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Abstract learner’s performance can be compared to the optimal perfor
S ial decisi King task ace | mance for that task. If a learner achieves near-optimabperf
eguential decision-making tasks are commonplace In our ev tAi H ;
eryday lives. We report the results of an experiment in which mance at the end of training, then it can be claimed that the
human subjects were trained to perform a perceptual magchin learner has been successful.

task, an instance of a sequential decision-making task. 34/ u . .
two benchmarks to evaluate the quality of subjects’ leanin A second way of evaluating a learner is to compare the

One benchmark is based on optimal performance as defined learner’s performances with those of an adaptive computa-

by a dynamic programming procedure. The other is based {jong| agent that is trained to perform the same task. We con-
on an adaptive computational agent that uses a reinforacemen

learning method known as Q-learning to learn to perform the Sider here an agent that learns via “reinforcement leafning
task. Our analyses suggest that subjects learned to perform methods developed by researchers interested in artificial i

the perceptual matching task in a near-optimal manner at the (g |jigence (Sutton & Barto, 1998). Cognitive scientistyéda
end of training. Subjects were able to achieve near-optimal '

performance because they learned, at least partiallyaieat begun to use reinforcement learning methods to develop new
structure underlying the task. Subjects’ learning curvesew theories of biological learning (e.g., Busemeyer & Pleskac

broadly consistent with those of model-based reinforcemen . .
learning agents that built and used internal models of heiv th 2009; Daw & Touretzky, 2002; Schultz, Dayan, & Montague,

actions influenced the external environment. We hypoteesiz  1997; Fu & Anderson, 2006). To date, however, there are
that, in general, people will achieve near-optimal perfances few comparisons of the learning curves of people and agents

on sequential decision-making tasks when they can detect th - pa5eq on reinforcement learning methods. Because regforc
effects of their actions on the environment, and when thay ca

represent and reason about these effects using an inteenalm  MenNt learning is regarded as effective and well-understood

tal model. from an engineering perspective, and as plausible from psy-
Keywords: sequential decision making; optimal performance; ~ chological and neurophysiological perspectives, theqperf

dynamic programming; reinforcement learning mances of agents based on this form of learning can provide

useful benchmarks for evaluating a person’s learning. If a

Introduction person’s performance during training improves at the same

ate as that of a reinforcement-learning agent, then it can

reach a goal are commonplace in our lives. When playin € z’glrguefd that the_person IS ? sulccessful Ie;ahrnert.h If a per-
chess, a person must choose a sequence of chess move Qg's periormance improves at a slower rate, then th€ person

capture an opponent’s king. When driving to work, a per—IS not 'ea”‘”?g as m_ucr_l from EXpEerience as hg or She. could
-Vléaarn. Experimentation is often required to identify thgie

five “bottlenecks” preventing the person from learningdas

at work in a timely manner. And when pursuing financia v if \ ¢ . t a fast i
goals, a person must choose a sequence of saving and spe goty, It a persons periormance improves at a 1aster rate,
then this suggests that the person is using informatiorcesur

ing options to achieve a financial target. Interest in sequen” ™ ; i _ " that ¢ |
tial decision-making tasks among cognitive scientistsihas f[)hr n orm? 'Xn processing opelra lons ta hare|;(t), ava idered
creased dramatically in recent years (e.g., Busemeyeg;200 € agent. A new, more complex agent should be considere

Chhabra & Jacobs, 2006; Fu & Anderson, 2006; Gibson'" this case.
Fichman, & Plaut, 1997; Gureckis & Love, 2009; Lee, 2006; We report the results of an experimentin which human sub-
Sutton & Barto, 1998; Shanks, Tunney, & McCarthy, 2002). jects were trained to perform a perceptual matching tasks Th
Here, we are interested in whether people are successful sk was designed to contain a number of desirable features.
learning to perform sequential decision-making tasks.r&he Importantly, the perceptual matching task is an instance of
are at least two ways in which the quality of learning can besequential decision-making task. Subjects made a sequence
evaluated. These ways differ in terms of the benchmark t@f decisions (or, equivalently, took a sequence of actitms)
which the performances of a learner are compared. One wayodify an environmental state to a goal state. In additién, e
uses a benchmark of optimal performance on a task. Analfficient performance on the perceptual matching task redquire
yses based on optimal performance are referred to as idehowledge of how different properties of an environment in-
observer analyses, ideal actor analyses, or rational semly teracted with each other. In many everyday tasks, people are
in the literatures on perception, motor control, and cagnjt  required to understand the interactions, or “causal miati
respectively. At each moment during training with a task, aamong multiple components (Busemeyer, 2002; Gopnik &

Tasks requiring people to make a sequence of decisions
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Shulz, 2007). For example, when reaching for a coffee mugsubjects could directly and easily control their valuestigh
a person must understand that forces exerted at the shouldie use of the buttons. The values of the action variables de-
also influence the positions and velocities of the elbowstyri termined the values of the shape parameters, denttéd
and fingers. To make an efficient movement, a person mustndZ. Note that there are causal relations among the shape
use this knowledge of the causal interactions among motgparameters. According to the network in Figure 1, if the galu
components to design an effective motor plan. of X is changed, then this leads to a modificatioiy afhich,
Subjects’ performances on the perceptual matching task turn, leads to a modification @& The shape parameters de-
were evaluated via two benchmarks. Using an optimizatioriermine the shape of the comparison object, whose perdeptua
technique known as dynamic programming, optimal perforfeatures are denotefd, f2, f3, f4, f5, andfs. The perceptual
mance on this task was calculated. In addition, computefeatures used by a subject to assess the similarity of tangkt
simulations of an adaptive agent were conducted in which theomparison object shapes may only be implicitly known by a
agent was trained to perform the perceptual matching taskubject, and may differ between subjects.
using a reinforcement learning method known as Q-learning Importantly, to efficiently convert the comparison objsct’
(Sutton & Barto, 1998; Watkins, 1989). Comparisons of sub-shape to the target object’s shape (i.e., with the fewest num
jects’ performances during training with optimal performa  ber of button presses) often requires an understandinggof th
and with those of the adaptive agent suggest that: (i) stbjeccausal relations among the shape parameters. For instance,
learned to perform the perceptual matching task in a neaif the values of parameteds, Y, andZ all need to be mod-
optimal manner at the end of training; (ii) subjects learnedified, a person who does not understand the causal relations
at least partially, the causal structure underlying thk; t@is) among shape parameters may decide to change the value of
subjects’ learning curves were consistent with those ofehod action variableC (thereby changing shape paramégrthen
based reinforcement-learning agents; and (iv) subjects mahe value of action variabl8 (thereby changinyy andZ),
have learned by building and using mental models of howand finally the value of action variabke (thereby changing
their actions influenced the external environment. Addiilo X, Y, andZ). In many cases, this will be an inefficient strat-
details and results are reported in Yakushijin & Jacobs@201 egy. A person with good knowledge of the causal relations
among the shape parameters knows that he or she can change
Experiment the values ofX, Y, andZ with a single button press that de-
Methods: Twenty-four undergraduate students at the Uni-CTeases or incregses the value of aCtiO.n varidblghus, a
versity of Rochester participated in the experiment. Suibje good understf_;lndmg of th? f:ausal relations among the shape
were paid $10 for their participation. All subjects had nor- parameters will Igad (o efficient task pe_rforma_mce, wheseas
o . oor understanding of the causal relations will lead to many
mal or corrected-to-normal vision. Subjects were randomI)P

. . . o ‘more button presses than necessary.
assigned to one of six experimental conditions. Each condi- P Y

tion included both training and test trials. Only the resoit The six experimental conditions differed in the causal-rela
training trials are discussed here due to space limitations ~ {iOnS among the latent shape parameXerg, andZ. Two of

On a training trial, subjects performed a perceptual matchJEhe caugal relations were linear” structures (one parame_t
ing task which used visual objects from a class of parame.haOI a direct caqsal mfluencg on a second pa.rameter which,
terized objects known as “supershapes” (highly realistic b in turn, had a direct causal influence on a th|r<_j parameter;
unfamiliar shapes; see Gielis, 2003). The parameters wef@9-X =Y —ZorY — X —7), two of the relations were
latent (hidden) variables whose values determined the&shap_common cause structure_s (_one parameter had direct causal
of the objects. On each trial, subjects viewed a target ijeclnﬂuences on the two remaining pargmeters; e/g— X—Z
a comparison object, and a set of six buttons (see left pdnel rX”<— Y — Z), and two of the relat|0n§ were -common ef-
Figure 1). Buttons were organized into three pairs, and eac ct st_ructures (two parameters had direct causal inflagnc
pair could be used to decrease or increase the value of an a&" & third parameter; e.¢,— Y «— ZorY — X < 7).
tion variable. By pressing the buttons, subjects could ghan ~ An experimental session consisted of 7 blocks of trials wher
the values of the action variables which, in turn, changed tha block contained a set of training trials followed by a set of
values of the parameters underlying the comparison objecttest trials. (Test trials evaluated subjects’ one-steg-aisead
shape which, in turn, changed the shape of the Comparisdmowledge; on a test trial, a subject decided if a comparison
object. Subjects’ task was to press one or more buttons (i.eobject could be converted to a target object using a single
to change the values of the action variables) to modify thdutton press, and the subject did not receive feedback m\gai
Shape of the Comparison Object until it matched the Shape dfi‘St trials are not discussed here.) EaCh set Contained‘26 tr
the target object using as few button presses as possible.  als, one trial for each possible perturbation of a targe¢cibj

An experimental condition was characterized by a specifiSha@pe to form an initial comparison object shape.
set of causal relations among the latent shape parameters. FResults. Task Performances. As a benchmark for evalu-
example, one such set is schematically illustrated in figtri  ating subjects’ performances on training trials, we coragut
panel of Figure 1. Here, the three action variables are @enot optimal performances on these trials using an optimization
A, B, andC. These variables are observable in the sense thamethod known as dynamic programming (Bellman, 1957).
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Figure 1: Left: Example of an experimental display. Righ&iyBsian network representing the causal relations (in btteeo
experimental conditions) among the action variables, shpgrameters, and perceptual features. For simplicitynéteork
does not represent the fact that subjects’ button pressesmraed the values of the action variables.

In brief, dynamic programming is a technique for computingof the experiment and, thus, their performances were highly
optimal solutions to multi-stage decision tasks. Thatis, d sub-optimal during this time period. However, every subjec
namic programming finds the shortest sequences of actiorisarned during the course of the experiment. Importanily, e
that move a system from an initial state to a goal state wheery subject achieved near-optimal performance at the end of
all states are fully observable. In the context of a trainifal,  training: The average difference between a subject’s perfo
the initial state corresponds to the initial values of thepggh mance and the optimal performance at the end of training is
parameters, Y, andZ for the comparison object, and the less than 1/2 of a step (mean = 0.434; standard deviation =
goal state corresponds to the values of the shape parameté.824).

for the target object. The dynamic programming algorithmR%uItS Causal Learning: The data from the training tri-

is prqvided with full state information. Th?s means that theaIS show that subjects achieved near-optimal performances
algorithm knows the values of the comparison object’s shapgyese results are consistent with the idea that subjectsdda
parameters at every time step. It also knows the state ranhout the causal relations among the latent shape parameter
sition dynamics, meaning that it knows the causal relat'onidditional analyses of training and test trials, not dese
among t_rllle ihape pﬁramelzters afnorll, thuhs, knows how any bUttlﬂQre due to space limitations, confirm that subjects dideédde
press will change the values of the shape parameters. Relg, (at least partially) about these causal relations tlaat

tive to our subjects, the dynamic programming algorithm iSy,is ynowledge played a role in their task performances. De-
at an advantage. At the start of the experiment, our SUbJeCﬁils can be found in Yakushijin & Jacobs (2010)
did not know the values of the shape parameters or the causa '

relations among the parameters. Consequently, it would be
impressive if subjects learned to perform the task as well as
the dynamic programming algorithm. Above, our analysis of subjects’ data used a benchmark of
We determined the optimal performances in the six expereptimal performance based on dynamic programming. Al-
imental conditions via dynamic programming. Our analysisthough very useful, this analysis does not allow us to evalu-
revealed that the range (1-5 steps or button presses) and thte the quality of subjects’ rates of learning. To do so, we
average length (2.54 steps) of the optimal action sequencesse a different benchmark based on an adaptive computa-
were identical for all conditions. Thus, the conditions ever tional agent that uses a reinforcement learning method know
well balanced in terms of their intrinsic difficulties. as Q-learning to learn to perform the perceptual matching
Figure 2 shows subjects’ learning curves on training trialdask (Sutton & Barto, 1998; Watkins, 1989). Without go-
in the two experimental conditions with linear causal struc ing into the mathematical details, the reader should nate th
tures among shape parameters. Due to space limitations, Wi@-learning is an approximate dynamic programming method
do not show results for conditions with common-cause andSi et al., 2004). It is easy to show that, under mild con-
common-effect structures, though subjects in these dondit  ditions, the sequence of decisions found by an agent using
showed very similar results to subjects in linear structore ~ Q-learning is guaranteed to converge to an optimal sequence
ditions (Yakushijin & Jacobs, 2010). Eight subjects partic found by dynamic programming (Watkins & Dayan, 1992).
pated in linear structure conditions and, thus, the figure co Hence, the benchmarks based on dynamic programming and
tains eight graphs. The horizontal axis of each graph gives t on Q-learning are related.
block number, and the vertical axis gives the average differ In a reinforcement learning framework, it is assumed that
ence between the number of steps (i.e., button presses) usad agent attempts to choose actions so as to receive the most
by a subject during a trial and the optimal number of stepseward possible. The agent explores its environment by as-
for that trial as computed by the dynamic programming pro-sessing its current state and choosing an action. Afterugxec
cedure. These graphs show a number of interesting featuraag this action, the agent will be in a new state, and will re-
Many subjects found the task to be difficult toward the startceive a reward (possibly zero) associated with this neve stat

Reinforcement L earning Agents
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Figure 2: Subjects’ learning performances on traininggria the two experimental conditions with linear causalstures
among shape parameters (top rov— Y — Z; bottom row:Y — X — Z).

The agent adapts its behavior in a trial-by-trial manner byaction with probabilitye. The value ofe was initialized to
noticing which actions tend to be followed by future rewardsone, and then it was slowly decreased during the course of
and which actions are not. To choose good actions, the ageatsimulation. As a result, the agent tended to “explore” a
needs to estimate the long-term reward values of selectingride range of actions toward the beginning of a simulation,
possible actions from possible states. Ideally, the vafseo and tended to “exploit” its current estimates of the best ac-
lecting actiong; in states at timet, denoted)(s,a; ), should  tion to take toward the middle and end of a simulation. If the
equal the sum of rewards that the agent can expect to re&gent chose an action that caused the comparison object to
ceive in the future if it takes actioa in states: Q(s,a) = have the same shape as the target object, the agent received
E[Sk oYk rt+k+1] Wheret is the current time stefxis an in-  a reward of 100. Otherwise, it received a reward of -1. The
dex over future time steps; .1 is the reward received at agent performed the training trials of the experiment in the
timet+k+1, andy (0 <y<1)is aterm that serves to dis- same manner as our human subjects—it performed 7 blocks
count rewards that occur in the far future more than rewardsf training trials with 26 trials per block. To accuratelyties

that occur in the near future. An agent can learn accurate esaate the agent’s performances during training, the agesit wa
timates of these ideal values on the basis of experience if simulated 1000 times.

updates its estimates at each time step using the equation:  pg reqyts for experimental conditions using linear chusa

structures are shown in the left graph of Figure 3 (results
for other conditions were similar). The horizontal axistplo

where the agent makes actienin states and receives re- the block number, and the vertical axis plots the average dif
ward ri;1, anda is a step size or learning rate parameterference between the number of steps (i.e., actions or button
(Sutton & Barto, 1998; Watkins, 1989) presses) used by the agent or by human subjects during a trial

In our first set of simulations in which a reinforcement- and the optimal number of steps for that trial as computed by
ht_he dynamic programming procedure (as in Figure 2; the error
ing task, all “Q-values” were initialized to zero, the disco bars in Figure 3 indicate the standard deviations). Thelsoli

rateywas set to 0.7, and the learning rateas set to 0.45. In I@ne shows the data for the simulated_agent, and the dotted
preliminary simulations, these values were found to be beéine S_hOWS the data for our human subjects. Interestinigéy, t

in the sense that they led to performances that most cIosef?am'ng CUrves of the simulated agent_ and of the human sub-
matched human performances. At each time step, the stalgCts have similar shapes, though su_b!ect_s learned fdi_start

of the agent represented the difference in shape between tHe¢ @9ent at nearly all stages of training in all experimenta
comparison and target objects. It was a three-dimensiongPnditions. Modifications of the agent by either using dffe
vector whose elements were set to the values of the shape p%@t vaLueg for th? agent's parameters or _by gd(_jlng eligyoil
rameters for the comparison object minus the values of thedkaces did not significantly alter this basic finding.
parameters for the target object. Six possible actions were Why did subjects show better learning performances than
available to the agent corresponding to the six buttonsahat the simulated agent? In the machine learning literature, a
subject could press to modify the action variables. The agerdistinction is made between model-free versus model-based
chose an action using argreedy strategy, meaning that the reinforcement learning agents. The agent described above
agent chose the acti@ithat maximized)(s,a) with proba-  is an instance of a model-free agent. Although model-free
bility 1 — € (ties were broken at random), and chose a randonagents are more common in the literature, we hypothesized

Q(s,a) — Q(s,a) +arey1+Y mng(sHl, a)—Q(s, a)]

learning agent was trained to perform the perceptual matc
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Model-free agent
& Human performance

Model-based agent
-+ Human performance

Average actual steps - optimal steps
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Figure 3: Left: Learning curves for the simulated agennedivia Q-learning (solid line) and for the human subjectstéd
line) in experimental conditions using linear causal dtites (error bars plot standard deviations). Right: Idehtio the left
graph except that the simulated agent learned a model of timena influenced the environment, and used this model sorea
about good actions to take at each time step.

that a model-based reinforcement learning agent may pragueue were prioritized by the absolute amount that their Q-
vide a better account of our subjects’ performances. Modelvalues would be modified. For example, suppose that at some
based agents typically learn faster than model-free againts moment in time, state-action pds*,a*) had the highest pri-

beit with greater computational expense. Based on redBwor ority. ThenQ(s*,a*) would be updated. If performing this
experiences, a model-based agent learns an internal miodelapdate on the basis of simulated experience, the agent used
how its actions influence the environment. The agent updatehe model to predict the resulting new state. In addition, th

its Q-values from both real-world experiences with the envi agent also used the model to examine changes to the Q-values
ronment and from simulated experiences with the model (sefor all state-action pairs predicted to lead to s&it&known as
Sutton and Barto, 1998, for details). predecessor state-action pairs. These predecessoastete-

In our simulations, the model was an artificial neural net-pairs were added to the queue, along with their correspgndin
work. Its six input units corresponded to the six possible acpriorities.
tions or key presses (an action variable could either irserea
or decrease in value, and there were three action variables
Its nine output units corresponded to the nine possible-influ
ences on the comparison objects’ shape parameters (a sh
parameter could either increase in value, decrease in,\aue
maintain the same value, and there were three shape para
ters). The network did not contain any hidden units.

When updating its Q-values, the model-based agent usqu’
‘prioritized sweeping’ (Moore & Atkeson, 1993). This is an
efficient method for focusing Q-value updates to statesacti
pairs associated with large changes in expected rewardeLar The combined results for the experimental conditions us-
changes occur, for example, when the current state is a nofhg linear causal structures are shown in the right graph of
goal state and the agent discovers a previously unfaméiar a Figure 3 (once again, results for the other experimental con
tion that leads to a goal state. Large changes also occur whejitions were similar). The learning curves of the modeldahs
the current state is a non-goal state, and the agent discaver agent are more similar to those of human subjects than the
new action that leads to a new non-goal state known to lie ogurves of the model-free agent. Indeed, the curves of the
a path toward a goal state. model-based agent and of the human subjects are nearly iden-

In brief, our simulations used prioritized sweeping as fol-tical. Our findings suggest (but do not prove) that subjects
lows. At each moment in time, the model-based agent mainmay have achieved near-optimal performances on the percep-
tained a queue of state-action pairs whose Q-values woultdial matching task by building internal models of how their
change based on either real or simulated experiences. Factions influenced the external environment. By using these
each update based on a real experience, there were Np tomodels to reason about possible action sequences, subjects
updates based on simulated experiences. The items on tlqeickly learned to perform the task.

The simulations with the model-based agent were identi-
al to those with the model-free agent. However, the model-
sed agent used different parameter values. Its discatent r

was set to 0.3, its learning ratewas set to 0.05, anid, the

imber of Q-value updates based on simulated experiences
or each update based on a real experience, was setto 5. In
eliminary simulations, these values were found to be best
the sense that they led to performances that most closely
matched human performances.

160



Conclusions Chhabra, M. & Jacobs, R. A. (2006). Near-optimal human
adaptive control across different noise environmeiite
Journal of Neuroscience, 26, 10883-10887.

aw, N. D. & Touretzky, D. S. (2002). Long-term reward
prediction in TD models of the dopamine systeNeural

Sequential decision-making tasks are commonplace in our
everyday lives. Here, we studied whether people were SuGy
cessful at learning to perform a perceptual matching task, a
instance of a sequential decision-making task. We used two .

benchmarks to evaluate the quality of subjects’ learninge O Fucc\)ll\/ﬂ?':'n?;Tﬁ(jl:,r5205n67\1-2|28?'2006) From recurrent choice
benchmark was based on optimal performance as defined by at’O sll<illllearning' A re’im;oréement-llearning modaburnal
dynamic programming procedure. The other was based on an of Experimental .Psychology' General 135. 184-206
adaptive computational agent that used Q-learning to learn Gibson. E. P.. Fichman. M '& Plaut’ D C (1997)' Learn-
perform the task. Overall, our analyses suggest that stsojec ing ir; d&/né’mic decisiljn ;[EiSkS: Co’mp.uta.tional m'odel and

learned to perform the perceptual matching task in a near- . ) o )
. ) : empirical evidenceQrganizational Behavior and Human
optimal manner. When doing so, subjects learned, at least -
Decision Processes, 71, 1-35.

part_|ally,’the ca_usal structure underlymgthet_ask. Irm_miul Gielis, J. (2003). A generic geometric transformation that
subjects’ learning curves were broadly consistent wittsého unifies a wide range of natural and abstract shafeeri-

of model-based reinforcement-learning agents that bodt a can Journal of Botany, 90, 333-338.

used mter_nal models of how their actions influenced the eXGopnik, A. & Shulz, L. (2007).Causal Learning: Psychol-
ternal environment.

" . . . ogy, Philosophy, and Computation. New York: Oxford
The cognitive science literature now contains severakstud 9y i P

. ) - ; University Press.
ies of human performance on sequential decision-makikgtass  eckis. T. M. & Love. B. C (2009). Short-term gains

Some studies have suggested that human performance is 0p10ng-term pains: How cues about state aid learning in dy-
timal, whereas other studies have suggested the opposite. T ... environmentCognition, 113, 293-313

date, our field does not have a good understanding of thEee M. D. (2006). A hierarchical Bayesian model of human
factors influencing whether people will achieve optimal-per décision-making on an optimal stopping probleBogni-
formance on a task. Future research will need to focus on 4\ . guience 30. 1-26

this critical issue. Previous articles in the literaturggested  \, .. A o Atkeson. C. (1993). Prioritized sweeping: Re-
that perceptual aliasing (Stankiewicz et al., 2006) or the e infor’cement Iearnir;g with less data and less real tilvia-
istence of actions leading to large rewards in the shont-ter chine Learning, 13, 103-130.

but not the long-term (Neth, Sims, & Gray, 2006; GureckiSyen 1 sims, C. R., & Gray, W. D. (2006). Melioration
& Love, 2009) seem to be factors leading to sub-qptlmal PET" * dominates maximization: Stable suboptimal performance
formance. Here, we propose a new understanding of when despite global feedbackProceedings of the 28th Annual
people will (or will not) achieve optimal performance. We hy Meeting of the Cognitive Science Society.

pothesize that people will achieve near-optimal perforcean Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural
on sequential-decision making tasks when they can detectth o\ i o prediction and rewardience, 275, 1593-
effects of their actions on the environment, and when they
can represent and reason about these effects using arailnter%hanks', D. R., Tunney, R. J., & McCarthy, J. D. (2002). A

mental model. re-examination of melioration and rational choideurnal
of Behavioral Decision Making, 15, 233-250.
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