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Abstract

Sequential decision-making tasks are commonplace in our ev-
eryday lives. We report the results of an experiment in which
human subjects were trained to perform a perceptual matching
task, an instance of a sequential decision-making task. We use
two benchmarks to evaluate the quality of subjects’ learning.
One benchmark is based on optimal performance as defined
by a dynamic programming procedure. The other is based
on an adaptive computational agent that uses a reinforcement
learning method known as Q-learning to learn to perform the
task. Our analyses suggest that subjects learned to perform
the perceptual matching task in a near-optimal manner at the
end of training. Subjects were able to achieve near-optimal
performance because they learned, at least partially, the causal
structure underlying the task. Subjects’ learning curves were
broadly consistent with those of model-based reinforcement-
learning agents that built and used internal models of how their
actions influenced the external environment. We hypothesize
that, in general, people will achieve near-optimal performances
on sequential decision-making tasks when they can detect the
effects of their actions on the environment, and when they can
represent and reason about these effects using an internal men-
tal model.

Keywords: sequential decision making; optimal performance;
dynamic programming; reinforcement learning

Introduction
Tasks requiring people to make a sequence of decisions to
reach a goal are commonplace in our lives. When playing
chess, a person must choose a sequence of chess moves to
capture an opponent’s king. When driving to work, a per-
son must choose a sequence of left and right turns to arrive
at work in a timely manner. And when pursuing financial
goals, a person must choose a sequence of saving and spend-
ing options to achieve a financial target. Interest in sequen-
tial decision-making tasks among cognitive scientists hasin-
creased dramatically in recent years (e.g., Busemeyer, 2002;
Chhabra & Jacobs, 2006; Fu & Anderson, 2006; Gibson,
Fichman, & Plaut, 1997; Gureckis & Love, 2009; Lee, 2006;
Sutton & Barto, 1998; Shanks, Tunney, & McCarthy, 2002).

Here, we are interested in whether people are successful at
learning to perform sequential decision-making tasks. There
are at least two ways in which the quality of learning can be
evaluated. These ways differ in terms of the benchmark to
which the performances of a learner are compared. One way
uses a benchmark of optimal performance on a task. Anal-
yses based on optimal performance are referred to as ideal
observer analyses, ideal actor analyses, or rational analyses
in the literatures on perception, motor control, and cognition,
respectively. At each moment during training with a task, a

learner’s performance can be compared to the optimal perfor-
mance for that task. If a learner achieves near-optimal perfor-
mance at the end of training, then it can be claimed that the
learner has been successful.

A second way of evaluating a learner is to compare the
learner’s performances with those of an adaptive computa-
tional agent that is trained to perform the same task. We con-
sider here an agent that learns via “reinforcement learning”
methods developed by researchers interested in artificial in-
telligence (Sutton & Barto, 1998). Cognitive scientists have
begun to use reinforcement learning methods to develop new
theories of biological learning (e.g., Busemeyer & Pleskac,
2009; Daw & Touretzky, 2002; Schultz, Dayan, & Montague,
1997; Fu & Anderson, 2006). To date, however, there are
few comparisons of the learning curves of people and agents
based on reinforcement learning methods. Because reinforce-
ment learning is regarded as effective and well-understood
from an engineering perspective, and as plausible from psy-
chological and neurophysiological perspectives, the perfor-
mances of agents based on this form of learning can provide
useful benchmarks for evaluating a person’s learning. If a
person’s performance during training improves at the same
rate as that of a reinforcement-learning agent, then it can
be argued that the person is a successful learner. If a per-
son’s performance improves at a slower rate, then the person
is not learning as much from experience as he or she could
learn. Experimentation is often required to identify the cogni-
tive “bottlenecks” preventing the person from learning faster.
Lastly, if a person’s performance improves at a faster rate,
then this suggests that the person is using information sources
or information processing operations that are not available to
the agent. A new, more complex agent should be considered
in this case.

We report the results of an experiment in which human sub-
jects were trained to perform a perceptual matching task. This
task was designed to contain a number of desirable features.
Importantly, the perceptual matching task is an instance ofa
sequential decision-making task. Subjects made a sequence
of decisions (or, equivalently, took a sequence of actions)to
modify an environmental state to a goal state. In addition, ef-
ficient performance on the perceptual matching task required
knowledge of how different properties of an environment in-
teracted with each other. In many everyday tasks, people are
required to understand the interactions, or “causal relations”,
among multiple components (Busemeyer, 2002; Gopnik &
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Shulz, 2007). For example, when reaching for a coffee mug,
a person must understand that forces exerted at the shoulder
also influence the positions and velocities of the elbow, wrist,
and fingers. To make an efficient movement, a person must
use this knowledge of the causal interactions among motor
components to design an effective motor plan.

Subjects’ performances on the perceptual matching task
were evaluated via two benchmarks. Using an optimization
technique known as dynamic programming, optimal perfor-
mance on this task was calculated. In addition, computer
simulations of an adaptive agent were conducted in which the
agent was trained to perform the perceptual matching task
using a reinforcement learning method known as Q-learning
(Sutton & Barto, 1998; Watkins, 1989). Comparisons of sub-
jects’ performances during training with optimal performance
and with those of the adaptive agent suggest that: (i) subjects
learned to perform the perceptual matching task in a near-
optimal manner at the end of training; (ii) subjects learned,
at least partially, the causal structure underlying the task; (iii)
subjects’ learning curves were consistent with those of model-
based reinforcement-learning agents; and (iv) subjects may
have learned by building and using mental models of how
their actions influenced the external environment. Additional
details and results are reported in Yakushijin & Jacobs (2010).

Experiment

Methods: Twenty-four undergraduate students at the Uni-
versity of Rochester participated in the experiment. Subjects
were paid $10 for their participation. All subjects had nor-
mal or corrected-to-normal vision. Subjects were randomly
assigned to one of six experimental conditions. Each condi-
tion included both training and test trials. Only the results of
training trials are discussed here due to space limitations.

On a training trial, subjects performed a perceptual match-
ing task which used visual objects from a class of parame-
terized objects known as “supershapes” (highly realistic but
unfamiliar shapes; see Gielis, 2003). The parameters were
latent (hidden) variables whose values determined the shapes
of the objects. On each trial, subjects viewed a target object,
a comparison object, and a set of six buttons (see left panel of
Figure 1). Buttons were organized into three pairs, and each
pair could be used to decrease or increase the value of an ac-
tion variable. By pressing the buttons, subjects could change
the values of the action variables which, in turn, changed the
values of the parameters underlying the comparison object’s
shape which, in turn, changed the shape of the comparison
object. Subjects’ task was to press one or more buttons (i.e.,
to change the values of the action variables) to modify the
shape of the comparison object until it matched the shape of
the target object using as few button presses as possible.

An experimental condition was characterized by a specific
set of causal relations among the latent shape parameters. For
example, one such set is schematically illustrated in the right
panel of Figure 1. Here, the three action variables are denoted
A, B, andC. These variables are observable in the sense that

subjects could directly and easily control their values through
the use of the buttons. The values of the action variables de-
termined the values of the shape parameters, denotedX , Y ,
andZ. Note that there are causal relations among the shape
parameters. According to the network in Figure 1, if the value
of X is changed, then this leads to a modification ofY which,
in turn, leads to a modification ofZ. The shape parameters de-
termine the shape of the comparison object, whose perceptual
features are denotedf1, f2, f3, f4, f5, and f6. The perceptual
features used by a subject to assess the similarity of targetand
comparison object shapes may only be implicitly known by a
subject, and may differ between subjects.

Importantly, to efficiently convert the comparison object’s
shape to the target object’s shape (i.e., with the fewest num-
ber of button presses) often requires an understanding of the
causal relations among the shape parameters. For instance,
if the values of parametersX , Y , andZ all need to be mod-
ified, a person who does not understand the causal relations
among shape parameters may decide to change the value of
action variableC (thereby changing shape parameterZ), then
the value of action variableB (thereby changingY andZ),
and finally the value of action variableA (thereby changing
X , Y , andZ). In many cases, this will be an inefficient strat-
egy. A person with good knowledge of the causal relations
among the shape parameters knows that he or she can change
the values ofX , Y , andZ with a single button press that de-
creases or increases the value of action variableA. Thus, a
good understanding of the causal relations among the shape
parameters will lead to efficient task performance, whereasa
poor understanding of the causal relations will lead to many
more button presses than necessary.

The six experimental conditions differed in the causal rela-
tions among the latent shape parametersX , Y , andZ. Two of
the causal relations were “linear” structures (one parameter
had a direct causal influence on a second parameter which,
in turn, had a direct causal influence on a third parameter;
e.g.,X → Y → Z or Y → X → Z), two of the relations were
“common cause” structures (one parameter had direct causal
influences on the two remaining parameters; e.g.,Y ← X→ Z
or X ← Y → Z), and two of the relations were “common ef-
fect” structures (two parameters had direct causal influences
on a third parameter; e.g.,X → Y ← Z or Y → X ← Z).

An experimental session consisted of 7 blocks of trials where
a block contained a set of training trials followed by a set of
test trials. (Test trials evaluated subjects’ one-step look-ahead
knowledge; on a test trial, a subject decided if a comparison
object could be converted to a target object using a single
button press, and the subject did not receive feedback. Again,
test trials are not discussed here.) Each set contained 26 tri-
als, one trial for each possible perturbation of a target object
shape to form an initial comparison object shape.

Results: Task Performances: As a benchmark for evalu-
ating subjects’ performances on training trials, we computed
optimal performances on these trials using an optimization
method known as dynamic programming (Bellman, 1957).
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Figure 1: Left: Example of an experimental display. Right: Bayesian network representing the causal relations (in one of the
experimental conditions) among the action variables, shape parameters, and perceptual features. For simplicity, thenetwork
does not represent the fact that subjects’ button presses determined the values of the action variables.

In brief, dynamic programming is a technique for computing
optimal solutions to multi-stage decision tasks. That is, dy-
namic programming finds the shortest sequences of actions
that move a system from an initial state to a goal state when
all states are fully observable. In the context of a trainingtrial,
the initial state corresponds to the initial values of the shape
parametersX , Y , andZ for the comparison object, and the
goal state corresponds to the values of the shape parameters
for the target object. The dynamic programming algorithm
is provided with full state information. This means that the
algorithm knows the values of the comparison object’s shape
parameters at every time step. It also knows the state tran-
sition dynamics, meaning that it knows the causal relations
among the shape parameters and, thus, knows how any button
press will change the values of the shape parameters. Rela-
tive to our subjects, the dynamic programming algorithm is
at an advantage. At the start of the experiment, our subjects
did not know the values of the shape parameters or the causal
relations among the parameters. Consequently, it would be
impressive if subjects learned to perform the task as well as
the dynamic programming algorithm.

We determined the optimal performances in the six exper-
imental conditions via dynamic programming. Our analysis
revealed that the range (1-5 steps or button presses) and the
average length (2.54 steps) of the optimal action sequences
were identical for all conditions. Thus, the conditions were
well balanced in terms of their intrinsic difficulties.

Figure 2 shows subjects’ learning curves on training trials
in the two experimental conditions with linear causal struc-
tures among shape parameters. Due to space limitations, we
do not show results for conditions with common-cause and
common-effect structures, though subjects in these conditions
showed very similar results to subjects in linear structurecon-
ditions (Yakushijin & Jacobs, 2010). Eight subjects partici-
pated in linear structure conditions and, thus, the figure con-
tains eight graphs. The horizontal axis of each graph gives the
block number, and the vertical axis gives the average differ-
ence between the number of steps (i.e., button presses) used
by a subject during a trial and the optimal number of steps
for that trial as computed by the dynamic programming pro-
cedure. These graphs show a number of interesting features.
Many subjects found the task to be difficult toward the start

of the experiment and, thus, their performances were highly
sub-optimal during this time period. However, every subject
learned during the course of the experiment. Importantly, ev-
ery subject achieved near-optimal performance at the end of
training: The average difference between a subject’s perfor-
mance and the optimal performance at the end of training is
less than 1/2 of a step (mean = 0.434; standard deviation =
0.324).

Results: Causal Learning: The data from the training tri-
als show that subjects achieved near-optimal performances.
These results are consistent with the idea that subjects learned
about the causal relations among the latent shape parameters.
Additional analyses of training and test trials, not described
here due to space limitations, confirm that subjects did indeed
learn (at least partially) about these causal relations, and that
this knowledge played a role in their task performances. De-
tails can be found in Yakushijin & Jacobs (2010).

Reinforcement Learning Agents

Above, our analysis of subjects’ data used a benchmark of
optimal performance based on dynamic programming. Al-
though very useful, this analysis does not allow us to evalu-
ate the quality of subjects’ rates of learning. To do so, we
use a different benchmark based on an adaptive computa-
tional agent that uses a reinforcement learning method known
as Q-learning to learn to perform the perceptual matching
task (Sutton & Barto, 1998; Watkins, 1989). Without go-
ing into the mathematical details, the reader should note that
Q-learning is an approximate dynamic programming method
(Si et al., 2004). It is easy to show that, under mild con-
ditions, the sequence of decisions found by an agent using
Q-learning is guaranteed to converge to an optimal sequence
found by dynamic programming (Watkins & Dayan, 1992).
Hence, the benchmarks based on dynamic programming and
on Q-learning are related.

In a reinforcement learning framework, it is assumed that
an agent attempts to choose actions so as to receive the most
reward possible. The agent explores its environment by as-
sessing its current state and choosing an action. After execut-
ing this action, the agent will be in a new state, and will re-
ceive a reward (possibly zero) associated with this new state.
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Figure 2: Subjects’ learning performances on training trials in the two experimental conditions with linear causal structures
among shape parameters (top row:X → Y → Z; bottom row:Y → X → Z).

The agent adapts its behavior in a trial-by-trial manner by
noticing which actions tend to be followed by future rewards
and which actions are not. To choose good actions, the agent
needs to estimate the long-term reward values of selecting
possible actions from possible states. Ideally, the value of se-
lecting actionat in statest at timet, denotedQ(st ,at), should
equal the sum of rewards that the agent can expect to re-
ceive in the future if it takes actionat in statest : Q(st ,at) =
E[∑∞

k=0 γk rt+k+1] wheret is the current time step,k is an in-
dex over future time steps,rt+k+1 is the reward received at
time t + k + 1, andγ (0 < γ ≤ 1) is a term that serves to dis-
count rewards that occur in the far future more than rewards
that occur in the near future. An agent can learn accurate es-
timates of these ideal values on the basis of experience if it
updates its estimates at each time step using the equation:

Q(st ,at)←Q(st ,at)+ α[rt+1 + γ max
a

Q(st+1,a)−Q(st ,at)]

where the agent makes actionat in statest and receives re-
ward rt+1, and α is a step size or learning rate parameter
(Sutton & Barto, 1998; Watkins, 1989).

In our first set of simulations in which a reinforcement-
learning agent was trained to perform the perceptual match-
ing task, all “Q-values” were initialized to zero, the discount
rateγ was set to 0.7, and the learning rateα was set to 0.45. In
preliminary simulations, these values were found to be best
in the sense that they led to performances that most closely
matched human performances. At each time step, the state
of the agent represented the difference in shape between the
comparison and target objects. It was a three-dimensional
vector whose elements were set to the values of the shape pa-
rameters for the comparison object minus the values of these
parameters for the target object. Six possible actions were
available to the agent corresponding to the six buttons thata
subject could press to modify the action variables. The agent
chose an action using anε-greedy strategy, meaning that the
agent chose the actiona that maximizedQ(st ,a) with proba-
bility 1−ε (ties were broken at random), and chose a random

action with probabilityε. The value ofε was initialized to
one, and then it was slowly decreased during the course of
a simulation. As a result, the agent tended to “explore” a
wide range of actions toward the beginning of a simulation,
and tended to “exploit” its current estimates of the best ac-
tion to take toward the middle and end of a simulation. If the
agent chose an action that caused the comparison object to
have the same shape as the target object, the agent received
a reward of 100. Otherwise, it received a reward of -1. The
agent performed the training trials of the experiment in the
same manner as our human subjects—it performed 7 blocks
of training trials with 26 trials per block. To accurately esti-
mate the agent’s performances during training, the agent was
simulated 1000 times.

The results for experimental conditions using linear causal
structures are shown in the left graph of Figure 3 (results
for other conditions were similar). The horizontal axis plots
the block number, and the vertical axis plots the average dif-
ference between the number of steps (i.e., actions or button
presses) used by the agent or by human subjects during a trial
and the optimal number of steps for that trial as computed by
the dynamic programming procedure (as in Figure 2; the error
bars in Figure 3 indicate the standard deviations). The solid
line shows the data for the simulated agent, and the dotted
line shows the data for our human subjects. Interestingly, the
learning curves of the simulated agent and of the human sub-
jects have similar shapes, though subjects learned faster than
the agent at nearly all stages of training in all experimental
conditions. Modifications of the agent by either using differ-
ent values for the agent’s parameters or by adding “eligibility
traces” did not significantly alter this basic finding.

Why did subjects show better learning performances than
the simulated agent? In the machine learning literature, a
distinction is made between model-free versus model-based
reinforcement learning agents. The agent described above
is an instance of a model-free agent. Although model-free
agents are more common in the literature, we hypothesized
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Figure 3: Left: Learning curves for the simulated agent trained via Q-learning (solid line) and for the human subjects (dotted
line) in experimental conditions using linear causal structures (error bars plot standard deviations). Right: Identical to the left
graph except that the simulated agent learned a model of how actions influenced the environment, and used this model to reason
about good actions to take at each time step.

that a model-based reinforcement learning agent may pro-
vide a better account of our subjects’ performances. Model-
based agents typically learn faster than model-free agents, al-
beit with greater computational expense. Based on real-world
experiences, a model-based agent learns an internal model of
how its actions influence the environment. The agent updates
its Q-values from both real-world experiences with the envi-
ronment and from simulated experiences with the model (see
Sutton and Barto, 1998, for details).

In our simulations, the model was an artificial neural net-
work. Its six input units corresponded to the six possible ac-
tions or key presses (an action variable could either increase
or decrease in value, and there were three action variables).
Its nine output units corresponded to the nine possible influ-
ences on the comparison objects’ shape parameters (a shape
parameter could either increase in value, decrease in value, or
maintain the same value, and there were three shape parame-
ters). The network did not contain any hidden units.

When updating its Q-values, the model-based agent used
‘prioritized sweeping’ (Moore & Atkeson, 1993). This is an
efficient method for focusing Q-value updates to state-action
pairs associated with large changes in expected reward. Large
changes occur, for example, when the current state is a non-
goal state and the agent discovers a previously unfamiliar ac-
tion that leads to a goal state. Large changes also occur when
the current state is a non-goal state, and the agent discovers a
new action that leads to a new non-goal state known to lie on
a path toward a goal state.

In brief, our simulations used prioritized sweeping as fol-
lows. At each moment in time, the model-based agent main-
tained a queue of state-action pairs whose Q-values would
change based on either real or simulated experiences. For
each update based on a real experience, there were up toN
updates based on simulated experiences. The items on the

queue were prioritized by the absolute amount that their Q-
values would be modified. For example, suppose that at some
moment in time, state-action pair(s∗,a∗) had the highest pri-
ority. ThenQ(s∗,a∗) would be updated. If performing this
update on the basis of simulated experience, the agent used
the model to predict the resulting new state. In addition, the
agent also used the model to examine changes to the Q-values
for all state-action pairs predicted to lead to states∗, known as
predecessor state-action pairs. These predecessor state-action
pairs were added to the queue, along with their corresponding
priorities.

The simulations with the model-based agent were identi-
cal to those with the model-free agent. However, the model-
based agent used different parameter values. Its discount rate
γ was set to 0.3, its learning rateα was set to 0.05, andN, the
number of Q-value updates based on simulated experiences
for each update based on a real experience, was set to 5. In
preliminary simulations, these values were found to be best
in the sense that they led to performances that most closely
matched human performances.

The combined results for the experimental conditions us-
ing linear causal structures are shown in the right graph of
Figure 3 (once again, results for the other experimental con-
ditions were similar). The learning curves of the model-based
agent are more similar to those of human subjects than the
curves of the model-free agent. Indeed, the curves of the
model-based agent and of the human subjects are nearly iden-
tical. Our findings suggest (but do not prove) that subjects
may have achieved near-optimal performances on the percep-
tual matching task by building internal models of how their
actions influenced the external environment. By using these
models to reason about possible action sequences, subjects
quickly learned to perform the task.
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Conclusions

Sequential decision-making tasks are commonplace in our
everyday lives. Here, we studied whether people were suc-
cessful at learning to perform a perceptual matching task, an
instance of a sequential decision-making task. We used two
benchmarks to evaluate the quality of subjects’ learning. One
benchmark was based on optimal performance as defined by a
dynamic programming procedure. The other was based on an
adaptive computational agent that used Q-learning to learnto
perform the task. Overall, our analyses suggest that subjects
learned to perform the perceptual matching task in a near-
optimal manner. When doing so, subjects learned, at least
partially, the causal structure underlying the task. In addition,
subjects’ learning curves were broadly consistent with those
of model-based reinforcement-learning agents that built and
used internal models of how their actions influenced the ex-
ternal environment.

The cognitive science literature now contains several stud-
ies of human performance on sequential decision-making tasks.
Some studies have suggested that human performance is op-
timal, whereas other studies have suggested the opposite. To
date, our field does not have a good understanding of the
factors influencing whether people will achieve optimal per-
formance on a task. Future research will need to focus on
this critical issue. Previous articles in the literature suggested
that perceptual aliasing (Stankiewicz et al., 2006) or the ex-
istence of actions leading to large rewards in the short-term
but not the long-term (Neth, Sims, & Gray, 2006; Gureckis
& Love, 2009) seem to be factors leading to sub-optimal per-
formance. Here, we propose a new understanding of when
people will (or will not) achieve optimal performance. We hy-
pothesize that people will achieve near-optimal performance
on sequential-decision making tasks when they can detect the
effects of their actions on the environment, and when they
can represent and reason about these effects using an internal
mental model.
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