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Genome variation over multiple timescales and dimensions 

Kathleen Keough 

Abstract 

Genomic variation does not only include nucleotide changes, it also comprises changes 

in DNA shape, structure, epigenetic marks, and expression, all of which can occur over 

generations, cellular differentiation, the span of a few hours or a few millennia.  This 

doctoral thesis explores the implications and opportunities presented by these multiple 

forms of genomic variation for genome editing, cellular differentiation, genome 

regulation and comparative genomics, all towards improving our understanding of 

genome evolution and development and benefiting human health. 
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1 Introduction  

 

Genomic variation exists on all scales from DNA sequence to genome structure. 

Variations between individual genomes render us unique, while also rendering us 

susceptible to disease. Inter-individual variation is not always random, it is often 

inherited, passed from parent to child, generating networks of genomic variation tracing 

us back to the first humans (Sudmant et al., 2015). These patterns of shared genomic 

variation can then be used to assign us to groups, either at a high level with clades and 

species, within a species such a population groups, or at an even finer resolution, 

linking us to previously unknown family members. We can also be grouped genetically 

based on our susceptibility to various diseases. However, in this work I use shared 

genetic variation as a tool, using those same networks of genetic sharedness to design 

genomic tools specific to individuals with a particular disease that aim to amend the 

cause of the disease at its genetic source (Keough et al., 2019).  

 

On a longer timescale, genomic variation, or the lack thereof, reminds us how very 

similar we actually are to the other species that share this planet with us. Many of our 

basic physiological processes, breathing, pumping blood, digestion, are common 

throughout mammals and further, and this similarity is reflected throughout our 

genomes. Most of our genome is exactly the same as our closest living relative, the 

chimpanzee, and yet there are clearly many differences between our species. The 
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genetic cause of these differences likely lies in the 98% of our genomes that are 

noncoding. This was shown in a seminal paper that compared the similarity between 

human and chimpanzee for the sequences that code for genes , finding that they are 

highly identical, suggesting that noncoding sequences have a major impact for 

differences between organisms (King and Wilson, 1975). To try and understand these 

differences subtly encoded in our genomes, we hone in on the fastest evolving loci 

known in humans (Pollard et al., 2006a, 2006b). To these loci we add further 

dimensions of information, made possible by technological advances since their 

discovery such as high-throughput sequencing, new methods for computational analysis 

of genomes, and techniques to disentangle the meaningful organization of the genome 

in 3D at a high resolution. These new data around these intriguing loci enable us to 

develop and pursue new hypotheses for their origin and function, and get closer to 

determining what makes us human.  

 

Despite our complexities as humans, we are still susceptible to some of the most basic 

pathogens: RNA viruses, fast-evolving predators waging war against the entire 

phylogenetic tree of life. As I wrote this thesis, SARS-CoV2 brought the world to a halt 

(Zhou et al., 2020). This insidious foe was able to pass between species and 

individuals, often without symptoms, frequently deadly, without a cure or treatment. 

Scientists around the world dropped everything to help where they could, and I joined 

them to identify how our genomic similarities and variation may render some species 

more or less vulnerable to this virus, to enable more informed conservation efforts, 

potentially inform model animal selection, essential for vaccine and treatment 
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development, and inform other sources of risk, such as agriculture (Damas et al., 2020). 

That work continues beyond what is included here. 

 

Finally, variation in genomic structure is important for health and development. I explore 

some of the basic foundations of this via analysis of lamina-associated and H3K9me2-

associated domains. These generally repressive, heterochromatic regions comprise a 

huge portion of our genomes, and yet our understanding of how they’re generated, what 

is their function, and how they interact with other genomic elements is nascent (Guelen 

et al., 2008; Meuleman et al., 2013; Peric-Hupkes et al., 2010; Poleshko et al., 2017). 

Disruption of these elements disrupts differentiation and causes disease, and so a 

better understanding is necessary. By applying a previously unused type of statistical 

model to the data, I uncover evidence that these regions are not monolithic, but 

comprise multiple subtypes, each of which vary between different cell types and encode 

cell-type-specific information.  

 

Genomic variation defines us; it is both our boon and our bane, generating both 

beneficial traits and disease. The advances in this doctoral thesis contribute to our 

understanding of the forces of genomic variation in sequence and shape over cellular 

differentiation and evolutionary time, within and between individuals and species, and 

provides a tool to use genomic variation against genomic variation-based disease.   
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2 AlleleAnalyzer: a tool for personalized and allele-specific gRNA 

design 

 

The work described in this chapter was previously published in Genome Biology 

(Keough et al., 2019). The end result of this study was a more thorough understanding 

of the implications and opportunities presented by naturally occurring genomic variation 

(single nucleotide variants and small insertions or deletions) in the field of CRISPR 

genome editing guide RNA (gRNA) design, as well as an open-source software tool 

(https://github.com/keoughkath/AlleleAnalyzer) to design and optimize gRNA 

combinations based on genetic variation to maximize coverage of a cohort.  

 

2.1 Rationale for considering genomic variation in CRISPR gRNA design  

 

CRISPR genome editing success depends on the efficiency and specificity of the gRNA 

design. Current gRNA design tools primarily predict efficiency and specificity of gRNAs 

using features such as prevalence of off-target sites, epigenetic marks and chromatin 

accessibility (Doench et al., 2014; Haeussler et al., 2016; Horlbeck et al., 2016). 

Generally, gRNAs are designed using reference genomes, such as the hg38 assembly 

for human or the GRCm38 assembly for mouse. However, these gRNAs are used on 

cell lines or organisms with many nucleotide differences from the reference (e.g., on 

average 0.1% of a human genome (National Institutes of Health, 2007)). While gRNAs 

can sometimes tolerate a single base-pair mismatch, frequently these mismatches 

negatively impact gRNA efficiency and render imprecise the results of specificity 
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prediction (Scott and Zhang, 2017; Yang et al., 2014), with potentially serious effects 

when gRNAs are deployed.  

 

Previous work analyzing data from Exome Aggregation Consortium (ExAc) (Lek et al., 

2016) and the 1000 Genomes project (1000 Genomes Project Consortium et al., 2015) 

determined that genetic variants could have a large impact on gRNA efficiency and 

specificity, demonstrating the need for a tool to design gRNAs using genetic variation 

and to identify gRNAs that could work in many people to facilitate regulatory approval 

for therapeutic use . The solution implemented in this previous work was to avoid 

negative effects of genetic variation by identifying universal gRNAs located in sites with 

little to no genetic variation and possessing few predicted off-targets (Scott and Zhang, 

2017). However, many loci that may need to be edited lack variation-free regions for 

designing such gRNAs (see below). We propose personalized gRNA design, which 

uses the genetic variants in a genome or population, as a second approach that offers 

more flexibility in guide design. We further note that genetic variation is not only a 

challenge for gRNA design, but also an opportunity. Specifically, the use of CRISPR in 

research areas such as haploinsufficiency, genomic imprinting, and dominant negative 

diseases requires allele-specific gRNA design, which may be accomplished using 

heterozygous variants.  

 

To address these needs, I developed AlleleAnalyzer, an open-source Python software 

tool that designs personalized and allele-specific gRNAs for individual genomes, 

identifies pairs of gRNAs to generate excisions likely to block expression of a gene, and 
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leverages patterns of shared genetic variation across thousands of publicly available 

genomes to design gRNA pairs that will have the greatest utility in a target population. 

 

2.2 Incorporating genomic variation into gRNA design 

Incorporating genetic variation into gRNA design enables personalized and allele-

specific CRISPR experiments. A personalized gRNA is defined here as an gRNA 

designed to incorporate the genetic variants of the research subject. A genetic variant 

can impact gRNA sites by being located in or near a protospacer adjacent motif (PAM 

site), potentially generating or eliminating gRNA sites in an individual in a heterozygous 

or homozygous manner. Beyond being an impediment to designing effective gRNAs, 

these variants enable the design of personalized, non-allele-specific gRNAs 

(incorporating homozygous variants and avoiding heterozygous variants to match both 

alleles) and allele-specific gRNAs (incorporating heterozygous variants). The way in 
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which genetic variation impacts or is incorporated into gRNA design depends on the use 

case for the gRNA and variant zygosity (Figure 1a).  

 

Because Cas nucleases have different PAM sequences, a variant may impact an gRNA 

site for one Cas but not another. We analyzed 11 Cas types (Error! Reference source 

not found.),  

Figure 1:  Analysis of allele specific gRNA sites 

A) In a sample genome, tools designing gRNAs for the reference genome are imperfect 
matches due to genetic variants, exemplified by guide 1. AlleleAnalyzer designs personalized 
gRNAs, as demonstrated by guides 2 and 3, which incorporate homozygous and avoid 
heterozygous variants, thus designing a guide perfectly matched to both alleles in a subject. It 
also designs personalized allele-specific gRNAs based on incorporation of heterozygous 
variants, shown by guides 4-6. Guides 4 and 6 target the paternal allele, while guide 5 targets 
the maternal allele. B) Most variants annotated by the 1000 Genomes Project (1KGP) and the 
Exome Aggregation Consortium (ExAc) are in or near a PAM site. C) Analysis of common 
variants (minor allele frequency (MAF) greater than 5% in 1KGP), and all variants in an 
individual cell line (WTC) within commonly used gRNA libraries.  
 

a.

b.

ATCGAATCTGCCTGAGCCAACGG
CCAATCTGCCTGAGCCAACGGAT

ATCCAATCTGCCTGAGCCAACGG

CCAACGGATCTAGCTAGGCTGAA
CCAACGGATCTAGCTAGCCTGAA

ATCCAATCTGCCTGAGCCAACGGATCTAGCTAGCCTGAATCG
ATCCAATCTGCCTGAGCCAACGGATCTAGCTAGGCTGAATCG

ATCGAATCTGCCTGAGCCAACGGATCTAGCTAGCCTGAATCG

CTGAGCCAACGGATCTAGCTAGG

Reference sequence
Research subject, maternal allele
Research subject, paternal allele

Guide 1
Guide 2

Guide 3
Guide 4

Guide 5
Guide 6

Reference sgRNA
Personalized sgRNA
Allele-specific sgRNA

Genetic variant in research subject

PAM

PAM

PAM

c.
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Common 
name(s) 

Abbreviation PAM Properties 

SpCas9 SpCas9 NGG Streptococcus pyogenes (Sp) Cas9., most 
widely used version with dozens of variants 
using same PAM, e.g. eSpCas9, SpCas9-
HF1, eSpCas9 1.1 and more (Jinek et al. 
2012) 

SpCas9 
VRER 
Variant 

SpCas9-V1 NGCG Version of  SpCas9 with alternative targeting 
range (Kleinstiver et al. 2015) 

SpCas9 
EQR 
Variant 

SpCas9-V2 NGAG Version of  SpCas9 with alternative targeting 
range (Kleinstiver et al. 2015) 

SpCas9 
VQR 
Variant 

SpCas9-V3 NGAN or 
NGNG 

Version of  SpCas9 with wider targeting 
range (Kleinstiver et al. 2015) 

SaCas9 SaCas9 NNGRRT Staphylococcus aureus (Sa) Cas9.  Small 
relative to SpCas9, (Horvath et al. 2008, 
Jiang et al. 2013) 

SaCas9 
KKH 
Variant 

SaCas9-V1 NNNRRT Version of  SaCas9 with 2 to 4-fold 
increased targeting range relative of SaCas9 
(Kleinstiver et al. 2015) 

nmCas9 nmCas9 NNNNGATT Neisseria meningitidis (Nm) Cas9, with 
different PAM site (Hou et al. 2013) 

cpf1 cpf1 TTTN Multiple variations, notably opposite 
orientation system and sticky-end cut rather 
than blunt. Multiple species exist, including 
from Acidaminucoccus and 
Lachnospiraceae. (Zetsche et al. 2015) 

StCas9 1 StCas9-V1 NNAGAA Streptococcus thermophilus (St) Cas9. 
Smaller relative of SpCas9. Increased 
specificity. (Kleinstiver et al. 2015, Muller et 
al. 2016) 

StCas9 2  StCas9-V2 NGGNG Streptococcus thermophilus (St) Cas9. 
Smaller relative of SpCas9. Increased 
specificity. (Muller et al 2016) 

cjCas9 cjCas9 NNNNACA Campylobacter jejuni Cas9. Smallest Cas9 
ortholog to date, easy to package (Kim et al. 
2017) 

Table 1: Cas types 

11 types of Cas enzyme were evaluated, each of which has a distinct PAM site. 
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genome-wide variants from >2500 individuals from the 1000 Genomes Project(1000 

Genomes Project Consortium et al., 2015) (1KGP), and exome variants from >60,000 

individuals in ExAc. From these analyses we discovered that most variants impact 

gRNA sites for at least one Cas type, even when considering only variants in PAMs, 

which are putatively more  allele-specific (Christie et al., 2017) (Figure 1b). The 

likelihood that a variant impacts an gRNA site differs across Cas nucleases (1KGP: 

range 19-98%, ExAc: range 13-99%), is positively correlated with PAM frequency in the 

reference genome (1KGP: Pearson rho=0.89, p=0.0002, ExAc: Pearson rho=0.84, 

p=0.0011, Figure 4a), and is negatively correlated with PAM size (1KGP: Pearson rho=-

0.71, p=0.014, ExAc: Pearson rho=-0.74, 

p=0.0094). In fact, >3% of gRNAs in each of 

three widely used gRNA libraries (Doench et 

al., 2016; Morgens et al., 2017; Park et al., 

2016) contain at least one common genetic 

variant (minor allele frequency > 5% in the 

1KGP cohort), and >2% of these gRNAs 

contain a variant in the individual human 

genome of an induced pluripotent stem cell 

(iPSC) line WTC, commonly used for disease 

modeling (Drubin and Hyman, 2017) (Figure 

1c, Figure 2). Failing to account for variants can reduce the efficacy of gRNAs and also 

Figure 2: gRNA variants in WTC iPSC 

Genomic variants in commonly-used 
gRNAs libraries in the WTC iPSC line. 
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generate unexpected off-target effects (Lessard et al., 2017). These results emphasize 

the importance of designing gRNAs using the personal genome of the patient or cell line 

where they will be deployed, or at least accounting for both heterozygous and 

homozygous genetic variants when interpreting results using gRNA libraries designed 

for the reference genome. 

 

Heterozygous genetic variants can be leveraged to establish new therapeutic and 

research possibilities with allele-specific genome editing. Questions that allele-specific 

editing could help address include haploinsufficiency, imprinting, and allele-specific 

gene regulation, as well as discovery and correction of heterozygous disease variants. 

One promising example is genome surgery to treat dominant negative disease by 

excising only the disease causing copy of a gene, an approach which rescues healthy 

phenotypes in cell and animal models of dominant negative diseases including 

Huntington’s disease (Shin et al., 2016a) and retinitis pigmentosa (Bakondi et al., 2015; 

Gao et al., 2018).   

The strategy of allele-specific gene editing genome-wide was assessed by identifying 

pairs of allele-specific gRNA sites for each human protein-coding gene that could 

generate a genomic excision and eliminate protein production from just one allele. 

Given a Cas nuclease, an estimated maximum distance between the two gRNAs on the 

haplotype to be excised, and allele-specific gRNA sites based on the individual’s 

genetic variants, it is possible to classify genes–or other genomic elements such as 

enhancers–as putatively targetable or not (Figure 3). 
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Figure 3: Allele-specific gene targeting with paired gRNAs 

Strategy to determine whether a gene is targetable for dual-gRNA allele-specific 
excision-based knockout. 
 

The term putatively targetable is used here when a pair of allele-specific gRNAs exists 

but has not yet been tested, because it will not always be possible to cut specifically at a 

Noncoding exon

Coding exon

Allele-specific cut site

✔

✔

✔

✘

Maternal

Maternal 

Maternal 

Maternal 

Paternal 

Paternal 

Paternal 

Paternal 

✔

✘

Putatively
targetable

Not targetable
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site and coding exon excision will not always stop expression. Previous work indicates 

that excision of large genomic fragments (>10 kilobases) is feasible, and that excision of 

coding exons via gRNAs targeted to flanking noncoding regions, such as promoter or 

intronic regions, can mediate gene knockout (Chen et al., 2014; Shin et al., 2016b; 

Tabebordbar et al., 2016).  

 

 

Figure 4: Target availability by Cas enzyme 

A) PAM frequencies in the human reference genome hg19, colored by size of the PAM site 
(number of non-“N” nucleotides in motif). B) In this faceted density plot, height of the colored 
portion indicates the proportion of genes where the specified percentage (on the x-axis) of the 
1000 genomes cohort is putatively targetable. 
 

As an example, suppose we choose a maximum distance of 10 kilobases (kb) between 

gRNAs, require the gRNAs to be within the gene including introns, and consider 11 Cas 

varieties (Table 1). Then the average individual from 1KGP is putatively targetable for 

allele-specific excision at 64% of protein-coding genes (Shin et al., 2016a). The rate of 
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putatively targetable individuals per gene is evenly distributed across chromosomes but 

varies by Cas nuclease and gene (Figure 4b). For genes that are not putatively 

targetable, additional allele-specific gRNA sites may be found by leveraging non-coding 

variants up- and down-stream of the gene, or even in distal enhancers for the gene 

(Shin et al., 2016a). As a second example, I found that by simply including the 5 kb 

flanking regions of each gene, we can increase the mean proportion of putatively 

targetable protein-coding genes per 1KGP individual to 75%. A caveat to this is that 

specificity of each gRNA pair will vary greatly, potentially even between gRNAs 

targeting the same pair of heterozygous variants. Therefore, we conclude that allele-

specific excision may be applicable to the vast majority of genes in most human 

genomes, but extensive experimental optimization for efficiency and specificity will be 

needed.  

 

Since some genes in a given individual do not 

have a pair of allele-specific gRNAs, we asked 

if gene silencing with a single allele-specific 

gRNA within the coding sequence (single-

guide strategy) makes more genes putatively 

targetable. I compared paired-guide and 

single-guide strategies for allele-specific gene 

knockout in the individual human genome of 

the WTC iPSC line (Drubin and Hyman, 2017) 

and found that more than twice as many  

Figure 5: Genes targetable in WTC with 
single- or paired-gRNA approach 

Genes were evaluated using variants 
from the WTC iPSC line for targetability 
based on a single- or paired-gRNA 
approach. 
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genes are 

putatively 

targetable with 

paired guides 

despite the 

requirement of 

two editing sites 

(Figure 5). This 

follows intuition, 

because one or 

both gRNAs can 

fall in introns or 

untranslated 

regions 

(providing more 

potential editing 

sites with dual 

guides), whereas 

individual gRNAs 

in the single-guide 

strategy are 

limited to coding 

regions. Genes that are putatively targetable with a single- and not paired-guide 

Input: 
- Genetic variant information for the cohort
- Maximum number of sgRNA pairs desired, x
- sgRNA pairs available
- Putative targetability 
information for available 
sgRNA pairs

} Generated by
AlleleAnalyzer

Example: Choose the best pair of 
genetic variants (allele-specific sgRNA sites)
that putatively target a theoretical 
gene to cover a given cohort. For simplicity, 
sgRNA sites are referred to as sgRNAs, 
however in practice each is a genetic variant
from which multiple allele-specific sgRNAs
may be designed.

x = 1 (Maximum number of sgRNA pairs)

sgRNA-1 sgRNA-3 sgRNA-5

sgRNA-2 sgRNA-4 sgRNA-6

Genetic variant with location on 

sgRNA for the reference (ref ) allele

sgRNA for the alternate (alt) allele

Exon

10135 10587 10691

chr pos ref   alt   ind1   ind2   ind3
chr1
chr1
chr1

10135
10587
10691

A
C
C

G
T
G

G|G
T|C
G|C

G|A
T|CC|T

C|G C|G

A|A

Bipartitate graph of targetability of each individual 
for each sgRNA pair based on personal genotypes

sgRNA-1 (ref )
sgRNA-1 (ref ) ind 1

ind 2

ind 3

sgRNA-1 (ref )
sgRNA-1 (ref )
sgRNA-2 (ref )
sgRNA-2 (ref )
sgRNA-3 (ref )
sgRNA-3 (ref )
sgRNA-4 (ref )
sgRNA-4 (ref )

sgRNA-2 (ref )
sgRNA-2 (ref )

sgRNA-3 (ref )
sgRNA-4 (ref )

sgRNA-5 (ref )
sgRNA-6 (ref )
sgRNA-5 (ref )
sgRNA-6 (ref )
sgRNA-5 (ref )
sgRNA-6 (ref )
sgRNA-5 (ref )
sgRNA-6 (ref )

sgRNA-4 (ref )
sgRNA-3 (ref )

sgRNA pair Individual 0
0
0
0
0
0
0
0
0
0
0
1

1
1
1

i = j =

Σj=3

Σi=1

Indicator variables 
sgRNA pair 12

Number of 
individuals covered:

Number of 
sgRNA pairs used:

For each sgRNA pair, generate indicator variable vectors for 
individuals covered (i) and sgRNA pairs used (j). Σj must 
be less than the limit (x) specified by the user.  

Therefore, sgRNA
pair 12 is an optimal
solution for this case.

chromosome

Figure 6: Set cover approach to maximize population coverage by 
variant-informed gRNA selection 

Our approach, based on the set cover problem, to maximize 
coverage of a population group based on informed variant 
selection for gRNA design. 
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approach tend to have less than two heterozygous variants in the gene, indicating that a 

lack of multiple variants is the primary reason a paired-guide strategy fails. These genes 

could be putatively targetable with a paired-guide strategy by incorporating flanking, 

promoter, or other regulatory regions. Again, putative editing sites and gRNAs need to 

be experimentally validated. This suggests that in most cases allele-specific gene 

targeting may be greatly enhanced by including paired-guides in the experimental 

approach. 

 

Genome editing gRNAs do not need to be designed one genome at a time. Variants 

that impact gRNA sites are often shared among large proportions of the individuals 

within and sometimes between populations due to haplotype structure. Previous work 

had a similar goal of developing gRNAs for broad use (Scott and Zhang, 2017). 

However that work focused on targeting invariant (or low variation) segments of the 

genome towards homozygous, single-gRNA-based CRISPR editing while  

AlleleAnalyzer focuses on taking advantage of genome variation for allele-specific 

editing with individual gRNAs, or pairs of gRNAs. Allele sharing varies by population 

and locus, as individuals with common ancestry will share haplotypes that harbor 

specific sets of variants. We therefore developed an algorithm to identify allele-specific 

gRNA guide pairs for a given gene that cover the maximum number of individuals in a 

population; these have the broadest therapeutic potential, similar to designing a drug to 

treat as many people as possible (Error! Reference source not found.). Specifically, 

this method seeks to cover the most people with the fewest gRNA pairs using their 

shared heterozygous variants; this is similar to the “set cover” problem in that the 
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algorithm identifies an optimal combination rather than simply selecting most shared 

gRNA pairs, which could disproportionately favor one group over another (Clarkson, 

1993). Our algorithm generates optimized pairs of gRNAs that can be used to study or 

treat genetic diseases in large groups, potentially eliminating the need to develop new 

gRNA pairs for each patient or cell line, with practical implications for the development 

of genome surgery as a field. Our algorithm can also be used to identify gRNA pair 

Figure 7: Targeting pairs of allele specific polymorphisms 

A) Common shared targetable variant pairs for SpCas9 and SaCas9 vary greatly by 
population, as demonstrated in the gene BEST1 including the 5kb flanking regions in the five 
1000 Genomes superpopulations. B) AlleleAnalyzer optimizes gRNA pair combinations to 
best cover a cohort, which performs much better compared to the naïve approach of 
selecting the most highly shared pairs (“Top 5”). C) The pairs identified by the AlleleAnalyzer 
and Top 5 approaches demonstrate disparate patterns of sharing among the entire 1KGP 
population. Height of the arcs is only for visualization purposes, and is not otherwise 
meaningful. D) AlleleAnalyzer designs gRNAs, colored by Cas variety, here with SpCas9 
represented by purple and SaCas9 by green. E) For each variant, or gRNA site, multiple 
gRNAs can be designed on both the reference and alternate alleles, depending which is to 
be targeted. Each gRNA, then, has its own set of off-target sites, predicted using the 
incorporation of the CRISPOR tool in AlleleAnalyzer.  
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combinations applicable to a custom cohort; this enables researchers to design guides 

that are maximally shared among multiple cell lines, for example, which would improve 

experimental efficiency. Optimized gRNAs can then be validated for each individual via 

targeted genotyping, reducing sequencing and gRNA synthesis costs.  

 

As a case study, I investigated the feasibility of excising at least one coding exon of 

bestrophin 1 (BEST1), which can cause dominant negative macular degeneration (Yang 

et al., 2015). Because mutations in this gene can cause macular degeneration by a 

dominant negative mechanism, a strategy that eliminates or silences the disease allele 

would be therapeutically desirable. Considering the gene plus 5 kb of flanking sequence 

on either side, and allowing 10 kb between each gRNA in a pair, there are 563 pairs of 

allele-specific gRNA sites for SpCas9 that are shared by >10% of all 1KGP individuals, 

with the number and composition of these pairs varying across 1KGP populations 

(Figure 3a). The goal was to identify an optimal combination of five allele-specific gRNA 

pairs to potentially target the majority of the 1KGP cohort. The result was that a 

combination of five allele-specific gRNA pairs could putatively excise at least one coding 

allele of BEST1 while leaving the other allele intact in ~78% of the overall 1KGP 

population. This compares to only 48% that would be covered by the naïve approach of 

selecting a combination of the top 5 most highly shared pairs (Figure 3b, c). At each 

gRNA site, multiple gRNAs are possible for both the reference and alternate alleles 

(Figure 3d) depending on which is being targeted in the research subject. Each of these 

gRNAs has a unique off-target profile (Figure 3e), which we identified by integrating the 

tool CRISPOR into AlleleAnalyzer (Haeussler et al., 2016). Previous studies have 
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predicted that genetic variation may have a large impact on the off-target landscape 

(Lessard et al., 2017; Scott and Zhang, 2017). One of these produced a set of 

“platinum” gRNAs for all coding genes identified based on the target sites having low 

genetic variation and predicted off-targets, including off-targets generated by genetic 

variation (Scott and Zhang, 2017). Using the WTC genome, I compared these gRNAs to 

those produced by AlleleAnalyzer in the gene proprotein convertase subtilisin/kexin type 

9 (PCSK9), a gene involved in various cardiovascular diseases and susceptibility to HIV 

infection (Dixon et al., 2016). 

 

Figure 8: Comparison of gRNAs from AlleleAnalyzer to platinum gRNAs at PCSK9 

Demonstration of the ability of AlleleAnalyzer to design gRNAs where other tools cannot due to 
incapability to incorporate genetic variants.  
 

A.

B.
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I determined that the set of platinum gRNAs indeed has high predicted sensitivity and 

specificity in WTC, but some loci lack platinum gRNAs; AlleleAnalyzer is able to design 

personalized gRNAs in these loci, making it a flexible option that we expect will be 

Figure 9: gRNA pair optimization for coverage of groups 

A.) Variant pairs in NEFL and the flanking 5kb that are shared by at least 10% of the 
1KGP cohort. These are pairs of variants, not pairs of gRNAs, so reflect potential dual-
guide editing sites prior to designing or filtering gRNAs. 10% was chosen for 
visualization purposes. B.) 5 variant pairs identified by AlleleAnalyzer to achieve 
greatest possible coverage of the 1KGP cohort. C.) Coverage of the 1KGP cohort with 
the AlleleAnalyzer set of 5 pairs at various minimum predicted specificity score 
thresholds. D.) Coverage of each super population in the 1KGP cohort with the 
AlleleAnalyzer set of 5 pairs at various minimum predicted specificity score thresholds. 
E.) 5 top shared variant pairs in the 1KGP cohort. F.) Coverage of the 1KGP cohort with 
the “Top 5” set of pairs at various minimum predicted specificity score thresholds. G.) 
Coverage of each super population in the 1KGP cohort with the “Top 5” set of pairs at 
various minimum predicted specificity score thresholds. 
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useful in practice (Figure 8). CRISPOR specificity scoring will be robust to most 

variation as it searches for all similar sites in the genome to an gRNA with up to four 

mismatches. Additionally, the predictive power of these scores is low in general 

(Haeussler et al., 2016).  

 

AlleleAnalyzer allows the user to filter gRNAs for predicted specificity, and doing so can 

impact relative coverage using either the AlleleAnalyzer or top 5 pairs methods, as 

demonstrated here in six therapeutically relevant genes including neurofilament light 

gene (NEFL) (Error! Reference source not found.), a gene in which dominant 

negative mutations can cause Charcot-Marie-Tooth disease (Miltenberger-Miltenyi et 

al., 2007). Therefore, particularly in cases of therapeutic development, we recommend 

rigorous experimental whole-genome off-target analysis. Together, these results 

demonstrate important considerations for allele-specific gRNA design. 

 

2.3 Open-source software tool for genetic-variation-aware gRNA design 

The bioinformatics methods from this study have been implemented in AlleleAnalyzer, 

an open-source Python software tool (Error! Reference source not found.). This tool 

designs personalized and allele-specific gRNAs for unique individuals and cohorts, 

given their genetic variants, and optimizes gRNA pairs to cover many individuals based 

on shared variants. To our knowledge, this is the first computational resource that 

designs personalized and allele-specific CRISPR gRNAs. AlleleAnalyzer accounts for 

single nucleotide variants and short insertions and deletions, and currently supports 

eleven Cas proteins while  
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providing user options to add new Cas proteins, thus expanding and building upon the 

existing repertoire of gRNA design tools. The AlleleAnalyzer toolkit and tutorials are 

available along with the database of annotated 1KGP variants at:  

https://github.com/keoughkath/AlleleAnalyzer under the MIT license (DOI: 

10.5281/zenodo.3354488) 

 

 

Figure 10: AlleleAnalyzer tool overview 

Overview of designing gRNAs with AlleleAnalyzer. 
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2.4 Methods 

PAM occurrence in the human reference genome 

PAM frequency 

The AlleleAnalyzer tool includes a script enabling scanning of a reference genome fasta 

file for existing PAM sites. This was used to identify PAM sites for 11 Cas types (Figure 

4, Error! Reference source not found.) in the reference human genomes hg19 and 

hg38. These are viewable in publically accessible UCSC Genome Browser sessions 

(hg19: https://bit.ly/2GB9cXK, hg38: https://bit.ly/2BZAmVh). 

 

PAM size 

PAM sizes were equated as the sum of non-N (A, C, G or T) bases in a PAM site. Thus 

“NGG” for SpCas9 would have size 2, and “NNGRRT” for SaCas9 would have size 4. 

 

Analysis of variants in commonly used gRNA libraries 

For each gRNA library, genomic coordinates for the protospacer regions were obtained 

from the relevant supporting manuscript. These were converted into BED files including 

the protospacer and PAM sites. Bcftools(Danecek et al., 2014) then was used to extract 

variants with a minor allele frequency (MAF) > 5% from the 1000 Genomes data, or 

variants from WTC with no MAF restriction. Variants that fell in the “N” position of the 

PAM were removed.  

AlleleAnalyzer analyses 

Annotation of variants 
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Genetic variants were determined to generate or destroy an allele-specific gRNA site if 

they were proximal to or in a PAM site (Figure 1a). Sufficient proximity to a PAM site 

was defined for this study as 20 base pairs based on the common length of gRNA 

recognition sequences. For all Cas varieties this was the 20 base pairs 5’ of the PAM, 

except for cpf1 (Cas12a) for which it was 3’ of the PAM. The gRNA design tools that are 

part of AlleleAnalyzer allow different user-defined gRNA lengths and addition of Cas 

enzymes and PAMs. There is evidence to suggest that genetic variants that generate or 

destroy a PAM are more likely to lead to allele-specific Cas activity compared to those 

in the seed sequence (Doench et al., 2014); AlleleAnalyzer thus provides options to 

differentiate between CRISPR sites in a PAM site versus the gRNA recognition 

sequence. All variants genome-wide were annotated for the 1KGP cohort for reference 

genomes hg19 and hg38. All variants in the ExAc dataset were annotated for the 

reference genome hg19 only, as that dataset is not available in hg38. 

 

Generation of gene set 

 

The analyzed gene set was compiled using the canonical transcripts for RefSeq gene 

annotations for human reference genome hg19 and hg38 downloaded using the UCSC 

table browser(Karolchik et al., 2004). Values reported in the text are for hg19 unless 

stated otherwise, but 1KGP analyses were conducted for both reference genomes with 

similar results. 
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Allele-specific putative gene targetability genome-wide 

 

Putative allele-specific targetability of a gene is defined here as whether a gene 

contains a pair of allele-specific gRNA sites for at least one of the 11 Cas enzymes 

evaluated that are less than 10 kb apart on the same haplotype in an individual that will 

disrupt a coding exon (Figure 3). This metric was calculated for each gene for all 2,504 

1KGP individuals. It was not calculated for the ExAc cohort as that dataset contains only 

exome rather than whole-genome variants. 

 

Set cover analysis 

 

In order to find the optimal set of gRNAs, two vectors of indicator variables were 

initialized that are constrained to be binary, one for gRNAs and one for individuals. 

When these indicator variables are set to 1, this means a gRNA is chosen or a person is 

covered, respectively. The objective function was specified to maximize the sum of 

person indicator variables. Next, the constraint was set on maximum value allowed for 

the sum of gRNA indicator variables. Finally, the constraints deduced from the data 

were assembled into the bipartite graph of gRNAs and patients targetable by them. This 

graph gets translated to multiple inequality constraints that specify that if a person 

indicator is 1, then at least one of its connected gRNA indicators must also be 1. Having 

specified all these elements of the problem, one may solve it with any number of integer 

linear programming solvers; here the Python package PuLP was used (Mitchell et al., 

2011). The final values of the indicator variables were extracted from the solution with 
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the set of gRNAs that fulfill the chosen objective. The specific python implementation of 

the constraints and objective function and subsequent call to an integer linear 

programming solver can be seen in the GitHub repository for this tool. This is visualized 

in Figure 3. 

 

Comparison of AlleleAnalyzer to platinum gRNAs from Scott & Zhang 2017 

 

Platinum gRNAs for SpCas9 were obtained from the supplementary materials of their 

paper (Scott and Zhang, 2017). Personalized non-allele-specific gRNAs were designed 

for PCSK9 exon 1 in WTC using AlleleAnalyzer. This analysis was done in reference 

genome hg19. 

 

WTC sequencing  

 

The genome for the iPSC line WTC (Drubin and Hyman, 2017) was sequenced by the 

Allen Institute for Cell Science. Analysis and variant calls in the reference genome hg19 

were done according to GATK version 3.7 best practices (Van der Auwera et al., 2013) 

and phased using Beagle version 4.1 with default settings (Browning and Browning, 

2007). 

 

WTC targetability analysis 

 

Variant annotation procedures were the same as in the 1KGP analysis and ExAc.   
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Packages used 

 

Python 

 

Docopt was used for handling of command-line arguments. Pandas (McKinney, 2010) 

version 0.21.0 and NumPy (Stéfan van der Walt, 2011) version 1.13.3 and elements of 

the standard Python distribution sys, os, and regex were used for multiple aspects of 

data analysis. PuLP (Mitchell et al., 2011) version 1.6.8 was used for set cover analysis. 

PyTables (Francesc Alted) was used for data management. Biopython (Cock et al., 

2009) and pyfaidx (Shirley et al., 2015) were used for Fasta processing. Scripts from 

CRISPOR (Haeussler et al., 2016) were integrated into AlleleAnalyzer to facilitate 

specificity scoring of gRNAs. Seaborn (Waskom et al., 2018) and matplotlib (Hunter, 

2007) were used for plotting. 

 

R 

 

Packages used to generate arcplots included viridis version 0.5.1, viridisLite version 

0.3.0, igraph version 1.1.2, ggraph version 1.0.0, ggplot2 version 2.2.1, reshape2 

version 1.4.3, dplyr version 0.7.4, tidyr version 0.7.2, and readr version 1.1.1. 

 

Bioinformatics 

 

Bcftools version 1.9 were used to manipulate VCF and BCF files. 
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Code Availability and Scripts 

 

All data processing and analysis scripts as well as the gRNA design tool are located at 

github.com/keoughkath/AlleleAnalyzer, available under the MIT license (DOI: 

10.5281/zenodo.3354488). Scripts were written in Python version 3.6.1, R version 3.3.2 

and Bash version 3.2.57.  

 

Availability of Data and Materials 

 

1KGP phase 3 data were downloaded from the 1KGP website 

(http://www.internationalgenome.org/). ExAc data were downloaded from the ExAc 

website (http://exac.broadinstitute.org/). The reference hg19 and hg38 genome data 

were downloaded from the UCSC genome browser. The 1KGP and ExAc analysis 

datasets have been made available for public access online at UCSF Dash 

(https://datashare.ucsf.edu/stash/dataset/doi:10.7272/Q63F4MSR). Additionally, PAM 

sites identified in reference genomes hg19 and hg38 are viewable in UCSC Browser 

sessions (hg19: https://bit.ly/2GB9cXK or https://genome.ucsc.edu/cgi-

bin/hgTracks?db=hg19&lastVirtModeType=default&lastVirtModeExtraState=&virtModeT

ype=default&virtMode=0&nonVirtPosition=&position=chr11%3A61717368%2D6171746

8&hgsid=743058527_XLIEJrwnSVsZQLgeXUfU7NKQWeNn 

, hg38: https://bit.ly/2BZAmVh or https://genome.ucsc.edu/cgi-

bin/hgTracks?db=hg38&lastVirtModeType=default&lastVirtModeExtraState=&virtModeT

ype=default&virtMode=0&nonVirtPosition=&position=chr11%3A61957117-
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61957165&hgsid=710108079_SecTcyDrgBPU4AocIPTRF2Uq4Omd). WTC whole-

genome sequencing data is made available by the Allen Institute at 

(https://www.allencell.org/genomics.html). In addition to the Github repository for 

AlleleAnalyzer (github.com/keoughkath/AlleleAnalyzer, available under the MIT license), 

an archived release of the software is available under DOI:10.5281/zenodo.3354488 

provided through Zenodo.  

3 Investigation of the driving forces behind accelerated evolution 

in humans 

 

Comparing genomic sequences within and among species enables the identification of 

regions of the genome that are conserved or accelerated, indicating what types of 

selective pressures may be acting on those loci (Pollard et al., 2010). In addition to 

defining evolutionary pressures causing evolution of protein-coding genes, evidence of 

selective pressures in the noncoding genome help us develop theories about the 

various functions of DNA that does not produce proteins. Elements that are conserved 

in the noncoding genome can indicate the presence of functional elements such as 

enhancers, promoters, noncoding RNAs, transcription factor binding sites and motifs 

important for the proper folding of the genome (for a review of these elements, see 

(Chatterjee and Ahituv, 2017)). Accelerated evolution can help us identify where on a 

phylogenetic tree the selective pressure has changed on these elements, which can 

give us insight on how these features contribute towards the unique features of each 

species.  
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Evolution happens both at the sequence and the organizational level, as evidenced by 

differences in 3D genomic structure between various species, such as human and 

closely related primates (Eres et al., 2019). These changes in genome structure can 

rewire regulatory circuits, for example by placing enhancers in contact with genes they 

did not previously regulate, termed “enhancer hijacking” (Northcott et al., 2014). Within 

humans, enhancer hijacking has been demonstrated to cause various types of 

polydactyly and be involved in cancer (Lupiáñez et al., 2016). In this chapter, I describe 

various projects I contributed to relating to genome evolution in 1D (sequence-based) 

and 3D (structure-based).  

 

3.1 Human accelerated regions in psychiatric disease 

 

Human accelerated regions (HARs) are genomic loci that are conserved in many 

species but demonstrate uniquely accelerated sequence evolution in humans (Franchini 

and Pollard, 2017; Hubisz and Pollard, 2014; Pollard et al., 2006a). Many of these loci 

function as enhancers, while some function as noncoding RNAs and other have 

currently unknown functions. During my tenure as a graduate student, I contributed to 

multiple projects exploring the function of these regions, and initiated a new project to 

investigate the genomic forces driving their accelerated sequence evolution. 

In one project, I contributed to we used massively parallel reporter assays (MPRAs) to 

assess the enhancer activity of hundreds of HARs by attaching them to reported genes 

and infecting them into neural progenitor cells from human and chimpanzees (Ryu et 
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al., 2018).  In order to predict putative target genes for HARs that demonstrated strong 

enhancer activity I used Hi-C data from biologically relevant cell types (human fetal 

brain germinal zone and cortical plate tissue (de la Torre-Ubieta et al., 2018)) to identify 

genes in the same topological associating domains (TADs) with HARs. TADs are 

genomic regions that interact highly with each other in 3D space (Dixon et al., 2012; 

Nora et al., 2012). This information was combined with RNA sequencing (RNA-seq) 

data in order to assign putative activate cell types for HARs based on expression of 

genes in the same TAD in different cell types. GWAS SNPs were also assigned to 

HARs based on co-occurrence in the same TADs, thereby providing new hypotheses 

about potential roles for HARs in the associated disease. This approach enabled more 

informed discovery of target genes, whereas previous approaches relied on “nearest 

gene” approach, although we now know that many enhancers do not act on their 

nearest gene.  

 

Through these combined analyses, I discovered that 2XHAR.170 contains a SNP 

associated with schizophrenia by genome-wide association study (GWAS), a technique 

that identifies genomic variants significantly associated with a particular phenotype in a 

large cohort of individuals. Because HARs are highly conserved for the most part 

among humans, it is unlikely to find many variants that occur at a high enough allele 

frequency so as to be genome-wide significant for a disease association. Thus, 

finding rs2434531, a variant that is associated with schizophrenia in the sequence of 

the 2xHAR.170, is notable, even though at a p-value of 7.47e-8, this SNP just misses 

the cutoff for genome-wide significance (Pouget et al., 2016). Notably, rs2434531 is in 
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an LD block with a genome-wide significant SNP, rs11740474 (Forrest et al., 2017). 

SNP rs2434531 has minor allele frequency ~23% in 1000 Genomes and TOPMED, with 

the human-derived nucleotide (C) being more common than the ancestral (i.e., 

matching chimp) nucleotide (T). This HAR resides in the first intron of the 

gene GALNT10. Beyond its accelerated evolution, 2xHAR.170 displays other markers 

of a potential enhancer in many cell types, including neuronal, based on ChromHMM 

(Ernst and Kellis, 2017). It also binds FOXP2, a transcription factor widely associated 

with schizophrenia. 2xHAR.170 drives significantly higher expression with the human as 

opposed to the chimp sequence in our assay. This matches results from eQTL studies 

of rs2434531 

for GALNT10 [http://eqtl.rc.fas.harvard.edu/eqtlbrowser/mrcau133list/19443]. 

Interestingly, GALNT10 has been shown to be significantly more highly expressed in 

cases of schizophrenia compared to controls (Voisey et al., 2017). Therefore, while 

these relationships may indicate a previously unknown link between 2xHAR.170 and 

schizophrenia, it is clear that the link is complex, consistent with its associated disease. 

 

3.2 Methodological considerations for calling HARs in an era of many genomes 

 

HARs were first identified using a multiple alignment of 29 vertebrate genomes (Pollard 

et al., 2006a, 2006b). Since then, new sequencing technologies have led to an 

explosion in available species genomes, enabling the assessment of factors in the 

pipeline that impact which genomic loci are identified as HARs. Indeed, HARs have 

been identified with multiple pipelines and datasets, and tend to show low levels of 
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overlap. I assembled a pipeline to call HARs that enables easy tuning of parameters 

and analysis of the impact of various decision made throughout the pipeline. 

Using a 100-way vertebrate alignment from UCSC, I implemented the HAR pipeline laid 

out in the original HAR publication using Nextflow, a pipeline management software that 

enables greater modularity and reproducibility for multi-step analyses (Di Tommaso et 

al., 2017; Pollard et al., 2006a, 2006b). This pipeline was applied to a 100-way 

alignment of vertebrate species from UCSC. When applied to all 100 species in the 

alignment, 7,153 HARs were found. However, it is known that errors in assembly can be 

influential when identifying accelerated sequence evolution, because assembly errors 

and acceleration can look similar. Therefore, using assembly quality metrics and 

optimizing representation throughout the vertebrate tree, I defined a set of fifty-two 

“high-quality” sequences and ran the HAR identification pipeline on an alignment filtered 

for only those species. This resulted in a smaller set of 110 HARs (Benjamini-Hochberg-

corrected p-value < 0.01) that demonstrated greater proportional overlap with previous 

sets (Figure 11: HAR set comparisons), such as from an analysis of 29 mammals 

(Broad Institute Sequencing Platform and Whole Genome Assembly Team et al., 2011) 
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and the original HAR 

set (Pollard et al., 

2006a, 2010). 

Additionally, a 

greater proportion of 

the HARs from high-

quality species 

assemblies had 

evidence for positive 

selection using a 

method optimized 

for analysis in the noncoding genome, indicating that I may have filtered out more 

instances of loss of negative selection by focusing on species with higher quality data 

(Kostka et al., 2012). Therefore, I learned that sequence and assembly quality are 

important in identifying regions undergoing species-specific accelerated evolution, and 

identified an updated set of HARs along with principles to guide identification of 

sequence evolution when the number of genomes is not the limiting factor. 

 

3.3 Changes in the 3D genome may influence the evolutionary rate of HARs 

Structural variants can change the 3D structure of the genome, for example by 

removing TAD boundaries. This in turn can rewire regulatory networks by generating 

interactions between enhancers and genes that had not previously interacted. This 

phenomenon, termed “enhancer hijacking”, has been implicated in various cancers and 

Figure 11: HAR set comparisons 

Analysis of basepairs of overlap between various HAR sets. 
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polydactyly-related diseases (Lupiáñez et al., 2016). Structural variation also occurs 

over evolutionary time, inserting, rearranging, and removing loci, and meanwhile 

changing the 3D and regulatory networks of the genome. Recent work generated high 

quality assemblies for 

chimpanzee and 

orangutan, and 

compared these along 

with a high-quality gorilla 

genome to the human 

genome, identifying 

many human-specific 

insertions and deletions 

(Kronenberg et al., 

2018). 

 

Our hypothesis is that in 

some cases human-specific structural variants put human accelerated regions in 

contact with genes they did not previously regulate that were important for human-

specific traits, thus generating the selective pressure to induce accelerated rates of 

evolution at these loci. To investigate this, I assessed whether TADs that contain 

human-specific structural variants are enriched for HARs.  Using TADs called in N2-

neural progenitor cells, I compared the odds ratios of HARs being in TADs with human-

specific SVs compared to that of sets of randomly drawn phastCons elements equal to 

Figure 12: HAR enrichment in TADs with human-specific 
SVs 

Blue shaded region indicates the null distribution generated 
by calculating the odds ratios of the number of HARs sized 
sets of phastCons elements co-occurring in the same TAD 
with human-specific SVs, randomly selected 1000 times. The 
magenta line indicates the actual odds ratio for HARs.  
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the number of HARs, drawn 1000 times 

as a null model. Based on this, I found 

that TADs with human-specific structural 

variants are significantly enriched for 

HARs (Figure 12). This supports our 

hypothesis that human-specific SVs and 

HARs may be impacting each other.  

 

3.4 Human-specific SVs near HARs 

are predicted to alter 3D genome 

structure 

 

Our hypothesis that a similar 

mechanism to enhancer hijacking may 

have contributed to the acceleration of 

HARs depends on human-specific SVs 

altering 3D genome structure, for 

instance by removing or altering TAD 

boundaries. This is difficult to study via 

comparative analysis in relevant tissues 

and cell types in human and 

chimpanzee due to scarcity of samples 

and technical challenges, although this 
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Figure 13: Predicted impact of a human-
specific SV on 3D genome conformation 

Akita-predicted 3D genome changes due to a 
human-specific deletion in the chimpanzee 
genome, with enhancer-related epigenetic and 
gene data for the locus. 
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is something we are working towards. However, deep learning models have recently 

been developed that are capable of predicting 3D genome structure based on DNA 

sequence alone. One of these models, Akita, was developed in the Pollard lab and has 

been able to accurately reconstruct the impact of SVs in the human genome 

(Fudenberg et al., 2019). Using this model, I was able to identify human-specific SVs 

that are predicted to significantly alter 3D genomes structure near a HAR. For example, 

3XHAR.193 is located near a human-specific deletion on chromosome 15. Using Akita, I 

predicted and visualized the impact of this deletion in the chimpanzee genome, finding 

that the deletion is predicted to disrupt a sub-TAD structure within a larger TAD, 

decreasing its contact frequency to that of the surrounding TAD (Figure 13). This 

disrupts chromatin patterns that previously insulated 3XHAR.193 from nearby genes, 

such as aldehyde dehydrogenase 1 family member A2 (ALDH1A2), a gene with some 

expression in the adult human brain (GTex), and important for neural tube development. 

This HAR has been predicted to be a brain enhancer and has epigenetic marks 

consistent with higher enhancer activity in human relative to rhesus macaque (Capra et 

al., 2013; Vermunt et al., 2016). Additionally, our comparative analyses indicate this 

HAR as being under positive selection, supporting the idea that this locus gained 

increased enhancer activity specifically in the human lineage, with potential beneficial 

effects towards human brain development. 

 

Overall, more work is needed to prove or refute the hypothesis of a role for human-

specific SVs or enhancer hijacking in HAR acceleration, but these analyses lay the 

groundwork for future hypothesis testing and experimentation.  
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4 Comparative genomics to identify the host range for SARS-

CoV2 

 

The work described in this chapter is currently available as a preprint on BioRxiv and is 

under peer review (Damas et al., 2020). I was able to apply the skills I had learned 

during projects focused mainly on human evolution and disease to co-lead a manuscript 

to predict host species for SARS-CoV2, the virus that upended the world beginning in 

2019 and caused me to write this thesis entirely sequestered at home. My main 

contributions to the paper were the PHAST and phyloP-based selection analyses 

(Hubisz et al., 2011; Pollard et al., 2010; Ramani et al., 2019). The paper represented a 

sprint effort by 19 authors from universities, zoos, and research institutions all over the 

world.  

 

The novel coronavirus SARS-CoV-2 is the cause of COVID-19, a major pandemic that 

threatens millions of human lives and the global economy, with infections now reported 

in other species as well.  We identified a large number of mammals that can potentially 

be infected by SARS-CoV-2 through their ACE2 proteins, which can assist identification 

of an intermediate host(s) for SARS-CoV-2 and hence reduce the opportunity of a future 

outbreak of COVID-19. Among the highest risk species for SARS-CoV-2 infection using 

ACE2 are wildlife species and endangered species.  These species represent an 

opportunity for spillover of SARS-CoV-2 from humans to other susceptible animals, and 
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should thus be a focus of surveillance and conservation efforts.  The impact of this work 

is likely to inform COVID-19-related conservation efforts for endangered species, 

protective measures between humans and other species, and model-animal selection 

for COVID vaccine and therapeutic development. 

 

4.1 Justification for a comparative analysis of ACE2 in vertebrates 

 

The 2019-novel coronavirus (2019-nCoV, also, SARS-CoV-2 and COVID-19 virus) is 

the cause of Coronavirus Disease-2019 (COVID-19), a major pandemic that threatens 

millions of lives and the global economy (Zhou et al., 2020).  Comparative analysis of 

SARS-CoV-2 and related coronavirus sequences has shown that SARS-CoV and 

SARS-CoV-2 likely originated in bats, followed by transmission to an intermediate host, 

and that both viruses may have an extended host range that includes primates and 

other mammals (Lu et al., 2015; Shan et al.; Zhou et al., 2020). However, the immediate 

source population/species for SARS-CoV and SARS-CoV-2 viruses has not yet been 

identified.  Several mammalian species host coronaviruses, and these infections are 

frequently associated with severe clinical diseases, such as respiratory and enteric 

disease in pigs and cattle (Laude et al., 1993; Saif, 2010).  Molecular phylogenetics 

revealed that at least one human coronavirus (HCov-OC43), may have originated in 

cattle or swine (Chen et al., 2005), and that this virus was associated with a human 

pandemic that emerged in the late 19th century (Vijgen et al., 2005).  Recent data 

indicate that coronaviruses can move from bats to other wildlife species and humans 

(Lam et al., 2020) and from humans to tigers (United States Department of Agriculture 
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Animal and Plant Health Inspection Service) and pigs (Qian et al., 2013). Therefore, 

understanding the host range of SARS-CoV-2 and related coronaviruses is essential for 

improving our ability to predict and control future pandemics.  It is also crucial for 

protecting populations of wildlife species in native habitats and under human care, 

particularly non-human primates, who may also be susceptible to COVID-19 (Sun et al., 

2020a).   

 

The angiotensin I converting enzyme 2 (ACE2) serves as a functional receptor for the 

spike protein (S) of SARS-CoV and SARS-CoV-2 (Lan et al., 2020; Li et al., 2003). 

Under normal physiological conditions, ACE2 is a dipeptidyl carboxypeptidase that 

catalyzes the conversion of angiotensin I into angiotensin 1-9, a peptide of unknown 

function, and angiotensin II, a vasoconstrictor that is important in the regulation of blood 

pressure (Patel et al., 2016).  ACE2 also converts angiotensin II into angiotensin 1-7, a 

vasodilator that affects the cardiovascular system (Patel et al., 2016) and may regulate 

other components of the renin-angiotensin system (Feng et al., 2008).  The host range 

of SARS-CoV-2 may be extremely broad due to the conservation of ACE2 in mammals 

(Lan et al., 2020; Lu et al., 2015) and its expression on ciliated bronchial epithelial cells 

and type II pneumocytes (Qian et al., 2013). While coronaviruses related to SARS-CoV-

2 use ACE2 as a primary receptor, coronaviruses may use other proteases as 

receptors, such as CD26 (DPP4) for MERS-CoV (Raj et al., 2013), thus limiting or 

extending their host range.   
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In humans, ACE2 may be a cell membrane protein or it may be secreted (Patel et al., 

2016).  The secreted form is created primarily by enzymatic cleavage of surface-bound 

ACE2 by ADAM17 and other proteases (Patel et al., 2016).  Sequence variation in 

ACE2 affects the protein’s functions. ACE2 is polymorphic in humans, with many 

synonymous and nonsynonymous mutations identified, although most are rare at the 

population level (Karczewski et al., 2020) and few are believed to affect cellular 

susceptibility to human coronavirus infections (Stawiski et al., 2020). Site-directed 

mutagenesis and co-precipitation of SARS-CoV constructs have revealed critical 

residues on the ACE2 tertiary structure that are essential for binding to the virus 

receptor binding domain (RBD) (Li, 2013). These findings have been strongly supported 

by co-crystallization and the structural determination of the SARS-CoV and SARS-CoV-

2 S proteins with human ACE2 (Lan et al., 2020; Li et al., 2005; Shang et al., 2020), as 

well as binding-affinity with heterologous ACE2 (Li, 2013). The RBD of human 

coronaviruses may mutate to change the binding affinity of S for ACE2, and thus lead to 

adaptation in humans or other hosts.  The best studied example is the palm civet, 

believed to have been the intermediate host between bats and humans for SARS-

CoV(Lu et al., 2015).  To date, an intermediate host for SARS-CoV-2 has not been 

identified definitively, although Malayan pangolins (Manis javanica) have been proposed 

as a possible reservoir (Zhang et al., 2020). 

 

Comparative analysis of ACE2 nucleotide and protein sequences can predict their 

ability to bind SARS-CoV-2 S and therefore will yield important insights into the biology 

and potential zoonotic transmission of SARS-CoV-2 infection. Recent work has 
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examined ACE2 from different vertebrate species and predicted its ability to bind SARS-

CoV-2 S, but phylogenetic sampling was extremely limited (Liu et al., 2020; Sun et al., 

2020a).  Here, we made use of sequenced genomes of 410 vertebrates and protein 

structural analysis, to identify ACE2 homologs in all vertebrate classes (fishes, 

amphibians, birds, reptiles, and mammals) that have the potential to serve as a receptor 

for SARS-CoV-2, and to understand the evolution of ACE2 SARS-CoV-2 S binding 

sites. Our results reinforce earlier findings on the natural host range of SARS-CoV-2, 

and predict a broader group of species that may serve as a reservoir or intermediate 

host for this virus.  Importantly, many threatened and endangered species were found to 

be at potential risk for SARS-CoV-2 infection, suggesting that as the pandemic spreads, 

humans could inadvertently introduce a potentially devastating new threat to these 

already vulnerable populations, especially for great apes and other primates.  

 

4.2 Comparison of vertebrate ACE2 sequences and their predicted ability to bind 

SARS-CoV-2 based on sequence and structure homology 

 

We identified 410 unique vertebrate species with ACE2 orthologs that included 

representatives of all vertebrate taxonomic classes. Among these were 252 mammals, 

72 birds, 65 fishes, 17 reptiles and 4 amphibians. Twenty-five amino acids 

corresponding to known SARS-CoV-2 S-binding residues (Lan et al., 2020; Shang et 

al., 2020; Sun et al., 2020a) were examined for their similarity to the residues in human 

ACE2 (Figure 14; Error! Reference source not found.). On the basis of known 
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interactions between specific residues on ACE2 and the RBD of SARS-CoV-2 S, a set 

Figure 14: Protein sequence-based score high through low 

Scores for each species based on homology between amino acids sequences for species scoring high 
through low, continued in Figure 14.  
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of rules was developed for predicting the likelihood of S binding to ACE2 from  

Figure 15: Protein sequence-based score low through very low 

Scores for each species based on homology between amino acids sequences (continuation of 
Figure 14 for species scoring low through very low.  
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each species (see Materials and Methods).  Five score categories were predicted: very 

high, high, medium, low and very low. Results for all species and all SARS-CoV-2 S 

binding scores are shown in Dataset S1, and results for mammalian species are also 

shown in Figure 14 and Error! Reference source not found..   

 

We complemented the sequence-identity based scoring scheme with a qualitative 

approach that combined structural homology modeling and best fit rotamer positioning. 

Figure 16: Evaluation of binding contacts between host ACE2 and SARS-CoV-2 

Evaluation of binding contacts between host ACE2 and SARS-CoV-2 in 28 representative species 
selected from very low, low, medium and high binding score groups, and for each residue in the 
ACE2 binding interface that varied from human (55 substitutions in 16 residues). For each residue, 
amino acid substitutions are shown on the left as white boxes, with sites matching human ACE2 
shown in gray. For each residue, the evaluation of the binding contact is shown on the right as 
neutral (N; blue box), weakening (W; orange box); or unfavorable (U; red box), with sites matching 
human ACE2 in blue. Evaluations discordant with Procko (5) are marked with an asterix and lighter 
background color.   
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We examined the 25 ACE2 binding residues in a subset of 28 representative species 

(Figure 16).  First, we assessed the similarity of every contact at the binding interface 

between two recently solved crystal structures for the human ACE2/SARS-CoV-2 S 

RBD complex in humans, 6M0J and 6WV1 (Lan et al., 2020; Shang et al., 2020).    

We examined a total of 55 substitutions and assigned each to one of three types: 

neutral (N;  likely to maintain similar contacts; 18 substitutions); weaken (W; likely to 

weaken the interaction; 14 substitutions); or unfavorable (U; likely to introduce 

unfavorable interactions; 23 substitutions). The structural homology binding 

assessments support the sequence identity analysis, with the fraction of residues 

ranked as U correlating very strongly with the substitution scoring scheme (Spearman 

correlation rho=0.76; p< 2.2e-16; Figure 17). 

 

Figure 17: Congruence between binding score and structural homology analysis 

Species classified by sequence identity to human ACE2 as very high (red) or high binding score (orange) 
have significantly fewer amino acid substitutions rated as potentially altering the binding interface 
between ACE2 and SARS-CoV-2  through protein structural analysis, as compared to low (green) or very 
low (blue) species. The more severe unfavorable variants are counted on y-axis and less severe weaken 
variants on the x-axis. Black numerical labels indicate species count.  
 

4.4 Structural analysis of variation in human ACE2 

 

We applied the same approach used to compare species, sequence identity and protein 

structural analysis, to examine the  variation in ACE binding residues within humans, 
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some of which have been proposed to alter binding affinity (Cao et al., 2020; Hussain et 

al., 2020; Othman et al., 2020; Renieri et al., 2020; Stawiski et al., 2020). We integrated 

data from six different sources: dbSNP (Sherry, 2001), 1KGP (Voight et al., 2015), 

Topmed (NHLBI), UK10K (UK10K Consortium et al., 2015) and CHINAMAP (Cao et al., 

2020), and identified a total of 11 variants in ten of the 25 ACE2 binding residues.  All 

variants found are rare, with allele frequency less than 0.01 in any populations, and less 

than 0.0007 over all populations. Three of the 11 variants were synonymous changes, 

seven were conservative missense variants, and one, S19P, was a semi-conservative 

substitution. S19P has the highest allele frequency of the 11 variants, with a global 

frequency of 0.0003 (Karczewski et al., 2020). We evaluated, by structural homology, 

six missense variants. Four were neutral and two weakening (E35K, 

frequency=0.000016; E35D, frequency=0.000279799). Thus, with an estimated 

summed frequency of 0.001, genetic variation in the ACE2 S-binding interface is overall 

rare, and it is unclear whether the variation that does exist increases or decreases 

susceptibility to infection.  

 

4.5 Evolution of ACE2 across mammals.  

 

We next investigated the evolution of ACE2 variation in vertebrates, including how 

patterns of positive selection compare between bats, a mammalian lineage known to 

harbor a diversity of coronaviruses (Anthony et al., 2017), and other mammalian clades. 

We first inferred the phylogeny of ACE2 using our 410-vertebrate alignment and 

IQTREE, using the best-fit model of sequence evolution (JTT+F+R7) and rooting the 



 47 

topology on fishes. I assayed sequence conservation with PhyloP (36). The majority of 

ACE2 codons are significantly conserved across vertebrates and across mammals, 

likely reflecting its critical function in the renin-angiotensin system (Oudit et al., 2003), 

with ten residues in the ACE2 binding domain exceptionally conserved in Chiroptera 

and/or Rodentia.  

 

We next used phyloP and CODEML to test for acceleration and positive selection with a 

co-author (Graham Hughes) leading the CODEML analyses and me leading the phyloP 

analyses (Pollard et al., 2010). PhyloP compares the rate of evolution at each codon to 

the expected rate in a model estimated from third nucleotide positions of the codon, and 

is agnostic to synonymous versus nonsynonymous substitutions (dN/dS). CODEML 

uses ⍵=dN/dS>1 and Bayes Empirical Bayes (BEB) scores to identify codons under 

Figure 18: Significant results from phyloP, both conserved and accelerated, for ACE2 
codons compared with CODEML BEB scores 

Left panel shows phyloP results for the 64-mammals subset used in the mammal CODEML analysis. 
Right panel shows phyloP results for all mammals in the alignment. The y-axis represents dN/dS 
values calculated by CODEML, x-axis indicates whether the codons were classified as conserved or 
accelerated by phyloP. All dots are significant results from phyloP, blue dots are also significantly 
positively selected from CODEML. 
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positive selection, and was run on a subset of 64 representative mammals (see 

Materials and Methods).  

 

ACE2 shows significant evidence of positive selection across mammals (⍵=1.83, 

LRT=194.13, p<0.001).  Almost 10% of codons (N=73; 9 near the RBD) are accelerated 

within mammals, and 18 of these have BEB scores greater than 0.95, indicating 

positively selected residues (Figure 18). Nineteen accelerated residues, including two 

positively-selected codons (Q24, H34), are critical for the binding of the ACE2 RBD and 

SARS-CoV-2 S (Error! Reference source not found.; Error! Reference source not 

found.).  

 

Figure 19: Residues under positive selection detected with CODEML and acceleration 
with phyloP in mammals 

(A) ACE2 is represented in wheat cartoon with residues involved in the binding interface shown in 
yellow spheres. Dark blue and red spheres indicate residues in ACE2 that are accelerated and under 
positive selection. Red spheres represent residues that overlap with positions in the binding interface 
and are labeled with (*). The spike RBD is shown in light teal cartoon. Green spheres indicate residues 
on the SARS-CoV-2 spike protein under positive selection and are labeled with (**). (B) 90 degree 
rotation of the ACE2 protein. 
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Q24 has not been observed to be polymorphic within the human population, and H34 

harbors a synonymous polymorphism (AF=0.00063) but no non-synonymous 

polymorphisms.  

 

 

This pattern of acceleration and positive selection in ACE2 also holds for individual 

mammalian lineages. Using CODEML, positive selection was detected within the orders 

Chiroptera (LRT=346.40, ⍵=3.44 p<0.001), Cetartiodactyla (LRT=92.86, ⍵=3.83, 

p<0.001), Carnivora (LRT=65.66, ⍵=2.27. p<0.001), Primates (LRT=72.33, ⍵=3.16, 

Figure 20: Residues under accelerated evolution in mammals, overlapping the binding 
interface, as detected using phyloP 

(A) The SARS-CoV-2 spike RBD is shown in light teal cartoon. ACE2 is shown in wheat cartoon with 
residues involved in the binding interface shown in yellow spheres. (*) Dark blue and red spheres 
indicate ACE2 residues that are accelerated, under positive selection and overlapping the binding 
interface. Cyan spheres indicate ACE2 residues that are conserved. (**) Red spheres also 
demonstrate positive selection with CODEML. (B) 90 degree rotation of the ACE2 protein. 
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p<0.001) and Rodentia (LRT=91.26, ⍵=1.77, p<0.001). Overall, bats had more 

Figure 21: Intralineage phyloP results for all ACE2 codons 

PhyloP signal was assessed at all ACE2 codons for various mammalian lineages against neutral models 
trained on those lineages, thereby identifying intralineage signals of shifts in evolutionary rate. Green 
dots indicate codons classified as conserved and blue dots accelerated.  Vertical grey lines indicate 
important binding residues in ACE2. The x-axis indicates the corresponding position in the ACE2 protein 
for each codon, and the y-axis indicates the phyloP p-value for each codon. 
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positively selected sites with significant BEB scores (29 sites in Chiroptera compared to 

Figure 22: PhyloP results for mammalian lineages against a mammal neutral model 

PhyloP signal was assessed at all ACE2 codons for various mammalian lineages against a neutral model trained 
on all mammalian species in the alignment. Green dots indicate codons classified as conserved and blue dots 
accelerated. Vertical grey lines indicate important binding residues in ACE2. The x-axis indicates the 
corresponding position in the ACE2 protein for each codon, and the y-axis indicates the phyloP p-value for each 
codon. 
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10, 8, 7 and 15 sites in Cetartiodactyla, Carnivora, Primates and Rodentia, 

respectively). Positive selection at key sites for the binding of ACE2 and SARS-CoV-2 

was only found in the bat-specific alignment. PhyloP was used to assess shifts in 

evolutionary rate within mammalian lineages, for each assessing signal relative to a 

neutral model trained on species from the specified lineage (Figure 21). We discovered 

six important binding residues, five of which showed evidence for positive selection, that 

are accelerated in one or more of Chiroptera, Rodentia, or Carnivora, with G354 

accelerated in all of these lineages.  

 

Figure 23: Residues under acceleration with phyloP in chiroptera relative to mammals 

(A) The SARS-CoV-2 spike RBD is shown in light teal cartoon. ACE2 is shown in wheat 
cartoon with residues involved in the binding interface shown in yellow spheres. Dark blue 
and red spheres indicate residues that are accelerated in bats relative to mammals. Red 
spheres also overlap the binding interface. (B) 90 degree rotation of the ACE2 protein. 
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Given pervasive signatures of adaptive evolution in ACE2 across mammals, we next 

sought to test if any mammalian lineages are evolving particularly rapidly compared to 

the others. CODEML branch-site tests identified positive selection in both the ancestral 

Chiroptera branch (1 amino acid, ⍵=26.7, LRT= 4.22, p=0.039) and ancestral 

Cetartiodactyla branch (2 amino acids, ⍵=10.38, LRT= 7.89, p=0.004) using 64 

mammals. These residues did not correspond to known viral binding sites. We found no 

evidence for lineage-specific positive selection in the ancestral primate, rodent or 

carnivore lineages. PhyloP identified lineage-specific acceleration in Chiroptera, 

Carnivora, Rodentia, Artiodactyla and Cetaceans relative to mammals (Figure 22). Bats 

have a particularly high level of accelerated evolution (18 codons; p<0.05).  

 

Of these accelerated residues, T27 and M82 are known to be important for binding 

SARS-CoV-2, with some bat subgroups having amino acids predicted to lead to less 

favorable binding of SARS-CoV-2 (Error! Reference source not found.; Error! 

Reference source not found.). Surprisingly, a residue that is conserved overall in our 

410 species alignment and in the mammalian subset, Q728, is perfectly conserved in all 

37 species of bats except for fruit bats (Pteropodidae), which have a substitution from Q 

to E. These results support the theory that ACE2 is under lineage-specific selective 

pressures in bats relative to other mammals. 

 

Positive selection was found using CODEML at sites L455, E484, F490 and S494 in the 

SARS-CoV-2 S sequence (⍵=1.15, LRT=116.7, p<0.001); however, this signal was not 

particularly high, possibly due to the small sample size (N=8). All of these sites lie within 
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or near the ACE2 SARS-CoV-2 S RBD binding sites (Error! Reference source not 

found.) (Andersen et al., 2020).   

 

4.6 Evolution of ACE2 

 

Variation of ACE2 in the human population is rare (Karczewski et al., 2020). We 

examined a large set of ACE2 variants for their potential differences in binding to SARS-

CoV-2 S and their relationship to selected and accelerated sites.  We found rare 

variants that would result in missense mutations in 7 out of the 25 binding 

residues.  Some of those (e.g. E35K with an AF of 0.00001636) could reduce the virus 

binding affinity, thus potentially lowering the susceptibility to the virus in a very small 

fraction of the population. The analysis suggests that some variants (e.g. D38E) might 

not affect the binding while others (e.g. S19P) have uncertain effects. Further studies 

are needed to confirm and correctly address recent discoveries (Cao et al., 2020; 

Hussain et al., 2020; Stawiski et al., 2020) and the data presented here, investigating 

the possible effect of these rare variants in specific populations. 

 

When exploring patterns of codon evolution in ACE2, we found that a number of sites 

are evolving at different rates in the different lineages represented in our 410-species 

vertebrate alignment. Multiple ACE2 RBD residues important for the binding of SARS-

CoV-2 are evolving rapidly across mammals, with two (Q24 and H34) under positive 

selection (Error! Reference source not found.; Error! Reference source not found.). 

Relative to other lineages analyzed, Chiroptera has a greater proportion of accelerated 
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versus conserved residues, particularly at the SARS-CoV-2 S RBD, suggesting the 

possibility of selective forces on these codons in Chiroptera driven by their interactions 

with SARS-CoV-2-like viruses (Figure 21). Indeed, distinct signatures of positive 

selection found in bats and in the SARS-CoV S protein support this hypothesis that bats 

are evolving to tolerate SARS-CoV-2-like viruses.  

 

4.7 Relationship of the ACE2 binding score to known infectivity of SARS-CoV-2 

 

Data on susceptibility of wild animals to SARS-CoV-2 is still very limited. It has been 

reported that a captive Malayan tiger was infected by SARS-CoV-2 (United States 

Department of Agriculture Animal and Plant Health Inspection Service) and that 

domestic cats, ferrets (Shi et al., 2020), rhesus macaques (Munster et al., 2020) and 

Syrian golden hamsters (Chan et al., 2020) are susceptible to experimental infection by 

SARS-CoV-2. These results agree with our predictions of ACE2 binding ability to SARS-

CoV-2 S (Figure 14; Error! Reference source not found.); 4/5 five species with 

demonstrated susceptibility to SARS-CoV-2 score very high (Rhesus macaque) or 

medium (domestic cat, tiger and Golden hamster).  The only inconsistency was 

observed for ferrets, which had a low ACE2 binding score. This inconsistency could be 

related to the high infectivity dose used for experimental infection that likely does not 

correspond to virus exposure in nature. Dogs have low susceptibility to SARS-CoV-2 

under experimental conditions (Shi et al., 2020), and score low for binding of their ACE2 

to SARS-CoV-2 S. However, kidney cell lines derived from dog showed ACE2-

dependent SARS-CoV-2 S entry, suggesting that in vitro experiments may be 
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overestimating true infectivity potential (Hoffmann et al., 2020; Jebb et al., 2019).  Pigs 

(low), ducks (very low) and chickens (very low) were similarly exposed to SARS-CoV-2 

and showed no susceptibility (Shi et al., 2020), providing further support of our 

methodology.  A recent publication reporting that SARS-CoV-2 could use pig, masked 

palm civet and Chinese rufous horseshoe bat ACE2 expressed in HeLa cells were 

inconsistent with our predictions, while data for mouse was in agreement (Zhou et al., 

2020). Indeed, while mouse ACE2 scored very low in our analysis, pig and Chinese 

rufous horseshoe bat score low, while the masked palm civet scored very low.  As for 

the ferret, high-level exposure to the virus in vitro could potentially result in infection via 

low affinity interactions with ACE2.  Another possibility is that other cellular machinery 

present in the human HeLa cells is facilitating the infection, and that infectivity does not 

relate directly to ACE2 differences in these species. Confirmation of in vitro and in vivo 

susceptibility of these species under physiological conditions and with proper controls is 

clearly necessary.  In addition, the expression of ACE2 varies across animal age, cell 

types, tissues and species (Sun et al., 2020b; Xie et al., 2006), which may lead to 

discrepancies between SARS-CoV-2 susceptibility gleaned from experimental infections 

or laboratory experiments and predictions made from the ACE2-based binding score. 

 

4.8 Mammals with high predicted risk of SARS-CoV-2 infection 

 

Of the 19 catarrhine primates analyzed, 18/19 scored very high for binding of their 

ACE2 to SARS-CoV-2 S and one scored high (the Angola colobus); the 18 species 

scoring very high had 25/25 identical binding residues to human ACE2, including rhesus 
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macaques (Macaca mulatta), which are known to be infected by SARS-CoV-2 and 

develop COVID-19-like clinical symptoms (Munster et al., 2020; Shan et al.).  Our 

analysis predicts that all Old World primates are susceptible to infection by SARS-CoV-

2 via their ACE2 receptors. Thus, many of the 21 primate species native to China could 

be a potential reservoir for SARS-CoV-2. The remaining primate species were scored 

as high or medium, with only the Gray mouse lemur and the Philippine tarsier scoring as 

low.  

 

We were surprised to find that all three species of Cervid deer and 12/14 cetacean 

species have high scores for binding of their ACE2s to SARS-CoV-2 S.  There are 18 

species of Cervid deer found in China. Therefore, Cervid deer cannot be ruled out as an 

intermediate host for SARS-CoV-2.  While coronavirus sequences have been found in 

white tailed deer (Alekseev et al., 2008) and gammacoronaviruses have been found in 

beluga whales (Mihindukulasuriya et al., 2008; Schütze, 2016) and bottlenose dolphins 

(Woo et al., 2014) and are associated with respiratory diseases, the cellular receptor 

used by these viruses is not known.   

 

4.9 Other artiodactyls 

 

A relatively large fraction (21/30) of artiodactyl mammals were classified with medium 

score for ACE2 binding to SARS-CoV-2 S.  These include many species that are 

commonly found in Hubei Province and around the world, such as domesticated cattle, 

sheep and goats, as well as many species commonly found in zoos and wildlife parks 
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(e.g., Masai giraffe, okapi, hippopotamus, water buffalo, scimitar horned oryx, and 

Dama gazelle).  Although cattle MDBK cells were shown in one study to be resistant to 

SARS-CoV-2 in vitro (Hoffmann et al., 2020), we propose immediate surveillance of 

common artiodactyl species for SARS-CoV-2 and studies of cellular infectivity, given our 

predictions. If ruminant artiodactyls can serve as a reservoir for SARS-CoV-2, it would 

have significant epidemiological implications as well as implications for food production 

and wildlife management (see below).  It is noteworthy that camels and pigs, known for 

their ability to be infected by coronaviruses (Anthony et al., 2017), both score low in our 

analysis.  These data are consistent with results (discussed above) indicating that pigs 

cannot be infected with SARS-CoV-2 both in vivo (Shi et al., 2020) and in vitro 

(Hoffmann et al., 2020).  

 

4.10 Rodents 

 

Among the rodents, 7/46 species score high for ACE2 binding to SARS-CoV-2 S, with 

the remaining 11, 10 and 18 scoring medium, low or very low, respectively.  Brown rats 

(Rattus norvegicus) and the house mouse (Mus musculus), scored very low, consistent 

with infectivity studies (Hoffmann et al., 2020; Zhou et al., 2020).  Given that wild rodent 

species likely come in contact with bats as well as with other predicted high risk 

species, we urge surveillance of high and medium binding likelihood rodents for the 

presence of SARS-CoV-2.  
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4.11 Bats and other species of interest 

 

Chiroptera (bats) represent a clade of mammals that are of high interest in COVID-19 

research because several bat species are known to harbor coronaviruses, including 

those most closely related to the betacoronavirus SARS-CoV-2 (Zhou et al., 2020).  We 

analyzed ACE2 from 37 bat species of which 8 and 29 scored low and very low, 

respectively.  These results were unexpected because the three Rhinolophus spp. 

including the Chinese rufous horseshoe bat are major suspects in the transmission of 

SARS-CoV-2, or a closely related  virus, to humans (Zhou et al., 2020). Globally, bats 

have been shown to harbour the highest diversity of betacoronaviruses in mammals 

tested (Anthony et al., 2017) and show little pathology carrying these viruses (Banerjee 

et al., 2020). We found evidence for accelerated evolution at six RBD binding domain 

residues within the bat lineage, which is more than in any other lineage tested. Bats 

also had far more sites showing evidence of positive selection, including four binding 

domain residues, compared to other mammalian orders. This suggests that the diversity 

observed in bat ACE2 sequences may be driven by selective pressure from 

coronaviruses. Our results suggest that SARS-CoV-2 is not likely to use the ACE2 

receptor in bats, which challenges a recent study showing that SARS-CoV-2 can infect 

HeLa cells expressing Rhinolophus sinicus ACE2 (Zhou et al., 2020). If bats can be 

infected with SARS-CoV-2, the virus likely uses a different receptor.  For example, the 

MERS-CoV, a betacoronavirus, uses CD26/DPP4 (Raj et al., 2013) while the porcine 

transmissible enteritis virus, an alphacoronavirus uses aminopeptidase N (ANPEP) 

(Delmas et al., 1992). As detailed above, further in vitro and in vivo infectivity studies 
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are required to fully understand the mode of transmission of susceptibility of bats to 

SARS-CoV-2. 

 

4.12 Carnivores 

 

Recent reports of a Malayan tiger and a domestic cat infected by SARS-CoV-2 suggest 

that the virus can be transmitted to other felids (Shi et al., 2020; United States 

Department of Agriculture Animal and Plant Health Inspection Service).  Our results are 

consistent with these studies; 9/9 felids we analyzed scored medium for ACE2 binding 

of SARS-CoV-2 S. However, the masked palm civet (Paguma larvata), a member of the 

Viverridae family that is related to but distinct from Felidae, scored as very low. These 

results are inconsistent with transfection studies using civet ACE2 receptors expressed 

in HeLa cells (Zhou et al., 2020), although these experiments have limitations as 

discussed above.  While carnivores closely related to dogs (dingos, wolves and foxes) 

all scored low, experimental data supporting infection in dogs were inconsistent 

(Hoffmann et al., 2020; Shi et al., 2020; Temmam et al., 2020) so no conclusions can be 

drawn. 

 

4.13 Pangolins 

 

Considerable controversy surrounds reports that pangolins can serve as an 

intermediate host for SARS-CoV-2.  Pangolins were proposed as a possible 

intermediate host (Zhang et al., 2020) and have been shown to harbor related 
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coronaviruses. In our study, ACE2 of Chinese pangolin (Manis pentadactyla), Sunda 

pangolin (Manis javanica), and white bellied pangolin (Phataginus tricuspis) had low or 

very low binding score for SARS-CoV-2 S. Neither experimental infection nor in vitro 

infection with SARS-CoV-2 has been reported for pangolins.  As for ferrets and bats, if 

SARS-CoV-2 infects pangolins it may be using a receptor other than ACE2, based on 

our analysis. 

 

4.14 Other vertebrates 

 

Our analysis of 29 orders of fishes, 29 orders of birds, 3 orders of reptiles and 2 orders 

of amphibians predicts that the ACE2 proteins of species within these vertebrate 

classes are not likely to bind SARS-CoV-2 S. Thus, vertebrate classes other than 

mammals are not likely to be an intermediate host or reservoir for the virus, despite 

predictions reported in a recent study (Qiu et al., 2020), unless SARS-CoV-2 can use 

another receptor for infection.  With many different non-mammal vertebrates sold in the 

seafood and wildlife markets of Asia and elsewhere, it is still important to determine if 

SARS-CoV-2 can be found in non-mammalian vertebrates.  

 

4.15 Relevance to Threatened Species 

 

Among the 103 species that scored very high, high and medium for ACE2 SARS-CoV-2 

S RBD binding, 41 (40%) are classified in one of three ‘Threatened’ categories 

(Vulnerable, Endangered, and Critically Endangered) on the IUCN Red List of 
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Threatened Species, five are classified as Near Threatened, and two species are 

classified as Extinct in the Wild (IUCN, 2019). This represents only a small fraction of 

the threatened species potentially susceptible to SARS-CoV-2. For example, all 20 

catarrhine primate species in our analysis, representing three families (Cercopithecidae, 

Hylobatidae, and Hominidae) scored very high, suggesting that all 185 species of 

catarrhine primates, most of which are classified Threatened (Bosch et al., 2005), are 

potentially susceptible to SARS-CoV-2. Similarly, all three species of deer, 

representatives of a family of ~92 species (Cervidae), scored as high risk, as did 

species representing Cetacea (baleen and toothed whales), and both groups contain a 

number of threatened species. Toothed whales have potential for viral outbreaks and 

have lost function of a gene key to the antiviral response in other mammalian lineages 

(Braun et al., 2015). If they are susceptible to SARS-CoV-2 , human-to-animal 

transmission could pose a risk through sewage outfall (Bosch et al., 2005) and 

contaminated refuse from cities, commercial vessels and cruise liners (Copeland, 

2005). In contrast, some threatened species scored  low or very low, such as the giant 

panda (low), potentially positive news for these at risk populations. 

 

Our results have practical implications for populations of threatened species in the wild 

and those under human care (including those in zoos). Established guidelines for 

minimizing potential human to animal transmission should be implemented and strictly 

followed. Guidelines for field researchers working on great apes established by the 

IUCN have been in place since 2015 in response to previous human disease outbreaks 

(Gilardi et al., 2015) and have received renewed attention because of SARS-CoV-2 
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(Estrada et al., 2017; Gilardi et al., 2015; Gillespie and Leendertz, 2020). For zoos, 

guidelines in response to SARS-CoV-2 have been distributed by several Taxon 

Advisory Groups of the North American Association of Zoos and Aquariums (AZA), the 

American Association of Zoo Veterinarians (AAZV), and the European Association of 

Zoo and Wildlife Veterinarians (EAZWV), and these organizations are actively 

monitoring and updating knowledge of species in human care considered to be 

potentially sensitive to infection (A. Lecu, M. Bertelsen, C. Walzer, EAZWV Infectious 

Diseases Working Group, 2020; J. Johnson, A. Moresco, S. Han, 2020). Although in 

silico studies suggest potential susceptibility of diverse species, verification of infection 

potential is warranted, using cell cultures, stem cells, organoids, and other methods that 

do not require direct animal infection studies. Zoos and other facilities that maintain 

living animal collections are in a position to provide such samples for generating crucial 

research resources by banking tissues, and cryobanking viable cell cultures in support 

of these efforts.  

 

4.16 Animal models for COVID-19 

 

A variety of animal models have been developed for studying SARS and MERS 

coronavirus infections (Sutton and Subbarao, 2015). Presently, there is a tremendous 

need for animal models for studying SARS-CoV-2 infection and pathogenesis, as the 

only species currently known to be infected and show similar symptoms of COVID-19 is 

rhesus macaque. Non-human primate models have proven to be highly valuable for 

other infectious diseases, but are expensive to maintain and numbers of experimental 
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animals are limited.  Our results provide an extended list of potential species that might 

be useful as animal models for SARS-CoV-2 infection and pathogenesis, including 

Chinese hamster and Syrian/Golden hamster (Chan et al., 2020), and large animals 

maintained for biomedical and agricultural research (e.g., domesticated sheep and 

cattle).  

 

4.17 Conclusions 

 

We predict that species scored as very high and high for SARS-CoV-2 S binding to 

ACE2 will have a high probability of becoming infected by the virus. We also predict that 

many species having a medium score have some risk of infection, and species scored 

as very low and low are unlikely to be infected by SARS-CoV-2 via the ACE2 receptor. 

Importantly, our predictions are based solely on in silico analyses and must be 

confirmed by direct experimental data.  Until such time, other than for species in which 

SARS-CoV-2 infection has been demonstrated to occur using ACE2, we urge caution 

not to over-interpret the predictions made in the present study. This is especially 

important with regards to species, endangered or otherwise, in human care. While 

species ranked high or medium may be susceptible to infection based on the features of 

their ACE2 residues, pathological outcomes may be very different among species 

depending on other mechanisms that could affect virus replication and spread to target 

cells, tissues, and organs within the host. Furthermore, we cannot exclude the 

possibility that infection in any species occurs via another cellular receptor, as has been 

shown for other betacoronaviruses.  Nonetheless, our predictions provide a useful 
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starting point for selection of appropriate animal models for COVID-19 research and for 

identification of species that may be at risk for human-to-animal or animal-to-animal 

transmissions by SARS-CoV-2.  The approach we used for ACE2 can be extended to 

other cellular proteins known to be involved in coronavirus infection and immunity to 

better understand infection, transmission, inflammatory responses and disease 

progression. 

 

4.18 Methods 

 

Angiotensin I converting enzyme 2 (ACE2) coding and protein sequences 

 

All human ACE2 orthologs for vertebrate species, and their respective coding 

sequences, were retrieved from NCBI Protein (March 20, 2020) (NCBI Resource 

Coordinators, 2016). ACE2 coding DNA sequences were extracted from available or 

recently sequenced unpublished genome assemblies for 123 other mammalian species, 

with the help of genome alignments and the human or within-family ACE2 orthologs. 

The protein sequences were predicted using AUGUSTUS v3.3.2 (Mario Stanke, 2005) 

or CESAR v2.0 (Sharma et al., 2017) and the translated protein sequences were 

checked against the human ACE2 orthologue. ACE2 gene predictions were inspected 

and manually curated if necessary. For four bat species (Micronycteris hirsuta, 

Mormoops blainvillei, Tadarida brasiliensis and Pteronotus parnellii) the ACE2 coding 

region was split into two scaffolds which were merged, and for Eonycteris spelaea a 

putative 1bp frameshift base error was corrected. Eighty ACE2 predictions were 
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obtained from the Zoonomia project, 19 from the Hiller Lab, 12 from the Koepfli lab, 8 

from the Lewin lab and 4 from the Zhou lab. The source, and accession numbers for the 

genomes or proteins retrieved from NCBI are listed in Dataset S1. The final set of ACE2 

sequences comprises 410 vertebrate species. To assure alignment robustness, the full 

set of coding and protein sequences were aligned independently using Clustal Omega 

(Sievers and Higgins, 2014), MUSCLE (Tabebordbar et al., 2016) and COBALT 

(Papadopoulos and Agarwala, 2007) all with default parameters. All resulting protein 

alignments were identical. Clustal Omega alignments were used in the subsequent 

analysis. Each amino acid replacement present in our dataset was classified as neutral, 

semi-conservative and non-conservative as in Clustal Omega. 

 

Identification of ACE2 residues involved in binding to SARS-CoV-2 S protein 

 

We identified 22 ACE2 protein residues that were previously reported to be critical for 

the effective binding of ACE2 RBD and SARS-CoV-2 S (Lan et al., 2020; Shang et al., 

2020). These residues include S19, Q24, T27, F28, D30, K31, H34, E35, E37, D38, 

Y41, Q42, L45, L79, M82, Y83, N330, K353, G354, D355, R357, and R393. All these 

residues were identified from the co-crystallization and structural determination of 

SARS-CoV-2 S and ACE2 RBD (Lan et al., 2020; Shang et al., 2020). The known 

human ACE2 RBD glycosylation sites N53, N90 and N322 were also included in the 

analyzed residue set (Sun et al., 2020a). 
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ACE2 and SARS-CoV-2 binding ability prediction 

 

Based on the known interactions of ACE2 and SARS-CoV-2 residues, we developed a 

set of rules for predicting the likelihood of the SARS-CoV-2 S binding to ACE2. Each 

species was classified in one of five categories: very high, high, medium, low or very 

low likelihood of binding SARS-CoV-2 S. Species in the very high category have at least 

23/25 critical residues identical to the human; have K353, K31, E35, M82, N53, N90 and 

N322; do not have N79; and have only conservative substitutions among the non-

identical 2/25 residues. Species in the high group have at least 20/25 residues identical 

to the human; have K353; have only conservative substitutions at K31 and E35; do not 

have N79; and can only have one non-conservative substitution among the 5/25 non-

identical residues. Species scoring medium have at least 20/25 residues identical to the 

human; can only have conservative substitutions at K353, K31, and E35; and can have 

up to two non-conservative substitutions in the 5/25 non-identical residues. Species in 

the low category have at least 18/25 residues identical to the human; can only have 

conservative substitutions at K353; can have up to three non-conservative substitutions 

on the remaining 7/25 non-identical residues. Lastly, species in the very low group have 

less than 18/25 residues identical to the human or have at least four non-conservative 

substitutions in the non-identical residues. 
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Protein structure analysis 

 

We applied an orthogonal approach to assess the likelihood of binding of a sampling of 

species that were predicted to bind SARS-CoV-2 across the categories of high, 

medium, low or very low likelihood of binding. ACE2 amino acid sequences from 28 

species were extracted from the multiway alignment and loaded into SWISS-MODEL 

(Waterhouse et al., 2018) in order to generate homology derived models.  The output 

files were aligned to the crystal structure 6MOJ (Lan et al., 2020) in order to assess the 

overall similarities to human ACE2. We used two recently solved crystal structures of 

the complex for ACE2 and SARS-CoV-2 S RBD, 6MOJ (Lan et al., 2020) and 6VW1 

(Shang et al., 2020) as ground truth for the human ACE2/SARS-CoV-2 S interaction. In 

the program CHIMERA (Pettersen et al., 2004), we utilized the rotamer function to 

model each individual variant that species exhibit separately, and chose the rotamer 

with the least number of clashes, retaining the most initial hydrogen bonds and 

containing the highest probability of formation as calculated by CHIMERA from the 

Dunbrack 2010 backbone-dependent rotamer library (Shapovalov and Dunbrack, 2011). 

The rotamer was then evaluated in the context of its structural environment and 

assigned a score based on likelihood of interface disruption. Neutral (N) was assigned if 

the residue maintained a similar environment as the original residue, and was predicted 

to maintain or in some cases increase affinity. Weakened (W) was assigned if 

hydrophobic contacts were lost and contacts that appear disruptive are introduced that 

are not technically clashes. Unfavorable (U) was assigned if clashes are introduced 
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and/or a hydrogen bond is broken. Additional structural visualizations were generated in 

Pymol (PyMOL).  

 

Human variants analysis 

 

All variants at the 25 residues critical for effective SARS-CoV-2-ACE2 binding (Lan et 

al.; Shang et al., 2020; Sun et al., 2020a) were compiled from from dbSNP (Sherry, 

2001), 1KGP (Voight et al., 2015), Topmed (NHLBI), UK10K (UK10K Consortium et al., 

2015) and CHINAMAP (28). Specific population frequencies were obtained from 

gnomAD v.2.1.1 (Karczewski et al., 2020). 

 

Phylogenetic reconstruction of the vertebrate ACE2 species tree 

 

The multiple sequence alignment of 410 ACE2 orthologous protein sequences from 

mammals, birds, fishes, reptiles and amphibians was used to generate a gene tree 

using the maximum likelihood method of reconstruction, as implemented in IQTREE 

(Minh et al., 2020). The best fit model of sequence evolution was determined using 

ModelFinder (Kalyaanamoorthy et al., 2017) and used to generate the species 

phylogeny. A total of 1000 bootstrap replicates were used to determine node support 

using UFBoot (Hoang et al., 2018). 
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Identifying sites undergoing positive selection 

 

Signatures of site-specific positive selection in the ACE2 receptor were explored using 

CODEML, part of the Phylogenetic Analysis using Maximum Likelihood (PAML, (Yang, 

2007)) suite of software. Given CODEML’s computational complexity, a smaller subset 

of mammalian taxa (N=64, Dataset S1), which included species from all prediction 

categories mentioned above, was used for selection analyses. To calculate likelihood-

derived dN/dS rates (⍵), CODEML utilises both a species tree and a codon alignment. 

The species tree for all 64 taxa was calculated using IQTREE (Minh et al., 2020) and 

the inferred best-fit model of sequence evolution (JTT+F+R4). This gene topology was 

generally in agreement with the 410 taxa tree, however bats were now sister taxa to 

Perissodactyla. Therefore all selection analyses were run using both the inferred gene 

tree, and a modified tree with the position of bats manually modified to reflect the 410 

taxa topology. All species trees used were unrooted. A codon alignment of the 64 

mammals was generated using pal2nal (Suyama et al., 2006) with protein alignments 

generated with Clustal Omega (Sievers and Higgins, 2014) and their respective CDS 

sequences. 

 

Site-models M7 (null model) and M8 (alternative model) were used to identify ACE2 

sites undergoing positive selection in mammals. Both M7 and M8 estimate ⍵ using a 

beta distribution and 10 rate categories per site with ⍵<=1 (neutral or purifying 

selection), but with an additional 11th category allowing ⍵ >1 (positive selection) in M8. 

A likelihood ratio test (LRT) calculated as 2*(lnLalt – lnLnull), comparing the fit of both null 
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and alternative model likelihoods was carried out, with a p-value calculated assuming a 

chi-squared distribution. Sites showing evidence of positive selection were identified by 

a significant (>0.95) Bayes Empirical Bayes (BEB) score, and validated by visual 

inspection of the protein alignment. To explore order-specific instances of positive 

selection, separate multiple sequence alignments and gene trees for Chiroptera (N=37), 

Cetartiodactyla (N=45), Carnivora (N=44), Rodentia (N=46) and Primates (N=39) were 

also generated and explored using M7 vs. M8 in CODEML.    

 

In addition to site-models, branch-site model A1 (null model) and model A (alternative 

model) were also implemented targeting various mammalian orders, specifically 

Chiroptera, Cetartiodactyla, Rodentia and Primates, to identify lineage-specific positive 

selection in the ACE2 receptor sequence. Branch-site Model A1 constrains both the 

target foreground branch (Carnivora, Chiroptera, Cetartiodactyla, Rodentia and 

Primates) and background branches to ⍵<=1, while the alternative Model A allows 

positive selection to occur in the foreground branch. Null and alternative models were 

compared using LRTs as above, with significant BEB sites identified. 

 

We also looked for positively selected sites in the viral spike protein, using SARS-CoV-2 

(MN908947.3), Bat coronavirus RaTg13 (MN996532.1), Bat SARS-like coronavirus 

isolate Rs4231 (KY417146.1), SARS-related coronavirus strain BtKY72 (KY352407.1), 

SARS coronavirus Urbani (AY278741.1), SARS coronavirus PC4-227 (AY613950.1), 

Coronavirus BtRs-BetaCoV/YN2018B (MK211376.1) and the more divergent Bat Hp-

betacoronavirus/Zhejiang2013 (NC_025217.1) viral strains. Protein and codon 
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alignments were generated as above, with the viral species tree inferred using full 

genome alignments of all strains generated with Clustal Omega (Sievers and Higgins, 

2014). Site-test models were applied using CODEML, and significant BEB sites 

identified. 

 

Analysis for departure from neutral evolutionary rate in ACE2 with PHAST 

 

Neutral models were trained on the specified species sets using the REV nucleotide 

substitution model implemented in phyloFit using an expectation maximization algorithm 

for parameter optimization. The neutral model fit was based on third codon positions to 

approximate the neutral evolution rate specific to the ACE2 gene, using a 410-species 

phylogenetic tree generated by IQTREE as described above and rooted on fishes. The 

program phyloP was then used to identify codons undergoing accelerated or conserved 

evolution relative to the neutral model using --features to specify codons, --method LRT 

--mode CONACC, and --subtree for lineage-specific tests, with p-values thus assigned 

per codon based on a likelihood ratio test. P-values were corrected for multiple testing 

using the Benjamini-Hochberg method (Pollard et al., 2010) and sites with a corrected 

p-value less than 0.05 were considered significant. PhyloFit and phyloP are both part of 

the PHAST package v1.4 (Hubisz et al., 2011; Ramani et al., 2019). 
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5 Investigating the role of lamina associated domains in 

establishment and maintenance of cell identity 

 

The work below reflects a manuscript currently in preparation for submission. The work 

is a collaboration with the Jain lab at the University of Pennsylvania, particularly Parisha 

Shah, who generated all of the unpublished data in the manuscript. Parisha and I are 

co-leading this project, with her leading the experimental side and me leading the 

computational analysis. 

 

5.1 Introduction 

 

Adult human bodies are composed of trillions of cells, comprising more than 200 distinct 

cell types, which are faithfully established and maintained throughout a healthy lifespan. 

Identifying and understanding molecular mechanisms regulating establishment and 

maintenance over time of cellular identity are areas of intense interest. In particular, 

understanding how cell type specific responses are achieved – the ability of a cell to 

respond to specific stimuli to differentiate or to attenuate a stimulus response to 

maintain established identity – is fundamental to understanding cellular diversity. 

  

Many decades of study have uncovered unique cell type-specific transcriptional profiles. 

While these distinct transcriptomes underscore the diversity of cellular function, it 

remains incompletely understood how such coordinated genome-wide transcriptional 

regulation is achieved during development. In vitro differentiation models have identified 
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key signaling molecules and stimuli that function at branch-points of differentiation 

pathways, revealing delicate and complex processes involving lineage-specific 

enhancers and resulting in cell type-specific gene patterning (Takahashi et al., 2007). 

Though important for understanding key developmental cues, these models do not 

capture the full complexity of genome-wide transcriptional regulation or maintenance of 

cellular identity over chronological time. 

 

Three-dimensional genome organization has emerged as a potential mechanism to 

coordinate cell-type specific gene regulation and maintain cell type transcriptional 

fidelity. In particular, genome organization at the nuclear periphery may provide a key 

platform for cell type-specific transcription. The nuclear lamina is a filamentous network 

of lamins A/C, B1, and B2 proteins residing on the inner surface of the nuclear envelope 

(Burke and Stewart, 2006; Worman and Bonne, 2007). A large proportion of the 

genome is localized towards the lamina, termed lamina-associated domains (LADs), 

which range in size from hundreds of kilobases to megabases (Guelen et al., 2008). 

These loci are generally heterochromatic, and genes within LADs are generally 

transcriptionally repressed and undergo active silencing, while genes away from the 

lamina are more often competent for transcriptional activation (Guelen et al., 2008). In 

some cell types, the chromatin is naturally inverted, and this inversion can be generated 

by ablation of nuclear lamin genes, indicating an active role for lamins in anchoring 

LADs to the nuclear periphery (Solovei et al., 2013). The degree of conservation of 

LADs between cell types and species implies an important role for these loci (Guelen et 

al., 2008; Meuleman et al., 2013). Our group and others have shown that spatial LAD 
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positioning regulates organogenesis and show a high degree of transcriptional 

repression (Peric-Hupkes et al., 2010; Poleshko et al., 2017; Robson et al., 2019). In 

particular, subsets of LADs are repositioned away from or to the lamina during 

differentiation in a cell type-specific manner (Peric-Hupkes et al., 2010). During mESC 

neuronal differentiation model, key neuronal genes lose lamina occupancy in neuronal 

precursor cells (Meuleman et al., 2013), and a similar phenomenon is observed during 

mESC cardiac differentiation (Poleshko et al., 2017). Likewise, preventing normal 

“release” of LAD-bound chromatin impacts normal mESC cardiac differentiation 

(Poleshko et al., 2017). These studies underscore the biological relevance of nuclear 

organization and changes therein, but are limited in scope to individual differentiation 

pathways or cell types.  

 

An additional question is how peripheral chromatin itself is organized. An intriguing 

finding from previous studies suggests that a subset of LADs have varying 

characteristics – reduced lamin occupancy and increased gene density compared to 

other LADs, indicating that the concept of a LAD as a monolithic block needs to be 

revised. Work in single cells has shown the frequency at which LADs contact the 

nuclear lamina varies by locus, and correlates with gene density, implicating a structural 

role for LADs with higher contact frequency (Kind et al., 2015). Also, only a subset of 

LADs re-position away from the lamina during differentiation, and individual genomic 

regions have varying probabilities of becoming re-localized to or from the nuclear lamina 

(Kind et al., 2013, 2015). Moreover, chromatin at the nuclear periphery is frequently 

marked by the histone modification H3K9me2, and genomic loci enriched for this signal 
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have been shown to have a high degree, but not perfect, overlap with LADs (Poleshko 

et al., 2017). These results raise the intriguing possibility that peripheral 

heterochromatin may comprise distinct compartments defined by unique sets of 

features. Defining these various categories of peripheral chromatin domains across 

multiple cell types, and characterizing distinct or dynamic subtypes of those features, 

will provide critical knowledge about how peripheral chromatin is organized and how 

nuclear organization regulates cellular identity. 

  

Here, we have defined the nuclear organization signatures based on LB1 and H3K9me2 

occupancy via ChIP-seq across thirteen isogenic human cell types from all four germ 

layers derived from H9 embryonic stem cells. By linking these with transcriptional data, 

we identify evidence of cooperative shifts between chromatin structure and gene 

expression associated with each cell type. Overall, this work provides an atlas of 

peripheral chromatin and associated features in multiple human cell types across all 

four germ layers. 

 

5.2 A 3-state Hidden Markov Model approach identifies two categories of LADs 

that vary by cell type 

 

We generated ChIP-seq datasets for lamin-B1 from thirteen human ES-derived cell 

types comprising all four germ layers and representative of multiple early differentiation 

trajectories (Table 2). Visual inspection of these data confirmed the presence of large, 
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diffuse domains of enrichment of LB1 signal consistent with the presence of LADs in all 

cell types 

investigated. Due to the 

diffuse nature of these 

LB1-enriched domains 

and inspired in part by 

previous work (Meuleman et 

al., 2013), I implemented a 

Hidden Markov Model 

trained on the tier one cell 

types (Table 2) to identify 

LADs based on the LB1 

ChIP-seq input. A three-

state rather than the 

previously described two-

state model was better able 

to accurately identify LAD-

like domains, evidenced by 

their LB1 binding, genome ,  

region size and concordance with enriched domains evident by visual inspection. 

Among the three states, one state demonstrated the greatest enrichment for LB1 signal, 

and so was designated as LADs, with the remaining states were classified as LADlite 

and nonLAD by descending LB1 signal (Figure 24). LADs in each cell type 

Cell Type Germ Layer Tier 

H9-Derived Embryonic Stem Cells Embryonic 1 

Cardiac Myocytes Mesoderm 1 

Early Somite Mesoderm 1 

Paraxial Mesoderm Mesoderm 1 

Epicardium Mesoderm 2 

Day 4 Artery Mesoderm 2 

Sorted Cardiac Myocytes Mesoderm 2 

Mid-Hindgut Endoderm 1 

Liver Endoderm 1 

Endothelial Progenitors Endoderm 2 

Definitive Ectoderm Ectoderm 1 

Day 5 Midbrain Ectoderm 1 

Border Ectoderm Ectoderm 2 

Table 2: Cell types with LB1 and H3K9me2 ChIP-seq data 

LB1 and H3K9me2 ChIP-seq data were generated from each of 

the listed cell types. 
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demonstrated characteristic features, 

including enrichment for the repressive 

histone mark H3K9me2, lower gene 

density, generally lower gene expression, 

and less overlap with ATACseq peak 

compared to LADlites and nonLADs. 

Median LAD sizes for tier one cell types 

ranged from 160-280kb, covering 21.4%-

38.3% of the genome. We found that 

some genomic loci were classified as 

LADs in every cell type assessed, 

consistent with previously described 

constitutive LADs, while others varied by 

cell type, consistent with facultative LADs 

that vary between cell types (Meuleman et 

al., 2013; Peric-Hupkes et al., 2010). 

LADs and LADlites are generally more 

conserved, and tend to have lower GC 

content compared with nonLADs, and 

genomic loci that are categorized at LADs 

in all cell types are depleted for CpG 

islands. LADs and LADlites tend to have 

lower amounts of within-domain CTCF 

Figure 24: Properties of LADs 

LB1, H3K9me2, gene density, gene 
expression and ATACseq peak overlap in 
LAD categories in embryonic stem cells. 
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binding, while their boundaries show higher 

relative binding, particularly on the 5’ 

boundary. LADs are enriched for late-

replicating genomic regions, indicating that 

they are replicated later than nonLAD and 

LADlites during cell division. While in general 

LADs tend to be depleted for transposable 

elements, LADs and LADlites vary in their 

signal depending on the category of 

transposable element. For example, LADlite 

are depleted for LINE elements while LADs 

are enriched, and LADs are enriched for 

simple repeats while LADlites are depleted. 

These findings support the conclusion that 

our model was successfully able to identify 

and differentiate two distinct categories of 

lamin-associated genomic loci based on 

lamin-B1 ChIP-seq data. 

 

 

 

 Figure 25: Properties of KDDs 

H3K9me2, LB1, gene density, gene 
expression and ATACseq peak overlap in 
KDD categories in embryonic stem cells. 
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5.3 A 2-state Hidden Markov Model identifies H3K9me2 domains 

 

We generated ChIP-seq datasets for H3K9me2 from thirteen human ES-derived cell 

types comprising all four germ layers and representative of multiple early differentiation 

trajectories (Table 2). In order to distinguish H3K9me2 domains from LADs described 

above, I trained another HMM on the H3K9me2 ChIP-seq tier one data, in this case 

finding a two-state model to be the best fit to the data. From the two states identified by 

the model, the state with higher H3K9me2 signal was assigned the label of H3K9me2-

associated domain (K9-dimethyl domain, “KDD”), and the other state “nonKDD” (Figure 

25). KDDs in each cell type demonstrated enrichment for LB1, lower gene density, 

generally lower gene expression, and less overlap with ATACseq peaks compared to 

nonKDDs (Figure 25). Median KDD sizes for tier one cell types ranged from 380-

2360kb, covering 44.2%-82.8% of the genome. As found with LADs and LADlites, some 

genomic loci were classified as KDDs in all cell types assessed, while others varied per 

cell type. KDDs are depleted for CTCF, with a sharp increase in binding at their 

boundaries. Overall, these data confirm prior findings that H3K9me2-enriched regions 

share many characteristics with LADs (Kind et al., 2013).  

 

5.4 LADs and KDDs are overlapping but distinct 

 

We found that generally most LADs (>90% for 7 of 8 tier one cell types) are in KDDs, 

while generally about half of KDDs were in LADs. Exceptions, such as in the case of 

definitive ectoderm where only 10% of LADs are in KDDs, likely stem from the 
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additional noise present in the LB1 ChIP-seq data for that cell type, leading to instances 

where loci that are likely LADs were instead categorized as LADlite. Median region 

sizes for LADs that overlap KDDs range from 300-820kb, skewing larger in comparison 

to LADs and falling within the lower range of KDD sizes. Genomic loci categorized as 

both LADs and KDDs tend to have a higher LB1 ChIP-seq signal, while loci that are 

LADs but not KDDs have slightly higher LB1 signal compared to loci that are KDDs but 

not LADs. Genomic loci categorized as both LADs and KDDs also tend to higher 

H3K9me2 ChIP-seq signal, while loci that are KDDs but not LADs have slightly higher 

H3K9me2 signal compared to loci that are KDDs but not LADs. Genomic loci that are 

KDDs but not LADs seem to have higher boundary-associated CTCF signal. Taken 

together, these data may indicate that genomic loci categorized as both LAD and KDD 

constitute a particularly robust category of LAD with strong signals of genomic 

repression and association with the nuclear lamina. 

 

5.5 LADs, KDDs and A and B compartments 

 

LADs share many characteristics with B compartments, large swaths of 

heterochromatin with many of the same characteristics as LADs, such as low gene 

expression and low gene density. Therefore we assessed the concordance between 

LADs, LADlites and KDDs from cardiomyocytes and ESCs with the B compartment 

calculated from previously published Hi-C data matched cell types (Zhang et al., 2019). 

The Jaccard index, a measure of similarity, is greater for KDDs (Jaccard=0.62) than for 

LADs (Jaccard=0.55), indicating greater overlap with B compartments. However, the 
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Jaccard index for the concatenation of LADs and LADlites (Jaccard=0.75) is the largest, 

and greater even than the concatenation of LADs, LADlites and KDDs (Figure 26). The 

same trend was observed in ESCs. This validates the idea that lamina-associated 

chromatin occupies a similar fraction of chromatin as B compartments, consistent with 

the similar characteristics of both. However, the overlap of these different categories of 

chromatin is far from perfect, suggesting that while these domains are similar, they may 

be functionally distinct. 

 

5.6 Cell type specificity in LADs, LADlites and KDDs 

 

As previously noted, a subset of LADs, LADlites and KDDs vary between different cell 

types while the remainder are cell-type invariant. A caveat here is that it is likely that 

some of the regions identified as invariant by this analysis do actually vary in other cell 

Figure 26: B compartment overlap LADs and HADs 

Overlap with B compartment from Hi-C data for matched cell types for LADs 
overlapping HADs, and LADs and HADs alone.  
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types not tested in this study. Supporting this, we found immune-related transcription 

factor binding motifs in loci that are LADs in all cell types, indicating that potentially 

these loci detach from the lamina in immune cell types. However, some of the loci 

identified by this study are likely to actually be cell-type invariant. We found that LADs 

that overlap KDDs are significantly more likely to overlap a cell-type invariant LAD in 

most cell types (Fisher’s exact test p-value < 0.05). Therefore, the combination of LAD 

and KDD may represent a genomic region that is more stably linked to the nuclear 

lamina both within and between cell types.  

 

I investigated whether cell type variable loci contained cell-type-specific features. Gene 

ontology (GO) analysis on genes that fall in genomic loci that are LADs or LADlites in all 

cell types assayed resulted in processes that might be expected to be shared, such as 

chromosome segregation. Genomic loci that were categorized cell-type-specifically as 

LADs or LADlites tended to include more cell-type-relevant terms, such as embryo 

development and gastrulation for H9ESCs and regulation of neurogenesis for Day5-

Midbrain. 

 

I assessed differential enrichment transcription factor binding motifs (TFBMs) analysis 

across various sets to determine whether this would reflect cell-type-specific signals. 

Relative to the union of LADs from all cell types, cardiomyocyte LADs were enriched for 

motifs for genes involved in differentiation and processes of cell types other than 

cardiomyocytes, such as CDX2, implicated in the intestinal epithelium, NKX2.2, 

implicated in immune- and neuronal-related gene regulation, neuronal gene SOX6, 
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epithelial gene HOXB13, and insulin metabolism gene FOXO1. This supports the idea 

that non-cardiac genes are silenced and therefore located in LADs in cardiomyocytes. 

Some of the transcription factors listed are known to have a preference to bind 

methylated DNA and/or have repressive functionality, and therefore may contribute to 

the silencing of their target genes and potentially the generation of heterochromatin 

and/or sequestration to the nuclear lamina in those loci. Similarly, Day 5 Midbrain LADs 

relative to all LADs were enriched for TFBMs for non-neuronal genes, for example some 

relevant to heart including SOX17, NR2F2 and DLX2, and some involved in 

pluripotency, including OCT4 and SOX1. ESC LADs relative to all LADs were enriched 

for all of the transcription factors listed above for cardiomyocytes, as well as many 

additional related to differentiation and functionality in differentiated cell types, in line 

with the repression of these genes in pluripotent cells. Overall these findings are 

consistent with a model in which repression of expression of genes regulated by cell-

type-relevant transcription factors is accomplished through sequestration of TFBMs and 

transcription start sites in LADs of other cell types in order to protect cell identity and 

differentiation fidelity. 

 

I next sought to determine whether there was evidence for difference in enrichment of 

cell-type-relevant TFBMs in different LAD categories and KDDs, which may lend insight 

into the different functions of these domains. I found enrichment of TFBMs for many 

cardiac-defining transcription factors in LADlites compared to LADs in cardiomyocytes, 

including GATA2, PLAGL1, HAND2, and TBX5. Furthermore, we found enrichment of 

multiple pluripotency-maintenance genes in LADlites relative to LADs in 
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cardiomyocytes, including OCT4, SOX1, SOX2, SOX3, SOX15, KLF4, KLF1, MYC, and 

NANOG. The same trend was seen in H9ESCs. Overall, this supports the hypothesis 

that LADlites may represent a distinct chromatin region relative to LADs, important for 

cell type differentiation and maintenance. KDDs were enriched for multiple heart- and 

pluripotency-important genes relative to LADs in cardiomyocytes, which may reflect the 

overlap of KDDs with LADlites. It also may reflect the higher density of genes in KDDs 

relative to LADs. Overall it seems that LADlites and KDDs are more dynamic compared 

to LADs and important for cell type differentiation and maintenance. 

 

5.7 Discussion 

 

Maintenance of chromatin structure via association with the nuclear periphery is among 

the many factors contributing to successful cell type specification and identity (Poleshko 

et al., 2017). LADs have previously been shown to demonstrate heterogeneity among 

different cell types and even between single cells. In this work we have captured some 

of that heterogeneity using bulk measurements of LB1 and H3K9me2 DNA binding in 

various cell types, validating previous findings of LAD cell type specificity in a wide 

range of cell types and germ layers and further differentiating two distinct LAD 

categories within each cell type. The driving forces of these distinct LAD categories are 

as of yet unknown, but likely possibilities include the categories reflecting different 

frequencies of lamina-attachment between single cells as previously demonstrated 

(Kind et al., 2015). Furthermore, we were able to define an independent domain, the 

KDD, based on H3K9me2. Various characteristics of KDDs relative to LADs and 
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LADlites, such as gene expression, gene density, and ATACseq accessibility, support 

the idea that KDDs represent a specific kind of functional domain. Genomic loci that are 

both LADs and KDDs appear to represent the most stable peripheral heterochromatin 

both within and between cell types.  

 

Overall, this work takes domains that were previously viewed as a single monolithic 

entity, LADs, and characterizes a cell-type-specific set of overlapping but distinct 

domains. This follows the general trend of genomics, in which no locus can be simply 

defined, and most often has multiple functions depending on its context (Halfon, 2019). 

These findings lay the groundwork for future studies aimed at defining the driving cause 

behind the difference between LADlites and LADs – are these truly more dynamic 

regions, or do they vary cell-to-cell, leading to the distinct bulk LB1 measurements? Is 

the enrichment of cell-type-specific TFBMs in LADs, LADlites and KDDs a driving force 

in, or a consequence of, differentiation and cell identity? 

 

5.8 Methods 

 

Methods are provided here for the computational parts of this project only as that was 

my contribution to this work. 
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ChIP-sequencing data processing for Lamin-B1 and H3K9me2 

 

Adapters were trimmed using Trimmomatic [v0.39] (Bolger et al., 2014). Sequencing 

reads were aligned to human reference hg38 using BWA-MEM [v0.7.17] (Li and Durbin, 

2010). The FASTA file for hg38 was downloaded from the UCSC Genome Browser. 

Aligned reads were converted to BAM and sorted using Samtools [v0.1.19] (Heintzman 

et al., 2009), with quality filter (“-F”) set to 1804. Duplicates were removed using Picard 

[v2.18.7] MarkDuplicates. Sequencing reads from the ENCODE blacklist were removed 

using Bedtools [v2.29.0] (Quinlan and Hall, 2010). Each replicate had at least 1 million 

mapped sequencing reads. Data for both LB1 and H3K9me2 ChIP-seq were divided 

into higher quality (“tier one”) and lower quality (“tier two”) as assessed by replicate 

correlation values and visual assessment in order to generate stringent sets to train the 

LAD- and KDD-calling models (Table 2). Spearman correlations between biological 

replicates was greater than 0.7 for all tier one cell types, and greater than 0.6 for tier two 

cell types assessed by comparing bigwig files for SES-normalized signal over controls 

generated with bamCompare using multiBigWigSummary and plotCorrelation from 

deepTools [v3.3.2] (Ramírez et al., 2014). 

 

Identification of LADs 

 

LB1 ChIP-seq signal were calculated and converted into BedGraph files using 

deepTools bamCompare [v3.3.2] (Ramírez et al., 2014) with 20kb bins, using the signal 

extraction scaling method (Diaz et al., 2012) for sample scaling. A 3-state HMM was 
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implemented using pomegranate [v0.11.1] (Schreiber, 2017). The HMM was initialized 

using a normal distribution and k-means to initialize the distribution with a uniform 

transition matrix. The Baum-Welch algorithm was then used to train the model, with tier 

one cell types (Table 2) used together in the model training. The model was then 

applied to predict LAD state genome-wide per 20kb bins for each cell type from both tier 

one and tier two individually, filtering regions from the ENCODE blacklist from 

consideration. States were labeled as LAD, LADlite or nonLAD based on median LB1 

signal for the bins with that state label, with the highest median LB1 signal being 

assigned LAD, second highest LADlite, and lowest nonLAD. 

 

Identification of KDDs 

 

H3K9me2 ChIP-seq signal were calculated and converted into BedGraph files using 

deepTools bamCompare [v3.3.2] (Ramírez et al., 2014) with 20kb bins, using the signal 

extraction scaling method (Diaz et al., 2012) for sample scaling. A 2-state HMM was 

implemented using pomegranate [v0.11.1] (Schreiber, 2017). The HMM was initialized 

using a normal distribution and k-means to initialize the distribution with a uniform 

transition matrix. The Baum-Welch algorithm was then used to train the model, with tier 

one cell types (Table 1) used together in the model training. The model was then 

applied to predict KDD state genome-wide per 20kb bins for each cell type from both 

tier one and tier two individually, filtering regions from the ENCODE blacklist from 

consideration. States were labeled as KDD or nonKDD based on median H3K9me2 
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signal for the bins with that state label, with the highest median H3K9me2 signal being 

assigned KDD and lowest nonKDD. 

 

RNA-sequencing analysis 

 

Transcriptome data were quantified using Kallisto [v0.44.0] quant with fragment length 

determined by BioAnalyzer, standard deviation of 10, and 30 bootstraps, assigning 

reads using the Ensembl [v96] genome annotation (Bray et al., 2016). TPM values were 

quantile-normalized between cell types. Differentially expressed transcripts (q<=0.01) 

between cell types were identified using Sleuth [0.30.0] (Pimentel et al., 2017). RNA-

seq data for cardiomyocytes, embryonic stem cells and day-15 endothelial cells were 

generated in the Jain lab, early somite and paraxial mesoderm were from (Koh et al., 

2016), mid-hindgut from (Loh et al., 2014) and neural ectoderm from (Tchieu et al., 

2017). All RNA-seq data were reanalyzed as described above. 

 

Transcription factor binding motif analysis 

 

Differential transcription factor binding was analyzed using Homer [v4.11.1] (Heinz et 

al., 2010). 
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A and B compartment analysis 

 

Hi-C data for cardiomyocytes and embryonic stem cells were downloaded as Cooler 

files from the 4D Nucleome Data Portal (Zhang et al., 2019). A and B compartments 

were called using cooltools [v0.3.0] (Abdennur and Mirny, 2020). 

 

Supporting analyses 

 

Plotting, statistical analyses and supporting analyses were conducted in Python [v3.6] 

with packages Jupyter, matplotlib (Hunter, 2007), seaborn (Waskom et al., 2018), 

upsetplot (Lex et al., 2014), scikit-learn (Pedregosa et al., 2011), numpy (Walt et al., 

2011) and pybedtools (Dale et al., 2011; Quinlan and Hall, 2010). 

 

6 Conclusion 

 

The work I have presented here in this dissertation investigates and emphasizes the 

role of genomic variation, in multiple dimensions and timescales, in health, development 

and evolution. This work provides a tool to use sequence variation to design 

therapeutics for genomic disease, investigates the role of structural and sequence-

based genomic variation in evolution, uses sequence genomic variation across species 

to predict susceptibility to a viral pathogen and investigates the role of structural 

genomic variation in cell type specification. This work is a reflection of and contribution 

towards our growing understanding of the complexity of each aspect of our genomes. In 
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chapter 2, I describe a software tool I built, AlleleAnalyzer, which incorporates genomic 

sequence variation into gRNA design. This tool enables allele-specific gRNA design, 

which may help to enable a cure for diseases driven by a single allele, such as 

dominant negative or imprinting diseases. AlleleAnalyzer also may enable experiments 

that depend on targeting a specific allele, or enable more accurate editing of a region 

with genetic variation relative to a reference genome. In chapter 3, I investigate how 

genomic variation makes us human, and how structural genomic variation may 

contribute to accelerated sequence evolution. By implementing the HAR discovery 

pipeline using Nextflow, it is now more reproducible and easier to change parameters, 

and ascertain the impact of various components of the pipeline. Via this process, I 

discovered that alignment and assembly quality are important for HAR discovery, and 

defined a new set of HARs. My finding that HARs are enriched in TADs with human-

specific structural variants suggests the possibility of enhancer hijacking as a driving 

factor in the accelerated evolution of HARs, a line of investigation which will need to be 

followed up by further analyses and experimental work. As I was writing this thesis, the 

world was upended by COVID-19, a disease caused by the virus SARS-CoV2. 

Therefore, I joined a team of scientists from all over the world, applying my skills in 

comparative genomics developed in work pertaining mainly to chapter 3 towards this 

virus. In chapter 4, I assess selection in a receptor known to mediate infectivity by 

SARS-CoV2 which contributed toward a method to predict risk of infection to other 

species. This will inform future risk predictions, potentially choice of model animals for 

therapeutic and vaccine development, and conservation efforts for endangered species. 

In chapter 5, I investigated how changes in genomic loci that are associated with 
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binding of LB1 or H3K9me2 impact cell type specificity. Through this work I discovered 

that LADs are not a single monolithic entity, but instead a set of distinct but overlapping 

domains. The differences between these domains appear to be related to cell type 

differentiation and maintenance, and may better inform how the 3D genome participates 

in and potentially influences cell type specification. Overall, my dissertation work 

improves our understanding of how genomic variation, in all its forms, is important to 

evolution, development, and disease. 
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