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ABSTRACT OF THE DISSERTATION 

 

 

Tools to investigate composite receptive fields in songbird auditory region 

 

 

by 

 

Nasim Winchester Vahidi 

 

Doctor of Philosophy in Electrical Engineering (Medical Devices and Systems) 

 

University of California San Diego, 2019 

 

Professor Timothy Q. Gentner, Chair 

Professor Shadi A. Dayeh, Co-Chair 

 

Neural coding is primarily concerned with characterizing the relationship between 

stimulus and neuronal responses and is classified to stimuli encoding and brain response decoding. 

Although there are existing models for neural coding, most are not sophisticated enough to 

describe the relationship of population of neural responses to natural stimuli such as human speech 
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or bird songs. In this study we propose utilizing composite receptive fields (CRF) as a new tool 

for neural coding. CRFs are quadratic receptive fields which are built from mutual information 

between stimuli and related brain responses. Here we create a pool of 3080 CRFs from a population 

of 154 cells recorded from the brain auditory region of European starling songbirds. Following, 

this pool of CRFs is used to build a spatial-temporal map for the population of cells along the brain 

coronal plane in respect to bird song stimuli. This map has revealed novel information about the 

relationship between neural responses and related stimuli such as: 1) Natural sound stimuli can be 

encoded by populations of neurons. 2) The number of cells needed to encode the stimuli can be 

quantified. 3) Stimuli encoding mechanisms of the brain appeared to be uniform and independent 

of cells’ topology and their locations. 5) From this map, connectivity between cells as well as their 

response plasticity to diverse stimuli were observed. 6) CRFs were used as intermediate tools to 

reconstruct stimuli and predict brain responses. These results have confirmed that quadratic 

receptive fields can be a novel candidate for population neural coding. Testing neural coding by 

CRFs was originally performed on cells recorded from the brain coronal depth plane. We expanded 

this coding method and evaluated CRFs mapping on cells recorded from two novel in-house 

fabricated electrodes: a surface electrode and a combination of surface and depth electrodes. The 

CRFs extracted from cells recorded by these electrodes can be employed to create a 2D and 3D 

spatial-temporal map which is useful to explore neural information distribution and their 

perception mechanisms from deep brain to cortical surface. Furthermore, the CRF neural coding 

method and the brain implants described in this study have potentials to be used in BCI prosthetics. 
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1.1 General scope and outline of the dissertation 

Neural coding is the study of information processing by neurons. Such study seeks to 

explain the type of information and mechanism of information transmission and perception 

throughout the brain. Neural coding can be categorized into two interconnected mechanisms: 

stimuli encoding and brain response decoding (Koyama S. , 2012).  Stimuli encoding is referred 

to as mapping stimuli to brain response and is primarily used to reconstruct stimuli from neural 

responses (Mesgarani, 2009) . The phenomena of stimuli reconstruction is a vital step towards 

creating a new memory by neurons (Baddeley, 2009). On the other hand, neural decoding is a 

reverse mapping that maps and reconstructs brain response from stimuli and has applications 

related to Brain Computer Interface (BCI) and brain response prediction (Taylor, 2002). 

There are exciting models for neural coding such as spike rate coding (Adrian, 1926), spike 

time coding (Dayan & Abbott, 2001), or local field potential (LFP) coding (Lowet, 2018). These 

tools provided a wealth amount of information about neural coding although there are limitations 

associated with them. Spike rate concept which is based on temporal averaging is not sophisticated 

enough to describe brain activity (Stein, 2004). On the other hand, temporal coding usually treats 

each spike independent from the others which makes the model weak when analyzing populations 

of neurons. Furthermore, in this study we have shown that although LFPs contain a great amount 

of information about underlying neural activities and brain responses in general, correlations 

between them do not hold for large distance between recording sites. Similar finding have been 

reported in other studies ( (Destexhe, 1999) & (Bedard, 2004)). 

To overcome these limitations, in chapter 2, we propose utilizing composite receptive 

field (CRF) as a new tool for neural coding. The receptive field of a cell in a sensory system is the 

area of the periphery whose stimulation impacts the response of a sensory nerve cell (Sherrington, 
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1960). In this study we concentrate on auditory receptive fields recorded from the auditory region 

of European starling bird brains. Auditory receptive field refers to the region in auditory space 

where a sound can evoke a neuronal response.  The sensory organs in the auditory system is the 

cochlea. The hair cells in cochlea are stimulated by sound waves and detect sound frequencies 

(Mann, 2014). 

Some examples of broadly used models to generate receptive fields are spike trigger 

average (STA) to build STRFs (Spatio-temporal receptive fields) ((Aertsen, 1981), (DeAngelis, 

1995), (De Boer & Kuyper, 1968), (Gosselin, 2002), (Arun, 2006)) , spike-triggered covariance 

(STC) (Schwartz, 2002), and maximally informative dimensions (MID) (Sharpee, 2004). These 

models, although offering rich information about receptive fields, suffer from a number of 

drawbacks such as inability to characterize nonlinear information of stimuli (Thunissen, 2000), 

limitation working with natural stimuli e.g. human speech and bird song ((Schwartz, 2006) & 

(Eggermont, 1983b)), and limitation identifying large numbers of relevant receptive field features 

(Kozlov & Gentner, 2016). 

A complimentary model to these models, Maximum Noise Entropy (MNE), utilized in this 

study, overcomes most of these limitations ((Fitzgerald, 2011a), (Sharpee, 2004) , and (Bialek, 

2006)). The MNE model looks for mutual information between audio stimuli and the brain 

responses in the form of CRFs. Recently, we have shown that neurons in the auditory region of 

starling songbirds have CRFs with various acoustic features which drive increases and decreases 

in their firing rate (Kozlov & Gentner, 2016). Here in this study we have recorded populations of 

cells from the NCM auditory region of five birds via commercial depth electrodes and 

subsequently utilized the MNE model to extract a large pool of CRFs from multiple populations 

of cells. These large pools of CRFs then were used to create spatial-temporal maps in respect to 

http://www.scholarpedia.org/article/Receptive_field#Cochlea
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birdsong stimuli. 

 From the spatial-temporal map we inferred novel information such as natural sound 

stimulus not only can be encoded by populations of neurons, but also the number of cells needed 

to encode the stimulus can be quantified. Furthermore this encoding mechanism and consequently 

perception of natural sound by the brain appeared to be uniform and independent of cell locations 

and their topology. Moreover, through this map, connectivity between cells as well as their 

plasticity in response to diverse stimuli was observed. Additionally, we proved CRFs can be used 

as intermediate tools to reconstruct stimuli and predict brain response. 

In chapter 2 we investigate spatial-temporal maps of CRFs from cells recorded from deep 

brain by commercial electrodes. Inspired by this map, we further scrutinized neural coding, 

propagation, and distribution mechanism of CRFs across this coronal plane. In chapter 3, we 

introduce a novel surface array for a similar investigation to chapter 2. This in-house fabricated 

surface array is made of a highly pliable parylene C substrate with embedded recording sites made 

of platinum nanoscale rods (PtNR). Through this study we demonstrated PtNRs are biocompatible, 

robust, and minimally invasive. Analyzing electrical recordings from this new ECOG surface array 

have shown this device is capable of capturing cell action potentials from the cortical surface as 

well being able to generate CRFs from these captured cells. This creates an opportunity to generate 

a spatial-temporal CRFs map of cells on the brain surface to study information distribution and 

propagation mechanisms on the cortical surface (horizontal plane). 

These results encouraged us to investigate neuron data distribution mechanisms in 

horizontal and coronal planes simultaneously by combing a surface array with a depth shank. In 

chapter 5, we introduce this novel electrode combination (Epi-Intra). The Epi-Intra device 

contained homogenous recording sites made of glassy carbon (GC) on both flexible surface array 
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and on its reinforced depth shank. GC sites are chemically inert, biocompatible, and have low 

impedance ((Vomero, 2017) & (Goshi, 2018)). 

In chapter 4, we demonstrate the GC sensing sites not only have great potential to record 

high fidelity, low noise signals from bird brain, but also are able to clearly record neurotransmitters 

such as dopamine (Castagnola, 2018 ). 

Continuing in chapter 5, by analyzing electrical recordings via the Epi-Intra device, we 

demonstrate this device has potential to record high quality stimulus-locked cells simultaneously 

from cortical surface and deep brain regions. The pool of CRFs extracted from these cells can be 

used to create a 3D spatial-temporal map which covers a volume of tissue from cortical surface to 

deep brain. 

Ultimately, a 2D CRF map of the cortical surface or deep brain as well as a 3D CRF map 

from a combination of surface and depth electrodes, offer great potential for neural coding and 

investigating information distribution mechanisms from deep brain to cortical surface and vice 

versa. Furthermore, the novel devices discussed in this study have potential for chronic implants 

and recordings and consequently can be used as BCI prosthetics. 
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CHAPTER 2  

Neural population coding by composite receptive fields in songbird auditory region 
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2.1 Abstract 

In the field of neural coding of sensory information there are questions that still need to be 

answered. Some of these questions are include: How to encode and map neural responses to their 

complex natural stimulus such as human speech and bird song? What intermediate tool can be 

used to achieve such an encoding mechanism to assist us to reconstruct stimulus from neural 

responses? How sensory information decodes stimuli to neural response? Answers to these 

questions will aid us to not only understand how neurons respond to a variety of stimuli but also it 

can be used to predict neural responses. Recently, we showed that neurons in the auditory region 

of starling songbirds have composite receptive fields (CRF) with many different acoustic features 

driving increases and decreases in their firing rate (Kozlov & Gentner, 2016). Here in this study 

we have used CRF as a tool to investigate spatial-temporal map of receptive field of neuron cells 

in secondary auditory cortical region of starling songbirds, in respect to natural stimuli. Although 

there are existing models which attempt to create receptive fields and their map across cortical 

regions, these models suffer from inability to analyze nonlinear information, they have constraints 

identifying large number of relevant receptive field features, and they have limitation working with 

natural stimuli. This study overcame these limitations by adopting a quadratic model to create 

CRFs. By creating spatial-temporal maps generated from a pool of CRFs, we implied novel 

information such as: (1) Natural sound can be encoded by populations of neurons. (2) This 

encoding mechanism and subsequently perceiving natural sound stimuli by brain appears to be 

uniform while there are some emphasis on parts of stimuli. (3) Perception of natural sound by brain 

is independent of topography and location of cells. (4) Number of cells needed to encode entire 

stimuli can be quantified. (5) Connectivity map between cells as well as their plasticity in response 

to diverse stimuli can be observed. (6) Reconstruction of stimuli as well as prediction of brain 
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response by CRFs are possible. 

 

2.2 Introduction 

The mechanism the brain utilizes to encode input stimuli such as sound by population of 

neurons and the way this encoded information is combined to create a response output are 

important questions in sensory neuroscience. Neural encoding is referred to as mapping stimuli to 

response and is primerly used to recostruct stimuli from neural responses (Mesgarani, 2009) . The 

phenomena of stimuli reconstruction is a first and decisive step towards creating a new memory 

(Baddeley, 2009) . On the other hand, neural decoding is a reverse mapping that maps and 

recostructs response from stimuli (Koyama ,2012). 

Recently, we showed that single neurons in secondary auditory cortical regions of  

european starlings song birds have composite receptive fields (CRF) (Kozlov & Gentner, 2016). 

In this study we aim to generate a pool of CRFs from a large population of cells in the higher 

auditory region of starling bird brains in order to investigate auditory processing, natural song 

encoding, and neural response decoding mechanisms in birdsong. 

Since avian and mamals such as hummans are  proccesing auditory data in a very similar 

way at cells level ((Karten, 2013) & (Harris K. , 2015 )), outcomes of this study might be applicable 

to mamals and human. 

There are existing models to create receptive fields of neurons such as spike trigger average 

(STA) to build STRFs (De Boer & Kuyper, 1968), spike-triggered covariance (STC) (Schwartz O. 

C., 2002), and maximally informative dimensions (MID) (Sharpee, 2004). These models although 

have provided a wealth of information about receptive fields, stimuli, and response characteristics, 

they suffer from a number of drawbacks such as inability to characterize nonlinear information of 
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stimuli (Thunissen, 2000), limitation working with natural stimuli e.g. human speech or bird song 

((Schwartz O. P., 2006)& (Eggermont, 1983b)), and limitation identifying large number of 

relevant receptive field features with respect to natural stimuli (Kozlov & Gentner, 2016). In 

contrast the Maximum Noise Entropy model (MNE), utilized in this study, overcomes most of 

these drawbacks ( (Kozlov & Gentner, 2016), (Fitzgerald, 2011a), (Sharpee, 2004) , (Bialek W. 

D., 2006), and (Fitzgerald J. S., 2011b)). The MNE model looks for mutual information and 

highest correlation between audio stimuli and the brain response in the form of composite receptive 

fields at the cellular level. 

To map CRFs of a population of cells with respect to stimuli, we have recorded action 

potentials through nine recording sections across five birds from their higher-level auditory cortex, 

Caudomedial Nidopallium (NCM), during playback of starling bird songs with high density 

electrodes. After sorting and extracting neuron cells, MNE has been performed on 154 cells and 

the ten most significant facilitatory and ten most significant suppressive CRFs have been extracted 

for each cell. Significant CRFs are generated from spikes with the highest probability of 

occurrence (facilitatory) and lowest probability of occurrence (suppressive) through the MNE 

logistic quadratic model. The first ten significant CRFs for both facilitatory and suppressive 

features contained the least amount of noise on average across 154 cells. 

After generating a large pool of CRFs (20*154=3080) for a population of 154 cells, now 

we are able to map these neural cells and their significant facilitatory and suppressive CRF features 

along implanted electrodes (Spatial map) and also with respect to the audio stimuli time (Temporal 

map). The spatial map is based on the location of each cell corresponding to an electrode channel. 

Each cell location along the depth electrode is calculated based on the reverse amplitude of its 

action potential (Rossant, et al., 2016). On the other hand, temporal information of each cell and 
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its CRFs, with respect to bird song stimuli, can be characterized by cross-correlation of CRFs with 

spectrogram of bird songs. 

It appears that we can capture several useful data points from this map: 

For the first time this map can be utilized to encode natural sound by populations of neurons. 

Furthermore, the process of encoding and perceiving natural sound stimuli by the brain appears to 

be uniform (temporal mapping) while there are some emphasis and weights on parts of stimuli 

(spatial mapping). Also, through the spatial map we have concluded that stimuli perception by the 

brain is independent of topography and location of cells (similarity of CRFs in-between cells 

versus cells relative distances). Moreover, from the projection of location of CRFs to the temporal 

map we have discovered the percentage of encoded stimuli by certain cell numbers and 

consequently were able to predict number of cells needed to encode entire stimuli. 

Additionally through this map we witness a connectivity map between cells in response to 

stimuli by monitoring when cells have common CRFs and when they have unique CRFs. Also, 

some parts of stimuli does not trigger any cells and CRFs. These facts may accentuate to 

phenomena where a network of neurons, actively process part of stimuli and disregard the rest of 

it to avoid over use of memory ((Anderson, 2004) & (Johnson, 2004)). Furthermore, this 

connectivity map across cells, changing by changes in stimuli which this is an indication of cell 

response flexibility and short-term plasticity ((James, 1890) & (Pascual, 2005)). All these 

phenomena are observed for both facilitatory and suppressive responses. 

An advantage of composite receptive fields generated from the MNE quadratic model 

versus receptive fields generated by linear models is that CRFs captures many of the variations of 

natural stimuli therefore their spectrograms look similar especially if cells are stimulus-locked with 

low noise. Employing this fact we have reconstructed bird song stimuli from the pool of existing 
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CRFs. Furthermore, we have pushed the limit to reconstruct novel stimuli by this CRF pool. Here 

we attempted to reconstruct forty nine novel songs and even with a relativity small pool of CRFs 

the result showed we are able to reconstruct up to 4.3% of each of the 49 novel bird songs. 

Finally we were able to predict the spike train response of neurons in response to forty nine 

novel songs by employing MNE model. The result showed a median response prediction of 60% 

across multiple cells. 

Overall, these outcomes demonstrate that composite receptive field can be used as a tool 

for brain mapping, encoding stimuli, and decoding populations of neural activity to aid us in 

understanding brain neural coding mechanisms. Composite receptive fields generated from neural 

responses also can have practical applications such as reconstructing human speech to design better 

hearing aid devices (Schäfer, 2018) as well as speech decoders to help speechless patients 

communicate to the outside world ((Rieke F. B., 1995), (Stanley, 1999), and (Zion Golumbic, 

2013)). 

 

2.3 Methods 

2.3.1 Animal preparation and Surgery 

In this study, nine neuronal recordings are performed on five European starling adult male 

birds under a protocol approved by the Institutional Animal Care and Use Committee of the 

University of California, San Diego. The birds weighed 90 g±10% fasting an hour before applying 

anesthesia. Urethane 7 mL/kg was administered in three separate doses. Urethane is used to 

achieve long stimulus presentation in this study (Masamoto & Kanno, 2012). Following that a 

short dose of isoflurane was administered to transition the subjects into an anesthetized state. 

Subjects were then placed in a stereotaxic bed, the oxygen flow was set to 11.5L/min and isoflurane 
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set to 1%. The subjects head was secured between ear bars and their beaks set at a 45 degree angle. 

The feathers were removed on the head, scalp was cut away, and the upper skull removed. A 

fixation pin was secured in a holder and lowered into place while dental cement was applied to the 

base to secure it. After completion of the recordings, postoperative butorphanol 25 mg/kg was 

administered. 

 

2.3.2 Electrophysiology 

After placing the subjects into the recording chamber, a region of skull over the NCM 

(Caudomedial Nidopallium) auditory region was removed. A small opening was made in the Dura 

and a ground wire inserted below the surface, after which the exposed brain is covered by a silicone 

barrier. Following, a 32 channel electrode site (NeuroNexus A1x32-Edge-10mm-20-177), made 

of iridium with 20µm spacing and 177 µm2 surface area was employed for neural recording. The 

electrode was mounted in a stereotaxic probe holder and moved to a coordinate of AP=20-2500 

µm caudal and ML=500-1700 µm lateral right of Y-sinuous with depth Z=1100-3200 µm across 

five subjects. 

The following table describes how individual recordings were performed. The second 

column of Table 2-1 displays individual penetration locations for five subjects. 
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Table 2-1: Subjects database used in this study. 

First column: Number of birds. Second column: Number of electrode penetrations (Pen) per 

subject and their recording locations. Third column: Number of single cells (S) and multi-units 

(M) used in this study from population of recorded cells for each recording. Fourth column: Songs 

which were played 20 times for each subject. 

 

 
 

2.3.3 Auditory stimulation 

The stimuli are recorded from adult starling male songs at 44.1 thousand samples/s and 

played back at a 60-dB mean level. Three or five songs were played for each subject (Table 2-1 

column 4). The songs were approximately one minute long and played 20 times during each 

recording sessions. 49 other songs were also played one time randomly for subjects for further 

analysis as well as preventing stimulus selectivity by subjects (Yaneri & Manuel, 2013). 
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2.3.4 Data acquisition 

While stimulus is presented to the subjects in a sound attenuation box, neural action 

potentials are recorded with the 32 channel electrode and amplified by an A-M amplifier system 

(model 3600). The recordings were performed with a 20 KHz sample rate with a low-pass filter of 

20Hz and high-pass filter of 20 KHz. The recordings then are converted to Matlab files with Spike2 

software (CED) after which spike sorting is completed by Klustakwik software. The Klustakwik 

program can deal with high-dimensional data and works by fitting a mixture of Gaussian curves 

along with an Expectation–Maximization algorithm with unconstrained covariance matrices. 

Furthermore, for spike detection this program uses a flood-fill algorithm between two thresholds 

and clusters similar spikes as one neuron (Rossant, et al., 2016). 

Table 2-1 displays the overall recording information of five subjects. Columns of table 

show: 1) Number of electrode penetrations per subject. 2) Electrodes recording locations. 3) 

Number of single cells (S) and multi-units (M) employed from population of recorded cells from 

each recording sessions. 4) Number of songs which were played 20 times for each subject. 

 

2.3.5 Data Preparation 

During each recording sessions 24 to150 single cells and multi-units are extracted 

which are differentiated mostly based on their refractory period 1-2ms (Dayan & Abbott, 

2000). The cells that are employed for this study are primarily stimulus locked and contain low 

noise. Different cell population sizes are chosen from a pool of recorded cells per penetration 

(Table 2-1, column 3) to give us the ability to further investigate the effect of cell population 

sizes on various analysis that we perform in this study. 

Figure 2-1B-C display examples of a single and multi-unit cells used in this study.  To 
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compute CRFs via the MNE model we need to construct two inputs per cell:  response (trials 

average) and stimuli (power spectral density (PSD) of a spectrogram of bird songs). 

To create the input stimuli, we concatenated the bird song waveforms that were played for 

the subjects, down-sampled to 24 KHz, and then by use of spectrogram function in Matlab it is 

converted into a spectrogram. The spectrogram parameters are nfft=128, Hanning window of 128 

with 50% overlap (Figure 2-1B and Figure 2-1C first rows). Through this process the DC part of 

signal is removed. Following, the adjacent 64 frequencies are averaged pairwise twice from 32 to 

16 frequency bands with band ranges of 750-12KHz (Nyquist frequency). Similar to frequency, 

the adjacent spectrogram time bins are averaged three times to a size of approximately 20 bins, 

which is a common bin size to calculate receptive fields. Finally, power spectral density of this 

down-sampled spectrogram is extracted and saved as MNE stimuli input. The bird song stimuli 

has been repeated 20 times and the cells response has been recorded as spike trains. Figure 2-1B-

C second row demonstrates raster plots of spike train responses of 20 trials for single and multi-

unit cells. To compute the average of the spike train responses we first divide the repeated 20 trials 

to 4 groups of five trials then we calculate the trial average of each 5 trials and concatenate those 

(Figure 2-1B-C third row). Finally, the concatenated trial averages are down-sampled three times. 

A magnified 5 second window of both Figure B and C are shown underneath the respective figures. 

Additionally, the action potential waveforms of a single and multi-unit cells are shown in Figure 

2-1D-E. Now, both stimuli and trial average responses are ready to be processed by the MNE 

model. 

 

2.3.6 Composite receptive field analysis based on Maximum Noise Entropy Model (MNE) 

Maximum noise entropy model attempts to extract receptive fields of each cells based on 
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mutual information and highest correlation between response and its stimuli. It is based on 

probability of spikes/response given stimuli and described as the following logistic function: 

Equation 1 

P(Response|Stimuli) =    
1

1+e(a+h.s+sTJs)  
 

By minimizing the quadratic polynomial equation𝑓(𝑠) = (𝑎 + ℎ. 𝑠 + 𝑠𝑇𝐽𝑠) , we obtain a, 

h, and J parameters. Where a, h, and J are correspond to a constant number, linear part, and 

quadratic part of receptive field features. To extract these parameters we pick 1/4 of the trial 

averages as a test set and 3/4 of the trial averages as training set. This process is repeated for stimuli 

as well. Next, theses sets are used to estimate a, h, and J parameters. For regularization early 

stopping has been utilized to prevent overfitting. Following, the parameter estimation repeats four 

times. Each estimation uses one of the trial averages against the other three trial averages (Figure 

2-2A). The reasons trial averages are resampled through the trails and parameters are estimated 

four times are to reduce the bias and to increase the possibility of locating and removing noisy 

trials. 

Figure 2-2B demonstrates a technique to remove noisy trials from noisy cells. Through 

four times resampling, every time a set of J-matrix and consequently sets of CRFs are created per 

cell. If we repeat this process for the population of cells, e.g. 30 cells in Figure 2-2B, by use of the 

t-SNE technique (Van der Maaten & Hinton, 2008) similar CRFs cluster together for each cell. 

Subsequently similar CRFs in clusters can be extracted by the HDBSCAN method (Ester, 1996) 

while noisy CRFs produced by noisy spike trains, are separated from clusters and show up as 

outliers. 

To extract composite receptive fields we focus on the weight matrix J of the quadratic 

model. Diagonalizing matrix J yields to two main factors, eigenvalues (D) and eigenvectors (V). 
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Each eigenvector (V) corresponds to a receptive field whereas the eigenvalues point to the 

significance of receptive fields. To control statistical significance, 500 symmetrical random 

Gaussian matrices with size and moments equal to Js are created and then the distribution of their 

eigenvalues are calculated. This distribution is used to verify eigenvalues that are significant. 

Significant eigenvalues are the ones that have the highest or lowest probability of occurring on the 

logistic function. In addition, negative eigenvalues and their related eigenvectors correspond to 

facilitatory CRFs of neurons. Vice versa, positive eigenvalues and their related eigenvectors 

correspond to suppressive CRFs. Figure 2-1F from right to left show an example of CRFs extracted 

from a single cell with ten most significant negative (facilitatory) and ten most significant positive 

(suppressive) features. Each CRF contains power modulation in the frequency band from 0-16 

(750-12KHz) across 20 time bins (400s). 

The reasons ten most positive and ten most negative significant eigenvectors are extracted 

from each cells are: first, these twenty eigenvectors contain lower noise than the rest of 

eigenvectors on average across 154. Second this low quantity of  features, 20, can provide a better 

prediction model, by ignoring the noisy features, in comparison with employing all the features of 

full rank MNE (320 features)  (see section 2.4.7) (Kaardal, 2017). More details about the MNE 

model are explained in ((Kozlov & Gentner, 2016) and (Fitzgerald , 2011b)). 
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Figure 2-1: Extracting CRFs from recorded cells. 

(A) Action potentials recording paradigm: A high density recording electrode is implanted in the 

NCM auditory area of a starling bird brain. While bird songs play for the subject, spikes are 

recorded from single and multi-unit cells. The red circle demonstrates location of the implanted 

electrode.  Spike waveforms of cells recorded from subject 4-Pen1 are shown in the rectangular 

box. (B) Example of a single cell. Top row: A bird song spectrogram. The color bar on right 

indicates power density. Second row: Raster plot of spiking activities of 20 trials. Third row: Trial 

average/spike train of the 20 trials. Underneath magnification of five second of spectrogram, raster, 

and trial average has been shown. C) Example of a multi-unit activity: Figure descriptions are 

same as (B). (D) Action potential waveform of the single cell. The black bar indicates the 

amplitude of waveform. (E) Action potential waveform of multi-unit activity.  (F) Example of 

estimated CRFs of the single cell using MNE model: Right: 10 suppressive CRFs extracted from 

the 10 most significant positive eigenvalues and their corresponding eigenvectors of J-matrix. Left: 

10 facilitatory CRFs extracted from the 10 most significant negative eigenvalues and their 

corresponding eigenvectors of J-matrix. Each CRF contains power modulation in frequency band 

from 0-16 (750-12KHz) across 20 time bins (400s). The color bar on the right displays the power 

density of CRFs. 
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Figure 2-2: Identifying cells noisy trials by t-SNE. 

(A) Demonstration of resampling method through the trial averages. (B) Right: Clustering similar 

CRFs by t-SNE for 30 cells (subject 2, Pen2) with 10 facilitatory features across four resampled 

data sets. As an example a set of four related CRFs are shown by a black circle. The noisy CRFs 

are separated as outliers which mostly show up as one dot. An example of one of these outliers has 

been framed in the black square. Left: similar clustering for suppressive CRFs. The color bars 

demonstrate 30 cells arranged based on their depth along dorsoventral plane in NCM. 

 

 

 

2.4 Result 

2.4.1 Spatial and temporal mapping of pick activation of CRFs in respect to stimuli 

To investigate the spatial-temporal map of CRFs we first need to extract the CRFs from a 

population of cells. In this study we have chosen 154 cells from nine penetrations across five 

subjects (Table 2-1).Then we have extracted the ten most negative (facilitatory) and ten most 

positive (suppressive) CRF features of each cell and created a pool of 3080 CRFS  ((10f +10s)*154 

cells=3080). To achieve the spatial mapping, first cells are organized based on their locations along 

the dorsal-ventral (Z) axis in the NCM auditory area. The spatial (depth location) information of 

cells are calculated via the Klustakwik program (Rossant, et al., 2016). The cell locations are 
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calculated based on their inverse action potential amplitude of each cell in reference to the z-axis 

(depth) of the electrode shank. To compute the cells’ CRFs temporal map, normalized cross-

correlation method is used. This model cross-correlates the power spectrogram of each CRFs with 

the power spectrogram of stimuli through a sliding window to locate maximum cross-correlation 

of each CRFs with the stimuli. Ultimately, maximum correlations (pick activations) are tested to 

be more than 60%. With this method we were able to find the location of CRFs corresponding to 

specific portions of vocal elements of stimuli. 

Figure 2-3 demonstrates a spatial-temporal map of pick activation of a pool of 3080 CRFs 

with stimuli. Figure 2-3A displays the location of implanted electrodes along the dorsoventral 

plane in the NCM for nine penetrations across five subjects. Next to each penetration the recorded 

cells are shown which are organized spatially by their depth locations. The cells are either single 

cells in green or multi-units in black (Figure 2-3B). Figure 2-3C displays a spectrogram of three 

concatenated bird songs and underneath, Figure 2-3D, shows a temporal map of the 154 cells with 

3080 CRFs in respect to the stimuli. The facilitatory CRFs are shown in red dots (3080/2=1540) 

and the other 1540 suppressive CRFs are shown in blue dots.  Each dot corresponds to the 

maximum correlation (pick activation) of each CRF with a spectrogram of songs. The Temporal 

map can be a method to decode stimuli by CRFs. Figure 2-3E demonstrates projections of 

facilitatory (in red dots), suppressive (in blue dots), and their joint (red and blue dots) CRF 

locations in respect to stimuli as flat distributions along the x-axis. This demonstrates that even a 

small sample, e.g. 50 cells (from subject 1), can provide a temporally dense representation of 

natural song. 

To investigate temporal distribution of CRFs with more details, we have created a 

histogram of temporal distribution of CRFs of cells for each subject (Figure 2-3F). Red bars 
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correspond to facilitatory CRFs and blue bars correspond to suppressive CRFs with bin sizes of 

20. Sections 2.4.2 to 2.4.7  discuss the properties of this spatial-temporal map in more details. 

Some of these properties include the possibility of utilizing CRFs’ histogram and their flat 

distribution as a tool to compute the quantity of CRFs and cells needed to encode entire stimuli. 

Also, the amplitude/weight of each bar in the histogram (spatial information) demonstrates the 

number of repeated (similar) or unique CRF features across all the cells. This information can aid 

us to find a connectivity map between cells. Additionally, from CRFs temporal information and 

their corresponding locations to the stimuli we are able to find where in the stimuli CRFs are 

originated from. This map not only can be used as a stimuli encoding tool by CRFs but also, lead 

us to examine the possibility of reconstructing stimuli via CRFs and furthermore predict brain 

responses. 
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Figure 2-3: Spatial-Temporal map of peak activation of CRF features in respect to stimuli. 

(A) Location of implanted electrode in NCM for nine penetrations across 5 subjects. (B) Spatial 

location of 154 single cells (green dots) and multi-units (black dots) used in this map. Population 

of cells in subject1 is 50, in subject 2 is 40, in subject 3 is 8, in subjects 4 is 50, and subject 5 is 6 

(C) Spectrogram of three concatenated bird songs. (D) Temporal location of CRFs in respect to 

bird song stimuli. There are 1540 facilitatory (red dots) and 1540 suppressive (blue dots) CRFs 

across 154 cells in this map. Each dot corresponding to the maximum correlation (pick activation 

with r>60%) of each CRF with song spectrograms. (E) Flat projections of all the facilitatory CRFs 

(red line), suppressive CRFs (blue line), and their joint (red and blue) CRFs location onto the x-

axis. (F) Histogram of CRFs across cells for each subject (bin size=20). Red bars correspond to 

facilitatory CRFs and blue bars correspond to suppressive CRFs. 
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2.4.2 Spatial and Temporal distribution of CRFs 

In Figure 2-4 we collapse CRFs histograms of all 154 cells across all the subjects from 

Figure 2-3 into two histograms. The histogram with red bars belongs to facilitatory CRFs. 

Projection of bars on to X temporal axis results 497 points. These points are belong to 497 CRFs 

that are shared across cells from default pool of 1540 facilitatory CRFs. Similarly, the second 

histogram with blue bars corresponds to suppressive CRFs with 509 shared CRFs from default 

pool of 1540 suppressive CRFs. In third row we can observe comparison of these two facilitatory 

and suppressive distributions in one plot. If we combine amplitude of these two plots we will 

receive the black distribution graph on forth row with 649 shared CRFs from default pool of 3080 

facilitatory and suppressive CRFs. 

Overall, in all these plots, the x-axis demonstrate temporal distribution of CRFs of 154 

cells in respect to the stimuli. Each bin belongs to a location of one CRF and its bar amplitude on 

the y-axis indicates the number of cells that are sharing a particular CRF. Observing these plots, 

although CRFs distributions are temporally uniform (based on one-sample Kolmogorov-Smirnov 

with rejection significance level of 5%), the amplitude (weight) of number of cells with common 

CRFs ,triggred by specifc part of stimuli, varies. These facts are true for both facilitatory, 

suppressive, and their combinatins distributions. 

From these observations one might conclude that while the brain perceives sensory stimuli 

in a temporally uniform way, there are emphasis (weights) on the explicit parts of stimuli. 
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Figure 2-4: Spatial and Temporal distributions of CRF features in respect to stimuli. 

Top: Spectrogram of stimuli. Second row: Temporal distribution of facilitatory CRFs for 154 cells 

across five subjects in respect to 200s stimuli is shown on the x-axis. The y-axis displays amplitude 

and weight of cells containing common CRFs. Third row: Temporal and amplitude distributions 

of suppressive CRFs. Fourth row: Comparison of combination of temporal and amplitude 

distributions of facilitatory and suppressive CRFs. 

 

2.4.3 In-between cells’ CRF similarity versus cell distances 

From histogram of the spatial-temporal map in Figure 2-3F we can detect some CRFs 

similarity between cells of each penetration across five subjects. This fact inspired us to further 

investigate if the CRF similarity between cells are dependent on the relative distance between cells 

along the dorsoventral plane. To statistically determine the answer to this question, autocorrelation 

method has been used on the CRFs of cells of each subject. Figure 2-5A shows an example of a 

matrix of autocorrelation on 30 cells from subject2-pen2. Each cell contain 10 facilitatory CRFs. 

Following, the correlation coefficients (corrcoef) are extracted from the matrix except the diagonal 
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cells to only evaluate in-between cells’ CRFs’ similarity. This process has been repeated to extract 

in-between cells CRFs’ similarity information for both facilitatory and suppressive response of all 

the subjects. Following, relative distances between cells for each subject is calculated. The colored 

circles in the transparent background in Figure 2-5B demonstrate the similarity (corrcoef) of CRFs 

between cells for five subjects versus their cells relative distances. Subject 1 in green contains 50 

cells, subject 2 in blue contains 40 cells, subject 3 in black has 6 cells, subject 4 in red has 50 cells, 

and subject 5 contains 8 cells. The fitted regression lines of each subject are shown on top. The 

legend bar on the right side shows the five subjects color code as well as facilitatory regression 

lines (n) as circled lines and suppressive regression lines (p) as squared lines. The distance between 

circles in facilitatory regression lines as well as squares in suppressive regression lines indicate 

CRFs similarity density which is high around zero and decreases toward 1. Most of the regression 

line slopes are constant around a point in the y-axis (distance), this is true for both facilitatory and 

suppressive. There is a slight slope angle for subject 3 (black regression lines) which could be due 

to the fact that subject 4 cells contain more noise than other subjects’ cells. Overall, what we 

observe from these regression lines are that CRFs’ similarity in-between cells is independent of 

relative cell distances along the dorsoventral plane for both facilitatory and suppressive responses 

across all subjects. In other words, stimuli encoding of population of neurons is independent of the 

neurons locations and topology. 

Secondly, end of the regression lines in positive side of the graph present the most similar 

CRFs between cells in different subjects. Figure 2-5C shows an example of six cells with 10 similar 

CRFs between each two (C1&C13, C20 & C30, and C21 & C13) for subject 2 as well as 10 similar 

CRFs between (C15-C17) for subject 1. 

Since these cells are mostly multi-units and not neighbors, this high similarity between 
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their CRF populations for every two units indicates that these units are synchronized in response 

to stimuli. Moreover, this high similarity between units are observed in cell populations equal or 

more than 30. To understand and draw a more accurate conclusion about this observation, 

similarity between cells’ CRFs of larger cell populations is suggested. 
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Figure 2-5: CRFs similarity in-between cells (r) versus relative cell distances. 

(A) Example of autocorrelation matrix for CRFs of 30 of cells from subject 2. Each cell contains 

10 facilitatory CRFs. The correlation coefficients are extracted from the matrix except the diagonal 

cells to only evaluate in-between cells similarity information. (B) The same process has been 

performed on facilitatory and suppressive responses of the five subjects. The result of similarity 

between cells’ CRFs for each subject versus their relative cell distances is represented by colored 

circles with a transparent background. The fitted regression lines of each subjects’ data is shown 

in a darker color on top. (B) The legend bar on the right side shows the five subjects’ respective 

color codes. The facilitatory regression lines (n) is shown with circled lines and suppressive 

regression lines (p) are displayed as squared lines. The distance between circles in facilitatory 

regression lines as well as squares in suppressive regression lines indicate CRFs similarity density 

along the x-axis. (C) 100% CRFs’ similarity between sets of two cells have been observed at the 

positive end of regression lines as well as different cell populations’ autocorrelation. For example 

(C1 & C13), (C20 & C30), and (C21 & C13) from Matrix in (A) encompass 100% similarity 

between their CRFs. 
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2.4.4 How many cells and CRFs can encode entire stimuli? 

To investigate the number of cells and CRFs needed to encode the stimuli for each 

recording, we have calculated the number of facilitatory and suppressive CRFs that are encoding 

sections of stimuli by counting their flat, temporal location points (flat means: projection of 

histogram bars as points to one dimensional x-axis) (Figure 2-3E). Since each CRF has 20 bins, 

by multiplying the CRFs number by their respective 20 bins and dividing the results by the stimuli 

length, we can find the percentage of stimuli encoding by the CRFs and consequently find the 

number of cell needed to encode the entire stimuli. In Table 2-2 we have calculated stimuli 

encoding percentage for nine recordings. An example for such a calculation is, if we consider 

subject1-penetration1 (S1-P1) with 30 cells, from the pool of 600 CRFs of this recording (30 

cells*(10 faciliatory+10supprasive)), 348 CRFs are temporally encoding the songs and since each 

CRF point has 20 time bins therefore all 348 CRFs together cover 6960 time bins (348*20 bins). 

If we compare this number with the length of stimuli for this study, 16100 time bins (equal to 207 

second), we can find the percentage of stimuli decoding by these 348 CRFs extracted from 30 cells 

which will be 43.2%. 

Figure 2-6 demonstrates a relationship between the cell numbers of nine recordings with 

their stimuli encoding percentages. Cell quantities exhibit an approximate linear relationship to the 

stimuli encoding percentages. The red line fit is based on power law. The green dot, corresponding 

to the x-y green lines, is a prediction of amount of cells needed to cover and encode the entire 

stimuli by the CRFs. Here 100% of the stimuli (207s) predicated to be encoded by 90 cells. 

It is worth pointing out that having different sizes of cell populations assist us to create this 

prediction paradigm.  In addition, choosing same size cell populations from different recordings 

resulted in a similar stimuli encoding percentage range (e.g. a cell population size of 10 for three 



34 

 

recordings of S2-P1, S4-P1, and S4-P3 all lead to similar average encoding of 20%. Similarly, in 

a cell population size of 30, all three recordings of S1-P1, S2-P1, and S4-P2 correspond to average 

encoding of 45%. This fact emphasizes the accuracy of this stimuli encoding mechanism by CRFs. 

Based on this method we should be able to investigate stimuli encoding percentage of just 

facilitatory CRFs or suppressive CRFs alone if needed (Table 2-2). 

 

Table 2-2: Number of cells and CRFs vs encoding stimuli percentages. 

First column: Nine penetrations across five subjects. Second column: Number of cells for each 

penetration. Third column: Number of facilitatory CRFs (f) and suppressive CRFs (s) calculated 

from temporal flat distribution of Figure 2-3E (top red and middle blue plots) versus default CRFs 

(Number of cells *10 CRFs). Forth column: Number of concurrent facilitatory and suppressive 

CRFs adopted from Figure 2-3E. Fifth column: Encoding stimuli percentages for different cell 

population sizes.  
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Figure 2-6: Prediction of amount of cells needed for encoding entire stimuli. 

Demonstration of relationship between cell numbers of nine recordings versus their stimuli 

encoding percentage (black dots) adopted from Table 2-2. The red dotted line is a power fit and 

has been used to predict number of cells needed to encode entire stimuli (green dot). The predicated 

green dot here points to about 90 cells as the required quantity of cells needed to encode the stimuli 

(contains three bird songs=207s). Out of the two blue circles marked here, one is pointing to three 

recordings with the same number of cells (10 cells) and the other is pointing to three recordings 

with 30 cells that correspond to similar encoding percentages. 

 

 

2.4.5 Reconstruction of encoded stimuli by CRFs 

Through CRFs spatial-temporal map, we were able to encode the stimuli by spotting pick 

activation of receptive fields with their corresponding stimuli portions. In this section we 

demonstrate practically what this encoding mechanism does.   

Figure 2-7 displays an example of this method to find a portion of stimuli related to a pool 

of CRFs. Here 20 CRF features, 10 facilitatory and 10 suppressive, have been adopted from one 

cell (subject2-pen2-cell#1). By spotting pick activations of CRFs we are able to define stimuli 

corresponding time windows (Figure 2-7A). Time windows in red belong to facilitatory responses 
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and the ones in blue belong to suppressive responses. Figure 2-7B displays the 20 facilitatory and 

suppressive CRFs of cell#1. CRFs corresponding stimuli locations are shown in Figure 2-7C. 

Lastly stimuli portions associated with each CRF are displayed in Figure 2-7D. If we stitch these 

CRFs together based off their temporal organization and compare them with their corresponding 

stimuli portions, it appears that the stitched CRFs contain a fair amount of information about their 

corresponding stimuli potions (Figure 2-8B-C). This is due to the fact that we captured the 

receptive field responses by use of the quadratic MNE model. 

Figure 2-8D displays a linear receptive field (LRF) of 12 cells from the same subject and 

penetration. As it appears, quadratic CRFs contain considerable information from stimuli 

compared to LRF and this might offer a possibility of rebuilding and reconstructing stimuli from 

CRFs especially from a large population of cells. On the other hand, LRFs that are extracted from 

linear parameter of the MNE model (h), not only do not capture enough variations from the stimuli 

but also are limited to one feature per cell as opposed to CRFs that can be extracted in large 

numbers from each cell. 

If we extend this idea and locate portions of stimuli related to each CRF for a population 

of cells, we able to produce a connectivity map between cells (Figure 2-8A). Likewise, this 

connectivity map can be observed from histogram of spatial-temporal map. Figure 2-8A 

demonstrate an example of a snap shot of connectivity map between small populations of 10 cells. 

Here it can be observed that some cells are sharing similar CRF features (e.g. C7, C8, and C10 in 

second column), some cells are containing one unit CRF (e.g. C5 in forth column), and some cells 

are not exhibiting any CRF responses towards parts of stimuli (white empty spaces). 

This observation draw attention to the fact where a network of neurons, actively process 

part of stimuli and ignore the rest of it to avoid over use of memory ( (Anderson, 2004) & (Johnson, 
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2004) ). In addition, this connectivity map across cells, varying by changes in stimuli which this 

can be indications of cell response flexibility and short-term plasticity ( (James, 1890) & (Pascual, 

2005) ). All these facts are observed for both facilitatory in red frames and suppressive responses 

in blue frames. 

Furthermore, we predict the dotted lines will be filled more, as the population of cells grow 

e.g. to 90 cells (Figure 2-6). This means that with an appropriate size neuron population, we 

possibly able to encode entire stimuli with sufficient accuracy. Overall, comparison of B, C, and 

D rows of Figure 2-8 show receptive fields created by a full MNE model capture much more 

spectro-temporal modulation from the stimulus compared to the linear receptive fields. This fact 

indicates that composite receptive field is a candidate for reconstructing stimuli. 
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Figure 2-7: Finding portions of stimuli related to each CRF. 

(A) Time window (20 bins=400ms) where each CRF exhibits peak activation with a portion of 

stimuli. Time windows in red are facilitatory and time windows in blue are suppressive responses. 

(B) 20 CRFs extracted from one cell (subject 2- pen2-cell #1) with 10 facilitatory and 10 

suppressive responses. (C) Top: Spectrogram of 3 bird songs. Bottom: CRFs temporal location 

based on their pick activation with stimuli (r >60%). (D) Corresponding stimuli portions to CRFs 

based on their temporal locations. 
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Figure 2-8: Cells connectivity map and reconstruction of stimuli by CRFs. 

(A) A snap shot of connectivity map between small populations of 10 cells. Some cells are sharing 

similar CRF features (e.g. C7, C8, and C10 in second column), some cells are containing one unit 

CRF (e.g. C5 in forth column), and some cells are not exhibiting any CRF responses towards parts 

of stimuli (white empty spaces). (B) Temporally organized CRF features. Facilitatory CRFs are 

shown by red frames and suppressive CRFs are shown by blue frames. (C) Stimuli reconstruction: 

Stimuli portions corresponding to each individual CRF are found by the method from Figure 2-7 

and stitched together. Dotted lines will be further populated as the population of cells grow. (D). 

Linear receptive fields (LRFs) of 12 cells extracted from a first order MNE model (h parameter). 

 

2.4.6 Reconstruction of novel stimuli with CRFs 

From the previous section we learned CRFs embody a sufficient amount of information 

about the stimuli. This has encouraged us to test the hypotheses of whether we are able to utilize 

the existing CRFs pool to rebuild portions of novel stimuli. To begin, we obtain 49 novel songs 

which have already been played for the subjects during brain response recordings. These songs are 

considered novel since we have not tested them in our analysis. These novel songs are of different 

lengths and vary from 30s to 90s (Figure 2-9). They were concatenated and divided into 49 equal 

lengths. These 49 song pieces are tested against 646 CRFs. The 646 CRFs are the shared CRFs 

between cells across pool of 3080 CRFs (see sections 2.4.1& 2.4.2)) and they are generated from 
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training set of concatenated three bird songs. These CRFs are tested on each piece of novel stimuli 

separately. Cross correlation has been used, as the prediction model, between 646 CRFs and each 

piece of 49 novel stimuli to find the number of existing CRFs in each piece of novel stimuli (Figure 

2-9). Figure 2-9A displays the 49 novel song spectrograms. Figure 2-9B illustrates the percentage 

of CRFs which exist in the 49 novel stimuli in the form of bar graphs. Existing CRFs and their 

corresponding stimuli portions can be pull out and reconstructed from each bar. Figure 2-9C (top) 

displays an example of the temporally organized CRFs pulled out from a bar related to song portion 

#6. The CRFs corresponding stimuli portions are shown underneath. 

In conclusion, in this section it is proven that our hypothesis is correct and we are able to 

rebuild portions of stimuli for each of 49 novel songs by utilizing rather small pool of CRFs 

generated from 3 songs. The percentage of novel song reconstructions vary from 0.5 % to 4.3 %. 

To increase reconstruction percentage, CRFs should be extracted from a larger training set (larger 

song populations) and be tested on one novel song at a time. 
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Figure 2-9: Reconstructing of novel stimuli from pool of existing CRFs. 

(A) Spectrogram of 49 novel bird songs 30s to 90s long with frequency range 750-12KHz. 

(B) Barographs display percentage of existing CRFs in each pieces of 49 equal length novel song 

(trained on 3 songs and tested on one novel song at a time). (C) Top: Demonstration of 

reconstruction of a portion of a novel stimuli (song # 6) from figure B (indicated by a gray arrow) 

based on existing CRFs. The white regions will be further populated by utilizing CRFs from larger 

training sets (bird songs). Bottom: Corresponding CRF stimuli portions identified and temporally 

organized to rebuild a portion of song#6. 

 

 

2.4.7 Prediction of brain responses by CRFs 

In this section we examine another hypothesis to test whether we can use CRFs as a tool to 

predict brain responses. To create and investigate CRFs properties through this study, we have 

concentrated on the first 20 significant facilitatory and suppressive CRFs. On average, among the 

cells, the first 20 features contain the least amount of noise. In order to predict brain response we 

first need to extract CRFs from the J-matrix. Since the J-matrix design in this study originally has 

320 dimensions (16 freq.*20 time bins) we need to lower its rank to 20 to generate the first 20 

CRFs. Here singular value decomposition (SVD) has been employed to reduce the rank of the J-

matrix. Figure 2-10A displays the original J-matrix (320) and its singular values for a cell. 

Underneath the reduced rank J-matrix from 320 to 20 (J_r) has been shown. By utilizing SVD we 
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first deconstruct the J-matrix then reconstruct it with a reduced set of singular values. The equation 

bellow briefly explains this process. 

                                                      Equation 2 

 

[𝐔, 𝐒, 𝐕] = 𝐬𝐯𝐝(𝐉) 

𝑼(𝟑𝟐𝟎𝒙𝟑𝟐𝟎) ∗ 𝑺(𝟑𝟐𝟎𝐱𝟑𝟐𝟎) ∗ 𝐕′(𝟑𝟐𝟎𝐱𝟑𝟐𝟎)     𝑼(𝟑𝟐𝟎𝒙𝟐𝟎) ∗ 𝑺(𝟐𝟎𝐱𝟐𝟎) ∗ 𝐕′(𝟐𝟎𝐱𝟑𝟐𝟎) 

 

Where: 

S: Singular values (square roots of the eigenvalues in decreasing order)  

U: Left singular vectors 

V: Right singular vectors 

 

After obtaining low rank J (J_r), the below equation is used to predict spike train response. 

Equation 3 

 

Prediction of response (control) =  
𝟏

𝟏+𝒆(𝐚 + 𝐬𝐭𝐢𝐦𝐮𝐥𝐢∗𝐡′ + 𝐬𝐮𝐦 (𝐬𝐭𝐢𝐦𝐮𝐥𝐢.∗(𝐬𝐭𝐢𝐦𝐮𝐥𝐢∗𝐉−𝐫)))    

 

 

Where: a, h, and J_r are belong successively to a constant, linear, and quadratic parameters of 

receptive fields. To examine this prediction equation we first run a control test on it. For this, a 

cell that has responded to three original bird songs with 20 response trials is chosen. Subsequently, 

15 of these trials were used for training and parameters a, h, and J were estimated.  These 

parameters then have been utilized to predict the 5 remaining trial averages (Figure 2-10C). In this 

figure, the black curve demonstrates the trial average of original brain response to one bird song 

(60s) and the red curve is the predicted response. This prediction control test has been conducted 

on 10 cells. The average response prediction range is 65% (Figure 2-10E). 

After testing the reliability of the prediction equation now we aim to predict brain responses 

to 49 novel stimuli. To perform this test, a cell with 49 response trials to 49 novel songs is chosen. 

48 of these trials are used for training and parameters a, h, and J are estimated. Next, these 

parameters are used to test and predict one remaining trial response (Equation 4). 
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Equation 4 

 
Prediction of response for one novel song from 49 novel songs= 

𝟏

𝟏+𝒆(𝐚+𝐨𝐧𝐞 𝐧𝐨𝐯𝐞𝐥_𝐬𝐭𝐢𝐦𝐮𝐥𝐢∗𝐡′+𝐬𝐮𝐦(𝐨𝐧𝐞  𝐧𝐨𝐯𝐞𝐥_𝐬𝐭𝐢𝐦𝐮𝐥𝐢.∗(𝐨𝐧𝐞  𝐧𝐨𝐯𝐞𝐥_𝐬𝐭𝐢𝐦𝐮𝐥𝐢∗𝐉))) 

 

 

Subsequently this prediction process is repeated for all 49 novel responses. Figure 2-10D 

demonstrates the concatenated 49 predicted responses for one cells in red curve versus the 

concatenated original 49 responses for one cell. Finally this test has been conducted on 10 cells. 

In Figure 2-10E the bar graph on the right side displays the range of response prediction for 49 

novel songs across 10 cells. Although the prediction median is about 60%, the predication range 

varies mostly from 25% to 85%. 

This result indicates our hypothesis is correct and we are able to predict brain responses by 

use of CRFs although in a wide range. 
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Figure 2-10: Prediction of brain response by CRFs. 

(A) Reducing rank of J-matrix from 320 to 20.  Left: singular values of J. Right: Full rank J-matrix 

with 320 dimensions (CRFs). (B) Left: Mean square error between (J, J_r) drops after 20 

significant CRFs. Right: Reconstructed low rank J-matrix. (C) Example of a prediction of a cell 

response as a control test based on its response trials (train on 15 trials and test on 5 trials) for 3 

song stimuli. The black curve shown is the original cell response. The red curve is the predicted 

response. (D) Example of prediction of a cell response for 49 novel songs (train on 48 songs and 

test on one song). Repeated predictions of response of all 49 songs concatenated here. Zoom into 

first 100s of the figure has been displayed underneath. (E) Prediction of control response on 3 

known songs compared with the prediction of response for 49 novel songs across 10 cells in box-

plot forms. Prediction of response for control test has median of 65% and prediction of response 

for 49 novel songs has median of 60% with wider range than control test. 
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2.5 Conclusion 

Population coding is a technique to process joint activates of populations of neurons in 

order to represent and reconstruct stimulus. Each individual neuron has a unique distribution of 

output in response to input stimuli however, studies have shown that it is the combination of neuron 

responses, in a population that carry the most  amount of information about the input stimuli ((Wu, 

2002) , (Rieke F. W., 1997) & (Machens, 2004)). 

Although there are studies have been done on this area still we lack the tools to comprehend 

this coding mechanism (Yildiz, 2016) & (Badel, 2008). Recently, we’ve shown that neurons in 

secondary auditory cortical regions of European starling song birds have composite receptive 

fields (CRF) (Kozlov & Gentner, 2016) .In this study we have utilized a population of CRFs as a 

tool to investigate neural population encoding and decoding for first time. 

To generate CRFs from neuron cells Maximum noise entropy model (MNE) has been 

adopted (Fitzgerald, 2011a). The MNE quadratic model has proved most effective compared with 

some of the existing models such as STA, STC, and MID ((Bialek, 2005), (Steveninck, 1988), and 

(Sharpee, 2004)). The MNE model does not have a limitation working with natural stimuli and 

can extract a large number of CRF features from cell responses ((Sharpee, 2004) & (Kell, 2018)). 

By utilizing the MNE model, a large pool of facilitatory and suppressive CRFs are created 

from 154 auditory NCM cells from nine recording sessions across five European starling birds. 

Since high quality CRFs generated from stimuli-locked cells with low noise are preferred, a 

combination of techniques are suggested to remove noisy trials from cells if required ((Van der 

Maaten & Hinton, 2008) & (Ester, 1996)). 

To investigate the decoding and encoding mechanism, first a spatial-temporal map was 
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created from the assembled CRF pool. Spatial term of map is referred to the dorsal-ventral 

organizations of population of 154 cells and temporal term denoted to location of pick activation 

of each CRF with specific part of stimuli. The CRFs spatial-temporal map reveals that neurons are 

encoding stimuli, temporally uniform however their emphasis on of each encoded stimuli portion 

varies. Besides, investigating relationship between similarities of CRFs of cells and the relative 

distances of cells revealed that cells’ relative distances along dorsoventral plan is independent of 

cell response similarities. This suggests stimuli encoding by a population of neurons is independent 

of neuron locations and their topology. 

Besides introducing this novel encoding mechanism, the spatial-temporal map contains 

other remarkable properties. For instance, by counting flat temporal location of CRFs, not only do 

we find the percentage of stimuli encoding for different population sizes but also we are able to 

predict number of cells needed to encode entire stimuli. 

Another property of CRFs found in this study is their ability to practically reconstruct 

stimuli. In this study we have shown CRFs contains a sufficient amount of information about their 

corresponding stimuli portions. This is due to the fact that we captured CRFs by use of a quadratic 

MNE model instead of a linear model. Thus, by monitoring pick activation of CRFs with the 

stimuli, we can locate encoded corresponding stimuli portions to each CRF. With this information 

not only we were able to rebuild and reconstruct stimuli from CRFs for individual cells as well 

their population but also we were able create a connectivity map between these cells population. 

The cells connectivity map have revealed, some cells are sharing similar CRF features, 

some cells are containing one unit CRF, and some cells are not exhibiting any CRF while stimuli 

is presenting. This observation accentuate the fact where a network of neurons, actively process 

part of stimuli and overlook the remaining to avoid over consumption of memory ((Anderson, 
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2004) & (Johnson, 2004)). Moreover, this connectivity map across cells, varying by changes in 

stimuli which this can be indications of cell response flexibility and short-term plasticity ((James, 

1890) & (Pascual, 2005)). 

To push the boundaries of understanding CRF properties further, we have utilized them to 

predict novel stimuli as well as novel brain responses. The result showed novel stimuli can be 

predicated and reconstructed with a fair accuracy, especially if stimuli training set is large enough. 

Likewise, brain responses were predicated and reconstructed with a reasonable accuracy by CRFs. 

Finally, all these facts were tested on both facilitatory and suppressive CRF responses and 

the results have been revealed a similar neural coding mechanisms between both of these 

responses. 

Overall, this study has shown composite receptive fields can be used as a new tool to unlock 

abundant information about neural coding mechanisms in a population of neurons. 
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CHAPTER 3  

Stimulus evoked single units recorded from starlings brain surface 
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3.1 Abstract 

 

The distinctive physical properties of nanostructures such as electrochemical sensing  made 

them attractive materials to be used in different fields of science including neuroscience ((Wise, 

2007); (Chang-Hsiao, 2010); (Amaral, 2013)). In this study platinum nanorods (one-dimensional) 

in the form of surface electrodes have been utilized for electrical recording from the surface of the 

brain. One-dimensional (1D) nanorods are particularly attractive because they can cover a large 

surface area of the cortex, enhanced electric fields at their tips (Banerjee, 2004), and the emergence 

of high-index crystalline facets at their circumference (Shen, 2015) which cumulatively facilitate 

electrochemical interactions. The surface platinum nanorad (PtNR) sites are made by selective 

dealloying (Yoo, 2007), which are aligned on top of metal leads that are bound on a fixable film. 

Before we conduct neural recording, we characterize the PtNR arrays.  They exhibit very low 

electrochemical impedances and high charge injection capacities at various length scales. In 

general, combination of distinctive features such as low impedance, stable and scalable recording 

sites, flexible substrate, and biocompatible materials make PtNR arrays suitable candidates for 

neural recording, especially from the cortical surface. Recording with PtNR microelectrode arrays 

from the surface of the auditory region of song birds, demonstrated brain activity at a cellular 

resolution. Significantly, strong modulations of single cell activities as well as local field potentials 

by auditory stimuli are detected from the cortical surface of the birds. Subsequently, we were able 

to extract composite receptive fields from the recorded single cells on the surface. This 

development paves the way for high fidelity and less invasive brain-machine interfaces, which 

could support devices that operate on the principle of highly efficient electrochemical catalytic 

processes. In addition, thin PtNR microelectrode arrays can be utilized to study sensory receptive 

field mechanisms and their relationship to the stimuli on the surface of the brain. 
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3.2 Introduction 

There are numerous demonstrations that exploit the unique properties of 1D nanowires in 

interfacing with biological tissue at multiple scales including cellular ((Tian, 2010) ; (Liu, 2017)), 

in-vitro cultured tissue (Dai, 2016) as well as in-vivo from intact retina (Hong, 2018) and brain 

tissue (Fu, 2017). However, the unique electrochemical properties of 1D structures have not been 

used in large scale electrodes that can interface with the living brain, partly because of the growth 

of 1D nanowires is carried out at high temperatures ((Wagner, 1964); (Sun, 2018))  that are 

incompatible with flexible substrates that are required for brain interfaces. Fabrication methods 

are readily available to form 1D nanostructures (Greene, 2006) but their applicability to Platinum, 

the most known biocompatible material that is widely used in clinical practice, is yet to be 

demonstrated. Most commonly, 1D Pt nanostructures can be grown by electrochemical deposition 

((Li, 2013), (Liu, 2009), (Li, 2009), (Shui, 2011), (Jin, 2009), and (Tominaka, 2010)) but suffer 

from stability issues. They are also problematic due to toxic ligand additives, metal elements 

and/or isotopes. 

In this study we discuss fabrication of Pt nanorods (PtNRs) on thin and flexible parylene 

C substrates. The selective chemical dissolution of metal alloys technique has been utilized to 

create nanoporous structures (Erlebacher, 2001). High resolution transmission electron 

microscopy (HRTEM) imaging that has been used in this study has demonstrated that the PtNR is 

polycrystalline and porous. Moreover, uniform distribution of the PtNRs across a single 

microelectrode has been visualized by an optical and scanning electron microscope (SEM). 

Following, electrochemical characterizations such as, electrochemical impedance 

spectroscopy, cyclic voltammetry (CV), and voltage transients (VTs) are performed on these thin 

films with 32 microelectrodes. Biocompatibility and the mechanical stability of PtNRs are tested 
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in-vivo by implanting the device in a mouse cortex for 42 days. Histological analysis demonstrated 

near normal neuronal distribution with minimal glial and astrocyte response in the implanted site 

compared to the contralateral site. The explanted device was examined by SEM and showed intact 

PtNRs underneath the adsorbed tissue on the microelectrode.  

To exploit brain electrical recording ability of PtNR microelectrodes , PtNRs array with 32 

electrode sites have been implanted on the surface of the HVC (high vocal center) of European 

starling songs birds as well as zebra finches which possess similar functions in their auditory region 

to that of humans at cellular levels ( (Karten, 2013) & (Harris K. , 2015 )). 

To examine the quality of recording from this new surface electrode array, a commercial 

depth electrode with 16 sites has also been inserted to the HVC area via an open window on the 

surface array. After implanting both the PtNR surface array and depth electrode, neural data was 

recorded from both electrodes simultaneously. Recorded data reveled the PtNR surface electrodes 

are capable of registering action potential waveforms from single cells similar to the control depth 

electrode. The quality of the recorded single cells furthermore were tested by extracting low noise 

composite receptive fields (CRFs) from them. Low noise CRFs usually are generated from cells 

that are stimulus-locked and contain minimum noise. In addition, the local field potential signals 

recorded by all the 48 sites (32 sites of surface array and 16 sites of depth electrode) demonstrate 

that there are more correlation between channels on PtNR surface electrode in comparison to 

channels on depth electrodes. 

This study demonstrates not only that PtNRs are biocompatible and robust but can 

potentially be used as novel microelectrode coatings on chronic implants. They are also capable 

of recording high quality neural data such as LFP, spikes, single cells, multi-units, and composite 

receptive fields from the cortical surface of the brain. Overall, thin PtNR microelectrode arrays 
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highlight the potential for minimally invasive neuroprosthetic applications as well as introducing 

a tool to map and study neural activities and receptive fields on the cortical surface of the brain. 

 

3.3 Method 

3.3.1 Device fabrication and characterization 

The fabrication of the PEDOT:PSS and Pt devices used in the electrochemical benchtop 

tests is similar to previously established protocols ((Ganji, 2018) & (Uguz, 2016)). The fabrication 

process of PtNR-based electrodes extends these protocols and is reported elsewhere (Ganji, 2019).  

An Axioscope Optical microscope and FEI SFEG ultra high-resolution SEM at 10 kV accelerating 

voltage were used to characterize the devices. For TEM characterization, the devices were coated 

with 1μm SiNx protection layer and a 30nm Pt layer and then sliced by a focused ion beam (FIB) 

to view the cross-section of the microelectrodes. EIS was performed using a GAMRY interface 

1000E in 0.01 M phosphate buffer saline (×1 PBS) solution, using a three-electrode configuration, 

i.e., Ag/AgCl electrode as a reference electrode, a large platinum electrode as a counter electrode, 

and the target micro/macro-dot array as the working electrode (Figure 3-1).  

 

3.3.2 Electrophysiology and data acquisition 

These experiments were performed on European starling song birds as well as zebra finches 

under anesthesia. The auditory HVC brain region in song birds which is known to be responsible 

for song production and vocal learning (Brainard & Doupe, 2002), has been targeted for 

craniotomies. The PtNR surface probe is then placed on the HVC after which a 16 channel depth 

probe (NeuroNexus) is slowly lowered into the HVC via an open window on the array. Following, 
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pre-recorded bird songs such as native starling and zebra finch songs were played back for the 

subjects in thirty random trials. The bird songs were recorded at 44.1 KHz. 

Intan RHD2000 (Intan Technologies, Los Angeles, CA) recording system along Open 

Ephys GUI (Black, 2017) or RHD2000 software have been utilized to record electrophysiological 

data from both surface and depth probes. The Intan RHD2000 USB Controller, Flex Adapter 

board, and RHD2116 head stage were serially connected to the probes. Recorded data was sampled 

at 30 kHz with a cutoff frequency 0.01-7.5 kHz. Later this data was divided into two sets by low 

pass filtering under 300Hz and high pass filtering above 300Hz. Spike sorting and clustering was 

performed through KiloSort⁠ program (Pachitariu, 2016). Clusters were then sorted to three groups 

of single unit (SUA), multi-unit (MUA), and noise based on their refractory period (Dayan & 

Abbott, 2000). Clusters with little to no spikes between 0 to 2 ms from the previous spike were 

considered single unit. Clusters containing many spikes with refractory periods less than 2ms were 

considered multi-unit. 

 

3.3.3 Analysis and Statistical Methods 

The spike waveforms in Figure 3-3c and Figure 3-5a are extracted from single unit 

clusters. The red waveforms are averages of 20 uniformly sampled spike snippets. The black 

scales on the lower right of each waveform indicates a 50 µV amplitude. The inter-spike 

intervals (ISI) are the time between succeeding spikes of a neuron. The ISI histogram of spike 

waveforms shown in these figures indicate the distribution of the log of ISI, which can be a 

visual tool to track violation of refractory period and differentiate single cells from multi-unit 

type. Besides extracting waveforms from clusters, we can examine their quality and whether they 

are related to real neural cells or noise. One way to conduct this test is to monitor cell activity in 
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response to stimulus with repeated trials. If a cell response shows any stimulus locking property, 

this can be an indication of an actual cell activity rather than an artifact.  

Figure 3-3d is an example of a recorded cell from the surface of the brain with a stimulus 

locking response over 30 trials. The first row shows the spectrogram of a 28 second native bird 

song stimulus. To create this spectrogram, bird song is converted to spectrograms by use of a 

Matlab spectrogram function with parameters nfft=128, and a Hanning window of nfft with 50% 

overlap. It contains 65 frequency bands in the 0-10KHz range. The second row shows an example 

of one channel (Ch1) raw data in blue. The raw data contains both low and high frequency 

information. The green wave shown underneath is the high pass filtered raw data (Freq.>300Hz) 

and contains spikes. At the bottom of the figure, 30 trials are averaged and a raster plot of spike 

trains in response to 30 song trials are shown in red.  

Figure 3-2e shows a detailed view of 5s from  

Figure 3-3d. In this figure, on the spectrogram plot, a logarithm of power spectrum density 

(PSD) is averaged over 65 spectrogram frequency bands and is shown in black. Underneath in 

black, the average of 65 frequency bands of PSD is calculated for a 5s stimulus. 

 

3.4 Result 

3.4.1 Overview of PtNR Properties 

Figure 3-1 show a picture and a microscope image of the PtNR microelectrodes on flexible 

parylene C. PtNR is polycrystalline and porous, both of which are beneficial for electrochemical 

activity. The optical and scanning electron microscope imaging indicate uniform distribution 

across PtNRs microelectrodes. The thin film fabrication process is high-yield and uniform, 

embodied in overlapping electrochemical impedance spectroscopy (EIS), cyclic voltammetry 
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(CV), and voltage transients (VTs). To demonstrate the biocompatibility and the mechanical 

stability of PtNRs in vivo, the device was implanted on a mouse brain cortex and performed 

immune-histological staining, the result have shown  minimal glial and astrocyte response.  

In total, these results demonstrate the biocompatibility and robustness of the PtNRs as 

novel microelectrode coatings, with potential for chronic implants. 

 

 

Figure 3-1: PtNR microelectrodes on a flexible substrate. 

Right: A picture of implanted PtNR device on starling bird HVC region. The array contains thin 

film parylene C. It is 500nm thick with embedded microelectrodes (Dimeter=50 µm). Left: A 

magnified image of porous polycrystalline structure of Pt nanorods. Each nanorod on average has 

100nm dimeter and 500nm height. 

 

 

3.4.2 Electrical recording 

The superior electrochemical properties of PtNR microelectrodes were exploited in 

recordings from European starling birds and zebra finches which possess similar functional 

organization in their auditory cortex to that of humans (Harris K. , 2015). 

To run the experiments for this study initially a 32 channel PtNRs surface array along with 

a 16 channel depth electrode have been implanted on the HVC brain auditory region of starling 
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birds and zebra finches under anesthesia. Following, auditory stimuli in the form of bird song (e.g. 

birds’ native song) has been played for the birds (Figure 3-2). Figure3-2a-b demonstrate 

schematics of the songbird brain circuit and location of PtNR array implanted on top of the HVC. 

Figure 3-3a-b display 2s of spectrogram of the zebra finch song on top and on the bottom eight 

high-passed filtered data sets. Four of the sets are recorded from surface electrodes in red and the 

other four are recorded from depth electrodes in blue.  

Subsequently, multi-unit and single cells are extracted from this high frequency data. 

Figure 3-2c & Figure 3-5a-b demonstrate a few of the single cell waveforms from the surface array 

in red and depth electrode in blue, recorded from a starling bird and a zebra finch respectively. To 

differentiate between single cells and multi-units, inter-spike intervals (ISI) have been calculated 

for all the recorded cells (Figure 3-2c second row and Figure 3-5a-b, right side). Cells with ISI 

more than 1-2ms have been categorized as single cells. 

Stimulus driven neural response analysis is another method that assist us to segregate real 

neuron cells from noise (Figure 3-2d-e). These figures display an example of a cell with stimulus 

driven neural response. On top 28 seconds of starling bird song spectrogram is shown. Underneath, 

respectively, recorded raw signal is shown in blue while the same signal high pass filtered (>300 

Hz) is displayed in green, the trial average of 30 trial spike trains is illustrated by the red curve,  

and finally the spikes raster plot of 30 trials is displayed in black. This figure, significantly 

demonstrates stimulus-locked modulation of a single cell to auditory stimuli across 30 trial 

responses. These cells have been recorded by a surface implanted PtNR array. 

The magnified view of 5s of Figure 3-2d has been demonstrated in Figure 3-2e. The log of 

power spectrum density (PSD) averaged over 65 frequency bands of bird song spectrogram is 

shown in black on the spectrogram. In the second row, the average of 65 frequency bands of the 
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spectrograms’ PSD is calculated. The third row displays the average of 30 trial responses in red. 

The fourth row is a raster plot of 30 trial responses. Comparing the second, third, and forth row 

curves shows this cell is not only stimulus-locked, but also its average of trials has delayed 

correlation with stimuli power modulations. 

Stimulus-locked character of this cell has encouraged us to examine the possibility of 

extracting composite receptive fields (CRFs) from it (see chapter 2-3 for method). Figure 3-6 

shows the 10 most significant facilitatory receptive fields and 10 most significant excitatory 

receptive fields extracted from this cell. As it is observed, the receptive field images are high 

quality with minimum noise. See section 2-4-5 for more information about CRFs quality. 

 Another valuable piece of information one can obtain from our recordings is local field 

potentials (LFP). The LPF signals from surface array channels and depth array channels are 

extracted by filtering recorded data less than 300 Hz. Correlation between LFP signals of 30 

channels of a surface PtNR array has been tested first (Figure 3-4). The result demonstrates, in 

general, there is high correlation between sites on the surface (r >86%). Subsequently, the 

correlation between LFP signals of 30 surface sites were compared with LFP signals from 10 depth 

sites (Figure 3-5c). The result showed there are high correlation in-between surface LFPs (r=0.8-

1) as well as high correlation in-between depth LFPs (r=0.8-1) but lower correlation exist 

among surface and depth LFPs (r=0.55-0.75). The correlation drops by traveling from cortical 

surface into deep auditory cortex. The correlation coefficients (r) from the HVC surface of the 

brain to 2500 µm deep changes from almost 100% to 55%. 
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Figure 3-2: Recording of stimulus modulated single unit activity with PtNRs in Starling 

songbird experiments. 

a) Auditory stimuli in the form of bird song (e.g. bird own song) is played for European Starling 

bird under anesthesia and neural signals are recorded from HVC auditory area. b) Schematic of 

the songbird brain circuit and location of PtNR array implanted on top of the HVC. c) Example of 

single unit surface spike waveforms (Top) and their corresponding Inter-spike interval (ISI) 

histograms of waveforms (bottom). The red waveforms are averages of 20 uniformly sampled 

spike snippets. The black scales on lower right of each waveforms indicates 50 µV amplitude. d) 

Cell with stimulus driven neural response. The first row demonstrates spectrogram of 28s stimulus 

(bird’s own song). The color from blue to yellow indicate intensity of stimulus power from low to 

high. The second row displays a recorded raw signal (blue). The third row demonstrates same 

signal high pass filtered (>300 Hz) (green). The fourth row shows the trial average of 30 trial spike 

trains. Bottom row is a spike raster plot of 30 trials. e) Magnified view, 5s of stimuli: First row 

shows spectrogram of 5s bird own song. The log of power spectrum density (PSD) averaged over 

65 frequency bands is overlaid in black. Second row is the average of 65 frequency bands of PSD. 

Third row displays the trial average in red. Last row shows raster plot of 5s spike train in response 

to 30 trials showing modulated spiking across trials. 
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Figure 3-3: Example of high passed data for surface and depth electrode. 

a) Spectrogram of the stimulus of a zebra finch song. The black waveform is the log of power 

spectrum density (PSD) averaged over 65 frequency bands of spectrogram. b) Eight high-pass 

filtered time series: Four recorded from surface electrodes in red and the other four are recorded 

from depth electrodes in blue. The black scale bar in bottom right indicates amplitude of 250μV. 

 

 

 
 

Figure 3-4: Similarity map across LFP data of 30 surface electrodes 

30 channels of data first low pass filtered at 300 freq. to extract local field potential (LFP) 

waveforms then the correlation coefficient across the 30 channels LFP are calculated based on 

cross-correlation method. The color bar in right side indicates the most similarity between channels 

(r=1) in bright yellow and less similarity in dark blue (r=0.8). This map shows similarity between 

LFP data of surface channels are high and ranging from r=0.86 to 1. 
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Figure 3-5: Examples of recorded single cell spike waveforms from surface and depth 

electrodes. 

a) Single cells recorded spike waveforms from surface electrode. The red waveforms are averages 

of 20 sampled spike snippets and the scale black bar indicates 50μV in amplitude. Left column are 

waveforms corresponding inter-spike interval (ISI) histograms in red. b) Single cells recorded 

spike waveforms from depth electrode. The blue waveforms are averages of 20 sampled spike 

snippets. Left column demonstrates the waveforms corresponding inter-spike interval (ISI) 

histograms. c) Similarity map across 40 channels of LFP data from 32 surface electrodes and 8 

depth electrodes. The 40 channels data first low pass filtered at 300 Hz to extract local field 

potential (LFP) waveforms then the correlation coefficient across the 40 channels LFP are 

calculated based on cross-correlation method. The color bar in right side indicates the most 

similarity between channels in bright yellow and less similarity in dark blue. This correlation 

matrix demonstrates high correlation in-between surface LFPs (r=0.8-1) as well as high 

correlation in-between depth LFPs (r=0.8-1) but lower correlation among surface and depth 

LFPs (r=0.55-0.75).  d) An illustrations demonstrating example of spike waveforms recorded from 

the surface and depth electrodes. 
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Figure 3-6: Examples of extracted CRFs from a single cell. 

a) 10 most significant facilitatory receptive fields of a single cell. b) 10 most significant excitatory 

receptive fields. This show cells recorded with PtNR are of high quality which enable us to extract 

low noise receptive fields from them. 

 

3.5 Conclusion 

Here in this study we have introduced a highly flexible ECoG array with novel 

electrochemical sensing sites. The PtNR malleable substrate is made of a thin parylene C and the 

embedded microelectrodes are constructed by Pt nanorods. PtNRs array is a promising neural 

interface that can surpass other ECOG micro and nanoelectrodes by incorporation of nanoporous 

structures (Erlebacher, 2001) to the electrode sites. There are studies that have been done to create 

nanostructures in general and Pt nanostructures in particular however, their results were not 

applicable for ECOG prosthetics. The existing nanostructures are mostly require high temperatures 

which made them incompatible with flexible substrates, they have weak physical strength, and 

contain toxic ligand additives ((Wagner, 1964) & (Sun, 2018)). 

PtNR sites made of nonporous structures, as opposed to existing nanostructures, are 

developed by selective chemical dissolution of metal alloys technique (Erlebacher, 2001). The 

PtNR sites are porous, uniformly distributed, biocompatible. In addition, they have very low 

impedances and high charge injection capacities.  
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To inspect thin PtNR microelectrode array ability for neural recording from cortical 

surface, the array was implanted on HVC auditory area of song birds along with a commercial 

depth electrode shank as a control. Statistical analysis on the neural data recorded by PtNR surface 

array demonstrate that the array is able to record action potential from single cells similar to the 

control depth electrode. The recorded cells were stimulus-locked with low noise which promote 

extrication of composite receptive fields for these cells. Furthermore, analyzing local field 

potential signals recorded from both surface array and depth electrode have shown there are high 

correlation in-between surface LFPs as well as high correlation in-between depth LFPs but 

lower correlation exist among surface and depth LFPs. 

 This study demonstrates that PtNRs in general are biocompatible and robust and therefore 

can be used as a unique microelectrode coating on chronic implants. Thin PtNRs microelectrode 

arrays implanted on the cortical surface have shown that they are capable of recording high quality 

neural data from the surface of brain such as LFP, single cells, multi-units, and composite receptive 

fields. In general, PtNRs arrays performance suggest their potential for minimally invasive neuro-

prosthetic applications. Likewise, they can be introduced as novel intermediate tools to assist study 

of neural activities, receptive fields, and their relationship to presented stimuli on the surface of 

brains. 
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CHAPTER 4  

In Vivo dopamine detection and single unit recordings using intra-cortical glassy carbon 
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Figure 4-1: Neural recording  

 

 
Figure 4-2: Dopamine signal detection in vitro 
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Figure 4-3: Dopamine signal \ 

detection in vivo 
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CHAPTER 5  

Epi-Intra device with glossy carbon electrodes: A tool for neural coding 
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5.1 Abstract 

In this study we demonstrate practical applications of an in-house fabricated novel device 

for simultaneous recording from brain cortical surface as well as deep tissue. This device is an 

origami combination of epi-cortical surface array and intra-cortical depth shank (Epi-intra) which 

will unfold during brain implant. The surface array is flexible and will confirm to the brain cortex 

while the depth shank is reinforced for an easy penetration. The electrode sites are made of glassy 

carbon (GC). The GC electrodes are inert, biocompatible, low impedance, with excellent 

electrochemistry sensing properties.  Here we have demonstrated simultaneous electrical recording 

from electrode sites on the surface array as well as the depth shank. The recordings have been 

performed on the auditory region of anesthetized European starling songbirds during playback of 

starling bird songs as auditory stimuli. The Epi-Intra device has demonstrated ability to record 

local field potential (LFP) signals as well as single cells and multi-units from both surface and 

deep brain. Most of the recorded cells are stimulus-locked with low noise.  Electrical recordings 

from this 3D Epi-Intra configuration can be used to investigate relationships between brain 

responses and stimuli from deep brain to the surface or vice versa. To investigate this relationship, 

we first explored correlation between LFP data. The result has shown that traditional LFP signals’ 

correlation does not hold when neurons are far from each other e.g. neurons from surface and deep 

brain. To overcome this limitation here we adopted a non-linear model to extract composite 

receptive fields (CRFs) from individual neuron cells, after which these CRFs can be utilized to 

investigate brain response and stimuli relationship due to the fact that CRFs of neuron cells, unlike 

LFPs’ correlation, are independent of cell location. This fact made CRFs extracted from cells 

recorded by Epi-Intra combinations very good candidates for understanding the relationship 

between sensory neuron responses and their stimuli from deep brain to cortical surface in 3D 
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volumes of tissue. In addition, these CRFs located in the 3D volume can be used as tools for neural 

decoding and encoding of stimulus. 

 

5.2 Introduction 

Here we are explore the excellent electrical recording data of an Epi-Intra device that 

conceivably make this device a potential tool for neural coding from deep brain to cortical surface. 

The Epi-Intra device has a 3D origami shape consisting of an epi-cortical surface array and intra-

cortical depth shank and designed for neural recording from a volume of a brain tissue. 

The depth shank consists four GC recording sites and has been reinforced during fabrication for 

easy brain penetration. On the other hand, the surface array of the Epi-Intra device contains seven 

GC recording sites and a reference on a flexible polymer substrate. These sites are positioned on 

both side of depth shank to insure neural recording from a volume of tissue (Figure 5-3). 

The core extended C-MEMS microfabrication technology that is used for these GC thin-

film devices supported on polymeric substrates is described in detail elsewhere ((Nimbalkar, 2018) 

and (Vomero, 2016)). In summary, the glassy carbon electrodes were fabricated using negative 

photoresist SU-8, which was patterned and pyrolyzed at 1000 °C in an inert atmosphere. 

Subsequently, a layer of photosensitive polyimide (HD Microsystem) was spun and patterned 

onto the electrodes, as a substrate for the subsequent layers. Metals (Cr and Au) were then 

deposited on the substrate to create the conductive traces, and finally a second layer of 

polyimide was spun on the traces to electrically insulate them.  Here, we further extend the 

functionality of this microfabrication technology by incorporating an additional procedure for 

depositing a reinforcing polymer layer that will allow easy penetration of the depth shank into 

brain tissue. 
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The Epi-Intra device has been characterized by different methods. The optical microscope 

and scanning electron microscope (SEM) images on GC microelectrodes indicate uniform 

distribution of glassy carbon before and after implantation (Figure 5-3B) (Vomero, et al., 2017). 

The capacitive charging ability and electrochemical characterization of GC microelectrodes were 

evaluated by cyclic voltammetry (CV), voltage transient (VTs), and electrochemical impedance 

spectroscopy (EIS). The GC penetrating microelectrodes show clear ability to detect 

neurotransmitters such as dopamine (Castagnola, et al., 2018 ). In addition, GC microelectrodes 

exhibit low impedance which make them suitable candidates for neural recordings (Goshi, et 

al., 2018).  Furthermore, biocompatibility and the mechanical stability of GC electrode sites was 

monitored by implanting the Epi-Intra device into cultured fibroblasts cells. The results 

demonstrated this device has a potential for chronic implants and recordings (Vomero, et al., 

2017) . 

To explore the electrical recording ability of Epi-Intra electrodes, the device was implanted 

on the auditory region of anesthetized European starling bird brains. The auditory region of avian 

brains process audio stimuli the same way as humans ((Karten, 2013) & (Harris , 2015)). During 

implantation the Epi-Intra origami configuration the electrode converts to two connected parts of 

surface array and depth shank. The Epi surface array conforms to the curvature of the cortex while 

the Intra depth shank penetrates deep into the brain (Figure 5-3a). Brain signals were recorded 

while audio stimuli, bird songs, were played back for the subjects (Figure 5-2). The recorded data 

from eleven channels were later filtered via low pass (<300Hz) and high pass (300-20KZ) filters 

to determine LFPs and neuron cell action potentials. Figure 5-4 displays high pass data collected 

from channels on the surface as well as deep brain. From these electrical recordings we were able 

to extract robust LFP signals as well as discern single cells and multi-units from both cortical 
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surface and deep brain. The recorded cells are high quality stimulus-locked (Blackwell, 2015) with 

low noise (Figure 5-5a-b). To differentiate between single cells and multi-units, inter-spike 

intervals have been calculated (Figure 5-5c) (Dayan & Abbott, 2000). 

The 3D Epi-Intra configuration proposed in this study can be used to investigate 

relationship between stimulus and its brain responses from deep in the brain up to the cortical 

surface or vice versa. To investigate this relationship, first we explored correlation between LFP 

signals of eleven channels on the surface array and depth shank. The result demonstrated the LFP 

correlations in-between channels decrease from surface to depth for channels further than 1500 

µm (Figure 5-6). This result is consistent with some other new studies ( (Destexhe, 1999) & 

(Bedard, 2004)). In consequence, to avoid the cells’ distance limitation, instead of LFPs we 

concentrated on cell action potentials and their receptive fields (Figure 5-7). 

Recently we have demonstrated that the brain perceives cells’ composite receptive fields 

(CRFs) independent of cell locations and their topology (Vahidi, 2018). Thus concentrating on 

CRFs appear to be a better option than LFPs to investigate stimulus and neural response 

relationship for cells that have long distances for instance deep brain cells relative to surface cells. 

To generate CRFs, Maximum noise entropy model (MNE) has been adopted. The MNE minimal 

model describes the probability of brain responses given a stimulus such as bird song.  This model 

looks for highest mutual information between stimuli and the brain response in the form of 

composite receptive fields at the cellular level ((Fitzgerald , 2011a) & (Kozlov & Gentner, 2016)). 

There are prevailing models which can create receptive fields from neuron cells such as 

spike trigger average which it widely has been used to build linear receptive fields  (De Boer & 

Kuyper, 1968), spike-triggered covariance (Schwartz., 2002), and maximally informative 

dimensions (MID) (Sharpee, 2004). Although these models have provided excessive information 
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about receptive fields, they exhibit limitations such as inability to characterize nonlinear 

information of stimuli (Thunissen, 2000), limitation working with natural stimuli such as human 

speech or bird song ((Schwartz , 2006)& (Eggermont, 1983b)), and limitations identifying large 

numbers of relevant receptive field features with respect to natural stimuli. In contrast, the MNE 

model utilized in this study overcomes most of these drawbacks ((Kozlov & Gentner, 2016), 

(Fitzgerald, 2011a), (Sharpee, 2004) , and (Bialek W. D., 2006)). 

The high quality stimulus-locked cells recorded by the Epi-Intra device have opened the 

opportunity to extract CRFs from them. Figure 5-7a shows examples of ten facilitatory and ten 

suppressive receptive fields generated from one single cell on the cortical surface. Figure 5-7b 

displays Epi-Intra combination electrodes with the example of single cell waveforms from their 

corresponding recording sites on the surface array and depth electrode. Next to each waveform, 

the first extracted receptive field from 20 CRFs have been shown. 

Consequently, following propagation of the CRFs from deep brain to the surface of 

cortex and correlation of them to stimuli can be used as a tool to encode stimuli and decode 

brain response (Vahidi, 2018) in 3D volume of tissue. 

 

 

5.3 Method 

5.3.1 Epi-Intra electrodes fabrication and in–vitro characterization 

Recently we have presented a novel technology for transferring glassy carbon 

microstructures, originally fabricated on a silicon wafer through a high-temperature process, to a 

polymeric flexible substrate such as polyimide ((Sharma, 2018) and (Vomero, 2017)). This new 

transfer technique addresses a major barrier in Carbon-MEMS technology whose widespread use 

has been hampered by the high-temperature pyrolysis process (≥900 °C), which limits selection of 
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substrates. In this new presented approach, patterning and pyrolysis of polymer precursor on 

silicon substrate is carried out first, followed by coating with a polymer layer that forms a hydrogen 

bond with glassy carbon and then releasing the ensuing glassy carbon structure; hence, transferring 

it to a flexible substrate. 

This enables the fabrication of a unique set of glassy carbon microstructures critical in 

applications that demand substrates that conform to the shape of the stimulated/actuated or sensed 

surface. Our findings based on Fourier transform infrared spectroscopy on the complete electrode 

set demonstrate - for the first time - that carbonyl groups on polyimide substrate form a strong 

hydrogen bond with hydroxyl groups on glassy carbon resulting in carboxylic acid dimers (peaks 

at 2660 and 2585 cm-1). This strong bond is further confirmed by a tensile test that demonstrated 

an almost perfect bond between these materials that behave as an ideal composite material. Further, 

mechanical characterization shows that ultimate strain for such a structure is as high as 15% with 

yield stress of ∼20 MPa. We propose that this novel technology not only offers a compelling case 

for the widespread use of carbon-MEMS, but also helps move the field in new and exciting 

directions. 

Next step, we integrate the GC sensing sites into 3D origami-styled platform.  The detailed 

fabrication method of the origami-styled 3D integrated intra-cortical and epi-cortical neural probes 

(Epi-intra) with GC electrode sites is described in detail elsewhere ((Nimbalkar, 2018), (Vomero 

, 2016)). Here we briefly explain the overall method along with the extra processes which are 

added to improve performance of these electrode combinations. The Epi-Intra microfabrication 

process starts by spin-coating SU8 negative photoresist (Microchem, MA) on SiO2 substrate at 

1200 rpm for 55 s. The coated substrate is then soft-baked at 65°C for 10 min, 95°C for 20 min, 

then UV exposed at ~400 mJ cm−2 (Figure 5-1a). Further, post-exposure bake was run at 65°C for 
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1 min and 95°C for 1 min. This was followed by development of SU8 for 3–5 min and curing at 

150°C for 30 min (Figure 5-1b). Pyrolysis was done at 1000°C in an inert N2 environment resulting 

in GC microelectrodes with high graphitic content (Figure 5-1c). After the pyrolysis step, 6 µm 

layer of photo-patternable polyimide HD 4100  (Microsystems) was spin-coated on top of GC 

microelectrodes at 2500 rpms for 45 s, soft baked at 90°C for 3 min and at 120 °C for 3 min, then 

cooled to room temperature, and patterned through UV exposure at ~400 mJ cm−2. Post-exposure 

bake consisted of 80°C for 1 min. Development was performed using a spry-puddle process where 

QZ3501 (Fuji Film, Japan) was dispersed to form a puddle on a stationary wafer. Three rinse steps 

were applied later with SU8 developer followed by spin-drying of the wafer at 2000 rpm for 15 s 

with 500 rpm s−1 stepping ramp. Subsequently, the polyimide layer was partially cured at 300°C 

for 60 min in a N2 environment. An additional thicker layer of polyimide (Durimide 7520) 

(FujiFilm, Japan) was then patterned on top of the insulation layer to reinforce the penetrating 

portion of the device (Figure 5-1d). Following this, metal traces were patterned using lift-off 

process with a sacrificial layer of NR9-1000PY photoresist (Futurrex, Inc). The photoresist was 

spin-coated at 500 rpm for 45 s and ramped down for 10 s, then prebaked for 2 min at 150 °C 

followed by 380 mJ cm−2 UV exposure. Post exposure bake was done at 100 °C for 2 min and the 

sample was developed in pure RD6 developer (Futurrex Inc) for 3 s. Afterward, a 20 nm Ti 

adhesion layer and 200 nm Pt layer were deposited through sputtering (Figure 5-1e). For electrical 

insulation, an additional 6 µm of polyimide HD4100 (300 rpms) was spun, patterned (400 mJ 

cm−2), and cured (350°C for 90 min) in a N2 environment (Figure 5-1f). Additional 30 µm thicker 

layer of polyimide (Durimide 7520, Fuji Film) was spin-coated (800 rpm, 45 s) and then patterned 

(400 mJ cm−2) on top of the insulation layer to reinforce the penetrating portion of the device 

(Figure 5-1g). A final cure was done at 350°C for 90 min. Finally, the device was released from 
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the wafer through selective etching of silicon dioxide layer with buffered hydrofluoric (BHF) acid 

(Figure 5-1h). Finally the released device can be formed to a 3D combination of surface array and 

depth shank (Figure 5-3). 

In vitro Epi-Intra device characterization has been reported elsewhere (Vomero, et al., 

2017). Overall, optical microscope and scanning electron microscope (SEM) method have been 

utilized to image uniform distribution of the glassy carbon microelectrodes (GC) before and after 

device implantation. The capacitive charging ability and electrochemical characterization of GC 

microelectrodes also were evaluated by cyclic voltammetry (CV) and voltage transient (VTs), and 

electrochemical impedance spectroscopy (EIS) and compared with its known Pt counterparts. 

The GC penetrating microelectrodes exhibited lower impedance (3.6 ± 1.2 kΩ at 1 kHz)  than 

their Pt counterparts across the whole frequency range (Goshi, et al., 2018). 

Finally, biocompatibility and the mechanical stability of GC electrode sites was monitored 

by implanting the Epi-Intra device in cultured fibroblasts cells. The results demonstrated the 

percentage of surviving cells progressively increased after third day of post implant on the 

culture and remained constant (Vomero, 2017). 
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Figure 5-1: Epi-Intra electrode fabrication 
(a) Spin-coating SU8 negative photoresist on SiO2 substrate. (b) Patterned photoresist by UV 

exposure. (c) Pyrolysis photoresist to receive GC microelectrodes. (d) Patterned polyimide with 

additional thicker layer of polyimide to reinforce the penetrating portion of the device. (e) 

Patterned metal traces. (f) Electrical insulation by polyimide HD4100. (g) Durimide coating to 

reinforce the depth shank. (h) Released the device from the wafer by buffered hydrofluoric acid 

(BHF). 

 

 

5.3.2 Surgical procedure and electrophysiology 

These experiments were performed on three adult European starling song birds under 

a protocol approved by the Institutional Animal Care and Use Committee of the University of 

California, San Diego. Isoflurane and urethane (7–8 ml/kg) have been used to obtain active 

auditory response while subjects were under anesthesia (Masamoto & Kanno, 2012). Following, 

subjects were placed in a stereotaxic apparatus inside a sound attenuation chamber. A small 

craniotomy was made on Caudomedial Nidopallium (NCM) auditory area and the dura was 

removed. Subsequently, Epi-Intra electrode combinations were advanced into the brain at the 

coordinate of 500-1000 µm caudal and 500-1000 µm lateral on right side of Y-sinuous. Intra depth 
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electrode was lowered 2500µm deep until Epi surface array touched and conformed onto the 

cortex. Following, five starling bird songs were played 20 times randomly for the subjects. The 

songs were played randomly to prevent stimulus selectivity by subjects (Yaneri & Manuel, 2013). 

These bird song stimuli were recorded from starling males at 44.1 thousand samples/s and played 

back for the subjects at 60dB. Figure 5-2 displays this recording paradigm. While bird song stimuli 

was playing for the anesthetized birds in a sound chamber, the neural data was recorded from 

eleven channels of Epi-Intra electrodes: Seven channels recorded signals from brain surface and 

four channels recorded signals from depth brain. The data was amplified by an amplifier system 

(A-M model 3600) with a gain of 5K, sampling rate of 20 KHz, and then low and high pass filtered 

respectively at 10HZ and 10KHZ. The recorded data was then converted to Matlab files. 

Two control recordings were completed with a 32 channel commercial depth electrode 

(NeuroNexus A1x32-Edge-10mm-20-177). This depth electrode sites have 20µm spacing with a 

177 µm2 surface area and are made of iridium. 

The recorded data then was divided onto two data sets. By filtering data less than 300 Hz, 

we have received local field optional (LFP) signals and by filtering data above 300 Hz, we have 

received high frequency data that is used for cell sorting. To extract cells from high frequency 

data, MountainSort program has been utilized. This program is a clustering algorithm which works 

with high-dimensional data to sort neuronal cells (Chung, 2017). Following, the clusters containing 

noise have been disregarded and the sorted neural cells were grouped to single cells and multi-

units. The signal processing analysis in this study have been performed in MATLAB software 

(Mathworks, USA) and python. 
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Figure 5-2: Neural recording paradigm by Epi-Intra device. 

The bird songs are playing for the starling birds while recording system records from surface 

(Intra) and depth (Epi) electrodes simultaneously. Recorded channels then are amplified 5K and 

filtered at 10Hz-10KHz. Location of Epi-Intra implant on brain has been demonstrated here. 

 

 

 

5.4 Result 

5.4.1 Epi-Intra electrodes and in-vivo characterizations 

Figure 5-3 displays Epi-Intra electrodes fabricated for this study which has the ability to 

unfold to combination of a surface ECoG array and a depth laminar shank with total eleven GC 

recording sites and a reference. Seven GC sites are separated into two parts by the depth shank 

(Figure 5-3a). The two surface arrays in both sides of depth shank will increase the chance of 

recording from a broader area of the cortex. Also their combination with the depth shank will cover 

a 3D volume of brain tissue which is necessary for this study. The intra depth shank contains four 

GC sensing sites on a reinforced polyimide shank. The depth shank is 3 mm long and 0.5 mm 

wide. The sites in both arrays have 30 µm diameters with a center to center pitch of 100 µm. 

After implanting the Epi-Intra electrodes, in-vivo characterization has been performed. 
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Optical and scanning electron microscope (SEM) images of the device proved the intact uniform 

distribution of the glassy carbon microelectrodes during chronic recording (Figure 5-3b). 

The GC penetrating microelectrodes did not exhibit a significant change in impedance 

before or after implantation. In-vivo cyclic voltammetry (CV) and voltage transient (VTs) 

measured from depth electrode sites have been conducted during neural recording from starling 

birds. The results demonstrated neurotransmitter sensing such as dopamine with reduction and 

oxidation of (−0.17 V) and (+0.63 V) peaks respectably. 

 

 

 

Figure 5-3: Epi-Intra device. 

(a) Left: Flat configuration of Epi-Intra device before implanting. Epi surface array contain seven 

GC sites and one reference site. There are four sites on both right and left side of depth shank.  

Intra depth shank consists four sites. Right: Unfold configuration of Epi-Intra device ready for 

implantation. (b) Zoom into a glassy carbon sensing site. 

 

5.4.2 Statistical analysis of electrical recordings 

Not only the novel properties of GC electrodes have been shown viable for chemical and 

neurotransmitter detection but furthermore GC electrodes on Epi-Intra device have shown 
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exceptional electrical recording potential during recording from the auditory area of starling bird 

brains. 

Figure 5-4 displays an example of high pass signals of eleven channels recorded 

simultaneously from the surface of the brain by the Epi array in red and from deep brain by the 

Intra shank in blue. On top, a spectrogram of a 15 second bird song is displayed which 

demonstrates modulation of bird song power over time across twenty frequencies. The color bar 

next the song spectrogram is indication of the song power intensity. 

By analyzing this high pass data we have detected multiple clusters of single cells as well 

as multi-units. Figure 5-5b demonstrates example waveforms of a few single cells that are recorded 

by GC electrode sites from surface and deep brain. To differentiate between single cells and multi-

units, cells inter spike intervals (ISI) have been calculated. Cells with ISI more than 1-2ms have 

been categorized as single cells (Dayan & Abbott, 2000). Figure 5-5c displays example of ISI 

related to two single cell waveforms recorded from deep brain and surface. 

Figure 5-5a right and left are two raster plots which belong to the above two single cells. 

The top rows show a 70s and 75s sonogram, amplitude modulation, of two bird song stimuli. 

Second rows are a spectrogram of these bird songs with nfft=128 and Hanning window of 128 

with 50% overlap. Third rows display 20 trials of spike trains and the fourth rows are the averages 

of these 20 trials. These plots provide evidence that the cells are significantly stimulus- locked 

which is an indication they are auditory neurons with minimum noise recorded from both deep 

brain and cortical surface. 

To examine the Epi-Intra3D configuration as a possible tool for neural coding we first 

attempted to investigate LFP signals’ cross-correlation recorded by surface channels and depth 

channels. Figure 5-6 is demonstrates the correlation matrix between seven surface channels and 
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four depth channels. Seven Epi and four Intra channels are indicated by red and blue brackets 

respectively. This correlation matrix demonstrates that although there are high correlation in -

between surface Epi channels and in-between Intra depth channels, the correlation is relatively 

low among surface and depth channels. In fact cross-correlation across channels decrease when 

distance between channels are more than 1500µm.This finding agrees with other investigations 

such as ((Destexhe, 1999) & (Bedard, 2004)). 

To validate the Epi-Intra device as a tool for neural coding and to overcome the 

limitations related to cells relative distances and their locations, we purpose investigation of 

composite receptive fields of neuron cells (CRFs) with this device. In a recent study we have 

shown that the brain perceives CRF of neurons with uniform distribution, independent of the 

neurons’ location and their topology (Vahidi, 2018). 

To extract high quality composite receptive fields from neuron cell responses, the cell 

responses should be stimulus-locked with low noise ((Kozlov & Gentner, 2016) and (Vahidi, 

2018)). Since the recoded cells by Epi-Intra device exhibit such properties, we should be able to 

extract CRFs from them. 

To generate CRFs from the recorded cells, Maximum noise entropy model (MNE) has been 

adopted ((Fitzgerald, 2011a) & (Kozlov & Gentner, 2016)). This model generates receptive fields 

from mutual information between neuron cells response and their stimuli.  Stimuli spectrogram 

power density and the neuron cells response average over 20 trials are two inputs of the MNE 

model. To build stimuli spectrograms power density, first bird songs were down-sampled to 24 

KHz, the DC part of signal is removed, and the adjacent 64 frequencies are averaged pairwise 

twice to receive 16 frequency bands with band ranges of 750Hz-12KHz (Nyquist frequency).  

Time bins have been down-sampled similar to frequency to extract 20 bins. Following, the power 
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spectral density (PSD) of the spectrogram is extracted (Figure 5-5a second row). To construct the 

neuron cell response, an average of 20 trial responses for each cell have been calculated (Figure 

5-5a fourth row). These two data sets were then divided to sets of test and train and have been 

pushed to the MNE logistic model (Equation 5). 

Equation 5 

P(Response|Stimuli) =    (1 + e𝑓(𝑠) )
−1

 

The polynomial equation 𝑓(𝑠) = (𝑎 + ℎ. 𝑠 + 𝑠𝑇𝐽𝑠) has been minimized and parameters a, 

h, and J have been estimated. Where a, h, and J correspond respectably to the constant, linear part, 

and quadratic part of receptive field features. The quadratic J contains eigenvalues and 

eigenvectors. CRFs shown in Figure 5-7a are extracted from a single surface cell and they are built 

from twenty eigenvectors of J-matrix that are significant. Significant eigenvectors have the highest 

(positive) or lowest (negative) probability of occurring on the logistic MNE function. 

Furthermore, negative and positive eigenvectors correspond to facilitatory and suppressive CRFs 

successively (Figure 5-7 top and bottom). This analysis was performed on all the stimulus-locked 

cells for this study and have generated twenty CRFs per cell. 

Figure 5-7b displays an Epi-Intra electrode combination with the example of cell 

waveforms on their recorded sites on the surface array and depth electrode. Next to each 

waveform, the first extracted receptive field from 20 CRFs is shown. 

From this map we can follow propagation of the facilitatory and suppressive CRFs of 

many cells from deep brain up to the surface of cortex independent from neuron locations in 

3D volume of brain tissue. Finally, the control commercial electrodes (NeuroNexus A1x32) and 

the Epi-Intra device have been compared. The results showed action potential waveforms and 

their extracted receptive fields recorded from NCM auditory area by both of these recording 
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devices are comparable. 

 

 

Figure 5-4: Example of high passed data recorded by Epi-Intra electrodes. 

Top: Spectrogram of 15 second bird song. The color bar on right indicates power intensity of the 

song. Bottom: Surface recorded channels are shown in red (Epi) and depth recorded channels are 

displayed in blue (Intra). 
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Figure 5-5: Single cells recorded from cortical surface and deep brain by Epi-Intra device. 

(a) Right: Example of a stimulus-locked single cell recorded from cortical surface. Top row: 75s 

sonogram of bird song. Second row: Spectrogram of this bird song with nfft=128 and Hanning 

window of 50% overlap. Third row: Raster plot of 20 trial of spike trains. Forth row:  Averages of 

the 20 trials. Left: Example of a stimulus-locked single cell recorded from deep brain in response 

to a different 75s bird song. (b) Example of waveforms of a few single cells recorded from surface 

and deep brain. Each waveform contains twenty spike snippets (light gray). The spike snippets 

averages have been shown in a red waveforms. Scale of amplitude of waveforms are shown in 

vertical black bars. (c) Example of ISI of the two single cells. Cells with ISI more than 1-2ms have 

been categorized as single cells. 

 

 



97 

 

 
 

Figure 5-6: Correlations between Epi-Intra LFP signals. 

Cross-correlation between low-pass filtered signals (>300Hz) recorded by surface channels and 

depth channels: Seven Epi and four Intra channels have been pointed by red and blue brackets 

respectively. The color bar indicates the cross-correlation intensity between channels. This 

correlation matrix shows high correlation in-between surface LFPs as well as high correlation 

in-between depth LFPs but low correlation among surface and depth LFPs. 
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Figure 5-7: Cells and their composite receptive fields mapping on Epi-Intra device. 

(a) Example of 20 CRFs extracted from a single surface cell. Top: 10 significant facilitatory CRFs. 

Bottom: 10 significant suppressive CRFs. (b) Epi-Intra electrode combination with example of 

cell waveforms assigned on their recorded sites on the surface array and depth shank. Next to 

each waveform, the first extracted receptive field from 20 CRFs are shown. (c) Sonogram and 

spectrogram of a bird song stimulus. This CRF map projected on Epi-Intra device can be used 

as a tool to encode stimuli in 3D volume of tissue. 

 

 

 
5.5 Conclusion 

Among the cells in our body, neuron cells have the ability to propagate signals rapidly 

between themselves over large distances. One technique to understand this neuron signal 

propagation mechanism and their relationship with the stimuli is neural coding ((Brown, 2004), 

(Johnson, 2000), and (Vahidi, 2018)). In this study we introduce an origami style brain prosthesis 

device that can unfold to a combination of a surface ECoG array and depth shank during brain 
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implantation. This 3D style brain recording platform has the ability to cover recordings from a 

volume of tissue: from deep brain to the cortical surface. The origami nature of the device made it 

a suitable candidate for studying neural signal propagation and neural coding in 3D volume of 

brain tissue. 

We have named this origami style device “Epi-intra”. The Epi part made of a flexible 

polyimide polymer that can conform to the cortex curvature while the Intra depth shank has been 

reinforced for easy brain penetration. The electrochemical sensing sites of Epi-Intra are made of 

glassy carbon (GC). GC has shown high potential for use in neural applications ((Wang, 2010), 

(Lin, 2008), (Kassegne, 2012), (Martinez-Duarte, 2011), (Martinez-Duarte, 2010), 

(Hirabayashi, 2014), and (Vahidi , 2014)). In recent studies we have shown not only the GC 

sensing sites are chemically inert and biocompatible with low impedance ((Goshi, 2018), 

(Vomero, 2017)), but also they are able to clearly record neurotransmitters such as dopamine 

(Castagnola, 2018 ). 

The unique properties of GC electrodes are not only limited to chemical and 

neurotransmitter sensing, as the GC electrodes on the Epi-Intra device have shown novel electrical 

recordings in this study while recording from auditory area of starling bird brains. From these 

recordings we were able to determine LFP signals as well as high quality stimulus-locked auditory 

single cells from both deep brain and cortical surface. 

To investigate the signal propagation mechanism and their relationship with the stimuli, 

first the correlation between the LFP signals were monitored. The result has shown, although 

there are high correlation in-between surface Epi channels as well as in-between Intra depth 

channels, the overall correlation is relatively low among surface and depth channels due to the 

large distance between cells on the surface and at depth. 
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To be able to scrutinize the Epi-Intra device as a tool for neural coding and also to 

overcome the limitations related to cells large distances and their overall topology we have 

purposed investigation of composite receptive fields of neuron cells. In a recent study we have 

demonstrated that the brain perceives composite receptive fields of neurons with uniform 

distribution independent of the neurons’ distance, location and, topology (Vahidi, 2018). 

The stimulus-locked properties of recorded cells by the Epi-Intra device make them viable 

candidates for CRFs extraction. Maximum noise entropy model generates CRFs from stimulus-

locked neural responses by searching for the highest mutual information between stimuli and the 

brain response in the form of CRFs ((Fitzgerald, 2011a) & (Kozlov & Gentner, 2016)). By utilizing 

the MNE model we have extracted CRFs from the cells and subsequently categorized them to 

facilitatory and suppressive responses. Finally, these facilitatory and suppressive CRFs are mapped 

to their recording sites on the Epi-Intra device. 

 From this map we can follow propagation of facilitatory and suppressive CRFs of many 

cells from deep brain to the surface of the cortex independent of neuron locations in a 3D 

volume of brain tissue. Consequently, we are suggesting the Epi-Intra device as a tool for future 

study of stimuli encoding and brain responses decoding in 3D volume of tissue. In addition, this 

device has a potential for chronic implants and recordings and can be used as BCI prosthetics. 
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CHAPTER 6  

Conclusion and Discussion to the Dissertation 
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Among the cells in our body, neuron cells have the ability to propagate signals rapidly 

between themselves over large distances. One technique to understand these neurons signal 

propagation mechanism and their relationship with the stimuli is population neural coding  

((Brown, 2004) & (Johnson, 2000)). Neural Population coding is a technique to process 

populations of neurons responses to input stimuli. Each individual neuron has a unique distribution 

of output in response to input stimuli however studies have shown that it is the combination of 

neuron responses, in a population, that carry the most  amount of information about the input 

stimuli ((Wu, 2002) , (Rieke, 1997), and  (Machens, 2004)). Although studies have been done in 

this area still we lack the tools to comprehend the population coding mechanism (Yildiz, 2016) & 

(Badel, 2008). Recently, we have shown that neurons in secondary auditory cortical regions of 

European starling song birds have composite receptive fields (CRF) (Kozlov & Gentner, 2016). 

In this study we investigated neural population encoding and decoding by CRFs for the 

first time. To begin, we have generated a population of 3080 CRFs from 154 cells recorded from 

the auditory brain region of European starling songbirds. To generate CRFs from neuron cells, 

Maximum noise entropy model (MNE) has been adopted (Fitzgerald., 2011a).  The MNE 

quadratic model has proved most effective compared with some of the existing models such as 

STA, STC, and MID ((Bialek , 2005), (Steveninck, 1988), and (Sharpee, 2004)). The MNE model 

does not have a limitation working with natural stimuli and can extract a large number of receptive 

field features from cell responses ((Sharpee, 2004) & (Kell, 2018)). 

To investigate the decoding and encoding mechanism active in a population of cells, first 

a spatial-temporal map was created from 154 cells and their 3080 assembled CRFs along the 

coronal depth plane of the subject brains in respect to bird song stimuli. This spatial-temporal map 

revealed novel information such as: 1) natural bird song can be encoded by populations of neurons. 
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2) Number of cells needed to encode the stimulus can be quantified. 3) This encoding mechanism 

and subsequently perception of sound by the brain appeared to be uniform and independent of cell 

locations. 4) Through this map, connectivity between cells as well as their plasticity in response to 

diverse stimuli can be obtained. 5) Furthermore, in this study, we demonstrated CRFs can be 

utilized as intermediate tools to reconstruct stimuli and predict brain responses. 

Investigation of spatial-temporal maps of CRFs from cells recorded from the deep brain 

inspired us to further scrutinize neural coding and propagation and distribution mechanisms of 

CRFs on the brain surface. To be able to record high quality stimulus-locked cells from cortical 

surface, we have introduced a novel ECOG array which is made of a highly flexible parylene 

substrate with recording sites made of platinum nanoscale rods (PtNR). PtNRs are biocompatible 

and robust. Thin PtNRs microelectrode arrays implanted on the cortical surface have shown that 

they are capable of recording high quality neural data from cortical surface such as LFP, single 

cells, multi-units, and composite receptive fields. Thus, ECOG PtNR arrays can be used as a 

potential tool to create a 2D CRFs spatial-temporal map on the cortical surface to investigate neural 

coding and information distribution mechanisms on the brain surface. 

In the past two experiments we demonstrate neural coding by depth shank and surface 

arrays independently. In our third experiment we attempted to combine the surface and depth 

electrodes in one device (Epi-Intra). This novel origami style device contains a polyimide flexible 

surface array and reinforced depth shank which unfold during implantation in the brain.  The 

recording sites on surface array and depth shank are homogenous and made of glassy carbon 

(GC). GC sites are inert, biocompatible, and offer low impedance ((Vomero, 2017) & (Goshi, 

2018)). Electrical recordings from this device demonstrated its’ potential to record high quality 

LFP, single, and multi-unit stimulus-locked cells from both cortical surface and deep brain 
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simultaneously. Furthermore, in this study we have demonstrated the GC sites not only have 

unique potential to record high quality signals from bird brains but also are able to clearly record 

neurotransmitters such as dopamine (Castagnola, 2018 ). The pool of CRFs extracted from these 

stimulus-locked cells can be used in a future study to create a 3D spatial-temporal map that 

encompasses a volume of tissue from cortical surface to deep brain. 

Overall, in this study, we have introduced composite receptive fields as a new 

computational tool for neural coding and investigation of brain information distribution 

mechanisms. Applying this computational tool to brain signals recorded via devices such as PtNR 

surface arrays and Epi-Intra combinations will not only expand our knowledge of neural coding, 

neural information distribution, and perception mechanism from deep brain to cortical surface, but 

also for possible application as BCI prosthetics. 
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