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ABSTRACT OF THE THESIS

Singular Perturbation Method for Multiagent Coverage Control Using

Time-Varying Density Functions

by

Victor Gandarillas

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2018

Professor Jorge Cortés, Chair

This paper presents a continuous-time coverage algorithm based on the

singular perturbations method. The algorithm generates a control for a network

of autonomous agents. The algorithm is distributed in the sense that the agents

need only information about their neighbors. The singular perturbation method

is applied as a means to update the control at a faster time scale to approach

performance of a centralized approach. The paper concludes with results from

simulations and experiment.
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Chapter 1

Introduction

We consider the problem of influencing teams of agents by means of time-

varying-density functions. The agents are tasked with reaching a target whose

position is unknown. A probability density function models the target’s location

or some area of interest by the user. This allows the robots to use a notion of

coverage based on locational optimization. This has practical applications in areas

such as search and rescue operations. Additionally, the probability density function

is time-varying. By maximizing coverage over the plane, the robots maximize the

likelihood of any one robot finding the target. The time-varying density may

also represent a human generated input, where the user commands the agents to

focus some area of interest. As the density function changes over time, each agent

requires information from all other agents. This presents a challenge for large

decentralized systems. As a result, numerical methods become computationally

expensive for large teams of agents.

1.1 Background

Gradient descent algorithms exist for agents to arrive at locally optimal so-

lutions for time-invariant densities [1], [2], [3]. While the convergence of the Lloyd

algorithm is well studied for time-invariant densities, the same convergence prop-

erties do not hold for time-varying density functions. The algorithm presented in

[2] also addresses time-varying densities, but requires certain assumptions; namely,
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that the cost function be an explicit function of the time and not agent positions.

When considering the dependence of the locational cost as a function of position as

well as time, the time varying nature of the density function presents a challenge

for large decentralized systems in that each agent requires knowledge of the state

of all other agents in the system. To get around the issue of increased complex-

ity from a centralized algorithm, [4] and [5] propose distributed approximations

through a von Neumann series. Additional terms improve the approximation at

the cost of more computation and more communication between agents that are

not neighbors.

1.2 Statement of Contributions

Our main contribution is the design of a distributed algorithm suitable for

time-varying densities that does away with the types of approximations used in

[4],[5]. The technical approach proposed in this paper relies on the singular per-

turbation method to control the system in a distributed manner, allowing for per-

formance approaching that of the centralized solution and reduced computational

cost when compared to distributed approximations of [4],[5]. The velocity of each

agent is computed with limited knowledge of other agents; i.e. each agent only re-

quires information about adjacent neighbors. The desired velocity is not modeled

directly; rather, the time rate of change of the input is modeled as a boundary layer

system. In other words, the desired velocity input has its own dynamics operating

on a smaller time scale resulting in asymptotic convergence to the optimal control.

Finally, we describe in some detail an algorithm based on modeling the system as

a singular perturbation, avoiding such numerical difficulties encountered in [4],[5]

and present results from simulation and experiment.

1.3 Organization

In Chapter 2, we introduce the notation used throughout the paper and

review the singular perturbation method, which forms the basis of our main re-
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sult. Chapter 3 defines the coverage control problem formally. Chapter 5 reviews

previous approaches to solving the problem of coverage control of multiple agents

with time-varying densities and introduces the singular perturbation method as a

novel approach to maximizing coverage in a distributed way. Chapter 6 presents

results from simulation for a large team of holonomic agents and a comparison of

performance between algorithms. Chapter 7 presents results from experiment and

a comparison of performance between algorithms for a small team of agents with

unicycle dynamics. Chapter 8 provides concluding remarks.
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Chapter 2

Notation and Preliminaries

2.1 Notation

In this section, we describe the notation used throughout the paper. We

denote the set of reals by R. We define the Euclidean 2-norm over the 2-dimensional

vector space R2 by ‖ · ‖2
2. We consider a multiagent system composed by n agents

(or sensors) evolving on a plane Q ⊂ R2. The plane Q is partitioned into n disjoint

cells, denoted Pi, where ∪ni Pi = Q. We let pi ∈ Pi denote the position of agent

i ∈ {1, . . . , n}. For convenience, the vector p ∈ R2n contains the positions of all

agents. The vector u ∈ R2n contains the control inputs of each agent ui ∈ R2.

A time-varying density function φ : R2 × R → (0, 1] provides a weighting on the

plane to be covered, where q ∈ Q is an arbitrary point in the plane.

We also make use of the Voronoi tessellation V = (V1, . . . , Vn) to partition

the plane Q. the points (p1, . . . , pn) generate the Voronoi tesselation V and a

Voronoi cell Vi(p) is defined as:

Vi(p) = {q ∈ Q|‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i} (2.1)

where pi generates the Voronoi cell Vi(p) for the agent i and ∪ni Vi = Q. For a

comprehensive treatments on Voronoi diagrams, see [6],[7].

Since Q is a convex polygon, the boundary of each Vi(p) is a convex polygon.

When the two Voronoi regions Vi(p) and Vj(p) are adjacent, pi is called a (Voronoi)

neighbor of pj (and vice versa).
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2.2 Singular Perturbation

We now review the singular perturbation method and present a decentral-

ized algorithm for obtaining optimal coverage with time-varying density functions.

Perturbation methods generally obtain solutions of equations through a power se-

ries. This leads to problems in which a small parameter multiplies a derivative.

Singularly perturbed problems are generally characterized by dynamics operating

on multiple scales in which a small parameter cannot be approximated by setting

the parameter value to zero. Consider the system of differential equations

ṗ = f(p, c, u, t), εu̇ = g(p, c, u, t) (2.2)

where 0 < ε� 1 is a small perturbation, f(p, c, u, t) represents the dynam-

ics of the positions p of the agents and g(p, c, u, t) represents the dynamics of the

control input u. Taking the limit as ε→ 0+ produces the reduced model

ṗ = f(p, c, u, t) (2.3a)

0 = g(p, c, u, t) (2.3b)

This neglects the highest order derivative in the system and is not a good

approximation of the full system. Analyzing the system on a stretched time scale,

given by η = t/ε as ε→ 0+, the dynamics are given by the boundary layer model

dp/dη = 0 (2.4a)

du/dη = g(p, c, u, t) (2.4b)

where (2.4b) represents the fast dynamics of the system. This only models the

behavior of the highest order derivative on the stretched time scale and neglects

the behavior of the lower order derivatives. This is summarized in Theorem 1 [8].

Theorem 1 (Tikhonov’s theorem). If u = h(p, c, t) is a stable root of the slow

manifold (2.3b), then the solution of the system (2.2) approaches the solution of

the reduced model (2.3) as ε → 0+. Note that there may be more than one such

function h.

Proof. The proof is provided in [8].

Theorem 1 forms the basis for the main result of the paper in Theorem 3
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Chapter 3

Problem Definition

We seek to solve the coverage problem for time-varying densities in a dis-

tributed manner. The goal is to drive each agent within a team of agents to an

optimal location that maximizes coverage over a plane Q based on a probability

density function φ(q, t) which is time-varying. The time-varying density function

can be thought of as the distribution of possibilities for a target’s location, for ex-

ample in a search-and-rescue operation, or as a human generated input where the

human operator designates an area of interest where the robots should gather. The

time-varying density function poses a challenge because the problem is no longer

a matter of pure feedback, but involves the minimization of a locational cost that

is also dependent on time. Our objective is to design a distributed control algo-

rithm that asymptotically converges to a local optimum. The control algorithm is

distributed in the sense that each agent has limited knowledge of the other agents

in the system. Here we define the problem for holonomic agents. In Chapter7 we

present simulation results for a team of holonomic agents as well as experimental

results for agents with unicycle dynamics. The coverage control problem involves

the minimization of the locational cost

H(p, P, t) =
n∑
i=1

∫
Pi

φ(q, t)‖q − pi‖2
2dq (3.1)

where P = (P1, . . . , Pn) is the partition of the plane Q and Pi ⊂ Q is the cell

containing agent i.

At a given time t, when a configuration of agents p together with the parti-
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tion P minimize (3.1), the domain is said to be optimally covered with respect to

φ. At fixed sensors location, the optimal partition of Q is the Voronoi tessellation

V (P ) = (V1, . . . , Vn) given by (2.1). With this choice of region, we remove the

partition as a decision variable and the locational cost becomes

H(p, V, t) =
n∑
i=1

∫
Vi

φ(q, t)‖q − pi‖2
2dq (3.2)

In [9], it was shown that

∂H

∂pi
=

∫
Vi(pi)

−2(q − pi)Tφ(q, t)dq (3.3)

and since φ(q, t) > 0,∀q ∈ Q, t ∈ [0,∞), one can define the mass mi and center of

mass ci of the ith Voronoi cell Vi(p) as

mi =

∫
Vi(p)

φ(q, t)dq, ci =
1

mi

∫
Vi(p)

qφ(q, t)dq (3.4)

The partial derivative (3.3) can be rewritten as

∂H

∂pi
= −2mi(pi − ci)T (3.5)

From this expression, we can see that a critical point of (3.5) is

pi(t) = ci(p, t), i ∈ {1, 2, . . . , n} (3.6)

and a minimizer to (3.3) is necessarily of this form [3]. In this state, p is a so-called

centroidal Voronoi tessellation (CVT).

A critical point of the form (3.6) implies

ṗ = ċ (3.7)

This is a necessary condition for convergence to a moving CVT. In this paper,

the interest is in designing algorithms that guarantee convergence to local minima

with respect to time-varying density functions. No claims are made about finding

the global minimum.

For time-invariant density functions, the continuous-time version of Lloyd’s

algorithm is a suitable control, given by

ṗi = −κ(pi − ci)
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where κ > 0 is a proportional gain, which drives each agent’s position to the newly

generated Voronoi cell center, achieving a CVT. Note that this is not necessarily

a global minimum [2], [1].
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Chapter 4

Time-Varying Solution

To capture the time varying nature of the system dynamics, let e = (p− c)
represent position error between the agents and their centroids, and ė = −κe
represent the rate of change in the error so that the position error is converging to

zero exponentially. Then

ṗ− ċ = −κ(p− c)

which represents the difference between the feedback control of Lloyd and the

velocity error of the agents. Let c(p, t) : p, t 7→ c represent the centroids as a

function of the agent positions p and the time t. Then(
I − ∂c

∂p

)
ṗ =− κ(p− c) +

∂c

∂t
(4.1)

Note that this is in the form of a linear system Ax = b. The matrix ∂c/∂p encodes

the adjacency of the agents and has a sparse structure. Taking the inverse of

(I − ∂c/∂p) obtains ṗ directly, resulting in the following algorithm.

TVD-C:

ṗ =
(
I − ∂c

∂p

)−1 (
−κ(p− c) + ∂c

∂t

)
(4.2)

As in [4], we denote this algorithm TVD-C, where TVD stands for time-

varying densities, and C stands for centralized. In [10], it was shown that in the

time invariant case, the inverse is well defined as long as φ(p) is a log concave

function of p. Moreover, φ must be continuously differentiable in both arguments,

and these two conditions are enough to ensure that the inverse exists.
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Theorem 2. The algorithm TVD-C converges exponentially.

Proof. Let V (e) =
∑

1
2
‖e‖2

2 =
∑

1
2
‖p − c‖2

2 > 0,∀e = p − c 6= 0 be a Lyapunov

function. Then V̇ (e) = −
∑

e2

κ
= −

∑ (p−c)2
κ

< 0, ∀e = p − c 6= 0. Then the error

e = p− c converges exponentially.

Figure 4.1 demonstrates Theorem 2 from simulation data with 50 holonomic

agents using time-varying density functions (6.1).

0 1 2 3 4 5 6 7 8 9

t

0

0.05

0.1

0.15

0.2

0.25
|p

-c
|

2

Lyapunov Function for TVD-C

1

2

3

Figure 4.1: Lyapunov function of 50 holonomic agents using TVD-C with various

density functions. Note that the Lyapunov function approaches zero exponentially.

Even though the matrix I − ∂c/∂p is sparse, (4.2) cannot be implemented

in a distributed way because the inverse of a sparse matrix is not in general sparse.

This requires each agent to have knowledge of all the other agents in the system.

To get around this issue, a von Neumann series can approximate the inverse.

TVD-Dk:

ṗ =
k∑
l=0

(
∂c
∂p

)l (
−κ(p− c) + ∂c

∂t

)
(4.3)

As in [4], we denote this algorithm TVD-Dk, where Dk stands for decen-

tralized with k-hop adjacency information. It was shown for some time-varying

density functions in [4] that TVD-Dk gives similar performance to TVD-C for

k > 3. While TVD-Dk successfully leverages the sparsity structure of ∂c/∂p, ad-

ditional matrix multiplications are required to achieve performance approaching

that of TVD-C. Furthermore, the matrix (I − ∂c/∂p)−1 can only be approximated

10



by a series expansion if the eigenvalues of ∂c/∂p lie inside the unit circle. While

each agent does not require knowledge of all the other agents, increasingly accurate

approximations require communication with more and more neighbors. It is also

possible that the density functions change at different rates.
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Chapter 5

Singular Perturbation Method

Our goal is to minimize the difference between both sides of (4.1) without

the need to compute the inverse in (4.2) and without the need for each agent to

communicate with all other agents in the system. This gives rise to the idea of

having a dedicated algorithm that asymptotically computes the solution u. Be-

cause both the left and right hand side of (4.1) actually depend on p, we resort to

the singular perturbation approach to perform this algorithm at a faster time scale

than the timescale for the agents’ motion. This approach is sound, in that it uses

the fact that communication between the agents is much faster than the motion of

the agents, and also only requires information exchange with adjacent neighbors.

As each agent receives information from its neighbors, the control input updates.

The control input updates faster than the motion because it updates on the com-

munication time scale. This allows for information to propagate throughout the

network without the need for each agent to obtain any knowledge aside from that

of its neighbors. This leads to our main result.

Theorem 3. Let u = ṗ. Then the control input

TVD-SPε:

u̇ = −1

ε

(
I − ∂c

∂p

)T ((
I − ∂c

∂p

)
u− ∂c

∂t
+ κ(p− c)

)
(5.1)

approaches the control input given by TVD-C (4.2) as ε → 0+. For 0 < ε � 1,

p− c converges exponentially to zero.

12



Proof. We seek to construct the fast dynamics εu̇ = g(p, c, u, t) of the system

defining u̇ on a smaller/faster time scale such that a local minimum of (3.2) is

achieved. Minimizing the difference of both sides of (4.1) achieves such a minimum.

We use this difference to define a scalar, nonnegative, convex function f(u)

f(u) =
1

2

∥∥∥∥(I − ∂c
∂p

)
u− ∂c

∂t
+ κ(p− c)

∥∥∥∥2

(5.2)

where u = ṗ. Since f(u) is convex in u, there exists a unique u that minimizes

(5.2). Taking the gradient of f(u), we obtain

∇f(u) =
(
I − ∂c

∂p

)T ((
I − ∂c

∂p

)
u− ∂c

∂t
+ κ(p− c)

)
(5.3)

Because u̇ is the gradient of a quadratic function of u, the control dynam-

ics are exponentially stable, restoring the system dynamics to the reduced model

(2.3a). That is, u̇ = −∇f(u) defines for u a function h(p, c, t) that is a stable root

of (2.3b). This in turn produces the stretched time scale dynamics

dp/dη = 0 (5.4a)

du/dη = −
(
I − ∂c

∂p

)T ((
I − ∂c

∂p

)
u− ∂c

∂t
+ κ(p− c)

)
(5.4b)

where η = t/ε represents a stretched time scale as ε → 0+, (5.4a) is “frozen” in

time and (5.4b) is the aforementioned boundary layer model. Since (5.4b) is linear

in u, u = h(t, p) must be a unique root of (5.4b). The control u = h(t, p) is also a

stable root of (5.4b). Replacing dp/dη with εu̇ produces the control law (5.1).

In order to implement (5.1), the continuous time dynamics must be con-

verted to discrete time dynamics and the control u must be updated by u̇. A

simple integration produces

u[k + 1] = u[k] + u̇[k]∆t (5.5)

where ∆t is the integration time step size, k is the time step, and u̇ is the same as

in (5.1). For low frequencies, a small value of ε does not necessarily produce a u

that minimizes (5.2). In this case, the value of u̇ may produce a change in u that is

much larger than what is desired and (5.2) is never minimized. Thus, the TVD-SPε

13



must run at a higher frequency than TVD-C or TVD-Dk. This provides the agents

with control updates on a faster time scale than the motion, leading to performance

approaching that of TVD-C. The locational cost of TVD-SPε approaches that of

TVD-C for small values of ε for very high frequencies.
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Chapter 6

Simulation Results

Simulations are run to evaluate the relative performance of the algorithms

presented. The algorithms are implemented in C++. We present a comparison of

performance between Lloyd, TVD-C, TVD-Dk, and TVD-SPε for various density

functions using a simulation of 50 holonomic agents.

The following functions serve as time-varying densities representing a target:

φ1 = e
−
(
(qx − 2 sin( t

τ
))2 + (qy − y

4
)2

)
(6.1)

φ2 = e
−
(
(qx − sin( t

τ
))2 + (qy + sin(2t

τ
))2

)

φ3 = e
−
(
(qx − 2 cos( t

τ
))2 + (qy − 2 sin( t

τ
))2

)

where τ = 5. For time-varying densities, the ∂c
∂p

and ∂c
∂t

quantities are computed as

in [5]. The measure of performance is the total cost∫ T

0

H(p, V, t)dt

Figure 6.1 shows the total cost of Lloyd, TVD-C, TVD-Dk, and TVD-SPε

over time using density φ1 in the simulations with 50 holonomic agents. As the

number of terms k increases, the total cost of TVD-Dk decreases, approaching the

same total cost as that of TVD-C. Likewise, as the parameter ε approaches zero,

the total cost of TVD-SPε approaches that of TVD-C.
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Figure 6.1: Total cost for simulations of 50 holonomic agents using density function

φ1

Table 6.1 shows the total cost at t = 30s of all algorithms presented in

simulations of 50 holonomic agents using density functions (6.1) with τ = 5. Using

TVD-Dk, as the number of terms k increases, the total cost decreases, approaching

the same total cost as that of TVD-C. Likewise, when using TVD-SPε, the total

cost decreases as the size of the perturbation parameter ε decreases, approaching

the same total cost as that of TVD-C. Selecting a small enough perturbation

parameter allows for TVD-SPε to outperform TVD-Dk without any need for each

agent to use information about the network beyond that of its immediate neighbors.

Table 6.1: Comparison of Total Locational Cost (50 Holonomic Agents), τ = 5

Algorithm φ1 φ2 φ3

Lloyd 0.637 0.620 0.594
TVD-D0 0.622 0.610 0.584
TVD-D1 0.564 0.550 0.524
TVD-D2 0.531 0.528 0.500
TVD-D3 0.507 0.504 0.479
TVD-SP0.01 0.500 0.550 0.556
TVD-SP0.02 0.487 0.543 0.525
TVD-SP0.009 0.475 0.533 0.461
TVD-C 0.453 0.464 0.446

Since one of the advantages of TVD-SPε is that it updates the control on a

faster time scale than the motion, allowing for information to propagate throughout

the network, the perturbation parameter and the frequency must be chosen such

16



that the control is updated on a much faster time scale than the time-varying

density, as well as the motion of the agents. In these simulations, the frequency

used is f = max(fb, fb/(τε)), where fb is a base frequency used by Lloyd, TVD-C,

and TVD-Dk.
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Chapter 7

Experimental Results

We present experimental results from deploying Turtlebots from Willow

Garage in a rectangular space to demonstrate each algorithm’s performance for

agents with unicycle dynamics. The Turtlebots navigate using onboard odometry

and an overhead camera. The overhead camera tracks Aruco markers on top of the

Turtlebots. The algorithms are implemented in C++ using the Robot Operating

System (ROS) library. All algorithms presented (Lloyd, TVD-C, TVD-Dk, and

TVD-SPε) produce input velocities in global coordinates, which must be converted

to unicycle coordinates for the Turtlebots. The input velocity is mapped to unicycle

coordinates by

vi =
[
− cos(θi), sin(θi)

]
ui

ωi = ksatan2

[
− sin(θi), cos(θi)

]
ui[

cos(θi), sin(θi)
]
ui


where vi is the forward velocity of the Turtlebot, ωi is the steering rate of the

Turtlebot, θi is the heading of the Turtlebot, and ks is a steering gain. Table 7.1

shows the total cost at t = 30s of all algorithms presented in simulations of 50

holonomic agents using density functions (6.1) with τ = 5. Because a first order

integrator updates the control, there is no guarantee that these algorithms will

perform the same when applied to nonholonomic agents.

Remark 1. Even if the series expansion converges, the performance of TVD-Dk

does not necessarily approach that of TVD-C monotonically in all cases.
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Remark 2. In the setting where agents have nonholonomic constraints, there is no

guarantee that regardless of initial conditions, any distributed algorithm designed

for holonomic agents will seek the same local minimum as TVD-C (except for suf-

ficiently large values of k in the case of TVD-Dk or sufficiently small values of ε in

the case of TVD-SPε). In some cases, TVD-Dk will not have a monotonic decrease

in performance as k increases or ε decreases. The centralized algorithm may even

under-perform some distributed algorithms when applied to nonholonomic agents.

In these experiments, initial conditions are chosen so that all of the algo-

rithms converge to the same solution. In particular, the Turtlebots are placed so

that they are near a Centroidal Voronoi Tessellation and oriented such that they

initially line up with their desired input velocities.

Table 7.1: Comparison of Total Locational Cost

(5 Turtlebots), τ = 5

Algorithm φ1 φ2 φ3

Lloyd 4.695 4.947 4.561
TVD-D0 4.590 4.808 4.485
TVD-D1 4.509 4.684 4.387
TVD-D2 4.486 4.661 4.367
TVD-D3 4.476 4.661 4.360
TVD-SP0.02 4.429 4.684 4.350
TVD-SP0.01 4.419 4.664 4.338
TVD-SP0.009 4.410 4.653 4.337
TVD-C 4.409 4.652 4.336

In this experiment where initial conditions are selected carefully, we see

the same almost the same trends in performance in Table 7.1 for TVD-Dk and

TVD-SPε as we do for the simulations of holonomic agents in Table 6.1.
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Chapter 8

Conclusion

The singular perturbation method converges to the centralized solution for

sufficiently small perturbation parameter. The singular perturbation method prop-

agates information throughout the network by updating the control input on a

much smaller time scale than the motion of the agents or the density function.

This allows each agent to generate a control that minimizes locational cost by

obtaining information only from its Voronoi neighbors. This requires the singular

perturbation method to be applied at a sufficiently high frequency for the chosen

perturbation parameter. The choice becomes one of how quickly the information

should propagate throughout the network as opposed to how much information to

propagate at once. If for instance agents are limited in how far they can communi-

cate, the singular perturbation method can produce a control that approaches the

performance of the centralized algorithm even though information cannot propa-

gate throughout the network at once. In this setting, the singular perturbation

method is a better choice than the von Neumann approximation. The singular

perturbation method is also a better option in the case where each agent has a fast

processor, but very limited memory on board (and few neighbors). Because the

high frequency leads to more rounds of communication, the complexity of the sin-

gular perturbation method is higher than the von Neumann approximation when

these constraints are not present.

For holonomic agents, the total cost also decreases monotonically as the per-

turbation parameter decreases, approaching the same performance as that of the
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centralized approach. For nonholonomic agents, it is necessary (but not sufficient)

to choose suitable initial conditions in order for the von Neumann approximation

to arrive at the same solution as the centralized algorithm. There is no guarantee

that locational cost decreases monotonically except for sufficiently large number

of terms in the approximation. The singular perturbation method however, does

approach the same solution as the centralized algorithm and locational cost does

decrease monotonically for perturbation parameters small enough for convergence.
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Appendix A

Computing Jacobian Matrix

In this section, we present an alternate derivation of the Jacobian matrix

∂c/∂p to the derivation presented in [10] and [5]. To compute the partial derivative

of c with respect to p, begin with the mass and centroid of the ith partition.

mi =

∫
Vi(p)

φ(q, t)dq (A.1)

ci =

∫
Vi(p)

qφ(q, t)dq/mi (A.2)

The following theorem is useful when applying the quotient rule

Theorem 4 (Leibniz rule). If

F =

∫
Ω(p)

f(q)dq (A.3)

then

∂F

∂p
=

∫
∂Ω(p)

f(q)
∂q

∂p
· n̂(q)dq,∀q ∈ ∂Ω (A.4)

where n̂(q) represents a unit vector normal to the boundary ∂Ω(p) pointing outward.

We apply the Leibniz rule to differentiate the ith centroid with respect to

its jth neighbor.
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∂ci
∂pj

=(

∫
∂Vi(p)

qφ(q, t)
∂q

∂pj
· n̂(q)dq (A.5)

− ci
∫
∂Vi(p)

φ(q, t)
∂q

∂pj
· n̂(q)dq)/mi (A.6)

where n̂(q) = (pj − pi)/‖pj − pi‖, j ∈ NVi , and NVi is the neighbor set of the ith

Voronoi cell. Each of these integrals is a line integral along a single line segment,

the boundary between the ith and jth cell. For integrals where i = j, it is necessary

to compute along all the segments of the ith Voronoi cell boundary that is shared

with a neighboring cell.

∂ci
∂pi

=
∑
j∈NVi

(

∫
∂Vi(p)

qφ(q, t)
∂q

∂pi
· n̂(q)dq (A.7)

− ci
∫
∂Vi(p)

φ(q, t)
∂q

∂pi
· n̂(q)dq)/mi (A.8)

and n̂(q) is defined as before. Note that in the case where the boundaries of two

Voronoi cells share a single point, the integral for that agent pair evaluates to zero,

so j is considered not to be part of the neighbor set of i. To compute the integrals,

it is necessary to express both ∂q/i and ∂q/j. We derive ∂q/i and ∂q/j as follows.

Let

q(s) =
1

2
(pi + pj) +

[
0 −1

1 0

]
(pj − pi)s (A.9)

(A.10)

be a pont on the boundary between neighboring Voronoi cells. Then

dq

ds
=

[
0 −1

1 0

]
(pj − pi) (A.11)

∂q

∂pi
=

1

2
I −

[
0 −1

1 0

]
s (A.12)

∂q

∂pj
=

1

2
I +

[
0 −1

1 0

]
s (A.13)
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where s ∈ [s0, s1] and q(s0) and q(s1) are the start and end points of the boundary

between the ith and jth cells. These points are computed as

s0 =

([
0 −1

1 0

]
(pj−pi)
‖pj−pi‖2

)T (
q0 − 1

2
(pi + pj)

)
(A.14)

s1 =

([
0 −1

1 0

]
(pj−pi)
‖pj−pi‖2

)T (
q1 − 1

2
(pi + pj)

)
(A.15)

Because n̂ is perpendicular to the boundary ∂Vi(p), the following property must

hold:

(
q − 1

2
(pi + pj)

)
· (pj − pi) = 0, ∀q ∈ ∂Vij(p) (A.16)

This produces the same result as in [10]

0 = (pj − pi)T
(
∂q
∂pj
− 1

2
I
)

+
(
q − 1

2
(pi + pj)

)T
(A.17)

(pj − pi)T
∂q

∂pj
=

1

2
(pj − pi)T + qT − 1

2
(pi + pj)

T (A.18)

= (pj − q)T (A.19)

In a similar fashion,

0 = (pj − pi)T
(
∂q
∂pi
− 1

2
I
)
−
(
q − 1

2
(pi + pj)

)T
(A.20)

(pj − pi)T
∂q

∂pi
=

1

2
(pj − pi)T − qT +

1

2
(pi + pj)

T (A.21)

= (q − pi)T (A.22)

To compute the line integrals, let s = (1−θ)s0 +θs1, ds
dθ

= s1−s0, where θ ∈ [0, 1].

Then

∫
∂Vij

f(q)dq =

∫ s1

s0

f(q(s))‖dq
ds
‖ds (A.23)

=

∫ 1

0

f(q(s(θ)))‖dq
ds
‖‖ds
dθ
‖dθ (A.24)
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Replacing f(q(s(θ))) with φ(q, t) and qφ(q, t),

∂

∂pj

∫
∂Vij

φ(q, t)dq =

∫ 1

0

φ(q(s(θ)), t)n̂T
∂q

∂pj
‖pj − pi‖|s1 − s0|dθ (A.25)

=

∫ 1

0

φ(q(s(θ)), t)(pj − pi)T
∂q

∂pj
|s1 − s0|dθ (A.26)

=

∫ 1

0

φ(q(s(θ)), t)(pj − q(s(θ)))T |s1 − s0|dθ (A.27)

∂

∂pj

∫
∂Vij

qφ(q, t)dq =

∫ 1

0

q(s(θ))φ(q(s(θ)), t)n̂T
∂q

∂pj
‖pj − pi‖|s1 − s0|dθ (A.28)

=

∫ 1

0

q(s(θ))φ(q(s(θ)), t)(pj − pi)T
∂q

∂pj
|s1 − s0|dθ (A.29)

=

∫ 1

0

q(s(θ))φ(q(s(θ)), t)(pj − q(s(θ)))T |s1 − s0|dθ (A.30)

∂

∂pi

∫
∂Vik

φ(q, t)dq =

∫ 1

0

φ(q(s(θ)), t)n̂T
∂q

∂pi
‖pk − pi‖|s1 − s0|dθ (A.31)

=

∫ 1

0

φ(q(s(θ)), t)(pk − pi)T
∂q

∂pi
|s1 − s0|dθ (A.32)

=

∫ 1

0

φ(q(s(θ)), t)(q(s(θ))− pi)T |s1 − s0|dθ (A.33)

∂

∂pi

∫
∂Vik

qφ(q, t)dq =

∫ 1

0

q(s(θ))φ(q(s(θ)), t)n̂T
∂q

∂pi
‖pk − pi‖|s1 − s0|dθ (A.34)

=

∫ 1

0

q(s(θ))φ(q(s(θ)), t)(pk − pi)T
∂q

∂pj
|s1 − s0|dθ (A.35)

=

∫ 1

0

q(s(θ))φ(q(s(θ)), t)(q(s(θ))− pi)T |s1 − s0|dθ (A.36)

The final form of the Jacobian ∂c/∂p is then
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∂ci
∂pj

=(

∫ 1

0

qφ(q(s(θ)), t)(pj − q(s(θ)))T |s1 − s0|dθ (A.37)

− ci
∫ 1

0

φ(q(s(θ)), t)(pj − q(s(θ)))T |s1 − s0|dθ)/mi (A.38)

∂ci
∂pi

=
∑
k∈NVi

(

∫ 1

0

qφ(q(s(θ)), t)(q(s(θ))− pi)T |s(k)
1 − s

(k)
0 |dθ (A.39)

− ci
∫ 1

0

φ(q(s(θ)), t)(q(s(θ))− pi)T |s(k)
1 − s

(k)
0 |dθ)/mi (A.40)
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This thesis, in full, is currently being prepared for submission for publication

of the material. Gandarillas, Victor; Cortés, Jorge. The thesis author is the

primary investigator and author of this paper.
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