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Krull dimensions of rings of holomorphic functions

Michael Kapovich

ABSTRACT. We prove that the Krull dimension of the ring of holomorphic func-
tions of a connected complex manifold is at least the cardinality of continuum
iff it is > 0.

Let R be a commutative ring. Recall that the Krull dimension dim(R) of R is
the supremum of cardinalities lengths of chains of distinct proper prime ideals in
R. Our main result is:

THEOREM 1. Let M be a connected complex manifold and H (M) be the ring
of holomorphic functions on M. Then the Krull dimension of H(M) either equals
0 (iff H(M) = C) or is infinite, iff M admits a nonconstant holomorphic function
M — C. More precisely, unless H(M) = C, dim H(M) > ¢, i.e., the ring H(M)
contains a chain of distinct prime ideals whose length has cardinality of continuum.

Our proof of this theorem mostly follows the lines of the proof by Sasane [S],
who proved that for each nonempty domain M C C the Krull dimension of H (M)
is infinite (he did not prove that dim H (M) > ¢).

REMARK 2. We note that Henricksen [H|] was the first to prove that the Krull
dimension of the ring of entire functions on C has cardinality at least continuum.

In our proof we will use the Axiom of Choice in two ways: (a) to establish exis-
tence of certain maximal ideals and (b) to get existence of a nonprincipal ultrafilter
w on N and, hence of the ordered field *R of nonstandard real (or, surreal) numbers.
The field *R contains *N, the nonstandard natural (or surnatural) numbers.

The field *R is a certain quotient of the countable direct product [], .y R; we
will denote the equivalence class (in *R) of a sequence (z) in R by [zx]. Accordingly,
*N consists of equivalence classes [nj] of sequences of natural numbers. Roughly
speaking, we will use *N and certain order relation on it to compare rates of growth
of sequences of natural numbers.

DEFINITION 3. A commutative unital ring R is ample if there exists a sequence
of valuations v} on R such that for each § € *N, there a = ag € R with the property

(1) [vi(a)] = 6.
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The main technical result of this paper is:

THEOREM 4. For each ample ring R, dim(R) > ¢. In particular, R has infinite
Krull dimension.

This theorem and its proof are inspired by Theorem 2.2 of [S], although some
parts of the proof resemble the ones of [HJ.

We will verify, furthermore, that whenever M is a connected complex manifold
which has a nonconstant holomorphic function, the ring H(M) is ample. This,
combined with Theorem [} will immediately imply Theorem [

REMARK 5. 1. We refer the reader to Section 5.3 of [Cla] for further discussion
of algebraic properties of rings of holomorphic functions.

2. Theorem [Il shows that for every Stein manifold M (of positive dimension),
the ring H(M) has infinite Krull dimension. In particular, this applies to any
noncompact connected Riemann surfaces (since every such surface is Stein, [BS]).

3. Noncompact connected complex manifolds M of dimension > 1 can have
H(M) = C; for instance, take M to be the complement to a finite subset in a
compact connected complex manifold (of dimension > 1).
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1. Surreal numbers

We refer the reader to [Go] for a detailed treatment of surreal numbers, below
is a brief introduction. A nonprincipal ultrafilter on N can be regarded as a finitely-
additive probability measure on N which vanishes on each finite subset and takes
the value 0 or 1 on each subset of N. The existence of nonprincipal ultrafilters
(the ultrafilter lemma) follows from the Axiom of Choice. Subsets of full measure
are called w-large. Using w one defines the following equivalence relation on the

product
1=

keR
Two sequences () and (yx) are equivalent if xj = yi, for an w-all k, i.e. the set
{k LT = yk}

is w-large. The quotient by this equivalence relation, denoted

R=[]R/w,
kEN
is the set of surreal numbers. Let [z5] be the equivalence class of the sequence (zy).
The binary operations on sequences of real numbers project to binary opera-
tions on *R making *R a field. The total order < on *R is defined by [x)] < [yx] iff
xp < yg for an w-all k € N. With this order, *R becomes an ordered field.
The set of real numbers embeds into *R as the set of equivalence classes of

constant sequences; the image of a real number x under this embedding is still
denoted z. We set *R; := {a € *R: a > 0}.
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The projection of
[INc]]®
kEN kEN
to *R is denoted *N, this is the set of surnatural numbers. We define a further
equivalence relation ~, on *R by:
QY ﬂ
if there exist positive real numbers a, b such that
ac < 3 < ba.
The equivalence class («) of a € *R (for this equivalence relation) is a multiplicative
analogue of the galazy gal(a) of «, see [Gol:
DEFINITION 6. The galazy gal(a) of a surreal number « € *R is the union
U[a—n,a+n] C *R.
neN
In other words, 8 € gal(«) iff there exist a real number a such that a—a < 8 < a+a.

The next lemma is immediate:
LEMMA 7. For o € *R, the equivalence class («) of « equals exp(gal(log(a))).

We let “R denote the quotient *R/ ~, and “N the projection of *N to “R.
Define the total order > on “R by

(B) > (@)
if for every real number ¢, caw < B. By abusing the notation, we will simply say
that 8> «, with o, 8 € *R.
For the reader who prefers to think in terms of sequences of (positive) real
numbers, the relation () > («) is an analogue of the relation
(an) = 0o((bn)), n — oco.

REMARK 8. The equivalence relation ~, and the order > are similar to the
ones used by Henricksen in [H].

PRrROPOSITION 9. The set “N has the cardinality of continuum.

Proof. Note first, that *R has cardinality of continuum, hence, the cardinality of
“N is at most ¢. The proof of the proposition then reduces to two lemmata.

LEMMA 10. The set gal(*R4) of galaxies {gal() : @ € *R4 } has the cardinality
of continuum.

Proof. For each a = [ag] € *R4, the galaxy gal(a) contains the surnatural number
[a] = [bk], where by = [ax]. For each surnatural number 8 € *N, and natural
number n € N, the intersection

[B—n,04+n]N*N
is finite, equal {8 —n, ..., 8+ n}. Therefore, gal(8) N*N = {8} + Z. It follows that
the map
‘N = gal("Ry), B~ gal(B)
is a bijection modulo Z. Lastly, the set of surnatural numbers *N has the cardinality
of continuum. (|
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LEMMA 11. The map A : *N — gal(*R4), A : 8 — gal(log(n)), is surjective.

Proof. For each o € *Ry let § = [exp(a)] € *N. Since log(z + 1) — log(z) < 1 for
x > 1, we have that

log(B) € gal(a). O
Now, we can finish the proof of the proposition. The map A : *N — gal(*R})

descends to a map p : “N — gal(*R;). According to Lemma [[T] the map p is
surjective. By Lemma [I0] the set gal(*R) has the cardinality of continuum. O

We will prove Theorem [ in the next section by showing that for each ample
ring R, the ordered set (“N, >) embeds into the poset of prime ideals in R reversing
the order:

(8) > (a) = Ps & Po

for certain prime ideals P, C R determines by (y) € “N. Proposition @ will then
imply that the Krull dimension of R is at least «.

2. Krull dimension of ample rings

Recall that a valuation on a unital ring R is a map v : R — R4 U {oo} such that:
1. v(a+b) > min(a,b),
2. v(ab) = v(a) + v(b).
3. v(a) =00 <= a=0.
4. v(1) = 0.
For the following lemma, see Theorem 10.2.6 in [Coh| (see also Proposition 4.8 of
[Cla] or Theorem 1 in [K]).

LEMMA 12. Let I be an ideal in a commutative ring A and M C A\I be a subset
closed under multiplication. Then there exists an ideal J C A containing I and
disjoint from M, so that J is maximal with respect to this property. Furthermore,
J is a prime ideal in A.

Let R be an ample ring and v, the corresponding sequence of valuations on R.
For each 8 € *N we define

Ig :={a € R| [(a)] > [6]} C R.
LEMMA 13. Each I, is an ideal in R.
Proof. We will check that I, is additive since it is clearly closed under multiplication
by elements of R. Take p',p” € I,
k(0] > o, [k (p")] > a.
By the definition of a valuation,
g = vi(p' +p") = min(vi (p'), ve (),
for each k € N. For m € N, define the w-large sets
A = (k) = ma}, A" = {k: (") = ma}.
Therefore, their intersection A = A’ N A” is w-large as well, which implies that

Ym € N, [ng] > ma = [ng] > o O
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Then for each v > 3, the element a as in Definition [3] belongs to Ig. It follows
that Ig # 0 for every . Define the subsets

Mga :={a € R|3n € N, [;(a)] < np} C R;

each My is closed under the multiplication. It is immediate that whenever a < 3,
we have the inclusions

Ig CI,, M, C Mg.
It is also clear that Ig N Mg = (. At the same time, for each > «,
ag € I, N Mg.
For each o we let J, denote the set of ideals P C R such that
I,.cP,PNM,=10.
By Lemma [I2] every maximal element P € 7, is a prime ideal.

LEMMA 14. Every [J, contains unique maximal element, which we will denote
P, in what follows.

Proof. Suppose that P’, P are two maximal elements of 7,. We define the ideal
P =P’ + P"”. Clearly, P contains I,. To prove that P is disjoint from M, take
p € P,p" € P", since p' ¢ M,,p" ¢ M,. Then the same proof as in Lemma [[3
shows that [vg(p’ + p”)] > « which means that p’ + p” ¢ M,. Thus, P € J, and,
in view of maximality of P’, P”, we obtain
PP=pP=P' 0O
For each 3> a we define the ideal Qup := In + Pps.

LEMMA 15. Qap N M, = 0.

Proof. The proof is similar to the one of the previous lemma. Let ¢ = ¢+ p,
c € l,,p€ Ps. Since p ¢ Mg, p ¢ M, as well. Therefore,

v (p)] > o
Since ¢ € 1,
[vi(c)] > a.
Hence,
[r(c+p)] > a
as well. Thus, q ¢ M,,. O

COROLLARY 16. Qa3 € Jo. In particular, Qo C P,.

Proof. 1t suffices to note that I, C Q) according to the definition of Q3. O

LEMMA 17. The inequality 8 > o implies Pg C P, and this inclusion is proper.

Proof. By the definition of Qs and Corollary [I0] we have the inclusions
Pg C Qq C P,.

We now claim that Pz # Qag = Io + Pg. Recall that an € I, C Qap and an € Mag,
while Mg N Pg = (). Thus, as € Qap \ Pg. O
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According to Proposition[d], the set *N of surnatural numbers contains a subset
S of cardinality continuum such that for all @ < 8 in S, we have 8 > «. The map

a— P,

sends each o € S to a prime ideal in R; o < 3 implies that Pg C P,.

We conclude that the ring R contains the (descending) chain of distinct prime
ideals P,,a € S; the length of this chain has the cardinality of continuum. In
particular, dim(R) > ¢. Theorem [] follows. O

3. Ampleness of rings of holomorphic functions
We will need the following classical result, see e.g. [Conl Ch. VII, Theorem 5.15]:

THEOREM 18. Let D C C be a domain, and let ¢ € D be a sequence which
does not accumulate anywhere in D and let my be a sequence of natural numbers.
Then there exists a holomorphic function g in D which has zeroes only at the points
¢ and such that my is the order of zero of g at ¢, k € N.

COROLLARY 19. If M is a connected complex manifold which admits a non-
constant holomorphic function h : M — C, then the ring H(M) is ample.

Proof. We let D denote the image of h. Pick a sequence ¢, € D which converges to
a point in C\ D and which consists of regular values of h. (Here C is the Riemann
sphere.) For each cj the preimage Cj, := h™1(c) is a complex submanifold in M;
in each C} pick a point bg. Define valuations

v HM) = Z4 U{co}

by vi(f) := ords, (f), the total order of f at by, cf. [Gul Chapter C, Definition 1].

Now, given 5 € *N, 8 = [my], we let g = gg denote a holomorphic function on
D as in Theorem [I8 Define a = ag := go h € H(M). Then vi(a) = my, which
implies that the ring H(M) is ample. O

Ampleness of H(M) together with Theorem [ imply Theorem [II
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