
termine when two statements in a program may run concurrently. This analysis
is the parallel analog to control flow analysis on serial programs and is useful in
detecting parallel programming errors and as a precursor to semantics-preserving
code transformations. We consider the problem of analyzing parallel programs
that access shared memory and use barrier synchronization, specifically those
with textually aligned barriers and single-valued expressions. We present an in-
termediate graph representation for parallel programs and an efficient interpro-
cedural analysis algorithm that conservatively computes the set of all concurrent
statements. We improve the precision of this algorithm by using context-free lan-
guage reachability to ignore infeasible program paths. We then apply the algo-
rithms to static race detection and show that it can benefit from the concurrency
information provided.

1 Introduction

As the rate of scaling of uniprocessor machines slows down, application writers and
system vendors alike have been turning to multiprocessor machines for performance.
Most major CPU manufacturers have chip products with multiple cores, so that paral-
lelism once hidden within the micro-architecture will now be exposed to the assembly
language and, in all likelihood, to application level software. Such systems are modeled
after SMP multiprocessors and allow all processors to simultaneously access shared
memory. In addition, for large-scale parallel machines there is increasing interest in
global address space languages, which give programmers the illusion of a shared mem-
ory machine on top of distributed memory machines and clusters. Analysis and op-
timization of parallel shared memory code is increasingly important in both of these
settings.

In this paper we introduce aninterprocedural concurrency analysisfor programs
with barrier synchronization, which captures information about the potential concur-
rency between statements in a program. The analysis is done for the Titanium language
[25], a single program, multiple data global address space variation of Java that runs on
most parallel and distributed memory machines. We first construct aconcurrency graph
representation of a program, taking advantage of two features of the Titanium language
parallel execution model:textual barrier alignment, which statically guarantees that
all threads reach the same textual sequence of barriers, andsingle-valuedexpressions,
which provably evaluate to the same value on all threads [1]. We then present a simple



algorithm that uses the concurrency graph to determine the set of all concurrent expres-
sions in a program. This analysis proves too conservative, however, and we improve
its precision by performing a context-free language analysis on a modified form of the
concurrency graph. We prove the correctness of both analyses and show that their total
running times are quadratic in the size of the input program.

Concurrency analysis can be used to improve the quality of other analyses and to
enable optimizations. To demonstrate the usefulness of our concurrency analysis, we
apply it to data race analysis, which can be used to report potential program errors to
application programmers. In related work with Su [16] and in a companion report [17],
we tackled the problem ofmemory consistency model enforcement, which can be used
to provide a stronger and more intuitive memory model while still allowing the compiler
and hardware to reorder memory operations in many instances. We demonstrated that
memory model enforcement can have a significant negative impact on optimizations,
but that this effect is mitigated when combined with our concurrency analysis. In this
paper, we focus on the foundations of the concurrency analysis problem: how it can be
performed efficiently and be made accurate enough to effectively increase the precision
of both clients on a set of application benchmarks.

2 Titanium Background

Titanium is a dialect of Java, but does not use the Java Virtual Machine model. In-
stead, the end target is assembly code. For portability, Titanium is first translated into
C and then compiled into an executable. In addition to generating C code to run on
each processor, the compiler generates calls to a runtime layer based on GASNet [6],
a lightweight communication layer that exploits hardware support for direct remote
reads and writes when possible. Titanium runs on a wide range of platforms including
uniprocessors, shared memory machines, distributed-memory clusters of uniprocessors
or SMPs, and a number of specific supercomputer architectures (Cray X1, Cray T3E,
SGI Altix, IBM SP, Origin 2000, and NEC SX6). Instead of having dynamically created
threads as in Java, Titanium is asingle program, multiple data(SPMD) language, so
the number of threads is fixed at program startup and all threads execute the same code
image.

2.1 Textually Aligned Barriers

Like many SPMD languages, Titanium has abarrier construct that forces threads to
wait at the barrier until all threads have reached it. Aiken and Gay introduced the con-
cept ofstructural correctnessto enforce that all threads execute the same number of
barriers, and developed a static analysis that determines whether or not a program is
structurally correct [1, 13]. The following code is not structurally correct:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
; // odd ID threads



Titanium provides a stronger guarantee oftextually aligned barriers: not only do all
threads execute the same number of barriers, they also execute the sametextual se-
quence of barriers. Thus, both the above structurally incorrect code and the following
structurally correct code are erroneous in Titanium:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

The fact that Titanium barriers are textually aligned is central to our concurrency analy-
sis: not only does it guarantee that code before and after each barrier cannot run concur-
rently, it also guarantees that code immediately following two different barriers cannot
execute simultaneously.

Titanium’s type system ensures that barriers are textually aligned by making use of
single-valuedexpressions [1]. Such expressions provably evaluate to the same value for
all threads1, and include the following:

– compile-time constants
– program arguments
– certain library functions, such asTi.numProcs() , which returns the total num-

ber of threads
– expressions that are combinations of the above

Other expressions such as those involving references and method calls can also be
single-valued, the details of which can be found in the Titanium reference manual [14].

Barrier alignment can only be violated if different threads take different program
paths, and any of those paths contain a barrier. Titanium statically prevents this by
requiring path forks, including conditionals, loops, and dynamically dispatched method
calls, to be conditioned on single-valued expressions if any of the branches contains
a barrier. This guarantees that all threads take the same branch and therefore execute
the same barriers. The examples above are erroneous: they each have branches with
barriers butTi.thisProc() % 2 == 0 is not single-valued, so not all threads
take the same branch. If the condition was replaced by the single-valued expression
Ti.numProcs() % 2 == 0 , then both examples would become legal.

In addition to the existing barriers in a program, our concurrency analysis also ex-
ploits single-valued expressions to determine which conditional branches can run con-
currently. The analysis does not insert any new barriers, and it ignores the lock-based
synchronized construct of Java, which is rarely used in Titanium programs.

2.2 Intermediate Language

In this paper, we will operate on anintermediate languagethat allows the full semantics
of Titanium but is simpler to analyze. In particular, we rewrite dynamic dispatches,
switch statements, and conditional expressions (?/: ) as conditionalif ... else
... statements.

1 In the case of single-valued expressions of reference type, the result is not the same but is
replicated and coherent. See the Titanium language reference for details [14].



Fig. 1. Construction of the interprocedural control flow graph of a program from the individual
method flow graphs.

2.3 Control Flow Graphs

The algorithms in this paper are whole-program analyses that operate over acontrol
flow graphthat represents the flow of execution in a program. Nodes in the graph corre-
spond to expressions in the program, and a directed edge from one expression to another
occurs when the target can execute immediately after the source.

The Titanium compiler produces an intraprocedural control flow graph for each
method in a program. We modify each of these graphs to model transfer of control
between methods by splitting each method invocation node into a call node and a return
node. The incoming edges of the original node are attached to the call node, and the
outgoing edges to the return node. An edge is added from the call node to the target
method’s entry node, and from the target method’s exit node to the return node. Figure
1 illustrates this procedure. We also add edges to model interprocedural control flow
due to exceptions.

3 Concurrency Analysis

Titanium’s structural correctness allows us to develop a simple graph-based algorithm
for computing concurrent expressions in a program. The algorithm specifically takes
advantage of Titanium’s textually aligned barriers and single-valued expressions. The
following definitions are useful in developing the analysis:

Definition 3.1 (Single Conditional).A single conditionalis a conditional guarded by
a single-valued expression.

Since a single-valued expression provably evaluates to the same result on all threads,
every thread is guaranteed to take the same branch of a single conditional. A single
conditional thus may contain a barrier, since all threads are guaranteed to execute it,
while a non-single conditional may not.

Definition 3.2 (Cross Edge).A cross edgein a control flow graph connects the end of
the first branch of a conditional to the start of the second branch.



Algorithm 3.3.
ConcurrencyGraph(P : program) : graph

1. LetG be the interprocedural control flow graph ofP , as described in§2.3.
2. For each conditionalC in P {
3. If C is not a single conditional:
4. Add a cross edge forC in G.
5. } // End for (2).
6. For each barrierB in P :
7. DeleteB from G.
8. ReturnG.

Fig. 2.Algorithm 3.3 computes the concurrency graph of a program by inserting cross edges into
its control flow graph and deleting all barriers.

Cross edges do not provide any control flow information, since the second branch
of a conditional does not execute immediately after the first branch. They are, however,
useful for determining concurrency information, as shown in Theorem 3.4.

In order to determine the set of concurrent expressions in a program, we construct a
concurrency graphG of the programP by inserting cross edges in the interprocedural
control flow graph ofP for every non-single conditional and deleting all barriers and
their adjacent edges. Algorithm 3.3 in Figure 2 illustrates this procedure. The algorithm
runs in time O(n), wheren is the number of statements and expressions inP , since
it takes O(n) time to construct the control flow graph of a program. The control flow
graph is very sparse, containing only O(n) edges, since the number of expressions that
can execute immediately after a particular expressione is constant. Since at mostn
cross edges are added to the control flow graph and at most O(n) barriers and adjacent
edges are deleted, the resulting graphG is also of size O(n).

The concurrency graphG allows us to determine the set of concurrent expressions
using the following theorem:

Theorem 3.4. Two expressionsa andb in P can run concurrently only if one is reach-
able from the other in the concurrency graphG.

In order to prove Theorem 3.4, we require the following definition:

Definition 3.5 (Code Phase).For each barrier in a program, itscode phaseis the set of
statements that can execute after the barrier but before hitting another barrier, including
itself2.

Figure 3 shows the code phases of an example program. Since each code phase is
preceded by a barrier, and each thread must execute the same sequence of barriers, each
thread executes the same sequence of code phases. This implies the following:

Lemma 3.6. Two expressionsa andb in P can run concurrently only if they are in the
same code phase.

Using Lemma 3.6, we can prove Theorem 3.4. Details are in [17].

2 A statement can be in multiple code phases, as is the case for a statement in a method called
from multiple contexts.



B1: Ti.barrier();
L1: int i = 0;
L2: int j = 1;
L3: if (Ti.thisProc() < 5)
L4: j += Ti.thisProc();
L5: if (Ti.numProcs() >= 1) {
L6: i = Ti.numProcs();
B2: Ti.barrier();
L7: j += i;
L8: } else { j += 1; }
L9: i = broadcast j from 0;
B3: Ti.barrier();
LA: j += i;

Code Phase Statements
B1 L1 , L2 , L3 , L4 , L5 , L6 , L8 , L9
B2 L7 , L9
B3 LA

Fig. 3.The set of code phases for an example program.

Algorithm 3.7.
ConcurrentExpressions(P : program) : set

1. Letconcur ← ∅.
2. LetG← ConcurrencyGraph(P ) [Algorithm 3.3].
3. For each accessa in P {
4. Do a depth first search onG starting froma.
5. For each expressionb reached in the search:
6. Insert(a, b) into concur.
7. } // End for (3).
8. Returnconcur.

Fig. 4.Algorithm 3.7 computes the set of all concurrent expressions in a given program.

By Theorem 3.4, in order to determine the set of all concurrent expressions, it suf-
fices to compute the pairs of expressions in which one is reachable from the other in the
concurrency graphG. This can be done efficiently by performing a depth first search
from each expression inG. Algorithm 3.7 in Figure 4 does exactly this. The running
time of the algorithm is dominated by the depth first searches, each of which takes O(n)
time, sinceG has at mostn nodes and O(n) edges. At mostn searches occur, so the
algorithm runs in time O(n2).

4 Feasible Paths

Algorithm 3.7 computes an over-approximation of the set of concurrent expressions.
In particular, due to the nature of the interprocedural control flow graph constructed in
§2.3, the depth first searches in Algorithm 3.7 can followinfeasible paths, paths that
cannot structurally occur in practice. Figure 5 illustrates such a path, in which a method
is entered from one context and exits into another.

In order to prevent infeasible paths, we follow the procedure outlined by Reps [21].
We label each method call edge and corresponding return edge with matching paren-
theses, as shown in Figure 5. Each path then corresponds to a string of parentheses



Fig. 5. Interprocedural control flow graph for two calls to the same function. The dashed path is
infeasible, sincefoo() returns to a different context than the one from which it was called. The
infeasible path corresponds to the unbalanced string “[}”.

Fig. 6. Feasible paths that correspond to unbalanced strings. The dashed path on the left corre-
sponds to a method call that has not yet returned, and the one on the right corresponds to a path
that starts in a method call that returns.

composed of the labels of the edges in the path. A path is then infeasible, if in its corre-
sponding string, an open parenthesis is closed by a non-matching parenthesis.

It is not necessary that a path’s string be balanced in order for it to be feasible. In
particular, two types of unbalanced strings correspond to feasible paths:

– A path with unclosed parentheses. Such a path corresponds to method calls that
have not yet finished, as shown in the left side of Figure 6.

– A path with closing parentheses that follow a balanced prefix. Such a string is
allowed since a path may start in the middle of a method call and corresponds to
that method call returning, as shown in the right side of Figure 6.

Determining the set of nodes reachable3 using a feasible path is the equivalent of
performing context-free language (CFL) reachability on a graph using the grammar
for each pair of matching parentheses(α and)α. CFL reachability can be performed

3 In this section, we make no distinction betweenreachableand reachable without hitting a
barrier. The latter reduces to the former if all barrier nodes are removed from each control
flow graph.



in cubic time for an arbitrary grammar [21]. Algorithm 3.7 takes only quadratic time,
however, and we desire a feasibility algorithm that is also quadratic. In order to accom-
plish this, we develop a specialized algorithm that modifies the concurrency graphG
and the standard depth first search instead of using generic CFL reachability.

At first glance, it appears that a method must be revisited in every possible context
in which it is called, since the context determines which open parentheses have been
seen and therefore which paths can be followed. However, as shown in the companion
report, the set of expressions that can be executed in a method call is the same regardless
of context [17]. This implies that the set of nodes reachable along a feasible path in a
program’s control flow graph is also independent of the context of a method call, with
two exceptions:

– If a method call can complete, then the nodes after the call are reachable from a
point before the call.

– If no context exists, such as in a search that starts from a point within a methodf ,
then all nodes that are reachable following any method call tof are reachable.

The second case above can easily be handled by visiting a node twice: once insome
context, and again in no context. The first case, however, requires adding bypass edges
to the control flow graph.

4.1 Bypass Edges

Recall that the interprocedural control flow graph was constructed by splitting a method
call into a call node and a return node. An edge was then added from the call node to
the target method’s entry, and another from the target’s exit to the return node. If the
target’s exit is reachable (or for our purposes, reachable without hitting a barrier) from
the target’s entry, then adding abypass edgethat connects the call node directly to the
return node does not affect the transitive closure of the graph.

Computing whether or not a method’s exit is reachable from its entry is not trivial,
since it requires knowing whether or not the exits of each of the methods that it calls
are reachable from their entries. Algorithm 4.1 in Figure 7 computes this by continually
iterating over all the methods in a program, marking those that can complete through an
execution path that only calls previously marked methods, until no more methods can
be marked. In the first iteration of loop 3, it only marks those methods that can complete
without making any calls, or equivalently, those methods that can complete using only
a single stack frame. In the second iteration, it only marks those that can complete by
only calling methods that don’t need to make any calls, or equivalently, those methods
that can complete using only two stack frames. In general, a method is marked in the
ith iteration if it can complete usingi, and no less thani, stack frames4. As shown in
the companion report, Algorithm 4.1 marks all methods that can complete using any
number of stack frames [17].

4 Note that just because a method only requires a fixed number of stack frames doesn’t mean
that it can complete. A method may contain an infinite loop, preventing it from completing at
all, or barriers along all paths through it, preventing it from completing without executing a
barrier. Algorithm 4.1 does not mark such methods.



Algorithm 4.1.
ComputeBypasses(P : program,G1, . . . , Gk : intraprocedural flow graph) : set

1. Letchange← true.
2. Letmarked← ∅.
3. Whilechange = true {
4. change← false.
5. Setvisited(u)← false for all nodesu in G1, . . . , Gk.
6. For each methodf in P {
7. If f 6∈ marked andCanReach(entry(f), exit(f), Gf , marked) {
8. marked← marked ∪ {f}.
9. change← true.

10. } // End if (7).
11. } // End for (6).
12. } // End while (3).
13. Returnmarked.

14. ProcedureCanReach(u, v : vertex,G : graph,marked : method set) : boolean:
15. Setvisited(u)← true.
16. If u = v:
17. Returntrue.
18. Else Ifu is a method call to functiong andg 6∈ marked:
19. Returnfalse.
20. For each edge(u, w) ∈ G {
21. If visited(w) = false andCanReach(w, v, G, marked):
22. Returntrue.
23. } // End for (20).
24. Returnfalse.

Fig. 7.Algorithm 4.1 uses each method’s intraprocedural control flow graph (Gi) to determine if
its exit is reachable from its entry.

Algorithm 4.1 requires quadratic time to complete in the worst case. Each iteration
of loop 3 visits at mostn nodes. Onlyk iterations are necessary, wherek is the number
of methods in the program, since at least one method is marked in all but the last itera-
tion of the loop. The total running time is thus O(kn) in the worst case. In practice, only
a small number of iterations are necessary5, and the running time is closer to O(n).

After computing the set of methods that can complete, it is straightforward to add
bypass edges to the concurrency graphG: for each method callc, if the target ofc can
complete, add an edge fromc to its corresponding method returnr. This can be done in
time O(n).

4.2 Feasible Search

Once bypass edges have been added to the graphG, a modified depth first search can be
used to find feasible paths. A stack of open but not yet closed parenthesis symbols must

5 Even on the largest example we tried (>45,000 lines of user and library code, 1226 methods),
Algorithm 4.1 required only five iterations to converge.



Algorithm 4.2.
FeasibleSearch(v : vertex,G : graph) : set

1. Letvisited← ∅.
2. Lets← ∅.
3. CallFeasibleDFS(v, G, s, visited).
4. Returnvisited.

5. ProcedureFeasibleDFS(v : vertex,G : graph,s : stack,visited : set):
6. If s = ∅ {
7. If no context mark(v) return.
8. Setno context mark(v)← true.
9. } // End if (6).

10. Else{
11. If context mark(v) return.
12. Setcontext mark(v)← true.
13. } // End else (10).
14. visited← visited ∪ {v}
15. For each edge(v, u) ∈ G {
16. Lets′ ← s.
17. If label(v, u) is a close symbol ands′ 6= ∅ {
18. Leto← pop(s′).
19. If label(v, u) does not matcho:
20. Skip to next iteration of 15.
21. } // End if (17).
22. Else iflabel(v, u) is an open symbol:
23. Pushlabel(v, u) ontos′.
24. CallFeasibleDFS(u, G, s).
25. } // End for (15).

Fig. 8. Algorithm 4.2 computes the set of nodes reachable from the start node through a feasible
path.

be maintained, and an encountered closing symbol must match the top of this stack,
it the stack is nonempty. In addition, as noted above, the modified search must visit
each node twice, once in no context and once insomecontext. Algorithm 4.2 in Figure
8 formalizes this procedure, and a proof of correctness is provided in the companion
report [17].

SinceG contains bypass edges and Algorithm 4.2 visits each node both in some
context and in no context, it finds all nodes that can be reachable in a feasible path from
the source. Since it visits each node at most twice, it runs in time O(n).

4.3 Feasible Concurrent Expressions

Putting it all together, we can now modify Algorithm 3.7 to find only concurrent ex-
pressions that are feasible. As in Algorithm 3.7, the concurrency graphG must first be
constructed. Then the intraprocedural flow graphs of each method must be constructed,
Algorithm 4.1 used to find the methods that can complete without hitting a barrier, and



Algorithm 4.3.
FeasibleConcurrentExpressions(P : program) : set

1. LetG← ConcurrencyGraph(P ) [Algorithm 3.3].
2. For each methodf in P {
3. Construct the intraprocedural flow graphGf of f .
4. For each barrierB in f {
5. DeleteB from Gf .
6. } // End for (4).
7. } // End for (2).
8. Letbypass← ComputeBypasses(P , G1, . . . , Gk) [Algorithm 4.1].
9. For each method call and return pairc, r in P {

10. If the targetf of c, r is in bypass:
11. Add an edge(c, r) to G.
12. } // End for (9).
13. For each expressiona in P {
14. Letvisited← FeasibleSearch(a, G) [Algorithm 4.2].
15. For each expressionb ∈ visited:
16. Insert(a, b) into concur.
17. } // End for (13).
18. Returnconcur.

Fig. 9. Algorithm 4.3 computes the set of all concurrent expressions that can feasibly occur in a
given program.

the bypass edges inserted intoG. Then Algorithm 4.2 must be used to perform the
searches instead of a vanilla depth first search. Algorithm 4.3 in Figure 9 illustrates this
procedure.

The setup of Algorithm 4.3 calls Algorithm 4.1, so it takes O(kn) time. The searches
each take time O(n), and at mostn are done, so the total running time is O(kn+n2) =
O(n2), quadratic as opposed to the cubic running time of generic CFL reachability.

5 Evaluation

Concurrency information is useful for many program analyses and optimizations. In this
paper, we focus on one in particular, static race detection, to evaluate our concurrency
analysis. Results for how enforcement of a sequentially consistent memory model can
benefit from the analysis are available in a companion report [17].

5.1 Benchmarks

We use the following set of benchmarks for our evaluation:

– gas [5] (8841 lines): Hyperbolic solver for a gas dynamics problem in computa-
tional fluid dynamics.

– gsrb (1090 lines): Nearest neighbor computation on a regular mesh using red-
black Gauss-Seidel operator. This computational kernel is often used within multi-
grid algorithms or other solvers.



Number of Data Races Detected

0

0.2

0.4

0.6

0.8

1

1.2

gas gsrb lu-fact pps spmv
Benchmark

Fr
ac

tio
n 

C
om

pa
re

d 
to

 b
as

e

base concur feasible

Fig. 10.Fraction of data races detected at compile-time compared tobase(lower is better).

– lu-fact (420 lines): Dense linear algebra.
– pps [4] (3673 lines): Parallel Poisson equation solver using the domain decompo-

sition method in an unbounded domain.
– spmv (1493 lines): Sparse matrix-vector multiply.

The line counts for the above benchmarks underestimate the amount of code actually
analyzed, since all reachable code in the 37,000 line Titanium and Java 1.0 libraries is
also processed.

5.2 Static Race Detection

In parallel programs, adata raceoccurs when multiple threads access the same memory
location, at least one of the accesses is a write, and the accesses can occur concurrently
[19]. Data races often correspond to programming errors and potentially result in non-
deterministic runtime behavior. Concurrency analysis can be used to statically detect
races at compile-time [11, 12], particularly when combined with alias analysis [2].

Using our concurrency analysis and a thread-aware alias analysis, we built a compile-
time data race analysis into the Titanium compiler. Static information is generally not
enough to determine with certainty that two memory accesses compose a race, so nearly
all reported races are false positives. (The correctness of the alias and concurrency anal-
yses ensure that no false negatives occur.) We therefore consider a race detector that
reports the fewest races to be the most effective.

Figure 10 compares the effectiveness of three levels of race detection:

– base: only alias analysis is used to detect potential races
– concur: our basic concurrency analysis (§3) is used to eliminate non-concurrent

races
– feasible: our feasible paths concurrency analysis (§4) is used to eliminate non-

concurrent races



The results show that the addition of concurrency analysis can eliminate most of the
races reported by our detector. Two of the benchmarks do not benefit at all from the
basic concurrency analysis, but all benefit considerably from the feasible paths analysis.
The concurrency analysis should be of significant help to users of our race detector by
weeding out many false positives.

6 Related Work

An extensive amount of work on concurrency analysis has been done for both languages
with dynamic parallelism and SPMD programs. Duesterwald and Soffa presented a data
flow analysis to compute thehappened-beforeandhappened-afterrelation for program
statements [11]. Their analysis is for detecting races in programs based on the Ada ren-
dezvous model [23]. Masticola and Ryder developed a more precise non-concurrency
analysis for the same set of programs [18]. The results are used for debugging and op-
timization. Jeremiassen and Eggers developed a static analysis for barrier synchroniza-
tion for SPMD programs with non-textual barriers and used the information to reduce
false sharing on cache-coherent machines [15]. Their analysis doesn’t take advantage
of barrier alignment or single-valued expressions, so it isn’t as precise as ours.

Others besides Duesterwald and Soffa and Masticola and Ryder have developed
tools for race detection. Flanagan and Freund presented a static race detection tool for
Java based on type inference and checking [12]. Boyapati and Rinard developed a type
system for Java that guarantees that a program is race-free [7]. Tools such as Eraser [22]
and TRaDe [9] detect races at runtime instead of statically. Other static and dynamic
race detection schemes have also been developed [24, 3, 10, 8, 20].

Our work differs from previous work in that we develop an analysis specifically for
SPMD programs with textual barriers. This allows our analysis to be both sound and
precise. In addition, our analysis takes advantage of single-valued expressions, which
no previous analysis does.

We presented a more abstract version of our concurrency analysis and its applica-
tion to sequential consistency in a previous paper [16]. That analysis was slightly less
precise, followed infeasible program paths, and would have been much more difficult
to modify to ignore them.

7 Conclusion

In this paper, we made several contributions to the foundation of parallel program anal-
ysis, specifically the concurrency analysis problem of determining whether two state-
ments can execute concurrently. We introduced a graph representation of parallel pro-
grams with textually aligned barriers and two different concurrency analyses. The first
was a basic concurrency analysis that uses barriers and single-valued expressions, and
the second a more complex one that only explores those execution paths across function
calls that can occur in practice. We experimented with several benchmark programs us-
ing a data race detector built on our concurrency analysis. Our experiments showed that
the analyses were able to eliminate a large fraction of the false positives reported in all



programs. We believe the efficiency and precision of our concurrency analysis make it
a very useful tool in analyzing parallel programs with textually aligned barriers.

In addition to aiding in optimizations and helping to detect parallel programming
errors, the ability to perform such analyses may affect a language designer’s choice of
programming model semantics. Simpler programming models, such as those that pro-
hibit races, use synchronous communication, or ensure a strong memory model, may
be feasible if accurate analyses can be developed to enable optimizations while ensur-
ing a stronger semantics. Our analysis is one piece of a larger picture on the kinds of
parallelism constructs and synchronization operations for which accurate concurrency
analyses can be developed.

Acknowledgments

We would like to thank Jimmy Su, who helped us a great deal both in developing the
concurrency algorithms and in implementing them. We would also like to thank the
Titanium group for their valuable support.

This work was supported in part by the Department of Energy under contracts DE-
FC03-01ER25509 and DE-AC02-05CH11231, by the California State Micro program,
by Sun Microsystems, and by Microsoft.

References

1. A. Aiken and D. Gay. Barrier inference. InPrinciples of Programming Languages, San
Diego, California, January 1998.

2. L. O. Andersen.Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, May 1994.

3. D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data races.
In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 382–400, New York, NY, USA,
2000. ACM Press.

4. G. T. Balls. A Finite Difference Domain Decomposition Method Using Local Corrections
for the Solution of Poisson’s Equation. PhD thesis, Department of Mechanical Engineering,
University of California at Berkeley, 1999.

5. M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.Journal
of Computational Physics, 82(1):64–84, May 1989. Lawrence Livermore Laboratory Report
No. UCRL-97196.

6. D. Bonachea. GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, University
of California, Berkeley, November 2002.

7. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: preventing data
races and deadlocks. InOOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 211–230, New
York, NY, USA, 2002. ACM Press.

8. G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting data races in
Cilk programs that use locks. InSPAA ’98: Proceedings of the tenth annual ACM symposium
on Parallel algorithms and architectures, pages 298–309, New York, NY, USA, 1998. ACM
Press.



9. M. Christiaens and K. De Bosschere. TRaDe, a topological approach to on-the-fly race detec-
tion in Java programs. InProceedings of the Java Virtual Machine Research and Technology
Symposium (JVM ’01), April 2001.

10. A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical sections.
In PADD ’91: Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed
debugging, pages 85–96, New York, NY, USA, 1991. ACM Press.

11. E. Duesterwald and M. Soffa. Concurrency analysis in the presence of procedures using a
data-flow framework. InSymposium on Testing, analysis, and verification, Victoria, British
Columbia, October 1991.

12. C. Flanagan and S. N. Freund. Type-based race detection for Java. InPLDI ’00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming language design and implementa-
tion, pages 219–232, New York, NY, USA, 2000. ACM Press.

13. D. Gay.Barrier Inference. PhD thesis, University of California, Berkeley, May 1998.
14. P. N. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Liblit, G. Pike, J. Su, and

K. Yelick. Titanium language reference manual, version 2.19. Technical Report UCB/EECS-
2005-15, University of California, Berkeley, November 2005.

15. T. Jeremiassen and S. Eggers. Static analysis of barrier synchronization in explicitly parallel
programs. InParallel Architectures and Compilation Techniques, Montreal, Canada, August
1994.

16. A. Kamil, J. Su., and K. Yelick. Making sequential consistency practical in Titanium. In
Supercomputing 2005, November 2005. To appear.

17. A. Kamil and K. Yelick. Concurrency analysis for parallel programs with
textually aligned barriers. Technical Report UCB/EECS-2006-41, EECS De-
partment, University of California, Berkeley, April 18 2006. Available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-41.html.

18. S. Masticola and B. Ryder. Non-concurrency analysis. InPrinciples and practice of parallel
programming, San Diego, California, May 1993.

19. R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and formalizations.
ACM Lett. Program. Lang. Syst., 1(1):74–88, 1992.

20. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. InPPoPP ’03: Proceed-
ings of the ninth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 167–178, New York, NY, USA, 2003. ACM Press.

21. T. Reps. Program analysis via graph reachability. InILPS ’97: Proceedings of the 1997
international symposium on Logic programming, pages 5–19, Cambridge, MA, USA, 1997.
MIT Press.

22. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data
race detector for multithreaded programs.ACM Trans. Comput. Syst., 15(4):391–411, 1997.

23. United States Department of Defense. Reference manual for the Ada programming language.
Technical Report ANSI/MIL-STD-1815A, Washington, D.C., January 1983.

24. C. von Praun and T. R. Gross. Static conflict analysis for multi-threaded object-oriented pro-
grams. InPLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 115–128, New York, NY, USA, 2003. ACM
Press.

25. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,
S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance Java dialect. In
Workshop on Java for High-Performance Network Computing, Stanford, California, Febru-
ary 1998.




