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ABSTRACT 
 

Deep Learning Methodologies to Predict Fluid Responsiveness in 

Hemodynamically Unstable Patients 

 

Deep Learning is a branch of machine learning with a layered structure where each 

layer gets its input from the previous layer to analyze the data and has shown 

promising results to aid healthcare providers in various applications. This thesis 

presents the development and evaluation of various Deep Learning approaches to 

predict if a hemodynamically unstable patient would be responsive to infusion of 

intravenous fluids. This thesis also explores various meticulously designed 

experiments to thoroughly verify the predictive model’s generalization across 

various carefully curated datasets to represent shocks resulting from different 

physiologies in pigs. 

 Treatment of patients suffering from shock often involves the infusion of 

intravenous fluids, also known as fluid bolus therapy (FBT).  An increase in cardiac 

output (CO) of 15% or more after a supply of 500 ml of the fluid bolus indicates 

fluid responsiveness, and the ground truth labels were designed based on this rule. 

In addition, the arterial blood pressure (ABP) and central venous pressure (CVP) 

waveforms were recorded before and after the infusion of each bolus. The period 

before, during, and after the administration of fluid boluses is known as pre-
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macrobolus (Premac), macrobolus, post-macrobolus (Postmac), respectively. The 

deep learning model takes sequences of specific lengths obtained from the ABP 

and CVP during the premac period and the ground truth labels to classify each 

bolus to be fluid responsive or not. The models were tuned and trained using 

nested cross-validation accompanied by grid search algorithms. 

 The results from our experiments suggest that deep learning can offer a 

satisfactory framework to classify boluses as fluid responsive or fluid non-

responsive. In addition, this thesis presents a comprehensive guide to 

experimentation on various aspects that could potentially affect the performance 

of deep learning models while classifying one-dimensional data, including input 

sequence length, model’s architecture, sample weighting in loss functions, 

normalization, resampling the data, and various methods to sample the data to 

acquire meaningful inferences from the results. The experiments showcase the 

restricting nature of small-scale datasets on the deep learning model’s 

performance. The deep learning model fails to generalize when the training and 

the test sets contain different physiologies but generalizes better when both the 

training and the test sets contain a comparable mixture of physiologies. 
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Chapter 1 

INTRODUCTION 
 

 

Various advances in Machine Learning (ML) and Deep Learning (DL) have 

simplified many complex tasks. ML and DL have many applications in regression, 

forecasting, and classification problems. For example, they have vast applications 

in autonomous driving and video surveillance[1], [2]. Furthermore, much research 

is going on in speech recognition, and as each day progresses, artificial 

intelligence’s (AI) ability to understand human speech is increasing [3]. Automatic 

stock trading and traffic forecasting also utilize DL methods, reinforcing its 

versatility [4], [5]. 

AI has also shown promising results in the healthcare industry. Patient 

monitoring and recording has resulted in a large influx of data, which helps make 

robust and reliable ML and DL models to assist patients. For instance, DL has 

helped the health industry make giant leaps to help diagnose and monitor illnesses 

like Covid-19 [6]. Shock is another critical condition that can have detrimental 

effects on the human body. It occurs due to an abrupt contraction of blood flow 

through the body. Shock could occur due to various reasons, including infection, 
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trauma, blood loss, and fluid loss. For example, septic shock occurs when the 

blood pressure drops abruptly due to an infection. Likewise, hypovolemic shock 

occurs due to a large amount of blood or fluid loss from the body. If hypovolemic 

shock occurs due to blood loss, it is known as a hemorrhagic shock. Finally, 

neurogenic shock could occur due to trauma or injury in the spine. 

Treatment of patients suffering from shock frequently involves the infusion 

of intravenous fluids, also known as fluid bolus therapy (FBT). However, it is 

essential to balance the amount of fluid input and output in the body, and an 

excessive amount of injection of fluids or going against the ‘Fluid Balance’ is 

associated with high mortality rates [7], [8]. ‘Fluid responsiveness’ or a positive 

response to the infusion of fluids is defined as a change in Cardiac Output (CO) or 

Stroke Volume (SV) of 10-15% [9].  

Arterial blood pressure (ABP) waveforms are the one-dimensional 

representation of arterial pressure occurring due to the heart’s left ventricle 

pumping action and the systemic vascular resistance. The clinically referenced 

method to measure ABP waveforms involves utilizing invasive Blood Pressure 

(BP) measurement using an arterial catheter [10]. ABP waveforms contain systolic, 

diastolic, and mean arterial pressure information (MAPs) for each beat. The 

utilization of ABP waveforms and their interactions with respiration can help assess 

patients’ overall cardiovascular and hemodynamic status [11]. The Central venous 

pressure (CVP) stands for the blood pressure measured in the venae cava next to 

the heart’s right atrium. CVP waveforms provide vital information about the 
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cardiocirculatory status of the patient and help guide fluid resuscitation irrespective 

of its shortcomings [12]. 

There are numerous methods to predict fluid responsiveness in the 

literature. The passive leg raising technique offers a reliable method to predict fluid 

responsiveness by creating a reversible increase in venous return [13]. However, 

the requirement of labor to perform passive leg raising each time hindering 

automation and the requirement of specialized apparatus are hard to look over 

despite the method's effectiveness to predict fluid responsiveness. Pulse pressure 

variation (PPV) is an important metric that has been vastly studied and used to 

predict fluid responsiveness. PPV is calculated across the respiratory cycles in 

mechanically ventilated patients by observing the changes in pulse pressure in 

ABP waveforms. However, the operative performance of PPV is fluctuating across 

various studies. For example, PPV performed brilliantly to predict fluid 

responsiveness in critically ill patients but was severely obstructed by the 

compliance of the respiratory system for patients mechanically ventilated at low 

tidal volumes [14]. Additionally, Marik et al. pointed out that PPV can offer 

compelling results but is limited to patients who receive controlled ventilation and 

those not breathing spontaneously [15]. Finally, Teboul et al. marked that during 

the various conditions encountered in the ICU, such as spontaneous breathing and 

cardiac arrhythmias, PPV is often unreliable [16]. 

Advances in machine learning paved the way for the reliable prediction of 

hypotension from arterial pressure waveforms [17]. Zhang et al. used XGBoost 
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and logistic regression to predict the volume responsiveness in patients with 

oliguric acute kidney injury, defined as a rise in urine output in the hours after FBT 

[18]. Kamaleswaran et al. used various machine learning models, including the 

random forest and logistic regression algorithms, to predict volume 

responsiveness among sepsis patients using features such as mean arterial blood 

pressure and the age identified [19]. 

In this thesis, we present the development and evaluation of various Deep 

Learning approaches to predict if a hemodynamically unstable patient would be 

responsive to infusion of intravenous fluids. We make use of datasets that were 

carefully curated to represent shock resulting from different physiologies. We also 

present various sample weighting mechanisms for loss functions and resampling 

methods, such as the synthetic minority over-sampling technique [20] that deal 

with class imbalances. We also evaluate the ideal length of the input time-series 

data to capture the critical information from the waveforms fed into the neural 

networks for training and making predictions. Additionally, we use various deep 

learning architectures such as Multivariate Long short-term memory fully 

convolutional network and DenseNet with various changes to their conventional 

architectures to estimate the change in performance resulting due to the change. 

Finally, we experiment with normalization and various sampling of datasets to 

acquire meaningful interpretation of results. 
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Chapter 2 

BACKGROUND 
 

 

2.1 Deep Learning 
 

Predictive modeling is the process of finding relationships from structured data to 

predict the desired outcome [21]. In this thesis, we primarily look at the one-

dimensional data of ABP and CVP of pig’s waveforms during the premacrobolus 

phase to classify the sequence to be fluid responsive or not. Supervised learning 

involves supplying both the dependent and independent variables as an input to a 

mathematical model. The purpose of the mathematical model is to observe the 

examples and produce predictions that are close to the ground truth variables as 

much as possible [22]. The experiments conducted involve using supervised 

learning techniques to predict whether a pig is fluid responsive or not.  

Neural networks are algorithms designed to discern patterns from input data 

and are modeled based on the human brain. A neural network incorporates input 
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and an output layer. If there are multiple additional layers present in the neural 

network, they are known as deep neural networks, and the branch of predictive 

modeling that uses deep neural networks to make predictions is known as deep 

learning. A deep neural network can approximate very complex functions by 

increasing the number of units in a layer and the number of layers. Thus, deep 

learning offers a compelling framework for the task of supervised learning [23]. Our 

experiments use the deep learning algorithm’s capabilities to provide compelling 

predictions for fluid responsiveness. Specifically, we use two algorithms, namely 

Multivariate Long Short Term Memory Fully Convolutional Network (MLSTM-FCN) 

and Densely Connected Convolutional Networks (DenseNet) for binary time series 

classification [24], [25].  

 

2.1.1 Convolutional Neural Networks 
 

The process of convolution combines two signals to produce a third signal. 

Consequently, convolution is applying a filter to input data that creates an 

activation from a deep learning point of view. Equation (22) represents the 

convolution operation in a convolutional neural network where ⊗ represents the 

convolution operator, and 𝑊 represents the kernels and 𝑏 represents the bias 

vector. 

 𝑦 = 𝑊 ⊗ 𝑥 + 𝑏 
 

(1) 
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Convolutional neural networks (CNN) can capture the spatial and temporal 

dependencies in the input data through relevant filters. CNN also eliminate the 

need for traditional hand-crafted feature extractors required for pattern matching. 

Due to the ability of CNN to capture the spatial and temporal information from the 

data, they provide means to create end-to-end models that achieve good 

performance in time-series classification [26]. Time-series data encourages the 

usage of one-dimensional convolutions where the kernel slides along one 

dimension. Apart from the convolution operation, CNN use batch normalization, 

activation, and pooling layers to make meaningful predictions. 

 

 

Batch Normalization 

Batch normalization (BN) introduces normalization as a part of the model 

architecture and normalizes the data of each mini-batch during training. Batch 

normalization allows having aggressive learning rates and thus accelerates the 

training process. BN also allows models to be less susceptible to weight and bias 

initializations. In addition, BN tends to have a regularizing effect and could 

eliminate the requirement for dropout layers for regularization [27]. 
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Activation Functions 

Activation functions help to decide whether a neuron should be activated or not. It 

performs this action by introducing a non-linearity in the neural network. As a 

result, output from each layer is a non-linear function of the input to that layer. It is 

essential to introduce non-linearities in the network as it helps different layers learn 

different features from the input data. Our experiments used 4 different kinds of 

activation functions: sigmoid, hyperbolic tangent (tanh), Rectified linear unit 

(ReLU), and softmax. 

 

 

Sigmoid Function 

The sigmoid function is a standard activation function in the deep-learning domain 

to introduce non-linearities in deep neural networks. Also known as the logistic 

function, equation (22) is the mathematical representation of it. 

 

 
𝑓(𝑥) = (

1

1 + 𝑒−𝑥
)  

 

(2) 
 

 

It is a bounded differential function and has positive derivatives throughout 

its domain. However, the sigmoid function has a few drawbacks too. For example, 

it suffers from gradient saturation, gradient dampening in deeper layers of the 
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neural network, relatively slow convergence compared to other activation 

functions, and has a non-zero-centered output causing gradients to jump in 

different directions during training. 

 

Hyperbolic Tangent Function (Tanh) 

The hyperbolic tangent function is smoother and zero-centered, and its range lies 

between -1 and 1. Therefore, equation (22) represents the tanh function. 

 

 
𝑓(𝑥) =  (

𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
) 

 

(3) 
 

 

 The Tanh function had a better training performance when using multi-layer 

neural networks. However, the tanh function does not solve the vanishing gradient 

problem prevalent in deeper networks. Another critical aspect of the tanh function 

is that it can only obtain a gradient of 1 if the input is 0, resulting in the creation of 

dead neurons while training.  

 

Rectified Linear Unit (ReLU) 

Rectified linear unit is one of the most widely used activations functions in the deep 

learning domain [28]. ReLU computes its output based on the mathematical 

expression displayed in equation (22). 
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𝑓(𝑥) = max(0, 𝑥) =  {

𝑥𝑖 , 𝑖𝑓 𝑥𝑖 ≥ 0 
0,          𝑖𝑓 𝑥𝑖 ≤ 0

 

 

(4) 
 

 

 ReLU is one of the fastest learning activation functions and offers better 

performance than sigmoid and tanh. Moreover, since it offers an almost linear 

function, it is effortless to optimize using gradient descent techniques. 

 

Softmax Function 

Softmax computes the probability distribution from an input vector and thus creates 

output that satisfies the law of total probability. The softmax function computes its 

output based on the mathematical relationship displayed in equation (5). 

 

 
𝑓(𝑥𝑖) =  

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

 

 

(5) 
 

 The softmax function has its use case when dealing with multiclass models 

where it returns the probability of each class with the target class having the 

highest probability. The primary difference between the sigmoid and softmax 

function is that the sigmoid function is used for binary classification while the 

softmax function deals with multiclass classification tasks. 
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Pooling Layers 

The purpose of pooling layers is to downsample the feature vectors by 

summarizing specific patches in the feature vector. Max pooling and average 

pooling are the widely used methods to downsample by taking the maximum value 

from a patch and the average of a patch, respectively. 

 Instead of working on small patches from the feature vector, global pooling 

layers downsample the entire feature vector to a single value. Thus, global pooling 

helps summarize the entire feature vector, and the most common global pooling 

layer used in modern deep learning networks is the Global average pooling layers 

(GAP). GAP has replaced the fully connected layers in a plethora of deep learning 

algorithms, and they have helped reduce overfitting from the fully connected 

layers. 

 

2.1.2  Densely Connected Convolutional Networks 
 

Convolutional neural networks can get deeper and hence more accurate in their 

predictions if they have connections between the layers. These connections are 

known as residual connections, and the networks that utilize these residual 

connections to exercise better flow of gradient are known as Residual networks 

[29]. Densely connected convolutional networks (DenseNet) utilize this property by 

connecting the adjacent layers and every other layer in the neural network [25]. 
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Each layer takes the concatenated feature maps of the preceding layers as its 

input, and its feature maps are used as inputs by all the subsequent layers in the 

network.  

DenseNet also utilizes a composite function motivated by [30] comprising 

batch normalization (BN), Rectified linear unit, and convolution operations in 

conjunction. DenseNet requires a way to downsample the feature vectors to a 

specific size to be concatenated with the feature vectors from other layers. 

Transition layers facilitate the concatenation process by having a BN layer with a 

1x1 convolution layer followed by an average pooling layer. Since DenseNet 

concatenates many features in the dense block and each layer takes the 

concatenated features as input, the size could become huge and slow down the 

training. Thus, 1x1 convolutions inspired from [31] are introduced before each 

convolution operation in the dense block to act as bottleneck layers. 

DenseNet introduced in [25] utilizes the architecture primarily for image 

classification and object detection on datasets like CIFAR [32], Street View House 

Number (SVHN) [33], and ImageNet [34]. However, advances in deep learning and 

the growing popularity of one-dimensional convolutions enabled DenseNet 

architecture for time-series classification [35], [36]. This thesis uses DenseNet to 

perform the binary classification of fluid responsiveness by analyzing the ABP and 

CVP time-series data. 
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Figure 2.1: Dense block in a densely connected convolutional network 

 

 

Figure 2.2: Transition layer in a densely connected convolutional network 

 

Figure 2.1 and Figure 2.2 show the dense block and the transition layers 

present in a densely connected convolutional network. In the DenseNet18 model 

used in this thesis, The input layer takes the one-dimensional waveforms to the 

network. The input layer is attached to a convolutional layer with a kernel size 

equal to 7, a stride length of 2, and a max-pooling layer with a kernel size equal to 

3 and a stride length of 2. The architecture then consists of 4 pairs of dense blocks 

and transition layers, as described in Figure 2.1 and Figure 2.2. Each dense block 

was cascaded twice immediately, followed by a transition layer. Then, a global 

average pooling layer with a kernel size of 7 sums up the features in each channel 
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of the convolutional layers. Finally, the global average pooling layer is followed by 

a 1000 dimensional fully-connected layer with a softmax activation to provide 

meaningful classifications. This is the basic model architecture of a DenseNet18 

model used in the experiments in this thesis. 

 

2.1.3 Multivariate LSTM-FCN for Time-Series 
Classification 

 

Multivariate Long Short Term Memory Fully Convolutional Network (MLSTM-FCN) 

[24] combines two of the widely used algorithms in time-series related tasks, 

namely Long Short Term Memory (LSTM) [37] and one-dimensional Fully 

Convolutional Networks (FCN) together. Moreover, the algorithm facilitates using 

the attention mechanism [38] combined with LSTM for multivariate time series 

classification. Finally, Squeeze-and-excitation [39] blocks augment the fully 

convolutional block’s ability to classify the time-series data better. Furthermore, the 

MLSTM-FCN model requires minimal preprocessing and feature extraction, 

making it a robust algorithm for creating an end-to-end model to predict fluid 

responsiveness using ABP and CVP waveforms. 
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Long Short Term Memory (LSTM) 

Long short term memory is a category of a Recurrent Neural Network (RNN) 

capable of learning the dependence in the order of terms from a sequence of data. 

A significant drawback with the previous versions of RNNs are the problems of 

vanishing and exploding gradients. LSTM tackles the vanishing and exploding 

gradient problems by integrating gating functions into the state dynamics [37]. 

There are various computations taking place in the LSTM as depicted by Graves 

et al. [40] in the following equations: 

 𝑔𝑢 =  𝜎(𝑊𝑢ℎ𝑡−1 +  𝐼𝑢𝑥𝑡) 
 

(6) 
 

 𝑔𝑓 =  𝜎(𝑊𝑓ℎ𝑡−1 +  𝐼𝑓𝑥𝑡) (7) 
 

 𝑔𝑜 =  𝜎(𝑊𝑜ℎ𝑡−1 +  𝐼𝑜𝑥𝑡) (8) 
 

 

 𝑔𝑐 =  𝑡𝑎𝑛ℎ(𝑊𝑐ℎ𝑡−1 +  𝐼𝑐𝑥𝑡) (9) 
 

 𝑚𝑡 =  𝑔𝑓 ⊙ 𝑚𝑡−1 +  𝑔𝑢 ⊙ 𝑔𝑐  
 

(10) 
 

 ℎ𝑡 = tanh (𝑔𝑜 ⊙ 𝑚𝑡) (11) 
 

   
   

 Where 𝑔𝑢, 𝑔𝑓, 𝑔𝑜, 𝑔𝑐 are the input, forget, output, and cell state activation 

functions, respectively, ℎ𝑡 is the LSTM’s hidden state vector,  ⊙ represents 

element-wise multiplication, 𝜎 represents the sigmoid activation function. 

Projection matrices are represented by  𝐼𝑢, 𝐼𝑓, 𝐼𝑜, 𝐼𝑐 while the weight matrices are 

represented by 𝑊𝑢, 𝑊𝑓, 𝑊𝑜, 𝑊𝑐. Even though LSTMs effectively learn temporal 
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dependencies from the sequential input data, they find it challenging to learn long-

term dependencies. To learn long-term dependencies from the input, Bahdanau et 

al. [38] proposed using the attention mechanism with LSTM. 

 

Attention Mechanism 

Bahdanau et al. [38] proposed the attention mechanism that performs a linear 

combination of encoder and decoder states and is hence known as additive 

attention. The attention mechanism generates a context vector based on the target 

sequence 𝑦. When an encoder maps an input sequence 𝑥, a sequence of 

annotations (𝑏1, … , 𝑏𝑇𝑥
) of length 𝑇𝑥 are created where each annotation 𝑏𝑖 contains 

information on the input sequence while still focusing around the 𝑖-th word. Based 

on equation (22), the weighted sum of the annotations 𝑏𝑖 is used to compute the 

context vector. 

 

 

𝑣𝑖 =  ∑ 𝛼𝑖𝑗𝑏𝑗

𝑇𝑥

𝑗=1

 

 

(12) 
 

   
 The weight 𝛼𝑖𝑗can be calculated by the following: 

 
𝛼𝑖𝑗 =  

exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)
𝑇𝑥
𝑘=1

 

 

(13) 
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In equation (22), 𝑒𝑖𝑗 is the energy of alignment, computed using a feedforward 

neural network known as the alignment model. The feedforward neural network is 

trained parallelly along with the RNN. The gradients of the alignment model and 

the RNN flow simultaneously. 

 

Squeeze-and-Excitation Block 

Channels in a convolutional neural network are independent of each other, and 

they hardly influence one another. Squeeze-and-excitation blocks are introduced 

in CNNs to improve channel interdependencies [39]. Squeeze-and-excitation 

blocks adjust the filter response to improve channel interdependencies in two 

steps: squeeze and excite.  

 The global average pooling layer computes the channel-wise global average 

over the temporal dimension T over the convolved output during the squeeze 

operation. 

 
𝑧𝑐 =  𝐹𝑠𝑞(𝑢𝑐) =  

1

𝑇
∑ 𝑢𝑐(𝑡)

𝑇

𝑡=1

 

 

(14) 
 

 In equation (22), 𝑐 is the channel and 𝑧𝑐 is the channel wise statistics 

obtained after squeezing the convolved data through a global average pooling 

layer. Excite operation follows the squeeze operation, whose primary objective is 

to capture the inter-channel dependencies, represented in equation (22). 

 𝑠 =  𝐹𝑒𝑥(𝑧, 𝑊) =  𝜎(𝑊2𝛿(𝑊1𝑧)) (15) 
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In equation (22), 𝐹𝑒𝑥 is a neural network, 𝜎 is the sigmoid activation function, 

𝛿 represents the ReLU activation function. 𝑊1 and 𝑊2 are the learnable parameters 

from the neural network and are used to limit the model complexity and aid in better 

generalization. Finally, rescale the output of the block, represented in equation 

(22). 

 𝑥𝑐̃ =  𝑠𝑐 . 𝑢𝑐 (16) 
 

   
 Where 𝑥̃ = [𝑥1̃, … , 𝑥𝑐̃] is obtained by channel-wise multiplication of the scale 

and the feature map. Thus, the output feature map is scaled and contains 

information about the channel dependencies. Hence, the squeeze-and-excitation 

block acts as a powerful augmentation tool for convolutional neural networks. 

 

Model Architecture 

The multivariate LSTM fully convolutional network model has the one-dimensional 

convolutional neural networks, long short-term memory, squeeze and excitation 

blocks, and global average pooling layers in its architecture, as shown in  

Figure 2.3. Apart from the components of the architecture mentioned, the model 

architecture has a unique entity called the dimensional shuffle, which helps 

transform the input data to be compatible with the long short-term memory cells. 

The dimensional shuffle layer swaps the dimensions of the input data. The default 

format for the input to the MLSTM-FCN model is of the form (𝑁 ∗ 𝐿 ∗ 𝐹) where N is 
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the number of samples, L is the length of more minor sequences (for example, 

224), and F is the number of features (F=1 when either ABP or CVP is included 

and F=2 when both of them are included). The dimensional shuffle layer transforms 

the last two dimensions of the input so that the LSTM does not have to take L time 

steps of F features but can take up F time steps of L features.  

 

Figure 2.3: MLSTM-FCN architecture. The attention mechanism can be added to 

the LSTM cells if needed to create the MALSTM-FCN architecture. Reprinted 

from Neural Networks, Volume 116, Fazle Karim, Somshubra Majumdar, 

Houshang Darabi, Samuel Harford, Multivariate LSTM-FCNs for time series 

classification, pages 237-245, Copyright (2019), with permission from Elsevier. 

 

Thus, the dimensional shuffle layer helps the LSTM with the global 

understanding of the data by providing a single feature's time steps to a single cell. 
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Thus, the regular input goes through the convolutional side of the architecture, and 

the transformed input goes through the LSTM side of the architecture. Once the 

input passes through the subsequent layers, the feature vectors on each side are 

concatenated together. Finally, this concatenated feature vector is sent to the 

softmax layer for binary classification. 

 

2.2 Nested Cross-Validation 
 

Hyperparameter optimization and model selection are two of the essential steps in 

any machine learning project. Any model has a set of hyperparameters which are 

the variables that can be changed to better fit a model to the training data. 

Hyperparameter optimization is the process of tuning the hyperparameters to find 

the best fit of the model to the training data such that the model does not overfit 

the validation and, in turn, the training set. Comparison of multiple models to find 

the best model based on the chosen performance metrics is known as model 

selection. K-fold cross-validation is a procedure used to find the machine learning 

model’s performance on the data not used during training. But the usage of the 

same cross-validation procedure and the dataset for both hyperparameter tuning 

and model selection can produce an optimistically biased result. 

Unlike K-fold cross-validation, nested cross-validations aim to separate the 

hyperparameter optimization and model selection procedures into independent 
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steps. Nested cross-validation nests the K-fold cross-validation for 

hyperparameter tuning in the K-fold cross-validation for model selection. Due to 

the nesting, the K-fold cross-validation for hyperparameter tuning is not exposed 

to the entire dataset and hence doesn’t overfit. A downside to nested cross-

validation is the significant increase in the number of trained and evaluated 

models. Another vital aspect of nested cross-validation is to have the same seed 

for the experiments conducted on the same dataset. This seeding is necessary to 

ensure that the experiment setup is similar across the experiments to make 

meaningful comparisons and validate various hypotheses. In this thesis, we make 

use of nested cross-validation for both hyperparameter optimization and model 

selection.  
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Chapter 3 

METHODOLOGY 
 

 

 

3.1. Predictive Modeling Pipeline 
 

Any predictive modeling, including deep learning pipelines, has to go through a 

series of steps. These steps may vary depending on the dataset and on the model 

used in the pipeline. Figure 3.1 explains the steps involved in the predictive 

modeling pipeline used in this thesis. The steps involve obtaining the dataset, 

followed by data cleaning and preprocessing necessary to make the data ready to 

input into the model, followed by model development which involves training and 

tuning the hyperparameters, followed by nested cross-validation. Once the model 

has gone through all these steps, the model is ready to make predictions. This 

section discusses each step involved in the predictive modeling pipeline in detail. 
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Figure 3.1: Steps involved in the predictive modeling pipeline 

 

3.2. Dataset 
 

Arterial Blood Pressure (ABP) and Central Venous Pressure (CVP) 

waveform data were collected from 62 pigs obtained from different experiments. 

Out of the 62 pigs, 13 experienced hemorrhagic shock, 4 experienced septic 

shock, 32 were from EPACC_Trial1, and 13 were from the IRI_FR experiment. 

The 4 pigs with the septic shock model were subjected to an intravenous infusion 

of Pseudomonas aeruginosa bacteria [41]. The animals were supplied with 

sequential 500 mL boluses. Same micro-bolus protocols were maintained 

throughout each phase of the experiment while the boluses were delivered. The 

timing for the bolus delivery was made at the discretion of the veterinary team that 

treated the pigs. 

13 pigs in the hemorrhagic model received a controlled hemorrhage of 25% 

of the standard estimated blood volume resulting in a hypovolemic shock. The 

other 13 pigs in the IRI_FR experiment correspond to the ischemia-reperfusion 

Dataset
Data 

Preprocessing
Model 

Development
Nested Cross-

Validation
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injury (IRI) model of circulatory shock. A controlled hemorrhage immediately 

followed by 30 minutes of complete aortic occlusion and restoration of aortic flow 

to the lower half of the body resulted in an ischemia-reperfusion injury [42]. 

Hypovolemic, euvolemic, and hypervolemic are the different phases present in the 

hemorrhagic and IRI shock models. The hypovolemic phase is caused purely by 

blood loss, while the euvolemic and hypervolemic phases correspond to a 

transfusion of 25% volume of shed blood and transfusion of an additional 25% 

blood volume from a donor animal, respectively. The hemorrhagic and IRI shock 

models animals received four separate 500mL boluses of VetivexTM Veterinary 

pHyLyteTM solution. These boluses were provided for 10 minutes at regular 

intervals throughout each experiment phase, with a 5-minute pause between each 

bolus. During each bolus sequence, the fluids were administered in micro-boluses 

of 100mL for 60 seconds, followed by a 60-second pause between each micro-

bolus. In addition, all the animals in the experiments were provided with a 

continuous infusion of norepinephrine. The infusion was adjusted to maintain a 

baseline mean arterial pressure above 60 mmHg before initiating the experiment. 

Once the experiments proceeds, the mean arterial blood pressure was maintained 

at the baseline rate for the remaining time. 

The pigs were given fluid boluses at regular intervals during each phase of 

the experiment conducted. The ABP and CVP waveforms were recorded before 

and after the delivery of each bolus.  The period before the administration of fluid 

boluses is known as pre-macrobolus (Premac), the period after the administration 



25 
 

of boluses is known as post-macrobolus (Postmac), and the time during the 

administration of fluid boluses is known as macrobolus. Recording of the various 

physiological waveforms used a 60-second window during each phase of the 

experiment. In addition, the ABP and CVP waveforms went through steps involving 

data quality assessment and preprocessing developed by Basu et al. [43]. 

 

3.2.1. Ground Truth Label 
 

The primary purpose of this thesis is to model, train and validate the performance 

of supervised learning models to find whether the pigs are fluid responsive or not 

by working on the ABP and CVP waveforms. Furthermore, generating ground truth 

labels for the dataset is necessary to create a supervised learning model for binary 

classification. Cardiac output was measured using either an intra-cardiac 

pressure-volume loop catheter or an ultrasound flow probe placed over zone 1 of 

the descending aorta as a surrogate for cardiac output [44]. An increase in cardiac 

output of 15% or more after a supply of 500 ml of the fluid bolus indicates fluid 

responsiveness [45]. The records of cardiac output during the Premac and 

Postmac periods helped track down the change in cardiac output before and after 

the administration of fluid boluses. Whenever the change in cardiac output is 

greater than or equal to 15%, the bolus was considered to be fluid responsive 

(Ground truth label = 1), and whenever the change in cardiac output is less than 

15%, the bolus was considered to be fluid non-responsive (Ground truth label = 0).  
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3.2.2. Dataset Characteristics 
 

Apart from having different physiologies, the Hemorrhage (Hem), Sepsis (Sep), 

EPACC_Trial1, and IRI_FR datasets also had different distributions. On the whole, 

497 samples corresponded to 497 macroboluses. Out of these 497 maroboluses, 

134 came from the hemorrhage pigs, 90 were obtained from Sepsis pigs, 150 

macroboluses were derived from the EPACC_Trial1 dataset, and the IRI_FR 

dataset had the remaining 123 macroboluses. The ratio of positive to negative 

samples for the Hemorrhage pigs was 55:79, while the ratio for Sepsis pigs was 

4:86. The ratios for EPACC_Trial1 and IRI_FR datasets were 109:41 and 39:84, 

respectively. Figure 3.2 represents the distribution of positive and negative 

samples in each dataset. Table 3.1 has the various combination of the datasets 

used in all the experiments and their respective characteristics.  

During the experiments in this thesis,  the datasets are combined to form the 

training and test sets. Table 3.1 shows the various combinations and 

characteristics of the datasets used in the experiments in this thesis. The 

Hem_Sep dataset combines the boluses from the hemorrhage and the sepsis pigs. 

If an additional term, ‘scaledCVP,’ is added to the name, it means that the CVP 

waveforms of a few boluses were rescaled, as shown in Section4.4.2.2. The 

Hem_Sep_ScaledCVP_EPACC_Trial1 combines the boluses from hemorrhage, 

sepsis, and the EPACC_Trial1 pigs. IRI_FR_1_2, IRI_FR_1_2_3, and 
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IRI_FR_ALL are different samples obtained from the same experiment and similar 

physiology. 

 

Figure 3.2: Distribution of Positive and Negative Samples for each dataset 

Dataset Number 
of Pigs 

Number 
of 

Boluses 

Number of 
Positive 
Boluses 

Number of 
Negative Boluses 

Hem_Sep_scaledCVP 17 224 59 165 

Hem_Sep_scaledCVP_EPACC_Trial1 49 374 168 206 

Hem 13 134 55 79 

EPACC_Trial1 32 150 109 41 

IRI_FR_1_2 8 74 23 51 

IRI_FR_1_2_3 9 83 24 59 

IRI_FR_ALL 13 123 39 84 

 

Table 3.1: Combination of Datasets and their characteristics 
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3.3. Data Preprocessing 
 

Preprocessing the raw data is an essential step in a Machine/Deep learning model 

pipeline. Preprocessing the data transforms the input data into a format that the 

machine can easily interpret. In this thesis, the preprocessing pipeline involved a 

variety of steps, as displayed in Figure 3.3. 

 

Figure 3.3: Data Preprocessing Pipeline 

 

3.3.1. Normalization 
 

Whenever a deep learning model takes two different variables as input, 

normalization is an essential preprocessing step to ensure that the two variables 

have similar distributions and are comparable with one another. Furthermore, it is 

crucial to perform this preprocessing step to ensure that the deep learning model 

does not learn that a particular variable may be more or less important than the 

alternative just because the magnitudes of the variables are different. For example, 

in the dataset used for this thesis, there was a general trend that the ABP signals 

Dataset Normalization
Splitting into 
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Stratification
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tend to have a higher magnitude than their counterpart, the CVP signal. But it is 

vital to ensure that the ABP signals do not have a higher weightage during training 

because they have a higher magnitude than the CVP signals. There are a variety 

of techniques to perform normalization of the raw data.  

 

 
𝑥𝑛𝑜𝑟𝑚 =  

𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 

 

(17) 
 

 

 𝑥𝑛𝑜𝑟𝑚 =  
𝑥 −  𝜇

𝜎
 

 

(18) 
 

 Equation (17) represents the min-max normalization, while equation (22) 

shows the Z-score normalization. In equation (17), ‘𝑥’ indicates the input data to 

be normalized and ‘min (𝑥)’ and ‘max (𝑥)’ represents the minimum and the 

maximum value from the input data. In equation (22), ‘𝑥’ represents the input data 

while 𝜇 and 𝜎 represents the population mean and population standard deviation 

respectively. While both min-max normalization and Z-score normalization are 

widely used techniques in fields of machine and deep learning, all the experiments 

in this thesis made use of min-max normalization.  
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3.3.2. Splitting into Sequences 
 

In general, convolutional neural networks require reshaping of the input data to be 

of a specific length. For example, one-dimensional convolutional neural networks 

used in the experiments require the input data to be of the shape [number of 

samples * timesteps * the number of features]. Thus, the first dimension in the 

shape vector is the number of samples obtained after splitting the entire data into 

specific lengths. The second dimension is the sequence length that the time series 

data has been split into and provided as input to the neural network. Finally, the 

third dimension is the number of features included, and the value can vary between 

1 and 2 depending on whether only one or both ABP and CVP signals were 

provided as input.  

 

Figure 3.4: Histogram for the number of data points in each cardiac cycle 
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Figure 3.4 has the histogram for the number of data points in each cardiac 

cycle. It can be seen that almost every cardiac cycle has the number of data points 

to be between 25 to 75. For most cases, the sequence length has to be at least of 

length around 25-75 to cover a single cardiac cycle. While splitting into sequences, 

each sequence must cover at least a single cardiac cycle so that the sequence 

has enough information to supply the neural network. For this reason, 56 was the 

minimum sequence length used in the experiments in this thesis so that the 

majority of the sequences would have at least one cardiac cycle. 

The cardiac cycle has two phases, namely systole and diastole. The systolic 

phase occurs when the heart pumps out blood by contracting, and the diastolic 

phase occurs when the heart relaxes. The ABP and CVP waveforms had the 

systolic and diastolic points marked, and splitting of waveforms into more minor 

sequences always originated from the diastolic points marked in the waveforms. 

Figure 3.5 shows the procedure to split the ABP and CVP time-series waveforms 

into smaller length sequences suitable for input into the deep learning model. 
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Figure 3.5: Splitting of ABP and CVP waveforms into smaller sequences of a 

specified length 

 

 The splitting of sequences always originated from the first diastolic point in 

the waveform. Thus, the starting marker to obtain the waveform was placed in the 

first diastolic point while the ending marker was placed at a previously specified 

length from the starting marker, and the ending marker may or may not coincide 

with a diastolic point. Nextly, Obtaining the following sequence involved moving 

the starting marker to the next diastolic point immediately after the previous 

marker, and the procedure repeats until the end of the waveforms. If the ending 

markers go beyond the waveforms, we discarded the sequence starting from the 

last marker. This splitting the waveforms into more minor one-dimensional 

sequences resulted in losing about 5% of the raw data. After splitting, each minor 
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sequence belonging to a particular bolus was given the same label as the initial 

bolus used. The deep learning model takes up these smaller sequences with 

identical ground truth labels as input. 

 

3.3.3. Stratification 
 

During nested cross-validation, the dataset gets split into several instances of 

training, test and validation sets. It is crucial to make sure that the process of 

splitting does not lead to a sampling bias. Sampling bias occurs when the sampling 

of a stochastic variable does not indicate the distribution of the whole population. 

Sampling bias can lead to one class of the population being overrepresented or 

underrepresented and can systematically affect the model’s training. During 

stratification, the population gets split into subgroups, and the data gets randomly 

sampled so that each subgroup has the same proportion of samples as the original 

population. Since the current datasets used in the experiments were heavily 

imbalanced concerning the ground truth labels, it could be possible for the minor 

class to be underrepresented during random sampling. Stratification solves this 

problem of underrepresentation of the minor class and indicates an overall outlook 

of the entire data population in the test set. 
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3.4. Training and Hyperparameter Tuning 
 

One-dimensional convolutional neural networks have shown encouraging results 

while working on time-series data. Multivariate LSTM Fully convolutional neural 

network and DenseNet both exploit this feature of the one-dimensional 

convolutional neural network to obtain remarkable results in time-series 

classification, and both of them were used in the experiments. Training the model 

involves choosing the right set of hyperparameters to maximize the effect of deep 

neural networks to make good predictions. The following sections explain a 

systematic approach to building the model by choosing the right set of 

hyperparameters. 

 

3.4.1. Grid Search 
 

Grid search is one of the traditional methods to tune the hyperparameters for a 

model. The algorithm makes a complete run over all the values listed for a 

particular hyperparameter and searches for the best set based on a criterion [46]. 

During grid search, the hyperparameters were considered independent of each 

other and were optimized one followed by another [47]. Some hyperparameters 

are more critical than others, and they require precedence over one another. All 

the experiments used the grid search algorithm to tune various hyperparameters 
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such as the learning rate, number of epochs, batch size, and the degree of 

regularization. 

 

3.4.2. Loss Functions 
 

Loss functions are used to find the distances between the ground truth labels and 

the model's predicted output. There are a variety of loss functions used for various 

tasks such as classification and regression. One such loss function widely used in 

the field of multiclass classification is the categorical cross-entropy function. An 

extension to the default categorical cross-entropy function for an imbalanced 

dataset is the weighted categorical cross-entropy function. A weighted categorical 

cross-entropy function introduces sample weighting in the loss function so that the 

majority and the minority classes get differently weighed while computing the loss. 

Since the entire dataset used in all the experiments was heavily imbalanced, a 

weighted categorical cross-entropy function was primarily used as the model’s loss 

function. Equation (22) represents the weighted categorical cross-entropy function 

and this is the cost function used in all the experiments. 

 

 
𝐿 =  −

1

𝑁
[∑[𝑊𝑐1𝑡𝑖 log(𝑝𝑖) + 𝑊𝑐2(1 − 𝑡𝑖)log (1 − 𝑝𝑖)]

𝑁

𝑖=1

] 

 

(19) 
 

In equation (22), 𝑊𝑐1 and 𝑊𝑐2 indicate the weights for the classes 𝑐1 and 𝑐2, N 

represents the total number of samples, 𝑡𝑖 is the ground truth labels while 𝑝𝑖 
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represents the softmax probability for the ith sample. There are various ways to 

compute the sample weight for the weighted loss functions, namely the inverse of 

the number of samples, the inverse of the square root of number of samples, and 

the effective number of samples.  

 

Inverse of Number of Samples (INS) 

The inverse of the number of samples is a widely used weighting mechanism in 

the field of deep learning [48]. The inverse of individual class frequencies directs 

the sample weight, as shown in equation (22). 

 

 
𝑊𝑛, 𝑐 =  

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑐
 

 

(20) 
 

 

Inverse of Square Root of Number of Samples (ISNS) 

The inverse of the square root of the number of samples was proposed to provide 

a smoother version of the sample weighting mechanism [49]. As shown in equation 

(22), it is computed by calculating the inverse of the square root of the individual 

class frequencies. 

 
𝑊𝑛,𝑐 =  

1

√𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑐2
 

 

(21) 
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Effective Number of Samples 

As a weighting mechanism, the effective number of samples has seen favourable 

results on datasets like CIFAR and ImageNet [50]. Equation (22) shows how the 

effective number of samples can be used to provide weights for the loss function. 

 
𝑊𝑛,𝑐 =  

1

𝐸𝑛,𝑐

 𝑤ℎ𝑒𝑟𝑒,   𝐸𝑛,𝑐 =  
1 −  𝛽𝑛𝑐

1 −  𝛽
 

 

(22) 
 

 

3.4.3. Optimization 

Any deep learning model would require an optimization procedure that aids the 

model to train by optimizing the cost function. The optimization process would help 

to minimize or maximize the cost function depending on its use case. Gradient 

descent is a popular algorithm to optimize dynamic systems like neural networks 

and a plethora of other machine learning models [51]. One of the disadvantages 

of gradient descent is that the parameters get updated after an entire run through 

the data. There were a variety of advances in using smaller batches to run the 

gradient descent approaches so that there can be multiple runs of the algorithm 

on the dataset [52]. Momentum upgrades the traditional gradient descent algorithm 

by using moving averages to update the trainable parameters [53].  

 Adam improves the stochastic gradient descent algorithm to offer quicker 

convergence using momentum and adaptive learning rates [54]. Adam was the 
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optimizer primarily used in all the experiments. Learning rate is the hyperparameter 

that controls the degree to which the network adjusts the weights using the 

gradient. It is one of the essential hyperparameters to tune in a neural network as 

having a small value can result in the network learning very slowly, and having a 

large value can result in the optimization algorithm missing the optima and failing 

to converge. The learning rate was an important parameter used in the grid search 

and had values ranging from 1E-6 through 1E-3. Adam also has other parameters 

called the decay constants (𝛽1 and 𝛽2), which control the first and second moments 

of the gradient average, respectively. 𝛽1 and 𝛽2 take up preset values of 0.9 and 

0.99, and they were not a part of the grid search. Adam has another parameter 

called 𝜖, which takes up a value of 1E-8 to ensure there is no division by zero and 

was also not a part of grid search. Decaying learning rates from a considerable 

initial value to a smaller value has several benefits. A sizeable initial learning rate 

helps the model look over the noisy data during learning, and decaying the learning 

rate to smaller values helps the model learn complex patterns and structures from 

the data [55]. The learning rate decay mechanism requires two important 

hyperparameters, namely learning rate patience and decay factor. The mechanism 

decays the learning rate by a decay factor whenever the validation loss starts to 

increase for a specific number of epochs called learning rate patience. The 

learning rate patience took a value of 10 epochs while the decay factor took a value 

of 0.9 during training. 
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3.4.4. Batch Size 

Training in deep learning involves both forward and backward propagation of the 

entire dataset through the neural network. One complete pass of the entire dataset 

through the neural network is called an epoch. However, it gets difficult to fit the 

entire dataset through the neural network as it would consume much memory. 

Consequently, the data is split into batches of a particular size known as batch 

size.  

It is crucial to tune batch size as having large batch sizes can lead to poor 

generalization but can guarantee convergence to the global optima. On the other 

hand, smaller batch sizes can have faster convergence but may not lead to a global 

optimum and bounce around the global optima [56]. So it is vital to find the optimal 

batch size to have both fast and guaranteed convergence to the optima. Therefore, 

the batch size was a critical hyperparameter experimented on and had values 

varying from 32 to 512 in the grid search. 

 

3.4.5. Number of Training Epochs 

Forward and backward propagation of the entire dataset through the neural 

network is known as an entire epoch. Therefore, having the number of training 

epochs to be more than 1 indicates that the dataset is run several times through 

the neural network. Furthermore, having fewer training epochs leads to 

underfitting, and having a massive number of epochs leads to overfitting. Figure 
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3.6 displays an example of how the training and validation loss curves would look 

in the case of overfitting. When the training loss decreases but the validation loss 

begins to increase, the model is overfitting. However, when the training loss does 

not begin to reduce, the model is underfitting to the data. 

 

Figure 3.6: Overfitting explained by loss curves. Red: Training loss, Blue: 

Validation loss 

The deep learning models used in the experiments used the early stopping 

mechanism to ensure the model did not overfit the data. The training process 

initially takes a considerable random number of epochs and starts training towards 

it. The validation loss was given as the parameter to monitor for the early stopping 

mechanism. If the validation loss increases steadily for several epochs, the model 

immediately stops training, and the current network configuration, including the 
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weights, gets saved. This number is essential to tune as well as having minimal 

patience for early stopping can make small fluctuations in training to trigger early 

stopping and having enormous patience would stop the early stopping from 

triggering. Several values for early stopping patience varying from 100 to 1000 

epochs were included in the grid search. 
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Chapter 4 

EXPERIMENTS AND RESULTS 
 

 

This chapter elaborates on the various experiments conducted and the results 

associated with those experiments. The experiments were conducted in phases 

based on the inferences from the subsequent experiment’s results. This chapter 

also explains the inferences made from the results and the rationale for the 

subsequent experiments. Accuracy, Area under Reciever operating characteristics 

curve (AUROC), Precision, Recall, and Specificity, along with the respective 

confidence intervals (CI), were the performance metrics used to evaluate, compare 

and make inferences about the model’s classifying capability. 

 

4.1 Finding Ideal Sequence Length 
 

Since one-dimensional convolutional neural networks take sequences of a specific 

length as an input, it is crucial to find the right length of the input waveforms so that 

each waveform input carries enough information to help the neural network make 
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compelling predictions. The Arterial blood pressure and Central venous pressure 

waveforms from the Hem_Sep dataset, which includes the data obtained from 

Hemorrhage and Sepsis Pigs, were split into more minor sequences by following 

Section 3.3.2. Hyperparameters were tuned with a nested cross-validation pipeline 

along with grid search. 224, 512, and 1024 were the length of sequences used to 

split the sequences to provide input to the Multivariate LSTM FCN model. Except 

for the sequence lengths, every aspect of the experiment remained constant to 

validate the smallest sequence length that could capture the most information. 

 

 

Sequence 
Length 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

224 0.863 0.02 0.875 0.02 0.859 0.07 0.731 0.1 0.925 0.04 

512 0.858 0.03 0.859 0.03 0.802 0.1 0.715 0.08 0.925 0.03 

1024 0.862 0.01 0.851 0.03 0.792 0.09 0.727 0.08 0.92 0.03 

 

Table 4.2: Performance of MLSTMFCN model using ABP waveform and variable 

sequence lengths in a nested cross-validation 
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Sequence 
Length 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

224 0.814 0.02 0.887 0.01 0.776 
 

0.05 0.774 0.07 0.874 0.04 

512 0.827 0.04 0.849 0.02 0.676 0.08 0.761 0.09 0.861 0.05 

1024 0.812 
 

0.03 0.818 0.04 0.642 0.06 0.757 0.08 0.851 0.04 

 

Table 4.3: Performance of MLSTMFCN model using CVP waveform and variable 

sequence lengths in a nested cross-validation 

 

Sequence 
Length 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

224 0.882 0.01 0.877 0.02 0.858 0.07 0.737 0.12 0.947 0.03 

512 0.875 0.02 0.884 0.01 0.784 0.06 0.798 0.05 0.914 0.03 

1024 0.863 0.02 0.844 0.03 0.792 0.09 0.724 0.12 0.919 0.04 

 

Table 4.4: Performance of MLSTMFCN model using ABP, CVP waveforms, and 

variable sequence lengths in a nested cross-validation 

 

From Table 4.2 - Table 4.4, it can be inferred that the models trained with 

sequences of length 224 consistently performed better or similar to the longer 

sequence inputs. But before concluding that the 224 sequence length inputs were 
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superior, it is critical to note that the experimental conditions changed involuntarily 

because of the method used to obtain sequences from the original waveforms. 

Since all the variable length sequences were obtained from the same set of 

waveforms, the number of samples having smaller sequence lengths was higher 

when compared to the longer length sequences. For example, the number of 

samples with a sequence length of 512 is twice the number of samples with a 

sequence length of 1024. Since the experimental condition had changed, the 

difference in performance cannot be attributed just to the change in sequence 

length but can also be due to the change in the number of input samples given for 

training. 

All experimental conditions except for the condition of interest have to 

remain constant when testing  a hypothesis. The experiment required a unique 

setup since the number of samples is also an essential criterion while maintaining 

the experimental conditions while evaluating hypotheses. The altered experiment 

obtained the most extended length sequence and a smaller chunk from it rather 

than the entire dataset to get smaller sequences. Instead of splitting the entire 

dataset into sequences of the required length, split the longest sequence (1024, 

for example) and get the smaller sequence only from the most extended sequence 

that was already split instead of obtaining from the original dataset, as shown in 

Figure 4.1. The number of samples was consistent across different sequence 



46 
 

lengths, and the remaining aspects of the experiment were similar to the previous 

setup. 

Figure 4.1: Obtaining smaller sequences from the longest sequence for the 

altered sequence length experiment. 

 

Sequence 
Length 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

56 0.842 0.02 0.855 0.02 0.768 0.10 0.718 0.07 0.906 0.04 

112 0.836 0.04 0.854 0.03 0.745 0.10 0.762 0.09 0.891 0.06 

224 0.864 0.02 0.840 0.03 0.775 0.05 0.737 0.09 0.916 0.02 

512 0.861 0.01 0.839 0.02 0.775 0.09 0.744 0.09 0.908 0.04 

1024 0.862 0.01 0.851 0.03 0.792 0.09 0.727 0.08 0.92 0.03 

Table 4.5: Performance of MLSTMFCN model using ABP waveform and altered 

experiment for variable sequence lengths in a nested cross-validation 
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Sequence 
Length 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

56 0.79 0.03 0.851 0.02 0.649 0.07 0.774 0.09 0.838 0.05 

112 0.761 0.06 0.839 0.02 0.652 0.11 0.8 0.07 0.798 0.04 

224 0.854 0.02 0.843 0.05 0.783 0.1 0.738 0.12 0.91 0.04 

512 0.868 0.02 0.835 0.05 0.816 0.09 0.714 0.12 0.928 0.03 

1024 0.863 0.02 0.844 0.03 0.792 0.09 0.724 0.12 0.919 0.04 

 

Table 4.6: Performance of MLSTMFCN model using CVP waveform and altered 

experiment for variable sequence lengths in a nested cross-validation 

 

Sequence 
Length 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

56 0.867 0.01 0.868 0.05 0.832 0.07 0.746 0.13 0.935 0.03 

112 0.825 0.02 0.837 0.04 0.749 0.12 0.71 0.11 0.892 0.05 

224 0.854 0.02 0.843 0.05 0.783 0.1 0.738 0.12 0.91 0.04 

512 0.868 0.02 0.835 0.05 0.816 0.09 0.714 0.12 0.928 0.03 

1024 0.863 0.02 0.844 0.03 0.792 0.09 0.724 0.12 0.919 0.04 

 

Table 4.7: Performance of MLSTMFCN model using ABP and CVP waveforms 

and altered experiment for variable sequence lengths in a nested cross-validation 
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 The initial hypothesis was that longer-length sequences would perform 

better than the shorter-length sequences because longer sequences encompass 

more information than their shorter counterpart. However, from Table 4.5 - Table 

4.7, it was evident that the difference in performance while using different length 

sequences was not statistically different as initially expected. Hence, the 

hypothesis that a more extended sequence would have better performance can be 

rejected.  

 

4.2 Model Refinement and Optimization 
 

This series of experiments involves selecting the best model that works well on the 

test data and generalizes well on the holdout set. Since a nested cross-validation 

pipeline involves both hyperparameter tuning and model selection, this series of 

experiments use the nested cross-validation accompanied by a grid search to tune 

the hyperparameters and select the best model. The experiments included  

changes in the deep learning architecture, varying the loss functions, and altering 

the preprocessing pipeline to select the best model. In all these experiments, only 

one component of the pipeline changes to ensure that these experiments can be 

compared to find the best model. 
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4.2.1 Addition of Attention Mechanism to MLSTM-FCN 

Model 

Attention mechanism helps the deep learning model focus on the essential aspects 

of the data and fade out the less important ones. Therefore, adding an attention 

mechanism can help the model learn intricate details and make better predictions. 

In this experiment, the MLSTM-FCN model with and without attention mechanism 

was used. The hyperparameters were tuned using grid search, and the model was 

evaluated using nested cross-validation with a 224-length input sequence. The 

hypothesis is that the addition of an attention mechanism would increase the 

performance of the model. Apart from having two different models, the remaining 

aspects of training remained constant throughout the experiment. The experiment 

utilized all combinations of ABP and CVP as inputs to the model. 

 

With 
attention 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

No 0.863 0.02 0.875 0.02 0.859 0.07 0.731 0.10 0.925 0.04 

Yes 0.853 0.02 0.869 0.03 0.802 0.10 0.694 0.09 0.926 0.03 

Table 4.8: Performance of MLSTMFCN model using ABP waveform with and 

without attention mechanism in a nested cross-validation 
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With 
attention 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

No 0.814 0.02 0.887 0.01 0.776 0.05 0.774 0.07 0.874 0.04 

Yes 0.83 0.02 0.887 0.02 0.722 0.03 0.792 0.09 0.888 0.01 

Table 4.9: Performance of MLSTMFCN model using CVP waveform with and 

without attention mechanism in a nested cross-validation 

 

With 
attention 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

No 0.882 0.01 0.877 0.02 0.858 0.07 0.737 0.12 0.947 0.03 

Yes 0.842 0.03 0.838 0.02 0.769 0.10 0.668 0.02 0.921 0.04 

Table 4.10: Performance of MLSTMFCN model using ABP and CVP waveforms 

with and without attention mechanism in a nested cross-validation 

 

 It can be inferred from Table 4.8 - Table 4.10 that the introduction of the 

attention mechanism to the MLSTM-FCN model adds no extra value in terms of 

performance. When ABP and CVP waveforms were used individually, the 

performance of both the models was comparable, but when both ABP and CVP 

were used together, the model with attention mechanism performed worse than 

the model without attention mechanism. Hence, the hypothesis that the attention 

mechanism would add value in performance can be safely rejected. 
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4.2.2 Rescaling Central Venous Pressure Waveforms 
 

The Central venous pressure waveforms have been an excellent input source for 

the neural network to classify boluses to be fluid responsive in all the previous 

experiments. However, upon examining the CVP waveforms in detail, 2 of the 

sepsis pigs, namely P2192 and P2187, had a deviation in magnitude when 

compared to the CVP waveforms of other pigs. This deviation was due to the 

difference in scaling while obtaining the data for the two pigs. The CVP waveforms 

of P2192 and P2187 were scaled 5 times and 10 times, respectively. Therefore, 

the CVP waveforms of both the pigs had to be scaled down to ensure the 

deviations in scales did not alter the performance. Experimental conditions 

involved using pig-level splitting to compare the results before and after the CVP 

waveforms were rescaled. The experiment used the Hem_Sep dataset before and 

after rescaling the CVP waveforms, and the hyperparameters were tuned using 

grid search. Both the experiments involved using a sequence length of 224. It was 

also essential to compare the interaction with both ABP and CVP waveforms and 

determine if the model trained on the combination of waveforms gets affected upon 

rescaling. 
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CVP Rescaling Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

Yes 0.637 0.16 0.79 0.04 0.549 0.13 0.784 0.14 0.694 0.16 

No 0.69 0.13 0.817 0.08 0.55 0.11 0.781 0.09 0.742 0.15 

Table 4.11: Performance of MLSTMFCN model using CVP waveform with 224 

sequence length and pig-level splitting with and without CVP Rescaling in a 

nested cross-validation 

 

CVP 
Rescaling 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

Yes 0.577 0.165 0.651 0.092 0.409 0.165 0.708 0.044 0.574 0.207 

No 0.569 0.174 0.654 0.102 0.426 0.199 0.738 0.068 0.556 0.232 

 

Table 4.12: Performance of MLSTMFCN model using ABP & CVP waveforms 

with 224 sequence length and pig-level splitting with and without CVP Rescaling 

in a nested cross-validation 

 

Table 4.11 and Table 4.12 compare the models' performance using the dataset 

with and without rescaled CVP waveforms. But the introduction of CVP rescaling 

in the two sepsis pigs did not alter the model’s performance to be very statistically 

significant. Hence, whenever the Sepsis pigs were used in future experiments, 

they were used with the rescaled CVP waveforms. 
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4.2.3 Removing LSTM layer from MLSTM-FCN  
Architecture 

 

Long short-term memory usually cause problems when the input space is tiny that 

they start to memorize the sequences and start overfitting. Even though there were 

no signs of overfitting during the training of MLSTM-FCN architecture, it was 

essential to check whether the LSTM layers add value to the model’s performance. 

In this experiment, The LSTM and dropout layers were removed from the MLSTM-

FCN architecture to inspect its contribution. This experiment utilized the 

Hem_Sep_scaledCVP dataset to judge the impact of performance due to the 

removal of LSTM layers. The setup also had nested cross-validation paired with 

grid search to tune the right set of hyperparameters. The sequence length used in 

this experiment was 224. Figure 4.2 represents the model architecture for the 

MLSTM-FCN model without the LSTM layers. 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.824 0.04 0.901 0.02 0.808 0.07 0.861 0.03 0.826 0.07 

ABP 0.842 0.03 0.897 0.03 0.849 0.04 0.825 0.08 0.879 0.04 

ABP & 
CVP 

0.861 0.01 0.912 0.01 0.859 0.04 0.86 0.03 0.882 0.03 

Table 4.13: Nested Cross-Validation Performance of MLSTM-FCN model without 

LSTM trained on Hem_Sep_scaledCVP Data 
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Figure 4.2: MLSTM-FCN without the LSTM layers. Derived from F. Karim, S. 

Majumdar, H. Darabi, and S. Harford, “Multivariate LSTM-FCNs for Time Series 

Classification,” Neural Netw., vol. 116, pp. 237–245, Aug. 2019, doi: 

10.1016/j.neunet.2019.04.014. 

 

 

Table 4.13 showed the nested cross-validation performance when the 

MLSTM-FCN without LSTM model was trained on Hem_Sep_scaledCVP data. 

Again, it can be seen that the model's performance is promising, having favourable 

metric scores during nested cross-validation. This experiment explains that 

removing LSTM layers improves the performance by a minute amount but not 
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enough to be statistically significant compared to the model that uses LSTM. So, 

LSTM layers was utilized in all future experiments. 

 

4.2.4 Performance of DenseNet model 
 

This experiment used the DenseNet18 model instead of the MLSTM-FCN model 

to understand changes in model’s performance with changes in the model’s 

architecture. In addition, the experiment utilized the Hem_Sep_ScaledCVP data to 

understand if the model architecture change can help with generalization. Nested 

cross-validation in combination with grid search helped in the hyperparameter 

tuning. Additionally, the experiment used 224 length input sequences. During 

these experiments, combinations of ABP and CVP waveforms were used to find if 

they improved the model’s performance. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.784 0.06 0.846 0.04 0.773 0.08 0.829 0.06 0.831 0.06 

ABP 0.727 0.03 0.824 0.05 0.714 0.01 0.808 0.08 0.719 0.03 

ABP & 
CVP 

0.783 0.01 0.848 0.02 0.781 0.04 0.818 0.06 0.797 0.05 

Table 4.14: Nested Cross-Validation Performance of DenseNet 18 model trained 

on Hem_Sep_scaledCVP Data 
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 The DenseNet 18 model performed well in the nested cross-validation 

pipeline when using Hem_Sep_ScaledCVP data, as represented in Table 4.14. 

The DenseNet 18 model understood the patterns from each training set in each 

fold and performed well on their respective validation sets. Thus, DenseNet does 

provide a promising deep learning framework to predict fluid responsiveness. 

However, the DenseNet model’s performance is not comparable with the MLSTM-

FCN model’s performance. Hence, the DenseNet model was not used in future 

experiments regarding model tuning and selection. 

 

4.2.5 Sample Weighting in Cost Function 
 

Weighted categorical cross-entropy was the cost function used to find the correct 

weights and biases in the deep learning model in all the previous experiments. The 

weighted categorical cross-entropy function introduces weight in the regular 

categorical cross-entropy function, where the weights are usually inversely 

proportional to the number of samples belonging to a particular category. However, 

there were a variety of ways in which the sample weighting can be introduced to 

the cross-entropy function, which includes the inverse of the number of samples 

(INS), the inverse of the square root of the number of samples (ISNS), and the 

effective number of samples (ENS). This experiment used all these varieties of 
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sample weighting in the loss function while keeping the remaining aspect of the 

experiment constant.  

The experimental setup followed a nested cross-validation procedure 

accompanied by a grid search to tune the hyperparameters. The sequence length 

used was 224. ABP and CVP signals were given together as input to the MLSTM-

FCN model during training and testing. The experiment utilized the 

Hem_Sep_scaledCVP dataset during the nested cross-validation procedure. The 

experiment’s purpose was to find whether any change in the sample weighting 

would affect the model’s performance during nested cross-validation. 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

ABP & 
CVP 

0.837 0.02 0.899 0.02 0.844 0.03 0.836 0.03 0.872 0.02 

Table 4.15: Nested Cross-Validation Performance of MLSTM-FCN model using 

INS sample weighting and trained on Hem_Sep_scaledCVP Data 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

ABP & 
CVP 

0.844 0.02 0.895 0.02 0.854 0.02 0.818 0.05 0.886 0.03 

Table 4.16: Nested Cross-Validation Performance of MLSTM-FCN model using 

ISNS sample weighting and trained on Hem_Sep_scaledCVP Data 
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Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

ABP & 
CVP 

0.83 0.05 0.884 0.05 0.819 0.07 0.842 0.02 0.846 0.06 

Table 4.17: Nested Cross-Validation Performance of MLSTM-FCN model using 

ENS sample weighting and trained on Hem_Sep_scaledCVP Data 

 

Table 4.15, Table 4.16, and Table 4.17 explained the nested cross-

validation results when INS, ISNS, and ENS sample weighting mechanisms were 

used, respectively. Again, the performance in the nested cross-validation 

procedure was favourable for all three sample weighting mechanisms. Based on 

the results from Table 4.15  - Table 4.17, the INS sample weighting mechanism 

was superior in comparison to the others though the difference is not large. In all 

the experiments involving a weighted categorical cross-entropy function in the 

future, INS was the primary choice of sample weighting. 

 

4.2.6 Resampling the input dataset using SMOTE 
 

Most datasets used in the experiments had a skewed nature where there were 

more negative samples than positive samples. As a result, the weighted 

categorical cross-entropy cost function would rate the positive samples to be more 
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important than the negative samples, and hence the models could obtain high 

recall scores. But without the presence of sample weighting in the cross-entropy 

function, the model would not learn the basic patterns from the training set as the 

cross-entropy function expects the ratio of positive to negative samples to be 

equal. An introduction of oversampling by SMOTE can resample the dataset so 

that the number of positive and negative samples is the same. If the number of 

positive and negative samples are equal, there is no need for sample weighting in 

the categorical cross-entropy cost function. The sequence length used was 224, 

and all combinations of ABP and CVP waveforms were given as input to the 

MLSTM-FCN model. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.814 0.01 0.897 0.01 0.803 0.03 0.835 0.03 0.832 0.03 

ABP 0.824 0.04 0.865 0.03 0.835 0.05 0.776 0.08 0.872 0.05 

ABP & 
CVP 

0.84 0.03 0.885 0.03 0.838 0.05 0.825 0.03 0.869 0.04 

Table 4.18: Nested Cross-Validation Performance of MLSTM-FCN model using 

SMOTE and trained on Hem_Sep_scaledCVP Data 

 

Table 4.18 describes the nested cross-validation results with SMOTE used to 

upsample the minority class on Hem_Sep_scaledCVP data. The performance of 

the model trained on SMOTE was positive. However, the model trained on the 
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resampled dataset did not offer a reasonable improvement in performance 

compared to the model utilizing a weighted categorical cross-entropy cost function 

with an INS sample weighting. Hence, resampling the dataset using SMOTE was 

not used in future experiments. 

 

4.2.7 Removal of Normalization From Preprocessing 
Pipeline 

 

Normalization helps keep the inputs on the same scale and make them 

comparable while making predictions. For example, the min-max normalization 

used in all the experiments brings down the scale of the ABP and CVP waveforms 

between 0 and 1. Apart from making the inputs comparable, it also helps solve the 

gradient explosion problem common in deep learning models. In this experiment, 

the normalization procedure was removed from the preprocessing pipeline to 

determine if the normalization introduced any dependencies that obstruct the 

model from generalizing on other physiologies. This experiment followed the 

nested cross-validation pipeline along with grid search to tune the 

hyperparameters. The input sequences' length was 224, and all combinations of 

ABP and CVP waveforms were given as input to the MLSTM-FCN model for 

training.  
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Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.843 0.04 0.881 0.02 0.773 0.06 0.814 0.04 0.863 0.06 

ABP 0.860 0.03 0.865 0.04 0.811 0.11 0.693 0.10 0.928 0.04 

ABP & 
CVP 

0.875 0.03 0.881 0.03 0.859 0.05 0.7975 0.08 0.918 0.04 

Table 4.19: Nested Cross-Validation Performance of MLSTM-FCN model without 

normalizing and trained on Hem_Sep_scaledCVP Data 

 

Table 4.19 displayed the nested cross-validation results when the MLSTM-FCN 

model took in ABP and CVP waveforms without normalizing. The model performed  

well even with the lack of normalization during preprocessing. However, the 

model’s performance did not improve compared to the model trained on the usual 

normalization pipeline; hence, normalization was used as part of the preprocessing 

pipeline in future experiments. 

 

4.2.8 Altering normalization pipeline 
 

During the previous experiment, the normalization pipeline was removed from 

preprocessing. But when the inputs were normalized, the input ABP and CVP were 

normalized separately from each other. Additionally, various datasets were kept 
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separate while normalizing. In this experiment, all the datasets were normalized 

together and then separated into their original cohort. The experiment aimed to 

see if this altered way of normalization supports the model’s performance 

positively. The experimental setup had nested cross-validation and grid search to 

aid in hyperparameter tuning. All combinations of ABP and CVP waveforms were 

given as inputs. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.814 0.04 0.890 0.02 0.806 0.05 0.841 0.06 0.823 0.06 

ABP 0.812 0.04 0.857 0.04 0.823 0.06 0.765 0.05 0.86 0.05 

ABP & 
CVP 

0.832 0.05 0.867 0.04 0.841 0.05 0.821 0.05 0.825 0.06 

Table 4.20: Nested Cross-Validation Performance of MLSTM-FCN model with 

everything normalized together and trained on 

Hem_Sep_scaledCVP_EPACC_Trial1 Data 

 

 Table 4.20 clearly explains the nested cross-validation results when the 

boluses from hemorrhage, sepsis, EPACC_Trial1, and IRI_FR_ALL were 

normalized together and separated to only include the hemorrhage, sepsis, and 

the EPACC_Trial1 for training. The model trained with the altered normalization 

pipeline showed promising results, but the model did not show a statistically 

significant performance improvement compared to the MLSTM-FCN model trained 
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with the regular normalization pipeline. Hence, the traditional form of normalization 

was a part of the preprocessing pipeline in all future experiments. 

This series of experiments helped identify the best model that is expected 

to generalize well on the holdout data. In the series of experiments involving 

identifying the best model, performances of MLSTM-FCN, MLSTM-FCN and 

DenseNet were all comparable. So in future experiments, MLSTM-FCN was the 

primary model used since the other models did not significantly improve the 

model's performance. While using different sample weighting in the cost function, 

the INS weighting mechanism generated the best results in nested cross-

validation, although the difference while using the other mechanisms was not 

statistically significant. However, future experiments made use of the INS 

weighting mechanism for the cost function. Additionally, resampling the dataset 

using SMOTE did not significantly improve the model’s performance compared to 

the model using the INS weighting mechanism for the cost function. Hence, 

SMOTE was not used in future experiments to resample the dataset. Finally, 

removal of normalization and altering the normalization pipeline did not 

significantly improve the model’s performance; hence, individual normalization as 

mentioned in the preprocessing pipeline was used in future experiments. Following 

this series of experiments, the best model with the ideal preprocessing pipeline 

was chosen, and the setup of this experiment was continued in future experiments. 
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4.3 Pig-Level and Bolus-Level Experiment 
 

Pig-level and Bolus-level experiment involves doing different splits for the training 

and the test sets during nested cross-validation. The bolus-level and pig-level 

experiments utilized the Hem_Sep dataset. During a bolus-level split, the training 

and the test splits were stratified concerning the number of positive and negative 

boluses. Therefore, even though the training and the test boluses were chosen at 

random, they had similar distribution because of stratification.  

On the contrary, a pig-level split did not have a stratified split of positive and 

negative boluses. The pig-level splits had the boluses from entire pigs in each set, 

which meant that there were no boluses from an individual pig from the training set 

to the test set or vice versa. The Pig-level split involved choosing all the boluses 

from one sepsis pig and three hemorrhage pigs for its test set, and the boluses of 

the remaining pigs were a part of the training set. The inferences from this 

experiment would help understand whether the model can generalize well to totally 

unseen data even if the unseen boluses came from unseen pigs. The experiment 

utilized grid search in a nested cross-validation pipeline to choose the right set of 

hyperparameters. From section 4.1, it was evident that both 56 and 224 length 

sequences had pretty good performance concerning the relevant metrics, and 

hence both the sequence lengths were also tested if they offered any difference in 

the current experiment. 
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Sequence 
Length 

BL/PL Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

56 PL 0.541 0.19 0.649 0.14 0.411 0.18 0.668 0.14 0.553 0.25 

56 BL 0.842 0.02 0.855 0.02 0.768 0.10 0.718 0.07 0.906 0.04 

224 PL 0.773 0.06 0.776 0.05 0.606 0.13 0.65 0.14 0.833 0.08 

224 BL 0.863 0.02 0.875 0.02 0.859 0.07 0.731 0.10 0.925 0.04 

 

Table 4.21: Performance of MLSTMFCN model using ABP waveform with 56 and 

224 sequence lengths for bolus-level (BL) and pig-level (PL) splitting in a nested 

cross-validation 

 

Sequence 
Length 

BL/PL Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

56 PL 0.668 0.052 0.801 0.065 0.481 0.099 0.765 0.108 0.712 0.066 

56 BL 0.789 0.03 0.851 0.028 0.649 0.073 0.774 0.091 0.838 0.059 

224 PL 0.69 0.13 0.817 0.089 0.55 0.119 0.781 0.09 0.742 0.158 

224 BL 0.814 0.024 0.887 0.017 0.776 0.053 0.774 0.074 0.874 0.048 

Table 4.22: Performance of MLSTMFCN model using CVP waveform with 56 and 

224 sequence lengths for bolus-level (BL) and pig-level (PL) splitting in a nested 

cross-validation 
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Sequence 
Length 

BL/PL Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

56 PL 0.532 0.166 0.605 0.154 0.382 0.161 0.671 0.154 0.549 0.219 

56 BL 0.867 0.007 0.868 0.053 0.832 0.072 0.746 0.131 0.935 0.032 

224 PL 0.569 0.174 0.654 0.102 0.426 0.199 0.738 0.068 0.556 0.232 

224 BL 0.882 0.014 0.877 0.029 0.858 0.0789 0.737 0.128 0.947 0.031 

Table 4.23: Performance of MLSTMFCN model using ABP and CVP waveforms 

with 56 and 224 sequence lengths for bolus-level (BL) and pig-level (PL) splitting 

in a nested cross-validation 

 

 It can be seen from Table 4.21 and Table 4.23 that there was a steady drop 

in performance when the experiment switched from bolus-level to pig-level 

splitting. Additionally, the models trained on sequences of length 56 had a much 

steeper drop in performance than those trained on sequences of length 224. 

However, from Table 4.22, there was no significant drop in performance while 

using just the CVP waveforms when the splitting switched from bolus-level to pig-

level splitting. Additionally, the performances with models trained on length 56 

were comparable to those trained on sequences of length 224. Therefore, from 

Table 4.21 - Table 4.23, it can be inferred that whenever ABP signals were 

supplied as input the neural network, there was a significant drop in the 

performance in pig-level splits, but the same does not apply for using CVP signals 
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based on results from Table 4.22. Another inference from these experiments was 

that the sequence length of 56 consistently performed worse when compared to 

models trained with sequences of length 224; however, not by a significant 

amount. 

 Even though there was a significant drop in the performance when shifting 

from bolus level to pig level splitting, the drop was not huge when the ABP and 

CVP waveforms were used individually. The results from Table 4.21 - Table 4.23 

motivated further experiments on pig-level sampling by including all the datasets, 

including hemorrhage, sepsis, EPACC_Trial1, and IRI_FR_ALL. The experimental 

setup was similar to the previous pig-level experiments, and the only difference to 

the method was to include all the datasets and not just the hemorrhage and sepsis 

datasets like before.  

 

Fold Accuracy AUROC Precision Recall Specificity 

1 0.695 0.755 0.772 0.62 0.792 

2 0.778 0.819 0.827 0.735 0.84 

3 0.556 0.573 0.567 0.531 0.602 

4 0.655 0.711 0.607 0.681 0.677 

5 0.704 0.731 0.683 0.773 0.654 

Table 4.24: Performance of MLSTMFCN model using ABP waveform with 224 

sequence length for pig-level (PL) splitting in a five-fold nested cross-validation 
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Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

0.678 0.06 0.718 0.07 0.692 0.08 0.668 0.07 0.713 0.07 

Table 4.25: Summary of metrics from Table 4.24 with averages and 95% 

confidence intervals 

 

Fold Accuracy AUROC Precision Recall Specificity 

1 0.599 0.673 0.651 0.543 0.673 

2 0.684 0.722 0.701 0.692 0.692 

3 0.647 0.708 0.630 0.726 0.584 

4 0.572 0.628 0.499 0.508 0.63 

5 0.698 0.792 0.706 0.753 0.694 

Table 4.26: Performance of MLSTMFCN model using CVP waveform with 224 

sequence length for pig-level (PL) splitting in a five-fold nested cross-validation 

 

 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

0.639 0.04 0.704 0.04 0.637 0.06 0.644 0.08 0.655 0.03 

Table 4.27: Summary of metrics from Table 4.26 with averages and 95% 

confidence intervals 
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Fold Accuracy AUROC Precision Recall Specificity 

1 0.599 0.673 0.651 0.543 0.673 

2 0.684 0.722 0.701 0.692 0.692 

3 0.647 0.708 0.630 0.726 0.584 

4 0.572 0.628 0.499 0.508 0.63 

5 0.698 0.792 0.706 0.753 0.694 

Table 4.28: Performance of MLSTMFCN model using ABP & CVP waveforms 

with 224 sequence length for pig-level (PL) splitting in a five-fold nested cross-

validation 

 

Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

0.639 0.04 0.704 0.04 0.637 0.06 0.644 0.08 0.655 0.03 

Table 4.29: Summary of metrics from Table 4.28 with averages and 95% 

confidence intervals 

 

 Table 4.24 - Table 4.29 indicates that the models developed with the pig-

level splitting had established promising results even when all the datasets were 

included. Comparing the results with pig-level splitting using just the hemorrhage 

and sepsis pigs and the entire dataset's performance shows a slight drop in the 

performance metrics. However, the drop in performance is not huge and shows 

promise that the training set need not necessarily have the boluses from the same 

pigs to offer compelling performance. The results suggest that if the training and 

the test set have representations of the same physiologies and not necessarily 
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from the same pigs, the model can better classify boluses as fluid responsive or 

not. 

 

4.4 Performance on Combined Physiologies of Models 
Trained on Individual Physiologies 

 

One of the most critical aspects of these experiments is whether a model trained 

on individual physiologies can generalize on totally different physiologies. Thus, 

for example, it would be vital to know whether the individual physiologies play an 

essential role in the classification or whether these nuances can be learned by the 

model and can generalize across different physiologies. Therefore, in these 

experiments, MLSTM-FCN models were trained on datasets possessing individual 

physiologies such as Hemorrhage, Sepsis, and EPACC_Trial1. Then, the trained 

models were tested on the remaining physiologies to understand the degree of 

generalization across physiologies. The experimental setup involved grid search 

in tuning the right set of hyperparameters. Nested cross-validation was not a part 

of the setup, but the experiment setup involved using separate training and test 

sets from individual physiologies instead. The length of the input sequence used 

was 224. Training and testing the models involved using the ABP and CVP 

waveforms individually and in combination to understand if these combinations add 

value to the model’s performance. 



71 
 

Features Accuracy AUROC Precision Recall Specificity 

ABP 0.887 0.814 0.25 0.75 0.894 

CVP 0.966 0.744 0.82 0.25 0.921 

ABP & CVP 0.854 0.798 0.2 0.75 0.856 

Table 4.30: Performance of MLSTMFCN model trained on boluses from 

EPACC_Trial1 pigs with 224 sequence length and tested on boluses from sepsis 

pigs 

 

Features Accuracy AUROC Precision Recall Specificity 

ABP 0.654 0.574 0.9 0.166 0.987 

CVP 0.518 0.668 0.483 0.815 0.405 

ABP & CVP 0.631 0.559 0.87 0.093 0.953 

Table 4.31: Performance of MLSTMFCN model trained on boluses from 

EPACC_Trial1 pigs with 224 sequence length and tested on boluses from 

Hemorrhage pigs 

 

 Table 4.30 and Table 4.31 explain the performance of the model trained on 

EPACC_trial1 pigs on boluses of Sepsis and Hemorrhage pigs, respectively. From 

Table 4.30,  it is evident that the model's performance on sepsis pigs was positive 

concerning the accuracy, AUROC, and specificity. However, the precision and 
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recall metrics tend to be scattered. Table 4.31 had the performance metrics when 

the same model was tested on boluses from hemorrhage pigs. Collectively all of 

them had poor accuracy and AUROC scores, and the precision, recall, and 

specificity metrics were scattered, indicating poor generalization from 

EPACC_Trial1 to Hemorrhage. 

 

Features Accuracy AUROC Precision Recall Specificity 

ABP 0.966 0.747 0.926 0.25 0.984 

CVP 0.955 0.576 0.487 0.594 0.962 

ABP & CVP 0.797 0.758 0.158 0.75 0.811 

Table 4.32: Performance of MLSTMFCN model trained on boluses from 

Hemorrhage pigs with 224 sequence length and tested on boluses from sepsis 

pigs 

 

Features Accuracy AUROC Precision Recall Specificity 

ABP 0.725 0.512 0.725 0.948 0.332 

CVP 0.517 0.553 0.736 0.62 0.414 

ABP & CVP 0.745 0.601 0.767 0.944 0.244 

Table 4.33: Performance of MLSTMFCN model trained on boluses from 

Hemorrhage pigs with 224 sequence length and tested on boluses from 

EPACC_Trial1 pigs 
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 Table 4.32 and Table 4.33 explain the performance of the model trained on 

Hemorrhage pigs on boluses of Sepsis and EPACC_Trial1 pigs, respectively. 

From Table 4.32, it is clear that the model’s performance concerning accuracy and 

specificity was good. However, AUROC was bad when only the CVP waveform 

was used but was better in the remaining combinations. Additionally, the precision 

and the recall scores were also scattered, indicating poor generalization on Sepsis 

data. Table 4.33 had the performance metrics when the same model was tested 

on boluses from EPACC_Trial1 pigs. The precision and the recall scores were 

considerably higher, but the remaining metrics had poor scores again, indicating 

poor generalization on EPACC_Trial1 data. 

 

Features Accuracy AUROC Precision Recall Specificity 

ABP 0.406 0.532 0.406 0.978 0.253 

CVP 0.594 0.527 0.358 0.297 0.96 

ABP & CVP 0.503 0.61 0.46 0.852 0.316 

Table 4.34: Performance of MLSTMFCN model trained on boluses from Sepsis 

pigs with 224 sequence length and tested on boluses from Hemorrhage pigs 
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Features Accuracy AUROC Precision Recall Specificity 

ABP 0.664 0.577 0.738 0.889 0.17 

CVP 0.678 0.507 0.726 0.907 0.097 

ABP & CVP 0.738 0.523 0.734 0.912 0.048 

Table 4.35: Performance of MLSTMFCN model trained on boluses from Sepsis 

pigs with 224 sequence length and tested on boluses from Hemorrhage pigs 

 

Table 4.34 and Table 4.35 explain the performance of the model trained on 

Sepsis pigs on boluses of Hemorrhage and EPACC_Trial1 pigs, respectively. The 

model trained on boluses from Sepsis pigs had inferior generalization on the 

Hemorrhage and EPACC_Trial1 pigs. From these experiments, it can be inferred 

that the models trained on individual physiologies tend not to generalize well 

across other physiologies. The model could not generalize to other physiologies 

by learning the patterns and structure from different physiology. 

 

4.5 Evaluation of Model’s Generalizability 
  

One of the essential requirements of a predictive model is to predict well on the 

unseen holdout data to ensure the model’s generalizability. In this set of 

experiments, various combinations of physiologies were used to train the model 
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using nested cross-validation to tune the hyperparameters and test all these 

models on holdout sets to find out which combination of physiologies helps the 

model generalize well on the unseen data. Another critical experiment was to 

reverse the training and the holdout sets to identify if the model behaves similarly 

if the data gets swapped. Each of these experiments was designed to identify if 

the model can generalize well on the unseen data. 

 

4.5.1 Holdout Set Performance of Models Trained on 
Various Combinations of Physiologies 

 

Following the previous experiment where the model utilized the individual 

physiologies for training and then testing the others, this experiment followed a 

similar pattern. However, instead of using individual physiologies to train and then 

test on other physiologies, this experiment made use of a constant holdout set 

made out of IRI_FR data. Thus, this experiment involved training models on 

individual and combination of physiologies and then testing out on the same 

holdout set. The experimental setup involved a bolus-level split for various folds in 

the nested cross-validation process. It also involved the usage of grid search in 

searching for the correct hyperparameters. The sequence length used in this 

experiment was 224. The IRI_FR dataset had three different subsets used in this 

thesis. However, this experiment made use of two of those subsets, namely 
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IRI_FR_1_2 and IRI_FR_1_2_3. These datasets had overlaps; however, the 

IRI_FR_1_2_3 had boluses from 5 more pigs than the IRI_FR_1_2 dataset. The 

description and the characteristics of each dataset used in this experiment are 

present in Table 3.1. This experiment also tested various combinations of ABP and 

CVP waveforms and if they add value to the performance. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.799 0.07 0.866 0.07 0.815 0.08 0.723 0.07 0.877 0.07 

ABP 0.848 0.04 0.873 0.03 0.869 0.07 0.776 0.07 0.906 0.06 

ABP & 
CVP 

0.839 0.05 0.88 0.03 0.831 0.08 0.837 0.06 0.865 0.07 

Table 4.36: Nested Cross-Validation Performance of MLSTM-FCN model trained 

on Hem Data 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.568 0.06 0.64 0.04 0.426 0.03 0.64 0.08 0.645 0.04 

ABP 0.334 0.01 0.43 0.03 0.26 0.01 0.691 0.06 0.196 0.03 

ABP & 
CVP 

0.326 0.03 0.358 0.04 0.201 0.04 0.391 0.08 0.374 0.04 

Table 4.37: Performance of Pickled model trained on Hem Data and tested on 

holdout IRI_FR_1_2 data. 

 



77 
 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.591 0.06 0.667 0.04 0.465 0.02 0.654 0.09 0.678 0.03 

ABP 0.334 0.02 0.439 0.04 0.279 0.02 0.745 0.07 0.176 0.03 

ABP & 
CVP 

0.363 0.03 0.373 0.03 0.216 0.03 0.418 0.08 0.368 0.06 

Table 4.38:  Performance of Pickled model trained on Hem Data and tested on 

holdout IRI_FR_1_2_3 data. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.772 0.05 0.787 0.08 0.856 0.05 0.866 0.04 0.737 0.08 

ABP 0.842 0.05 0.842 0.06 0.886 0.05 0.915 0.04 0.721 0.07 

ABP & 
CVP 

0.827 0.05 0.845 0.04 0.883 0.04 0.941 0.06 0.742 0.07 

Table 4.39: Nested Cross-Validation Performance of MLSTM-FCN model trained 

on EPACC_Trial1 Data 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.653 0.02 0.604 0.05 0.401 0.04 0.51 0.06 0.767 0.06 

ABP 0.395 0.05 0.546 0.04 0.33 0.03 0.783 0.01 0.33 0.08 

ABP & 
CVP 

0.736 0.03 0.808 0.01 0.552 0.01 0.883 0.06 0.703 0.03 

Table 4.40: Performance of Pickled model trained on EPACC_Trial1 Data 

and tested on holdout IRI_FR_1_2 data. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 
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CVP 0.657 0.01 0.648 0.02 0.416 0.04 0.522 0.04 0.764 0.06 

ABP 0.405 0.05 0.547 0.03 0.339 0.02 0.782 0.01 0.337 0.07 

ABP & 
CVP 

0.704 0.04 0.781 0.01 0.527 0.02 0.872 0.07 0.663 0.03 

Table 4.41: Performance of Pickled model trained on EPACC_Trial1 Data and 

tested on holdout IRI_FR_1_2_3 data. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.83 0.02 0.887 0.02 0.722 0.03 0.792 0.09 0.888 0.01 

ABP 0.853 0.02 0.869 0.03 0.802 0.1 0.694 0.09 0.926 0.03 

ABP & 
CVP 

0.842 0.03 0.838 0.02 0.769 0.1 0.668 0.02 0.921 0.04 

Table 4.42:  Nested Cross-Validation Performance of MLSTM-FCN model trained 

on Hem_Sep_scaledCVP Data 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.419 0.07 0.44 0.07 0.285 0.04 0.5 0.08 0.493 0.06 

ABP 0.495 0.03 0.645 0.08 0.396 0.06 0.833 0.08 0.471 0.07 

ABP & 
CVP 

0.427 0.05 0.573 0.03 0.345 0.01 0.783 0.09 0.386 0.06 

Table 4.43: Performance of Pickled model trained on Hem_Sep_scaledCVP Data 

and tested on holdout IRI_FR_1_2 data. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 
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CVP 0.435 0.08 0.445 0.07 0.299 0.05 0.49 0.08 0.509 0.07 

ABP 0.311 0.01 0.519 0.01 0.309 0.01 0.933 0.05 0.402 0.07 

ABP & 
CVP 

0.431 0.05 0.562 0.04 0.332 0.01 0.786 0.08 0.355 0.06 

Table 4.44: Performance of Pickled model trained on Hem_Sep_scaledCVP Data 

and tested on holdout IRI_FR_1_2_3 data. 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.806 0.03 0.882 0.02 0.79 0.04 0.837 0.05 0.81 0.05 

ABP 0.824 0.04 0.874 0.04 0.829 0.05 0.801 0.06 0.86 0.05 

ABP & 
CVP 

0.829 0.04 0.876 0.04 0.826 0.07 0.836 0.05 0.843 0.07 

Table 4.45: Nested Cross-Validation Performance of MLSTM-FCN model trained 

on Hem_Sep_scaledCVP_EPACC_Trial1 Data 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.427 0.03 0.497 0.08 0.3 0.05 0.736 0.08 0.476 0.07 

ABP 0.544 0.03 0.681 0.03 0.41 0.01 0.944 0.02 0.483 0.06 

ABP & 
CVP 

0.404 0.04 0.569 0.03 0.344 0.02 0.783 0.04 0.379 0.05 

Table 4.46: Performance of Pickled model trained on 

Hem_Sep_scaledCVP_EPACC_Trial1 Data and tested on holdout IRI_FR_1_2 

data. 
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Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.46 0.03 0.523 0.08 0.321 0.05 0.77 0.07 0.486 0.08 

ABP 0.534 0.02 0.668 0.03 0.408 0.01 0.943 0.02 0.458 0.05 

ABP & 
CVP 

0.422 0.05 0.579 0.03 0.361 0.02 0.791 0.05 0.396 0.03 

Table 4.47: Performance of Pickled model trained on 

Hem_Sep_scaledCVP_EPACC_Trial1 Data and tested on holdout 

IRI_FR_1_2_3 data. 

 

Table 4.36-Table 4.38 explains the nested cross-validation and the pickled 

model performances on the holdout sets when trained on boluses from 

hemorrhage pigs. Table 4.39-Table 4.41 elaborates on the nested cross-validation 

and pickled model performance on the holdout sets when the model was trained 

on EPACC_Trial1 data. Table 4.42-Table 4.44 elaborated on the nested cross-

validation and pickled model performance on holdout sets when trained on boluses 

from Hem_Sep_scaledCVP data. Finally, Table 4.45-Table 4.47 explained the 

nested cross-validation and pickled model performance on the holdout sets when 

trained on Hem_Sep_scaledCVP_EPACC_Trial1 data. From Table 4.36, Table 

4.39, Table 4.42, and Table 4.45, it was evident that the MLSTM-FCN model could 

generalize well on nested cross-validation. An additional inference was that the 
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model tends to perform well when the test set resembles the training set well 

concerning the physiologies and the distribution. Table 4.37: Performance of 

Pickled model trained on Hem Data and tested on holdout IRI_FR_1_2 data., 

Table 4.38, Table 4.40: Performance of Pickled model trained on EPACC_Trial1 

Data and tested on holdout IRI_FR_1_2 data., Table 4.41, Table 4.43, Table 4.44, 

Table 4.46: Performance of Pickled model trained on 

Hem_Sep_scaledCVP_EPACC_Trial1 Data and tested on holdout IRI_FR_1_2 

data. 

,  and Table 4.47 represent the pickled model performance of the respective 

models in each category. There was a decrease in performance while testing on 

the holdout set compared to the nested cross-validation performance. The training 

set in all the cases did not have even a single bolus from the IRI_FR data, and this 

explained why the pickled model trained on various physiologies did not perform 

well on the holdout set but performed well during nested cross-validation.  

 

4.5.2 Reversing the training and holdout sets 
 

Inferences from the previous experiments pointed out that the models trained on 

any combination of physiologies did not learn the patterns well to generalize well 

on the holdout set. Therefore, in this experiment, the training and the holdout sets 

were reversed to check if the model can generalize well when trained on 
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IRI_FR_1_2_3 data and tested on Hem_Sep_scaledCVP data. The experimental 

setup had the nested cross-validation pipeline along with the grid search for 

hyperparameter tuning. The MLSTM-FCN model took in inputs of length 224. All 

combinations of ABP and CVP waveforms were given as input to the model for 

training and testing. After the nested cross-validation procedure, the model was 

pickled and then tested on the Hem_Sep_scaledCVP data to find out if there was 

any impact on the performance. 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.707 0.06 0.703 0.07 0.574 0.13 0.553 0.15 0.819 0.12 

ABP 0.774 0.12 0.739 0.11 0.608 0.14 0.583 0.18 0.848 0.12 

ABP & 
CVP 

0.764 0.11 0.748 0.10 0.593 0.14 0.703 0.08 0.828 0.10 

Table 4.48: Nested Cross-Validation Performance of MLSTM-FCN model trained 

on IRI_FR_1_2_3 Data 

 

Features Accuracy CI AUROC CI Precision CI Recall CI Specificity CI 

CVP 0.64 0.02 0.579 0.02 0.326 0.04 0.344 0.06 0.751 0.02 

ABP 0.524 0.02 0.471 0.04 0.227 0.03 0.310 0.09 0.630 0.02 

ABP & 
CVP 

0.780 0.03 0.626 0.07 0.896 0.09 0.201 0.13 0.987 0.01 
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Table 4.49: Performance of Pickled model with trained on IRI_FR_1_2_3 Data 

and tested on holdout Hem_Sep_scaledCVP data. 

 

Observations from Table 4.49 pointed out that the pickled model did not 

generalize well on the holdout set made from the boluses of Hem_Sep_scaledCVP 

data. The poor generalization of the pickled model was similar to the results from 

previous experiments as well. But a significant difference was that the nested 

cross-validation performance in the previous experiments was better. On the 

contrary, the nested cross-validation results were subpar when the IRI_FR_1_2_3 

was used for training based on results displayed in Table 4.49. The poor 

performance could be due to the fewer boluses in the IRI_FR_1_2_3 data than the 

Hem_Sep_scaledCVP data. Due to the decreased number of boluses available for 

training, the model could not understand the patterns from the training, and the 

holdout set resulted in poor generalization. 

This series of experiments helped in discerning that though the model 

performed well during nested cross-validation with various combinations of 

physiologies, the model failed to perform well on the holdout set, validating the lack 

of generalizability of the model. In the subsequent experiment where the training 

and the holdout sets were reversed, the model failed to get a comparable score 

during nested cross-validation and failed to generalize well on the holdout set. But 

in this experiment, the failure to generalize well on the training set can be explained 
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due to the lack of enough data points for the model to train, explained by the low 

nested cross-validation score. 

 

4.6 Examination of Overfitting 
 

In the previous set of experiments, the model’s performance on the training set 

was better when compared to the performance on the holdout sets. The lack of 

generalizability of the model on the holdout sets could result from the overfitting on 

the training set. As explained in Section 3.4.5, overfitting can be examined with the 

help of the loss curves during training. The loss curves can be examined multiple 

times from each fold of the nested cross-validation pipeline since each fold has a 

different random sample of training and validation sets. The loss curves indicated 

no signs of overfitting in all the experiments during nested cross-validation. Figure 

4.3 shows the training and validation loss curves during one of the folds of nested 

cross validation for the model trained on Hem_Sep_ScaledCVP_EPACC_Trial1 

data with 224 sequence length and on a bolus level.  
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Figure 4.3: Representative training and validation loss curves for one of the folds 

during nested cross-validation for the model trained on 

Hem_Sep_ScaledCVP_EPACC_Trial1 data with 224 sequence length and on a 

bolus level. Red: Training loss, Blue: Validation loss 

 

 The examination of loss curves during each nested cross-validation pipeline 

helped ensure that the model did not overfit on the training data. However, the 

training and the validation sets in a nested cross-validation pipeline have a similar 

distribution of samples obtained from a given injury model. Good performance 

metrics during nested cross-validation with the lack of overfitting suggested that 

the models were learning generalizable rules within a given injury model; however, 

the lack of generalization on the holdout set suggest that the models were so good 

at learning a given physiology that they could not generalize to a different injury 

model’s physiology. 

 

 



86 
 

Chapter 5 

CONCLUSION 
 

This thesis explored various methodologies involving deep learning to predict fluid 

responsiveness in hemodynamically unstable patients. The multivariate LSTM fully 

convolutional neural network and DenseNet showed promise in predicting fluid 

responsiveness using arterial blood pressure and central venous pressure 

waveforms. The background information, which includes the fundamentals 

required for this thesis, was established in Chapter 2. Chapter 3 discusses the 

meticulously curated datasets used in this thesis and the preprocessing techniques 

required to transform the data to be compatible with the deep learning models. 

Normalization, stratification, and splitting of the waveforms into sequences were 

the preprocessing techniques discussed in detail in chapter 3. The chapter also 

discusses the training methods adopted to best tune the hyperparameters and pick 

the best models with the help of nested cross-validation and grid search 

algorithmic techniques. 

 The experiments conducted and their associated results were clearly 

defined and discussed in chapter 4. The chapter discussed experiments involving 

altering the sequence lengths of waveforms for input to the deep learning models.  
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The experiments discussed the various improvements to the model training that 

can help the model make good predictions. These experiments involve altering 

model architectures from removing LSTM to adding the attention mechanism for 

LSTM and comparing various deep learning architectures. The experiments also 

involve explaining various methods to deal with class imbalances using sample 

weighting in loss function and resampling the dataset using SMOTE. Finally, the 

chapter discussed altering the preprocessing pipeline for normalization and 

stratification. These experiments helped find the best architecture and the 

preprocessing pipeline that can help the model make good predictions. Once the 

modeling pipeline was optimized, the experiments explored various training and 

test sets sampling based on bolus-level and pig-level splitting. Finally, the thesis 

explains various experiments that can be used to infer the model’s generalizability 

on unseen holdout datasets. All the experiments listed in Chapter 4 involved the 

use of various combinations of the data to obtain meaningful inferences from the 

experiments.  

 The DenseNet-18 model obtained an AUROC of 0.824 ± 0.05 while using 

Hem_Sep_ScaledCVP data using the ABP waveform with a sequence length of 

224 in nested cross-validation as explained in Table 4.14. However, the pickled 

DenseNet-18 model did not perform the same way that it did in the nested cross-

validation. In addition, the model secured an AUROC of 0.636 ± 0.03 when tested 
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on the IRI_FR_1_2_3 data indicating poor generalization on physiologies outside 

the scope of the training set as displayed in Error! Reference source not found.. 

 The multivariate LSTM fully convolutional network obtained promising 

results during nested cross-validation. For example, the MLSTM-FCN model 

secured an AUROC of 0.869 ± 0.03 when trained and tested using 

Hem_Sep_ScaledCVP data using ABP waveform during nested cross-validation 

on a bolus-level splitting with a sequence length of 224 based on Table 4.42. On 

the other hand, based on Table 4.44, the pickled model which obtained an AUROC 

of 0.869 ± 0.03 failed to generalize on IRI_FR_1_2_3 data by securing an AUROC 

of 0.519 ±  0.01. Finally, using the same data and identical sequence length but 

with a pig-level splitting, the model secured an AUROC of 0.776 ± 0.05 based on 

Table 4.21. The results from these experiments indicate that the MLSTM-FCN 

model could not generalize on the IRI_FR_1_2_3 data when trained on the 

Hem_Sep_ScaledCVP dataset. Various experiments discussed in chapter 4 

indicate the same results. Similarly, when all the datasets were used in a pig-level 

split, the MLSTM-FCN model secured an AUROC of 0.718 ±  0.07 as explained in 

Table 4.25. 

The failure of the MLSTM-FCN model to generalize on unseen physiology 

can be because the training data set is tiny for a deep learning model to understand 

the intricate patterns from one physiology and generalize on totally new 

physiology. However, the MLSTM-FCN model performed better on the pig-level 
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splitting, sugesting that when both the training and the testing data have a similar 

mixture of physiology, the model picked up the complex patterns and generalized 

well on unseen pigs.  

 

5.1 LIMITATIONS AND FUTURE WORK 
 

There are several limitations to the methods discussed in this thesis. Based on the 

results from this thesis, it is evident that the training set should represent all the 

physiologies to make a compelling predictive model capable of classifying fluid 

responsiveness of boluses from unseen pigs.  The training set has to be very 

diverse to cover all the physiologies, and if that’s not the case, the model might not 

be an effective predictor. Another important consideration is that the model is 

developed on a meticulously curated dataset with strictly maintained experimental 

conditions. However, it is uncertain how the model would behave in noisy real-

world data. Another important consideration is the choice of deep learning 

algorithms. The deep learning algorithms chosen for the experiments were not 

exhaustive, and using a new algorithm or a more exhaustive hyperparameter 

search could potentially improve model performance. 

The scope of the work from this thesis can be expanded further in the future. 

An advance in this field would be to shift from the hemodynamic waveforms of pigs 

to humans. Though the hemodyanmic waveforms of pigs are similar to humans, 
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they are not identical and can pose difficulties for the model to learn essential 

patterns from the training data. Another progress would be to apply Auto machine 

learning (Auto ML) methods to automate the designing of deep learning 

architecture. An Auto ML pipeline can help find the best architecture to predict fluid 

responsiveness, and we do not have to worry about the lack of an exhaustive 

search of the hyperparameter space. Finally, transfer learning offers a compelling 

framework in various applications by improving the model’s performance when a 

small training dataset restricts the model [57]. Hence, transfer learning could prove 

to be a valuable approach to predict fluid responsiveness since the experiments in 

this thesis dealt with a relatively small dataset. 
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