
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Deep Learning Methodologies to Predict Fluid Responsiveness in Hemodynamically Unstable
Patients

Permalink
https://escholarship.org/uc/item/2n54r6kd

Author
Krishnamoorthy, Rahul

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2n54r6kd
https://escholarship.org
http://www.cdlib.org/

i

Deep Learning Methodologies to Predict Fluid Responsiveness in
Hemodynamically Unstable Patients

By

RAHUL KRISHNAMOORTHY

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chen-Nee Chuah, Chair

Vladimir Filkov

Jason Yeates Adams

Committee in Charge

2021

ii

ABSTRACT

Deep Learning Methodologies to Predict Fluid Responsiveness in

Hemodynamically Unstable Patients

Deep Learning is a branch of machine learning with a layered structure where each

layer gets its input from the previous layer to analyze the data and has shown

promising results to aid healthcare providers in various applications. This thesis

presents the development and evaluation of various Deep Learning approaches to

predict if a hemodynamically unstable patient would be responsive to infusion of

intravenous fluids. This thesis also explores various meticulously designed

experiments to thoroughly verify the predictive model’s generalization across

various carefully curated datasets to represent shocks resulting from different

physiologies in pigs.

 Treatment of patients suffering from shock often involves the infusion of

intravenous fluids, also known as fluid bolus therapy (FBT). An increase in cardiac

output (CO) of 15% or more after a supply of 500 ml of the fluid bolus indicates

fluid responsiveness, and the ground truth labels were designed based on this rule.

In addition, the arterial blood pressure (ABP) and central venous pressure (CVP)

waveforms were recorded before and after the infusion of each bolus. The period

before, during, and after the administration of fluid boluses is known as pre-

iii

macrobolus (Premac), macrobolus, post-macrobolus (Postmac), respectively. The

deep learning model takes sequences of specific lengths obtained from the ABP

and CVP during the premac period and the ground truth labels to classify each

bolus to be fluid responsive or not. The models were tuned and trained using

nested cross-validation accompanied by grid search algorithms.

 The results from our experiments suggest that deep learning can offer a

satisfactory framework to classify boluses as fluid responsive or fluid non-

responsive. In addition, this thesis presents a comprehensive guide to

experimentation on various aspects that could potentially affect the performance

of deep learning models while classifying one-dimensional data, including input

sequence length, model’s architecture, sample weighting in loss functions,

normalization, resampling the data, and various methods to sample the data to

acquire meaningful inferences from the results. The experiments showcase the

restricting nature of small-scale datasets on the deep learning model’s

performance. The deep learning model fails to generalize when the training and

the test sets contain different physiologies but generalizes better when both the

training and the test sets contain a comparable mixture of physiologies.

iv

ACKNOWLEDGEMENTS

I would like to thank my exceptional and supportive thesis committee members for

reviewing my work and offering your invaluable feedback. Thanks to my graduate

advisor and the committee chair, Prof. Chen-Nee Chuah, for mentoring me through

this project and guiding me to become a better researcher. You were always

available to offer your feedback whenever I required it and constantly nudged me

in the right direction to excel in my work. Thank you, Dr. Jason Adams, for

supporting me through my thesis and taking time off your busy schedule to guide

me through my work. Thanks for letting me shadow you at UC Davis Health and

for all your practical lessons. I learned a lot about critical care medicine and data

science through our meetings. This thesis would not have been possible without

the guidance from Prof. Chen-Nee Chuah and Dr. Jason Adams. Thank you, Prof.

Vladimir Filkov, for accepting to be a part of my thesis committee and reviewing

my work. I learned a great deal from your data science course, which inspired my

work on this thesis.

 Thanks to Debraj Basu for all your insights during our meetings and for

offering guidance through this thesis. I would also like to thank Gregory Rehm for

all those technical paper discussions and for answering my questions. Finally,

special thanks to my mom, dad, sister, and friends for always being there for me

and supporting me through my Master’s. This wouldn’t have been possible without

you all.

v

TABLE OF CONTENTS

ABSTRACT ... II

ACKNOWLEDGEMENTS .. IV

TABLE OF CONTENTS .. V

LIST OF TABLES ... VIII

LIST OF FIGURES ... XIII

1. INTRODUCTION ... 1

2. BACKGROUND .. 5

3. METHODOLOGY .. 22

3.1. PREDICTIVE MODELING PIPELINE ... 22

3.2. DATASET.. 23

3.2.1. GROUND TRUTH LABEL .. 25

3.2.2. DATASET CHARACTERISTICS ... 26

3.3. DATA PREPROCESSING ... 28

3.3.1. NORMALIZATION .. 28

3.3.2. SPLITTING INTO SEQUENCES ... 30

3.3.3. STRATIFICATION .. 33

vi

3.4. TRAINING AND HYPERPARAMETER TUNING .. 34

3.4.1. GRID SEARCH ... 34

3.4.2. LOSS FUNCTIONS .. 35

3.4.3. OPTIMIZATION ... 37

3.4.4. BATCH SIZE .. 39

3.4.5. NUMBER OF TRAINING EPOCHS .. 39

4. EXPERIMENTS AND RESULTS .. 42

4.1 FINDING IDEAL SEQUENCE LENGTH .. 42

4.2 MODEL REFINEMENT AND OPTIMIZATION ... 48

4.2.2 RESCALING CENTRAL VENOUS PRESSURE WAVEFORMS 51

4.2.3 REMOVING LSTM LAYER FROM MLSTM-FCN ARCHITECTURE 53

4.2.4 PERFORMANCE OF DENSENET MODEL... 55

4.2.5 SAMPLE WEIGHTING IN COST FUNCTION .. 56

4.2.6 RESAMPLING THE INPUT DATASET USING SMOTE 58

4.2.7 REMOVAL OF NORMALIZATION FROM PREPROCESSING PIPELINE 60

4.2.8 ALTERING NORMALIZATION PIPELINE ... 61

4.3 PIG-LEVEL AND BOLUS-LEVEL EXPERIMENT .. 64

4.4 PERFORMANCE ON COMBINED PHYSIOLOGIES OF MODELS TRAINED ON

INDIVIDUAL PHYSIOLOGIES ... 70

4.5 EVALUATION OF MODEL’S GENERALIZABILITY 74

vii

4.5.1 HOLDOUT SET PERFORMANCE OF MODELS TRAINED ON VARIOUS

COMBINATIONS OF PHYSIOLOGIES .. 75

4.5.2 REVERSING THE TRAINING AND HOLDOUT SETS 81

5. CONCLUSION .. 86

5.1 LIMITATIONS AND FUTURE WORK ... 89

6. REFERENCES .. 91

viii

LIST OF TABLES

TABLE 3.1: COMBINATION OF DATASETS AND THEIR CHARACTERISTICS ---------------------------------- 27

TABLE 4.2: PERFORMANCE OF MLSTMFCN MODEL USING ABP WAVEFORM AND

VARIABLE SEQUENCE LENGTHS IN A NESTED CROSS-VALIDATION ----------------------------- 43

TABLE 4.3: PERFORMANCE OF MLSTMFCN MODEL USING CVP WAVEFORM AND

VARIABLE SEQUENCE LENGTHS IN A NESTED CROSS-VALIDATION ----------------------------- 44

TABLE 4.4: PERFORMANCE OF MLSTMFCN MODEL USING ABP, CVP WAVEFORMS,

AND VARIABLE SEQUENCE LENGTHS IN A NESTED CROSS-VALIDATION ----------------------- 44

TABLE 4.5: PERFORMANCE OF MLSTMFCN MODEL USING ABP WAVEFORM AND

ALTERED EXPERIMENT FOR VARIABLE SEQUENCE LENGTHS IN A NESTED

CROSS-VALIDATION -- 46

TABLE 4.6: PERFORMANCE OF MLSTMFCN MODEL USING CVP WAVEFORM AND

ALTERED EXPERIMENT FOR VARIABLE SEQUENCE LENGTHS IN A NESTED

CROSS-VALIDATION -- 47

TABLE 4.7: PERFORMANCE OF MLSTMFCN MODEL USING CVP WAVEFORM AND

ALTERED EXPERIMENT FOR VARIABLE SEQUENCE LENGTHS IN A NESTED

CROSS-VALIDATION -- 47

TABLE 4.8: PERFORMANCE OF MLSTMFCN MODEL USING ABP WAVEFORM WITH AND

WITHOUT ATTENTION MECHANISM IN A NESTED CROSS-VALIDATION -------------------------- 49

TABLE 4.9: PERFORMANCE OF MLSTMFCN MODEL USING CVP WAVEFORM WITH AND

WITHOUT ATTENTION MECHANISM IN A NESTED CROSS-VALIDATION -------------------------- 50

TABLE 4.10: PERFORMANCE OF MLSTMFCN MODEL USING ABP AND CVP

WAVEFORMS WITH AND WITHOUT ATTENTION MECHANISM IN A NESTED

CROSS-VALIDATION -- 50

ix

TABLE 4.11: PERFORMANCE OF MLSTMFCN MODEL USING CVP WAVEFORM WITH 224

SEQUENCE LENGTH AND PIG-LEVEL SPLITTING WITH AND WITHOUT CVP

RESCALING IN A NESTED CROSS-VALIDATION --- 52

TABLE 4.12: PERFORMANCE OF MLSTMFCN MODEL USING ABP & CVP WAVEFORMS

WITH 224 SEQUENCE LENGTH AND PIG-LEVEL SPLITTING WITH AND WITHOUT

CVP RESCALING IN A NESTED CROSS-VALIDATION -- 52

TABLE 4.13: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

WITHOUT LSTM TRAINED ON HEM_SEP_SCALEDCVP DATA ---------------------------------- 53

TABLE 4.14: NESTED CROSS-VALIDATION PERFORMANCE OF DENSENET 18 MODEL

TRAINED ON HEM_SEP_SCALEDCVP DATA -- 55

TABLE 4.15: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

USING INS SAMPLE WEIGHTING AND TRAINED ON HEM_SEP_SCALEDCVP

DATA --- 57

TABLE 4.16: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

USING ISNS SAMPLE WEIGHTING AND TRAINED ON HEM_SEP_SCALEDCVP

DATA --- 57

TABLE 4.17: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

USING ENS SAMPLE WEIGHTING AND TRAINED ON HEM_SEP_SCALEDCVP

DATA --- 58

TABLE 4.18: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

USING SMOTE AND TRAINED ON HEM_SEP_SCALEDCVP DATA ----------------------------- 59

TABLE 4.19: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

WITHOUT NORMALIZING AND TRAINED ON HEM_SEP_SCALEDCVP DATA ------------------- 61

TABLE 4.20: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

WITH EVERYTHING NORMALIZED TOGETHER AND TRAINED ON

HEM_SEP_SCALEDCVP_EPACC_TRIAL1 DATA -- 62

x

TABLE 4.21: PERFORMANCE OF MLSTMFCN MODEL USING ABP WAVEFORM WITH 56

AND 224 SEQUENCE LENGTHS FOR BOLUS-LEVEL (BL) AND PIG-LEVEL (PL)

SPLITTING IN A NESTED CROSS-VALIDATION --- 65

TABLE 4.22: PERFORMANCE OF MLSTMFCN MODEL USING CVP WAVEFORM WITH 56

AND 224 SEQUENCE LENGTHS FOR BOLUS-LEVEL (BL) AND PIG-LEVEL (PL)

SPLITTING IN A NESTED CROSS-VALIDATION --- 65

TABLE 4.23: PERFORMANCE OF MLSTMFCN MODEL USING ABP AND CVP

WAVEFORMS WITH 56 AND 224 SEQUENCE LENGTHS FOR BOLUS-LEVEL (BL)

AND PIG-LEVEL (PL) SPLITTING IN A NESTED CROSS-VALIDATION ----------------------------- 66

TABLE 4.24: PERFORMANCE OF MLSTMFCN MODEL USING ABP WAVEFORM WITH 224

SEQUENCE LENGTH FOR PIG-LEVEL (PL) SPLITTING IN A FIVE-FOLD NESTED

CROSS-VALIDATION -- 67

TABLE 4.25: SUMMARY OF METRICS FROM TABLE 4.39 WITH AVERAGES AND 95%

CONFIDENCE INTERVALS --- 68

TABLE 4.26: PERFORMANCE OF MLSTMFCN MODEL USING CVP WAVEFORM WITH 224

SEQUENCE LENGTH FOR PIG-LEVEL (PL) SPLITTING IN A FIVE-FOLD NESTED

CROSS-VALIDATION -- 68

TABLE 4.27: SUMMARY OF METRICS FROM TABLE 4.41 WITH AVERAGES AND 95%

CONFIDENCE INTERVALS --- 68

TABLE 4.28: PERFORMANCE OF MLSTMFCN MODEL USING ABP & CVP WAVEFORMS

WITH 224 SEQUENCE LENGTH FOR PIG-LEVEL (PL) SPLITTING IN A FIVE-FOLD

NESTED CROSS-VALIDATION --- 69

TABLE 4.29: SUMMARY OF METRICS FROM TABLE 4.43 WITH AVERAGES AND 95%

CONFIDENCE INTERVALS --- 69

xi

TABLE 4.30: PERFORMANCE OF MLSTMFCN MODEL TRAINED ON BOLUSES FROM

EPACC_TRIAL1 PIGS WITH 224 SEQUENCE LENGTH AND TESTED ON

BOLUSES FROM SEPSIS PIGS--- 71

TABLE 4.31: PERFORMANCE OF MLSTMFCN MODEL TRAINED ON BOLUSES FROM

EPACC_TRIAL1 PIGS WITH 224 SEQUENCE LENGTH AND TESTED ON

BOLUSES FROM HEMORRHAGE PIGS --- 71

TABLE 4.32: PERFORMANCE OF MLSTMFCN MODEL TRAINED ON BOLUSES FROM

HEMORRHAGE PIGS WITH 224 SEQUENCE LENGTH AND TESTED ON BOLUSES

FROM SEPSIS PIGS --- 72

TABLE 4.33: PERFORMANCE OF MLSTMFCN MODEL TRAINED ON BOLUSES FROM

HEMORRHAGE PIGS WITH 224 SEQUENCE LENGTH AND TESTED ON BOLUSES

FROM EPACC_TRIAL1 PIGS --- 72

TABLE 4.34: PERFORMANCE OF MLSTMFCN MODEL TRAINED ON BOLUSES FROM

SEPSIS PIGS WITH 224 SEQUENCE LENGTH AND TESTED ON BOLUSES FROM

HEMORRHAGE PIGS --- 73

TABLE 4.35: PERFORMANCE OF MLSTMFCN MODEL TRAINED ON BOLUSES FROM

SEPSIS PIGS WITH 224 SEQUENCE LENGTH AND TESTED ON BOLUSES FROM

HEMORRHAGE PIGS --- 74

TABLE 4.36: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

TRAINED ON HEM DATA --- 76

TABLE 4.37: PERFORMANCE OF PICKLED MODEL TRAINED ON HEM DATA AND TESTED

ON HOLDOUT IRI_FR_1_2 DATA. --- 76

TABLE 4.38: PERFORMANCE OF PICKLED MODEL TRAINED ON HEM DATA AND TESTED

ON HOLDOUT IRI_FR_1_2_3 DATA. -- 77

TABLE 4.39: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

TRAINED ON EPACC_TRIAL1 DATA -- 77

xii

TABLE 4.40: PERFORMANCE OF PICKLED MODEL TRAINED ON EPACC_TRIAL1 DATA

AND TESTED ON HOLDOUT IRI_FR_1_2 DATA. --- 77

TABLE 4.41: PERFORMANCE OF PICKLED MODEL TRAINED ON EPACC_TRIAL1 DATA

AND TESTED ON HOLDOUT IRI_FR_1_2_3 DATA. -- 78

TABLE 4.42: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

TRAINED ON HEM_SEP_SCALEDCVP DATA -- 78

TABLE 4.43: PERFORMANCE OF PICKLED MODEL TRAINED ON HEM_SEP_SCALEDCVP

DATA AND TESTED ON HOLDOUT IRI_FR_1_2 DATA. --- 78

TABLE 4.44: PERFORMANCE OF PICKLED MODEL TRAINED ON HEM_SEP_SCALEDCVP

DATA AND TESTED ON HOLDOUT IRI_FR_1_2_3 DATA. -- 79

TABLE 4.45: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

TRAINED ON HEM_SEP_SCALEDCVP_EPACC_TRIAL1 DATA -------------------------------- 79

TABLE 4.46: PERFORMANCE OF PICKLED MODEL TRAINED ON

HEM_SEP_SCALEDCVP_EPACC_TRIAL1 DATA AND TESTED ON HOLDOUT

IRI_FR_1_2 DATA. -- 79

TABLE 4.47: PERFORMANCE OF PICKLED MODEL TRAINED ON

HEM_SEP_SCALEDCVP_EPACC_TRIAL1 DATA AND TESTED ON HOLDOUT

IRI_FR_1_2_3 DATA. -- 80

TABLE 4.49: NESTED CROSS-VALIDATION PERFORMANCE OF MLSTM-FCN MODEL

TRAINED ON IRI_FR_1_2_3 DATA --- 82

TABLE 4.50: PERFORMANCE OF PICKLED MODEL WITH TRAINED ON IRI_FR_1_2_3

DATA AND TESTED ON HOLDOUT HEM_SEP_SCALEDCVP DATA. ----------------------------- 83

xiii

LIST OF FIGURES

FIGURE 2.1: DENSE BLOCK IN A DENSELY CONNECTED CONVOLUTIONAL NETWORK -------------------- 13

FIGURE 2.2: TRANSITION LAYER IN A DENSELY CONNECTED CONVOLUTIONAL NETWORK

 -- 13

FIGURE 2.3: MLSTM-FCN ARCHITECTURE. THE ATTENTION MECHANISM CAN BE

ADDED TO THE LSTM CELLS IF NEEDED TO CREATE THE MALSTM-FCN

ARCHITECTURE. REPRINTED FROM NEURAL NETWORKS, VOLUME 116,

FAZLE KARIM, SOMSHUBRA MAJUMDAR, HOUSHANG DARABI, SAMUEL

HARFORD, MULTIVARIATE LSTM-FCNS FOR TIME SERIES CLASSIFICATION,

PAGES 237-245, COPYRIGHT (2019), WITH PERMISSION FROM ELSEVIER. ----------------- 19

FIGURE 3.1: STEPS INVOLVED IN THE PREDICTIVE MODELING PIPELINE ----------------------------------- 23

FIGURE 3.2: DISTRIBUTION OF POSITIVE AND NEGATIVE SAMPLES FOR EACH DATASET --------------- 27

FIGURE 3.3: DATA PREPROCESSING PIPELINE -- 28

FIGURE 3.4: HISTOGRAM FOR THE NUMBER OF DATA POINTS IN EACH CARDIAC CYCLE ---------------- 30

FIGURE 3.5: SPLITTING OF ABP AND CVP WAVEFORMS INTO SMALLER SEQUENCES OF

A SPECIFIED LENGTH -- 32

FIGURE 3.6: OVERFITTING EXPLAINED BY LOSS CURVES. RED: TRAINING LOSS, BLUE:

VALIDATION LOSS -- 40

FIGURE 4.1: OBTAINING SMALLER SEQUENCES FROM THE LONGEST SEQUENCE FOR

THE ALTERED SEQUENCE LENGTH EXPERIMENT. --- 46

FIGURE 4.2: MLSTM-FCN WITHOUT THE LSTM LAYERS. DERIVED FROM F. KARIM, S.

MAJUMDAR, H. DARABI, AND S. HARFORD, “MULTIVARIATE LSTM-FCNS

FOR TIME SERIES CLASSIFICATION,” NEURAL NETW., VOL. 116, PP. 237–

245, AUG. 2019, DOI: 10.1016/J.NEUNET.2019.04.014. --------------------------------------- 54

xiv

FIGURE 4.3: TRAINING AND VALIDATION LOSS CURVES FOR ONE OF THE FOLDS DURING

NESTED CROSS-VALIDATION FOR THE MODEL TRAINED ON

HEM_SEP_SCALEDCVP_EPACC_TRIAL1 DATA WITH 224 SEQUENCE

LENGTH AND ON A BOLUS LEVEL. RED: TRAINING LOSS, BLUE: VALIDATION

LOSS --- 85

1

Chapter 1

INTRODUCTION

Various advances in Machine Learning (ML) and Deep Learning (DL) have

simplified many complex tasks. ML and DL have many applications in regression,

forecasting, and classification problems. For example, they have vast applications

in autonomous driving and video surveillance[1], [2]. Furthermore, much research

is going on in speech recognition, and as each day progresses, artificial

intelligence’s (AI) ability to understand human speech is increasing [3]. Automatic

stock trading and traffic forecasting also utilize DL methods, reinforcing its

versatility [4], [5].

AI has also shown promising results in the healthcare industry. Patient

monitoring and recording has resulted in a large influx of data, which helps make

robust and reliable ML and DL models to assist patients. For instance, DL has

helped the health industry make giant leaps to help diagnose and monitor illnesses

like Covid-19 [6]. Shock is another critical condition that can have detrimental

effects on the human body. It occurs due to an abrupt contraction of blood flow

through the body. Shock could occur due to various reasons, including infection,

2

trauma, blood loss, and fluid loss. For example, septic shock occurs when the

blood pressure drops abruptly due to an infection. Likewise, hypovolemic shock

occurs due to a large amount of blood or fluid loss from the body. If hypovolemic

shock occurs due to blood loss, it is known as a hemorrhagic shock. Finally,

neurogenic shock could occur due to trauma or injury in the spine.

Treatment of patients suffering from shock frequently involves the infusion

of intravenous fluids, also known as fluid bolus therapy (FBT). However, it is

essential to balance the amount of fluid input and output in the body, and an

excessive amount of injection of fluids or going against the ‘Fluid Balance’ is

associated with high mortality rates [7], [8]. ‘Fluid responsiveness’ or a positive

response to the infusion of fluids is defined as a change in Cardiac Output (CO) or

Stroke Volume (SV) of 10-15% [9].

Arterial blood pressure (ABP) waveforms are the one-dimensional

representation of arterial pressure occurring due to the heart’s left ventricle

pumping action and the systemic vascular resistance. The clinically referenced

method to measure ABP waveforms involves utilizing invasive Blood Pressure

(BP) measurement using an arterial catheter [10]. ABP waveforms contain systolic,

diastolic, and mean arterial pressure information (MAPs) for each beat. The

utilization of ABP waveforms and their interactions with respiration can help assess

patients’ overall cardiovascular and hemodynamic status [11]. The Central venous

pressure (CVP) stands for the blood pressure measured in the venae cava next to

the heart’s right atrium. CVP waveforms provide vital information about the

3

cardiocirculatory status of the patient and help guide fluid resuscitation irrespective

of its shortcomings [12].

There are numerous methods to predict fluid responsiveness in the

literature. The passive leg raising technique offers a reliable method to predict fluid

responsiveness by creating a reversible increase in venous return [13]. However,

the requirement of labor to perform passive leg raising each time hindering

automation and the requirement of specialized apparatus are hard to look over

despite the method's effectiveness to predict fluid responsiveness. Pulse pressure

variation (PPV) is an important metric that has been vastly studied and used to

predict fluid responsiveness. PPV is calculated across the respiratory cycles in

mechanically ventilated patients by observing the changes in pulse pressure in

ABP waveforms. However, the operative performance of PPV is fluctuating across

various studies. For example, PPV performed brilliantly to predict fluid

responsiveness in critically ill patients but was severely obstructed by the

compliance of the respiratory system for patients mechanically ventilated at low

tidal volumes [14]. Additionally, Marik et al. pointed out that PPV can offer

compelling results but is limited to patients who receive controlled ventilation and

those not breathing spontaneously [15]. Finally, Teboul et al. marked that during

the various conditions encountered in the ICU, such as spontaneous breathing and

cardiac arrhythmias, PPV is often unreliable [16].

Advances in machine learning paved the way for the reliable prediction of

hypotension from arterial pressure waveforms [17]. Zhang et al. used XGBoost

4

and logistic regression to predict the volume responsiveness in patients with

oliguric acute kidney injury, defined as a rise in urine output in the hours after FBT

[18]. Kamaleswaran et al. used various machine learning models, including the

random forest and logistic regression algorithms, to predict volume

responsiveness among sepsis patients using features such as mean arterial blood

pressure and the age identified [19].

In this thesis, we present the development and evaluation of various Deep

Learning approaches to predict if a hemodynamically unstable patient would be

responsive to infusion of intravenous fluids. We make use of datasets that were

carefully curated to represent shock resulting from different physiologies. We also

present various sample weighting mechanisms for loss functions and resampling

methods, such as the synthetic minority over-sampling technique [20] that deal

with class imbalances. We also evaluate the ideal length of the input time-series

data to capture the critical information from the waveforms fed into the neural

networks for training and making predictions. Additionally, we use various deep

learning architectures such as Multivariate Long short-term memory fully

convolutional network and DenseNet with various changes to their conventional

architectures to estimate the change in performance resulting due to the change.

Finally, we experiment with normalization and various sampling of datasets to

acquire meaningful interpretation of results.

5

Chapter 2

BACKGROUND

2.1 Deep Learning

Predictive modeling is the process of finding relationships from structured data to

predict the desired outcome [21]. In this thesis, we primarily look at the one-

dimensional data of ABP and CVP of pig’s waveforms during the premacrobolus

phase to classify the sequence to be fluid responsive or not. Supervised learning

involves supplying both the dependent and independent variables as an input to a

mathematical model. The purpose of the mathematical model is to observe the

examples and produce predictions that are close to the ground truth variables as

much as possible [22]. The experiments conducted involve using supervised

learning techniques to predict whether a pig is fluid responsive or not.

Neural networks are algorithms designed to discern patterns from input data

and are modeled based on the human brain. A neural network incorporates input

6

and an output layer. If there are multiple additional layers present in the neural

network, they are known as deep neural networks, and the branch of predictive

modeling that uses deep neural networks to make predictions is known as deep

learning. A deep neural network can approximate very complex functions by

increasing the number of units in a layer and the number of layers. Thus, deep

learning offers a compelling framework for the task of supervised learning [23]. Our

experiments use the deep learning algorithm’s capabilities to provide compelling

predictions for fluid responsiveness. Specifically, we use two algorithms, namely

Multivariate Long Short Term Memory Fully Convolutional Network (MLSTM-FCN)

and Densely Connected Convolutional Networks (DenseNet) for binary time series

classification [24], [25].

2.1.1 Convolutional Neural Networks

The process of convolution combines two signals to produce a third signal.

Consequently, convolution is applying a filter to input data that creates an

activation from a deep learning point of view. Equation (22) represents the

convolution operation in a convolutional neural network where ⊗ represents the

convolution operator, and 𝑊 represents the kernels and 𝑏 represents the bias

vector.

 𝑦 = 𝑊 ⊗ 𝑥 + 𝑏

(1)

7

Convolutional neural networks (CNN) can capture the spatial and temporal

dependencies in the input data through relevant filters. CNN also eliminate the

need for traditional hand-crafted feature extractors required for pattern matching.

Due to the ability of CNN to capture the spatial and temporal information from the

data, they provide means to create end-to-end models that achieve good

performance in time-series classification [26]. Time-series data encourages the

usage of one-dimensional convolutions where the kernel slides along one

dimension. Apart from the convolution operation, CNN use batch normalization,

activation, and pooling layers to make meaningful predictions.

Batch Normalization

Batch normalization (BN) introduces normalization as a part of the model

architecture and normalizes the data of each mini-batch during training. Batch

normalization allows having aggressive learning rates and thus accelerates the

training process. BN also allows models to be less susceptible to weight and bias

initializations. In addition, BN tends to have a regularizing effect and could

eliminate the requirement for dropout layers for regularization [27].

8

Activation Functions

Activation functions help to decide whether a neuron should be activated or not. It

performs this action by introducing a non-linearity in the neural network. As a

result, output from each layer is a non-linear function of the input to that layer. It is

essential to introduce non-linearities in the network as it helps different layers learn

different features from the input data. Our experiments used 4 different kinds of

activation functions: sigmoid, hyperbolic tangent (tanh), Rectified linear unit

(ReLU), and softmax.

Sigmoid Function

The sigmoid function is a standard activation function in the deep-learning domain

to introduce non-linearities in deep neural networks. Also known as the logistic

function, equation (22) is the mathematical representation of it.

𝑓(𝑥) = (

1

1 + 𝑒−𝑥
)

(2)

It is a bounded differential function and has positive derivatives throughout

its domain. However, the sigmoid function has a few drawbacks too. For example,

it suffers from gradient saturation, gradient dampening in deeper layers of the

9

neural network, relatively slow convergence compared to other activation

functions, and has a non-zero-centered output causing gradients to jump in

different directions during training.

Hyperbolic Tangent Function (Tanh)

The hyperbolic tangent function is smoother and zero-centered, and its range lies

between -1 and 1. Therefore, equation (22) represents the tanh function.

𝑓(𝑥) = (

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
)

(3)

 The Tanh function had a better training performance when using multi-layer

neural networks. However, the tanh function does not solve the vanishing gradient

problem prevalent in deeper networks. Another critical aspect of the tanh function

is that it can only obtain a gradient of 1 if the input is 0, resulting in the creation of

dead neurons while training.

Rectified Linear Unit (ReLU)

Rectified linear unit is one of the most widely used activations functions in the deep

learning domain [28]. ReLU computes its output based on the mathematical

expression displayed in equation (22).

10

𝑓(𝑥) = max(0, 𝑥) = {

𝑥𝑖 , 𝑖𝑓 𝑥𝑖 ≥ 0
0, 𝑖𝑓 𝑥𝑖 ≤ 0

(4)

 ReLU is one of the fastest learning activation functions and offers better

performance than sigmoid and tanh. Moreover, since it offers an almost linear

function, it is effortless to optimize using gradient descent techniques.

Softmax Function

Softmax computes the probability distribution from an input vector and thus creates

output that satisfies the law of total probability. The softmax function computes its

output based on the mathematical relationship displayed in equation (5).

𝑓(𝑥𝑖) =

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

(5)

 The softmax function has its use case when dealing with multiclass models

where it returns the probability of each class with the target class having the

highest probability. The primary difference between the sigmoid and softmax

function is that the sigmoid function is used for binary classification while the

softmax function deals with multiclass classification tasks.

11

Pooling Layers

The purpose of pooling layers is to downsample the feature vectors by

summarizing specific patches in the feature vector. Max pooling and average

pooling are the widely used methods to downsample by taking the maximum value

from a patch and the average of a patch, respectively.

 Instead of working on small patches from the feature vector, global pooling

layers downsample the entire feature vector to a single value. Thus, global pooling

helps summarize the entire feature vector, and the most common global pooling

layer used in modern deep learning networks is the Global average pooling layers

(GAP). GAP has replaced the fully connected layers in a plethora of deep learning

algorithms, and they have helped reduce overfitting from the fully connected

layers.

2.1.2 Densely Connected Convolutional Networks

Convolutional neural networks can get deeper and hence more accurate in their

predictions if they have connections between the layers. These connections are

known as residual connections, and the networks that utilize these residual

connections to exercise better flow of gradient are known as Residual networks

[29]. Densely connected convolutional networks (DenseNet) utilize this property by

connecting the adjacent layers and every other layer in the neural network [25].

12

Each layer takes the concatenated feature maps of the preceding layers as its

input, and its feature maps are used as inputs by all the subsequent layers in the

network.

DenseNet also utilizes a composite function motivated by [30] comprising

batch normalization (BN), Rectified linear unit, and convolution operations in

conjunction. DenseNet requires a way to downsample the feature vectors to a

specific size to be concatenated with the feature vectors from other layers.

Transition layers facilitate the concatenation process by having a BN layer with a

1x1 convolution layer followed by an average pooling layer. Since DenseNet

concatenates many features in the dense block and each layer takes the

concatenated features as input, the size could become huge and slow down the

training. Thus, 1x1 convolutions inspired from [31] are introduced before each

convolution operation in the dense block to act as bottleneck layers.

DenseNet introduced in [25] utilizes the architecture primarily for image

classification and object detection on datasets like CIFAR [32], Street View House

Number (SVHN) [33], and ImageNet [34]. However, advances in deep learning and

the growing popularity of one-dimensional convolutions enabled DenseNet

architecture for time-series classification [35], [36]. This thesis uses DenseNet to

perform the binary classification of fluid responsiveness by analyzing the ABP and

CVP time-series data.

13

Figure 2.1: Dense block in a densely connected convolutional network

Figure 2.2: Transition layer in a densely connected convolutional network

Figure 2.1 and Figure 2.2 show the dense block and the transition layers

present in a densely connected convolutional network. In the DenseNet18 model

used in this thesis, The input layer takes the one-dimensional waveforms to the

network. The input layer is attached to a convolutional layer with a kernel size

equal to 7, a stride length of 2, and a max-pooling layer with a kernel size equal to

3 and a stride length of 2. The architecture then consists of 4 pairs of dense blocks

and transition layers, as described in Figure 2.1 and Figure 2.2. Each dense block

was cascaded twice immediately, followed by a transition layer. Then, a global

average pooling layer with a kernel size of 7 sums up the features in each channel

14

of the convolutional layers. Finally, the global average pooling layer is followed by

a 1000 dimensional fully-connected layer with a softmax activation to provide

meaningful classifications. This is the basic model architecture of a DenseNet18

model used in the experiments in this thesis.

2.1.3 Multivariate LSTM-FCN for Time-Series
Classification

Multivariate Long Short Term Memory Fully Convolutional Network (MLSTM-FCN)

[24] combines two of the widely used algorithms in time-series related tasks,

namely Long Short Term Memory (LSTM) [37] and one-dimensional Fully

Convolutional Networks (FCN) together. Moreover, the algorithm facilitates using

the attention mechanism [38] combined with LSTM for multivariate time series

classification. Finally, Squeeze-and-excitation [39] blocks augment the fully

convolutional block’s ability to classify the time-series data better. Furthermore, the

MLSTM-FCN model requires minimal preprocessing and feature extraction,

making it a robust algorithm for creating an end-to-end model to predict fluid

responsiveness using ABP and CVP waveforms.

15

Long Short Term Memory (LSTM)

Long short term memory is a category of a Recurrent Neural Network (RNN)

capable of learning the dependence in the order of terms from a sequence of data.

A significant drawback with the previous versions of RNNs are the problems of

vanishing and exploding gradients. LSTM tackles the vanishing and exploding

gradient problems by integrating gating functions into the state dynamics [37].

There are various computations taking place in the LSTM as depicted by Graves

et al. [40] in the following equations:

 𝑔𝑢 = 𝜎(𝑊𝑢ℎ𝑡−1 + 𝐼𝑢𝑥𝑡)

(6)

 𝑔𝑓 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝐼𝑓𝑥𝑡) (7)

 𝑔𝑜 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝐼𝑜𝑥𝑡) (8)

 𝑔𝑐 = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ𝑡−1 + 𝐼𝑐𝑥𝑡) (9)

 𝑚𝑡 = 𝑔𝑓 ⊙ 𝑚𝑡−1 + 𝑔𝑢 ⊙ 𝑔𝑐

(10)

 ℎ𝑡 = tanh (𝑔𝑜 ⊙ 𝑚𝑡) (11)

 Where 𝑔𝑢, 𝑔𝑓, 𝑔𝑜, 𝑔𝑐 are the input, forget, output, and cell state activation

functions, respectively, ℎ𝑡 is the LSTM’s hidden state vector, ⊙ represents

element-wise multiplication, 𝜎 represents the sigmoid activation function.

Projection matrices are represented by 𝐼𝑢, 𝐼𝑓, 𝐼𝑜, 𝐼𝑐 while the weight matrices are

represented by 𝑊𝑢, 𝑊𝑓, 𝑊𝑜, 𝑊𝑐. Even though LSTMs effectively learn temporal

16

dependencies from the sequential input data, they find it challenging to learn long-

term dependencies. To learn long-term dependencies from the input, Bahdanau et

al. [38] proposed using the attention mechanism with LSTM.

Attention Mechanism

Bahdanau et al. [38] proposed the attention mechanism that performs a linear

combination of encoder and decoder states and is hence known as additive

attention. The attention mechanism generates a context vector based on the target

sequence 𝑦. When an encoder maps an input sequence 𝑥, a sequence of

annotations (𝑏1, … , 𝑏𝑇𝑥
) of length 𝑇𝑥 are created where each annotation 𝑏𝑖 contains

information on the input sequence while still focusing around the 𝑖-th word. Based

on equation (22), the weighted sum of the annotations 𝑏𝑖 is used to compute the

context vector.

𝑣𝑖 = ∑ 𝛼𝑖𝑗𝑏𝑗

𝑇𝑥

𝑗=1

(12)

 The weight 𝛼𝑖𝑗can be calculated by the following:

𝛼𝑖𝑗 =

exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)
𝑇𝑥
𝑘=1

(13)

17

In equation (22), 𝑒𝑖𝑗 is the energy of alignment, computed using a feedforward

neural network known as the alignment model. The feedforward neural network is

trained parallelly along with the RNN. The gradients of the alignment model and

the RNN flow simultaneously.

Squeeze-and-Excitation Block

Channels in a convolutional neural network are independent of each other, and

they hardly influence one another. Squeeze-and-excitation blocks are introduced

in CNNs to improve channel interdependencies [39]. Squeeze-and-excitation

blocks adjust the filter response to improve channel interdependencies in two

steps: squeeze and excite.

 The global average pooling layer computes the channel-wise global average

over the temporal dimension T over the convolved output during the squeeze

operation.

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =

1

𝑇
∑ 𝑢𝑐(𝑡)

𝑇

𝑡=1

(14)

 In equation (22), 𝑐 is the channel and 𝑧𝑐 is the channel wise statistics

obtained after squeezing the convolved data through a global average pooling

layer. Excite operation follows the squeeze operation, whose primary objective is

to capture the inter-channel dependencies, represented in equation (22).

 𝑠 = 𝐹𝑒𝑥(𝑧, 𝑊) = 𝜎(𝑊2𝛿(𝑊1𝑧)) (15)

18

In equation (22), 𝐹𝑒𝑥 is a neural network, 𝜎 is the sigmoid activation function,

𝛿 represents the ReLU activation function. 𝑊1 and 𝑊2 are the learnable parameters

from the neural network and are used to limit the model complexity and aid in better

generalization. Finally, rescale the output of the block, represented in equation

(22).

 𝑥𝑐̃ = 𝑠𝑐 . 𝑢𝑐 (16)

 Where 𝑥̃ = [𝑥1̃, … , 𝑥𝑐̃] is obtained by channel-wise multiplication of the scale

and the feature map. Thus, the output feature map is scaled and contains

information about the channel dependencies. Hence, the squeeze-and-excitation

block acts as a powerful augmentation tool for convolutional neural networks.

Model Architecture

The multivariate LSTM fully convolutional network model has the one-dimensional

convolutional neural networks, long short-term memory, squeeze and excitation

blocks, and global average pooling layers in its architecture, as shown in

Figure 2.3. Apart from the components of the architecture mentioned, the model

architecture has a unique entity called the dimensional shuffle, which helps

transform the input data to be compatible with the long short-term memory cells.

The dimensional shuffle layer swaps the dimensions of the input data. The default

format for the input to the MLSTM-FCN model is of the form (𝑁 ∗ 𝐿 ∗ 𝐹) where N is

19

the number of samples, L is the length of more minor sequences (for example,

224), and F is the number of features (F=1 when either ABP or CVP is included

and F=2 when both of them are included). The dimensional shuffle layer transforms

the last two dimensions of the input so that the LSTM does not have to take L time

steps of F features but can take up F time steps of L features.

Figure 2.3: MLSTM-FCN architecture. The attention mechanism can be added to

the LSTM cells if needed to create the MALSTM-FCN architecture. Reprinted

from Neural Networks, Volume 116, Fazle Karim, Somshubra Majumdar,

Houshang Darabi, Samuel Harford, Multivariate LSTM-FCNs for time series

classification, pages 237-245, Copyright (2019), with permission from Elsevier.

Thus, the dimensional shuffle layer helps the LSTM with the global

understanding of the data by providing a single feature's time steps to a single cell.

20

Thus, the regular input goes through the convolutional side of the architecture, and

the transformed input goes through the LSTM side of the architecture. Once the

input passes through the subsequent layers, the feature vectors on each side are

concatenated together. Finally, this concatenated feature vector is sent to the

softmax layer for binary classification.

2.2 Nested Cross-Validation

Hyperparameter optimization and model selection are two of the essential steps in

any machine learning project. Any model has a set of hyperparameters which are

the variables that can be changed to better fit a model to the training data.

Hyperparameter optimization is the process of tuning the hyperparameters to find

the best fit of the model to the training data such that the model does not overfit

the validation and, in turn, the training set. Comparison of multiple models to find

the best model based on the chosen performance metrics is known as model

selection. K-fold cross-validation is a procedure used to find the machine learning

model’s performance on the data not used during training. But the usage of the

same cross-validation procedure and the dataset for both hyperparameter tuning

and model selection can produce an optimistically biased result.

Unlike K-fold cross-validation, nested cross-validations aim to separate the

hyperparameter optimization and model selection procedures into independent

21

steps. Nested cross-validation nests the K-fold cross-validation for

hyperparameter tuning in the K-fold cross-validation for model selection. Due to

the nesting, the K-fold cross-validation for hyperparameter tuning is not exposed

to the entire dataset and hence doesn’t overfit. A downside to nested cross-

validation is the significant increase in the number of trained and evaluated

models. Another vital aspect of nested cross-validation is to have the same seed

for the experiments conducted on the same dataset. This seeding is necessary to

ensure that the experiment setup is similar across the experiments to make

meaningful comparisons and validate various hypotheses. In this thesis, we make

use of nested cross-validation for both hyperparameter optimization and model

selection.

22

Chapter 3

METHODOLOGY

3.1. Predictive Modeling Pipeline

Any predictive modeling, including deep learning pipelines, has to go through a

series of steps. These steps may vary depending on the dataset and on the model

used in the pipeline. Figure 3.1 explains the steps involved in the predictive

modeling pipeline used in this thesis. The steps involve obtaining the dataset,

followed by data cleaning and preprocessing necessary to make the data ready to

input into the model, followed by model development which involves training and

tuning the hyperparameters, followed by nested cross-validation. Once the model

has gone through all these steps, the model is ready to make predictions. This

section discusses each step involved in the predictive modeling pipeline in detail.

23

Figure 3.1: Steps involved in the predictive modeling pipeline

3.2. Dataset

Arterial Blood Pressure (ABP) and Central Venous Pressure (CVP)

waveform data were collected from 62 pigs obtained from different experiments.

Out of the 62 pigs, 13 experienced hemorrhagic shock, 4 experienced septic

shock, 32 were from EPACC_Trial1, and 13 were from the IRI_FR experiment.

The 4 pigs with the septic shock model were subjected to an intravenous infusion

of Pseudomonas aeruginosa bacteria [41]. The animals were supplied with

sequential 500 mL boluses. Same micro-bolus protocols were maintained

throughout each phase of the experiment while the boluses were delivered. The

timing for the bolus delivery was made at the discretion of the veterinary team that

treated the pigs.

13 pigs in the hemorrhagic model received a controlled hemorrhage of 25%

of the standard estimated blood volume resulting in a hypovolemic shock. The

other 13 pigs in the IRI_FR experiment correspond to the ischemia-reperfusion

Dataset
Data

Preprocessing
Model

Development
Nested Cross-

Validation

24

injury (IRI) model of circulatory shock. A controlled hemorrhage immediately

followed by 30 minutes of complete aortic occlusion and restoration of aortic flow

to the lower half of the body resulted in an ischemia-reperfusion injury [42].

Hypovolemic, euvolemic, and hypervolemic are the different phases present in the

hemorrhagic and IRI shock models. The hypovolemic phase is caused purely by

blood loss, while the euvolemic and hypervolemic phases correspond to a

transfusion of 25% volume of shed blood and transfusion of an additional 25%

blood volume from a donor animal, respectively. The hemorrhagic and IRI shock

models animals received four separate 500mL boluses of VetivexTM Veterinary

pHyLyteTM solution. These boluses were provided for 10 minutes at regular

intervals throughout each experiment phase, with a 5-minute pause between each

bolus. During each bolus sequence, the fluids were administered in micro-boluses

of 100mL for 60 seconds, followed by a 60-second pause between each micro-

bolus. In addition, all the animals in the experiments were provided with a

continuous infusion of norepinephrine. The infusion was adjusted to maintain a

baseline mean arterial pressure above 60 mmHg before initiating the experiment.

Once the experiments proceeds, the mean arterial blood pressure was maintained

at the baseline rate for the remaining time.

The pigs were given fluid boluses at regular intervals during each phase of

the experiment conducted. The ABP and CVP waveforms were recorded before

and after the delivery of each bolus. The period before the administration of fluid

boluses is known as pre-macrobolus (Premac), the period after the administration

25

of boluses is known as post-macrobolus (Postmac), and the time during the

administration of fluid boluses is known as macrobolus. Recording of the various

physiological waveforms used a 60-second window during each phase of the

experiment. In addition, the ABP and CVP waveforms went through steps involving

data quality assessment and preprocessing developed by Basu et al. [43].

3.2.1. Ground Truth Label

The primary purpose of this thesis is to model, train and validate the performance

of supervised learning models to find whether the pigs are fluid responsive or not

by working on the ABP and CVP waveforms. Furthermore, generating ground truth

labels for the dataset is necessary to create a supervised learning model for binary

classification. Cardiac output was measured using either an intra-cardiac

pressure-volume loop catheter or an ultrasound flow probe placed over zone 1 of

the descending aorta as a surrogate for cardiac output [44]. An increase in cardiac

output of 15% or more after a supply of 500 ml of the fluid bolus indicates fluid

responsiveness [45]. The records of cardiac output during the Premac and

Postmac periods helped track down the change in cardiac output before and after

the administration of fluid boluses. Whenever the change in cardiac output is

greater than or equal to 15%, the bolus was considered to be fluid responsive

(Ground truth label = 1), and whenever the change in cardiac output is less than

15%, the bolus was considered to be fluid non-responsive (Ground truth label = 0).

26

3.2.2. Dataset Characteristics

Apart from having different physiologies, the Hemorrhage (Hem), Sepsis (Sep),

EPACC_Trial1, and IRI_FR datasets also had different distributions. On the whole,

497 samples corresponded to 497 macroboluses. Out of these 497 maroboluses,

134 came from the hemorrhage pigs, 90 were obtained from Sepsis pigs, 150

macroboluses were derived from the EPACC_Trial1 dataset, and the IRI_FR

dataset had the remaining 123 macroboluses. The ratio of positive to negative

samples for the Hemorrhage pigs was 55:79, while the ratio for Sepsis pigs was

4:86. The ratios for EPACC_Trial1 and IRI_FR datasets were 109:41 and 39:84,

respectively. Figure 3.2 represents the distribution of positive and negative

samples in each dataset. Table 3.1 has the various combination of the datasets

used in all the experiments and their respective characteristics.

During the experiments in this thesis, the datasets are combined to form the

training and test sets. Table 3.1 shows the various combinations and

characteristics of the datasets used in the experiments in this thesis. The

Hem_Sep dataset combines the boluses from the hemorrhage and the sepsis pigs.

If an additional term, ‘scaledCVP,’ is added to the name, it means that the CVP

waveforms of a few boluses were rescaled, as shown in Section4.4.2.2. The

Hem_Sep_ScaledCVP_EPACC_Trial1 combines the boluses from hemorrhage,

sepsis, and the EPACC_Trial1 pigs. IRI_FR_1_2, IRI_FR_1_2_3, and

27

IRI_FR_ALL are different samples obtained from the same experiment and similar

physiology.

Figure 3.2: Distribution of Positive and Negative Samples for each dataset

Dataset Number
of Pigs

Number
of

Boluses

Number of
Positive
Boluses

Number of
Negative Boluses

Hem_Sep_scaledCVP 17 224 59 165

Hem_Sep_scaledCVP_EPACC_Trial1 49 374 168 206

Hem 13 134 55 79

EPACC_Trial1 32 150 109 41

IRI_FR_1_2 8 74 23 51

IRI_FR_1_2_3 9 83 24 59

IRI_FR_ALL 13 123 39 84

Table 3.1: Combination of Datasets and their characteristics

55

4

109

39

79
86

41

84

0

20

40

60

80

100

120

Hemorrhage Sepsis EPACC_Trial1 IRI_FR

N
u

m
b

er
 o

f
Sa

m
p

le
s

Name of Dataset

Positive Samples Negative Samples

28

3.3. Data Preprocessing

Preprocessing the raw data is an essential step in a Machine/Deep learning model

pipeline. Preprocessing the data transforms the input data into a format that the

machine can easily interpret. In this thesis, the preprocessing pipeline involved a

variety of steps, as displayed in Figure 3.3.

Figure 3.3: Data Preprocessing Pipeline

3.3.1. Normalization

Whenever a deep learning model takes two different variables as input,

normalization is an essential preprocessing step to ensure that the two variables

have similar distributions and are comparable with one another. Furthermore, it is

crucial to perform this preprocessing step to ensure that the deep learning model

does not learn that a particular variable may be more or less important than the

alternative just because the magnitudes of the variables are different. For example,

in the dataset used for this thesis, there was a general trend that the ABP signals

Dataset Normalization
Splitting into
sequences

Stratification

29

tend to have a higher magnitude than their counterpart, the CVP signal. But it is

vital to ensure that the ABP signals do not have a higher weightage during training

because they have a higher magnitude than the CVP signals. There are a variety

of techniques to perform normalization of the raw data.

𝑥𝑛𝑜𝑟𝑚 =

𝑥 − min (𝑥)

max(𝑥) − min (𝑥)

(17)

 𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

𝜎

(18)

 Equation (17) represents the min-max normalization, while equation (22)

shows the Z-score normalization. In equation (17), ‘𝑥’ indicates the input data to

be normalized and ‘min (𝑥)’ and ‘max (𝑥)’ represents the minimum and the

maximum value from the input data. In equation (22), ‘𝑥’ represents the input data

while 𝜇 and 𝜎 represents the population mean and population standard deviation

respectively. While both min-max normalization and Z-score normalization are

widely used techniques in fields of machine and deep learning, all the experiments

in this thesis made use of min-max normalization.

30

3.3.2. Splitting into Sequences

In general, convolutional neural networks require reshaping of the input data to be

of a specific length. For example, one-dimensional convolutional neural networks

used in the experiments require the input data to be of the shape [number of

samples * timesteps * the number of features]. Thus, the first dimension in the

shape vector is the number of samples obtained after splitting the entire data into

specific lengths. The second dimension is the sequence length that the time series

data has been split into and provided as input to the neural network. Finally, the

third dimension is the number of features included, and the value can vary between

1 and 2 depending on whether only one or both ABP and CVP signals were

provided as input.

Figure 3.4: Histogram for the number of data points in each cardiac cycle

31

Figure 3.4 has the histogram for the number of data points in each cardiac

cycle. It can be seen that almost every cardiac cycle has the number of data points

to be between 25 to 75. For most cases, the sequence length has to be at least of

length around 25-75 to cover a single cardiac cycle. While splitting into sequences,

each sequence must cover at least a single cardiac cycle so that the sequence

has enough information to supply the neural network. For this reason, 56 was the

minimum sequence length used in the experiments in this thesis so that the

majority of the sequences would have at least one cardiac cycle.

The cardiac cycle has two phases, namely systole and diastole. The systolic

phase occurs when the heart pumps out blood by contracting, and the diastolic

phase occurs when the heart relaxes. The ABP and CVP waveforms had the

systolic and diastolic points marked, and splitting of waveforms into more minor

sequences always originated from the diastolic points marked in the waveforms.

Figure 3.5 shows the procedure to split the ABP and CVP time-series waveforms

into smaller length sequences suitable for input into the deep learning model.

32

Figure 3.5: Splitting of ABP and CVP waveforms into smaller sequences of a

specified length

 The splitting of sequences always originated from the first diastolic point in

the waveform. Thus, the starting marker to obtain the waveform was placed in the

first diastolic point while the ending marker was placed at a previously specified

length from the starting marker, and the ending marker may or may not coincide

with a diastolic point. Nextly, Obtaining the following sequence involved moving

the starting marker to the next diastolic point immediately after the previous

marker, and the procedure repeats until the end of the waveforms. If the ending

markers go beyond the waveforms, we discarded the sequence starting from the

last marker. This splitting the waveforms into more minor one-dimensional

sequences resulted in losing about 5% of the raw data. After splitting, each minor

33

sequence belonging to a particular bolus was given the same label as the initial

bolus used. The deep learning model takes up these smaller sequences with

identical ground truth labels as input.

3.3.3. Stratification

During nested cross-validation, the dataset gets split into several instances of

training, test and validation sets. It is crucial to make sure that the process of

splitting does not lead to a sampling bias. Sampling bias occurs when the sampling

of a stochastic variable does not indicate the distribution of the whole population.

Sampling bias can lead to one class of the population being overrepresented or

underrepresented and can systematically affect the model’s training. During

stratification, the population gets split into subgroups, and the data gets randomly

sampled so that each subgroup has the same proportion of samples as the original

population. Since the current datasets used in the experiments were heavily

imbalanced concerning the ground truth labels, it could be possible for the minor

class to be underrepresented during random sampling. Stratification solves this

problem of underrepresentation of the minor class and indicates an overall outlook

of the entire data population in the test set.

34

3.4. Training and Hyperparameter Tuning

One-dimensional convolutional neural networks have shown encouraging results

while working on time-series data. Multivariate LSTM Fully convolutional neural

network and DenseNet both exploit this feature of the one-dimensional

convolutional neural network to obtain remarkable results in time-series

classification, and both of them were used in the experiments. Training the model

involves choosing the right set of hyperparameters to maximize the effect of deep

neural networks to make good predictions. The following sections explain a

systematic approach to building the model by choosing the right set of

hyperparameters.

3.4.1. Grid Search

Grid search is one of the traditional methods to tune the hyperparameters for a

model. The algorithm makes a complete run over all the values listed for a

particular hyperparameter and searches for the best set based on a criterion [46].

During grid search, the hyperparameters were considered independent of each

other and were optimized one followed by another [47]. Some hyperparameters

are more critical than others, and they require precedence over one another. All

the experiments used the grid search algorithm to tune various hyperparameters

35

such as the learning rate, number of epochs, batch size, and the degree of

regularization.

3.4.2. Loss Functions

Loss functions are used to find the distances between the ground truth labels and

the model's predicted output. There are a variety of loss functions used for various

tasks such as classification and regression. One such loss function widely used in

the field of multiclass classification is the categorical cross-entropy function. An

extension to the default categorical cross-entropy function for an imbalanced

dataset is the weighted categorical cross-entropy function. A weighted categorical

cross-entropy function introduces sample weighting in the loss function so that the

majority and the minority classes get differently weighed while computing the loss.

Since the entire dataset used in all the experiments was heavily imbalanced, a

weighted categorical cross-entropy function was primarily used as the model’s loss

function. Equation (22) represents the weighted categorical cross-entropy function

and this is the cost function used in all the experiments.

𝐿 = −

1

𝑁
[∑[𝑊𝑐1𝑡𝑖 log(𝑝𝑖) + 𝑊𝑐2(1 − 𝑡𝑖)log (1 − 𝑝𝑖)]

𝑁

𝑖=1

]

(19)

In equation (22), 𝑊𝑐1 and 𝑊𝑐2 indicate the weights for the classes 𝑐1 and 𝑐2, N

represents the total number of samples, 𝑡𝑖 is the ground truth labels while 𝑝𝑖

36

represents the softmax probability for the ith sample. There are various ways to

compute the sample weight for the weighted loss functions, namely the inverse of

the number of samples, the inverse of the square root of number of samples, and

the effective number of samples.

Inverse of Number of Samples (INS)

The inverse of the number of samples is a widely used weighting mechanism in

the field of deep learning [48]. The inverse of individual class frequencies directs

the sample weight, as shown in equation (22).

𝑊𝑛, 𝑐 =

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑐

(20)

Inverse of Square Root of Number of Samples (ISNS)

The inverse of the square root of the number of samples was proposed to provide

a smoother version of the sample weighting mechanism [49]. As shown in equation

(22), it is computed by calculating the inverse of the square root of the individual

class frequencies.

𝑊𝑛,𝑐 =

1

√𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑐2

(21)

37

Effective Number of Samples

As a weighting mechanism, the effective number of samples has seen favourable

results on datasets like CIFAR and ImageNet [50]. Equation (22) shows how the

effective number of samples can be used to provide weights for the loss function.

𝑊𝑛,𝑐 =

1

𝐸𝑛,𝑐

 𝑤ℎ𝑒𝑟𝑒, 𝐸𝑛,𝑐 =
1 − 𝛽𝑛𝑐

1 − 𝛽

(22)

3.4.3. Optimization

Any deep learning model would require an optimization procedure that aids the

model to train by optimizing the cost function. The optimization process would help

to minimize or maximize the cost function depending on its use case. Gradient

descent is a popular algorithm to optimize dynamic systems like neural networks

and a plethora of other machine learning models [51]. One of the disadvantages

of gradient descent is that the parameters get updated after an entire run through

the data. There were a variety of advances in using smaller batches to run the

gradient descent approaches so that there can be multiple runs of the algorithm

on the dataset [52]. Momentum upgrades the traditional gradient descent algorithm

by using moving averages to update the trainable parameters [53].

 Adam improves the stochastic gradient descent algorithm to offer quicker

convergence using momentum and adaptive learning rates [54]. Adam was the

38

optimizer primarily used in all the experiments. Learning rate is the hyperparameter

that controls the degree to which the network adjusts the weights using the

gradient. It is one of the essential hyperparameters to tune in a neural network as

having a small value can result in the network learning very slowly, and having a

large value can result in the optimization algorithm missing the optima and failing

to converge. The learning rate was an important parameter used in the grid search

and had values ranging from 1E-6 through 1E-3. Adam also has other parameters

called the decay constants (𝛽1 and 𝛽2), which control the first and second moments

of the gradient average, respectively. 𝛽1 and 𝛽2 take up preset values of 0.9 and

0.99, and they were not a part of the grid search. Adam has another parameter

called 𝜖, which takes up a value of 1E-8 to ensure there is no division by zero and

was also not a part of grid search. Decaying learning rates from a considerable

initial value to a smaller value has several benefits. A sizeable initial learning rate

helps the model look over the noisy data during learning, and decaying the learning

rate to smaller values helps the model learn complex patterns and structures from

the data [55]. The learning rate decay mechanism requires two important

hyperparameters, namely learning rate patience and decay factor. The mechanism

decays the learning rate by a decay factor whenever the validation loss starts to

increase for a specific number of epochs called learning rate patience. The

learning rate patience took a value of 10 epochs while the decay factor took a value

of 0.9 during training.

39

3.4.4. Batch Size

Training in deep learning involves both forward and backward propagation of the

entire dataset through the neural network. One complete pass of the entire dataset

through the neural network is called an epoch. However, it gets difficult to fit the

entire dataset through the neural network as it would consume much memory.

Consequently, the data is split into batches of a particular size known as batch

size.

It is crucial to tune batch size as having large batch sizes can lead to poor

generalization but can guarantee convergence to the global optima. On the other

hand, smaller batch sizes can have faster convergence but may not lead to a global

optimum and bounce around the global optima [56]. So it is vital to find the optimal

batch size to have both fast and guaranteed convergence to the optima. Therefore,

the batch size was a critical hyperparameter experimented on and had values

varying from 32 to 512 in the grid search.

3.4.5. Number of Training Epochs

Forward and backward propagation of the entire dataset through the neural

network is known as an entire epoch. Therefore, having the number of training

epochs to be more than 1 indicates that the dataset is run several times through

the neural network. Furthermore, having fewer training epochs leads to

underfitting, and having a massive number of epochs leads to overfitting. Figure

40

3.6 displays an example of how the training and validation loss curves would look

in the case of overfitting. When the training loss decreases but the validation loss

begins to increase, the model is overfitting. However, when the training loss does

not begin to reduce, the model is underfitting to the data.

Figure 3.6: Overfitting explained by loss curves. Red: Training loss, Blue:

Validation loss

The deep learning models used in the experiments used the early stopping

mechanism to ensure the model did not overfit the data. The training process

initially takes a considerable random number of epochs and starts training towards

it. The validation loss was given as the parameter to monitor for the early stopping

mechanism. If the validation loss increases steadily for several epochs, the model

immediately stops training, and the current network configuration, including the

41

weights, gets saved. This number is essential to tune as well as having minimal

patience for early stopping can make small fluctuations in training to trigger early

stopping and having enormous patience would stop the early stopping from

triggering. Several values for early stopping patience varying from 100 to 1000

epochs were included in the grid search.

42

Chapter 4

EXPERIMENTS AND RESULTS

This chapter elaborates on the various experiments conducted and the results

associated with those experiments. The experiments were conducted in phases

based on the inferences from the subsequent experiment’s results. This chapter

also explains the inferences made from the results and the rationale for the

subsequent experiments. Accuracy, Area under Reciever operating characteristics

curve (AUROC), Precision, Recall, and Specificity, along with the respective

confidence intervals (CI), were the performance metrics used to evaluate, compare

and make inferences about the model’s classifying capability.

4.1 Finding Ideal Sequence Length

Since one-dimensional convolutional neural networks take sequences of a specific

length as an input, it is crucial to find the right length of the input waveforms so that

each waveform input carries enough information to help the neural network make

43

compelling predictions. The Arterial blood pressure and Central venous pressure

waveforms from the Hem_Sep dataset, which includes the data obtained from

Hemorrhage and Sepsis Pigs, were split into more minor sequences by following

Section 3.3.2. Hyperparameters were tuned with a nested cross-validation pipeline

along with grid search. 224, 512, and 1024 were the length of sequences used to

split the sequences to provide input to the Multivariate LSTM FCN model. Except

for the sequence lengths, every aspect of the experiment remained constant to

validate the smallest sequence length that could capture the most information.

Sequence
Length

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

224 0.863 0.02 0.875 0.02 0.859 0.07 0.731 0.1 0.925 0.04

512 0.858 0.03 0.859 0.03 0.802 0.1 0.715 0.08 0.925 0.03

1024 0.862 0.01 0.851 0.03 0.792 0.09 0.727 0.08 0.92 0.03

Table 4.2: Performance of MLSTMFCN model using ABP waveform and variable

sequence lengths in a nested cross-validation

44

Sequence
Length

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

224 0.814 0.02 0.887 0.01 0.776

0.05 0.774 0.07 0.874 0.04

512 0.827 0.04 0.849 0.02 0.676 0.08 0.761 0.09 0.861 0.05

1024 0.812

0.03 0.818 0.04 0.642 0.06 0.757 0.08 0.851 0.04

Table 4.3: Performance of MLSTMFCN model using CVP waveform and variable

sequence lengths in a nested cross-validation

Sequence
Length

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

224 0.882 0.01 0.877 0.02 0.858 0.07 0.737 0.12 0.947 0.03

512 0.875 0.02 0.884 0.01 0.784 0.06 0.798 0.05 0.914 0.03

1024 0.863 0.02 0.844 0.03 0.792 0.09 0.724 0.12 0.919 0.04

Table 4.4: Performance of MLSTMFCN model using ABP, CVP waveforms, and

variable sequence lengths in a nested cross-validation

From Table 4.2 - Table 4.4, it can be inferred that the models trained with

sequences of length 224 consistently performed better or similar to the longer

sequence inputs. But before concluding that the 224 sequence length inputs were

45

superior, it is critical to note that the experimental conditions changed involuntarily

because of the method used to obtain sequences from the original waveforms.

Since all the variable length sequences were obtained from the same set of

waveforms, the number of samples having smaller sequence lengths was higher

when compared to the longer length sequences. For example, the number of

samples with a sequence length of 512 is twice the number of samples with a

sequence length of 1024. Since the experimental condition had changed, the

difference in performance cannot be attributed just to the change in sequence

length but can also be due to the change in the number of input samples given for

training.

All experimental conditions except for the condition of interest have to

remain constant when testing a hypothesis. The experiment required a unique

setup since the number of samples is also an essential criterion while maintaining

the experimental conditions while evaluating hypotheses. The altered experiment

obtained the most extended length sequence and a smaller chunk from it rather

than the entire dataset to get smaller sequences. Instead of splitting the entire

dataset into sequences of the required length, split the longest sequence (1024,

for example) and get the smaller sequence only from the most extended sequence

that was already split instead of obtaining from the original dataset, as shown in

Figure 4.1. The number of samples was consistent across different sequence

46

lengths, and the remaining aspects of the experiment were similar to the previous

setup.

Figure 4.1: Obtaining smaller sequences from the longest sequence for the

altered sequence length experiment.

Sequence
Length

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

56 0.842 0.02 0.855 0.02 0.768 0.10 0.718 0.07 0.906 0.04

112 0.836 0.04 0.854 0.03 0.745 0.10 0.762 0.09 0.891 0.06

224 0.864 0.02 0.840 0.03 0.775 0.05 0.737 0.09 0.916 0.02

512 0.861 0.01 0.839 0.02 0.775 0.09 0.744 0.09 0.908 0.04

1024 0.862 0.01 0.851 0.03 0.792 0.09 0.727 0.08 0.92 0.03

Table 4.5: Performance of MLSTMFCN model using ABP waveform and altered

experiment for variable sequence lengths in a nested cross-validation

47

Sequence
Length

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

56 0.79 0.03 0.851 0.02 0.649 0.07 0.774 0.09 0.838 0.05

112 0.761 0.06 0.839 0.02 0.652 0.11 0.8 0.07 0.798 0.04

224 0.854 0.02 0.843 0.05 0.783 0.1 0.738 0.12 0.91 0.04

512 0.868 0.02 0.835 0.05 0.816 0.09 0.714 0.12 0.928 0.03

1024 0.863 0.02 0.844 0.03 0.792 0.09 0.724 0.12 0.919 0.04

Table 4.6: Performance of MLSTMFCN model using CVP waveform and altered

experiment for variable sequence lengths in a nested cross-validation

Sequence
Length

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

56 0.867 0.01 0.868 0.05 0.832 0.07 0.746 0.13 0.935 0.03

112 0.825 0.02 0.837 0.04 0.749 0.12 0.71 0.11 0.892 0.05

224 0.854 0.02 0.843 0.05 0.783 0.1 0.738 0.12 0.91 0.04

512 0.868 0.02 0.835 0.05 0.816 0.09 0.714 0.12 0.928 0.03

1024 0.863 0.02 0.844 0.03 0.792 0.09 0.724 0.12 0.919 0.04

Table 4.7: Performance of MLSTMFCN model using ABP and CVP waveforms

and altered experiment for variable sequence lengths in a nested cross-validation

48

 The initial hypothesis was that longer-length sequences would perform

better than the shorter-length sequences because longer sequences encompass

more information than their shorter counterpart. However, from Table 4.5 - Table

4.7, it was evident that the difference in performance while using different length

sequences was not statistically different as initially expected. Hence, the

hypothesis that a more extended sequence would have better performance can be

rejected.

4.2 Model Refinement and Optimization

This series of experiments involves selecting the best model that works well on the

test data and generalizes well on the holdout set. Since a nested cross-validation

pipeline involves both hyperparameter tuning and model selection, this series of

experiments use the nested cross-validation accompanied by a grid search to tune

the hyperparameters and select the best model. The experiments included

changes in the deep learning architecture, varying the loss functions, and altering

the preprocessing pipeline to select the best model. In all these experiments, only

one component of the pipeline changes to ensure that these experiments can be

compared to find the best model.

49

4.2.1 Addition of Attention Mechanism to MLSTM-FCN

Model

Attention mechanism helps the deep learning model focus on the essential aspects

of the data and fade out the less important ones. Therefore, adding an attention

mechanism can help the model learn intricate details and make better predictions.

In this experiment, the MLSTM-FCN model with and without attention mechanism

was used. The hyperparameters were tuned using grid search, and the model was

evaluated using nested cross-validation with a 224-length input sequence. The

hypothesis is that the addition of an attention mechanism would increase the

performance of the model. Apart from having two different models, the remaining

aspects of training remained constant throughout the experiment. The experiment

utilized all combinations of ABP and CVP as inputs to the model.

With
attention

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

No 0.863 0.02 0.875 0.02 0.859 0.07 0.731 0.10 0.925 0.04

Yes 0.853 0.02 0.869 0.03 0.802 0.10 0.694 0.09 0.926 0.03

Table 4.8: Performance of MLSTMFCN model using ABP waveform with and

without attention mechanism in a nested cross-validation

50

With
attention

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

No 0.814 0.02 0.887 0.01 0.776 0.05 0.774 0.07 0.874 0.04

Yes 0.83 0.02 0.887 0.02 0.722 0.03 0.792 0.09 0.888 0.01

Table 4.9: Performance of MLSTMFCN model using CVP waveform with and

without attention mechanism in a nested cross-validation

With
attention

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

No 0.882 0.01 0.877 0.02 0.858 0.07 0.737 0.12 0.947 0.03

Yes 0.842 0.03 0.838 0.02 0.769 0.10 0.668 0.02 0.921 0.04

Table 4.10: Performance of MLSTMFCN model using ABP and CVP waveforms

with and without attention mechanism in a nested cross-validation

 It can be inferred from Table 4.8 - Table 4.10 that the introduction of the

attention mechanism to the MLSTM-FCN model adds no extra value in terms of

performance. When ABP and CVP waveforms were used individually, the

performance of both the models was comparable, but when both ABP and CVP

were used together, the model with attention mechanism performed worse than

the model without attention mechanism. Hence, the hypothesis that the attention

mechanism would add value in performance can be safely rejected.

51

4.2.2 Rescaling Central Venous Pressure Waveforms

The Central venous pressure waveforms have been an excellent input source for

the neural network to classify boluses to be fluid responsive in all the previous

experiments. However, upon examining the CVP waveforms in detail, 2 of the

sepsis pigs, namely P2192 and P2187, had a deviation in magnitude when

compared to the CVP waveforms of other pigs. This deviation was due to the

difference in scaling while obtaining the data for the two pigs. The CVP waveforms

of P2192 and P2187 were scaled 5 times and 10 times, respectively. Therefore,

the CVP waveforms of both the pigs had to be scaled down to ensure the

deviations in scales did not alter the performance. Experimental conditions

involved using pig-level splitting to compare the results before and after the CVP

waveforms were rescaled. The experiment used the Hem_Sep dataset before and

after rescaling the CVP waveforms, and the hyperparameters were tuned using

grid search. Both the experiments involved using a sequence length of 224. It was

also essential to compare the interaction with both ABP and CVP waveforms and

determine if the model trained on the combination of waveforms gets affected upon

rescaling.

52

CVP Rescaling Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

Yes 0.637 0.16 0.79 0.04 0.549 0.13 0.784 0.14 0.694 0.16

No 0.69 0.13 0.817 0.08 0.55 0.11 0.781 0.09 0.742 0.15

Table 4.11: Performance of MLSTMFCN model using CVP waveform with 224

sequence length and pig-level splitting with and without CVP Rescaling in a

nested cross-validation

CVP
Rescaling

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

Yes 0.577 0.165 0.651 0.092 0.409 0.165 0.708 0.044 0.574 0.207

No 0.569 0.174 0.654 0.102 0.426 0.199 0.738 0.068 0.556 0.232

Table 4.12: Performance of MLSTMFCN model using ABP & CVP waveforms

with 224 sequence length and pig-level splitting with and without CVP Rescaling

in a nested cross-validation

Table 4.11 and Table 4.12 compare the models' performance using the dataset

with and without rescaled CVP waveforms. But the introduction of CVP rescaling

in the two sepsis pigs did not alter the model’s performance to be very statistically

significant. Hence, whenever the Sepsis pigs were used in future experiments,

they were used with the rescaled CVP waveforms.

53

4.2.3 Removing LSTM layer from MLSTM-FCN
Architecture

Long short-term memory usually cause problems when the input space is tiny that

they start to memorize the sequences and start overfitting. Even though there were

no signs of overfitting during the training of MLSTM-FCN architecture, it was

essential to check whether the LSTM layers add value to the model’s performance.

In this experiment, The LSTM and dropout layers were removed from the MLSTM-

FCN architecture to inspect its contribution. This experiment utilized the

Hem_Sep_scaledCVP dataset to judge the impact of performance due to the

removal of LSTM layers. The setup also had nested cross-validation paired with

grid search to tune the right set of hyperparameters. The sequence length used in

this experiment was 224. Figure 4.2 represents the model architecture for the

MLSTM-FCN model without the LSTM layers.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.824 0.04 0.901 0.02 0.808 0.07 0.861 0.03 0.826 0.07

ABP 0.842 0.03 0.897 0.03 0.849 0.04 0.825 0.08 0.879 0.04

ABP &
CVP

0.861 0.01 0.912 0.01 0.859 0.04 0.86 0.03 0.882 0.03

Table 4.13: Nested Cross-Validation Performance of MLSTM-FCN model without

LSTM trained on Hem_Sep_scaledCVP Data

54

Figure 4.2: MLSTM-FCN without the LSTM layers. Derived from F. Karim, S.

Majumdar, H. Darabi, and S. Harford, “Multivariate LSTM-FCNs for Time Series

Classification,” Neural Netw., vol. 116, pp. 237–245, Aug. 2019, doi:

10.1016/j.neunet.2019.04.014.

Table 4.13 showed the nested cross-validation performance when the

MLSTM-FCN without LSTM model was trained on Hem_Sep_scaledCVP data.

Again, it can be seen that the model's performance is promising, having favourable

metric scores during nested cross-validation. This experiment explains that

removing LSTM layers improves the performance by a minute amount but not

55

enough to be statistically significant compared to the model that uses LSTM. So,

LSTM layers was utilized in all future experiments.

4.2.4 Performance of DenseNet model

This experiment used the DenseNet18 model instead of the MLSTM-FCN model

to understand changes in model’s performance with changes in the model’s

architecture. In addition, the experiment utilized the Hem_Sep_ScaledCVP data to

understand if the model architecture change can help with generalization. Nested

cross-validation in combination with grid search helped in the hyperparameter

tuning. Additionally, the experiment used 224 length input sequences. During

these experiments, combinations of ABP and CVP waveforms were used to find if

they improved the model’s performance.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.784 0.06 0.846 0.04 0.773 0.08 0.829 0.06 0.831 0.06

ABP 0.727 0.03 0.824 0.05 0.714 0.01 0.808 0.08 0.719 0.03

ABP &
CVP

0.783 0.01 0.848 0.02 0.781 0.04 0.818 0.06 0.797 0.05

Table 4.14: Nested Cross-Validation Performance of DenseNet 18 model trained

on Hem_Sep_scaledCVP Data

56

 The DenseNet 18 model performed well in the nested cross-validation

pipeline when using Hem_Sep_ScaledCVP data, as represented in Table 4.14.

The DenseNet 18 model understood the patterns from each training set in each

fold and performed well on their respective validation sets. Thus, DenseNet does

provide a promising deep learning framework to predict fluid responsiveness.

However, the DenseNet model’s performance is not comparable with the MLSTM-

FCN model’s performance. Hence, the DenseNet model was not used in future

experiments regarding model tuning and selection.

4.2.5 Sample Weighting in Cost Function

Weighted categorical cross-entropy was the cost function used to find the correct

weights and biases in the deep learning model in all the previous experiments. The

weighted categorical cross-entropy function introduces weight in the regular

categorical cross-entropy function, where the weights are usually inversely

proportional to the number of samples belonging to a particular category. However,

there were a variety of ways in which the sample weighting can be introduced to

the cross-entropy function, which includes the inverse of the number of samples

(INS), the inverse of the square root of the number of samples (ISNS), and the

effective number of samples (ENS). This experiment used all these varieties of

57

sample weighting in the loss function while keeping the remaining aspect of the

experiment constant.

The experimental setup followed a nested cross-validation procedure

accompanied by a grid search to tune the hyperparameters. The sequence length

used was 224. ABP and CVP signals were given together as input to the MLSTM-

FCN model during training and testing. The experiment utilized the

Hem_Sep_scaledCVP dataset during the nested cross-validation procedure. The

experiment’s purpose was to find whether any change in the sample weighting

would affect the model’s performance during nested cross-validation.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

ABP &
CVP

0.837 0.02 0.899 0.02 0.844 0.03 0.836 0.03 0.872 0.02

Table 4.15: Nested Cross-Validation Performance of MLSTM-FCN model using

INS sample weighting and trained on Hem_Sep_scaledCVP Data

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

ABP &
CVP

0.844 0.02 0.895 0.02 0.854 0.02 0.818 0.05 0.886 0.03

Table 4.16: Nested Cross-Validation Performance of MLSTM-FCN model using

ISNS sample weighting and trained on Hem_Sep_scaledCVP Data

58

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

ABP &
CVP

0.83 0.05 0.884 0.05 0.819 0.07 0.842 0.02 0.846 0.06

Table 4.17: Nested Cross-Validation Performance of MLSTM-FCN model using

ENS sample weighting and trained on Hem_Sep_scaledCVP Data

Table 4.15, Table 4.16, and Table 4.17 explained the nested cross-

validation results when INS, ISNS, and ENS sample weighting mechanisms were

used, respectively. Again, the performance in the nested cross-validation

procedure was favourable for all three sample weighting mechanisms. Based on

the results from Table 4.15 - Table 4.17, the INS sample weighting mechanism

was superior in comparison to the others though the difference is not large. In all

the experiments involving a weighted categorical cross-entropy function in the

future, INS was the primary choice of sample weighting.

4.2.6 Resampling the input dataset using SMOTE

Most datasets used in the experiments had a skewed nature where there were

more negative samples than positive samples. As a result, the weighted

categorical cross-entropy cost function would rate the positive samples to be more

59

important than the negative samples, and hence the models could obtain high

recall scores. But without the presence of sample weighting in the cross-entropy

function, the model would not learn the basic patterns from the training set as the

cross-entropy function expects the ratio of positive to negative samples to be

equal. An introduction of oversampling by SMOTE can resample the dataset so

that the number of positive and negative samples is the same. If the number of

positive and negative samples are equal, there is no need for sample weighting in

the categorical cross-entropy cost function. The sequence length used was 224,

and all combinations of ABP and CVP waveforms were given as input to the

MLSTM-FCN model.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.814 0.01 0.897 0.01 0.803 0.03 0.835 0.03 0.832 0.03

ABP 0.824 0.04 0.865 0.03 0.835 0.05 0.776 0.08 0.872 0.05

ABP &
CVP

0.84 0.03 0.885 0.03 0.838 0.05 0.825 0.03 0.869 0.04

Table 4.18: Nested Cross-Validation Performance of MLSTM-FCN model using

SMOTE and trained on Hem_Sep_scaledCVP Data

Table 4.18 describes the nested cross-validation results with SMOTE used to

upsample the minority class on Hem_Sep_scaledCVP data. The performance of

the model trained on SMOTE was positive. However, the model trained on the

60

resampled dataset did not offer a reasonable improvement in performance

compared to the model utilizing a weighted categorical cross-entropy cost function

with an INS sample weighting. Hence, resampling the dataset using SMOTE was

not used in future experiments.

4.2.7 Removal of Normalization From Preprocessing
Pipeline

Normalization helps keep the inputs on the same scale and make them

comparable while making predictions. For example, the min-max normalization

used in all the experiments brings down the scale of the ABP and CVP waveforms

between 0 and 1. Apart from making the inputs comparable, it also helps solve the

gradient explosion problem common in deep learning models. In this experiment,

the normalization procedure was removed from the preprocessing pipeline to

determine if the normalization introduced any dependencies that obstruct the

model from generalizing on other physiologies. This experiment followed the

nested cross-validation pipeline along with grid search to tune the

hyperparameters. The input sequences' length was 224, and all combinations of

ABP and CVP waveforms were given as input to the MLSTM-FCN model for

training.

61

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.843 0.04 0.881 0.02 0.773 0.06 0.814 0.04 0.863 0.06

ABP 0.860 0.03 0.865 0.04 0.811 0.11 0.693 0.10 0.928 0.04

ABP &
CVP

0.875 0.03 0.881 0.03 0.859 0.05 0.7975 0.08 0.918 0.04

Table 4.19: Nested Cross-Validation Performance of MLSTM-FCN model without

normalizing and trained on Hem_Sep_scaledCVP Data

Table 4.19 displayed the nested cross-validation results when the MLSTM-FCN

model took in ABP and CVP waveforms without normalizing. The model performed

well even with the lack of normalization during preprocessing. However, the

model’s performance did not improve compared to the model trained on the usual

normalization pipeline; hence, normalization was used as part of the preprocessing

pipeline in future experiments.

4.2.8 Altering normalization pipeline

During the previous experiment, the normalization pipeline was removed from

preprocessing. But when the inputs were normalized, the input ABP and CVP were

normalized separately from each other. Additionally, various datasets were kept

62

separate while normalizing. In this experiment, all the datasets were normalized

together and then separated into their original cohort. The experiment aimed to

see if this altered way of normalization supports the model’s performance

positively. The experimental setup had nested cross-validation and grid search to

aid in hyperparameter tuning. All combinations of ABP and CVP waveforms were

given as inputs.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.814 0.04 0.890 0.02 0.806 0.05 0.841 0.06 0.823 0.06

ABP 0.812 0.04 0.857 0.04 0.823 0.06 0.765 0.05 0.86 0.05

ABP &
CVP

0.832 0.05 0.867 0.04 0.841 0.05 0.821 0.05 0.825 0.06

Table 4.20: Nested Cross-Validation Performance of MLSTM-FCN model with

everything normalized together and trained on

Hem_Sep_scaledCVP_EPACC_Trial1 Data

 Table 4.20 clearly explains the nested cross-validation results when the

boluses from hemorrhage, sepsis, EPACC_Trial1, and IRI_FR_ALL were

normalized together and separated to only include the hemorrhage, sepsis, and

the EPACC_Trial1 for training. The model trained with the altered normalization

pipeline showed promising results, but the model did not show a statistically

significant performance improvement compared to the MLSTM-FCN model trained

63

with the regular normalization pipeline. Hence, the traditional form of normalization

was a part of the preprocessing pipeline in all future experiments.

This series of experiments helped identify the best model that is expected

to generalize well on the holdout data. In the series of experiments involving

identifying the best model, performances of MLSTM-FCN, MLSTM-FCN and

DenseNet were all comparable. So in future experiments, MLSTM-FCN was the

primary model used since the other models did not significantly improve the

model's performance. While using different sample weighting in the cost function,

the INS weighting mechanism generated the best results in nested cross-

validation, although the difference while using the other mechanisms was not

statistically significant. However, future experiments made use of the INS

weighting mechanism for the cost function. Additionally, resampling the dataset

using SMOTE did not significantly improve the model’s performance compared to

the model using the INS weighting mechanism for the cost function. Hence,

SMOTE was not used in future experiments to resample the dataset. Finally,

removal of normalization and altering the normalization pipeline did not

significantly improve the model’s performance; hence, individual normalization as

mentioned in the preprocessing pipeline was used in future experiments. Following

this series of experiments, the best model with the ideal preprocessing pipeline

was chosen, and the setup of this experiment was continued in future experiments.

64

4.3 Pig-Level and Bolus-Level Experiment

Pig-level and Bolus-level experiment involves doing different splits for the training

and the test sets during nested cross-validation. The bolus-level and pig-level

experiments utilized the Hem_Sep dataset. During a bolus-level split, the training

and the test splits were stratified concerning the number of positive and negative

boluses. Therefore, even though the training and the test boluses were chosen at

random, they had similar distribution because of stratification.

On the contrary, a pig-level split did not have a stratified split of positive and

negative boluses. The pig-level splits had the boluses from entire pigs in each set,

which meant that there were no boluses from an individual pig from the training set

to the test set or vice versa. The Pig-level split involved choosing all the boluses

from one sepsis pig and three hemorrhage pigs for its test set, and the boluses of

the remaining pigs were a part of the training set. The inferences from this

experiment would help understand whether the model can generalize well to totally

unseen data even if the unseen boluses came from unseen pigs. The experiment

utilized grid search in a nested cross-validation pipeline to choose the right set of

hyperparameters. From section 4.1, it was evident that both 56 and 224 length

sequences had pretty good performance concerning the relevant metrics, and

hence both the sequence lengths were also tested if they offered any difference in

the current experiment.

65

Sequence
Length

BL/PL Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

56 PL 0.541 0.19 0.649 0.14 0.411 0.18 0.668 0.14 0.553 0.25

56 BL 0.842 0.02 0.855 0.02 0.768 0.10 0.718 0.07 0.906 0.04

224 PL 0.773 0.06 0.776 0.05 0.606 0.13 0.65 0.14 0.833 0.08

224 BL 0.863 0.02 0.875 0.02 0.859 0.07 0.731 0.10 0.925 0.04

Table 4.21: Performance of MLSTMFCN model using ABP waveform with 56 and

224 sequence lengths for bolus-level (BL) and pig-level (PL) splitting in a nested

cross-validation

Sequence
Length

BL/PL Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

56 PL 0.668 0.052 0.801 0.065 0.481 0.099 0.765 0.108 0.712 0.066

56 BL 0.789 0.03 0.851 0.028 0.649 0.073 0.774 0.091 0.838 0.059

224 PL 0.69 0.13 0.817 0.089 0.55 0.119 0.781 0.09 0.742 0.158

224 BL 0.814 0.024 0.887 0.017 0.776 0.053 0.774 0.074 0.874 0.048

Table 4.22: Performance of MLSTMFCN model using CVP waveform with 56 and

224 sequence lengths for bolus-level (BL) and pig-level (PL) splitting in a nested

cross-validation

66

Sequence
Length

BL/PL Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

56 PL 0.532 0.166 0.605 0.154 0.382 0.161 0.671 0.154 0.549 0.219

56 BL 0.867 0.007 0.868 0.053 0.832 0.072 0.746 0.131 0.935 0.032

224 PL 0.569 0.174 0.654 0.102 0.426 0.199 0.738 0.068 0.556 0.232

224 BL 0.882 0.014 0.877 0.029 0.858 0.0789 0.737 0.128 0.947 0.031

Table 4.23: Performance of MLSTMFCN model using ABP and CVP waveforms

with 56 and 224 sequence lengths for bolus-level (BL) and pig-level (PL) splitting

in a nested cross-validation

 It can be seen from Table 4.21 and Table 4.23 that there was a steady drop

in performance when the experiment switched from bolus-level to pig-level

splitting. Additionally, the models trained on sequences of length 56 had a much

steeper drop in performance than those trained on sequences of length 224.

However, from Table 4.22, there was no significant drop in performance while

using just the CVP waveforms when the splitting switched from bolus-level to pig-

level splitting. Additionally, the performances with models trained on length 56

were comparable to those trained on sequences of length 224. Therefore, from

Table 4.21 - Table 4.23, it can be inferred that whenever ABP signals were

supplied as input the neural network, there was a significant drop in the

performance in pig-level splits, but the same does not apply for using CVP signals

67

based on results from Table 4.22. Another inference from these experiments was

that the sequence length of 56 consistently performed worse when compared to

models trained with sequences of length 224; however, not by a significant

amount.

 Even though there was a significant drop in the performance when shifting

from bolus level to pig level splitting, the drop was not huge when the ABP and

CVP waveforms were used individually. The results from Table 4.21 - Table 4.23

motivated further experiments on pig-level sampling by including all the datasets,

including hemorrhage, sepsis, EPACC_Trial1, and IRI_FR_ALL. The experimental

setup was similar to the previous pig-level experiments, and the only difference to

the method was to include all the datasets and not just the hemorrhage and sepsis

datasets like before.

Fold Accuracy AUROC Precision Recall Specificity

1 0.695 0.755 0.772 0.62 0.792

2 0.778 0.819 0.827 0.735 0.84

3 0.556 0.573 0.567 0.531 0.602

4 0.655 0.711 0.607 0.681 0.677

5 0.704 0.731 0.683 0.773 0.654

Table 4.24: Performance of MLSTMFCN model using ABP waveform with 224

sequence length for pig-level (PL) splitting in a five-fold nested cross-validation

68

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

0.678 0.06 0.718 0.07 0.692 0.08 0.668 0.07 0.713 0.07

Table 4.25: Summary of metrics from Table 4.24 with averages and 95%

confidence intervals

Fold Accuracy AUROC Precision Recall Specificity

1 0.599 0.673 0.651 0.543 0.673

2 0.684 0.722 0.701 0.692 0.692

3 0.647 0.708 0.630 0.726 0.584

4 0.572 0.628 0.499 0.508 0.63

5 0.698 0.792 0.706 0.753 0.694

Table 4.26: Performance of MLSTMFCN model using CVP waveform with 224

sequence length for pig-level (PL) splitting in a five-fold nested cross-validation

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

0.639 0.04 0.704 0.04 0.637 0.06 0.644 0.08 0.655 0.03

Table 4.27: Summary of metrics from Table 4.26 with averages and 95%

confidence intervals

69

Fold Accuracy AUROC Precision Recall Specificity

1 0.599 0.673 0.651 0.543 0.673

2 0.684 0.722 0.701 0.692 0.692

3 0.647 0.708 0.630 0.726 0.584

4 0.572 0.628 0.499 0.508 0.63

5 0.698 0.792 0.706 0.753 0.694

Table 4.28: Performance of MLSTMFCN model using ABP & CVP waveforms

with 224 sequence length for pig-level (PL) splitting in a five-fold nested cross-

validation

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

0.639 0.04 0.704 0.04 0.637 0.06 0.644 0.08 0.655 0.03

Table 4.29: Summary of metrics from Table 4.28 with averages and 95%

confidence intervals

 Table 4.24 - Table 4.29 indicates that the models developed with the pig-

level splitting had established promising results even when all the datasets were

included. Comparing the results with pig-level splitting using just the hemorrhage

and sepsis pigs and the entire dataset's performance shows a slight drop in the

performance metrics. However, the drop in performance is not huge and shows

promise that the training set need not necessarily have the boluses from the same

pigs to offer compelling performance. The results suggest that if the training and

the test set have representations of the same physiologies and not necessarily

70

from the same pigs, the model can better classify boluses as fluid responsive or

not.

4.4 Performance on Combined Physiologies of Models
Trained on Individual Physiologies

One of the most critical aspects of these experiments is whether a model trained

on individual physiologies can generalize on totally different physiologies. Thus,

for example, it would be vital to know whether the individual physiologies play an

essential role in the classification or whether these nuances can be learned by the

model and can generalize across different physiologies. Therefore, in these

experiments, MLSTM-FCN models were trained on datasets possessing individual

physiologies such as Hemorrhage, Sepsis, and EPACC_Trial1. Then, the trained

models were tested on the remaining physiologies to understand the degree of

generalization across physiologies. The experimental setup involved grid search

in tuning the right set of hyperparameters. Nested cross-validation was not a part

of the setup, but the experiment setup involved using separate training and test

sets from individual physiologies instead. The length of the input sequence used

was 224. Training and testing the models involved using the ABP and CVP

waveforms individually and in combination to understand if these combinations add

value to the model’s performance.

71

Features Accuracy AUROC Precision Recall Specificity

ABP 0.887 0.814 0.25 0.75 0.894

CVP 0.966 0.744 0.82 0.25 0.921

ABP & CVP 0.854 0.798 0.2 0.75 0.856

Table 4.30: Performance of MLSTMFCN model trained on boluses from

EPACC_Trial1 pigs with 224 sequence length and tested on boluses from sepsis

pigs

Features Accuracy AUROC Precision Recall Specificity

ABP 0.654 0.574 0.9 0.166 0.987

CVP 0.518 0.668 0.483 0.815 0.405

ABP & CVP 0.631 0.559 0.87 0.093 0.953

Table 4.31: Performance of MLSTMFCN model trained on boluses from

EPACC_Trial1 pigs with 224 sequence length and tested on boluses from

Hemorrhage pigs

 Table 4.30 and Table 4.31 explain the performance of the model trained on

EPACC_trial1 pigs on boluses of Sepsis and Hemorrhage pigs, respectively. From

Table 4.30, it is evident that the model's performance on sepsis pigs was positive

concerning the accuracy, AUROC, and specificity. However, the precision and

72

recall metrics tend to be scattered. Table 4.31 had the performance metrics when

the same model was tested on boluses from hemorrhage pigs. Collectively all of

them had poor accuracy and AUROC scores, and the precision, recall, and

specificity metrics were scattered, indicating poor generalization from

EPACC_Trial1 to Hemorrhage.

Features Accuracy AUROC Precision Recall Specificity

ABP 0.966 0.747 0.926 0.25 0.984

CVP 0.955 0.576 0.487 0.594 0.962

ABP & CVP 0.797 0.758 0.158 0.75 0.811

Table 4.32: Performance of MLSTMFCN model trained on boluses from

Hemorrhage pigs with 224 sequence length and tested on boluses from sepsis

pigs

Features Accuracy AUROC Precision Recall Specificity

ABP 0.725 0.512 0.725 0.948 0.332

CVP 0.517 0.553 0.736 0.62 0.414

ABP & CVP 0.745 0.601 0.767 0.944 0.244

Table 4.33: Performance of MLSTMFCN model trained on boluses from

Hemorrhage pigs with 224 sequence length and tested on boluses from

EPACC_Trial1 pigs

73

 Table 4.32 and Table 4.33 explain the performance of the model trained on

Hemorrhage pigs on boluses of Sepsis and EPACC_Trial1 pigs, respectively.

From Table 4.32, it is clear that the model’s performance concerning accuracy and

specificity was good. However, AUROC was bad when only the CVP waveform

was used but was better in the remaining combinations. Additionally, the precision

and the recall scores were also scattered, indicating poor generalization on Sepsis

data. Table 4.33 had the performance metrics when the same model was tested

on boluses from EPACC_Trial1 pigs. The precision and the recall scores were

considerably higher, but the remaining metrics had poor scores again, indicating

poor generalization on EPACC_Trial1 data.

Features Accuracy AUROC Precision Recall Specificity

ABP 0.406 0.532 0.406 0.978 0.253

CVP 0.594 0.527 0.358 0.297 0.96

ABP & CVP 0.503 0.61 0.46 0.852 0.316

Table 4.34: Performance of MLSTMFCN model trained on boluses from Sepsis

pigs with 224 sequence length and tested on boluses from Hemorrhage pigs

74

Features Accuracy AUROC Precision Recall Specificity

ABP 0.664 0.577 0.738 0.889 0.17

CVP 0.678 0.507 0.726 0.907 0.097

ABP & CVP 0.738 0.523 0.734 0.912 0.048

Table 4.35: Performance of MLSTMFCN model trained on boluses from Sepsis

pigs with 224 sequence length and tested on boluses from Hemorrhage pigs

Table 4.34 and Table 4.35 explain the performance of the model trained on

Sepsis pigs on boluses of Hemorrhage and EPACC_Trial1 pigs, respectively. The

model trained on boluses from Sepsis pigs had inferior generalization on the

Hemorrhage and EPACC_Trial1 pigs. From these experiments, it can be inferred

that the models trained on individual physiologies tend not to generalize well

across other physiologies. The model could not generalize to other physiologies

by learning the patterns and structure from different physiology.

4.5 Evaluation of Model’s Generalizability

One of the essential requirements of a predictive model is to predict well on the

unseen holdout data to ensure the model’s generalizability. In this set of

experiments, various combinations of physiologies were used to train the model

75

using nested cross-validation to tune the hyperparameters and test all these

models on holdout sets to find out which combination of physiologies helps the

model generalize well on the unseen data. Another critical experiment was to

reverse the training and the holdout sets to identify if the model behaves similarly

if the data gets swapped. Each of these experiments was designed to identify if

the model can generalize well on the unseen data.

4.5.1 Holdout Set Performance of Models Trained on
Various Combinations of Physiologies

Following the previous experiment where the model utilized the individual

physiologies for training and then testing the others, this experiment followed a

similar pattern. However, instead of using individual physiologies to train and then

test on other physiologies, this experiment made use of a constant holdout set

made out of IRI_FR data. Thus, this experiment involved training models on

individual and combination of physiologies and then testing out on the same

holdout set. The experimental setup involved a bolus-level split for various folds in

the nested cross-validation process. It also involved the usage of grid search in

searching for the correct hyperparameters. The sequence length used in this

experiment was 224. The IRI_FR dataset had three different subsets used in this

thesis. However, this experiment made use of two of those subsets, namely

76

IRI_FR_1_2 and IRI_FR_1_2_3. These datasets had overlaps; however, the

IRI_FR_1_2_3 had boluses from 5 more pigs than the IRI_FR_1_2 dataset. The

description and the characteristics of each dataset used in this experiment are

present in Table 3.1. This experiment also tested various combinations of ABP and

CVP waveforms and if they add value to the performance.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.799 0.07 0.866 0.07 0.815 0.08 0.723 0.07 0.877 0.07

ABP 0.848 0.04 0.873 0.03 0.869 0.07 0.776 0.07 0.906 0.06

ABP &
CVP

0.839 0.05 0.88 0.03 0.831 0.08 0.837 0.06 0.865 0.07

Table 4.36: Nested Cross-Validation Performance of MLSTM-FCN model trained

on Hem Data

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.568 0.06 0.64 0.04 0.426 0.03 0.64 0.08 0.645 0.04

ABP 0.334 0.01 0.43 0.03 0.26 0.01 0.691 0.06 0.196 0.03

ABP &
CVP

0.326 0.03 0.358 0.04 0.201 0.04 0.391 0.08 0.374 0.04

Table 4.37: Performance of Pickled model trained on Hem Data and tested on

holdout IRI_FR_1_2 data.

77

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.591 0.06 0.667 0.04 0.465 0.02 0.654 0.09 0.678 0.03

ABP 0.334 0.02 0.439 0.04 0.279 0.02 0.745 0.07 0.176 0.03

ABP &
CVP

0.363 0.03 0.373 0.03 0.216 0.03 0.418 0.08 0.368 0.06

Table 4.38: Performance of Pickled model trained on Hem Data and tested on

holdout IRI_FR_1_2_3 data.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.772 0.05 0.787 0.08 0.856 0.05 0.866 0.04 0.737 0.08

ABP 0.842 0.05 0.842 0.06 0.886 0.05 0.915 0.04 0.721 0.07

ABP &
CVP

0.827 0.05 0.845 0.04 0.883 0.04 0.941 0.06 0.742 0.07

Table 4.39: Nested Cross-Validation Performance of MLSTM-FCN model trained

on EPACC_Trial1 Data

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.653 0.02 0.604 0.05 0.401 0.04 0.51 0.06 0.767 0.06

ABP 0.395 0.05 0.546 0.04 0.33 0.03 0.783 0.01 0.33 0.08

ABP &
CVP

0.736 0.03 0.808 0.01 0.552 0.01 0.883 0.06 0.703 0.03

Table 4.40: Performance of Pickled model trained on EPACC_Trial1 Data

and tested on holdout IRI_FR_1_2 data.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

78

CVP 0.657 0.01 0.648 0.02 0.416 0.04 0.522 0.04 0.764 0.06

ABP 0.405 0.05 0.547 0.03 0.339 0.02 0.782 0.01 0.337 0.07

ABP &
CVP

0.704 0.04 0.781 0.01 0.527 0.02 0.872 0.07 0.663 0.03

Table 4.41: Performance of Pickled model trained on EPACC_Trial1 Data and

tested on holdout IRI_FR_1_2_3 data.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.83 0.02 0.887 0.02 0.722 0.03 0.792 0.09 0.888 0.01

ABP 0.853 0.02 0.869 0.03 0.802 0.1 0.694 0.09 0.926 0.03

ABP &
CVP

0.842 0.03 0.838 0.02 0.769 0.1 0.668 0.02 0.921 0.04

Table 4.42: Nested Cross-Validation Performance of MLSTM-FCN model trained

on Hem_Sep_scaledCVP Data

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.419 0.07 0.44 0.07 0.285 0.04 0.5 0.08 0.493 0.06

ABP 0.495 0.03 0.645 0.08 0.396 0.06 0.833 0.08 0.471 0.07

ABP &
CVP

0.427 0.05 0.573 0.03 0.345 0.01 0.783 0.09 0.386 0.06

Table 4.43: Performance of Pickled model trained on Hem_Sep_scaledCVP Data

and tested on holdout IRI_FR_1_2 data.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

79

CVP 0.435 0.08 0.445 0.07 0.299 0.05 0.49 0.08 0.509 0.07

ABP 0.311 0.01 0.519 0.01 0.309 0.01 0.933 0.05 0.402 0.07

ABP &
CVP

0.431 0.05 0.562 0.04 0.332 0.01 0.786 0.08 0.355 0.06

Table 4.44: Performance of Pickled model trained on Hem_Sep_scaledCVP Data

and tested on holdout IRI_FR_1_2_3 data.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.806 0.03 0.882 0.02 0.79 0.04 0.837 0.05 0.81 0.05

ABP 0.824 0.04 0.874 0.04 0.829 0.05 0.801 0.06 0.86 0.05

ABP &
CVP

0.829 0.04 0.876 0.04 0.826 0.07 0.836 0.05 0.843 0.07

Table 4.45: Nested Cross-Validation Performance of MLSTM-FCN model trained

on Hem_Sep_scaledCVP_EPACC_Trial1 Data

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.427 0.03 0.497 0.08 0.3 0.05 0.736 0.08 0.476 0.07

ABP 0.544 0.03 0.681 0.03 0.41 0.01 0.944 0.02 0.483 0.06

ABP &
CVP

0.404 0.04 0.569 0.03 0.344 0.02 0.783 0.04 0.379 0.05

Table 4.46: Performance of Pickled model trained on

Hem_Sep_scaledCVP_EPACC_Trial1 Data and tested on holdout IRI_FR_1_2

data.

80

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.46 0.03 0.523 0.08 0.321 0.05 0.77 0.07 0.486 0.08

ABP 0.534 0.02 0.668 0.03 0.408 0.01 0.943 0.02 0.458 0.05

ABP &
CVP

0.422 0.05 0.579 0.03 0.361 0.02 0.791 0.05 0.396 0.03

Table 4.47: Performance of Pickled model trained on

Hem_Sep_scaledCVP_EPACC_Trial1 Data and tested on holdout

IRI_FR_1_2_3 data.

Table 4.36-Table 4.38 explains the nested cross-validation and the pickled

model performances on the holdout sets when trained on boluses from

hemorrhage pigs. Table 4.39-Table 4.41 elaborates on the nested cross-validation

and pickled model performance on the holdout sets when the model was trained

on EPACC_Trial1 data. Table 4.42-Table 4.44 elaborated on the nested cross-

validation and pickled model performance on holdout sets when trained on boluses

from Hem_Sep_scaledCVP data. Finally, Table 4.45-Table 4.47 explained the

nested cross-validation and pickled model performance on the holdout sets when

trained on Hem_Sep_scaledCVP_EPACC_Trial1 data. From Table 4.36, Table

4.39, Table 4.42, and Table 4.45, it was evident that the MLSTM-FCN model could

generalize well on nested cross-validation. An additional inference was that the

81

model tends to perform well when the test set resembles the training set well

concerning the physiologies and the distribution. Table 4.37: Performance of

Pickled model trained on Hem Data and tested on holdout IRI_FR_1_2 data.,

Table 4.38, Table 4.40: Performance of Pickled model trained on EPACC_Trial1

Data and tested on holdout IRI_FR_1_2 data., Table 4.41, Table 4.43, Table 4.44,

Table 4.46: Performance of Pickled model trained on

Hem_Sep_scaledCVP_EPACC_Trial1 Data and tested on holdout IRI_FR_1_2

data.

, and Table 4.47 represent the pickled model performance of the respective

models in each category. There was a decrease in performance while testing on

the holdout set compared to the nested cross-validation performance. The training

set in all the cases did not have even a single bolus from the IRI_FR data, and this

explained why the pickled model trained on various physiologies did not perform

well on the holdout set but performed well during nested cross-validation.

4.5.2 Reversing the training and holdout sets

Inferences from the previous experiments pointed out that the models trained on

any combination of physiologies did not learn the patterns well to generalize well

on the holdout set. Therefore, in this experiment, the training and the holdout sets

were reversed to check if the model can generalize well when trained on

82

IRI_FR_1_2_3 data and tested on Hem_Sep_scaledCVP data. The experimental

setup had the nested cross-validation pipeline along with the grid search for

hyperparameter tuning. The MLSTM-FCN model took in inputs of length 224. All

combinations of ABP and CVP waveforms were given as input to the model for

training and testing. After the nested cross-validation procedure, the model was

pickled and then tested on the Hem_Sep_scaledCVP data to find out if there was

any impact on the performance.

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.707 0.06 0.703 0.07 0.574 0.13 0.553 0.15 0.819 0.12

ABP 0.774 0.12 0.739 0.11 0.608 0.14 0.583 0.18 0.848 0.12

ABP &
CVP

0.764 0.11 0.748 0.10 0.593 0.14 0.703 0.08 0.828 0.10

Table 4.48: Nested Cross-Validation Performance of MLSTM-FCN model trained

on IRI_FR_1_2_3 Data

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI

CVP 0.64 0.02 0.579 0.02 0.326 0.04 0.344 0.06 0.751 0.02

ABP 0.524 0.02 0.471 0.04 0.227 0.03 0.310 0.09 0.630 0.02

ABP &
CVP

0.780 0.03 0.626 0.07 0.896 0.09 0.201 0.13 0.987 0.01

83

Table 4.49: Performance of Pickled model with trained on IRI_FR_1_2_3 Data

and tested on holdout Hem_Sep_scaledCVP data.

Observations from Table 4.49 pointed out that the pickled model did not

generalize well on the holdout set made from the boluses of Hem_Sep_scaledCVP

data. The poor generalization of the pickled model was similar to the results from

previous experiments as well. But a significant difference was that the nested

cross-validation performance in the previous experiments was better. On the

contrary, the nested cross-validation results were subpar when the IRI_FR_1_2_3

was used for training based on results displayed in Table 4.49. The poor

performance could be due to the fewer boluses in the IRI_FR_1_2_3 data than the

Hem_Sep_scaledCVP data. Due to the decreased number of boluses available for

training, the model could not understand the patterns from the training, and the

holdout set resulted in poor generalization.

This series of experiments helped in discerning that though the model

performed well during nested cross-validation with various combinations of

physiologies, the model failed to perform well on the holdout set, validating the lack

of generalizability of the model. In the subsequent experiment where the training

and the holdout sets were reversed, the model failed to get a comparable score

during nested cross-validation and failed to generalize well on the holdout set. But

in this experiment, the failure to generalize well on the training set can be explained

84

due to the lack of enough data points for the model to train, explained by the low

nested cross-validation score.

4.6 Examination of Overfitting

In the previous set of experiments, the model’s performance on the training set

was better when compared to the performance on the holdout sets. The lack of

generalizability of the model on the holdout sets could result from the overfitting on

the training set. As explained in Section 3.4.5, overfitting can be examined with the

help of the loss curves during training. The loss curves can be examined multiple

times from each fold of the nested cross-validation pipeline since each fold has a

different random sample of training and validation sets. The loss curves indicated

no signs of overfitting in all the experiments during nested cross-validation. Figure

4.3 shows the training and validation loss curves during one of the folds of nested

cross validation for the model trained on Hem_Sep_ScaledCVP_EPACC_Trial1

data with 224 sequence length and on a bolus level.

85

Figure 4.3: Representative training and validation loss curves for one of the folds

during nested cross-validation for the model trained on

Hem_Sep_ScaledCVP_EPACC_Trial1 data with 224 sequence length and on a

bolus level. Red: Training loss, Blue: Validation loss

 The examination of loss curves during each nested cross-validation pipeline

helped ensure that the model did not overfit on the training data. However, the

training and the validation sets in a nested cross-validation pipeline have a similar

distribution of samples obtained from a given injury model. Good performance

metrics during nested cross-validation with the lack of overfitting suggested that

the models were learning generalizable rules within a given injury model; however,

the lack of generalization on the holdout set suggest that the models were so good

at learning a given physiology that they could not generalize to a different injury

model’s physiology.

86

Chapter 5

CONCLUSION

This thesis explored various methodologies involving deep learning to predict fluid

responsiveness in hemodynamically unstable patients. The multivariate LSTM fully

convolutional neural network and DenseNet showed promise in predicting fluid

responsiveness using arterial blood pressure and central venous pressure

waveforms. The background information, which includes the fundamentals

required for this thesis, was established in Chapter 2. Chapter 3 discusses the

meticulously curated datasets used in this thesis and the preprocessing techniques

required to transform the data to be compatible with the deep learning models.

Normalization, stratification, and splitting of the waveforms into sequences were

the preprocessing techniques discussed in detail in chapter 3. The chapter also

discusses the training methods adopted to best tune the hyperparameters and pick

the best models with the help of nested cross-validation and grid search

algorithmic techniques.

 The experiments conducted and their associated results were clearly

defined and discussed in chapter 4. The chapter discussed experiments involving

altering the sequence lengths of waveforms for input to the deep learning models.

87

The experiments discussed the various improvements to the model training that

can help the model make good predictions. These experiments involve altering

model architectures from removing LSTM to adding the attention mechanism for

LSTM and comparing various deep learning architectures. The experiments also

involve explaining various methods to deal with class imbalances using sample

weighting in loss function and resampling the dataset using SMOTE. Finally, the

chapter discussed altering the preprocessing pipeline for normalization and

stratification. These experiments helped find the best architecture and the

preprocessing pipeline that can help the model make good predictions. Once the

modeling pipeline was optimized, the experiments explored various training and

test sets sampling based on bolus-level and pig-level splitting. Finally, the thesis

explains various experiments that can be used to infer the model’s generalizability

on unseen holdout datasets. All the experiments listed in Chapter 4 involved the

use of various combinations of the data to obtain meaningful inferences from the

experiments.

 The DenseNet-18 model obtained an AUROC of 0.824 ± 0.05 while using

Hem_Sep_ScaledCVP data using the ABP waveform with a sequence length of

224 in nested cross-validation as explained in Table 4.14. However, the pickled

DenseNet-18 model did not perform the same way that it did in the nested cross-

validation. In addition, the model secured an AUROC of 0.636 ± 0.03 when tested

88

on the IRI_FR_1_2_3 data indicating poor generalization on physiologies outside

the scope of the training set as displayed in Error! Reference source not found..

 The multivariate LSTM fully convolutional network obtained promising

results during nested cross-validation. For example, the MLSTM-FCN model

secured an AUROC of 0.869 ± 0.03 when trained and tested using

Hem_Sep_ScaledCVP data using ABP waveform during nested cross-validation

on a bolus-level splitting with a sequence length of 224 based on Table 4.42. On

the other hand, based on Table 4.44, the pickled model which obtained an AUROC

of 0.869 ± 0.03 failed to generalize on IRI_FR_1_2_3 data by securing an AUROC

of 0.519 ± 0.01. Finally, using the same data and identical sequence length but

with a pig-level splitting, the model secured an AUROC of 0.776 ± 0.05 based on

Table 4.21. The results from these experiments indicate that the MLSTM-FCN

model could not generalize on the IRI_FR_1_2_3 data when trained on the

Hem_Sep_ScaledCVP dataset. Various experiments discussed in chapter 4

indicate the same results. Similarly, when all the datasets were used in a pig-level

split, the MLSTM-FCN model secured an AUROC of 0.718 ± 0.07 as explained in

Table 4.25.

The failure of the MLSTM-FCN model to generalize on unseen physiology

can be because the training data set is tiny for a deep learning model to understand

the intricate patterns from one physiology and generalize on totally new

physiology. However, the MLSTM-FCN model performed better on the pig-level

89

splitting, sugesting that when both the training and the testing data have a similar

mixture of physiology, the model picked up the complex patterns and generalized

well on unseen pigs.

5.1 LIMITATIONS AND FUTURE WORK

There are several limitations to the methods discussed in this thesis. Based on the

results from this thesis, it is evident that the training set should represent all the

physiologies to make a compelling predictive model capable of classifying fluid

responsiveness of boluses from unseen pigs. The training set has to be very

diverse to cover all the physiologies, and if that’s not the case, the model might not

be an effective predictor. Another important consideration is that the model is

developed on a meticulously curated dataset with strictly maintained experimental

conditions. However, it is uncertain how the model would behave in noisy real-

world data. Another important consideration is the choice of deep learning

algorithms. The deep learning algorithms chosen for the experiments were not

exhaustive, and using a new algorithm or a more exhaustive hyperparameter

search could potentially improve model performance.

The scope of the work from this thesis can be expanded further in the future.

An advance in this field would be to shift from the hemodynamic waveforms of pigs

to humans. Though the hemodyanmic waveforms of pigs are similar to humans,

90

they are not identical and can pose difficulties for the model to learn essential

patterns from the training data. Another progress would be to apply Auto machine

learning (Auto ML) methods to automate the designing of deep learning

architecture. An Auto ML pipeline can help find the best architecture to predict fluid

responsiveness, and we do not have to worry about the lack of an exhaustive

search of the hyperparameter space. Finally, transfer learning offers a compelling

framework in various applications by improving the model’s performance when a

small training dataset restricts the model [57]. Hence, transfer learning could prove

to be a valuable approach to predict fluid responsiveness since the experiments in

this thesis dealt with a relatively small dataset.

91

REFERENCES

[1] A. Prakash, K. Chitta, and A. Geiger, “Multi-Modal Fusion Transformer for
End-to-End Autonomous Driving,” ArXiv210409224 Cs, Apr. 2021, Accessed:
Sep. 27, 2021. [Online]. Available: http://arxiv.org/abs/2104.09224

[2] S. Carrell and A. Atapour-Abarghouei, “Identification of Driver Phone Usage
Violations via State-of-the-Art Object Detection with Tracking,”
ArXiv210902119 Cs, Sep. 2021, Accessed: Sep. 27, 2021. [Online].
Available: http://arxiv.org/abs/2109.02119

[3] D. S. Park et al., “Improved Noisy Student Training for Automatic Speech
Recognition,” Interspeech 2020, pp. 2817–2821, Oct. 2020, doi:
10.21437/Interspeech.2020-1470.

[4] X.-Y. Liu et al., “FinRL: A Deep Reinforcement Learning Library for
Automated Stock Trading in Quantitative Finance,” SSRN Electron. J., 2020,
doi: 10.2139/ssrn.3737859.

[5] L. Bai, L. Yao, X. Wang, and C. Wang, Adaptive Graph Convolutional
Recurrent Network for Traffic Forecasting. 2020.

[6] L. Wang and A. Wong, “COVID-Net: A Tailored Deep Convolutional Neural
Network Design for Detection of COVID-19 Cases from Chest X-Ray Images,”
ArXiv200309871 Cs Eess, May 2020, Accessed: Sep. 27, 2021. [Online].
Available: http://arxiv.org/abs/2003.09871

[7] J. Lee et al., “Association between fluid balance and survival in critically ill
patients,” J. Intern. Med., vol. 277, no. 4, pp. 468–477, Apr. 2015, doi:
10.1111/joim.12274.

[8] D. Payen et al., “A positive fluid balance is associated with a worse outcome
in patients with acute renal failure,” Crit. Care Lond. Engl., vol. 12, no. 3, p.
R74, 2008, doi: 10.1186/cc6916.

[9] A. Carsetti, M. Cecconi, and A. Rhodes, “Fluid bolus therapy: monitoring and
predicting fluid responsiveness,” Curr. Opin. Crit. Care, vol. 21, no. 5, pp.
388–394, Oct. 2015, doi: 10.1097/MCC.0000000000000240.

[10] B. Saugel, K. Kouz, A. S. Meidert, L. Schulte-Uentrop, and S. Romagnoli,
“How to measure blood pressure using an arterial catheter: a systematic 5-
step approach,” Crit. Care, vol. 24, no. 1, p. 172, Apr. 2020, doi:
10.1186/s13054-020-02859-w.

[11] M. Nirmalan and P. M. Dark, “Broader applications of arterial pressure
wave form analysis,” Contin. Educ. Anaesth. Crit. Care Pain, vol. 14, no. 6,
pp. 285–290, Dec. 2014, doi: 10.1093/bjaceaccp/mkt078.

92

[12] D. De Backer and J.-L. Vincent, “Should we measure the central venous
pressure to guide fluid management? Ten answers to 10 questions,” Crit.
Care, vol. 22, no. 1, p. 43, Feb. 2018, doi: 10.1186/s13054-018-1959-3.

[13] T. G. V. Cherpanath et al., “Predicting Fluid Responsiveness by Passive
Leg Raising: A Systematic Review and Meta-Analysis of 23 Clinical Trials,”
Crit. Care Med., vol. 44, no. 5, pp. 981–991, May 2016, doi:
10.1097/CCM.0000000000001556.

[14] J. I. Alvarado Sánchez, J. D. Caicedo Ruiz, J. J. Diaztagle Fernández, W.
F. Amaya Zuñiga, G. A. Ospina-Tascón, and L. E. Cruz Martínez, “Predictors
of fluid responsiveness in critically ill patients mechanically ventilated at low
tidal volumes: systematic review and meta-analysis,” Ann. Intensive Care, vol.
11, p. 28, Feb. 2021, doi: 10.1186/s13613-021-00817-5.

[15] P. E. Marik, R. Cavallazzi, T. Vasu, and A. Hirani, “Dynamic changes in
arterial waveform derived variables and fluid responsiveness in mechanically
ventilated patients: a systematic review of the literature,” Crit. Care Med., vol.
37, no. 9, pp. 2642–2647, Sep. 2009, doi: 10.1097/CCM.0b013e3181a590da.

[16] J.-L. Teboul, X. Monnet, D. Chemla, and F. Michard, “Arterial Pulse
Pressure Variation with Mechanical Ventilation,” Am. J. Respir. Crit. Care
Med., vol. 199, no. 1, pp. 22–31, Jan. 2019, doi: 10.1164/rccm.201801-
0088CI.

[17] F. Hatib et al., “Machine-learning Algorithm to Predict Hypotension Based
on High-fidelity Arterial Pressure Waveform Analysis,” Anesthesiology, vol.
129, no. 4, pp. 663–674, Oct. 2018, doi: 10.1097/ALN.0000000000002300.

[18] Z. Zhang, K. M. Ho, and Y. Hong, “Machine learning for the prediction of
volume responsiveness in patients with oliguric acute kidney injury in critical
care,” Crit. Care, vol. 23, no. 1, Apr. 2019, doi: 10.1186/s13054-019-2411-z.

[19] R. Kamaleswaran et al., “Predicting Volume Responsiveness Among
Sepsis Patients Using Clinical Data and Continuous Physiological
Waveforms,” AMIA Annu. Symp. Proc. AMIA Symp., vol. 2020, pp. 619–628,
2020.

[20] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp.
321–357, Jun. 2002, doi: 10.1613/jair.953.

[21] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY:
Springer New York, 2013. doi: 10.1007/978-1-4614-6849-3.

[22] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, 2nd edition.
New York, NY: Springer, 2016.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[24] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate LSTM-
FCNs for Time Series Classification,” Neural Netw., vol. 116, pp. 237–245,
Aug. 2019, doi: 10.1016/j.neunet.2019.04.014.

93

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” ArXiv160806993 Cs, Jan. 2018,
Accessed: Sep. 28, 2021. [Online]. Available: http://arxiv.org/abs/1608.06993

[26] Z. Wang, W. Yan, and T. Oates, “Time Series Classification from Scratch
with Deep Neural Networks: A Strong Baseline,” ArXiv161106455 Cs Stat,
Dec. 2016, Accessed: Sep. 28, 2021. [Online]. Available:
http://arxiv.org/abs/1611.06455

[27] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” ArXiv150203167 Cs, Mar.
2015, Accessed: Sep. 29, 2021. [Online]. Available:
http://arxiv.org/abs/1502.03167

[28] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” in Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, Jun. 2011, pp. 315–323. Accessed: Sep.
29, 2021. [Online]. Available: https://proceedings.mlr.press/v15/glorot11a.html

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” ArXiv151203385 Cs, Dec. 2015, Accessed: Sep. 29, 2021.
[Online]. Available: http://arxiv.org/abs/1512.03385

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep Residual
Networks,” ArXiv160305027 Cs, Jul. 2016, Accessed: Sep. 29, 2021. [Online].
Available: http://arxiv.org/abs/1603.05027

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” ArXiv151200567 Cs, Dec.
2015, Accessed: Sep. 29, 2021. [Online]. Available:
http://arxiv.org/abs/1512.00567

[32] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,”
Univ. Tor., May 2012.

[33] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading Digits in Natural Images with Unsupervised Feature Learning,”
2011. Accessed: Sep. 29, 2021. [Online]. Available:
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” p. 8.

[35] K. Mehmood, H. A. Imran, and U. Latif, “HARDenseNet: A 1D DenseNet
Inspired Convolutional Neural Network for Human Activity Recognition with
Inertial Sensors,” in 2020 IEEE 23rd International Multitopic Conference
(INMIC), Nov. 2020, pp. 1–6. doi: 10.1109/INMIC50486.2020.9318067.

[36] J. Azar, A. Makhoul, and R. Couturier, “Using DenseNet for IoT
multivariate time series classification,” in 2020 IEEE Symposium on
Computers and Communications (ISCC), Rennes, France, Jul. 2020, pp. 1–6.
doi: 10.1109/ISCC50000.2020.9219631.

94

[37] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[38] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” ArXiv14090473 Cs Stat, May 2016,
Accessed: Sep. 29, 2021. [Online]. Available: http://arxiv.org/abs/1409.0473

[39] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation
Networks,” ArXiv170901507 Cs, May 2019, Accessed: Sep. 29, 2021.
[Online]. Available: http://arxiv.org/abs/1709.01507

[40] A. Graves, Supervised Sequence Labelling with Recurrent Neural
Networks, vol. 385. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-24797-2.

[41] H. Minasyan, “Sepsis: mechanisms of bacterial injury to the patient,”
Scand. J. Trauma Resusc. Emerg. Med., vol. 27, no. 1, p. 19, Feb. 2019, doi:
10.1186/s13049-019-0596-4.

[42] T. K. Williams et al., “Endovascular variable aortic control (EVAC) versus
resuscitative endovascular balloon occlusion of the aorta (REBOA) in a swine
model of hemorrhage and ischemia reperfusion injury,” J. Trauma Acute Care
Surg., vol. 85, no. 3, pp. 519–526, Sep. 2018, doi:
10.1097/TA.0000000000002008.

[43] D. Basu et al., “Prediction of Fluid Responsiveness Using Machine
Learning and Arterial Blood Pressure Waveform Data”.

[44] H. Odenstedt, A. Aneman, Y. Oi, M. Svensson, O. Stenqvist, and S.
Lundin, “Descending aortic blood flow and cardiac output: a clinical and
experimental study of continuous oesophageal echo-Doppler flowmetry,” Acta
Anaesthesiol. Scand., vol. 45, no. 2, pp. 180–187, Feb. 2001, doi:
10.1034/j.1399-6576.2001.450208.x.

[45] X. Monnet and J.-L. Teboul, “Assessment of fluid responsiveness: recent
advances,” Curr. Opin. Crit. Care, vol. 24, no. 3, pp. 190–195, Jun. 2018, doi:
10.1097/MCC.0000000000000501.

[46] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search,
Genetic Algorithm: A Big Comparison for NAS,” ArXiv191206059 Cs Stat,
Dec. 2019, Accessed: Nov. 03, 2021. [Online]. Available:
http://arxiv.org/abs/1912.06059

[47] “Improving Deep Neural Networks: Hyperparameter Tuning, Regularization
and Optimization,” Coursera. https://www.coursera.org/learn/deep-neural-
network (accessed Nov. 03, 2021).

[48] C. Huang, Y. Li, C. C. Loy, and X. Tang, “Learning Deep Representation
for Imbalanced Classification,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 5375–
5384. doi: 10.1109/CVPR.2016.580.

[49] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” in

95

Advances in Neural Information Processing Systems, 2013, vol. 26.
Accessed: Nov. 03, 2021. [Online]. Available:
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c49
23ce901b-Abstract.html

[50] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-Balanced Loss
Based on Effective Number of Samples,” p. 10.

[51] P. Baldi, “Gradient descent learning algorithm overview: a general
dynamical systems perspective,” IEEE Trans. Neural Netw., vol. 6, no. 1, pp.
182–195, Jan. 1995, doi: 10.1109/72.363438.

[52] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Mini-batch gradient
descent: Faster convergence under data sparsity,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Dec. 2017, pp. 2880–2887. doi:
10.1109/CDC.2017.8264077.

[53] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proceedings of the 30th
International Conference on Machine Learning, May 2013, pp. 1139–1147.
Accessed: Nov. 03, 2021. [Online]. Available:
https://proceedings.mlr.press/v28/sutskever13.html

[54] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
ArXiv14126980 Cs, Jan. 2017, Accessed: Nov. 03, 2021. [Online]. Available:
http://arxiv.org/abs/1412.6980

[55] K. You, M. Long, J. Wang, and M. I. Jordan, “How Does Learning Rate
Decay Help Modern Neural Networks?,” ArXiv190801878 Cs Stat, Sep. 2019,
Accessed: Nov. 07, 2021. [Online]. Available: http://arxiv.org/abs/1908.01878

[56] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t Decay the
Learning Rate, Increase the Batch Size,” ArXiv171100489 Cs Stat, Feb.
2018, Accessed: Nov. 07, 2021. [Online]. Available:
http://arxiv.org/abs/1711.00489

[57] M. W. Sjoding et al., “Deep learning to detect acute respiratory distress
syndrome on chest radiographs: a retrospective study with external
validation,” Lancet Digit. Health, vol. 3, no. 6, pp. e340–e348, Jun. 2021, doi:
10.1016/S2589-7500(21)00056-X.

