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Abstract

Long‐term landslide deformation is disruptive and costly in urbanized 
environments. We rely on TerraSAR‐X satellite images (2009–2014) and an 
improved data processing algorithm (SqueeSAR™) to produce an 
exceptionally dense Interferometric Synthetic Aperture Radar ground 
deformation time series for the San Francisco East Bay Hills. Independent 
and principal component analyses of the time series reveal four distinct 
spatial and temporal surface deformation patterns in the area around 
Blakemont landslide, which we relate to different geomechanical processes. 
Two components of time‐dependent landslide deformation isolate continuous
motion and motion driven by precipitation‐modulated pore pressure changes
controlled by annual seasonal cycles and multiyear drought conditions. Two 
components capturing more widespread seasonal deformation separate 
precipitation‐modulated soil swelling from annual cycles that may be related 
to groundwater level changes and thermal expansion of buildings. High‐
resolution characterization of landslide response to precipitation is a first 
step toward improved hazard forecasting.

Plain Language Summary

In an ever‐expanding urban environment, we opt to live with the risk of 
catastrophic natural hazards through a perceived safety net of building 
codes and engineering solutions. Unfortunately, our concern for these 
hazards is often focused on their immediate impact to our everyday lives and
does not account for imperceptible processes that may become significant 
over decades in time. Notoriously, some landslides slowly and continuously 
deform, ultimately causing costly unpredicted damage to homes, lifelines, 
and other infrastructure. Recent advances in satellite technology allow us to 
accurately measure these long‐term movements, tracking where and when 
they occur. We show that the duration and amount of seasonal precipitation 
and associated water pressure changes determine how fast the landslides 
move and how recent drought conditions have slowed their advance. The 
satellite data allow us to differentiate the landslide deformation from normal 



seasonal changes in unaffected areas, giving us greater predictability of this 
hazard.

1 Introduction

Interferometric Synthetic Aperture Radar (InSAR) time series analysis allows 
for remote detection and characterization of ground surface displacements 
with subcentimeter precision and accuracy and tens of meters of spatial 
resolution (Bürgmann et al., 2000), making it particularly suitable for the 
study of active slow‐moving landslides (Colesanti & Wasowski, 2006; Tofani 
et al., 2013; Wasowski & Bovenga, 2014). Its application has been shown to 
successfully track seasonally modulated landslide deformation (Handwerger 
et al., 2013). In the San Francisco East Bay Hills (EBH), previous analyses of 
InSAR data sets from different satellites over several periods between 1992 
and 2006 (Hilley et al., 2004; Quigley et al., 2010) focused on defining the 
spatial extent of known active landslides, resolving consistent average 
downslope displacement rates (~25–39 mm/year), and revealing the average
time lag between maximum winter precipitation and peak landslide velocity 
(~1–3 months).

It is well understood that pore pressure is the primary driving factor of 
landslides (Terzaghi, 1950) and seasonal slide rate changes are tied to 
precipitation‐driven transient pore pressure increases (Iverson & Major, 
1987). Without sufficient characterization of subsurface conditions to 
quantify pore pressure changes, we rely on a simple 1‐D diffusion model to 
infer pore pressure changes from precipitation and characterize their 
seasonal and long‐term effects on ground motion. We produce InSAR time 
series with substantially improved temporal resolution and an enhanced 
analysis algorithm (SqueeSAR™) to capture the full spatiotemporal response 
patterns of ground deformation to annual precipitation cycles and multiyear 
drought conditions for the Blakemont landslide (BLS) in the northern EBH. In 
doing so, we expose the underlying dynamics of the observed deformation 
by adopting a statistical signal processing approach to isolate the processes 
which add up to the observed deformation without a priori constraints.

The EBH are a northwest trending, uplifted block of Jurassic to Tertiary 
sedimentary, volcanic, and metamorphic rocks, folded in a synclinal form 
during regional transpression, beginning 1–2 million years ago (Graymer, 
2000) and are now largely overlain by Quaternary colluvial and alluvial 
deposits. The BLS has been well described (Bishop et al., 1973; Dibblee, 
1980; Graymer et al., 1994; Kropp & Lettis, 2002; Seidelman & Deane, 1994)
as a very slow‐moving, earthflow‐type landslide complex (Cruden & Varnes, 
1996) of approximately 0.88 km2. It is composed of highly expansive clays 
and sandy clays to depths of approximately 3 m, underlain by gravels, clays, 
and clays with rock fragments. Deeper landslide debris (8 to ~22 m) are 
composed of mixtures of hard blocks from the Franciscan Complex bedrock 
within a weaker sheared matrix of clay and shale. Independent estimates of 
landslide depth and subsurface investigations (Text S1 and Figure S1 in the 



supporting information) concur that active deformation is distributed within 
the upper ~10 m of the slide mass with displacement occurring along 
distinct shear zones (Kropp & Lettis, 2002). The active slide mass exhibits 
typical hummocky topography and springs in predevelopment air photos 
from the 1930s (Figure S2). The BLS now affects nearly 135 property parcels,
causing structural damage to homes and regularly disrupting underground 
utilities.

Landslide mobility in the EBH is primarily driven by a wet microclimate from 
local orographic precipitation (Beaty, 1956; Gilliam, 2002). Precipitation rates
are strongly seasonal, with little rainfall between May and October (Nilsen & 
Turner, 1975). The precipitation data for this study were gathered at the 
Lawrence Berkeley National Laboratory, at the southeast end of our study 
area. The average seasonal precipitation since 1974 is 76.5 cm but was 
above average during the winter months of 2010 and 2011 with 84 and 94 
cm, respectively. During the period of 2012–2014, California experienced 
extreme drought conditions (Seager et al., 2015), reflected in cumulative 
precipitation of only 48 cm during the winter season of 2013/2014.

Seismic shaking from nearby faults may also be expected to trigger 
accelerated landslide displacements (Keefer & Johnson, 1983; Lacroix et al., 
2014), although a clear relationship between seismicity and landslide activity
has yet to be established in the EBH. The right‐lateral strike‐slip Hayward 
fault (HF) traverses the head of each major landslide in our study area, and 
has the potential for an Mw 7.0 event (Chaussard et al., 2015; Field & 2014‐
WGCEP, 2015). While Hilley et al. (2004) suggest that an HF Mw 3.9 event in 
December 1998 induced downslope displacements, no evidence of 
seismically induced landslide displacements could be determined in our time 
series analysis from an Mw 4.0 event in March 2012, located only 2 km 
northwest of the first. Furthermore, no evidence of accelerated 
displacements was documented due to any of the large historic earthquakes 
in the region, since 1868 (Figure S1).

Here we investigate the controls of observed time‐dependent deformation at 
the BLS through an independent component analysis (ICA) of InSAR time 
series. We use 119 German Aerospace Center (DLR) TerraSAR‐X (TSX) 
satellite scenes (Eineder et al., 2009) collected along descending track 38 
from 2009 to 2014, with repeat pass cycles as short as 11 days (Text S2, 
Figure S3, and Table S1 in the supporting information). Using functional 
curve fitting (FCF) and principal component analyses (PCAs), we establish 
that four modes of temporal and spatial variabilities exist in the observed 
surface ground motions, which are tied to annual and multiyear precipitation 
cycles. ICA allows us to optimally separate these four spatiotemporal 
patterns and their contributions to the original signal. We illustrate the utility 
of these methods by relating the observed patterns of ground motion to the 
underlying driving mechanisms of slope displacement, specifically isolating 
precipitation‐correlated landslide deformation that is directly linked to time 
dependent pore pressure changes.



2 Methods

2.1 InSAR Processing

The high spatial resolution of InSAR, particularly that of X‐band imagery in 
urbanized environments, makes it a valuable tool for monitoring the details 
of mm‐scale surface deformation of slow moving (<20 mm/yr) landslides 
(Wasowski & Bovenga, 2014). InSAR time series represent a record of 
change in radar signal return phase over time, mostly reflecting the change 
in line‐of‐sight (LOS) distance (range) between the ground surface and the 
radar platform. Persistent or permanent scatterer InSAR time series analysis 
techniques are based on finding pixels whose amplitude and/or phase 
properties are stable through time (Ferretti et al., 2001; Hooper et al., 2012).
The algorithm SqueeSAR™ (Ferretti et al., 2011) relies on a statistical test 
(two‐sample Kolmogorov‐Smirnov) to partition image pixels into PSs with 
stable amplitude properties and coherent signal phase and additional phase‐
stable distributed scatterers. Here the PSs are processed in the manner 
described in Ferretti et al. (2001), and the distributed scatterers are 
integrated in the same processing chain taking into account their different 
statistical behavior (Ferretti et al., 2011), thus increasing the measurement 
point (MP) density (6,228.1 MP/km2) by roughly 1 order‐of‐magnitude (Figure 
S4) from that shown in Hilley et al. (2004).

For each MP, a deformation time series is produced from the 119‐scene data 
stack, using 118 interferograms with respect to a central reference image 
(Figure S3) and a stable reference point, located southwest of the BLS on the
roof of a large three‐story building (lat: 37.90747°, lon: −122.29453°). While 
the reference point was selected in an area that is consistently stable with 
low‐amplitude signal throughout the time series, the measured signal in all 
MPs inherently includes its background temporal variability. Atmospheric and
other noise sources were mitigated as described in Ferretti et al. (2001).

2.2 Analysis of Time‐Dependent and Precipitation‐Modulated Deformation

In order to reveal the different seasonal and long‐term transient 
spatiotemporal patterns within our data, we use a combination of signal 
processing analysis methods that are detailed in Text S3. For a first‐order 
estimate of the temporal periodicity and amplitude of the observed time 
series, we apply the linear sum of several a priori functions to fit the MP time 
series (FCF) within and around the BLS. To separate the spatial patterns of 
dominant long‐term, seasonal, and other common‐mode variations in the 
surface deformation field without assuming functional forms of their time 
dependence, we apply both PCA and ICA.

Temporal‐mode PCA (Richman, 1986) finds the linear transformations, or 
principal components (PCs), that best fit the maximum variance in a set of 
variables. The result is a set of uncorrelated PCs ordered by the percentage 
of variance explained and limited by an orthogonal basis which captures the 
variance most efficiently but may also miss and mix some part of the data 



trends. In contrast, ICA maximizes the statistical independence of an 
arbitrary number of independent components (ICs), to fit different spatial 
patterns and temporal functions (Gualandi et al., 2017). The result is a set of 
optimized ICs that describe the underlying data trends, but the ideal number 
of ICs and their order of importance are not defined. Therefore, we utilize 
both methods in a complimentary fashion, to determine the number and 
rank of necessary components (by PCA) and to optimally describe the data's 
spatiotemporal patterns (by ICA).

Results of the component analyses are presented as eigenvalue (or 
coefficient) time histories for each PC or IC, corresponding to the variance or 
the independence of that component and the magnitude of its contribution 
at each time step. These are plotted alongside a corresponding score map of 
all MPs, illustrating the spatial variability of each component and 
corresponding to its contribution to the original data at that point. The 
product of the score value of each MP by the scaled eigenvalue at any given 
time gives the contribution of that component in deformation units at that 
time.

3 Results

3.1 Velocity Field and Background Signals From InSAR Analysis

Figure 1 illustrates the average MP LOS velocities across the EBH with 
respect to the reference point. The data reveal the active portions of 
historically mapped landslides, ~5 mm/yr of shallow aseismic slip along the 
NW‐trending HF (Chaussard et al., 2015; Shirzaei & Bürgmann, 2013) and 
settlement of man‐made landfill along the San Francisco Bay coastline to the
west. Using the LOS velocity field, we determine the spatial extent of active 
EBH landslides by clusters of MPs (>10) with velocities exceeding the mean 
velocity of the study area by one standard deviation (<−2 mm/yr LOS). 
While the resulting active slide areas generally match previously mapped 
slide masses (Hilley et al., 2004; Kropp, 1995; Quigley et al., 2010), we find 
that the improved MP density resolves the landslide boundaries and 
displacement fields in much greater detail (Figure S1).



Figure 1

TerraSAR‐X mean line‐of sight range‐change velocity map of the East Bay Hills area obtained from the 
SqueeSAR™ analysis, showing motion relative to the reference point (Ref). The positive values (blue 
colors) show motion toward the satellite (i.e., uplift or eastward movement), and the negative values 
(red colors) show motion away from the satellite (i.e., subsidence or westward movement).

Without at least three independent LOS observations, it is not possible to 
resolve the three‐dimensional sense of landslide motion (Delbridge et al., 
2016). However, an estimate of the magnitude of actual ground 
displacement can be made by assuming a downslope orientation of landslide
motion. Downslope velocities ranging between 27 and 39 mm/yr are 
obtained (Text S2 and Figure S5), roughly −3.9 times the LOS displacement 
and similar to previous studies. While there are few quantitative 
measurements of motion prior to the 1990s, it appears that the landslides 
have moved at comparable rates for many decades (Kropp, 2010; Kropp & 
Lettis, 2002).

3.2 Time‐Dependent Surface Displacements From FCF, PCA, and ICA

Figure 2 summarizes the results of the ICA, using four components (IC1–IC4),
which optimally isolate the major spatial and temporal trends underlying the 
deformation time series. We initially identify these controlling modes of 
variability on and off the active BLS (mapped in Figure 2a, right) through a 
combination of FCF and PCA. FCF highlights three first‐order trends showing 
seasonally precipitation‐modulated accelerations of landslide displacement 



with a 30–40 day lag (Figure 2a, left, red triangles and black squares), a 
multiyear deceleration in the same landslide deformation caused by the 
onset of regional drought conditions in 2012, and a notably cyclic 
background seasonal signal in all MP time histories revealed by the average 
off‐landslide motion (Figure 2a, left, blue triangles). Using temporal‐mode 
PCA, we are able to determine that these first‐order trends are best captured
by four uncorrelated PCs that account for ~91% of the signal variance. 
Ultimately, we apply ICA to optimize these four spatiotemporal patterns into 
statistically independent ICs which we describe here. A detailed description 
of the FCF and PCA results is included in Texts S4 and S5, respectively.

Figure 2

 (a) (left) Functional curve fitting results for the Blakemont landslide (BLS) of average “ON landslide” 
(red triangles), “OFF landslide” (blue triangles), and “CORrected (ON‐OFF) landslide” (black squares) 
displacement time histories. (right) line‐of sight velocity map of the BLS area with the “active” BLS 
deposit defined by measurement point velocities <−2 mm/yr. (b–e) independent component analysis 



results for the BLS showing eigenvalue time series for each independent component scaled by the 
percent nonzero eigenvalues retained (left, circles) and their corresponding score maps (right). 
Precipitation (solid black lines) is shown in the left panels as total cumulative (a), water‐year 
cumulative (October–September) (b and c), or daily rates (d and e).

Figures 2b–2e describe the ICA results for the BLS, showing eigenvalue time 
series for each IC (left, circles) plotted against precipitation (left, solid lines) 
and their corresponding score maps (right). For clarity and comparison, each 
score map has been normalized by its relative maximum and factored into 
the eigenvector (IC) time series. The time series have also been corrected for
the percentage of data explained (~95.7%). As such, the product of the MP 
score values and their corresponding eigenvalues (ICs) in Figure 2 will return 
the contribution of each component in deformation units (mm). Using less or 
more components, we find that parts of the different signals are either 
superimposed or result in less distinct time series and featureless score 
maps in the extra components.

Independent components 1 and 2 (Figures 2b and 2c, respectively) show 
positive scores on the BLS, indicating downward and westward 
displacements (negative eigenvector slope), with negligible contribution from
points outside the BLS footprint. IC1 describes a nearly linear deformation 
time history with no seasonal variability, while IC2 describes seasonal 
accelerations directly correlated to peak seasonal precipitation rates, and a 
reduction in displacement rate with the onset of the drought in 2012. The 
combination of these two components and their score maps returns the 
same average displacement time series describing precipitation‐modulated 
landslide motion as the “corrected” (black squares) curve from the FCF 
analysis (Figure 2a). To better illustrate both spatial and temporal seasonal 
variations in the BLS velocity field, we plot the velocity time history along a 
100 m wide swath (Figure 2a, right) against the rate of precipitation (Figure 
3). Spatial variations in the velocity field clearly show which portions of the 
slide remain active throughout (e.g., ~320 m), while others slow or stop. 
Figure 3 also captures the response time of displacement to precipitation for 
different parts of the landslide (30–40 day lag) and the significance of 
drought effects since 2012, with shorter periods of landslide activity 
sometimes slowing to a halt (e.g., 500 to 600 m).



Figure 3

Time series of spatial variability in the velocity field along a 100 m wide swath from top to bottom 
(Figure 2a, right) of the Blakemont landslide (BLS), reconstructed from independent components 1 and
2. Animation S1 shows the velocity time history for all measurement points on the BLS.

The IC3 and IC4 score maps describe a broadly distributed signal, both on 
and off the BLS (Figures 2d and 2e, respectively). The eigenvector time 
series describe seasonal deformation with precipitation‐modulated ground 
displacements, where positive slopes (in combination with the positive score 
values) describe uplift/eastward motion (toward the satellite). While the 
eigenvector time series in IC3 shows a positive correlation to seasonal 
precipitation that is highly sensitive to the peak periods of precipitation, IC4 
shows a positive correlation to the rate of precipitation with a phase lag from
IC3 of approximately 3–4 months.

It becomes evident that while the processes in IC3 and IC4 are best 
described by the phase and amplitude of their seasonal deformation with 
precipitation rates, IC1 and IC2 are landslide processes controlled by 
transient pore pressures acting within the slide body and best described by 
their rates of change. Assuming that the rate of precipitation controls the 



surface boundary condition for pore pressure, we define a one‐dimensional 
solution for the diffusion equation (Handwerger et al., 2016) as a function of 
depth and time (Text S6). Based on the velocity time series and a maximum 
depth of sliding (~15 m), we estimate a first‐order value of diffusivity (~1.5 
× 10−6) and calculate a transient pore pressure time history at established 
active depths of sliding ~6 m (Figures S10–S11).

A cross‐correlation analysis of the IC eigenvector time series with 
precipitation rates and transient pore pressures quantifies the observed 
seasonal effects on surface deformation (Figure 4). Combining IC1 and IC2, 
we reconstruct a landslide deformation time series and compare the rate of 
surface deformation with transient pore pressure at ~6 m (Figure 4a) and 
the rate of precipitation (Figure 4b). The cross‐correlation between the rate 
of IC1 + IC2 and modeled pore pressure is positive with zero lag. The cross‐
correlation between the rate of IC1 + IC2 and the rate of precipitation 
illustrates the delayed seasonal response of landslide displacement, with a 
positive lag of 44 days. Due to its sensitivity to peak precipitation events, the
correlation between the rate of IC3 deformation and the rate of precipitation 
(zero lag) masks its underlying behavior. Cross‐correlating the IC3 
eigenvector time series with precipitation (Figure 4c) reveals that it is also 
strongly correlated to seasonal onsets with upward movement occurring as 
long as precipitation persists, followed by a drawn‐out recovery through the 
dry season. The 66–77 day lag coincides well with the onset of the dry 
season approximately 2–3 months after peak seasonal precipitation. IC4, on 
the other hand, reveals a positive correlation to precipitation with only an 11 
day lag, suggesting that it is more directly tied to the timing and amount of 
precipitation (Figure 4d).



Figure 4

Results of the cross‐correlation (right, bars) between the independent component (IC) eigenvector time
series (left, solid), transient pore pressures P(t) (left, dashed), and precipitation rates (left, dotted). The
rate of IC1 + IC2 describing changes in landslide velocity is (a) positively correlated to transient pore 
pressures with zero lag and (b) positively correlated to precipitation with a 44 day time lag. 
Deformation described by (c) IC3 is positively correlated to seasonal precipitation with a 66–77 day 
lag, and (d) IC4 is positively correlated to precipitation with an 11 day lag.

4 Discussion

The dense SqueeSAR™ MP coverage in our study area accurately documents 
several surface deformation features in the EBH including the spatial extent 
of active landslides (Figures 1and S1). Our goal is to separate the spatial and
temporal patterns of dominant long‐term, seasonal, and other common‐
mode variations of displacement and to isolate the responsible processes. 
The ICA does this by maximizing the independence of components such that 
they must represent different spatiotemporal patterns. We find that seasonal



precipitation is the primary factor in modulating deformation on and off the 
BLS. The spatial distribution of motions across the landslide body vary 
(Figure 3 and Animation S1 in the supporting information), illustrating the 
heterogeneous nature of the slide mass, supporting its characterization as an
earthflow type slide complex and capturing its spatially variable response to 
precipitation‐modulated transient pore pressures in IC1 and IC2.

The broadly variable spatial distribution of IC3 and IC4 (Figures 2d and 2e) 
suggests that their seasonal signal is tied to general soil and hydrological 
deformation processes. We propose that IC3 is primarily tied to shrink‐swell 
cycles of surficial soils that are sensitive to both the amount and occurrence 
of precipitation (Ng et al., 2003; Rosenbalm, 2013). A reversal in surface 
deformation is tied to the end of each wet season, when evapotranspiration 
begins to drive progressive shrinking. In contrast, the eigenvector time 
history in IC4 illustrates ground surface deformation directly correlated to 
the rate of precipitation with a short lag time and little variability during dry 
months (Figure 4d). While we have no concurrent groundwater level data for 
the observation period, groundwater levels in the EBH can fluctuate by 
several meters (Kropp & Lettis, 2002; Seidelman & Deane, 1994) and we 
interpret this component as the poroelastic response to shallow 
precipitation‐driven groundwater‐level changes (Chaussard et al., 2014). 
Alternatively, IC4 is also strongly anticorrelated with seasonal temperature 
variations. Thermal expansion of buildings, including the reference point, 
during warm summer months may contribute to this component but is likely 
to be small.

The TSX deformation time series reveal the direct response of landslide 
motion to short‐term, seasonal, and multiyear changes in precipitation. While
their processes are mechanically related, IC1 and IC2 (Figures 2b and 2c) 
isolate the sensitivity of landslide‐related ground displacements to these 
climate‐driven cycles. We observe three distinct temporal trends. First, IC1 
(Figure 2b) reflects continuous creep deformation unaffected by seasonal 
variations at an average LOS rate of −3.5 mm/yr. Next, IC2 (Figure 2c) 
demonstrates both longer‐term and seasonal landslide velocity changes. A 
distinct reduction in the average IC2 velocity occurs in 2012, quantifying the 
effects of drought conditions on slide displacement (Bennett et al., 2016). As 
EBH seasonal precipitation decreases from ~90 to ~60 cm, average LOS 
rates slow by ~2 mm/yr (~75%). IC2 also quantifies the sensitivity of the BLS
to seasonal precipitation, where precipitation enhanced LOS rates reach −8 
mm/yr during peak wet seasons and slow or stop during peak dry seasons. 
Combined, IC1 and IC2 closely match the corrected “on‐slide” time series 
(Figure 2a), with parts of the landslide coming to a halt during the fall of 
2012 and 2013 (Figure 3). We find that a simple model of time‐dependent 
pore pressure diffusion can explain the nonlinear relationship between 
precipitation and seasonal deformation captured by IC1 and IC2 in the ICA of 
the TSX time series.

5 Conclusions



A series of signal processing methods (ICA, PCA, and FCF) performed on 
InSAR time series from 2009 to 2014 of the EBH provides unique insight into 
the mechanisms driving observed ground surface displacements in the area 
of the BLS. Through FCF analysis we identify and correct for mean seasonal 
deformation observed away from the BLS, revealing an underlying trend of 
annually accelerated landslide displacements. Through PCA and ICA we 
separate four independent spatiotemporal components of the deformation, 
illustrating different geomechanical processes on and around the landslide. 
The first two components capture the sensitivity of landslide deformation 
rates to annual and long‐term climate conditions. We observe a slowdown of 
landslide movement associated with the onset of severe drought conditions 
in 2012, and seasonal precipitation‐modulated landslide deformation with an 
~44 day lag. The correlation of landslide motion and precipitation at variable
time scales is well explained by a simple model of time‐dependent pore 
pressure diffusion. On and off the landslide we characterize two additional 
components of broadly distributed and spatially heterogeneous seasonal 
deformation, associated with the shrink/swell cycle of near‐surface soils and 
a combination of annual groundwater heave processes and thermal 
expansion of structures. The ability to differentiate and quantify these 
processes to the extent illustrated is a significant advancement toward 
predicting the magnitude and spatiotemporal distribution of seasonal ground
deformation in slow‐moving landslides.
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