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Abstract

Modeling, estimation and control of distributed parameter systems:
application to transportation networks

by

Sébastien Blandin
Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

The research presented in this dissertation is motivated by the need for well-posed math-
ematical models of traffic flow for data assimilation of measurements from heterogeneous
sensors and flow control on the road network.

A new 2×2 partial differential equation (PDE) model of traffic with phase transitions is
proposed. The system of PDEs constitutes an extension to the Lighthill-Whitham-Richards
model accounting for variability around the empirical fundamental diagram in the congestion
phase. A Riemann solver is constructed and a variation on the classical Godunov scheme,
required due to the non-convexity of the state-space, is implemented. The model is vali-
dated against experimental vehicle trajectories recorded at high resolution, and shown to
capture complex traffic phenomena such as forward-moving discontinuities in the congestion
phase, which is not possible with scalar hyperbolic models of traffic flow. A corresponding
mesoscopic interpretation of these phenomena in terms of drivers behavior is proposed.

The structure of the uncertainty distribution resulting from the propagation of initial
uncertainty in weak entropy solutions to first order scalar hyperbolic conservation laws is
characterized in the case of a Riemann problem. It is shown that at shock waves, the
uncertainty is a mixture of the uncertainty on the left and right initial condition, and the
consequences of this specific class of uncertainty on estimation accuracy is assessed in the
case of the extended Kalman filter and the ensemble Kalman filter. This sets the basis
for filtering-based traffic estimation and traffic forecast with appropriate treatment of the
specific type of uncertainty arising due to the mathematical structure of the model used,
which is of critical importance for road networks with sparse measurements.

As a first step towards controlling general distributed models of traffic, a benchmark
problem is investigated, in the form of a first order scalar hyperbolic conservation law. The
weak entropy solution to the conservation law is stabilized around a uniform solution us-
ing boundary actuation. The control is designed to be compatible with the proper weak
boundary conditions, which given specific assumptions guarantees that the corresponding
initial-boundary value problem is well-posed. A semi-analytic boundary control is proposed
and shown to stabilize the solution to the scalar conservation law. The benefits of introduc-
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ing discontinuities in the solution are discussed. For traffic applications, this method allows
us to pose the problem of ramp metering on freeways for congestion control and reduction of
the amplitude of the capacity drop, as well as the problem of vehicular guidance for phantom
jam stabilization on road networks, in a proper mathematical framework.
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Chapter 1

Introduction

Human activities have historically evolved toward increased spatio-temporal concentra-
tion, leading to significant efficiency and economic gains. In 2007, about half of the global
GDP was generated by 22 percent of the population living in the largest 600 cities [80]. By
2025, the 600 largest cities are expected to account for 60 percent of the global GDP, and
25 percent of the world population.

Higher density of population and activities requires more efficient infrastructure devel-
opment. The emergence of recurring traffic congestion in large cities world wide in the recent
decades illustrates the growing impact of negative externalities caused by increased demand
for scarce resources managed by outdated infrastructure and non adaptive systems. Traffic
congestion in the US and in Europe for the year 2009 amounts to about 1 percent of their
GDP, in terms of wasted time and fuel [195]. Moreover, about half of the congestion is
typically due to non-recurrent events, and not to a systemic lack of capacity.

In the context of individual vehicles operated by human drivers with limited abilities
and imperfect information, traffic phenomena exhibit the behavior of a nonlinear system, in
which spatio-temporal discontinuities commonly arise, and in which rare events can cause
large disruptions to the nominal behavior. Notable examples include the formation of queues
in traffic flow, and panic waves in crowds. These properties, among others, make traffic
modeling challenging and highlight the need for joint use of information from physical as-
sumptions, statistical analysis, and field measurements.

Traffic monitoring research is concerned with modeling traffic phenomena, estimating
real-time and future traffic conditions, and designing preventive and reactive control mech-
anisms. This dissertation is motivated by the need for novel mathematical techniques for
modeling, estimation and control algorithms, able to take advantage of the deluge of new
traffic data types and increased adaptivity and robustness requirement of smart infrastruc-
ture.
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1.1 Motivation

Historically, sensing infrastructure has been dominated by static sensors collecting ag-
gregate information on the traffic state. In particular, availability of counts and occupancy
from loop detectors has strongly steered research towards traffic models based on these quan-
tities. In the last decade, the spread, democratization, and rapid increase in the number of
smart phones with rich communication capabilities and wide sensing abilities has revolu-
tionized the field of traffic sensing, and allowed the consideration of complex problems and
systemic issues at unprecedented scales [115].

As illustrated by pilot projects such as the Mobile Millennium [19] and the Mobile Mil-
lennium Stockholm [2], collection of anonymized individual sub-sampled trajectories could be
considered a valid substitute to the installment and maintenance of fixed sensing infrastruc-
ture in the future. In the Bay Area, the Mobile Millennium system receives several millions
data points from GPS devices and GPS-enabled smart phones daily. A comparable volume
of data is received from loop detectors (see Figure 1.1). Fundamental differences between
these two data types are related to their spatial coverage, their noise statistics, and their
usability for traffic monitoring.

Figure 1.1: Traffic data collection in the Bay area.
Left: loop detector locations at which count and occupancy are measured. Right: one day of GPS
point speeds collected by the Mobile Millennium system.
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Wide availability of traffic measurements collected along individual trajectories, i.e. in La-
grangian coordinates, and from personal multi-purpose sensing devices with specific con-
straints and error characteristics present new opportunities and challenges for traffic mod-
eling and estimation, among which the design of models able to account for heterogeneous
behaviors, the design of transparent estimation methods and robust control algorithms able
to perform efficiently in the context of uncertain error propagation in complex systems.

Classical traffic models are based on flow and density information, and consists of mod-
eling the average driver, or the average of drivers. This paradigm has provided reasonable
results, and significant insights on traffic behavior at a macroscopic level. GPS measurements
from individual drivers allow the observation of different driving behaviors and require the
design of novel traffic models able to account for macroscopic phenomena resulting from the
interaction of heterogeneous agents.

The field of estimation is concerned with the construction of estimates that best rep-
resent a process of interest. With the multiplication of the number of traffic sensors, the
growing complexity of sensors and data processing algorithms, the need for estimation meth-
ods able to properly account for error propagation increases. The choice of congestion control
algorithms is also driven by the need to provide optimality guarantees in the presence of un-
known error given the increasing volume of data used for the computation of the control
variables.

This dissertation is centered on hyperbolic partial differential equations methods com-
bined with filtering techniques from estimation theory and stabilization approaches for dy-
namical systems. Relevant introductory material pertaining to these different fields is pre-
sented in the following sections.

1.2 Hyperbolic conservation laws

1.2.1 A brief history of hyperbolic conservation laws

The conservation principle is one of the most fundamental modeling principles for phys-
ical systems. Statements of conservation of mass, momentum, energy are at the center of
modern classical physics. For distributed dynamical systems, this principle can be written in
conservation law form with the use of partial differential equations (PDE). The problem of
well-posedness of the partial differential equation is concerned with the existence, uniqueness,
and continuous dependence of the solution to the problem data [89].

First existence results for scalar conservation laws in one dimension of space date back
to [180]. For hyperbolic systems of conservation laws in one dimension of space, existence
results were provided in [101] with the introduction of the random choice method. Existence
and uniqueness in the scalar case for several spatial dimensions were proven in [141], and to
this date constitute the only general results known on well-posedness for several dimensions
of space. Uniqueness for n × n hyperbolic systems of conservation laws in one-dimension
of space was shown only recently in [40]. Existence results can also be obtained using the
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techniques developed in [40]. The global well-posedness of solutions to hyperbolic systems
of conservation laws in several dimensions of space is still a largely open problem.

Hyperbolic systems of conservation laws have been extensively applied to the modeling
of physical systems. In the following section, we present seminal macroscopic traffic flow
models based on hyperbolic systems of conservation laws.

1.2.2 Review of macroscopic traffic models

Macroscopic traffic modeling provides description of traffic phenomena as a continuum
of vehicles, instead of modeling individual vehicle dynamics. Macroscopic traffic models are
historically inspired from constitutive models for hydrodynamics systems, which share prop-
erties with traffic flow.

First order scalar models of traffic.

Hydrodynamic models of traffic go back to the 1950’s with the work of Lighthill,
Whitham and Richards [159, 189], who proposed the first model of the evolution of ve-
hicle density on the highway using a first order scalar hyperbolic partial differential equation
(PDE) referred to as the LWR PDE. Their model relies on the knowledge of an empirically
measured flux function, also called the fundamental diagram in transportation engineering,
for which measurements go back to 1935 with the pioneering work of Greenshields [107].
Numerous other flux functions have since been proposed in the hope of capturing effects
of congestion more accurately, in particular: Greenberg [106], Underwood [216], Newell-
Daganzo [71, 177], and Papageorgiou [221]. The existence and uniqueness of an entropy
solution to the Cauchy problem [198] for the class of scalar conservation laws to which the
LWR PDE belongs go back to the work of Oleinik [180] and Kruzhkov [141], (see also the
seminal article of Glimm [101]), which was extended later to the initial-boundary value prob-
lem [15], and specifically instantiated for the scalar case with a concave flux function in [153],
in particular for traffic in [205]. Numerical solutions of the LWR PDE go back to the semi-
nal Godunov scheme [103, 156], which was shown to converge to the entropy solution of the
first order hyperbolic PDE (in particular the LWR PDE). In the transportation engineering
community, the Godunov scheme in the case of a triangular flux is known under the name
of Cell Transmission Model (CTM), which was brought to the field of transportation by
Daganzo in 1995 [71, 72] (see [150] for the general case), and is one of the most used discrete
traffic flow models in the literature today [48, 74, 126, 160, 174, 181, 220].

Set-valued fundamental diagrams.

The assumption of a Greenshields fundamental diagram or a triangular fundamental
diagram, which significantly simplifies the analysis of the model algebraically, led to the
aforementioned theoretical developments. Yet, experimental data clearly indicates that while
the free flow part of a fundamental diagram can be approximated fairly accurately by a
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straight line, the congested regime is set valued, and can hardly be characterized by a
single curve [219]. An approach to model the set-valuedness of the congested part of the
fundamental diagram consists in using a second equation coupled with the mass conservation
equation (i.e. the LWR PDE model). Such models go back to Payne [183] and Whitham [223]
and generated significant research efforts, but led to models with inherent weaknesses pointed
out by del Castillo [78] and Daganzo [73]. These weaknesses were ultimately addressed in
several responses [13, 181, 230], leading to sustained research in this field.

The following sections are focused on the mathematical theory of scalar and non-scalar
traffic flow models.

1.2.3 Scalar models of traffic flow

Classical scalar models of traffic consider the traffic state at a point x at time t to be
fully represented by the density ρ(t, x) of vehicles at this point. The evolution of the density
of vehicles can be modeled by a combination of physical principles, statistical properties,
and empirical findings. All the models considered in this section are single-lane single-class
models of traffic.

Continuous models

A classical state equation used to model the evolution of the density ρ(·, ·) of vehicles on
the road network is the LWR PDE [159, 189], which expresses the conservation of vehicles
on road links:

∂tρ+ ∂xQ(ρ) = 0 (1.1)

where the flux function Q(·), assumed to be space-time invariant on limited space-time
domains, denotes the realized flux of vehicles with the density ρ, at the stationary state.
The flux function, or fundamental diagram, is classically given by an empirical fit of the
relation between density and flow. It can be equivalently given by an empirical fit V (·)
of the relation between density and space-mean speed, which allows us to define the flux
function as:

Q(ρ) = q = ρ v = ρ V (ρ),

where the central equality is a definition of the flow q. A variety of parametric flux functions
can be found in the literature. One of the earliest flux functions is the Greenshields flux
function [107] or quadratic flux function (represented in Figure 1.2, left), which expresses a
linear relationship between density and speed, or equivalently a quadratic relation between
density and flow:

Q(ρ) = vmax ρ

(
1− ρ

ρmax

)
(1.2)

where vmax denotes the free-flow speed and ρmax the jam density. The Newell-Daganzo flux
function [72, 177] or triangular flux function, represented in Figure 1.2, center, is a piecewise
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linear function of the density, with different slopes in free-flow and congestion:

Q(ρ) =

{
ρ vmax if ρ ∈ [0, ρc]

ρc vmax
ρmax−ρ
ρmax−ρc if ρ ∈ [ρc, ρmax]

(1.3)

where ρc denotes the critical density, which represents the density at which the realized
flow is maximal. The speed of backward moving waves in congestion is given by w =
vmax ρc/(ρc − ρmax). Variations on a flux function based on an exponential relation between
density and flow [158, 182], parameterized by a, such as the one represented in Figure 1.2,
right, can be found in the literature:

Q(ρ) = ρ vmax exp

(
−1

a

(
ρ

ρc

)a)
. (1.4)

The interested reader might also consider the Greenberg fundamental diagram [106] or the
Van-Aerde fundamental diagram [217].
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Figure 1.2: Fundamental diagrams.
Greenshields (left), triangular (center), exponential (right).

Remark 1.1. The LWR PDE models the evolution of traffic flow on a road segment with
uniform topology. A junction is defined by a change of topology (crossing, number of lanes,
speed limit, curvature, etc) on a road segment, which requires specific efforts for physical
consistency and mathematical compatibility with the link model. A junction can be modeled
as a vertex of the graph representing the road network. To each vertex is associated an
allocation matrix A, where aij expresses the proportion of the incoming flow from link i
going to link j. For uniqueness of the solution of the junction problem, different conditions
have been considered in the literature: for instance maximizing the incoming flow through the
junction [60, 72] or maximizing a concave function of the incoming flow [116]. A formulation
using internal dynamics for the junction [149] has been shown to be equivalent to the vertex
models for merge and diverge junction. The interested reader is referred to the book from
Garavello and Piccoli [97] for more details on the junction problem.
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For traffic applications, given an initial condition ρ0(·) defined on a stretch [0, L], using
the LWR model requires solving the associated Cauchy problem, defined as the problem of
existence and uniqueness of a solution to the LWR PDE with initial condition ρ0(·). If the
initial condition is piecewise constant (which is the case for many numerical approximations)
and self-similar1, the Cauchy problem reduces to the Riemann problem (see Section 5.3.2).

For numerical computations, it is in general necessary to discretize the space of inde-
pendent variables. The corresponding numerical schemes applied to the continuous models
described in this section can themselves be understood as discretized link models.

Discretized link models

Given a discretization grid defined by a space-step ∆x and a time-step ∆t, if we note
ρni the discretized solution at i∆x, n∆t and Cni the cell defined by Cni = [n∆t, (n+ 1) ∆t]×
[i∆x, (i+1) ∆x], the discretization of the LWR PDE using the Godunov scheme [103] reads:

ρn+1
i = ρni +

∆t

∆x

(
qG(ρni−1, ρ

n
i )− qG(ρni , ρ

n
i+1)
)

(1.5)

where the numerical Godunov flux qG(·, ·) is defined as follows for a concave flux function
Q(·) with a maximum at ρc:

qG(ρl, ρr) =


Q(ρl) if ρr ≤ ρl < ρc

Q(ρc) if ρr ≤ ρc ≤ ρl

Q(ρr) if ρc < ρr ≤ ρl

min(Q(ρl), Q(ρr)) if ρl < ρr

(1.6)

The Godunov scheme is a first order finite volume discretization scheme commonly used for
numerical computation of weak entropy solutions to one-dimensional conservations laws such
as the LWR PDE [156]. The design of the Godunov scheme dynamics (1.5) results from the
following steps:

1. At time n∆t, for each couple of neighboring cells Cni , Cni+1, compute the solution to
the Riemann problem defined at the intersection of cells Cni , Cni+1, by the left datum ρni
and the right datum ρni+1.

2. At time (n + 1) ∆t, on each domain {(n+ 1) ∆t} × [i∆x, (i+ 1) ∆x] compute the
average of the solution of the Riemann problem. Specifically, integrating the LWR
PDE on the domain Cni , ∫∫

Cni

(
∂ρ

∂t
+
∂Q(ρ)

∂x

)
dxdt = 0 (1.7)

1A function f of n variables x1, . . . , xn is called self-similar if ∀α > 0 ∈ R, f(αx1, . . . , α xn) =
f(x1, . . . , xn).
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and applying the Stokes theorem on Cni to this equality yields:

∆x ρn+1
i +

∫ (n+1) ∆t

n∆t

Q(ρ(t, i∆x))dt−∆x ρni −
∫ (n+1) ∆t

n∆t

Q(ρ(t, (i+1) ∆x))dt = 0, (1.8)

where we note ρn+1
i the space average of the solution to the Riemann problems on

{(n+ 1) ∆t}× [i∆x, (i+ 1) ∆x]. Since the solution to the Riemann problems are self-
similar (see footnote 1), hence constant at i∆x and (i+ 1) ∆x, if we note respectively
Q(ρni−1, ρ

n
i ), Q(ρni , ρ

n
i+1) the value of the corresponding flow at these locations over the

interval [n∆t, (n+ 1) ∆t], we obtain:

∆x ρn+1
i −∆x ρni = ∆tQ(ρni−1, ρ

n
i )−∆tQ(ρni , ρ

n
i+1),

which is the dynamics equation (1.5) of the Godunov scheme.

The first step of the Godunov scheme is exact whereas the second step, through averaging,
introduces numerical diffusion (see [156] for more details). The consequence of this diffusion
on estimation is further discussed in Section 5.4.

Remark 1.2. It must be noted that grid-free algorithms allow the computation of numerical
solutions of scalar conservation laws without numerical diffusion [39], with a higher complex-
ity in general. In the case of transportation, some algorithms have be shown to be exact for
specific fundamental diagrams and particular initial and boundary conditions [58, 59, 167,
225].

The Godunov scheme has been shown to provide a numerical solution consistent with
classical traffic assumptions [150] and to be equivalent to the supply-demand formulation for
concave flux functions with a single maximum. In the case of a triangular flux function (1.3),
the Godunov scheme reduces to the CTM [71, 72]:

qG(ρl, ρr) = min

(
ρl V, ρc V, ρc V

ρmax − ρr
ρmax − ρc

)
.

Modeling capabilities of macroscopic traffic flow models can be extended by considering
non-scalar models, presented in the following section.

1.2.4 Non-scalar models of traffic flow

Non-scalar models of traffic flow consider additional state variables and additional phys-
ical principles to model traffic states. One of the first non-scalar traffic flow models is the
Payne-Whitham model [183, 223]:{

∂tρ+ ∂xq = 0

∂tv + v vx +
c20
ρ
∂xρ = V (ρ)−v

τ
.

(1.9)
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The first equation expresses the conservation of vehicles, and the second equation models the
evolution of speed, which is subject to convection, anticipation, and relaxation (respectively
second and third left-hand side terms of second equation, and right-hand side term of the
second equation).

The EKF has been applied to networks2 for state and parameter estimation [221, 222],
with the following discretization of the Payne-Whitham model (1.9):

ρn+1
i = ρni + ∆t

∆x

(
qni−1 − qni

)
vn+1
i = vni + ∆t

∆x
vni
(
vni−1 − vni

)
+ ∆t

τ
(V (ρni )− vni )− c20 ∆t

τ∆x

ρni+1−ρni
ρni +κ

qni = ρni v
n
i

(1.10)

where κ is a regularization parameter and the function V (·) is the exponential fundamental
diagram (1.4). Other notable models with two state variables (so-called second order models)
include the Aw-Rascle model [13], the non-equilibrium model [233], or the phase transition
model [31, 61]. Traffic models with three state variables have also been proposed [112] by
addition of a state equation for the variance. The discrete second order model (1.10) is by
definition unable to capture discontinuities exactly, and differentiable, however structural
properties of the continuous Payne-Whitham model from which it is derived exhibit similari-
ties with the LWR model [231] and allow the generalization of some of our conclusions. The
filtering algorithms used for estimation in general and for traffic flow models in particular,
are described in the following section.

1.3 Estimation problem for distributed parameter sys-

tems

1.3.1 A brief history of estimation

The theory of estimation is concerned with the problem of providing statistics of a
process state ψt, based on measurements Yt and a-priori knowledge. The a-priori knowl-
edge of the process often consists of a parametric model, which approximately describes the
process behavior mathematically. The definition of a loss function allows the formulation
of the estimation problem as an optimization problem and the identification of certificates
of optimality. When the estimated quantities are not directly observed, (so-called latent
variables) the estimation problem is referred to as an inverse problem [131]. For physical
systems, the estimation problem, or data assimilation problem [36, 152], is solved using a
data assimilation algorithm, which combines optimally, in the sense of the loss function, the
a-priori knowledge of the system, and the observations from the system. In particular, a
filtering algorithm provides the solution to an inverse problem which includes the additional
constraint that, for all times t, only observations at or before time t can be used to compute
estimates at time t.

2For simplicity we omit the network terms (sources and sinks) in equation (1.10).
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The use of the quadratic loss function dates back to the estimation problem posed by
Gauss in the 18th century for astronomy [203, 204]. The solution proposed by Gauss is the
so-called least-squares method, justified by the Gauss-Markov theorem [124]. The theorem
proves that, assuming a linear observation model with additive white noise, the best linear
unbiased estimator (BLUE) (best in the minimum variance sense), of a random process ψt
can be computed as the solution to the ordinary least squares (OLS) problem.

The role of the quadratic norm for estimation is further emphasized by a result from
Sherman [199], which shows that for a large class of loss functions, which includes the
quadratic loss function, the mean of the conditional distribution p(ψt|Yt) is optimal.

Formally, given a loss function L(·) such that:

L(0) = 0

∃ f real-valued convex s.t. ∀ψ1, ψ2 s.t. f(ψ1) ≥ f(ψ2) (1.11)

then L(ψ1) ≥ L(ψ2),

given a random variable ψ, if the probability density function associated with the random
variable ψ is symmetric around the mean, and unimodal, then E(ψ) is the optimal estimator
of ψ for the loss function L(·).

When applied to the conditional random variable ψt|Yt, this shows that the conditional
mean is the optimal estimator in the sense of the loss function L(·) for this particular class
of loss functions and probabilities.

For dynamical systems, the estimation problem can be solved online sequentially using
this result in a state-space formulation.

1.3.2 A state-space formulation for sequential estimation

Given a system with true state at time t denoted by Ψt, and Yt the vector of all available
observations up to time t, the filtering problem is concerned with the computation of an
optimal estimate of Ψt for a predefined loss function. Solvability of the estimation problem
heavily depends on the loss function used, and on the statistics considered.

The basis for modern filtering theory was set by Kalman in 1960 who introduced a
sequential filtering algorithm for linear dynamical systems, the Kalman filter (KF) [132].
This algorithm extended the work of Wiener [224] and proposed one of the first results on
optimal filtering for linear dynamical systems with non-stationary statistics. The KF sequen-
tially computes the best estimate of the true state of a system from combined knowledge
of a model and observations. The KF has been widely applied by the control community,
notably to signal processing, sensor data fusion, navigation and guidance [17, 193].

For transportation applications involving macroscopic variables, the state is typically a
set of densities, speeds, or counts, defined on a discretization grid. The true state consists
of the true traffic conditions on the road, which are only available to an oracle, or some high
fidelity datasets such as the NGSIM dataset [179]. For simulation purposes, it is common
practice to use a well-calibrated model, or a Monte Carlo simulation with high number of
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samples, as a proxy for the true state (to avoid the so-called inverse crime [131], the model
used for estimation should be different from the model used for computing the true state).

Kalman filter

In his seminal article [132], Kalman provides a sequential algorithm to compute the
BLUE of the state for dynamical systems, under additive white Gaussian noise, with a
deterministic linear observation equation (this result was later extended to include additive
white Gaussian observation noise). The Kalman filter is defined in a state-space model, which
consists of a state equation and an observation equation.

We consider the following discrete linear model:

xt = At xt−1 + wt (1.12)

where we note At the state model or time-varying state transition matrix at time t, and where
the random variable wt ∼ N (0,Wt) is a white noise vector which accounts for modeling
errors. In particular in this setting the true state Ψt is assumed to follow the dynamics At
without additional noise. Measurements are modeled by the linear observation equation:

yt = Ct Ψt + vt (1.13)

where vt ∼ N (0, Vt) is a white noise vector which accounts for measurement errors assumed
uncorrelated with modeling errors, and Ct is the modeled measurement matrix at time t
(also time-varying, to integrate the possibility of moving or intermittent sensors). The KF
sequentially computes the BLUE estimate at time t + 1 from the BLUE estimate at time t
as follows:

Forecast:

{
xt+1|t = At+1 xt|t

Σt+1|t = At+1 Σt|tA
T
t+1 +Wt+1

(1.14)

Analysis:


xt+1|t+1 = xt+1|t +Kt+1

(
yt+1 − Ct+1 xt+1|t

)
Σt+1|t+1 = Σt+1|t −Kt+1Ct+1 Σt+1|t

where Kt+1 = Σt+1|tC
T
t+1

(
Ct+1 Σt+1|tC

T
t+1 + Vt+1

)−1

(1.15)

The forecast step (1.14) consists in propagating the mean xt|t and covariance Σt|t of the state
through the linear model (1.12). The analysis step (1.15) amounts to the computation of the
conditional mean of the state given the observations, for the linear observation model (1.13)
and jointly Gaussian statistics. The conditional covariance is computed similarly. From a
Bayesian perspective, the Kalman filter sequentially computes the posterior distribution of
the state, based on the prior distribution given by the state-space model.

When the state model is not linear, there is no general analytical expression for the
propagation of the statistics. Suboptimal filters of different types have been derived. In the
following section, we present the concepts related to estimation of nonlinear or non-normal
processes.
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1.3.3 Normality and nonlinearity

The statistical assumptions on the processes ψt and Yt are tied to prior knowledge of the
generative distributions. However, a significant computational argument in favor of the use
of normal statistics is the optimality guarantee provided by combining the two arguments
above. Without any assumption on the statistics, the Gauss-Markov theorem states that the
BLUE is given by the solution to the OLS algorithm. Sherman’s result for the class of loss
functions (1.11) states that the solution of the OLS is the conditional mean. In the Gaussian
case the conditional mean is linear, hence it is also the solution of the OLS with constraint
that the estimator be linear. Hence the BLUE of the process is optimal, without restriction
of linearity on the estimator, if we assume that the statistics are Gaussian.

The need for solving the inverse problem for increasingly complex systems, for which the
classical assumptions of linearity of the dynamics and normality of the error terms break,
has motivated the development of suboptimal sequential estimation algorithms. Subopti-
mal sequential estimation algorithms can be derived from the Kalman filter using different
methods:

1. Deterministic filters: extended Kalman filter (EKF) [9], unscented Kalman filter (UKF)
[129].

2. Stochastic filters: ensemble Kalman filter (EnKF) [93], particle filter (PF) [163].

Stochastic methods consider propagating the state through the nonlinear model using a sam-
ple representation. Deterministic methods consist in propagating analytical approximations
of low order moments through the model. Stochastic methods in general require sampling
schemes and pseudo-random generators for the correct execution of the filters, unlike deter-
ministic methods.

For traffic applications, it is also important to mention the mixture Kalman filter
(MKF) [51], which provides optimality guarantees for conditionally linear systems. In this
dissertation, we analyze the error structure resulting from the propagation of uncertainty
in the initial condition of a Cauchy problem and assess the performances of the EKF and
EnKF for realistic scalar traffic models.

1.4 Contributions and organization of the dissertation

1.4.1 Contributions

The contributions of this dissertation encompass the theory of hyperbolic conservation
laws for traffic estimation and control. They include contributions to mathematical modeling,
theory of partial differential equations, numerical analysis, control theory, filtering, and data
analysis.
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Phase transition traffic flow model [31, 32].

• Definition of a phase transition traffic flow model as a perturbation of the classical
Lighthill-Whitham-Richards scalar traffic flow model.

• Well-posedness constraints on the classical fundamental diagram for instantiations on
the well-known Newell-Daganzo, Greenshield, Li fundamental diagrams.

• Construction of a Riemann solver in the case of a Newell-Daganzo, Greenshield, Li
fundamental diagram.

Analysis of complex traffic phenomena [30, 23].

• Investigation of the existence of complex macroscopic traffic phenomena in high reso-
lution data.

• Implementation of a modified Godunov scheme able to account for non-convexity of
model state space in the phase transition model.

• Comparison of time-space diagram reconstruction performance for phase transition
model and scalar traffic models.

Error propagation in filtering algorithms [25].

• Construction of the solution to a Riemann problem with random initial datum.

• Analysis of uncertainty structure arising in the solution to the Riemann problem with
random initial datum.

• Quantification of error propagation resulting from non differentiability of Godunov
discrete time dynamics at the location of stationary shock waves.

Boundary stabilization of entropic solutions to scalar conservation laws [27, 28].

• Approximation of a solution to a scalar conservation law by a piecewise differentiable
solution in the case of a traffic model.

• Differentiation of Lyapunov function candidate for an entropic solution to the initial
boundary value problem associated with a scalar conservation law.

• Design of weak boundary conditions that maximize the decrease of the Lyapunov
function candidate.
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1.4.2 Additional contributions

Along with the main contributions outlined in the previous subsection, several inde-
pendent and related research endeavors led to significant results, presented in associated
dissertation works.

Velocity formulation for scalar hyperbolic conservation laws [227].

• Derivation of a velocity PDE (v-PDE) for scalar conservation laws.

• Proof of equivalence of the weak entropy solution to the v-PDE with the weak entropy
solution to the corresponding LWR PDE for the Greenshields flux function.

• Design of a numerical scheme derived from the Godunov scheme, for the velocity
formulation.

• Real-time data assimilation with the v-PDE and traffic data on the Bay Area trans-
portation network.

Stochastic routing algorithm for on-time arrival problem [191, 35].

• Design of a routing algorithm based on the Fast Fourier Transform for fast computation
of the solution to the on-time arrival problem.

• Definition of an optimal order for computing the policy and experimental results of
the order of magnitude computation time gain.

• Extensions to time-varying and correlated link travel-time distributions case.

• iPhone app design and deployment of the routing algorithm on the Bay Area trans-
portation network.

Additional contributions include:

• Numerical analysis results for the LWR equation [24].

• Data analysis of radar measurements and identification of experimental relation be-
tween speed variance and traffic flow [29].

• Forecast algorithms for distributed systems based on kernel methods in a convex opti-
mization framework [26] and using Bayesian networks [192].

• Deployment of the Mobile Millennium Stockholm [2].
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1.4.3 Organization of the dissertation

The dissertation is organized as follows.
Chapter 2 presents a novel 2× 2 phase transition model introduced in this dissertation.

The original phase transition model is presented, as well as its limitations for traffic modeling.
A new perspective on the derivation of the phase transition model as a perturbation of
classical macroscopic traffic model resulting from heterogeneous driving behavior is proposed,
and constraints required for the well-posedness of the system of partial differential equations
are derived. The model is instantiated on several well-known traffic models, and a Riemann
solver is constructed in each case.

Chapter 3 presents an analysis of the performance of the phase transition model for the
construction of spatio-temporal traffic patterns using high-resolution field data. Physical
interpretations of the nature of the waves introduced by the model are proposed, discussed,
and critically assessed in the light of experimental observations. An itemized implementation
of a modified Godunov scheme is proposed.

Chapter 4 consists of a review of novel estimation methods proposed in this work for
distributed parameter systems. The framework of Bayesian networks, which allows the
computationally efficient modeling of non-independence structure of joint random variables,
is presented and the specific assumptions made for traffic models are described, as well as
numerical results for a Bay Area stretch of road. Finally, a novel technique for convex
identification of optimal state space representation using kernel methods is described.

Chapter 5 presents an analytical and numerical study of the structure of the true un-
certainty associated with the propagation of uncertainty on the initial condition of an initial
boundary value problem associated with a scalar hyperbolic conservation law. A solution to
the Riemann problem with stochastic datum is proposed in the case of a shock wave, and the
mixture nature of the resulting random field is shown. The consequence of the non-linearity
of the flow of the PDE is assessed numerically on several benchmark estimation tests using
the EKF and the EnKF on scenarios relevant for traffic. The non-differentiability of the
Godunov scheme at the location of stationary shock waves is shown, and the consequence
on the accuracy of the estimates produced by the EKF is assessed on a test case.

Chapter 6 proposes the approximation of BV solutions to scalar conservation laws by
piecewise differentiable solutions, and presents a differentiation of an associated Lyapunov
function candidate. A greedy controller is derived semi-analytically at each boundary. The
controller accounts for weak boundary conditions while maximizing the decrease rate of the
Lyapunov function candidate.

Section 7 summarizes the contributions of this dissertation work, and describes novel
research tracks opened by the results obtained.
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Chapter 2

A general phase transition model for
vehicular traffic

In this chapter, we present a novel 2 × 2 hyperbolic system of conservation laws for
macroscopic traffic modeling. The use of non-scalar macroscopic models of traffic flow has
been motivated by experimental data suggesting the existence of complex traffic phenomena
that could not be modeled using a scalar represention. The model introduced in this chapter
is shown to not exhibit most of the issues existing in most of the so-called higher-order
models of traffic flow available today, such as vanishing velocities below jam density, which
is not a classical assumption in traffic theory [98].

The phase transition model introduced in this chapter extends the work of Colombo [62].
In agreement with the remarks from Kerner [134, 135] affirming that traffic flow presents three
different behaviors, free-flow, wide moving jams, and synchronized flow, Colombo proposed a
2×2 phase transition model [61, 62] which considers congestion and free-flow in traffic as two
different phases, governed by distinct evolutionary laws (see also [102] for a phase transition
version of the Aw-Rascle model). The well-posedness of this model was proved in [63] using
wavefront tracking techniques [39, 117]. In the phase transition model, the evolution of the
parameters is governed by two distinct dynamics; in free-flow, the Colombo phase transition
model is a classical first order model (LWR PDE), whereas in congestion a similar equation
governs the evolution of an additional state variable, the linearized momentum q. The
motivation for an extension of the 2 × 2 phase transition model comes from the following
items, which are addressed by the class of models presented in this chapter:

i Phases gap. The phase transition model introduced by Colombo in [61] uses a Green-
shields flux function to describe free-flow, which despite its simple analytical expression
yields a fundamental diagram which is not connected and thus a complex definition of the
solution to the Riemann problem between two different phases. We solve this problem by
introducing a Newell-Daganzo flux function for free-flow, which creates a non-empty in-
tersection between the congested phase and the free-flow phase, called metastable phase.
It alleviates the inconvenience of having to use a shock-like phase transition in many
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cases of the Riemann problem between two different phases.

ii Definition of a general class of set-valued fundamental diagrams. The work presented
in [62] enables the definition of a set-valued fundamental diagram for the expression of
the velocity function introduced. However, experimental data shows that several types of
fundamental diagrams exist, with different congested domain shapes. Here, we provide
a method to build an arbitrary set-valued fundamental diagram which in a special case
corresponds to the fundamental diagram introduced in [61]. This enables us to define a
custom-made set-valued fundamental diagram.

This chapter is organized as follows. Section 2.1 presents the fundamental features of
the Colombo phase transition model [62], which serves as the basis for the present work.
In Section 2.2, we introduce the modifications to the Colombo phase transition model, and
introduce the notion of standard state which provides the basis for the construction of a
class of 2 × 2 traffic models. We also assess general conditions which enable us to extend
the results obtained for the original Colombo phase transition model to these new models.
Finally, this section presents a modified Godunov scheme which can be used to solve the
equations numerically. The two following sections instantiate the constructed class of models
for two specific flux functions, which are the Newell-Daganzo (affine) flux function (Section
2.3) and the Greenshields (parabolic concave) flux function (Section 2.4). Each of these
sections includes a discussion of the choice of parameters needed for each of the models, the
solution to the Riemann problem, a description of the specific properties of the model, and
a validation of the numerical results using a benchmark test.

2.1 The Colombo phase transition model

The original Colombo phase transition model [61, 62] is a set of two coupled PDEs
respectively valid in a free-flow regime and congested regime:

∂tρ+ ∂x(ρ vf (ρ)) = 0 in free-flow (Ωf ){
∂tρ+ ∂x(ρ vc(ρ, q)) = 0

∂tq + ∂x((q − q∗) vc(ρ, q)) = 0
in congestion (Ωc)

(2.1)

where the state variables ρ and q denote respectively the density and the linearized momen-
tum [62]. Ωf and Ωc are the respective domains of validity of the free-flow and congested
equations of the model and are explicited below. The term q∗ is a characteristic parameter
of the road under consideration. An empirical relation expresses the velocity v as a function
of density in free-flow: v := vf (ρ), and as a function of density and linearized momentum in
congestion: v := vc(ρ, q). Following usual choices for traffic applications [97], the functions
below are used:

vf (ρ) =
(

1− ρ

R

)
V and vc(ρ, q) =

(
1− ρ

R

) q

ρ
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where R is the maximal density or jam density and V is the maximal free-flow speed. The
relation for free-flow is the Greenshields model [107] mentioned earlier while the second
relation has been introduced in [61]. Since Ωc has to be an invariant domain [198] for the
congested dynamics from system (2.1), and according to the definition of v, the free-flow and
congested domains are defined as follows:{

Ωf = {(ρ, q) ∈ [0, R]× [0,+∞[ , vf (ρ) ≥ Vf− , q = ρ V }
Ωc =

{
(ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) ≤ Vc+ , Q−−q∗

R
≤ q−q∗

ρ
≤ Q+−q∗

R

}
where Vf− is the minimal velocity in free-flow and Vc+ is the maximal velocity in congestion
such that Vc+ < Vf− < V . R is the maximal density and Q− and Q+ are respectively the
minimal and maximal values for q. The fundamental diagram in (ρ, q) coordinates and in
(ρ, ρ v) coordinates is presented in Figure 2.1.

Figure 2.1: Colombo phase transition model.
Left: Fundamental diagram in state space coordinates (ρ, q). Right: Fundamental diagram in
density flux coordinates (ρ, ρ v).

Remark 2.1. The congested part of system (2.1) is strictly hyperbolic if and only if the two
eigenvalues of its Jacobian are real and distinct for all states (ρ, q) ∈ Ωc.

Remark 2.2. The 1-Lax curves are straight lines going through (0, q∗) in (ρ, q) coordinates
which means that along these curves shocks and rarefactions exist and coincide [210]. One
must note that the 1-Lax field is not genuinely non-linear (GNL). Indeed the 1-Lax curves are
linearly degenerate (LD) for q = q∗ and GNL otherwise with rarefaction waves propagating
in different directions relatively to the eigenvectors depending on the sign of q − q∗. The
2-Lax curves, which are straight lines going through the origin in (ρ, ρ v) coordinates, are
always LD.
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2.2 Extension of the Colombo phase transition model

The approach developed by Colombo provides a fundamental diagram which is thick
in congestion (Figure 2.1), and thus can model clouds of points observed experimentally
(Figure 2.2). We propose to extend this approach by considering the second equation in

Figure 2.2: Fundamental diagram in density flux coordinates from a street in Rome.
In congestion (high densities) the flux is multi-valued. Count C and velocity v were recorded every
minute during one week. Flux Q was computed from the count. Density ρ was computed from flux
and velocity according to the expression Q = ρ v (see [24] for an extensive analysis of this dataset).

congestion as modeling a perturbation [230, 233]. The standard state (Definition 2.1) would
be the usual one-dimensional fundamental diagram, with dynamics described by the conser-
vation of mass. Perturbations can move the system off standard state, leading the diagram
to span a two-dimensional area in congestion. A single-valued map is able to describe the
free-flow mode, which is therefore completely described by the free-flow standard state.

Definition 2.1. We call standard state the set of states described by a one dimensional
fundamental diagram and the classical LWR PDE. In the following we respectively refer to
the standard velocity and standard flux as the velocity and flux at the standard state.

In this section we present analytical requirements on the velocity function in congestion
which, given the work done in [62], enable us to construct a 2 × 2 phase transition model.
These models provide support for a physically correct, mathematically well-posed initial-
boundary value problem which can model traffic phenomena where the density and the flow
are independent quantities in congestion, allowing for multiple values of the flow for a given
value of the density. Our framework allows the definition of the two dimensional zone span
by the congestion phase according to the reality of the local traffic nature, which is not
always possible with the original Colombo phase transition model.
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2.2.1 Analysis of the standard state

We consider the density variable ρ to belong to the interval [0, R] where R is the maximal
density. Given the critical density1 σ in (0, R], we define the standard velocity vs(·) on [0, R]
by:

vs(ρ) :=

{
V for ρ ∈ [0, σ]

vsc(ρ) for ρ ∈ [σ,R]

where V is the free-flow speed and vsc(·) is in C∞((σ,R),R+). It is important to note that
vsc(·) is a function of ρ only, as it is the case for the classical fundamental diagram. The
standard flux Qs(·) is thus defined on [0, R] by:

Qs(ρ) := ρ vs(ρ) =

{
Qf (ρ) := ρ V for ρ ∈ [0, σ]

Qs
c(ρ) := ρ vsc(ρ) for ρ ∈ [σ,R].

In agreement with traffic flow features, the congested standard flux Qs
c(ρ) must satisfy the

following requirements (which are consistent with the ones given in [77]).

i Flux vanishes at the maximal density : Qs
c(R) = 0.

This condition encodes the physical situation in which the jam density has been reached.
The corresponding velocity and flux of vehicles on the highway is zero.

ii Flux is a decreasing function of density in congestion: dQs
c(ρ)/dρ ≤ 0.

This is required as a defining property of congestion. It implies that dvsc(ρ)/dρ ≤ 0.

iii Continuity of the flux at the critical density : Qs
c(σ) = Qf (σ).

Even if some models account for a discontinuous flux at capacity, the capacity drop
phenomenon [135], we assume, following most of the transportation community, that the
flux at the standard state is a continuous function of density.

iv Concavity of the flux in congestion: Qs
c(·).

The flux function at the standard state Qs
c(·) must be concave on [σ, σi] and convex on

[σi, R] where σi is in (σ,R]. Given the experimental datasets obtained for congestion
(Figure 2.2), it is not clear in practice if the standard flux is concave or convex in
congestion. The assumption made here is motivated in Remark 2.8.

Remark 2.3. In this chapter we instantiate the general model proposed on the most common
standard flux functions, i.e. linear or concave, but the framework developed here applies to
flux functions with changing concavity such as the Li flux function [158], although it yields
a significantly more complex analysis.

1Density for which the flux is maximal at the standard state. At this density the system switches between
free-flow and congestion.
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2.2.2 Analysis of the perturbation

Model outline

In this section we introduce a perturbation q to the standard velocity in congestion.

Definition 2.2. The perturbed velocity function vc(·, ·) is defined on Ωc by:

vc(ρ, q) = vsc(ρ) (1 + q) (2.2)

where vsc(·) ∈ C∞((σ−, R),R+) is the congested standard velocity function.

The standard state corresponds to q = 0, and the evolution of (ρ, q) is described similarly
to the classical Colombo phase transition model [62] by:

∂tρ+ ∂x(ρ v) = 0 in free-flow{
∂tρ+ ∂x(ρ v) = 0

∂tq + ∂x(q v) = 0
in congestion

(2.3)

with the following expression of the velocity:

v =

{
vf (ρ) := V in free-flow

vc(ρ, q) in congestion.
(2.4)

The perturbed velocity function defines the velocity in congestion whereas a Newell-Daganzo
function describes the velocity in free-flow. The analytical expression of the free-flow and
congested domains as explicited in (2.5) is motivated by the analysis conducted in Table 2.1
and the necessity for these domains to be invariants [198] for the dynamics (2.3) in order to
have a well-defined Riemann solver [212].{

Ωf = {(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) = V , 0 ≤ ρ ≤ σ+}
Ωc =

{
(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) < V , q−

R
≤ q

ρ
≤ q+

R

} (2.5)

σ± is defined by vc(σ±, σ± q±/R) = V and we assume that V > 0 and q− ≤ 0 ≤ q+. A
definition of the complete set of parameters can be found in Section 2.2.3 (See also Figure 2.3
for an illustration in the Newell-Daganzo case.).

Definition 2.3. The set {(ρ, q) | vc(ρ, q) = V , σ− ≤ ρ ≤ σ+} defines the meta- -stable phase.
This phase defines transition states between the congestion phase and the free-flow phase.

Remark 2.4. The left boundary of the congested domain is a convex curve in (ρ, q) coor-
dinates (in Figure 2.1 for the Colombo phase transition model as in Figure 2.3 for the new
model derived). Thus Ωc is not convex in (ρ, q) coordinates.

The analysis of the congestion phase of the model (2.3) is outlined in Table 2.1.
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Figure 2.3: Newell-Daganzo standard flux function.
Left: Fundamental diagram in state space coordinates. Right: Fundamental diagram in flux-
density coordinates. The standard state is the usual triangular diagram. The congestion phase is
two-dimensional (striped domain).

Physical and mathematical considerations

Physical interpretation and mathematical conditions translate into the following condi-
tions:

Condition 2.1. Positivity of speed. In order to maintain positivity of vc(·, ·) on the
congested domain, one must have:

∀ q ∈ [q−, q+] 1 + q > 0 (2.6)

which is satisfied if and only if q− > −1.

Condition 2.2. Strict hyperbolicity of the congested system. In order for the con-
gested part of (2.3) to be strictly hyperbolic, one must have:

∀ (ρ, q) ∈ Ωc λ1(ρ, q), λ2(ρ, q) ∈ R and λ1(ρ, q) 6= λ2(ρ, q).

Given the expression of the eigenvalues outlined in Table 2.1, and modulo a rearrangement,
this yields:

∀ (ρ, q) ∈ Ωc ρ ∂ρv
s
c(ρ) + q (vsc(ρ) + ρ ∂ρv

s
c(ρ)) 6= 0. (2.7)

Since vsc(·) is positive and ρ vsc(·) is a decreasing function of ρ, this can always be satisfied for
small enough values of q, and when instantiated for specific expressions of vsc(·), will result
in a bound on the perturbation q.
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Eigenvalues
λ1(ρ, q) = ρ (1 + q)∂ρv

s
c(ρ) +

vsc(ρ) (1 + 2 q)
λ2(ρ, q) = vsc(ρ) (1 + q)

Eigenvectors r1 =

(
ρ
q

) r2 =(
vsc(ρ)

−(1 + q) ∂ρv
s
c(ρ)

)
Nature of
the Lax
curves

∇λ1.r1 = ρ2 (1 + q)∂2ρρv
s
c(ρ) +

2 ρ (1 + 2 q) ∂ρv
s
c(ρ) + 2 q vsc(ρ)

∇λ2.r2 = 0

Riemann-
invariants

q/ρ vsc(ρ) (1 + q)

Table 2.1: Congestion phase.
Algebraic properties of the general phase transition model.

Condition 2.3. Shape of Lax curves. For modeling consistency, we require the 1-Lax
curves to be LD or to have no more than one inflexion point (σi, qi). In the latter case they
should be concave for ρ ≤ σi and convex for ρ ≥ σi. Since ∇λ1.r1 is the second derivative
of the 1-Lax curve with respect to ρ, this condition can be enforced, for any (ρ, q) in the
congested domain, by checking the sign of the expression:

∇λ1.r1 = ρ (2 ∂ρv
s
c(ρ) + ρ ∂2

ρρv
s
c(ρ)) + q (2 vsc + 4 ρ ∂ρv

s
c(ρ) + ρ2 ∂2

ρρv
s
c(ρ)) (2.8)

which has the sign of the first term for q small enough. So if 2 ∂ρv
s
c(ρ) + ρ ∂2

ρρv
s
c(ρ) >

0 the rarefaction waves go right in the (ρ, q) or (ρ, ρ v) plane. When vsc(·) is such that
2 ∂ρv

s
c(ρ) + ρ ∂2

ρρv
s
c(ρ) = 0 the heading of rarefaction waves changes with the sign of q (it is

the case for the original phase transition model), and in this case the 1-curves are LD for
q = 0.
This condition consists in ensuring that expression (2.8) is either identically zero (LD curve),
or has no more than one zero and is an increasing function of the density.

Remark 2.5. One may note that condition 2.2 on the strict hyperbolicity of the system is
satisfied whenever condition 2.1 on the positivity of speed is satisfied. Indeed equation (2.7)
can be re-written as ∀(ρ, q) ∈ Ωc ρ ∂ρv

s
c(ρ) + q∂ρQ

s
c(ρ) 6= 0, which since the first term is

negative, is equivalent to ∀(ρ, q) ∈ Ωc ρ ∂ρv
s
c(ρ) + q∂ρQ

s
c(ρ) < 0. For non-zero values of

∂ρQ
s
c(ρ), it yields q > −ρ ∂ρvsc(ρ)/∂ρQ

s
c(ρ) = −1 + vsc(ρ)/∂ρQ

s
c(ρ) which is always satisfied

when q− > −1, because the second term of the right hand side is negative.

Remark 2.6. In this model, traffic is anisotropic in the sense that no wave travels faster
than vehicles (λ1(ρ, q) < λ2(ρ, q) = vc(ρ, q)). The speed of vehicles is always positive and
they stop only at maximal density.

2.2.3 Definition of parameters

Several parameters are used in the proposed model, which we summarize below:



Section 2.2. Extension of the Colombo phase transition model 24

i The free-flow speed V .

ii The maximal density R.

iii The critical density σ at standard state.

iv The critical density for the lower bound of the diagram σ−.

v The critical density for the upper bound of the diagram σ+.

These parameters can be identified from experimental data, and enable the definition of the
parameters q− and q+. Figure 2.3 graphically summarizes the definition of the parameters
chosen. One must note that the constraints on q−, q+ detailed in (2.6)-(2.7)-(2.8) translate
into constraints on σ−, σ+, which cannot be freely chosen.

2.2.4 Cauchy problem

In this section we define a solution to the Cauchy problem for the system (2.3). Follow-
ing [62], we use a definition derived from [39].

Definition 2.4. Given T in R+, u0 in L1(R; Ωf ∪ Ωc) ∩ BV (R; Ωf ∪ Ωc), an admissible
solution to the corresponding Cauchy problem for (2.3) is a function u(·, ·) in L1([0, T ] ×
R; Ωf ∪ Ωc) ∩BV ([0, T ]× R; Ωf ∪ Ωc) such that the following holds.

i For all t in [0, T ], t 7→ u(t, .) is Lipshitz continuous with respect to the L1 norm.

ii For all functions ϕ in C1
c ([0, T ]× R 7→ R) with compact support contained in u−1(Ωf ):∫ T

0

∫
R

(u(t, x) ∂tϕ(t, x) +Qf (u(t, x))∂xϕ(t, x)) dxdt+

∫
R
u0(x)ϕ(0, x)dx = 0.

iii For all functions ϕ in C1
c ([0, T ]× R 7→ R2) with compact support contained in u−1(Ωc):∫ T

0

∫
R

(u(t, x) ∂tϕ(t, x) +Qc(u(t, x))∂xϕ(t, x)) dxdt+

∫
R
u0(x)ϕ(0, x)dx = 0.

iv The set of points (t, x) for which there is a change of phase is the union of a finite
number of Lipschitz curves pi : [0, T ) 7→ R such that if ∃i 6= j and ∃τ ∈ [0, T ] such that
pi(τ) = pj(τ) then ∀t ∈ [τ, T ] we have pi(t) = pj(t).

v For all points (t, x) where there is a change of phase, let Λ = ṗi(t
+), and introducing the

left and right flow at (t, x):

F l =

{
ρ(t, x−)V if ρ(t, x−) ∈ Ωf

ρ(t, x−) vc(ρ(t, x−), q(t, x−)) if ρ(t, x−) ∈ Ωc
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F r =

{
ρ(t, x+)V if ρ(t, x+) ∈ Ωf

ρ(t, x+) vc(ρ(t, x+), q(t, x+)) if ρ(t, x+) ∈ Ωc

the following relation must be satisfied:

Λ · (ρ(t, x+)− ρ(t, x−)) = Fr − Fl. (2.9)

Remark 2.7. This definition matches the standard Lax entropy solution for an initial con-
dition with values in Ωf or Ωc. Equation (2.9) is a Rankine-Hugoniot relation needed to
ensure mass conservation at the phase transition.

Theorem 2.1. Let Ωf and Ωc be defined by (2.5), vc(·, ·) be defined by (2.2). If condition 2.2
is satisfied, then for all u0 ∈ L1(R; Ωf ∪ Ωc) ∩ BV (R; Ωf ∪ Ωc) the corresponding Cauchy
problem for (2.3) has an admissible solution, (see definition 2.4) u(·, ·) such that u(t, ·) ∈
BV (R; Ωf ∪ Ωc) for all t ∈ [0, T ].

Proof. A solution is constructed through a standard wavefront tracking procedure by itera-
tively gluing together the solution to Riemann problems corresponding to piecewise constant
approximations of the solution. Measuring total variation along the trajectories of these solu-
tions leads to a conclusion on the convergence of the sequence of successive approximations.
The interested reader is referred to [39] for more details on wavefront tracking techniques
and to [62, 63] for more insights on proofs of existence for systems of conservation laws with
phase transition.

2.2.5 Model properties

The main differences between the original Colombo model [62] and the class of models
introduced in this chapter result from the following design choices:

Choice of q∗ = 0.
This is a change of variable which has several consequences. Related computations are more
readable. The congested standard state is q = 0. According to (2.2), the meaning of the
perturbation q is also more intuitive. Positive values of q correspond to elements of flow
moving at a greater speed than the standard speed for this density, and negative values of
q correspond to slower elements of flow. In the traffic context, this can be understood as
groups of driver characterized by their degree of agressivity, q, which leads them to drive
faster or slower than the standard driver.

Newell-Daganzo flux function in free-flow.
This feature leads to connected free-flow and congested domains for the fundamental diagram
proposed in the present work, and the definition of a metastable phase, as illustrated in
Figure 2.4. This yields a well-posed Riemann problem which can be solved in a simple way
(see Remark 2 of [62]). Moreover, the derived models need less parameters and thus are
easier to calibrate. Finally, it is consistent with the fact that a gap between phases is not
observed in experimental data, see Figure 2.2.
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Figure 2.4: Different free-flow phases.
Left: Fundamental diagram from the original Colombo phase transition model. Right: Fundamental
diagram of the model derived in this chapter in the particular case of a Newell-Daganzo standard
state flux in the congestion phase.

The expression of the function vc is not fully specified.
This allows us to customize the model depending on the features observed in practice. As
explained in Remark 2.8 below, the concavity of the 1-Lax curves is related to driving
behavior. In the class of models we introduce, since vc(·, ·) is not fully specified, in the limit
of conditions 2.1-2.2-2.3, it is possible to define the perturbed phase transition model which
corresponds to the observed driver agressivity.

Remark 2.8. A physical interpretation can be given to the concavity of the flux function.
In congestion, when the density increases toward the maximal density, the velocity decreases
toward zero. This yields a decreasing slope of the flux function in congestion. The way in
which drivers velocity decreases impacts the concavity of the flux, as per the expression of the
second derivative of the standard flux function, d2Qs

c(ρ)/dρ2 = ρ d2vsc(ρ)/dρ2 + 2 dvsc(ρ)/dρ.

i If for a given density increase, the drivers reduce their speeds more at high densities
than at low densities (modeling aggressive drivers who wait until high density to reduce
speed), then the velocity function is concave and the flux function is concave.

ii If the drivers reduce their speeds less at high densities than at low densities (modeling
careful drivers who anticipate and reduce their speed early), then the velocity function
is convex, and the flux function may be convex.

iii An affine flux is given by a velocity function which satisfies ρ d2vsc(ρ)/dρ2 +2 dvsc(ρ)/dρ =
0.



Section 2.2. Extension of the Colombo phase transition model 27

2.2.6 Numerics

Because of the non-convexity of the domain Ωf ∪ Ωc (illustrated in Figure 2.3), using
the classical Godunov scheme [156] is not feasible due to the projection step of the scheme.
We propose to use a modified version of the scheme (see [49]) which mimics the two steps of
the classical Godunov scheme and adds a final sampling step.

i The Riemann problems are solved on a regular time space mesh. When two space-
consecutive cells do not belong to the same phase, the position of the phase transition
at the next time step is computed.

ii The solutions are averaged on the domains defined by the position of the phase transitions
arising from Riemann problems at neighboring cells (Figure 2.5).

iii A sampling method is used to determine the value of the solution in each cell of the
regular mesh.

This process answers the issues of the classical Godunov scheme with non-convex domains.
Numerical results have shown that it gives accurate results on benchmark tests (we refer
to [49] for more details on the test cases used).

Let us note ∆t the time discretization and ∆x the space discretization satisfying the
Courant-Friedrichs-Lewy (CFL) condition [156]. We call xj = j∆x for j ∈ Z and tn = n∆t
for n ∈ N. We call xj−1/2 = xj − ∆x/2 and we define a cell Cn

j = {tn} × [xj−1/2, xj+1/2[
which has a length ∆x. We call unj the value of u := (ρ, q) at (tn, xj), and, by extension,
in Cn

j . The speed of the phase transition between each pair of cells (Cn
j , C

n
j+1) is noted

νnj+1/2 (νnj+1/2 equals zero if unj and unj+1 belongs to the same phase). If we call xn+1
j−1/2 =

xj−1/2 + νnj−1/2 ∆t we can define cell C
n+1

j as C
n+1

j = {tn+1} × [xn+1
j−1/2, x

n+1
j+1/2[ which has a

length ∆xnj = xn+1
j+1/2− x̄

n+1
j−1/2, as shown in Figure 2.5. The solution to the Riemann problem

tn+1

tn

xjxj−1

xn+1
j−1/2 xn+1

j+1/2

xj+1

Figure 2.5: Phase transitions.
The phase transitions enter cell Cnj from both sides.

between cells Cn
j is averaged on cells C

n+1

j , which by construction enclose states which are
either free-flowing or congested, according to the modified Godunov scheme. We define:
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i uR(νn,+j−1/2, u
n
j−1, u

n
j ) as the solution to the Riemann problem between unj−1 and unj , at

x−xj−1/2

t−tn = νnj−1/2, and calculated at the right of the cell boundary.

ii g
(
νn,−j+1/2, u

n
j , u

n
j+1

)
:= f(uR(νn,−j+1/2, u

n
j , u

n
j+1)) with f(ρ, q) = (ρ v, q v) and the definition

of v from (2.4), as the numerical flux between cells Cn
j and Cn

j+1, at
x−xj+1/2

t−tn = νnj+1/2,
and calculated at the left of the cell boundary.

The averaging step of the modified Godunov scheme reads:

∆xnj u
n+1
j = ∆xunj −∆t

(
g
(
νn,−j+1/2, u

n
j , u

n
j+1

)
− νnj+1/2 uR

(
νn,−j+1/2, u

n
j , u

n
j+1

))
+∆t

(
g
(
νn,+j−1/2, u

n
j−1, u

n
j

)
− νnj−1/2 uR

(
νn,+j−1/2, u

n
j−1, u

n
j

))
.

One can notice that when there is no phase transition, νnj−1/2 = νnj+1/2 = 0, ∆x = ∆xnj and
we obtain the classical Godunov scheme. The last step is the sampling phase to define the
solutions on the cells Cn+1

j . Following [49], for cell Cn+1
j we randomly pick a value between

un+1
j−1 , un+1

j and un+1
j+1 according to their rate of presence in cell Cn+1

j . This is done using the
Van der Corput sequence (an)n∈N (2.10) which is a low-discrepancy sequence in the interval
[0, 1]:

un+1
j =


un+1
j−1 if an ∈]0,max( ∆t

∆xnj
νnj−1/2, 0)]

un+1
j if an ∈] max( ∆t

∆xnj
νnj−1/2, 0), 1 + min( ∆t

∆xnj
νnj+1/2, 0)[

un+1
j+1 if an ∈ [1 + min( ∆t

∆xnj
νnj+1/2, 0), 1[

(2.10)

Remark 2.9. In the general case the congested domain Ωc is not convex in (ρ, q) coordinates
due to the convexity of the metastable border of the domain as illustrated on Figure 2.3.
It is therefore needed to add a projection step as a fourth step to the modified Godunov
scheme. The projection (ρp, qp) of state (ρ, q) is defined as the solution in the metastable
phase of the system: {

qp
ρp

= q
ρ

vc(ρp, qp) = V

The error metric chosen to assess the numerical accuracy of the scheme is the C0(R, L1(R,R2))
relative error between the computed solution and the analytical solution. We call u and uc
the exact and computed solutions respectively. For the computational domain [x0, x1] , the
error at T is computed as follows:

E(T ) =
supt∈[0,T ]

∫ x1
x0
‖u(t, x)− uc(t, x)‖1dx

supt∈[0,T ]

∫ x1
x0
‖u(t, x)‖1dx

.
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2.3 The Newell-Daganzo phase transition model

In this section, we use a Newell-Daganzo velocity function for congestion, i.e. a velocity
function for which the flux is affine with respect to the density. We instantiate the corre-
sponding phase transition model for this flux function and derive a corresponding Riemann
solver, which we implement and test on a benchmark case.

2.3.1 Analysis

We propose to use the following standard velocity function:

vsc(ρ) =
V σ

R− σ

(
R

ρ
− 1

)
,

which is clearly the unique function yielding an affine flux, and satisfying the requirements
from Section 2.2.1, on the vanishing point, trend, continuity and concavity property of the
standard flux.

For a perturbed state, the velocity function reads:{
vf (ρ) = V for (ρ, q) ∈ Ωf

vc(ρ, q) = V σ
R−σ (R

ρ
− 1) (1 + q) for (ρ, q) ∈ Ωc

(2.11)

where Ωf and Ωc are defined by (2.5). The corresponding fundamental diagram is shown in
Figure 2.3. The standard flux is affine with the density, but the 1-Lax curves outside the
standard state are either convex or concave in (ρ, ρ v) coordinates depending on the sign of
the perturbation.

Remark 2.10. Note that the expression of the velocity in Figure 2.3 is given by (2.11),
depends on the phase, and is therefore set-valued for ρ > σ− which is the lowest density
value at which congestion can arise.

The conditions from Section 2.2.2 to have positive speed and strict hyperbolicity of the
congested part of the system (2.3) reduce to:

q− > −1.

2.3.2 Solution to the Riemann problem

Following [62],we construct the solution to the Riemann problem for the system (2.3)
with the velocity function defined by (2.11) and the initial datum:

(ρ, q)(0, x) =

{
(ρl, ql) if x < 0

(ρr, qr) if x > 0.
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We note u the vector (ρ, q). We define um by the solution in Ωc of the system:{
qm
ρm

= ql
ρl

vc(um) = vc(ur)
(2.12)

which yields a quadratic polynomial in ρm. We address the general case where the solution
um of system (2.12) can coincide with ul or ur.

• Case 1: ul ∈ Ωf and ur ∈ Ωf

For all values of (ρl, ρr) the solution consists of a contact discontinuity from ul to ur.

• Case 2: ul ∈ Ωc and ur ∈ Ωc

i If ql > 0 and vc(ur) ≥ vc(ul) the solution consists of a 1-rarefaction wave from ul
to um and a 2-contact discontinuity from um to ur.

ii If ql > 0 and vc(ul) > vc(ur) the solution consists of a shock wave from ul to um
and a 2-contact discontinuity from um to ur.

iii If ql = 0 the solution consists of a 1-contact discontinuity from ul to um and a
2-contact discontinuity from um to ur.

iv If 0 > ql and vc(ur) > vc(ul) the solution consists of a shock wave from ul to um
and a 2-contact discontinuity from um to ur.

v If 0 > ql and vc(ul) ≥ vc(ur) the solution consists of a 1-rarefaction wave from ul
to um and a 2-contact discontinuity from um to ur.

• Case 3: ul ∈ Ωc and ur ∈ Ωf

i If 0 > ql the solution consists of a shock wave from ul to um and of a contact-
discontinuity from um to ur.

ii If ql = 0 the solution consists of a 1-contact discontinuity from ul to um and of a
contact-discontinuity from um to ur.

iii If ql > 0 the solution consists of a 1-rarefaction wave from ul to um and of a
contact-discontinuity from um to ur.

• Case 4: ul ∈ Ωf and ur ∈ Ωc Let um− be defined by the solution in Ωc of the system:{
qm−
ρm−

= q−
R

vc(um−) = vc(ur)

and let Λ(ul, um−) be the Rankine-Hugoniot phase transition speed between ul and
um− defined by equation (2.9).

i If Λ(ul, um−) ≥ λ1(um−) the solution consists of a phase transition from ul to um−
and of a 2-contact discontinuity from um− to ur.
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ii If Λ(ul, um−) < λ1(um−) let up be defined by the solution in Ωc of the system:{
qp
ρp

= q−
R

Λ(ul, up) = λ1(up).

The solution consists of a phase transition from ul to up, of a 1-rarefaction wave
from up to um−, and of a 2-contact discontinuity from um− to ur.

2.3.3 Model properties

The properties of the Newell-Daganzo model can be abstracted from the definition of
the Riemann solver in previous Section.

The nature of the Lax curves in congestion is the same for the original Colombo model
and the Newell-Daganzo phase transition model (see Figure 2.4). Thus the solution for each
model differ only when a free-flow state is involved. Three differences appear in that case:

i For a given density corresponding to the free-flow phase, the associated velocity differ in
general between the two models.

ii Within the free-flow phase, only contact discontinuity can arise in the Newell Daganzo
phase transition model, whereas rarefaction waves and shockwaves can arise in the orig-
inal Colombo model.

iii A transition from congestion to free-flow always involves a shock-like phase transition
in the Colombo model (and thus the solution is composed of three waves in general),
whereas the transition occurs through a metastable state in the Newell-Daganzo phase
transition model, and involves only a “congestion to metastable” wave and a “metastable
to free-flow” wave.

These properties are illustrated in the next Section on a Riemann problem.
As in the original Colombo phase transition model [62], the 1-Lax curves are LD for q = 0,
and the direction of the rarefaction waves changes according to the sign of q. This yields
interesting modeling capabilities, but requires the Riemann solver to be more complex than
the one described in the following Section.

Remark 2.11. As illustrated on Figure 2.3 the flux is linear in congestion at the standard
state as per the Newell-Daganzo flux function. Remark 2.8 states that this shape models
neutral drivers (aggressivity-wise). When the traffic is above the standard state, meaning
that the velocity is higher that what it is for the same density at the standard state, the 1-Lax
curves are concave in (ρ, ρ v) coordinates, meaning that the drivers are more aggressive. So
such a fundamental diagram shape seems to be in accordance with the intuition, that for a
given density, the most aggressive drivers tend to have a greater speed. This is symmetrically
true for less aggressive drivers, also accounted for by this model.
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2.3.4 Benchmark test

In this section we compare the numerical solution given by the modified Godunov scheme
with the analytical solution to a Riemann problem. We use the phase transition model (2.3)
in the Newell-Daganzo case (2.11) with the following choice of parameters: V = 45, R =
1000, σ− = 190, σ = 220, σ+ = 270. The benchmark test is a phase transition from
congestion to free-flow with the following left and right states:

i ul = (800,−0.1) which corresponds to congestion below standard state with ρ = 800 and
v = 2.9.

ii ur = (100) which corresponds to a free-flow state with ρ = 100 and v = 45.

This configuration gives rise to a shock wave between ul and a congested state um followed
by a contact discontinuity between um and ur (Riemann case 3, first subcase), as shown in
Figure 2.6.

We also present the solution given by the original Colombo model with the following pa-
rameters: Vc+ = 45, Vf− = 57, V = 67, q∗ = 0, Q− = −0.88 and Q+ = 1.15. The congested
phases in the two models are identical with this choice of parameters. One may note that
because the fundamental diagram in free-flow differs between the original Colombo model
and the Newell-Daganzo phase transition model (see Figure 2.4), the speed corresponding
to the right initial state in the Riemann problem is greater in the Colombo model.
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Figure 2.6: Numerical benchmark of Newell-Daganzo phase transition model.
Exact solution (continuous line), computed solution (dashed line), and exact solution for the
Colombo model (dotted line) for density (left) and speed (right). Between the two initial states,
arises a state um = (215.4,−0.03) which corresponds to the intersection of the 1-Lax curve going
through ul with the metastable phase. In this graph T = 0.4 and ∆x = 0.0013.

The solutions to the Riemann problem for each model differ on several points. First
the intermediary state um belongs to the metastable phase in the Newell-Daganzo model
whereas it belongs to the free-flow phase for the Colombo model. Second the wave from the
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intermediary state um to the right state ur is a rarefaction wave in the Colombo model, as
illustrated in Figure 2.6, whereas it is a contact discontinuity in the Newell-Daganzo phase
transition model.

The values of the error E(T ), as described in Section 2.2.6 for T = 4, (a typical time
for which all interactions have moved out of the computational domain) are outlined in
Table 2.2.

Cell ] E(T )

50 5.8 10−04

100 2.0 10−04

200 6.4 10−05

400 2.0 10−05

Table 2.2: Numerical error.
Relative error between exact solution and the modified Godunov scheme solution for the benchmark
described above, for different discretizations.

2.4 The Greenshields phase transition model

In this section we use a Greenshields model to describe the velocity function in conges-
tion, i.e. we use a concave quadratic flux function. We present the standard and perturbed
flux functions, derive the corresponding Riemann solver which we test on a benchmark case,
and describe the properties of the Greenshields phase transition model.

2.4.1 Analysis

We use a quadratic relation to describe the congestion standard state, which for physical
considerations needs to satisfy the requirements from Section 2.2.1. This leads us to choose
the flux as a quadratic function of the form:

ρ vsc(ρ) = (ρ−R) (a ρ+ b)

such that the vanishing condition at ρ = R is satisfied. Continuity at the critical density σ
yields:

b =
σ V

σ −R
− a σ

so the flux at the standard state reads:

ρ vsc(ρ) = (ρ−R)

(
a (ρ− σ) +

σ V

σ −R

)
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with a variation interval for a defined by the second and third conditions of Section 2.2.1 as:

a ∈
[
− σ V

(σ −R)2
, 0

[
.

Note that for the specific case in which R = 2 σ and a is defined by the fact that the
derivative of the flux equals zero at σ (which reads a = −σ V/(σ − R)2), we obtain the
classical Greenshields flux.

Following the general form given in system (2.4), we write the perturbed velocity func-
tion as: {

vf (ρ) = V for (ρ, q) ∈ Ωf

vc(ρ, q) =
(

1− R
ρ

) (
a (ρ− σ) + σ V

σ−R

)
(1 + q) for (ρ, q) ∈ Ωc

(2.13)

with a ∈
[
− σ V

(σ−R)2
, 0
[
, and where Ωf and Ωc are defined by (2.5). The corresponding

fundamental diagram is presented in Figure 2.7.

Figure 2.7: Phase transition model with a Greenshields standard state.
Left: State-space coordinates. Right: Flux-density coordinates. Thin solid line: Free-flow. Bold
solid line: Congestion standard state. Thin dashed line: Upper bound of congestion. Thin dot-
dashed line: Lower bound of congestion. The standard flux is concave, and all the 1-Lax curves
are concave in (ρ, ρ v) coordinates. In (ρ, q) coordinates the free-flow phase is not a straight line
but has a very light convexity.

Remark 2.12. The expression of the velocity function given by system (2.13) enables a set-
valued velocity function for ρ > σ−. For a given density the variable velocity can take several
values. The lower bound of the congestion phase is concave, unlike for the model presented
in Section 2.3. This feature may be more appropriate for usual experimental datasets.



Section 2.4. The Greenshields phase transition model 35

The requirements from Section 2.2.2 here reduce to:

q− > −
aR

σ V
σ−R + a (2R− σ)

.

While in the Newell-Daganzo phase transition model the bound on the perturbation is given
by the fact that the speed had to be positive, here the bound is given by the requirement on
the constant concavity of the 1-Lax curves.

Remark 2.13. The lower bound on the perturbation is an increasing function of the pa-
rameter a, so this parameter should be chosen as small as possible to guarantee more free-
dom, namely amin = −σ V/(σ − R)2 which yields the lowest lower bound bound qmin

− =
R/(2σ − 3R).

2.4.2 Solution to the Riemann problem

We consider the Riemann problem for system (2.3) with the velocity function from
equation (2.13) and the initial datum:

(ρ, q)(0, x) =

{
(ρl, ql) if x < 0

(ρr, qr) if x > 0.
(2.14)

We follow the method used in [62] to construct the solution. We define um by the solution
in Ωc of the system: {

qm
ρm

= ql
ρl

vc(um) = vc(ur)
(2.15)

which yields a quadratic polynomial in ρm with one root in [0, R]. In the general case, the
solution um of the system (2.15) can be equal to ul or ur.

i Case 1:

ul ∈ Ωf and ur ∈ Ωf For all values of (ρl, ρr) the solution consists of a contact disconti-
nuity from ul to ur.

ii Case 2: ul ∈ Ωc and ur ∈ Ωc

i If vc(ur) ≥ vc(ul) the solution consists of a 1-rarefaction wave from ul to um and a
2-contact discontinuity from um to ur.

ii If vc(ul) > vc(ur) the solution consists of a shock wave from ul to um and a 2-contact
discontinuity from um to ur.

iii Case 3: ul ∈ Ωc and ur ∈ Ωf The solution consists of a 1-rarefaction wave from ul to
um and of a contact-discontinuity from um to ur.
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iv Case 4: ul ∈ Ωf and ur ∈ Ωc Let um− be defined by the solution in Ωc of the system:{
qm−
ρm−

= q−
R

vc(um−) = vc(ur).

The solution consists of a phase transition from ul to um− and of a 2-contact discontinuity
from um− to ur.

Remark 2.14. The analysis in the case of a convex standard flux function, which we do
not address here, is closely related to this case, modulo the sign of the parameter a and the
concavity of the 1-Lax curves.

2.4.3 Model properties

The structure of the solution to the Riemann problem presented in previous section
explains the distinction with the original phase transition model:

i Since the 1-Lax curves are concave, within the congestion phase, shock waves occur only
from a low density on the left to a high density on the right. This is similar to classical
traffic models with concave flux.

ii The concavity of the 1-Lax curves yields simple transitions from a free-flow state to a
congested state. These phase transitions are composed of a shock-like phase transition
followed by a contact discontinuity, whereas a rarefaction wave can appear between the
two in the original phase transition model or in the Newell-Daganzo phase transition
model.

iii Similarly to the Newell-Daganzo phase transition model, within the free-flow phase, the
Greenshield phase transition model exhibits only contact discontinuities.

Another consequence of the fact that the 1-Lax curves are concave is that the Riemann
solver is much simpler than in the Newell-Daganzo case, with only five different types of
solutions, compared to the Newell-Daganzo case which has eleven different types of solutions.

Remark 2.15. According to Remark 2.8 this flux function models aggressive drivers only,
who drive along concave 1-Lax curves. In practice, it is able to model a class of clouds of
points observed experimentally where the congested domain has a concave lower border in
(ρ, ρ v) coordinates.

2.4.4 Benchmark test

In this section we compare the numerical results given by the modified Godunov scheme
on a benchmark test with its analytical solution. We use the phase transition model (2.3)
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in the Greenshields case (2.13) with the following choice of parameters: V = 45, R = 1000,
σ− = 190, σ = 200, σ+ = 215. We choose a = −0.01. The resulting values for the extrema
of the perturbation are q− = −0.34 and q+ = 0.44. The benchmark test is a phase transition
from free-flow to congestion, with the following left and right states:

i ul = (180) which corresponds to a free-flow state with ρ = 180 and v = 45.

ii ur = (900, 0.2) which corresponds to a congested situation above standard state with
ρ = 900 and v = 2.4.

This configuration gives rise to a phase transition between ul and a congested state um
followed by a 2-contact discontinuity between um and ur (Riemann case 4) which is illustrated
in Figure 2.8.

We also present the solution to the Riemann problem for the original Colombo model
with parameters: Vc+ = 45, Vf− = 57, V = 67, q∗ = 0, Q− = −0.32 and Q+ = 0.44. The
speed in free-flow differs between the two models. The phase transition speed is negative
for both models but is greater in the case of the Greenshields phase transition model which
models more aggressive drivers which have a higher flux in congestion for the same density
value. The second wave has the same speed in the two models.
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Figure 2.8: Numerical benchmark of Greenshields phase transition model.
Exact solution (continuous line), computed solution (dashed line), and solution to the Colombo
model (dotted line) for density (left) and speed (right). Between the two initial states appears a
state um = (847.4,−0.24) which corresponds to the intersection of the lower bound of the diagram
in congestion with the 2-Lax curve going through ur. In this graph T = 1 and ∆x = 0.0013.

Table 2.3 summarizes the values of the error E(T ), as defined in Section 2.2.6, for
different sizes of the discretization step, at T = 4.
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Cell ] E(T )
50 3.1 10−04

100 7.8 10−05

200 2.1 10−05

400 5.4 10−06

Table 2.3: Relative error.
Relative error between exact solution and numerical solution for the test case explicitly described
above, for different numbers of space cells.

2.5 The Li phase transition model

In this section, we use a Li model [158] to describe the velocity function in congestion.
The flux function is concave below a density σi in (σ,R] and is convex for densities above σi.
According to our interpretation of the concavity of the flux given in remark 2.8, this model
accounts for a changing behavior among drivers who drive in a less aggressive way when
congestion becomes too high. We present the equilibrium relation for this model, then we
analyze the perturbation, and finally we derive a Riemann solver and test it on benchmark
cases.

2.5.1 Analysis

The Li model that we use for the congestion phase is concave above critical density σ
until a density σi and is convex from σi to R. Due to the requirements listed in 2.2.1, we
propose to write the flux as a cubic function of the density.

Remark 2.16. In the following we will assume that the density parameters are sorted as
0 < σ < σi ≤ R and σi ≈ R.

1. The requirement that the flux should vanish at the maximal density R leads to the
following expression:

ρ vsc(ρ) = (ρ−R) (a ρ2 + b ρ+ c). (2.16)

2. The existence of an inflexion point for the flux at ρ = σi yields:

d2(ρ vsc(ρ))

dρ2
(σi) = 2 a (3σi −R) + 2 b = 0. (2.17)

Thus the following relation must be verified:

a =
b

R− 3σi
(2.18)

where we assume in agreement with remark 2.16 that R− 3σi 6= 0.
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3. According to expression (2.17) of the second derivative of the flux and using rela-
tion (2.18) between a and b, we obtain that the concavity of the flux in R is defined by
the sign of 6 b R−σi

R−3σi
and assuming as per remark 2.16 that R− 3σi < 0 we must have

b < 0 to have a flux convex in R. A similar reasoning shows that the concavity of the
flux in the critical density σ is defined by the sign of 6 b σ−σi

R−3σi
, so in order to have a

flux concave at the critical density, assuming σ < σi consistently with remark 2.16 we
must have b < 0.

4. The continuity of the flux function at the critical density σ leads to:

c =
V σ

σ −R
− b

(
σ2

R− 3σi
+ σ

)
.

5. The fact that the flux is decreasing in R and in σ, and thus everywhere, comes from:

d(ρ vsc(ρ))

dρ
(σ) ≤ 0 and

d(ρ vsc(ρ))

dρ
(R) ≤ 0

which respectively yields:

b ≥ − σ V

(R− σ)2

R− 3σi
2σ +R− 3σi

and b ≤ σ V

(R− σ)2

R− 3σi
2R + σ − 3σi

where we assumed that 2 σ + R − 3σi < 0 and 2R + σ − 3σi < 0 consistently with
the ordering of the parameters of remark 2.16. The second inequality is less restrictive
than b < 0 required above.

Finally the Li flux reads:

ρ vsc(ρ) = (ρ−R)

[
b

(
ρ2

R− 3σi
+ ρ−

(
σ2

R− 3σi
+ σ

))
+

σ V

σ −R

]
(2.19)

and under this form satisfies all requirements as long as the following assumptions hold:{
2σ +R− 3σi < 0

b ∈
[
− σ V

(R−σ)2
R−3σi

2σ+R−3σi
, 0
]
.

The perturbed velocity function reads:{
vf (ρ) = V for (ρ, q) ∈ Ωf

vc(ρ, q) =
(

1− R
ρ

)
[a ρ2 + b ρ+ c] (1 + q) for (ρ, q) ∈ Ωc.

(2.20)

We note as in 2.2.2:
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{
Ωf = {(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) = V , 0 ≤ ρ ≤ σ+}
Ωc =

{
(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) < V , q−

R
≤ q

ρ
≤ q+

R

}
.

Figure 2.9 presents the corresponding fundamental diagram in state-space coordinates and
in density-flux coordinates.

Figure 2.9: Phase transition model with a Li equilibrium.
Left: State-space coordinates. Right: Flux-density coordinates. Thin solid line: Free-flow. Bold
solid line: Congestion equilibrium. Thin dashed line: Upper bound of congestion. Thin dot-dashed
line: Lower bound of congestion. The 1-Lax curves do not have a constant concavity but have no
more than one inflexion point.

The equilibrium flux (2.19) has one and only one inflexion point, located at ρ = σi. For
simplicity of the analysis and for modeling consistency, we want to have the inflexion points
of all the 1-Lax curves2 in a neighborhood of (σi, 0). The concavity of the 1-Lax curves is
given by the sign of:

∇λ1.r1 = 2 ρ (3 a ρ+ b− aR) + q (12 a ρ2 + 6 (b− aR) ρ+ 2 (c− bR))

which gives when substituting a, b and c for their respective expression:

∇λ1.r1 = 6 ρ b
R−3σi

(ρ− σi)+
2 b q

(
6 ρ2

R−3σi
− 9σi

R−3σi
ρ+ V σ

b (σ−R)
− (R + σ + σ2

R−3σi
)
) (2.21)

where the first term which corresponds to a zero value of the perturbation q vanishes at
ρ = σi, which is equivalent for the equilibrium flux to having an inflexion point at ρ = σi.

2The 1-field would be called GNL if no 1-Lax curve had any inflexion point, which is clearly not the case
since the equilibrium flux which corresponds to the 1-Lax curve for q = 0 has an inflexion point.
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For admissible values of b it is not possible to have expression (2.21) vanishing at (σi, q) for
all q ∈ [q−, q+], thus it is not possible to have all the 1-Lax curves having an inflexion point
at ρ = σi. If we note (ρ, q) an inflexion point of a 1-Lax curve, a less restrictive condition
would be to have its density coordinate ρ ‘close’ to the density coordinate σi of the inflexion
point at equilibrium. In order to do so we set b such that the term which does not depend
on ρ in 2.21 equals zero, i.e. b = c

R
which reads:

b =
V σ

σ −R
R− 3σi

(R− 3σi) (R + σ) + σ2

which has a sense since the denominator of the right term satisfies (R− 3σi) (R+ σ) + σ2 <
(−2σ) (R+ σ) + σ2 < 0 because we assumed 2σ +R− 3σi < 0. We also proved that b < 0.
We must also verify that the value chosen for b is not too small, i.e. that the flux is still
decreasing at ρ = σ. This condition which reads:

V σ

σ −R
R− 3σi

(R− 3σi) (R + σ) + σ2
≥ − σ V

(R− σ)2

R− 3σi
2σ +R− 3σi

is equivalent to σ− 2σi ≤ 0 which is true according to remark 2.16. Then an inflexion point
(ρ, q) for a 1-Lax curve satisfies:

ρ = σi

(
1 +

q

1 + 2 q

)
(2.22)

where we assumed that 1 + 2 q 6= 0 (i.e. is positive given the restriction expressed by the
positivity of the speed (2.6)). In order to have the projection on the density axis of the
set of inflexion points (i.e. the points (ρ, q) satisfying (2.22)) included in a neighborhood
[σi (1 − α−), σi (1 + α+)]) of σi, for α−, α+ positive and small (meaning that σi (1 − α−) ≈
σi ≈ σi (1 + α+)), we additionally require:

q+ ≤
R

σi (1 + α+)

α+

1− 2α+

and q− ≥ −
R

σi (1− α−)

α−
1 + 2α−

where we assumed that α+ < 1/2 and α− < 1/2. When we add to this the conditions
from 2.2.2, assuming that 2R < 3σi it summarizes as:

q− ≥ max

(
− R

σi (1− α−)

α−
1 + 2α−

,max
[σ,R]

(
−

ρ d2Qeqc (ρ)
dρ2

2 dQeqc (ρ)
dρ

+ ρ d2Qeqc (ρ)
dρ2

))
and:

q+ ≤
R

σi (1 + α+)

α+

1− 2α+

.
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2.5.2 Solution of the Riemann problem

We consider the Riemann problem for system (2.3) with the velocity function defined
by (2.20) and the initial datum:

(ρ, q)(0, x) =

{
(ρl, ql) if x < 0

(ρr, qr) if x > 0

and we follow the method used in [63] to construct the solution. We define um by the solution
in Ωc of system: {

qm
ρm

= ql
ρl

vc(um) = vc(ur)

and we define up by the solution in Ωc of the system:{
λ1(up) = Λ(ul, up)
qp
ρp

= ql
ρl
.

We also note ui,l the inflexion point of the 1-Lax curve going through ul.

1. Case 1: ul ∈ Ωf and ur ∈ Ωf

For all values of (ρl, ρr) the solution consists of a contact discontinuity from ul to ur.

2. Case 2: ul ∈ Ωc and ur ∈ Ωc

(a) If vc(ul) > vc(ur) ≥ vc(ui,l) the solution consists of a shock wave from ul to um
and a 2-contact discontinuity from um to ur.

(b) If vc(ur) ≥ vc(ul) ≥ vc(ui,l) the solution consists of a 1-rarefaction wave from ul
to um and a 2-contact discontinuity from um to ur.

(c) If vc(ul) > vc(ui,l) > vc(ur)

i. If Λ(ul, um) ≥ λ1(um) the solution consists of a shock wave from ul to um and
a 2-contact discontinuity from um to ur.

ii. If λ1(um) > Λ(ul, um) the solution consists of a shock wave from ul to up, a
1-rarefaction wave from up to um and a 2-contact discontinuity from um to
ur.

(d) If vc(ui,l) ≥ vc(ur) > vc(ul) the solution consists of a shock wave from ul to um
and a 2-contact discontinuity from um to ur.

(e) If vc(ui,l) ≥ vc(ul) ≥ vc(ur) the solution consists of a 1-rarefaction wave from ul
to um and a 2-contact discontinuity from um to ur.

(f) If vc(ur) > vc(ui,l) > vc(ul)
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i. If Λ(ul, um) ≥ λ1(um) the solution consists of a shock wave from ul to um and
a 2-contact discontinuity from um to ur.

ii. If λ1(um) > Λ(ul, um) the solution consists of a shock wave from ul to up, a
1-rarefaction wave from up to um and a 2-contact discontinuity from um to
ur.

3. Case 3: ul ∈ Ωc and ur ∈ Ωf

(a) If vc(ul) ≥ vc(ui,l) The solution consists of a 1-rarefaction wave from ul to um and
of a contact-discontinuity from um to ur.

(b) If vc(ui,l) > vc(ul)

i. If Λ(ul, um) ≥ λ1(um) the solution consists of a shock wave from ul to um and
a contact discontinuity from um to ur.

ii. If λ1(um) > Λ(ul, um) the solution consists of a shock wave from ul to up, a
1-rarefaction wave from up to um and a contact discontinuity from um to ur.

4. Case 4: ul ∈ Ωf and ur ∈ Ωc

Let um be defined by the solution in Ωc of the system:{
qm
ρm

= q−
R

vc(um) = vc(ur)

and let Λ(ul, um) be the Rankine-Hugoniot phase transition speed defined in (2.9)
between ul and um.

(a) If Λ(ul, um) ≥ λ1(um) the solution consists of a phase transition from ul to um
and of a 2-contact discontinuity from um to ur.

(b) If λ1(um) > Λ(ul, um) let up := (ρp, qp) be defined by the solution in Ωc of the
system: {

qp
ρp

= q−
R

λ1(up) = Λ(ul, up).

The solution consists of a phase transition from ul to up, of a 1-rarefaction wave
from up to um, and of a 2-contact discontinuity from um to ur.
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2.5.3 Benchmark tests

In this section we compare the numerical results given by the modified Godunov scheme
on benchmark tests in which the exact solution can be approximated almost exactly using
wavefront tracking [39]. We use the phase transition model (2.3) with an equilibrium de-
scribed by the Li velocity (2.20) with the following choice of parameters: V = 45, R = 1000,
σ− = 211, σ = 220, σ+ = 236 σi = 750. We use three benchmark tests, one phase transition
from free-flow to congestion (FF-C), one phase transition from congestion to free-flow (C-
FF), and a more complex benchmark test involving more than one discontinuity (FF-C-FF).

Phase transition from free-flow to congestion

We use the following parameters:

1. ul = (120,−0.48) which corresponds to a free-flow situation with v = 45.

2. ur = (800, 0.01) which corresponds to a congested situation under equilibrium with
ρ = 500 and v = 3.5.

This configuration gives rise to a phase transition between ul and a congested state um on
the lower bound of the congestion region, followed by a 2-contact discontinuity from um to
ur (Riemann case 4, first subcase), as illustrated in figure 2.10.
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Figure 2.10: Free-flow to congestion benchmark Riemann problem.
Exact solution (continuous line) and computed solution (dashed line) for density (left) and speed
(right). In this graph T = and ∆x = 0.0025.
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Phase transition from congestion to free-flow

We use the following parameters:

1. ul = (800, 0.2) which corresponds to a congested state over equilibrium with v = 4.1.

2. ur = (120,−0.48) which corresponds to a free-flow state.

This configuration gives rise to a rarefaction from ul to a metastable state um, followed by
a contact discontinuity from um to ur (Riemann case 3, first subcase), which is depicted in
figure 2.11.
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Figure 2.11: Congestion to free-flow benchmark Riemann problem.
Exact solution (continuous line) and computed solution (dashed line) for density (left) and speed
(right). In this graph T = 0.46 and ∆x = 0.0025.

Free-flow to congestion to free-flow

In this section we use the following more realistic benchmark test:

u0(x) =



(180,−0.20) when − 0.5 ≤ x ≤ −0.3.

(700,−0.1) when − 0.3 ≤ x ≤ −0.1.

(900, 0) when − 0.1 ≤ x ≤ 0.1.

(300, 0.1) when 0.1 ≤ x ≤ 0.3.

(50,−0.79) when − 0.3 ≤ x ≤ 0.5.

The evolution of these initial conditions yields at time T the profiles from figure 2.12.
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Figure 2.12: Experimental benchmark conditions.
Exact solution (continuous line) and computed solution (dashed line) for density (left) and speed
(right). In this graph T = 0.37 and ∆x = 0.0025.

Error computation

The values of the error E(T ) and of the formal order of convergence γ are outlined in
table 2.4 for T = 4, (a typical time when interactions have moved out of the computational
domain).

FF-C C-FF FF-C-FF
Cell ] E(T ) γ(T ) E(T ) γ(T ) E(T ) γ(T )

50 5.3 10−02 6.6 5.0 10−02 4.4 8.9 10−02 8.7 10−01

100 2.7 10−02 3.6 3.0 10−02 -4.7 10−01 6.1 10−02 8.5 10−01

200 1.3 10−02 -9.6 10−02 1.8 10−02 2.2 10−02 4.5 10−02 8.0 10−01

400 6.5 10−03 1.0 10−02 3.4 10−02

Table 2.4: L1 relative error.
Exact solution and the modified Godunov scheme solution for three test cases explicitly described
above, and for different numbers of space cells. We note FF-C the case of a phase transition
from free-flow to congestion, C-FF the case of a phase transition from congestion to free-flow, and
FF-C-FF the last case.
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Chapter 3

Phase transition model analysis:
properties and performance

In this chapter, we analyze the modeling performances of the phase transition model
introduced in the previous chapter. After a perspective on the different scales at which traffic
can be modeled, we briefly remind the reader of the seminal scalar macroscopic traffic flow
model described in details in Chapter 1, motivate the historical introduction of non-scalar
traffic flow models, and describe how the model proposed in the previous chapter answers
the concerns and issues raised by the transportation community on so-called higher-order
models.

3.1 Modeling traffic at a macroscopic scale

The theory of traffic modeling incorporates the design and analysis of mathematical tools
for accurate representation of traffic dynamics. Road networks can be studied at different
scales [155]. At a fine scale, the representation of traffic is closer to the true nature of the
phenomena on the road. However, a detailed traffic model requires a large volume of accurate
measurements for calibration and validation, and correspondingly large computation power.
Consequently, different scales have been historically associated with different applications,
depending on data availability and computational requirements.

At a nanoscopic scale, vehicles are considered to behave independently under the control
of a driver who reacts to stimuli from neighboring vehicles according to a specific behavioral
model. Traffic dynamics can be modeled as a set of coupled ordinary differential equations
(ODE) with decision variables resulting from a demand model (see for instance [1]). At a
microscopic scale, vehicles are considered to behave independently by reacting to stimuli
from neighboring vehicles according to a dynamical model. Traffic dynamics can be mod-
eled as a set of coupled ordinary differential equations [37]. Nanoscopic and microscopic
models have been used mostly for off-line non-real-time simulation and planning (Quadstone
Paramics [45], VISSIM [94]).
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At a mesoscopic scale, vehicles are considered as a large set of atomic elements with
individual behavior according to macroscopic laws or relations. Traffic dynamics can be
modeled as cellular automata [57] or using gas-kinetic models [188]. Mesoscopic models
have been widely applied to real-time on-line and off-line network-wide control and dynamic
traffic assignment, with significant prior data collection for calibration (DynaMIT [21], Dy-
NASMART [166]).

At a macroscopic scale, vehicles are considered to behave as a continuum medium. Traf-
fic dynamics is modeled as a distributed system, using partial differential equations (PDE)
inspired from hydrodynamics theory [159, 97, 189]. Consequently, in this framework, the
effect of network-wide route choices is not conveniently accounted for. One of the strengths
of macroscopic models resides in the level of complexity they capture at a relatively low ana-
lytical and computational cost, and with limited data requirements for calibration. This has
motivated the use of macroscopic models in particular for real-time on-line estimation and
corridor management (METANET [168], Mobile Millennium [19], TOPL [56]). Furthermore,
the mathematical theory of hydrodynamics modeling brings a solid mathematical structure
to macroscopic models. This theoretical strength can be leveraged for the development of
mathematically sound lower-scale models, by equivalence (see [99, 113, 118, 155]), and serve
as an anchor for the development of consistent multi-scale modeling frameworks (e.g. the
AIMSUN simulation software [14]).

These properties of macroscopic models have motivated sustained research on extension
of seminal models such as the Lighthill-Whitham-Richards (LWR) model, presented in the
following section, with the goal of capturing complex observed phenomena missing from the
LWR theory. Challenges in the design of so-called higher-order models relate to the devel-
opment of sound physical understanding, well-defined analytical structure, and preserved
computational tractability of the solution algorithm. In this chapter, we show that allowing
the speed function to take values around the classical stationary bivariate relation enables
the simulation of higher-order traffic phenomena at the same computational cost as classical
solution methods for the LWR model, and with a preserved physical interpretation.

In the following section, we present the historical context for the introduction of scalar
macroscopic models, presented in details in Section 1.2.3.

3.1.1 First order scalar macroscopic models

The basis for the theory of macroscopic traffic modeling was set by the seminal arti-
cles from Lighthill and Whitham [159], and Richards [189], that introduced a PDE model
describing the evolution of the density ρ(t, x) of vehicles at time t and location x

∂ρ(t, x)

∂t
+
∂Q(ρ(t, x))

∂x
= 0, (3.1)

where the flow is expressed as a function of the density Q(ρ(t, x)). This so-called LWR model
expresses the conservation of vehicles on the road. Different traffic models were later shown to
be equivalent to the LWR formulation, in particular the Newell car-following model [178] and
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the cell-transmission model (CTM) [71], in the case of a triangular flux function Q(·) [177],
also called triangular fundamental diagram:

Q(ρ)
.
=

{
ρ vmax if ρ ≤ ρc

(ρ− ρmax) w if ρ ≥ ρc
(3.2)

where vmax, ρc, ρmax and w denote the free-flow speed, the critical density, the jam density
and the backward moving wave speed, respectively, which are required to satisfy

ρc vmax = (ρc − ρmax) w (3.3)

for continuity of the flow at the critical density. Density values below the critical density
correspond to free-flow states and density values above the critical density correspond to
congestion states. For non-vanishing values of the flow q and the speed v, the definition of
the flux function Q(·) is equivalent to the definition of a speed function V (·) through the
equality q = v ρ. The use of a single-valued fundamental diagram mapping a density value
to a unique flow value dates back to the observations by Greenshields in Ohio in 1934 [107],
Greenberg in the Lincoln tunnel in 1959 [106], and Edie in the Holland tunnel in the early
1960’s [85].

The LWR theory has been validated with experimental data for traffic modeling (see [175]
for instance), and in particular the triangular fundamental diagram from equation (3.2) has
been shown to accurately model the stationary relation between density and flow, under
proper time-space aggregation of traffic measurements [46, 47, 76]. One of the most desir-
able properties of the LWR model lies in its ability to capture the formation and growth
of queues at bottlenecks. However the LWR model is known to be unable to reproduce
more complex observed traffic phenomena such as stop-and-go waves, traffic hysteresis, and
phantom jams [118].

3.1.2 Non-stationary traffic flow

The introduction of more complex macroscopic models for traffic flow dates back to
the Payne-Whitham model (PW) [183], which consists in a 2×2 system1 of PDEs. The first
equation is the LWR PDE (see equation (3.1)) and the second equation models the accelera-
tion of vehicles as resulting from a reaction to local traffic conditions and a relaxation around
the stationary relation. In a discrete form with a minor modification at on-ramps [182], this
model was later used extensively for estimation and control [221, 222].

Several remarks were raised [73, 78] on the lack of physical consistency of so-called
higher-order models, in which vehicles with negative speed, and anisotropy property, were
shown to arise. Anisotropy characterizes the fact that modeled drivers react to stimuli from
the front and from behind2. These considerations led to the development of improved non-

1A set of 2 equations for a 2-tuple of state variables.
2The justification for this terminology is the fact that in a so-called anisotropic model, we have λ1 ≤ v ≤

λ2, were v denotes the speed of vehicles, and λ1,2 the characteristic speeds at which information propagate.
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scalar models that did not exhibit these flaws; using a convective derivative in [13], and the
so-called non-equilibrium model [233].

Independently, Kerner proposed the three-phase theory [134, 136, 137] postulating the
existence of three phases of traffic; free-flow, synchronized flow, and moving jam, instead
of the classical free-flow and congestion. So-called third order PDE models inspired from
physical systems such as the model from Helbing [112], introducing the speed variance as a
traffic state, have also been proposed.

The relative strengths and weaknesses of first and second-order models have been out-
lined in several articles [73, 78, 118, 151, 155, 181], including discussions on the expected
modeling abilities of extensions to state-of-the-art macroscopic traffic models. This coin-
cides with the emergence of sustained research focused on the understanding and modeling
of specific phenomena missing from the LWR theory; stop-and-go waves, hysteresis pat-
terns, capacity drop, and the understanding, validation, and modeling of their candidate
causes; lane changes, heterogeneous drivers, bounded acceleration, acceleration and deceler-
ation curves. Complementary efforts have investigated the nature of these phenomena and
proposed models to reproduce them, with specific emphasis on:

• Development of parsimonious models able to reproduce stop-and-go waves [158], hys-
teresis patterns [233], the capacity drop [182].

• Validation of the causality hypothesis and development of models for lane changes [127,
143, 145], heterogeneous drivers [53, 146], bounded acceleration [148], acceleration and
deceleration waves [229].

From the perspective of intelligent transportation systems, a critical feature of traffic models
consists in their ability to handle streaming measurements for accurate estimation of traffic
conditions [25, 170, 221, 227]. Observability of quantities required for on-line model calibra-
tion, ability to take advantage of measurements of various traffic quantities, computational
tractability and model accuracy are essential properties for traffic monitoring.

The focus of the present chapter is on the assessment of accuracy and practicality of
the phase transition model (PTM) introduced in the previous chapter, for traffic modeling
and on-line traffic estimation. We show that, by allowing the classical state variable density
ρ to be complemented in congestion by a perturbation variable p at the stationary state,
the PTM is able to propagate the impact of non-stationary dynamics, rather than predict
its emergence. It is observed that for time-space diagram reconstruction from initial and
boundary conditions, significant accuracy is gained from the ability to account for joint ob-
servations of different traffic quantities. Specific attention is given to the physical mesoscopic
interpretation of the model, and the practicality of implementation of the associated discrete
solution algorithm. In particular the convexity of the state-space of the model, required for
the use of finite volume schemes such as the Godunov scheme, is assessed. The performance
of the proposed model and its ability to model complex traffic phenomena such as hysteresis
patterns, phantom jams, forward-moving discontinuities in congestion, is assessed on bench-
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mark cases and on experimental vehicle trajectories from the Next Generation SIMulation
(NGSIM) datasets [179].

3.2 Phase transition model properties

In this section we present the properties of the phase transition model introduced in the
previous chapter, on benchmark tests and on experimental vehicle trajectories described in
section 3.3.1.

3.2.1 Mesoscopic interpretation

In this section we show that a meaningful mesoscopic interpretation, outlined in [30],
can be associated with the discrete numerical method presented in the previous section and
with the solution to the Riemann problem (see [74] for a related discussion on a Markovian
perspective for modeling of complex traffic phenomena). In particular, we provide a physical
interpretation for the numerical flux between two cells that depends on their corresponding
phases.

First, we note that the perturbation variable p indicates how much the speed of the
associated traffic state deviates from the stationary state. Hence from the mesoscopic per-
spective it can be viewed as an indication of the aggressiveness of the corresponding element
of flow. It follows that the quantity p/ρ is the average aggressiveness per driver; it is positive
if the observed speed is higher than the stationary speed, and negative otherwise.

Free-flow to free-flow: the flux between two cells in the free-flow phase Tf is the flow
from the upstream cell (first case of equation (1.6)). This is in accordance with the definition
of the free-flow phase as a phase in which the traffic demand is lower than the traffic supply,
hence the demand from the upstream cell can be accommodated by the downstream cell,
and the corresponding upstream flow can be realized between the two cells.

Congestion to congestion or free-flow: the flux between two cells in the congestion
phase is the flow of the intermediary state um (second and third case of equation (1.6)). In
this case, the middle state um has same value of p/ρ as the upstream state uup, and same
speed v as downstream state udown (see second and third case of the Riemann problem in
the previous chapter). The fact that the numerical flux between two cells is defined by the
average aggressiveness of the upstream state uup and the speed of the downstream state
udown can be understood as follows: drivers from the upstream cell adapt their speed to the
speed of the drivers from the downstream cell. They adapt their speed and pick their spacing
according to their natural driving behavior, represented here by the average aggressiveness
of the element of flow to which they belong. Hence the numerical flux between the two cells
is the flow that corresponds to a personalized modification, by the upstream drivers from
the state uup, of their speed, in order to match the speed of the downstream drivers.

Free-flow to congestion: the flux between two cells in the congestion phase is the flow
of the intermediary state um (fourth case of equation (1.6)). In this case, the middle state
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um has the lowest possible average aggressiveness p/ρ compatible with the speed v of the
downstream state udown (see fourth case of Riemann problem). This can be understood as
follows; in the free-flow phase, the demand is not constrained by the supply and drivers are
free to drive at the free-flow speed, hence the traffic state is entirely defined by its density. In
particular, the aggressiveness of drivers is uniquely determined from the value of the density.
When the drivers from the free-flow phase enter the congestion phase, they switch from a
phase in which the demand is the defining constraint to a phase in which the supply is the
defining constraint. This naturally yields a degree of aggressiveness that represents their
driving speed compared to the stationary speed. Since the free-flow drivers emerge from a
free-flow phase, the average aggressiveness of their corresponding element of flow is as low as
possible. However, they have to adapt their speed according to the speed of the downstream
traffic. They modify their speed to reach the speed of the downstream drivers, which is
the second defining element for the intermediary state. In that sense, the aggressiveness of
drivers is created by the interaction of a free-flow phase upstream and a congestion phase
downstream. This is similar to the fact that congestion in the LWR model arises only from
junctions.

3.2.2 Set-valued fundamental diagram

In this section, we quantify how the set-valued nature of the congestion phase of the
PTM fundamental diagram increases the accuracy with which non-stationary traffic obser-
vations are accounted for by the admissible domain of the model. We propose a method
for projecting state values falling outside of the state space back onto the state-space, and
compare its performance with a similar method for the LWR model. In an estimation set-
ting, the figures presented in this section indicate appropriate values for the error statistics
associated with the boundary of the state-space.

PTM theory

The PTM state variables include the density ρ and an additional perturbation variable p
in congestion that captures non-stationary traffic states observed in practice (see Figure 3.1).
However, for measurements outside of the union Tf ∪ Tc of the free-flow phase and the
congestion phase, a method has to be designed to project the observations onto the admissible
domain.

For the LWR model, this can be accomplished by assuming that measurements of density
outside of the range [0, ρmax] are not valid or correspond to the endpoints {0, ρmax}, that
measurements of speed outside of the range [0, vmax] are not valid or correspond to the
endpoints {0, vmax}, and that a measurement of a given quantity automatically yields another
quantity using the stationary relation.

In the case of the PTM, for traffic observations falling outside of the domain Tf ∪ Tc,
we propose to project along the eigen-trajectories of the system, i.e. along the curves of
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Figure 3.1: Set-valued congestion phase.
The PTM triangular fundamental diagram is able to capture to some extent the cloud of points
observed in the congestion phase. The figures correspond to a visual fit of a triangular stationary
relation with positive and negative perturbation, and a free-flow speed vmax = 70 mph. Note that
the visually linear edge on the left of the cloud of points, does not correspond to the free-flow speed
vmax, but to the maximal speed of vehicles in the conditions considered, approximatively 30 mph
and 20 mph for the left, and right sub figure respectively.

constant average aggressiveness p/ρ or constant speed v. Here we address the case of perfect
measurements. The projection method is illustrated in Figure 3.2.

The set-valued nature of the PTM fundamental diagram in congestion is of particular
interest in the case of joint measurements from different traffic quantities, for instance loop
counts and loop occupancies, or probe speeds and loop counts.

Empirical validation

In this section we illustrate the average absolute error associated with the process of
projection onto the fundamental diagram for the CTM and the PTM. We consider the
discretized values of flow, density, speed from the NGSIM datasets, as measurements of the
ground-truth traffic state, and we assume that the associated measurement error (due to
sensing and processing error) can be neglected in the analysis presented in this section.

For points falling outside of the fundamental diagram of the PTM, we compute the
average absolute error between the measurement, and its projection onto the diagram using
the method described in previous section. The associated density and speed errors are
represented in the second and last columns of table 3.1, respectively.

We also represent the error associated with using the stationary relation in the CTM.
Specifically, in the first column of table 3.1, we present the error on density when observing
speed and computing the density from the stationary relation. In the third column of
table 3.1, we present the error on speed when observing density and computing the speed
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Figure 3.2: Projection onto PTM diagram.
Outliers with a density corresponding to the free-flow phase are projected along iso-density curves
(vertical dashed lines left). Outliers with higher density than the maximal free-flow density and
higher speed than the free-flow speed are projected along iso-average aggressiveness curves, or
trajectories of the first type, iso-p/ρ (dashed curves at the center for both axis). Outliers with
higher speed than the free-flow speed and higher average aggressiveness than its maximum allowed
value are projected onto the capacity point of the diagram (dashed curves center top). Outliers
with higher density than the maximal free-flow density and lower speed than the free-flow speed are
projected along iso-speed curves, or trajectories of the second type, iso-v (dashed lines emanating
from the origin).

from the stationary relation.

Density CTM Density PTM Speed CTM Speed PTM
error (vpm) error (vpm) error (mph) error (mph)

I-80 4-4:15 58.9 8.5 5.4 0.1
I-80 5-5:30 61.0 5.2 3.4 0.0

Table 3.1: Average projection error.
Average absolute error associated with the stationary state hypothesis for the CTM and with the
projection on the set-valued fundamental diagram for the PTM. The first column corresponds to
the computation of density from speed observation using the stationary relation, and the converse
for the third column. The second column corresponds to the error in density due to projection, and
similarly for the speed in the fourth column. For each dataset, the error is averaged for all values
of density, speed, and flow represented in figure 3.1, obtained from vehicle trajectories according
to the method described in section 3.3.1 to handle NGSIM data.
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It is clear from table 3.1 that inferring the density from speed measurements and the
stationary relation yields a very high error (first column). One may also note that for the
PTM, since the projection is often realized along iso-speed trajectories, there is a very low
resulting error on speed.

The respective accuracy of the dynamics of the two models is presented in section 3.3.3.

3.2.3 Forward-moving discontinuity in congestion phase

One of the specific features of the stationary bivariate relation for traffic is that in-
formation propagates downstream in free-flow, and upstream in congestion. The PTM has
a two-dimensional state in congestion that allows two speeds of propagation of informa-
tion. The PTM is usually calibrated to have the first speed of propagation negative (see
section 3.3.2) according to the stationary state theory. The second speed of propagation
is always positive, and corresponds to the speed of vehicles at the upstream state. In this
section we study the increased modeling capabilities brought by this feature.

PTM theory

In the congestion phase, two types of waves can arise in the PTM solution. Waves of
the second type are contact-discontinuities; they connect two states uup = (ρup, pup) and
udown = (ρdown, pdown) with identical traffic speed v = VPTM(uup) = VPTM(udown), and move
at the speed v of traffic. This phenomenon is illustrated in Figure 3.3.

u
down

u
up

Density

F
lo

w

Forward−moving discontinuity 
 in congestion

u
up

u
down

Time

S
p

a
c
e

Forward−moving discontinuity 
 in congestion

Figure 3.3: Forward-moving discontinuity in congestion.
The interaction between states uup and udown with the same speed, yields a forward-moving contact
discontinuity in the congestion phase. Inverting the location of uup and udown also yields a forward-
moving contact discontinuity.

This type of waves models the propagation without dispersion of traffic phases with dif-
ferent density and flow, but identical speed. Since the discontinuity propagates at the speed
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of traffic, this phenomenon does not depend on the sign of the flow difference between the
upstream and the downstream phase, and, unlike for a shockwave, no mixing is introduced
between the two states on each side of the discontinuity. The interface between two groups
of vehicles with different densities and flow but identical speed is preserved with time.

Empirical validation

The aggregate time-space diagrams for density and speed in the I80 5-5:30 dataset are
presented in Figure 3.4.

In addition to several backward moving shock waves spanning the entire domain, we
observe a clear forward-moving discontinuity emanating from the upstream of the section
around time 750 seconds. A number of forward-moving discontinuities are observed during
the episodes of light congestion (blue in figure 3.4). One may note that the forward-moving
discontinuities for the episodes of light congestion travel faster than the forward moving dis-
continuity corresponding to heavy congestion (red in figure 3.4), as the PTM would predict.
Finally the comparison of the top and bottom plots of Figure 3.4 illustrates that discon-
tinuities in density can propagate forward or backward, whereas discontinuities in speed
only propagate backward, which corresponds to the constitutive properties of the PTM. The
ability of the model to reproduce this phenomenon is illustrated in section 3.3.3.

3.2.4 Hysteresis phenomenon

The phenomenon of hysteresis has been studied with much attention by the trans-
portation community [176, 214, 232], with different candidate explanations; acceleration and
deceleration waves, heterogeneous drivers, lane changes. Recent results [144] seem to discard
the hypothesis of acceleration and deceleration waves in favor of the hypothesis of heteroge-
neous drivers. The model proposed is consistent with this theory in the sense that loops can
form in both directions, irrespective of the speed gradient.

The existence of hysteresis loops in density-flow coordinates can be traced back to
the solution to the Riemann problem (second case of uup, udown, in the congestion phase
Tc). An intermediary state um arises between the initial upstream state uup and the initial
downstream state udown. The upstream state uup and the intermediary state um have the
same value of the average aggressiveness per driver p/ρ. The downstream state udown and
the intermediary state um have the same value of speed v. The relative value of these two
quantities for the upstream and downstream states uup and udown impacts the orientation of
the loop (see Figure 3.5).

Only two configurations are possible in congestion for which no hysteresis loop arises.

• In the case of an upstream state uup and a downstream state udown with the same
value of the average aggressiveness p/ρ, no hysteresis occurs, and the only difference
introduced by switching the two states is the change of nature of the connecting wave
(shock or rarefaction).
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Figure 3.4: I80 5-5:30 time-space diagrams for NGSIM dataset.
Density is expressed in vehicles per mile, speed is expressed in miles per hour. A forward-moving
discontinuity corresponding to heavy congestion (in red) arises from the upstream boundary around
time 750 seconds. No forward-moving discontinuity in speed is observed. The top subplot corre-
sponds to density and the bottom subplot corresponds to speed.



Section 3.2. Phase transition model properties 58

• In the case of an upstream state uup and a downstream state udown with same value
of speed v, the connecting wave is a contact discontinuity for the two permutations of
the initial setting, and corresponds to the forward-moving discontinuity described in
section 3.2.3.
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Figure 3.5: Hysteresis patterns.
Between upstream and downstream states, uup and udown, respectively. Clockwise loops (top row)
introduce values of the density outside of the interval defined by the initial densities of the upstream
and downstream states. Counterclockwise loops (bottom row) introduce values of the flow outside
of the interval defined by the flows of the initial upstream and downstream states.

The type of hysteresis phenomena modeled by the PTM is similar to the hysteresis
described in [233], and can be physically explained using the mesoscopic interpretation pre-
sented in section 3.2.1. The NGSIM dataset used in this study unfortunately did not enable
us to observe any of these phenomena directly (the dataset is very limited in time and space).
Note that these hysteresis phenomena are for macroscopic quantities, not for trajectories
(see [144] for instance).
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3.2.5 Phantom jam

The emergence and propagation of traffic disturbances causing drivers to decrease their
speed for no clear reason in congestion, or so-called phantom jams, is well-known to most
commuters and the topic of active research, with recent explanations tracing its cause back
to the heterogeneity of driving behaviors [146]. It is clear from the solution to the Riemann
problem that the PTM is not able to model the emergence of extreme3 values of speed.
However, in this section we show that the PTM is able to model the emergence of extreme
values of density and flow.

We motivate the subsequent macroscopic description by the mesoscopic model described
in section 3.2.1, in which drivers from an upstream phase adjust their speed to the speed
of the drivers from the downstream phase, according to their own driving behavior. One
might note that this mesoscopic model can be obtained similarly by expressing the fact that
upstream drivers maximize their speed under the constraint of their driving behavior, and
the speed of the downstream drivers, that they cannot exceed without creating an accident.

In the congestion phase, the solution to the Riemann problem associated with the PTM
exhibits different types of hysteresis loops (see previous section). It is clear that the interme-
diary state arising always has a speed in the interval defined by the speeds of the upstream
and downstream states. However, different loop behaviors can arise (see Figure 3.5):

1. Clockwise loops are the cause of the emergence of intermediary states with extreme
values of density (top row). In the case of a transition from a high speed to a low
speed, a higher value of density arises (top left case) whereas in the case of a transition
from a low speed to a high speed a lower value of density arises (top right case).

2. Counter-clockwise loops are the cause of the emergence of intermediary states with
extreme values of flow (bottom row). In the case of a transition from a high speed
to a low speed, a lower value of flow arises (bottom left case) whereas in the case of
a transition from a low speed to a high speed a higher value of flow arises (top right
case).

In the four cases described above, from a mesoscopic perspective, the difference in
flow and density between the downstream state udown and the middle emerging state um

is explained by the fact that the upstream and downstream drivers have different levels of
aggressiveness, translating into different preferred spacing for the same speed.

This feature of the PTM seems appropriate for modeling the propagation of disturbances
in traffic. In Figure 3.5, one can note that if udown is viewed as a disturbance of uup, then the
intermediary state um arising is always an amplified disturbance, in density or flow, and this
amplified disturbance travels upstream (negative wave speed connecting uup and um). Note
that this phenomenon is a locally convected phenomenon, i.e. it results from the emergence
of um from uup and udown. It is very different from convective instabilities commonly observed
in fluids, characterized by a dispersion relation [190], that amplify over time.

3In the context of a Riemann problem, by extreme value of speed we mean a value of speed outside of
the interval defined by the speeds of the upstream and downstream states.
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3.3 Phase transition model validation

In this section we present the datasets and the numerical methods used in the following
model calibration and model comparison.

3.3.1 Vehicle trajectories datasets

Datasets specifications

We consider the following NGSIM datasets [179] from highway I-80:

1. I-80 4:00-4:15: vehicles trajectories are recorded at a 0.1 second resolution for a 0.34
miles stretch of freeway I-80 Northbound at Powell Street, Emeryville, CA, with 6
lanes including a HOV lane, during 15 minutes from 4 pm to 4:15 pm (2052 vehicles).
We consider the middle stretch from relative mile 0.03 to relative mile 0.3, which is a
straight line. We remove the first and last 100 seconds to avoid boundary effects. We
discretize the dataset into 14 cells and 749 time-steps.

2. I-80 5:00-5:30: vehicles trajectories are recorded at a 0.1 second resolution for a 0.34
miles stretch of freeway I-80 Northbound at Powell Street, Emeryville, CA, with 6
lanes including a HOV lane, during 30 minutes from 5 pm to 5:30 pm (3626 vehicles).
We consider the middle stretch from relative mile 0.03 to relative mile 0.3, which is a
straight line. We remove the first 100 and last 250 seconds to avoid boundary effect.
We discretize the dataset into 14 cells and 1104 time-steps.

The choice of the number of cells for discretization of the dataset is driven by the sampling
frequency of the collected data for accurate computation of flow, density and speed according
to Edie’s generalized definition [84]. We want to have a time-step “large” compared to the
sampling period and a cell size “large” compared to the distance traveled by the vehicles
during a sampling period (see [155] for a detailed discussion on the notion of scale in traffic
modeling). Here we consider a time-step of 10 times the sampling period, and a cell-size of 10
times the distance traveled at the free-flow speed (taken as 70 mph) between two consecutive
reports. The average point speed of the vehicles is 17 mph and 12 mph for I-80 4:00-4:15
and I-80 5:00-5:30, respectively. The discretization parameters for each dataset are given in
table 3.2.

Sampling period Time-step Cell size Average ] points
per cell

I-80 4-4:15 0.1 sec 1 sec 102 feet 71 points
I-80 5-5:30 0.1 sec 1 sec 102 feet 96 points

Table 3.2: Discretization parameters for NGSIM dataset.
The time-step and cell-size are chosen as a function of the sampling period.
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In the following analysis, we consider the computed values of density, flow and speed
according to Edie’s generalized definition, for the discretization grid associated with the
parameters from table 3.2, as ground-truth traffic state for benchmarking the performances
of the PTM and the CTM.

Dataset properties

The density time-space diagrams of the NGSIM datasets used for model testing and
validation are reproduced in Figure 3.6. In this figure, the 5 leftmost mainline lanes are
considered for computation of the density, flow, and speed according to Edie’s generalized
definition, with discretization parameters described in previous sub section.

The dataset consists of 5 mainline lanes including an HOV lane, with an on-ramp
upstream of the stretch considered and an off-ramp downstream. Several heavy congestion
patterns can be observed propagating upstream at similar speeds. Heavy congestion can also
be observed propagating downstream in the I80 5-5:30 dataset, starting from the upstream
boundary at around 800 seconds in relative time. Several light congestion waves can also
be observed propagating downstream, starting from downstream of heavy congestion, in the
last quarter of the I80 4-4:15 dataset.

One may note that the datasets considered exhibit only congestion phenomena, hence
only allow the validation of the PTM in the congestion phase. This is a clear limitation of
the experimental results presented here, that should be complemented in the future by an
analysis of the performance of the PTM on datasets more representative of general traffic
properties.

In the following section, we present a method for calibrating the parameters of the PTM,
and the results obtained on the datasets described in this section.

3.3.2 Model calibration

The parameters of the PTM consist of the free-flow speed, the parameters of the
stationary relation used in the congestion phase, and the parameters pmin and pmax, specifying
the maximal admissible range around the stationary relation for the fundamental diagram
in congestion.

Several algorithms can be found in the literature for calibration of a single model pa-
rameter, in particular in the case of the CTM. The jam density ρmax and the free-flow speed
vmax are usually assumed to be known, and the congestion wave speed w can be estimated us-
ing different methods. An algorithm for the estimation of the congestion wave speed based
on vehicle trajectories can be found in [164]. This parameter can similarly be estimated
considering a Lagrangian approach as described in [52].

In this section, we consider a methodology similar to the methodology described in [67],
for joint estimation of all parameters of the model from macroscopic quantities.
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Figure 3.6: Density time-space diagrams.
I80 4-4:15 (top), I80 5-5:30 (bottom).
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Methodology and results

We propose to compare the time space diagrams reconstructed by the PTM and the
CTM from the knowledge of initial and boundary conditions. Given a training data set
of macroscopic measurements, the method consists of the definition of a cost function, the
direct computation of the initial and boundary condition, and of the identification of the set
of parameters at which the minimum of the cost function is attained for the reconstructed
time space diagrams. We consider the L1 metric:

L1(uPTM) =

∑
n

∑
j |uPTM(n∆t, j∆x)− uNGSIM(n∆t, j∆x)|∑

n

∑
j |uNGSIM(n∆t, j∆x)|

, (3.4)

in which we note uPTM(n∆t, j∆x) the value of the quantity u, at the cell indexed by n, at
the time-step indexed by j, computed using the discrete PTM on a grid with discretization
parameters ∆t and ∆x. We use a similar notation for the ground-truth uNGSIM obtained
by discretizing the NGSIM vehicle trajectories.

The quantities uNGSIM and uPTM must be defined on the same discretization grid.
The reference uNGSIM is defined on the physical grid described in section 3.3.1, chosen
according to data availability. The discrete solution uPTM to the PTM can be computed on
an arbitrarily refined numerical grid. The discrete solution converges toward the analytical
solution when the refinement of the numerical grid increases. The level of refinement of
the grid is guided by the numerical benchmarks from [31] and [49], which provide empirical
results on the distance to the analytical solution of the PDE as a function of the refinement
level. The values of the reference uNGSIM on the refined grid can be obtained from its values
on the coarse physical grid in a straightforward manner.

In order to assess the importance of the error variable used for calibration, we propose
to compute the error metric (3.4) where u is successively defined as ρ, q and v. Due to the
nonlinearity of the models investigated, and the consequent non-convexity of the optimization
problem considered, the cost function is optimized by exhaustive enumeration on a a grid
with parameters ∆ρ = 10 vpm, ∆v = 5 mph, ∆w = 0.5 mph, ∆pmin = 0.1, ∆pmax = 0.1.
The optimal parameters for I80 4:00-4:15 and I80 5:00-5:30 are presented in tables 3.3 and 3.4
respectively. In the interest of space, we only consider the instantiation of the PTM for a
triangular stationary relation, with potentially positive and negative perturbation.

The optimal parameters obtained fall into the range of plausible values from a physical
perspective. There is significant dependency of the optimal parameters to the error variable
(which arises for the CTM as well, but is not represented here, in the interest of space).
One might note that the optimal value of the congestion wave speed obtained for the 5
aggregated lanes is greater than the typical value for a single lane (around 11.5 mph), which
might be due to tentative lane changes. The optimal value of the congestion wave speed is
fairly stable across error variables, however the jam density exhibits large relative variations,
in particular for the I80 datasets in which the congestion level is more important.

The optimal parameters obtained for different error variables can vary significantly for a
given dataset, in particular for the perturbation parameters. In the case of the density error
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Error variable
Optimal parameters Optimal L1 error

ρ∗max v∗max w∗ p∗min p∗max for error variable
Density (k) 160 50 14 -0.01 0.94 0.152

Flow (q) 150 40 15.5 -0.21 0.77 0.176
Speed (v) 120 40 13.5 -0.99 0.99 0.137

Table 3.3: Optimal parameters for I80, 4:00-4:15.
PTM parameters minimizing the L1 error metric, obtained from the ground truth field for density
(ρ), flow (q) and speed (v).

Error variable
Optimal parameters Optimal L1 error

ρ∗max v∗max w∗ p∗min p∗max for error variable
Density (k) 190 55 13 -0.25 0.95 0.130

Flow (q) 180 55 13.5 -0.75 0.45 0.164
Speed (v) 150 55 13 -0.05 0.35 0.161

Table 3.4: Optimal parameters for I80, 5:00-5:30.
PTM parameters that minimize the L1 error metric, obtained from the ground truth field for density
(ρ), flow (q) and speed (v).

variable, one might note that the parameter pmax often takes larger values than the parameter
pmin in absolute value. This corresponds to a fundamental diagram with a wider domain in
congestion above the stationary relation than below, and using the mesoscopic interpretation
from section 3.2.1, to a greater number of aggressive drivers than non-aggressive drivers.

One might note that a natural calibration of the PTM, which would consist in using
the parameters of a calibrated CTM for the stationary relation of the PTM, and second
in maximizing the spread between pmin and pmax in order to minimize the projection error
described in section 3.2.2, is not obtained as a result of the optimization procedure. The
optimal values of the classical parameters ρmax, vmax, w of the PTM, are very similar to the
optimal values of the parameters of the CTM (presented in the following section), however
the parameters pmin and pmax are not often set to their extremal values. We recall that the
parameter pmin is lower bounded by −1 to guarantee positivity of speed, and that large values
of the parameter pmax correspond to positive first characteristic speed in congestion, which
is not desirable for physical reasons. This result illustrates that the set-valued diagram of
the PTM is valuable for accurate forward propagation of traffic state, but that there is a
trade-off between a wide congestion phase and congestion dynamics close to the dynamics
associated with the stationary relation.
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Model sensitivity

The sensitivity of the error metric (3.4) to the parameters around the optimum indicates
the order of magnitude of the error likely to occur in a practical setting, where uncertainties
arise in the calibration procedure. These uncertainties can be due to inherent measurement
noise, to numerical error in the optimization routine, or to the fact that the parameters are
calibrated from a visual fit. Thus the ability of the model to guarantee good performances
for parameters in a neighborhood of the optimum of the error metric is an important factor
contributing to the model choice.

We propose to assess the sensitivity of the error metric to the parameters in two different
ways. We compute the partial variation of the error metric around the optimum, i.e. the
variation of the error metric when a single parameter varies around the optimum. We
also compute the total variation of the error, i.e. the variation of the error metric when
a single parameter varies around the optimum, and consequently the other parameters are
re-calibrated according to this change.

Since no specific joint dependency of the error metric on tuples of parameters is observed
in the numerical results, we focus our analysis on dependency along a line. In the interest of
space, we do not present detailed results for the free-flow speed and the jam density. They
are briefly discussed in the following sub section. Figure 3.7 presents the results for the
congestion wave speed w. One may note that for both models, the total variation of the
error metric is relatively low for variations of the congestion wave speed around its optimal
value, i.e. re-calibration of the other parameters of the model is able to account for a lack
of optimality of the congestion wave speed.
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Figure 3.7: Sensitivity to congestion wave speed.
For the PTM (solid line) and the CTM (dashed line), for the I80 4:00-4:15 dataset. The left sub
figure denotes the sensitivity of the global optimum to the value of the congestion wave speed. The
right sub figure denotes the sensitivity of the error metric along the dimension corresponding to
the congestion wave speed.
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The results for the partial variation differ significantly for both models. It is clear
that lower values of the congestion wave speed have a relatively low impact on the error
metric, for both models. However, the CTM error is highly sensitive to higher values of the
congestion wave speed, which can be explained by noting that the optimal free-flow speed is
low, and that subsequently, modifying the value of the congestion wave speed toward higher
values impacts the phase to which observations around the optimal critical density belong
to. This is not the case when modifying the value of the congestion wave speed toward lower
values. This high sensitivity, in the case of higher values than the optimal congestion wave
speed, does not occur with the PTM, which may be due to the two-dimensional nature of the
congestion phase, and the corresponding choice of the perturbation bounds pmin and pmax,
which illustrates the higher robustness of the PTM to calibration error for this parameter.

3.3.3 Model comparison

In this section we propose a comparative quantitative analysis of the ability of each
model to reconstruct the time-space diagram from the knowledge of initial and boundary
conditions.

Methodology and quantitative results

In order to assess the performance of the PTM, we propose to compare the model with
a classical well-known discrete model from the literature, for which implementation details
and calibration procedure are well documented: the CTM.

We assume that boundary conditions are known upstream and downstream, as well
as an initial condition. These terms are computed explicitly from the spatio-temporal dis-
cretization of vehicle trajectories (see section 3.3.1). This corresponds to the computation
of the solution to the IBVP defined in equation (6.2) and in practical terms to the case of
measurements from sensors (loops, radars, probes, etc) available at given locations on the
freeway as boundary conditions, and a spatial profile assumed to be known at some instant
(cameras, satellite, empty road, etc) as initial condition. The traffic profile on the stretch of
road between the sensors, from the time at which the spatial profile is known, is computed
by running the models forward in time. For initial or boundary conditions falling outside of
the fundamental diagram, we use the projection methods described in section 3.2.2 for both
the CTM and the PTM4.

We compare the solution to the initial-boundary value problem for the CTM and the
PTM as follows:

• Training procedure: we calibrate the model parameters on the I80 4:00-4:15 dataset,
for the error variable density.

4For completeness, different projections have been tested for the PTM, in particular iso-density in the
congestion phase. The results obtained are not significantly different from the ones presented in this section
and are omitted in the interest of space.
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• Testing procedure: we compare the models on the I80 5:00-5:30 dataset on the
reconstructed density, flow, speed fields. We use the set of parameters obtained from
the training procedure.

The optimal parameters for the PTM are the following: ρ∗max = 160 vpm, v∗max = 50 mph,
w∗ = 14 mph, p∗min = −0.01, p∗max = 0.94, with an error of 0.152 on the training set.
The CTM is calibrated using the procedure described in previous section and the obtained
optimal parameters are the following ρ∗max = 160 vpm, v∗max = 25 mph, w∗ = 13.7 mph, with
an associated error of 0.158 on the training set.

Remark 3.1. The values of the free-flow speed vmax obtained after calibration can be sig-
nificantly lower than classical values for both models (e.g. for the CTM in the case of the
I80 4:00-4:15 dataset, with values of 25 mph). It is clear that the cost function does not
depend on the free-flow speed for sufficiently high values of the free-flow speed. Since the
NGSIM datasets exhibit heavy to moderate congestion with maximal speeds between 20 mph
and 30 mph (see figure 3.1), it is expected that optimal values of the free-flow speed fall above
this range. Further analysis show that for all datasets, the cost function increases by about
1 percent per mph for free-flow speed values under the optimal free-flow speed, however the
variations of the cost function stay within a 0.5 percent range for values of the free-flow speed
higher than its optimal value. Since the I80 5:00-5:30 dataset exhibits heavier congestion than
the I80 4:00-4:15 dataset, this remark legitimates the use of the free-flow speed calibrated on
the I80 4:00-4:15 dataset for testing on the I80 5:00-5:30 dataset.

We compute the L1 error (3.4) for the three error variables density, flow and speed, for
the single set of optimal parameters based on the error variable density. The results for the
CTM and the PTM are presented in table 3.5.

Density Flow Speed
PTM 0.139 0.167 0.165
CTM 0.146 0.242 0.227

Table 3.5: Model accuracy.
L1 error for parameters obtained for the error variable density, between the reconstructed profile
and the ground-truth profile for density, flow, and speed, for the CTM and the PTM.

The results from the left column of table 3.5 illustrate that the CTM and PTM have
similar performances for the error variable for which they are calibrated (density in table 3.5),
which is consistent with the fact that the PTM is a direct extension of the LWR model in
congestion, and specifically of the CTM for the numerical results presented in this section.
In particular, the results on the test set are better than the results on the training set, which
is satisfying with regard to over-fitting. The results illustrate that even though the PTM
has a larger state-space, the corresponding dynamics do not necessarily provide significant
added value compared to the CTM, for the error variable used for calibration.
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However, the PTM shows a clear superiority for other relevant traffic variables (flow and
speed in that case), for which the model was not calibrated. For both the variable flow and
speed, the error is reduced by at least 25 percent by the PTM compared to the CTM. This
illustrates that the PTM calibration is more robust in the sense that optimal parameters
for a given error variable yield a low error for other error variables as well. In the following
section, we study the difference in the reconstructed time-space profiles from a qualitative
perspective.

Qualitative analysis

The time-space diagrams for the dataset I80 5:00-5:30 with the discretization parameters
detailed in section 3.3.1 are represented in figure 3.8 for the CTM, the PTM and the ground-
truth profile obtained directly by discretization of the vehicles trajectories. One may note
that flow and speed are computed a posteriori from the density field in the case of the CTM,
whereas in the case of the PTM, speed is obtained from the density ρ and perturbation p
fields, and the flow is obtained classically as a product of density and speed.

The comparison of the reconstructed density fields for the CTM and the PTM shows
that the PTM is able to some extent to propagate forward observations gathered at the
upstream boundary. The capability of the PTM for hysteresis modeling is illustrated for
the density variable in the second part of the time domain for the upstream part of the
section, where interactions between forward moving discontinuities and backward moving
shock waves yield curved propagation of congestion waves. However, one might note that
the impact of these more complex phenomena is not clear overall since the L1 error for
density is similar for the two models (table 3.5, left column).

The comparison of the reconstructed flow fields for the CTM and the PTM shows that
the PTM allows the propagation of forward moving discontinuities in flow, and density,
within the backward moving congestion phase around the center of the time period. The
comparison of the reconstructed speed fields for the CTM and the PTM shows that the
PTM captures more extensively the high speed waves at the beginning of the time period.
Similarly, high speed values around the center of the time period, and the downstream end
of the section, are more accurately captured by the PTM.

The numerical performances of the phase transition model illustrated in this chapter
on the NGSIM dataset in a forward-simulation context are promising for real-time data
assimilation applications. Specific interest of the PTM for traffic monitoring lies in its
ability to model both the evolution of the density and the velocity field, using a system of
conservation laws. In the current context of traffic information systems in which both probe
data measuring individual speeds and classical fixed infrastructure measuring quantities
related to the density and the flow, the need for such complex models is more and more
important.

In the following chapter, we present relevant related concepts from the estimation theory
perspective.
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Figure 3.8: Time-space diagrams.
For I80 5-5:30, for density (top row), flow (center row), speed (bottom row), for the CTM (left
column), the PTM (right column) and the ground-truth profile (center column).
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Chapter 4

Advanced estimation methods for
distributed systems

In this chapter, we consider the estimation problem, which consists in the computation
of the best estimate of a statistical process, given available measurements and a statistical
or physical underlying model. We present two frameworks in which the estimation problem
for distributed systems can be posed; Bayesian networks articulated around the efficient
representation of joint distributions by conditional probabilities, and Kernel methods, which
allow the formulation of the best state-space representation of a given system as a convex
optimization problem.

4.1 Bayesian networks

Most physical principles assumed by classical traffic models can be seen as defining
information propagation rules. For scalar macroscopic models, the mass conservation prin-
ciple yields a partial differential equation (PDE) which can be directly solved by a wavefront
tracking method [39], or numerically by the Godunov scheme [103]. Both of these methods
provide an encoding of the spatio-temporal dependencies of the physical system. Unlike in
the estimation problem, in which the model errors can be corrected via observations, the
forecast problem relies heavily on an accurate model as the forecast error grows with the
length of the forecast horizon [131]. Thus, knowing the exact dependency structure of the
network is crucial for traffic forecasting applications.

Bayesian networks [125, 128, 184] provide an efficient framework to represent and work
with dependencies in distributed systems, in particular to address fundamental problems
such as learning and inference. This statistical framework allows us to learn the conditional
dependencies that best fit the data and avoid the need for detailed assumptions regarding
the physical system, which are often unknown or inaccurate. Thus, Bayesian models are
more flexible and capture a variety of traffic phenomena, unlike classical models. Once the
dependency structure of the network is identified, it can be used to forecast the evolution of
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traffic conditions.

4.1.1 Mathematical formulation

A Bayesian network is a directed acyclic graph in which each vertex represents a ran-
dom variable and an edge between two vertices implies a dependence between the two
random variables, where the strength of the influences is represented by conditional prob-
abilities [184]. We consider a directed acyclic graph G(V , E) where V = {Vn,t|(n, t) ∈
{1, . . . , N} × {1, . . . , T}} is a set of vertices and E is a set of directed edges [128]. Each
vertex Vn,t in the graph is naturally associated with a random variable representing the
traffic velocity at a spatio-temporal location indexed by n for the spatial dimension and by
t for the temporal dimension. A typical Bayesian network is outlined in Figure 4.1. The

Figure 4.1: Bayesian network for vehicular traffic.
Traffic dependencies are modeled by a Bayesian network in which each vertex represents the distri-
bution of traffic velocity at a given spatio-temporal location. The horizontal dimension corresponds
to space and the vertical dimension corresponds to time.

graph structure encodes the Markov conditions [184] which state that each vertex Vn,t is
independent of its non-descendants given its parents. The probability of a set of values
D = (ν1,1, . . . , νN,T ) for a graph G with a parameter set Θ reads:

p(D|Θ,G) =
N∏
n=1

T∏
t=1

p(νn,t|πn,t,Θ),

where πn,t denotes the set of parents of the vertex Vn,t, and D the data (observations).
Realizations of random variables are denoted by lower-case letters. The term Θ denotes the
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parameters of the joint distribution of the graph. The log-likelihood for a dataset D on the
graph G is given by:

l(D; Θ,G) =
N∑
n=1

T∑
t=1

log p(νn,t|πn,t,Θ). (4.1)

In a typical learning framework, in which the conditional distributions are more often avail-
able, equation (4.1) conveniently expresses the likelihood of the data in terms of local con-
ditional probabilities. In the case in which joint distributions are available, this expression
can be transformed to:

l(D; Θ,G) =
N∑
n=1

T∑
t=1

log p(νn,t, πn,t|Θ)− log p(πn,t|Θ),

where the first term is assumed to be known as the joint distribution of a vertex and its
parents. The second term can be computed by marginalizing out the vertex Vn,t [128]. As
illustrated in Figure 4.1, Bayesian networks are an efficient tool to represent complex depen-
dency relations between random variables. However, Bayesian network theory depends on
strong assumptions regarding the generative distributions being modeled, such as symmetry,
decomposition and intersection properties described in [184]. For example, the generative
distribution of G is required to satisfy the decomposition axiom, which states that if ∀ Y ∈ Y ,
X is independent of Y , then X is independent of Y (with X, Y being two nodes of the net-
work and Y a set of nodes). This property is satisfied by the Gaussian distribution. However,
it is not satisfied by most probability distributions (see [184] for an example and [133] for
the general case). This is a strong motivation for the choice of the Gaussian distribution as
the generative distribution for our problem in the following section.

4.1.2 Bayesian network for traffic modeling

In the case of traffic, space and time are discretized into intervals of respective size
∆x and ∆t. Each vertex of the Bayesian network has a spatio-temporal index (n, t) ∈
{1, . . . , N} × {1, . . . , T}, and thus the Bayesian network has a grid form (Figure 4.1). In
particular, the discretization grid used for the Godunov scheme could be used for Bayesian
network definition. The horizontal dimension represents space and the vertical dimension
represents time. Each vertex Vn,t is associated with a probability distribution which rep-
resents the traffic velocity at the corresponding spatio-temporal location. A directed edge
between two vertices implies a dependence between the corresponding velocity distributions.
In order to use Bayesian representation of traffic, the following assumptions can be made.

Assumption 4.1. Traffic state evolution can be represented by a Markov process.

In particular the dependency structure learned only depends on the dynamics of the
traffic state. The parameters of the dependency structure are the parameters of the state
transition matrix of a Markov process. This assumption ignores the recurrence of traffic
conditions based on the time of day and day of week.
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Assumption 4.2. Traffic state evolution can be modeled as a linear function of past obser-
vations.

For tractability, it is common practice to assume that the traffic state distributions be-
long to the Gaussian family. In particular the Gaussian family is closed under the conditional
operator, and conditional Gaussian distributions have expressions analytical in the parame-
ters of the original distributions [83]. Using Gaussian distributions to model spatio-temporal
traffic state dependencies corresponds to the assumption that locally, traffic state evolution
can be considered to be linear in the observations. According to the triangular model of
traffic [71, 177], this assumption is true within a single traffic phase (free flow or congestion).

Specific traffic properties can be summarized by the following set of constraints C on
the structure of a graphical representation of a traffic model.

C =

{
∀(νn,t, νn′,t) ∈ V2, (νn,t, νn′,t) /∈ E
∀(νn,t, νn′,t′) ∈ V2 s.t. t < t′, (νn′,t′ , νn,t) /∈ E

(4.2)

The first line in equation (4.2) states that there is no direct dependency relationship between
the velocity on the highway at two different locations at the same time step. The second
line in equation (4.2) states that the traffic state at a given time period can only impact the
traffic state at a future time period, i.e. information does not propagate backwards in time.

Remark 4.1. Any graph G generated under the structure constraint C expressed by (4.2) is
acyclic.

This feature is of crucial importance for the tractability of a structure learning algorithm.

4.1.3 Bayesian structure learning

Problem formulation

Structure learning is a natural problem in Bayesian network theory [125, 128]. Given a
set of vertices V and a set of constraints C on the Bayesian network, the structure learning
problem consists of finding an optimal set of edges E and an optimal set of distribution
parameters Θ for the application of interest. A standard approach to this problem is the
maximization of a score function. In general, for correctness and tractability of use, a score
function should satisfy the following properties:

• The decomposability property states that the score can be decomposed in a sum of
local scores. This allows efficient comparison of structures by local comparisons.

• The asymptotic consistency property states that in the limit of a large number of
samples, the score function prefers the model with the fewest number of parameters.
A more formal definition can be found in [54].
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• The local consistency of the score guarantees that a locally greedy structure search
nudges the model in an optimal direction. It states that if two vertices Vj and Vi are
not independent from each other given the parents of Vi in the generative distribution,
then adding the edge Vj → Vi increases the value of the score function. Similarly, if
they are independent given the parents of Vi, adding the edge Vj → Vi decreases the
score function.

The Bayesian Information Criterion (BIC) score [110, 197], satisfies all of the conditions
listed above and is one of the most commonly used score functions. The BIC score is given
by:

SBIC(D,G,Θ) = logP (D|Θ,G)− d

2
logm+O(1) (4.3)

where D is the data, Θ is the maximum likelihood distribution parameters for D, d is the
number of edges, and m is the sample size per vertex. The BIC score is an approximation
of the Bayes-Dirichlet score [197], which expresses the posterior probability of the network
parameters Θ given the data D.

The structure learning problem can then be formulated as an optimization problem.
Given a set of vertices V , a set of constraints C(4.2) on a network structure, a score function
SBIC (4.3), and a dataset D, we consider the following problem:

max
Θ,E

SBIC(D,G(V , E),Θ) (4.4)

subject to: G(V , E) satisfies C

Solving this problem produces the structure of the Bayesian network most likely to explain
the observed data given the modeling constraints [192]. The solution of this optimization
problem consists of the set of edges and the distribution parameters which are the closest to
the generative distribution in the BIC score sense.

The structure learning step corresponds to a classical model identification and model
calibration steps. A calibrated model can also be used for state estimation in a state-space
formulation.

Structure learning algorithm

In general, finding the optimal Bayesian network structure given a dataset D requires
searching through the entire directed acyclic graph (DAG) space and selecting the graph G
with the highest score function value S(D,G,Θ). This is clearly intractable given that the
size of the DAG space is super-exponential in the number of vertices.

Definition 4.1. We define a valid topological ordering to be an ordering where the vertices
are sorted by ascending time index.

Given the constraint set C(4.2) and the resulting property stated in Remark 4.1, we
can reduce the DAG space to a set of topological orderings of the vertices that satisfy the
constraints.
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Lemma 4.1. All topological orderings are equivalent. As stated in the constraint set C, there
are no dependencies between vertices with the same time index, thus all topological orderings
allow for the same set of dependencies.

As a result, the DAG space can be limited to a single topological ordering of the vertices.
The restricted DAG space given the constraint set C is however exponential in the number
of vertices in the network. While the general structure learning problem is this setting is
hard, more tractable solutions exist for finding an inclusion-optimal model. An inclusion-
optimal model is a Bayesian network that contains the generative distribution and has no
subgraph with the same set of independence relations1. In general, the inclusion-optimal
structure must be found by searching over all topological orderings. However, as explained
above, given the constraints of our problem it is sufficient to consider one arbitrary valid
topological ordering.

Algorithm 1 Greedy equivalence search algorithm for traffic modeling. Forward phase: edge
additions which maximize the increase of the score function. Backward phase: Edge removals
which do not decrease the score function.

1: Define the edges E = ∅
2: Define topological ordering satisfying the constraints C
3: Forward phase
4: for each vertex Vn,t do
5: for each candidate parent π̃n,t do
6: Compute the score of the graph with the additional edge (Vn,t, π̃n,t)
7: Keep the local structure maximizing the score
8: end for
9: end for

10: Backward phase
11: for each vertex Vn,t do
12: for each parent πn,t do
13: Compute the score of the graph with the edge (Vn,t, πn,t) removed
14: Keep the local structure maximizing the score
15: end for
16: end for

We adapt the greedy equivalence search (GES) algorithm2 from [54] that finds an
inclusion-optimal Bayesian network to solve our structure learning problem. The pseudo-
code for the modified version of this greedy search algorithm is given in Algorithm 1. The

1This is not necessarily optimal in the general sense as there might be a graph with fewer edges that also
contains the generative distribution.

2In addition to the properties listed in the previous subsection, this algorithm also requires that G satisfies
the path property [54] which expresses that a dependency in G can be characterized by the existence of a
path between vertices.
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algorithm consists of two phases, a forward phase with edge additions and a backward phase
of edge removals. Edge additions and removals are performed only when they increase the
score function. The set of candidate parents of a vertex is a parameter of the algorithm
which denotes the set of possible parents considered for each vertex in the forward phase of
the algorithm. In Section 6.3 (Figure 4.3) we analyze the sensitivity of the algorithm to this
parameter.
The simplified version of the greedy equivalent search algorithm from [54] is used to solve the
optimization problem (4.4). The search algorithm given in Algorithm 1 has a manageable
complexity that is linear in its inputs. The complexity is equal to the product of the sample
size |D|, the number of vertices in the Bayesian network |V|, and the size of the candidate
parents set. It should be noted that this structure learning procedure easily lends itself to
be distributed over a parallel computing framework, due to the local consistency property of
the score function.

Numerical results

In this section we present results on sensitivity and robustness to noise with a benchmark
dataset. Results on the velocity forecast accuracy and its impact on route choice with
experimental traffic data from the Mobile Millennium traffic estimation system can be found
in [192].
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Figure 4.2: Stability of the structure learning algorithm.
The relative error in the covariance matrix increases with respect to the relative L2 norm of the noise
with respect to the data. The algorithm is able to reconstruct the covariance structure reasonably
well for relative L2 norm of the noise lower than 0.2.

We study the performance of the structure learning algorithm for two criteria; first the
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robustness to noise in the training set, second the impact of the optimal number of parents
on the forecast accuracy with synthetic data.

In order to study the robustness of our structure learning algorithm, we consider a
dataset generated from a probability distribution corresponding to the Bayesian network
detailed in Figure 4.1. We then add independent and identically distributed Gaussian noise
to each observation in the network. This is assumed to model a real life situation, where
the data does not correspond exactly to a given generative distribution, but is subject to
sensing, processing and modeling errors. The results from Figure 4.2 show that the structure
learning algorithm is stable (error in the structure of the joint covariance matrix learned is
lower than the error in the signal) up to reasonably high relative values of noise to signal
ratio.

We also analyze the sensitivity of the forecast accuracy to the number of parents using
synthetic data from the graph from Figure 4.1. The complexity of the algorithm increases
linearly with the size of the candidate parents. Therefore, it is important to understand the
trade-off between accuracy and computation time.
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Figure 4.3: Dependency to optimal number of parents
Traffic state forecast at locations which depend on a high number of parents have the same forecast
mean error in average (dashed blue line) but a smaller standard deviation (continuous red line).

The results from Figure 4.3 show that the accuracy of the forecast mean is not significantly
impacted by the optimal number of parents. However, the forecast standard deviation error
decreases with the number of parents. More information leads to a tighter estimate, which is
what would be expected from a statistical estimate that is unbiased and consistent. This is
of particular importance for applications which focus on distributed quantities such as travel
time.
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Bayesian networks are particularly appropriate for the formulation of estimation and
forecast problems for distributed systems. However, in the case of unobserved variables, the
computational cost associated with Bayesian networks can be become significant. In the
following section, we present a framework based on convex programming, which allows the
identification of the optimal model parameters in a very efficient manner.

4.2 Kernel method for state-space identification

Kernel regression methods can be considered as an extension of regression techniques,
for which the underlying relation between covariates and responses is not pre-defined in
advance.

4.2.1 Regression methods

We consider the following problem of model identification between a set of covariates
xi, e.g. entry times on a road section, and responses yi, e.g. travel-times on the road section.

Given the knowledge of a dataset of sizeN noted S = {(xi, yi) ∈ R+ × R+|i = 1, · · · , N},
the objective consists of learning a function h : R+ → R+ which given S, would provide an
estimate of the travel time y for any x ∈ R+. In the linear case for the L2 norm, the
well-known unconstrained least-squares method reads:

minθ ‖y − xT θ‖2
2 (4.5)

where y ∈ RN×1 is the vector of realized travel time or output, xT ∈ RN×1 is the vector of
entry time or input. One must note that here x is a row vector and y is a column vector so
θ is a scalar. The well-known solution of this problem can be computed as:

θopt = (x xT )† x y (4.6)

where the notation (x xT )† denotes the pseudo-inverse of (x xT ) and the optimal estimate is
given by ŷ = (x xT )† xT x y. This estimate does not have bias, i.e. the mean of the output y
equals the mean of the estimate ŷ.

The regression problem defined in (4.5) is often ill-posed in the sense that the solution
does not depend continuously on the data (the case of multiple solutions falls into that
denomination). Formulation (4.5) could also lead to over-fitting in the case of non-linear
regression since there is no penalization for high values of the solution θopt. In order to
prevent these two possible flaws, it is a common practice to add to the objective function a
quadratic term called Tikhonov regularization [211] which has the form ρ2 |θ|2 in the scalar
case, where the scalar ρ acts as a regulation variable on the penalty. Then the optimal
estimate becomes:

ŷ = (x xT + ρ2 I)−1 xT x y. (4.7)
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For ρ large enough, the problem is well-posed and over-fitting with respect to θ is pre-
vented [88].

4.2.2 Kernel methods

The linear regression method described in section 4.2.1 can be extended to non-linear
regression methods through the use of a kernel. One can consider a mapping function φ(·)
from the covariates space to a higher-dimensional space, and consider the linear regression
problem between the mapped covariates φ(xi) and the responses yi. This is the main principle
of kernel methods, which consist in using a feature space, in which the dataset is represented,
and to consider linear relations between objects in this feature space, and between these
features and the outputs. Given a positive semi-definite matrix K = (kij), we define the
kernel function by Kf : X × X → R, where X denotes the covariates space, such that
Kf(xi, xj) = kij. This implicitly defines a feature mapping φ(·) between X and a Hilbert
space H by φ(·) : X → H such that 〈φ(xi), φ(xj)〉H = Kf(xi, xj). In the following we note
Xmap a matrix representation of the mapping φ(·) (thus the i-th column of Xmap is φ(xi)).
When φ(·) has scalar values, Xmap is a row vector.

Remark 4.2. One does not have to define a mapping function φ(·) to define a kernel matrix,
but can simply consider a positive semi-definite matrix and use it as a kernel. It is also
possible to define a kernel matrix from a mapping φ(·) and one of its matrix representation
Xmap as K = XT

mapXmap.

The inner product in H naturally appears to be given by the Gram matrix K, called
the kernel. Kernel techniques [68, 194] have several benefits:

• They enable to work with any types of features of the initial data-set, which has a
priori no particular structure, in a Hilbert space.

• They guarantee a reasonable computational cost for the algorithm by allowing a com-
plexity related to the number of points represented and not the number of features
used (this is known as the kernel trick and is described in Remark 4.5).

Thus, kernel methods provide several extensions to usual regression methods, and can be
easily written in a machine learning framework.

4.2.3 Kernel learning

Given the knowledge of a training set Str = {(xi, yi)|i = 1, · · · , ntr}, the kernel learning
problem consists of identifying the best mapping for the elements of the test set, St =
{xi|i = ntr + 1, · · · , ntr + nt}. In order to match the structure of this problem, we define the
kernel matrix in block form as:

K =

(
Ktr Ktrt

KT
trt Kt

)
(4.8)
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where kij = 〈φ(xi), φ(xj)〉H for i, j = 1, · · · , ntr, ntr + 1...ntr + nt. Kt denotes the inner
products between the elements of the test set. The Gram matrix Ktr is the result of an
optimization problem over the training set, and we learn the cross-term Ktrt, which expresses
the inner-product in the feature space between the elements of the test-set and the elements
of the training set.

Convex formulation of the kernel learning problem

In this section we formulate the kernel learning problem as a convex problem. Express-
ing the linear least-squares (4.5) for the mapped input Xmap with the regularization term
described in section 4.2.1 yields:

p∗ = minθ ‖y −XT
map θ‖2

2 + ρ2 ‖θ‖2
2 (4.9)

where we note p∗ the optimal value of this problem. Using the change of variable z =
XT

map θ − y yields the equivalent formulation:

p∗ = minθ,z ‖z‖2
2 + ρ2 ‖θ‖2

2 (4.10)

subject to z = y −XT
map θ (4.11)

The Lagrangian dual of this problem reads:

d∗ = maxα

(
−2αT y − αT

(
I +

XT
mapXmap

ρ2

)
α

)
. (4.12)

In this equation, we see the expression of the kernel matrix:

K = XT
mapXmap. (4.13)

If we denote Kρ = I +
XT

mapXmap

ρ2
the regularized kernel, the dual optimal point and dual

optimal value of problem (4.12) can be expressed as:

α∗ = K−1
ρ y and d∗ = yT K−1

ρ y. (4.14)

Remark 4.3. Since the primal (4.10)-(4.11) and dual (4.12) are convex and strictly feasible,
strong duality holds and primal optimal value p∗ and dual optimal value d∗ are equal. We
note that expression (4.12) shows that the dual optimal value is a maximum over a set of
linear functions of Kρ, so the optimal value is a convex function of the regularized kernel
matrix Kρ. Since the choice of the kernel is crucial for the optimal value, it is interesting to
minimize the optimal value d∗ with respect to the kernel.

Remark 4.4. Optimizing the kernel matrix physically means looking for the best mapping
function φ(·) such that there is a linear relation between the features of the inputs φ(xi) and
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the outputs yi. If one takes φ(·) as the identity mapping, then the optimal value of (4.12)
becomes:

yT K−1
ρ y = yT

(
I +

xT x

ρ2

)−1

y (4.15)

which may not be optimal for non-linear systems.

Remark 4.5. One must note that the kernel matrix (4.13) is a square matrix which has the
dimension of xT x, and thus its size does not depend on the number of features represented
in Xmap but only on the number of covariates xi. The dimension of the image space of φ(·),
which is the dimension of the feature space, does not appear in the kernel matrix. This is
the kernel trick mentioned in section 4.2.2.

Cross-validation

The optimal value of (4.9) as expressed in (4.14) depends on the kernel matrix (4.13)
and on the regularization parameter ρ. The parameter ρ is tuned through a re-sampling
procedure [86], the k-fold cross-validation (here k does not denote the kernel matrix but the
number of folds used in the cross-validation method). This technique consists in dividing the
dataset into k parts of approximately equal size, and using a subset for training while the
remainder is used for testing [215]. For instance if the different parts are {Pi|i = 1, · · · , k}
then given n ∈ {1, · · · , k} one would use Pn as a training set and

⋃
i=1,··· ,k, i6=n Pi as a test set.

This is useful to make extensive use of the dataset while avoiding bias on the training set.
Here we use this method on the training set to pick the optimal value of the regularization
parameter ρ and on the whole set to have a meaningful estimation error.

Kernel regression

As stated in Remark 4.3, the optimal value of the regularized regression problem (4.9) is
a convex function of the regularized kernel matrix Kρ and can be optimized over the kernel.
The kernel optimization problem, which consists in minimizing the value d∗ defined in (4.14)
with respect to the regularized kernel Kρ reads:

minKρ yT K−1
ρ y (4.16)

subject to Kρ ≥ 0 (4.17)

where the constraint on the kernel matrix enforces that the regularized kernel Kρ must be
a Gram matrix. This problem is convex according to Remark 4.3. In order to prevent over-
fitting with respect to Kρ, we follow [142] and constrain Kρ to be a convex combination of
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given kernels, i.e. we define a set of kernels {K1, · · · , Kk} and consider the problem:

minλ yT K−1
ρ y (4.18)

subject to λi ≥ 0
k∑
i=1

λi = 1 (4.19)

Kρ =
k∑
i=1

λiKi. (4.20)

In a learning setting, the optimization problem (4.18) is defined only on the training set but
the expression of the kernel matrix as a linear combination of known kernels must be satisfied

on the entire set. Using the notation introduced in (4.8) we write Kρ =

(
Ktr Ktrt

KT
trt Kt

)
and

under this form the problem reads:

minλ yT K−1
tr y (4.21)

subject to λi ≥ 0
k∑
i=1

λi = 1 (4.22)

Kρ =
k∑
i=1

λiKi (4.23)

which can be written in a semi-definite program form using an epigraphical property and
the Schur complement:

minλ,t t (4.24)

subject to λi ≥ 0
k∑
i=1

λi = 1 (4.25)

Kρ =
k∑
i=1

λiKi and

(
t yT

y I + Ktr

ρ2

)
≥ 0. (4.26)

The solution of this optimization problem is the parameter λ∗ giving the optimal convex
combination of the set of kernels {K1 · · ·Kk} which minimizes d∗ from (4.14).

Rank-one kernel optimization

The kernel optimization problem in the form of (4.24)-(4.25)-(4.26) is not tractable and
cannot be efficiently solved by standard optimization software. A rank-one decomposition of
kernels can be used in order to find an equivalent formulation in a linear program form. This
is done through the introduction of several intermediate problems. Assuming we can write
the regularized kernel as a convex combination of dyads: Kρ =

∑p
i=1 νi li l

T
i where li are row
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vectors and νi are positive scalars such that
∑p

i=1 νi = 1. Since by definition Kρ = I + K
ρ2

,
the decomposition of Kρ into a sum of dyads is possible whenever the kernel K itself can be
written as a sum of dyads. In practice, the kernel is a positive semi-definite matrix, so it can
be diagonalized in an orthonormal basis and this property is satisfied. Thus, we can write
an equivalent formulation of problem (4.18)-(4.19)-(4.20) as:

Ψ = minν yT K−1
ρ (ν) y (4.27)

subject to νi ≥ 0

p∑
i=1

νi = 1 (4.28)

Kρ =

p∑
i=1

νi li l
T
i (4.29)

where the vectors li are the eigenvectors of the matrices Kj from equation (4.20). Introducing
the change of variable κ = K−1

ρ (ν) and doing some computations enables one to rewrite
problem (4.27)-(4.28)-(4.29) as:

Ψ = maxκ

(
2 yT κ− max

1≤i≤p
(lTi κ)2

)
(4.30)

and the optimal κ is related to the optimal ν by the following relation

κ∗ = K−1
ρ (ν∗). (4.31)

One can note that solving problem (4.30) for the vector variable κ is the same as solving the
problem:

Ψ = maxγ,β

(
2 yT γ β − max

1≤i≤p
(lTi γ β)2

)
(4.32)

for the variables γ and β. This is simply obtained by writing κ = γ β in problem (4.30),
with γ scalar and β vector. The optimal point (γ∗, β∗) of problem (4.32) satisfies:

Ψ1/2 β∗ = γ∗ β∗ = κ∗. (4.33)

If we minimize over γ in (4.32) we obtain the following optimization problem:

Ψ1/2 = maxβ yT β (4.34)

subject to |lTi β| ≤ 1 i = 1, ..., p. (4.35)

The Lagrangian of this problem can be written as:

L(β, u) = yT β +

p∑
i=1

(
|ui| − ui

(
lTi β

))
(4.36)
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and taking the Lagrangian dual of problem (4.34)-(4.35) yields:

Ψ1/2 = minu ‖u‖1 (4.37)

subject to y =

p∑
i=1

ui li (4.38)

using the strict feasibility of the primal and convexity of the primal and the dual. Prob-
lem (4.38) is a linear program. The optimal ν∗ can be retrieved from the optimal u∗ from
the relation:

ν∗i =
|ui|∗

Ψ1/2
. (4.39)

Indeed one can check that with this value of the vector ν equations (4.31)-(4.33) yields
Ψ1/2Kρ(ν

∗) β∗ = y and on the other hand we can write Ψ1/2Kρ(ν
∗) β∗ =

∑p
i=1 |u∗i | (lTi β) li

which is equal to
∑p

i=1 ui li using the optimality condition in the Lagrangian (4.36). This
proves that if u∗ is optimal for (4.37)-(4.38) then ν∗ given by (4.39) is optimal for (4.27)-
(4.28)-(4.29) and vice-versa.

Kernel learning and kernel regression methods have been mostly applied to static ma-
chine learning problems. A corresponding theory for dynamical and distributed systems is
still the topic of active research.

In the following chapter, we present how a control-theoretical formulation of Bayesian
networks, namely nonlinear filtering techniques, can be applied to scalar hyperbolic conser-
vation laws, and the extent to which discontinuity and non-differentiability of the solution
to the partial differential equations impact the optimality of the resulting estimates.
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Chapter 5

Sequential data assimilation for scalar
macroscopic traffic flow models

In this chapter we consider the problem of sequential data assimilation for the nonlinear
partial differential equations traffic models presented in the previous chapters. As mentioned
before, the estimation for nonlinear systems requires the use of suboptimal techniques for
which there is no analytical or numerical access to the optimum. The focus of this chapter is
on the analysis of the impact of the specific properties of the solutions to partial differential
equations based traffic models, onto the optimality of the estimates provided by classical
advanced filtering techniques.

The estimation problem for nonlinear systems has been heavily studied in particular
within the meteorology community, with subsequent development of sophisticated data as-
similation techniques [36, 152], which fall into two major categories: variational methods and
optimal interpolation methods. Variational methods [152] consist of finding the solution of
a model (with or without stochastic forcing) which minimizes a certain distance to observa-
tions. Estimates provided by optimal interpolation methods are not in general solutions to
a model, but minimize a weighted distance to the model solution and to the observations.
In meteorology, a common example of a variational method is the 3D-Var algorithm [65] for
the static problem and 4D-Var algorithm in the time-varying case [66].

The theory of inverse problems [131] is concerned with the estimation of model parame-
ters. A specific type of inverse methods consists in iteratively updating the estimates as data
becomes available [91], instead of solving an inverse problem once using all measurements in
batch. These so-called sequential estimation algorithms, particularly appropriate for on-line
estimation, often rely on Bayes rule and a computationally explicit optimality criterion (e.g.
Gauss-Markov theorem for minimum mean squared error estimation). In the case of additive
noise, one of the most well-known sequential estimation algorithms is the seminal Kalman
filter [132].
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5.1 Data assimilation

5.1.1 Application to transportation networks

In the transportation field, applications of sequential state estimation date back to the
1970’s and the work of Gazis [100, 208], who independently used the Kalman Filter (KF)
and the Extended Kalman Filter (EKF) to estimate traffic density in the Lincoln tunnel,
New-York, for the purpose of traffic control. More recent work from Papageorgiou [221, 222]
involves the application of the EKF to a non-scalar traffic model [182]. The EKF has also
been applied [196] to the LWR equation with a Smulders [201] flux function.

The Mixture Kalman Filter (MKF) [51] is an extension of the KF to conditionally linear
dynamical systems. The MKF has been applied in the transportation community [114, 206,
209] to the cell-transmission model (CTM) [71, 72], which exhibits piecewise linear dynamics,
conditioned on the phases of traffic (free-flow, congestion) upstream and downstream.

In the recent years, sequential Monte Carlo methods, or Particle Filters (PF), and so-
called ensemble methods such as the EnKF have been applied to traffic estimation [171, 227,
228]. Ensemble methods [93] consist of representing the first moment of the state estimate
distribution by a set of samples and using a linear measurement update, whereas particle
methods [105] consist in propagating a sample representation of the full distribution of the
estimate and using a nonlinear measurement update.

Another notable filter is the Unscented Kalman Filter (UKF) [129] which introduces
an unscented transformation providing an exact representation of the first two moments
of a distribution by a set of deterministically determined samples (see [170] for a traffic
application).

A variety of traffic models and filters have been shown to perform well for practical
applications. However, the problem of the structural limits of data assimilation algorithms
for traffic estimation has not received much attention. It is well-known that, in practice,
high accuracy can be achieved with sufficiently accurate measurements in sufficiently large
volumes. But with massive datasets coming from increasingly diverse sources, traceability
and high quality of traffic data are not necessarily guaranteed. Being able to identify the
estimation errors inherent to the structure of traffic phenomena is required for the design
of more robust, transparent data assimilation algorithms, and scalable, appropriate data
collection methodologies.

In this chapter, we analyze the structural properties of one of the most classical macro-
scopic traffic flow models, the Lighthill-Whitham-Richards (LWR) partial differential equa-
tion (PDE) [159, 189], in the context of estimation. We present the difficulties resulting
from these properties, which create significant challenges for the design of an optimal filter-
ing algorithm for this model.
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5.1.2 Optimal filtering for LWR PDE

Structural properties of the LWR PDE and its discretized forms impact the optimality
of estimates produced by classical sequential estimation techniques. The focus of this chap-
ter is on the analysis and quantification of the lack of estimate optimality resulting from the
following properties of the LWR PDE, and its numerical discretization using the Godunov
scheme.

Nonlinearity of the fundamental diagram

One of the main properties of the LWR PDE is the nonlinearity of its flux function (fun-
damental diagram), which allows the modeling of traffic phases of different nature: free-flow
and congestion. Nonlinearities of the model are the cause of the appearance of discontinuities
in the solution of the partial differential equation. Consequently, the distribution of the un-
certainty on the true state is a mixture distributions at shock waves even for unimodal noise
distributions on the initial condition. In this chapter, we analytically show the emergence of
mixture distributions in the solution of the PDE and numerically illustrate their importance
on benchmark tests.

The mixture nature of the distribution of the uncertainty on the true state resulting
from initial condition uncertainty propagating through an uncertain model raises the ques-
tion of the relevance of minimal variance estimate for traffic applications. The estimate mean
produced by classical filters may indeed correspond to a state with zero true probability, and
the estimate covariance may exhibit large values corresponding to a variability due to the
coexistence of different modes in the distribution of the uncertainty on the true state, each
with significantly smaller covariance.

Non-differentiability of the discretized model

The most common numerical scheme used to compute the solution of the LWR PDE
is the Godunov scheme [103], a finite volume scheme which consists of iteratively solving
Riemann problems [89] between neighboring discretization cells and averaging their solution
at each time-step on each spatial cell, as described in Chapter 1. In this chapter we prove
that this scheme is non-differentiable and we derive the expression of its non-differentiability
domain.

The lack of differentiability of the Godunov scheme, a common discretization of the
LWR PDE, is relevant for data assimilation algorithms whose optimality guarantees are
based on Taylor series analysis, which assumes exact computation of the derivative up to
a certain order. This is the case in particular for the EKF, which considers propagation
of the estimate covariance using the tangent (linearized) model. Numerical results quantify
estimate errors induced by this property of the discretized model. The result also affects
known order of accuracy of the estimate moments of the UKF, since in this case the Taylor
series does not exist up to the required order.



Section 5.2. Nonlinear estimation 88

This chapter can thus be viewed as a theoretical and numerical study of the implications
of the structural properties of the Godunov scheme and CTM on filtering algorithms. It
sheds some new light on the proper use of these schemes for traffic estimation purposes, and
provides conclusions which are illustrated by detailed numerical studies.

While the results presented here are derived for the Godunov scheme, because histori-
cally is was one of the first numerical schemes proposed to solve scalar hyperbolic conservation
laws (and the LWR PDE in particular), other proposed schemes such as the CTM exhibit
the same features as the Godunov scheme, and thus our analysis applies to them as well.

The remainder of the chapter is organized as follows. Section 5.2 introduces the general
theory of sequential data assimilation and optimal filtering. Section 5.3 focuses on the
Riemann problem which is the keystone of numerical solutions of continuous and discrete
scalar conservation models and the focus of our subsequent analysis. Section 5.4 and 5.5
point at the structural properties of macroscopic traffic models derived from the LWR PDE,
in particular model nonlinearity in Section 5.4 and model non-differentiability in Section 5.5.

5.2 Nonlinear estimation

5.2.1 Deterministic filters

In this section we present the EKF and the UKF for nonlinear systems. The EKF
forecast step is based on model linearization. The UKF consists in representing exactly the
first two moments of the prior distribution by a set of deterministic samples. In particular,
no sampling term is required for the application of these algorithms.

Extended Kalman filter

The EKF is an extension of the KF for nonlinear state-space models. The EKF consists
in using a Taylor series truncation of the model at the current state to propagate the state
statistics. We present the case of a nonlinear state model combined with a linear observation
model, although nonlinear observation equation can also be considered through a similar
linearization of the observation operator at the analysis step. The forecast mean is given
by a zero-th order truncation of the model, whereas the forecast covariance is given by a
first order truncation of the model. If we note At+1 the linearization of the nonlinear model
dynamics A(p, t) at the state estimate p, the forecast and analysis steps for the EKF read:

Forecast:

{
xt+1|t = A(xt|t, t)

Σt+1|t = At+1 Σt|tA
T
t+1 +Wt+1

(5.1)

Analysis:


xt+1|t+1 = xt+1|t +Kt+1

(
yt+1 − Ct+1 xt+1|t

)
Σt+1|t+1 = Σt+1|t −Kt+1Ct+1 Σt+1|t

where Kt+1 = Σt+1|tC
T
t+1

(
Ct+1 Σt+1|tC

T
t+1 + Vt+1

)−1

(5.2)
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where the only difference with the Kalman filter resides in the propagation of the state mean
at the forecast step, using the nonlinear state model. Different sources of sub-optimality
arise in the derivation of the EKF:

1. Accuracy of the Taylor truncation:

a The model approximation used at the forecast step (5.1) for the covariance propa-
gation requires that the model Jacobian be accurately computed.

b The mean given by the EKF is a second order Taylor series approximation of the
MMSE, whereas the covariance is a fourth order approximation of the MMSE error
covariance.

2. Closure assumption: it is assumed that there is no significant interaction between
higher order statistics and the first two moments of the state estimate.

Cases in which the closure assumption breaks, due to the importance of higher order terms
in the model Taylor series have been documented, with illustrations of estimates biased and
inconsistent [129], and with diverging error statistics [90]. Cases in which this assumption
breaks, due to the importance of higher-order statistics can be found in [172, 173] in the case
of bimodal distributions.

Remark 5.1. An approximation made in the EKF equations lies in the propagation of the
state covariance Σt+1|t. This covariance is then used at the analysis step (5.2) at which
observations are combined with the model forecast. The study of the resulting error structure
of the state covariance after propagation in the context of traffic is to the best of our knowledge
an open problem, and is a focus of the research presented in this chapter.

Unscented Kalman filter

The UKF [129] is built on the unscented transformation, which consists in representing
a distribution with mean µ and variance Σ by a set of weighted samples, or sigma points,
chosen deterministically such that the weighted sample mean is µ and the weighted sample
covariance is Σ [130]. For for a state-space of dimension n, the 2n+1 sigma points produced
by the unscented transformation are defined as

x0 = µ

xk = µ+ ((n+ k) Σ)
1
2
k k = 1, . . . , n

xk+n = µ− ((n+ k) Σ)
1
2
k k = 1, . . . , n

(5.3)

where ((n+ k) Σ)
1/2
k denotes the kth column of the square root of (n+k) Σ. The correspond-

ing weights wk are parameterized by κ, which controls the spread of the sigma points:
w0 = κ

κ+n

wk = 1
2(κ+n)

k = 1, . . . , n

wk+n = 1
2(κ+n)

k = 1, . . . , n.

(5.4)
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Choosing the samples according to (5.3) and the weights according to (5.4) yields that the
weighted sample mean and weighted sample covariance are equal to the distribution mean
and covariance for any choice of κ. The forecast and analysis step of the UKF can be written
as follows:

Forecast:



Propagate sigma-points

xkt+1|t = A(xkt|t, t) k = 1, . . . , 2n+ 1

Compute forecast mean and covariance

xt+1|t =
∑2n+1

k=0 wk x
k
t+1|t

Σt+1|t =
∑2n+1

k=0 wk

(
xkt+1|t − xt+1|t

) (
xkt+1|t − xt+1|t

)T
(5.5)

Analysis:



Compute sigma-points observations

zkt+1|t = Ct+1 x
k
t+1|t k = 1, . . . , 2n+ 1

Compute observation mean and covariance

zt+1|t =
∑2n+1

k=0 wk z
k
t+1|t

Zt+1|t =
∑2n+1

k=0 wk

(
zkt+1|t − zt+1|t

) (
zkt+1|t − zt+1|t

)T
Compute covariance between forecast and observation

Yt+1|t =
∑2n+1

k=0 wk

(
xkt+1|t − xt+1|t

) (
zkt+1|t − zt+1|t

)T
Compute posterior mean and covariance

xt+1|t+1 = xt+1|t +Kt+1

(
yt+1 − zt+1|t

)
Σt+1|t+1 = Σt+1|t −Kt+1 Zt+1|tK

T
t+1

where Kt+1 = Yt+1|t Z
−1
t+1|t

(5.6)

where the unscented transformation is first used to compute the sigma points for the current
estimates, which are then propagated through the model and whose mean and covariance is
computed (5.5). At the analysis step, the forecast observation associated with each sigma
point through the (potentially) nonlinear observation model Ct+1, is computed as zkt+1|t,
which allows the computation of the observation mean zt+1|t, observation covariance Zt+1|t,
and the covariance between forecast state and observation as Yt+1|t. The analysis mean and
covariance are then computed exactly using Kalman equations (5.6).

Different sources of sub-optimality arise in the UKF:

1. Limited number of samples: the mean and the covariance propagated by the UKF
are fourth order approximations of the MMSE and MMSE error covariance.

2. Closure assumption: it is assumed that there is no significant interaction between
higher order statistics and the first two moments of the state estimate.

The UKF has been applied to traffic estimation [170] and was compared with the EKF
for the Papageorgiou model (1.10). The two filters were empirically shown to have simi-
lar performances for joint state and parameter estimation [111] for this model (1.10). The
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results of this comparison are completed by the analysis presented in Section 5.4 and Sec-
tion 5.5, in which we study the state distribution features due to model nonlinearities and
non-differentiability analytically and numerically in the case of the LWR model, and in which
we show how they affect the EKF and the UKF. In particular we analyze the true distri-
bution structure at shock waves of the LWR model, in the continuous and discrete domain.
The Papageorgiou model is defined in the discrete domain, and exhibits an anticipation term
which reduces the sharpness and amplitude of spatial variations. Consequently, the impact
of the existence of shock waves on the performance of the filters is stronger in the case of
the LWR model in the continuous domain.

5.2.2 Stochastic filters

A wide variety of filters extend the Kalman filter for nonlinear state models by represent-
ing the state by a set of random samples (particles, ensemble members). The rules for sample
propagation, update, and for resampling, are of different types. The need for pseudo-random
generator at every step of these algorithms justifies the appellation stochastic filters.

Ensemble Kalman filter

The EnKF [92, 93] consists in representing the state statistics by a set of ensemble
members which are evolved in time and whose mean is an estimator of the true state. The
state error covariance is represented by the ensemble covariance. Formally, with N ensemble
members, the EnKF equations read:

Forecast:


xkt+1|t = A(xkt|t, t) + wkt+1 k = 1, . . . , N

xt+1|t = 1
N

∑N
k=1 x

k
t+1|t

Σt+1|t = 1
N−1

∑N
k=1

(
xkt+1|t − xt+1|t

)(
xkt+1|t − xt+1|t

)T (5.7)

Analysis:


xkt+1|t+1 = xkt+1|t +Kt+1

(
yt+1 + vkt+1 − Ct+1 xt+1|t − vt+1

)
k = 1, . . . , N

Σt+1|t+1 = Σt+1|t −Kt+1Ct+1 Σt+1|t

where Kt+1 = Σt+1|tC
T
t+1

(
Ct+1 Σt+1|tC

T
t+1 + Vt+1

)−1

(5.8)

where we noted v the mean of v. In the limit of large number of samples, the EnKF converges
toward the KF for linear systems. Due to the independent ensemble forecasts (5.7), it is
embarrassingly parallel and particularly appropriate for efficient distributed computations.
At the analysis step (5.8), the modeled observation noise is explicitly added to the measured
observation, to capture the full observation noise in the analysis equation [42]. In the context
of traffic estimation, the EnKF has been applied to the Bay Area highway networks with
a traffic model equivalent to the LWR PDE, formulated in the velocity variable [227]. The
principal source of sub-optimality arising in the EnKF is sampling error:
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1. Sampling error: the use of a finite number of ensemble members introduces a sam-
pling error in the estimate distribution.

Remark 5.2. The covariance given by the EnKF is the state error covariance and not the
state covariance. In the KF, the state mean and state error covariance are propagated ana-
lytically. The state error covariance coincides with the state covariance. On the other hand,
the EnKF analytically propagates ensemble members whose mean is an unbiased estimator of
the state mean, and covariance coincides by definition of the update equations with the state
error covariance, but not with the state covariance, except in the limit of an infinite number
of ensemble members.

Extensions of the EnKF giving access to higher order moments of the state distribution have
also been considered [10] by integrating a modified analysis step.

Particle filter

The PF, also known as bootstrap filter, or sequential Monte Carlo method [11, 105, 163]
can be traced back to the seminal articles of Metropolis and Ulam [169], later generalized by
Hastings [109]. These methods represent the full statistics of the state by a set of samples
which are propagated through the state model. When observations are received, sample
weights are scaled by the relative likelihood of the new observation, and the updated repre-
sentation of the probability distribution is re-sampled. Formally, the PF steps in the case of
N particles are as follows:

Forecast: xkt+1|t = A(xkt|t, t) + wkt+1 k = 1, . . . , N

Analysis:



Re-weighting:

αkt+1 = αkt
p(yt+1|xkt+1|t)∑N

k=1 α
k
t p(yt+1|xkt+1|t)

k = 1, . . . , N

Re-sampling:

Generate N samples xkt+1|t+1 from the distribution defined by

P (X = xkt+1|t+1) = αkt+1, k = 1, . . . , N

The PF has been applied to the case of transportation systems [171] on the stochastic model
described in [34]. The particle filter is the only filtering method able to capture the complete
state distribution, in the limit of infinite number of samples, without restrictive assumption
on the dynamics or on the statistics. Well-known weaknesses of the PF relate to the problem
of sample degeneracy for high dimensional [202] systems. The use of an appropriate proposal
distribution at the re-weighting step is key to reducing the sample weight variance given the
system history, but more sophisticated importance sampling or rejection sampling techniques
are often considered [11, 218]. The sources of sub-optimality in the PF relate to:

1. Sampling error: the use of a finite number of particles introduces a sampling error
in the estimate distribution.
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The implicit particle filter is a notable extension [55] of the PF which allows a-priori the
definition of the desired weights of the particles after analysis and thus alleviation of the
problem of sample degeneracy in the case of the exponential family. Another research track
has explored the use of the EKF, EnKF or UKF to compute the proposal distribution in the
particle filter [218].

Sustained improvements of the filters presented above have been in large part driven by
specific improvements for systems exhibiting strong nonlinearity or non-normality, identified
as the causes of inaccurate estimates and forecast. In the following section, we present the
seminal macroscopic traffic models which have been considered for real-time data assimilation
on transportation networks. The subsequent sections will then focus on the analysis of the
performance of the respective filtering schemes on the models.

5.3 Discontinuities and uncertainty

At the macroscopic level, traffic flow exhibits nonlinearities which can be modeled
using nonlinear conservation laws such as the LWR PDE. Nonlinearities are the cause for
discontinuities which may arise in finite time in the solution to the Cauchy problem associated
with the PDE even with smooth initial and boundary data. According to the definition of the
solution to the Riemann problem (5.10), shock waves persist when, at a spatial discontinuity,
the upstream density is lower than the downstream density. Thus they cannot be neglected
by any traffic application. Physically, these discontinuities model the existence of queues,
which are one of the main focus of traffic flow research.

5.3.1 Estimation and control

Queues extremities are phenomena with very limited spatial extent, which characterize
the interface between significantly different phases of traffic flow. This property makes them
relatively hard to directly measure and monitor using classical fixed sensing infrastructure.
This is especially true when the upstream end of the queue is stationary, and can only be
directly measured if it lies on a fixed sensor or by probe vehicles reporting measurements
exactly at the corresponding location.

Large traffic variations occurring on a short spatial extent, typical of queues extremities,
make them particularly hazardous, and being able to alert drivers of sudden changes in speed
is one of the focal points of traffic safety applications [119].

For control applications, accurately locating the location and propagation speed of
queues is critical. Their location typically impacts ramp metering algorithms directly, since
they are often designed around the values of the upstream and downstream flow at the up-
stream end of the queue. In the absence of sensors, the algorithm depends on the estimated
flows upstream and downstream of the ramp.

Furthermore, accurate estimation of the propagation speed of queues is one of the most
essential components of traffic forecast and dynamic travel-time estimation. Estimating
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their propagation speed requires the estimation of the left and right density at the queue
extremities, as well as accurate knowledge of the fundamental diagram.

In the context of model-based estimation, the influence of model nonlinearity and non-
differentiability on the quality of the estimates for traffic phenomena has not received much
attention in the traffic community with a few notable exceptions [111, 207] (see [33] for a
related problem for atmospheric models, and [50] for a study of non-differentiability in a
general context). In the following section, we consider the Riemann problem, which is a
benchmark problem for studying the solution to the LWR PDE, and the evolution of shock
waves. We then consider in Section 5.3.3 the Riemann problem with stochastic datum,
which is used in the following sections as a framework for the study of the propagation of
discontinuities in presence of uncertainties.

5.3.2 Riemann problem

The Riemann problem is a Cauchy problem with a self-similar initial condition, of the
form:

ρ(t = 0, x) =

{
ρl if x < 0

ρr if x > 0
(5.9)

The solution to the Riemann problem is the solution to the Cauchy problem associated
with the PDE with initial condition the Riemann datum (5.9). The Riemann problem is
a key building block for proofs of existence of solutions to the Cauchy problem for general
initial conditions in the space of bounded variations (BV), via Helly’s theorem [39]. It is also
critical to the design of numerical schemes such as the wavefront tracking method [39] and
the Godunov scheme, which proceeds by iteratively solving the Riemann problem between
discretization cells, before averaging its solution on each cell (see equations (1.7) and (1.8)).

For a flux function Q(·) with constant concavity sign, the unique entropy solution to
the Riemann problem is defined for (t, x) ∈ R+\{0} × R as follows

1. If Q′(ρl) > Q′(ρr) the solution is a shock wave

ρR

(x
t
, ρl, ρr

)
=

{
ρl for x

t
< σ

ρr for x
t
> σ

(5.10)

where the location of the discontinuity is x = σt, with σ given by the Rankine-Hugoniot
relation:

σ =
Q(ρl)−Q(ρr)

ρl − ρr
(5.11)

which expresses the conservation of ρ at the discontinuity.

2. If Q′(ρl) < Q′(ρr) the solution is a rarefaction wave

ρR

(x
t
, ρl, ρr

)
=


ρl for x

t
≤ Q′(ρl)

(Q′)−1(x
t
) for x

t
∈ (Q′(ρl), Q

′(ρr))

ρr for x
t
≥ Q′(ρr)
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The interested reader is referred to Evans [89] and Leveque [156] for more details, and
Piccoli [97] in the context of traffic. Shock waves and rarefactions waves respectively model
the upstream and downstream ends of a queue. One may note that depending on the flow
difference at the discontinuity, the propagation speed may be positive or negative.

Remark 5.3. This brief description of the Riemann problem for the scalar conservation
law is also of interest for continuous non-scalar traffic models in which discontinuities arise
(see [31, 231]).

For estimation purposes, it is appropriate to consider uncertain Riemann datum, which
requires the definition of the Riemann problem with stochastic datum.

5.3.3 Riemann problem with stochastic datum

We consider a Riemann problem for a scalar conservation law with concave flux, with
stochastic datum [69] defined by:

ρ(t = 0, x) =

{
%l if x < 0

%r if x > 0
(5.12)

where %l, %r are random variables. We further note ς the random variable defining the re-
sulting shock speed, whose distribution is given by the distribution of the Rankine-Hugoniot
speed (5.11) for the realizations of the stochastic datum (%l, %r). We focus our analysis on
the case in which each realization of the solution to the Riemann problem with stochastic
datum is a shock wave. In the following proposition, we derive the analytical expression of
the random field solution of the Riemann problem with stochastic datum in this case.

Proposition 5.1. The solution of the Riemann problem with stochastic datum (%l, %r) (5.12)
with bounded support, respectively Dl,Dr such that sup(Dl) < inf(Dr), is a random field %t,x,
defined by:

P (%t,x = ρ) = P
(
%l = ρ|ς > x

t

)
P
(
ς >

x

t

)
+ P

(
%r = ρ|ς < x

t

)
P
(
ς <

x

t

)
. (5.13)

Proof. By assumption on the Riemann datum, sup(Dl) < inf(Dr), the solution of a realiza-
tion of the Riemann problem is a shock wave between a realization ρl of %l and a realization
ρr of %r, with shock wave speed given by the Rankine-Hugoniot relation (5.11) which defines
the realizations of the stochastic shock wave speed ς. If we note 1I the characteristic function
of interval I, the solution to a realization of the Riemann problem at (t, x) ∈ R+\{0}×R is
given by:

ρ = ρl1σ>x
t

+ ρr1σ<x
t
.
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which is the solution of the deterministic Riemann problem in the case of a shock wave (5.10).
For (t, x) ∈ R+\{0} × R, a realization σ of the shock wave speed such that σ > x/t, the
solution is drawn from the left datum, which reads:

P
(
%t,x = ρ|ς > x

t

)
= P

(
%l = ρ|ς > x

t

)
.

Writing the similar equation for the case σ < x
t

and using the law of total probability, we
obtain equality (5.13), and the proof.

The case in which the support of the left and right datum do not intersect and are such
that all realizations of the Riemann problem are rarefaction waves can be treated similarly.
For simplicity, we do not address here the case where the support of the left and right
datum have a non-empty intersection and consequently the realization of the solution to the
Riemann problem can be a shock wave or a rarefaction wave.

Remark 5.4. For numerical simulations, correlated initial noise in the Godunov scheme
accurately models the Riemann problem. Specifically, the Riemann problem with stochastic
datum can be modeled numerically by using the same realization of left initial noise for all
cells on the left of the discontinuity in the discrete initial condition, and the same realization
of the right initial noise for all cells on the right of the discontinuity in the discrete initial
condition.

In the two following sections, we consider a Riemann problem with stochastic datum
modeling initial condition error. We show specific consequences of the nonlinearity of the
PDE on the statistics of the distribution of the uncertainty on the true state and compare the
true solution of the so-called stochastic Riemann problem with forecast state estimates given
by the EKF, UKF and EnKF. We also consider the solution to the discrete Godunov scheme
and assess how diffusion and modeling errors impact the applicability of the conclusions
drawn for the continuous solution to the discrete solution.

5.4 Model nonlinearity

In this section, we present the consequences of model nonlinearities on the estimate
statistics propagated by different schemes. We show that propagating only the first two
moments of the distribution can lead to significant estimation error at shock waves where
mixture distributions between the left and right state arise and propagate. We show that
despite modeling error and numerical diffusion, this phenomenon is also present in the so-
lution to the Godunov scheme. We focus our analysis on the EKF, EnKF and UKF, which
offer distinct properties; the EKF consists in a linearization of the model, the EnKF exhibits
stochastic error and converges toward the classical Kalman filter in the limit of infinite num-
ber of samples, and the UKF consists in deterministic sampling toward accurate propagation
of the first two moments of the estimate distribution.
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5.4.1 Mixture solution to the Riemann problem

In this section we show that the existence of discontinuities in the solution to the PDE
combined with the existence of stochastic terms in the state-space model may introduce
mixture distributions that travel with shock waves and propagate around it.

We note D the set of points (t, x) for which there is a non-zero probability that, in the
(x, t) plane, a realization of the solution to the Riemann problem with stochastic datum (5.12)
exhibits a discontinuity on the left of (t, x) and a non-zero probability that a realization
exhibits a discontinuity on the right of (t, x):

D =
{

(t, x) ∈ R+\{0} × R|min {P (ς < x/t), P (ς > x/t)} > 0
}
.

Proposition 5.2. In the domain D, the solution to the Riemann problem with stochastic
datum (5.12) is a mixture distribution.

Proof. Outside of D, we have by definition P (ς < x/t) = 0 or P (ς > x/t) = 0. According to
equation (5.13), in the first case the solution of the Riemann problem is given by P (%t,x =
ρ) = P (%l = ρ|ς > x/t), and in the second case, the solution of the Riemann problem is given
by P (%r = ρ|ς < x/t), hence in both cases the solution is a conditional of the left or right
initial datum. In D, the solution is given by equation (5.13), where the two weighting terms
are non-zero by definition. The random field %t,x is a mixture of the left datum conditioned
on the positivity of ς − x/t, and the right datum conditioned on the negativity of ς − x/t,
as expressed by equation (5.13).

The mixture nature of the solution of the Riemann problem with stochastic datum
is illustrated in Figure 5.1, obtained by Monte Carlo simulation with 105 samples, for a
Greenshields flux with parameters V = 80 mph and ρmax = 120 vpm (where mph and vpm
respectively stand for miles per hour and vehicles per mile), and a Riemann problem with
independent uniform left and right datum centered at ρl = 30 vpm, ρr = 90 vpm. Variances
100 and 400 are considered in Figure 5.1 left and right respectively. The domain where the
minimum of the weighting terms (P (ς > x

t
) and P (ς < x

t
)) is non-zero characterizes the

domain D, and the locus of the mixture distribution.
The mixture nature of the random field is due to the stochastic nature of the shock

wave speed. Propagating a moment-based representation of the datum, as in the case of the
EKF, through the deterministic model does not capture the mixture nature of the random
field. The random field %̃t,x defined by the stochastic initial datum and a deterministic
Rankine-Hugoniot speed associated with the mean of the datum reads:

P (%̃t,x = ρ) = P (%l = ρ) 1
(
σ >

x

t

)
+ P (%r = ρ) 1

(
σ <

x

t

)
(5.14)

where the stochastic nature of the shock wave speed and non-independence between the
datum and the shock wave speed are neglected. The difference between the state distri-
bution propagated in this method and the true mixture distribution is illustrated in Fig-
ure 5.2, for the same model parameters and initial condition as in Figure 5.1, with a variance
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Figure 5.1: Mixture random field.
The minimum min

{
P (ς > x

t ), P (ς < x
t )
}

is represented over space and time for additive uniform
noise with zero mean and variance 100 (left) and 400 (right). The mean of the left (resp. right)
datum is 30 vpm (resp. 90 vpm). As can be seen, the higher the variance on initial data, the less
it is acceptable to neglect the mixture nature of the random field.

100 and 107 particles. Figure 5.2 displays distributions corresponding to positive locations
(0.01, 0.11, 0.21 miles), which corresponds to the right side of the left subfigure in Figure 5.1.
This is a situation in which P (ς > x

t
) < P (ς < x

t
) (more chance for the shock to be on

the left than on the right of location x at time t). This explains that the dominating mode
corresponds to the right initial data. The dominating mode is the only mode represented
by the random field %̃t,x, which is accurate far from the shock wave only. The correlation
represented by the non-uniform distribution of the dominating mode is not captured by the
random field %̃t,x. Additionally, we represent a distribution1 with same mean and variance as
the true distribution %t,x (which is the underlying principle of the UKF). This distribution
(in dotted line) exhibits a large variance which captures the variability due to the mixture
nature of the true distribution. One may note that this distribution includes negative values
with non-zero probabilities, and positive values outside of the admissible range according to
the model, with non-zero probabilities.

Remark 5.5. The solution to the stochastic Riemann problem given by equation (5.14) may
be accurate if the mixture from equation (5.13) is degenerate and only one mode arises on
each side of the shock wave. This is the case if the Rankine-Hugoniot speed is deterministic,
which may arise in the case of specific correlated statistics or if the solution to the Riemann
problem is a contact discontinuity (e.g. in case of piecewise linear fundamental diagrams,
see Proposition 5.4).

1For graphical comparison, we use the same family as the initial condition, i.e. a uniform distribution
(represented in dotted line in Figure 5.2).
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Figure 5.2: Distribution of vehicle density at different space-time locations.
Probability density function of the uncertainty %t,x on the true state (solid line), uniform probability
density function with identical mean and variance (dotted line), probability density function %̃t,x
given by a deterministic shock wave speed between the left and right stochastic initial datum
(dashed line). This computation corresponds to a Greenshields fundamental diagram with uniform
initial noise of variance 100. The true shock wave is initially located at location 0 and does not
move.
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Proposition 5.3. For a Greenshields fundamental diagram, if the left initial noise and the
right initial noise are such that the sum ρl + ρr is constant across all realizations ρl, ρr, then
the random field %t,x is not a mixture distribution.

Proof. The shock wave speed associated with a realizations ρl, ρr of the Riemann datum
reads:

σG =
V ρl

(
1− ρl

ρmax

)
− V ρr

(
1− ρr

ρmax

)
ρl − ρr

which can be rewritten as:

σG = V − V

ρmax

(ρl + ρr)

which according to the assumption on the statistics is the same for all realizations ρl, ρr. The
domain D is thus empty, and the random field %t,x is equal to the left or right datum.

Proposition 5.4. For a triangular fundamental diagram, if Dl,Dr ⊆ [0, ρc] or Dl,Dr ⊆
[ρc, ρmax], the random field %t,x is not a mixture, for almost all (t, x) ∈ R+\{0} × R.

Proof. By assumption, we have ρl < ρr for all realizations of the two distributions. If
Dl ⊆ [0, ρc] and Dr ⊆ [0, ρc], a realization σT of the shock wave speed ςT for the triangular
diagram reads:

σT =
Q(ρr)−Q(ρl)

ρr − ρl
,

which can be rewritten using expression (1.3) and the fact that ρl ∈ Dl, ρr ∈ Dr, as:

σT =
ρl V − ρr V
ρl − ρr

= V

which yields a shock wave speed equal to the free-flow speed for all realizations. Therefore
the shock wave speed is deterministic, and the random field solution of the Riemann problem
is unimodal for almost all (t, x) ∈ R+\{0} × R. Similarly if Dl,Dr ⊆ [ρc, ρmax], the shock
wave speed is the speed of backward moving waves w. The domain D is thus empty, and
the random field %t,x is equal to the left or right datum.

Consequently, for estimation using the CTM, when the traffic state is completely in
free-flow (Dl,Dr ⊆ [0, ρc]) or completely in congestion (Dl,Dr ⊆ [ρc, ρmax]), the estimate
distributions on the left and on the right do not mix and the normality assumption of the
initial condition estimates propagates (this conditional linearity of the dynamics is used by
the MKF).
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5.4.2 Mixture solutions to the Godunov scheme

In this section, we analyze numerically how the emergence of mixture distributions in
the solution of the Riemann problem for stochastic datum relates to the emergence of mixture
distributions in the solution to the Godunov scheme. The Godunov scheme computes a
numerical solution to the Cauchy problem on a discretization grid, by iteratively solving
Riemann problems between neighboring cells and averaging their solutions within each cells.
Numerical estimates produced in this manner differ from the estimates obtained by solving
the Riemann problem on a continuous domain, due to numerical diffusion introduced in the
averaging step and the discrete setting. Additionally, in the intent of modeling numerical
diffusion, discretization error and inherent modeling error, it is common practice [131] to
introduce an additive random source term to the discretized PDE (1.5). In order to study
the emergence of mixture distributions in this context, we propose the following numerical
experiments.

We consider the Greenshields fundamental diagram with parameters V = 80 mph,
ρmax = 120 vpm, and the stochastic Riemann datum (%l = N (30, 100), %r = N (90, 100)) (we
truncate the normal distribution to force its support into the admissible domain [0, ρmax] of
the model). Using Monte Carlo simulations with 105 samples, we compute the (continuous)
solution of the Riemann problem and the (discrete) solution of the Godunov scheme with
Courant-Friedrichs-Lewy (CFL) [156] condition equal to one, spatially uniform left and right
realizations of initial noise, and for various discretization grid sizes and values of the model
noise.

Numerical diffusion: The influence of numerical diffusion on continuous and discrete
numerical estimates (see Figure 5.3) is assessed by comparing the solution to the Riemann
problem (solid line) with the solution to the Godunov scheme on a coarse grid (6 space cells,
18 time-steps, dashed line) and on a fine grid (12 space cells, 36 time-steps, dotted line). The
Monte Carlo simulation is run with 105 samples. As illustrated in Figure 5.3, comparison of
the numerical solutions on different grids illustrates that diffusion in the Godunov scheme
smoothens the mixture nature of the solution to the Riemann problem. The numerical
solution exhibits two modes but due to diffusion, a non-zero probability arises between
the two modes. This illustrates that by discretization of the constitutive model, the true
nature of the distribution of uncertainty is blurred. This is not necessarily a problem if the
discrete numerical model (Godunov scheme in this case) is considered to be the physical
model, i.e. is considered to represent the dynamics of the true state, as commonly done in
transportation. However, it show the limitation of discrete approaches for estimation with
continuous physical models, such as the LWR PDE.

Model noise: We propose to compare (see Figure 5.4) the continuous solution to the
Riemann problem (solid line), the discrete solution to the Godunov scheme with no model
noise (dotted line), and model noise represented by a random variable N (0, 50) (dashed
line), on a grid with 6 space cells, 18 time-steps. The addition of a model noise term to the
Godunov scheme to account for model errors leads to a reduction of the mixture nature of
the distribution solution to the stochastic Riemann problem. It induces a diffusion of the
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Figure 5.3: Numerical diffusion.
The mixture nature of the solution of the Riemann problem (solid line) is more accurately captured
by the numerical solution with low numerical diffusion (dotted line) computed on the fine grid than
by the numerical solution with high numerical diffusion (dashed line) computed on the coarse grid.
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Figure 5.4: Model noise.
The probability density function of the solution of the Riemann problem is represented in solid
line, the probability density function of the solution of the Godunov scheme with no noise is
represented in dotted line, the solution of the Godunov scheme with Gaussian centered model noise
with variance 50 is represented in dashed line.
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true distribution, which contributes to further smoothen the two components of the mix-
ture (see Figure 5.4). This diffusion is more structured that pure numerical diffusion (see
Figure 5.3), but this example clearly advocates for noise modeling in order to account specif-
ically for discretization error as a function of the state and the corresponding distribution of
uncertainty [121, 120, 213].

Lack of correlation: The existence of mixture distributions around the discontinu-
ity creates a correlation between the two sides of the shock wave (see Figure 5.5). By
propagating a single component of the mixture on each side of the shock wave, the covari-
ance structure is misrepresented by the linearized model. This is illustrated in Figure 5.5
representing the covariance structure of the estimate at time-step 20, for a Monte Carlo
simulation with 104 particles in the left sub figure, and for the linearized model in the right
sub figure. The fundamental diagram is a Greenshields fundamental diagram with param-
eters V = 80 mph, ρmax = 120 vpm, and the stochastic Riemann datum corresponds to
(%l = N (15, 100), %r = N (75, 100)), in vehicles per mile. This corresponds to a shock-wave
moving forward, starting at time 0 from cell 0. One may note that due to the CFL condition,
at time 20, no physical correlation can exist farther than 20 cells around the diagonal. The
block diagonal structure of the linearized model estimate at the shock wave appears clearly,
whereas for the Monte Carlo simulation with 104 particles, the state error covariance matrix
is band diagonal, which illustrates the correlation between the two sides of the shock wave
due to the mixture components. The comparison between the two figures displays the lack of
correlation, across the shock, of the covariance given by the linearized model. In the absence
of correlation, measurements realized on one side of the shock do not influence the estimate
on the other side of the shock. The fact that the linearized model overestimates the variance
around cells neighboring the discontinuity location is visible from the color scale.

5.4.3 Discussion

In this section, we discuss how the properties of the distribution of the uncertainty on
the true state solution of the Riemann problem with stochastic datum relate to the accuracy
of the estimate given by classical filters at the analysis step.

Forecast mean: The estimate given by the mean of the distribution obtained by de-
terministic propagation of the mean of the left and right datum (case of EKF), with additive
model noise, seems biased since it only captures one component of the mixture (see Figure 5.2
as well for instance). Close to the shock wave, the diffusivity of the Godunov scheme numer-
ically alleviates this drawback by smoothing the mixture through diffusion. The bias at the
shock wave due to mixture uncertainty is less likely to occur with sample-based filters which
implicitly consider a stochastic model through the propagation of samples by a determin-
istic model (see experiments below). We reemphasize here that the true shock wave speed
for Figure 5.2 and Figure 5.3 is zero, hence the true shock wave does not move from location 0.

Forecast variance: As illustrated in Figure 5.2, close to the shock wave, even when
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Figure 5.5: State error log-covariance matrix.
The shock wave is located at cell 10. The logarithm of the absolute value of the state error covariance
matrix given by a Monte Carlo simulation with 104 particles (left) illustrates significant correlation
between the two sides of the discontinuity, due to the existence of mixture distributions. The state
error covariance given by a linearized model (right) is block-diagonal at the shock wave, due to the
lack of correlation between the two sides of the shock wave in the linearized model. This lack of
correlation might be problematic for estimation, because measurements might not give information
across shocks.

the mean and the variance of the uncertainty on the true state are propagated accurately,
representing the mixture distribution of the uncertainty by a unimodal distribution leads to
considering a variance corresponding to the two modes, hence a greater dependency on the
observations at the analysis step, through an increased gain, which is due to a poor repre-
sentation of the uncertainty related to the prior distribution. On the other hand, if only a
single mode of the uncertainty is accurately captured (case of EKF), the estimate exhibits a
lower variance than the uncertainty, which is a classical cause of divergence of the filter.

Analysis step with mixture uncertainty: We consider the case of a stationary shock
wave with left and right initial data (%l = N (30, 100), %r = N (90, 100)), for a Greenshields
fundamental diagram with parameters V = 80 mph, ρmax = 120 vpm. The true stationary
shock wave is located at location 20.5 throughout each simulation. Figure 5.6 and Figure 5.7
display the prior and posterior true uncertainty, and respectively the normal distributions
corresponding to the EKF estimate and the EnKF ensemble estimates2, as well as the obser-
vations. The prior distribution of the uncertainty on the true state is computed by Monte
Carlo simulation with 105 particles, and its posterior obtained by full Bayesian update. We
study the characteristics of the analysis step of the EKF and the EnKF, at different times,

2Even though the EnKF propagates and updates ensemble, for visual consistency in a context of minimum
variance estimation, and due to the low number of ensemble members used, we present the normal distribution
corresponding to the ensemble members distribution.
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Figure 5.6: EKF analysis step.
The analysis step at different times is represented for a stationary shock-wave at location 20.5,
between 30 vpm and 90 vpm, initial condition noise variance 100, and observation noise variance
100. The observation is represented by a circular marker. The prior distribution of the uncertainty
on the true state obtained by Monte Carlo simulation with 105 samples is represented in solid line,
the posterior distribution obtained by Bayesian update is represented in dash-dotted line. The
prior distribution given by propagation through the linearized model is represented in dotted line,
and the posterior distribution given by the analysis step of the EKF is represented in dashed line.
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Figure 5.7: EnKF analysis step.
The analysis step at different times is represented for a stationary shock-wave at location 20.5,
between 30 vpm and 90 vpm, initial condition noise variance 100, and observation noise variance
100. The observation represented by a circular marker. The prior distribution of the uncertainty on
the true state obtained by Monte Carlo simulation with 105 samples is represented in solid line, the
posterior distribution obtained by Bayesian update is represented in dash-dotted line. The estimate
distributions given by the EnFK are represented as normal distributions with corresponding mean
and variance. The prior given by propagation of 40 ensemble members is represented as a normal
distribution in dotted line, and the posterior given by the analysis step of the EnKF is represented
as a normal distribution in dashed line.
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with a single observation with observation noise variance 100. The posterior computed by
the analysis is not propagated further but simply displayed. This means that each row in
Figure 5.6 and Figure 5.7 corresponds to a a different value of the true state, a different
realization of the observation noise, and a single analysis step. For the sake of comparison
we always sample an observation at location 21.

The sensitivity of the filters to the observation is illustrated by the significant difference
between the prior and the posterior (respectively dotted and dashed lines), around the shock-
wave, for both the EKF and the EnKF. At the location of the observation (location 21), the
prior provided by the EKF, which only captures a single mode, is more inaccurate than the
prior given by the EnKF, which can account partially for mixture distributions representation
with ensemble members. However, after analysis, the posteriors for the two filters are very
similar at the location of the observation. Away from the shock wave (location 1 and 4), it
is clear that the EKF estimate exhibits a non-consistent error variance (simulations 1, 2, 3
in particular).

The correlation across the shock wave clearly discriminates the two filters. Across the
shock wave, at location 20, the posterior given by the EKF (dashed line) is often centered on
the wrong mode of the posterior uncertainty (dash-dotted line). This is not the case for the
EnKF which captures the two modes of the mixture in most cases. When the observation
corresponds to a mode of the mixture uncertainty not well-represented by the estimate (for
instance run 2, location 21 of Figure 5.6), it can be noted that the posterior distribution
can provide more inaccurate estimate than the prior; for instance the posterior given by the
EKF (dashed line) for run 2, location 20, is outside the range of values represented. This
illustrates the difficulty to capture true correlation induced by mixture uncertainty across
the shock wave.

The mixture nature of the uncertainty is clearly reduced by the observation, however,
the two modes are still present and propagate in the posterior uncertainty (dash-dotted line
at location 19 and 20 for simulation 1, location 22 for simulation 2, location 20 for simulation
3).

These numerical examples illustrate the limitations of the suboptimal MMSE estimates
provided by the EKF and EnKF, in the case of mixture distributions arising in traffic flow
around shock-waves. Stochastic filters such as the EnKF are more robust to the mixture
nature of the uncertainty, since their sample representation allows them to better capture
the full variance of the two modes of the distribution of the uncertainty on the true state.
However, this leads to higher sensitivity of the filter and may lead to instabilities at shock
waves. On the other hand, deterministic filters able to capture only a single mode of the
distribution of the uncertainty on the true state exhibit a lower variance than the uncertainty,
which may cause divergence of the estimate if the models have low error terms.
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5.5 Model non-differentiability

In this section, we show that the numerical Godunov flux defined in (1.5)- (1.6) is
non-differentiable. We prove that consequently, the discrete-time dynamics of the Godunov
scheme is non-differentiable, which prevents straightforward application of filtering algo-
rithms requiring differentiability to discrete transportation models based on the Godunov
scheme.

5.5.1 Characterization of non-differentiability domain

The Godunov scheme consists of a dynamical system (1.5) resulting from the discretiza-
tion of the transport equation where the numerical flux qG(·, ·) can be defined in a piecewise
manner on regular sub-domains in the case of a concave flux with a single maximum (1.6).
The following proposition states the lack of continuous differentiability at a specific boundary
between two of these sub-domains.

Proposition 5.5. On the domain S defined as:

S =
{

(ρl, ρr) ∈ [0, ρmax]2 | ρl < ρr and Q(ρl) = Q(ρr)
}
, (5.15)

the numerical Godunov flux (1.6) is not differentiable.

Proof. The expression of the numerical Godunov flux is given by equation (1.6). In each
sub-domain of definition corresponding to each line of (1.6), if the flux function Q(·) is differ-
entiable, the numerical flux qG(·, ·) is also left and right differentiable. It is straightforward
to compute its left and right derivative on each sub-domain:

∂qG
∂ρl

(ρl, ρr) =



Q′(ρl) if ρr ≤ ρl < ρc

0 if ρr ≤ ρc ≤ ρl

0 if ρc < ρr ≤ ρl{
Q′(ρl) if Q(ρl) < Q(ρr)

0 if Q(ρl) > Q(ρr)
if ρl < ρr

(5.16)

∂qG
∂ρr

(ρl, ρr) =



0 if ρr ≤ ρl < ρc

0 if ρr ≤ ρc ≤ ρl

Q′(ρr) if ρc < ρr ≤ ρl{
0 if Q(ρl) < Q(ρr)

Q′(ρr) if Q(ρl) > Q(ρr)
if ρl < ρr.

(5.17)

As indicated by the fourth case of equation (5.16) (or equivalently for the right derivative
with the fourth case of equation (5.17)), the left derivative of the numerical flux is only
defined on the left and on the right of the domain S defined by (5.15), with the left value
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being Q′(ρl) and the right value being 0. The left and right values are equal only at the
capacity point (point of maximal flux), in the case of a flux differentiable at capacity. Since
the left derivative is not differentiable on S, the numerical flux is not differentiable on its
domain of definition.

The domain of non-differentiability of the numerical Godunov scheme corresponds to
the locus of stationary shock waves. In particular, the numerical Godunov flux and the
discrete dynamics associated with the Godunov scheme are differentiable at moving shock
waves. In the case of discretization schemes with higher numerical viscosity, for instance the
Lax-Friedrichs numerical scheme [156], differentiability is obtained everywhere but numerical
approximation of discontinuities is less accurate.

Proposition 5.6. The discrete time dynamics of the Godunov scheme is non-differentiable,
and in the case of a differentiable flux function Q(·), the non-differentiability domain consists
of the locus S of stationary shock-waves.

Proof. The numerical flux is non-differentiable in the domain S defined by (5.15). Since it
is impossible to have at the same time (ρni−1, ρ

n
i ) ∈ S and (ρni , ρ

n
i+1) ∈ S, the discrete time

dynamics defined by equation (1.5) is non-differentiable. In the case of a differentiable flux
function Q(·), the numerical flux is also differentiable in all its sub-domains of definition, and
it can be checked in Figure 5.8 that it is also continuously differentiable at their boundaries,
thus S is the non-differentiability domain of the discrete time dynamics associated with the
Godunov scheme.

The non-differentiability of the discrete dynamics associated with the Godunov scheme
does not result from a numerical issue but results from the structure of the solution of the
continuous partial differential equation considered. This can be verified by considering the
solution to the Riemann problem in the case of a stationary shock wave. The solution that
consists of upstream and downstream densities with equal fluxes is stationary. However, it
is clear that a slight perturbation of the upstream or downstream density causes the shock
wave to propagate and the domain corresponding to the left or right initial condition to
eventually prevail, depending on the flux balance at the discontinuity.

Remark 5.6. In the case of non-differentiable flux functions Q(·) such as the triangular flux
function or the Smulders flux function, it is clear that the dynamics of the numerical solution
is not differentiable. However, since the flux function results from an empirical fit, the flux
function can be approximated by a smooth function with relatively small consequences. The
non-differentiability described in Proposition 5.5 results from the intrinsic properties of the
conservation law, which can only by fixed by modifying the constitutive physical principles of
the model.

Remark 5.7. For junction problems modeled as the maximization of a linear objective func-
tion of the traffic state under linear inequality constraints (see Remark 1.1), the optimum is
always attained at a vertex of the constraint polytopes, hence the flow through the junction
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Figure 5.8: Locus of non-differentiability of the numerical Godunov flux.
The top, middle and bottom row respectively correspond to the Greenshields, triangular, and ex-
ponential fundamental diagram. The Godunov flux is defined in a piecewise manner on the three
sub-domains delimited by solid or dashed line. A dashed line indicates discontinuity across the
boundary of the domain, whereas a solid line indicates continuity at the boundary. The three dia-
grams exhibit non-differentiability of the locus of stationary shock-waves (center and right column,
oblique curve). Additionally, the triangular diagram (middle row) exhibits non-differentiability at
the critical density.
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is not a differentiable function of the traffic state and the same difficulties happen there as
well.

5.5.2 Numerical experiments

In this section, we analyze the estimation error induced by the lack of differentiability
of the numerical Godunov flux at the locus of stationary shock waves.

For clarity we present results for the case of the Greenshields flux function (1.2) (with
parameters V = 80 mph and ρmax = 120 vpm, as in the previous section), which is differ-
entiable on its domain of definition. Similarly, in order to simplify the analysis, we consider
only initial condition noise, drawn from i.i.d. normal distribution N (0, 100). The model
noise is considered to be 0. We use the Godunov scheme (1.5), with CFL condition [156]
equal to 1, and 80 cells in space. The distribution of the uncertainty on the true state is
computed using a Monte Carlo simulation with 104 particles, and the forecast moments using
different propagation models are compared against the true moments. In order to assess the
accuracy of the estimate covariance, we compute two error metrics. The error metric for the
mean, in Figure 5.9, is the relative L2 error:

‖µe − µ‖2

‖µ‖2

where µe denotes the estimated mean using the forecast step of a model, and µ is the true
forecast. The error metric for the covariance, in Figure 5.10, is the relative absolute error
on the error covariance trace, defined by:

trace(|Σ̃− Σ|)
trace(Σ)

where Σ̃ denotes the estimated error covariance given by the forecast model and Σ denotes
the true error covariance.

Estimate error: The error induced by the use of a linearization method at the locus
of the stationary shock wave is illustrated in solid line in Figure 5.9 for the mean and in
Figure 5.10 for the covariance, for the use of the derivative of the numerical Godunov flux
on the left at its point of non-differentiability. For state propagation using a Monte Carlo
method with 50 particles (right sub figure) or the linearized model (right sub figure), the
shock waves leads to the highest error, which is due to the fact that only entropic shock
waves are propagated by the scheme; the uncertainty associated with the initial condition
propagates toward the shock wave location. In the case of a rarefaction, the uncertainty
associated with the initial datum propagates outward, and the centered fan is deterministic.

The state error covariance given by forward simulation using the linearized dynamics
diverges in time from the covariance of the uncertainty on the true state (see Figure 5.10
left). In the case of a stationary shock wave (solid line), the divergence is slightly faster than
in the case of a moving shock wave. In particular, noting that the oscillations in the curve
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associated with a moving shock wave (dashed line) in Figure 5.9 and Figure 5.10 correspond
to a change of cells and that the meaningful error for this phenomenon corresponds to the
lower envelope of this curve, the divergence associated with the stationary shock wave is
noticeably greater. However, one may note that Figure 5.9, left, and Figure 5.10, left,
only correspond to considering the derivative on the left at the non-differentiability locus.
Different weightings of the left and right derivative at the non-differentiability domain might
lead to better results.

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

R
e

la
ti
v
e

 L
2
 e

rr
o

r 
o

n
 m

e
a

n

Time−step

Linearized model

0 10 20 30 40

0.005

0.01

0.015

0.02

R
e

la
ti
v
e

 L
2
 e

rr
o

r 
o

n
 m

e
a

n

Time−step

Monte Carlo method with 50 particles

Figure 5.9: Mean error growth.
The growth with time of the relative L2 error on the mean is represented for a linearized model
(left) and a Monte Carlo simulation with 50 particles (right). The solid line corresponds to the
case of a stationary shock wave with ρl = 30 vpm, ρr = 90 vpm, the dashed line corresponds to
the case of a moving shock wave, with ρl = 15 vpm, ρr = 75 vpm, the doted lined corresponds to
the case of a rarefaction wave, with ρl = 90 vpm, ρr = 30 vpm.

5.5.3 Discussion

In this section we analyze the consequences of non-differentiability of the dynamics of
the Godunov scheme for state estimation.

As illustrated in Figure 5.9 left, the trend of the estimation error due to model nonlin-
earity is comparable for the stationary shock wave (solid line) and for the moving shock wave
(dashed line). This is consistent with the fact that the propagation of the estimate mean
in the linearized model does not involve differentiability. The error introduced is simply
due to the nonlinearity of shock waves with the Greenshields flux function. In the case of
the rarefaction wave (dotted line), the estimation error is much smaller due to the entropy
condition and the fact that information propagates outward from the initial discontinuity.

For a moving shock wave (dashed line), the error exhibits a typical oscillation feature
due to error of location of the shock wave. The increasing part of the oscillation corresponds
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Figure 5.10: Covariance error growth.
The growth with time of the relative error on the error covariance trace is represented for a linearized
model (left) and a Monte Carlo simulation with 50 particles (right). The solid line corresponds to
the case of a stationary shock wave with ρl = 30 vpm, ρr = 90 vpm, the dashed line corresponds
to the case of a moving shock wave, with ρl = 15 vpm, ρr = 75 vpm, the dotted lined corresponds
to the case of a rarefaction wave, with ρl = 90 vpm, ρr = 30 vpm.

to the mixture nature of the distribution of the uncertainty arising in the cell where the shock
wave will move, hence increasing the error with the linearized model. The decreasing part of
the oscillation corresponds to the shock wave actually propagating to the cell, and reducing
the error. The finite slope on the decreasing part corresponds to the effect of diffusion.

The non-differentiability of the numerical flux introduces an error in the error covariance
which increases with time at a rate noticeably greater than the error growth rate in the error
covariance for a moving shock wave (see Figure 5.10 left in which the trend of the solid line
is comparable to the trend of the top of the peaks of the dashed line).

Inaccurate estimation of the state covariance at the forecast step, depicted in Figure 5.10,
impacts the use of measurements at the analysis step. This is illustrated in Figure 5.11, in
which we consider an analysis done at time 40, for the case of the stationary shock wave,
with the same parameters used in Figure 5.10. We compare the posterior error covariance
computed by the analysis step defined by the Kalman filter (1.15), with on one hand a
covariance computed by propagation of the initial condition covariance through the linearized
state model, and on the other hand a covariance computed by a Monte Carlo simulation with
104 samples. The prior means and the observations are identical for both cases, hence the
discrepancy in the posteriors is solely due to the discrepancy in the prior covariances and
result from the inaccuracy of the covariance propagated by the linearized non-differentiable
model. A Monte Carlo simulation with 104 samples is considered to provide the distribution
of the uncertainty on the true state.

As illustrated in Figure 5.11, the error associated with the prior covariance induces an
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Figure 5.11: Posterior mean error.
The mean L2 error of the posterior for 103 draws of the observation at each location, is represented
as a function of the observation location for an analysis with prior covariance obtained by Monte
Carlo simulation with 104 samples (solid line), and for an analysis with prior covariance propagated
by the linearized model (dashed line). Top, middle, and bottom row respectively correspond to
observation noise standard deviation 10, 32, 100. The prior shock wave, represented as a vertical
dotted line, is located between cells 6 and 7 for all simulations. For the left, middle, right columns,
the true shock wave, represented as a vertical dashed line, is respectively located between cells 6
and 7, 3 and 4, 0 and 1.
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error in the posterior mean. In particular, for observations close to the discontinuity, one can
note that the error in the posterior can be higher than the prior error, which corresponds
to the horizontal line. The inability to capture the covariance structure at the shock wave,
presented in the previous section, is also visible on the case of an accurate prior (left column)
with a different posterior error for observations located on the left or on the right of the shock
wave, although the problem is symmetric, as illustrated by the posterior error for the true
covariance error in that case.

The fact that the filter may diverge due to the wrong covariance structure propagation
by the linearized non-differentiable model is illustrated in Figure 5.12 in which we present
the posterior covariance for the two different analysis described above, on one hand with
the covariance propagated by the linearized model, and on the other hand with the covari-
ance associated with the true distribution of uncertainty, computed using a Monte-Carlo
simulation with 105 samples and the parameters of Figure 5.11 left column.
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Figure 5.12: Posterior covariance error.
The posterior covariance for the linearized model (dashed) and for the Monte-Carlo simulation
with 105 samples (solid) with respective prior covariance in circle and cross, are represented as a
function of the observation location.

For observation with low error located close to the shock wave location, the analysis can
cause the linearized filter to diverge by introducing a covariance lower than the covariance
on the uncertainty. This echoes the analysis on the nonlinearity and the difficulty to model
correctly the correlation structure at shock waves. In particular it is clear that observations
away from shock waves do not particularly improve the estimates, and observations close to
shock waves can potentially decrease the accuracy of the estimates and performance of the
filter at the next time step.

The analysis presented in this chapter is focused on scalar macroscopic traffic flow mod-
els. These results are illustrative of the applicability of these filters to the phase transition
models presented in the previous chapters. In particular, the robustness of stochastic filters
such as the ensemble Kalman filter to modeling errors, described in this chapter, makes it a
good candidate for real-time data assimilation with non-scalar traffic flow models.
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Chapter 6

Boundary stabilization of weak
solutions to scalar conservation laws

In this chapter, we consider the problem of stabilization of systems modeled by scalar
hyperbolic conservation laws. This applies directly to traffic modeling with the LWR model,
and to fluid-dynamic models with the Burgers equation. We assume that the actuators of
the system are located at the boundaries. In particular, for transportation networks, this
problem setting can be understood as the problem of the design of variable speed limits or
ramp metering.

The problem of boundary control of partial differential equations has been the focus of
sustained research. A large volume of literature is concerned with the problem of boundary
control of the viscous Burgers equation. Control results can be found in [43, 44, 138, 139,
165, 200]. A Lyapunov approach, from which the method presented in this chapter was
inspired, has been proposed in [139], for classical solutions to the PDE.

Lyapunov methods for classical solutions of networks of scalar conservation laws have
also been proposed in [18], and for classical solutions of 2 × 2 systems with characteristics
speeds of constant opposite sign in [64, 81]. Similar work on boundary damping techniques
with applications to the Saint-Venant equations has been proposed in [75, 187]. Switching
techniques for linear hyperbolic systems are investigated in [6, 7]. A frequency domain
framework [161] has been used to design a boundary control for the linearized Saint-Venant
equations in [162] (see also [108] for boundary control of the Saint-Venant equations). A
specific method for flat systems has been introduced in [95] (see also [186] in the context of
the Burgers equation).

Methods developed specifically for well-posedness results of conservation laws have also
been applied to the problem of boundary control. In [8], a wavefront tracking method was
used to compute the fixed horizon attainable set of initial-boundary value problem solutions
of Temple systems of conservation laws.

Frameworks arising from the field of optimal control have also been applied to this
problem [123, 122]. In [12], the authors proposed a viability framework for a Hamilton-Jacobi
equation corresponding to an integral form of the Burgers equation, which leads to lower
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semi-continuous solutions. A linear relaxation method for the nonlinear discrete dynamics
of the asymmetric cell-transmission model, a specific instantiation of the Godunov scheme
for the LWR equation, has also been proposed in [104], with subsequent global optimization
of the obtained equivalent convex problem. In the context of network traffic and dynamic
traffic assignment, we refer the reader to [185] and the references therein. The problem of
air traffic flow control has been notably addressed using adjoint methods in [20] and in [226]
using a convex formulation.

One of the challenging features of conservation laws is the apparition of discontinuities
in finite time in the solution to the Cauchy problem, even for smooth initial condition. This
yields difficulties for most control approaches since classical control methods are not well-
suited to handle discontinuities. In the case of parametric initial conditions, the problem of
differentiating the solution to the scalar conservation law with respect to the initial condition
parameter has been specifically addressed in [16] from a mathematical perspective. One must
also note the more general shift differentiability method for functionals on L1∩BV introduced
in [22, 41] (see section 6.2.1 for a definition of the class of BV functions).

A second specific challenge of boundary control of the solution to a conservation law
also due to the non-linearity of the PDE is the fact that weak boundary conditions have
to be considered. In this work, we specifically account for these two issues and show the
stability of the weak entropy solution to the scalar conservation law (6.1).

6.1 Problem statement

Consider the scalar conservation law in one dimension of space

∂tu+ ∂xf(u) = 0 (6.1)

in the domain Ω
.
= { (t, x)| t ≥ 0 and a ≤ x ≤ b}. The flux function f(·) is assumed to be

smooth and strictly convex. The initial-boundary value problem (IBVP) for (6.1) in Ω with
initial condition u0 : (a, b) 7→ R, and boundary conditions ua, ub : R+ 7→ R, reads

∂tu+ ∂xf(u) = 0 (6.2)

u(0, x) = u0(x) (6.3)

u(t, a) = ua(t), u(t, b) = ub(t). (6.4)

The Lyapunov boundary stabilization problem can be formulated as follows.

Definition 6.1. Given a stationary solution u∗ to the PDE (6.1), and an initial condition
u0 with bounded variations (see section 6.2.1), the Lyapunov (resp. asymptotic) boundary
stabilization problem consists in the existence of boundary conditions ua, ub such that the
IBVP (6.2)-(6.3)-(6.4) is well-posed and its solution is (resp. asymptotically) stable in the
sense of Lyapunov at u∗.
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Stationary solutions to the PDE include uniform solutions and solutions with a single
stationary jump discontinuity. We address the case of uniform solutions in Section 6.4.

The well-posedness of the IBVP (6.2)-(6.3)-(6.4) is critical to the definition of the
problem, since the design of arbitrary boundary conditions can make the problem ill-posed
(see [205] for an illustration on the LWR equation in the case of traffic). This would lead to
a discrepancy between the control implemented and its realized value in the system, and a
divergence between the desired trajectory of the system and its real trajectory. In the case
of traffic, it corresponds for instance to installing a green traffic light at the location of a
traffic jam with the intended goal that cars in the jam adopt the corresponding free-flow
speed. For well-posedness of the IBVP (6.2)-(6.3)-(6.4), the PDE (6.1) and the boundary
conditions (6.4) must be understood in the weak sense. The weak formulation is presented
in Section 6.2.2.

6.2 Preliminaries

In this section, we introduce the notations and classical results subsequently used
throughout this chapter.

6.2.1 BV functions

Consider an interval J ⊂ R, and a map u : J 7→ R. The total variation of u is defined
as

Tot. Var. {u} .= sup

{
N∑
i=1

|u(xj)− u(xj−1)|

}
(6.5)

where the supremum is taken over all N ≥ 1 and all (N + 1)-tuples of points xj ∈ J such
that x0 < x1 < . . . < xN . If the total variation of u is finite, u ∈ BV . Specific properties of
BV functions leveraged in the following sections are presented below1.

Lemma 6.1. [39] Let u : (a, b) 7→ Rn have bounded variations. Then for every x ∈ (a, b),
the left and right limits

u(x−)
.
= lim

y 7→x−
u(y), u(x+)

.
= lim

y 7→x+
u(y)

are well defined. Moreover, u has at most countably many points of discontinuity.

The following lemma concerns piecewise constant approximability of BV functions.

Lemma 6.2. [39] Let u : R 7→ Rn be right continuous with bounded variations. Then, for
every ε > 0, there exists a piecewise constant function v such that:

Tot. Var. {v} ≤ Tot. Var. {u} , ‖v − u‖L∞ ≤ ε.

1Proofs of these properties can be found in section 2.4 of [39].
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If, in addition, ∫ 0

−∞
|u(x)− u(−∞)| dx+

∫ +∞

0

|u(x)− u(∞)| dx <∞,

then one can find v with the additional property

‖u− v‖L1 ≤ ε.

The space of BV functions and its closure in L1 are at the center of well-posedness
results for conservation laws using wavefront-tracking methods.

6.2.2 Weak solutions to the initial-boundary value problem

It is well-known that approximate jump discontinuities can arise in finite time in so-
lutions to conservation laws [89]. Thus classical solutions do not exist in general, and it is
necessary to consider a more general formulation of the conservation law.

Weak entropy solution to the Cauchy problem

The weak formulation of the conservation law is obtained by considered derivatives in
the sense of distribution.

Definition 6.2. A function u : [0, T ] × R 7→ R is a weak solution to the Cauchy prob-
lem (6.2)-(6.3) if the initial condition (6.3) is satisfied, and if additionally, for any continu-
ously differentiable function φ with compact support contained in (−∞, T )× R,∫ T

0

∫ ∞
−∞

(uφt + f(u)φx) dx dt+

∫ ∞
−∞

u0(x)φ(0, x)dx = 0, (6.6)

and t 7→ u(t, ·) is continuous from [0, T ] into L1
loc.

When integrated in a domain in which u is smooth around an approximate jump dis-
continuity, the weak formulation (6.6) yields the Rankine-Hugoniot relation [89] defining the
speed σ of propagation of approximate jump discontinuities

σ∆u = ∆f(u), (6.7)

where ∆u = ur − ul is the jump in u, with ur, ul the right and left values of u, respectively,
at the approximate jump discontinuity.

For uniqueness of the solution to the weak solution of the Cauchy problem associated
with the conservation law, an additional admissibility condition (see Section 4.5 of [70]) is
required. Different conditions have been proposed in literature. In the scalar case, one of
the first admissibility conditions is due to Oleinik [180]. Kruzkhov [141] showed that it was
sufficient to satisfy the entropy inequality condition for a specific family of entropy-entropy
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flux pairs in the scalar case, yielding the Kruzkhov entropy condition. The Lax admissibility
condition [147], which exhibits a convenient geometric interpretation, states that for a i-shock
joining a left state ul and a right state ur, the following inequality must be satisfied:

λi(ul) ≥ σ ≥ λi(ur) (6.8)

where λi(u) is the ith characteristic speed of u, and σ is the Rankine-Hugoniot speed (6.7).
In the scalar case, for a convex flux, these formulations have been proven to be equivalent
(see Section 2.1 of [154]). The Lax admissibility condition allows the selection of a particular
weak solution.

Definition 6.3. A function u : [0, T ]× R 7→ R is the weak entropy solution to the Cauchy
problem (6.2)-(6.3) if it is a weak solution (definition 6.2), that satisfies the Lax admissibility
condition (6.8).

The definition of weak conditions to the IBVP requires a corresponding statement of
weak boundary conditions, presented in the following section.

Weak boundary conditions

The first statement of weak boundary conditions was introduced in [15] in the scalar
case in multiple dimensions of space, with C2 flux and C2 initial and boundary datum, using
a vanishing viscosity method. In one dimension, this formulation reads:

max
k∈[α,β]

sgn (u(t, a)− ua(t)) (f(u(t, a))− f(k)) = 0 (6.9)

min
k∈[γ,δ]

sgn (u(t, b)− ub(t)) (f(u(t, b))− f(k)) = 0 (6.10)

for almost all t > 0, and where α = min(u(t, a), ua(t)), β = max(u(t, a), ua(t)), γ =
min(u(t, b), ub(t)), δ = max(u(t, b), ub(t)), and sgn denotes the sign function. This formula-
tion was shown to hold for systems of conservation laws in one dimension of space in [82],
and proven equivalent to a formulation derived from the solution to the Riemann problem
at the boundary, later extended to account for continuous boundary not necessarily static
in [3]. In the scalar case, at a left boundary a, the statement of weak boundary conditions
derived from the structure of the solution to the Riemann problem is the following.

Definition 6.4. A function u : Ω 7→ R satisfies the boundary condition ua at a if for all
except countably many times t, the waves composing the solution to the Riemann problem
centered at a with initial data {

ua(t) if x < a

u(t, a) if x > a
(6.11)

have negative speeds.
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Figure 6.1: Weak boundary conditions.
In the case of a quadratic convex flux centered at 0. The solution to the Riemann problem with
initial datum in the striped domain exhibits a wave with negative speed. For initial datum on the
first bisector, no wave arises. The white zone exists only for a zero time duration.
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The domain for which the couples boundary condition-boundary trace prevail for a
non-zero duration, (definition 6.4) is represented in figure 6.1 for a Burgers flux.

In [153], a simplified formulation is proposed for the scalar case with strictly convex
continuously differentiable flux functions (see also [96]). Similar formulations were derived
for a scalar traffic model in [205] and scalar traffic models on networks with application to
estimation in [227], following [97]. In the case of a strictly convex continuously differentiable
flux, this statement states that for almost all times t, one of the following mutually exclusive
conditions must be satisfied:

u(t, a) = ua(t)

f ′(u(t, a)) ≤ 0 and f ′(ua(t)) ≤ 0 and u(t, a) 6= ua(t)

f ′(u(t, a)) ≤ 0 and f ′(ua(t)) > 0 and f(u(t, a)) ≥ f(ua(t)).

(6.12)

The same can be done at the downstream boundary x = b:
u(t, b) = ub(t)

f ′(u(t, b)) ≥ 0 and f ′(ub(t)) ≥ 0 and u(t, b) 6= ub(t)

f ′(u(t, b)) ≥ 0 and f ′(ub(t)) < 0 and f(u(t, b)) ≥ f(ub(t)).

(6.13)

A well-posedness result for the IBVP associated with a scalar conservation law (6.1) with
the boundary statement from definition 6.4 is presented in the following section.

6.2.3 Well-posedness of the initial-boundary value problem

In [15], a solution satisfying (6.6) in the scalar case is contructed using a vanishing
viscosity method for the weak boundary conditions statement (6.9)-(6.10) and is shown to
be the admissible solution according to Kruzkhov entropy condition [141].

More recently, an existence result for n× n systems using wavefront tracking was pro-
posed in [3]. The standard Riemann semigroup (SRS) method, introduced in [38] for the
Cauchy problem associated with a Temple system [210] of conservation laws, was extended
to the IBVP in [4, 5], with the boundary conditions statement from definition 6.4. In [5], it
is shown for a n × n system that if the SRS exist, its trajectories coincide with wavefront
tracking solutions. Uniqueness and continuous dependence is obtained for the case of non-
characteristic conditions, and uniqueness for the characteristic case. The SRS is constructed
for 2×2 system in [4]. We state in the scalar case for a static boundary the main result of [4]
for characteristic boundary conditions, obtained for 2×2 systems with continuous boundary
(see theorem C of [4]).

Theorem 6.1. [4] Let f be a smooth map such that the system (6.1) is strictly hyperbolic
with characteristic field linearly degenerate or genuinely nonlinear. There exists positive
constants L and δ, and a continuous semigroup S defined for data in L1 ∩ BV with total
variation bounded by δ, such that
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• The map t 7→ u(t, ·) yields a solution to the IBVP (6.6)-(6.3)-(6.11).

• For piecewise constant initial and boundary data, the trajectories of the semigroup co-
incide with the solution to the IBVP obtained by piecing together the standard solutions
to the Riemann problems at the points of discontinuity of the initial condition and at
the boundary.

• For initial data u′0, u
′′
0, boundary data u′a = u′′a in L1 ∩BV with total variation bounded

by δ, let u′, u′′ denote the corresponding trajectories of the semigroup S, and t′, t′′ > 0,
then

‖u′(t′, ·)− u′′(t′′, ·)‖1 ≤ L (‖u′0 − u′′0‖1) . (6.14)

In the following section we use this result in the case of a left and a right boundary to
show that we can restrict our Lyapunov analysis to the case of piecewise smooth data.

6.3 Approximation of solution

In this section, we present results on the approximability of the solution to an initial-
boundary value problem (IBVP) with initial condition in BV by the solution to an IBVP
with piecewise smooth solution at all times. We show that the solution to the IBVP with
BV data can be approximated arbitrarily closely in the L1 norm by the solution to an IBVP
with piecewise smooth data. We define the required regularity class used throughout the
chapter.

Definition 6.5. We note PWS+ the class of piecewise smooth functions f : R 7→ R such
that the gradient g of f satisfies the following properties:

• g is positive almost everywhere.

• there is a finite number of locations at which g is a negative Dirac mass.

We now state the approximability result.

Theorem 6.2. Let T, δ > 0, a < b, and let u0 : (a, b) 7→ R, ua, ub : (0, T ) 7→ R be functions
with total variation bounded by δ. For every ε > 0, there exists uε0 : (a, b) 7→ R in PWS+

such that the solution u to the IBVP for equation (6.1) and data (u0, ua, ub) and the solution
uε to the IBVP for equation (6.1) and data (uε0, ua, ub) satisfy:

∀ 0 ≤ t ≤ T, ‖u(t, ·)− uε(t, ·)‖1 ≤ ε.

Proof. Using lemma 6.2 in the compact domain [a, b], we can approximate the initial con-
dition condition u0 approximated arbitrarily closely in the L1 sense by a piecewise constant
function uε0 with a finite number of discontinuities and lower total variation.

Using the continuous dependence result of theorem 6.1, the resulting trajectories u, uε
of the semigroup for the identical boundary conditions ua, ub, can be made arbitrarily close
in the L1 norm by controlling the distance between the initial conditions.
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Remark 6.1. It is clear that approximating the problem data by piecewise constant data
satisfies the requirements of theorem 6.2. However, the class of piecewise constant data is
not close for the semigroup. In the case of wavefront tracking, the propagation of piecewise
constant conditions is achieved by introduction of non-entropic shock waves. As shown in
section 6.4, the entropy condition is a critical component of the stability of the solution to the
IBVP. Hence we work in the class of piecewise smooth functions, that allows approximations
of BV function, as proven in theorem 6.2, and is close for the semigroup as proven in
theorem 6.3.

We show that under suitable boundary conditions, the solution to the IBVP with piece-
wise smooth data is piecewise smooth.

Theorem 6.3. Let T, δ > 0, a < b, and let u0 : (a, b) 7→ R, ua, ub : (0, T ) 7→ R be in PWS+.
Let u denote the solution to the IBVP (6.6)-(6.3)-(6.11). At all times 0 ≤ t ≤ T , u(t, ·) is
piecewise smooth.

Proof. Let x1, . . . , xN denote the locations of the discontinuities in the initial condition,
including a, b. We construct the solution to the IBVP by piecing together the shock waves
or rarefaction waves created at xi, and the classical solution constructed by the method
of characteristics between the waves. By definition, the solution created is a solution in
the sense of (6.6) since equation (6.1) is satisfied in the classical sense between the waves,
and the shock waves propagate according to the Rankine-Hugoniot relation (6.7). It is also
the admissible solution according to the Lax condition (6.8) by enforcing the existence of
entropic shock waves only. Finally the constructed solution coincides with the trajectory of
the semigroup from theorem 6.2 (see [40]).

We now show that at all time, the number of discontinuities is finite. Since there is
a finite number of discontinuities in the initial and boundary conditions, a finite number
of discontinuities enters the space-time domain. In the scalar case the interaction of two
discontinuities creates no more than one discontinuity, so the interaction of discontinuities
contributes to decreasing their number. Finally as mentioned above, since the initial and
boundary conditions are piecewise smooth increasing, all discontinuities are created at time
0 or at the boundary.

In the next section, we present the Lyapunov stability analysis for functions in PWS+.

6.4 Lyapunov analysis

In this section, we propose a Lyapunov function and compute its derivative. In the
following we call ũ = u− u∗ where u∗ is a uniform, hence stationary, solution around which
we want to stabilize the system, and u is the solution to the IBVP associated with the scalar
conservation law (6.1). Following the results from section 6.3, we assume that u is in PWS+.
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6.4.1 Lyapunov function candidate

We consider the classical Lyapunov function candidate [139, 140]:

V (t) =

∫ b

a

ũ2(x, t) dx. (6.15)

where u is a weak solution to the scalar conservation law. From definition 6.3, we have
t 7→ u(t, ·) continuous from [0, T ] to L1, and the function V (·) is well-defined and continuous.
We index the jump discontinuities of u(t, ·) in increasing order of their location at time t by
i = 0, . . . , N(t), including for notational purposes the boundaries a, b, with x0(t) = a and
xN(t) = b. The Lyapunov function candidate can be rewritten as:

V (t) =
1

2

N(t)−1∑
i=0

∫ xi+1(t)

xi(t)

ũ2(t, x) dx. (6.16)

From theorem 6.3, we know that for all integer i ∈ [0, N(t)), the function u(t, ·) is smooth
in the domain (xi(t), xi+1(t)), thus ∂tu(t, ·) exists and is continuous for t such that xi(t) <
xi+1(t). Since discontinuity trajectories are differentiable with speed given by the Rankine-
Hugoniot relation (6.7), it follows that at any time t such that N(t) is constant in a neigh-
borhood of t and the boundary trace is continuous, the function V (·) is differentiable.

6.4.2 Differentiation of the Lyapunov function candidate

In this section, we compute the derivative of the Lyapunov function candidate (6.15),
at any time t such that N(t) is constant in a neighborhood and the boundary trace is
continuous. Differentiating expression (6.16) yields:

dV

dt
(t) =

1

2

N(t)−1∑
i=0

∫ xi+1(t)

xi(t)

∂tũ
2 dx+

1

2

N(t)−1∑
i=0

[
ũ2(t, xi+1(t)−)

dxi+1

dt
(t)− ũ2(t, xi(t)+)

dxi
dt

(t)

]
.

(6.17)

As detailed at the end of section 6.4.1, the term under the sum is smooth, and we can write
∂tũ

2 = 2 ũ ∂tũ. Since u satisfies the conservation law (6.1), we have ∂tũ = −∂xf(ũ + u∗).
The derivative of the Lyapunov function can be written as:

dV

dt
(t) =−

N(t)−1∑
i=0

∫ xi+1(t)

xi(t)

ũ ∂xf(ũ+ u∗) dx

+
1

2

N(t)−1∑
i=0

[
ũ2(t, xi+1(t)−)

dxi+1

dt
(t)− ũ2(t, xi(t)+)

dxi
dt

(t)

]
.
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By integrating by parts the sum terms, we obtain:

dV

dt
(t) =−

N(t)−1∑
i=0

[ũ f(ũ+ u∗)]
xi+1(t)
xi(t)

+

N(t)−1∑
i=0

∫ xi+1(t)

xi(t)

f(ũ+ u∗) ∂xũ dx

+
1

2

N(t)−1∑
i=0

[
ũ2(t, xi+1(t)−)

dxi+1

dt
(t)− ũ2(t, xi(t)+)

dxi
dt

(t)

]
.

and if we note F (·) a primitive function of the flux function f(·) we have:

dV

dt
(t) = ũ(t, a) f(ũ(t, a) + u∗)− ũ(t, b) f(ũ(t, b) + u∗)− F (ũ(t, a) + u∗) + F (ũ(t, b) + u∗)

+

N(t)−1∑
i=1

[
∆i (ũf(ũ+ u∗)− F (ũ+ u∗))− 1

2

dxi
dt

(t) ∆i ũ
2

]
,

where ∆i is defined around the discontinuity xi(t) as in equation (6.7). Using the Rankine-
Hugoniot relation, defined in equation (6.7), to write the speed of the approximate jump
discontinuity dxi(t)/dt as a function of the left and right jump values we obtain:

dV

dt
(t) = ũ(t, a) f(ũ(t, a) + u∗)− ũ(t, b) f(ũ(t, b) + u∗)− F (ũ(t, a) + u∗) + F (ũ(t, b) + u∗)

+

N(t)−1∑
i=1

∆i (ũf(ũ+ u∗)− F (ũ+ u∗))−
N(t)−1∑
i=1

ũ(t, xi−) + ũ(t, xi+)

2
∆if(ũ+ u∗).

(6.18)

In equation (6.18) we identify the first four terms that depend on the boundary trace of the
solution, and the last two terms that depend on the shock dynamics inside the domain. In
the following section, we analyze the stability properties of the internal terms.

6.4.3 Internal stability

The last two terms of equation (6.18) correspond to approximate jump discontinuity in
the solution and are neither observable nor controllable from the boundaries. We now show
that these terms have a stabilizing effect on the Lyapunov function candidate (6.15).

Proposition 6.1. Given a uniform stationary solution u∗ to the scalar conservation law (6.1),
the approximate jump discontinuity dynamics

N(t)−1∑
i=1

[
∆i (ũf(ũ+ u∗)− F (ũ+ u∗)) − ũ(t, xi−) + ũ(t, xi+)

2
∆if(ũ+ u∗)

]
(6.19)

of the solution u to the IBVP, contributes to the decrease of the Lyapunov function candi-
date (6.15).
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Proof. In order to show that the term (6.19) is negative, we show that each term in the sum
is negative. If we note ul, ur the value of u on the left and on the right of the approximate
jump discontinuity, respectively, and ũl, ũr the corresponding reduced variables, we want to
show that

[(ũrf(ũr + u∗)− F (ũr + u∗))− (ũlf(ũl + u∗)− F (ũl + u∗))]

− ũl + ũr
2

(f(ũr + u∗)− f(ũl + u∗)) ≤ 0.

Equivalently, in the original state variable u = ũ+ u∗, we have:

[((ur − u∗) f(ur)− F (ur))− ((ul − u∗) f(ul)− F (ul))]

− ul + ur − 2u∗

2
(f(ur)− f(ul)) ≤ 0.

This can be rewritten as:

F (ul)− F (ur) +
1

2
(ur − ul) (f(ur) + f(ul)) ≤ 0, (6.20)

in which we recognize Oleinik entropy condition [180]. Thus we have equivalence between
stability of the approximate jump discontinuity dynamics and Oleinik entropy condition.

Remark 6.2. From the equivalence with the Oleinik entropy condition, since the flux func-
tion is strictly convex, we see that the internal dynamics is strictly stabilizing (no contact
discontinuity).

Remark 6.3. When the number of shocks is constant inside the domain and the trace of the
solution is continuous, the internal dynamics is stabilizing in the sense that it contributes to
the decay of the Lyapunov function candidate (6.15). Since the Lyapunov function candidate
is continuous, the internal dynamics is always stabilizing. This is critical for boundary
stabilization where the control action cannot apply directly inside the domain (unlike the case
of distributed control [79, 87, 157]). From equation (6.20), one can note that the magnitude
of the internal stability does not depend on the equilibrium u∗.

Remark 6.4. At a time t at which the number of discontinuities is not constant or the
boundary trace is not continuous, the Lyapunov function is not differentiable, however the
difference between the right and left derivative at t+ and t−, respectively, can be computed.
This is addressed in section 6.6.

If the trace of the solution to the IBVP always takes the value of the boundary condition,
it is clear that the solution is stabilizable using boundary control since it amounts to finding
boundary controls ua, ub such that g(ua) < g(ub), where g : x 7→ (x− u∗) f(x)− F (x) is not
constant (strict convexity of f).

However, as described in section 6.2.2, this assumption may render the IBVP ill-posed
and thus the control inapplicable. In the following section, we show that the Lyapunov
function is stabilizable under the proper statement of weak boundary conditions from defi-
nition 6.4.
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6.5 Well-posed boundary stability

In this section, we motivate and define the control space and propose a stabilizing
controller.

6.5.1 Control space

Due to the emergence of approximate jump discontinuities in the solution to the con-
servation law (6.1), weak solutions have to be considered, and boundary conditions have
to be considered in the weak sense. It means that it is not always possible to enforce a
specific value of the boundary condition. This leads to considering the domain where the
boundary controls apply to the solution of the IBVP (introduced in [27] for the specific case
of a Burgers flux).

Definition 6.6. Let us denote smin, smax the minimal and maximal speed of the waves
composing the solution to the Riemann problem at the boundary. The control space at the
left boundary is the set of pairs (ul, ur) such that smin ≥ 0 and smax > 0. The control space
at the right boundary is the set of pairs (ul, ur) such that smin < 0 and smax ≤ 0.

Definition 6.4 from section 6.2.2 and definition 6.6 are compatible. Definition 6.4 is a
weak formulation that characterizes the couples boundary condition-boundary trace prevail-
ing for non-zero time durations. Definition 6.6 categorizes the couples boundary conditions-
boundary trace, potentially existing for zero time durations, leading to the boundary trace
instantaneously taking the value of the boundary condition (see figure 6.1 and figure 6.2).

Proposition 6.2. Let m denote the minimum of the strictly convex flux function f . The
control spaces Ca, Cb at the left and right boundaries, respectively, are characterized as the set
of pairs (ul, ur) such that one of the following properties is satisfied

Ca
.
= (ul, ur) s.t.


ul = ur

ul ≥ m and ur ≥ m

ul ≥ m and ur ≤ m and f(ul) > f(ur),

(6.21)

Cb
.
= (ul, ur) s.t.


ul = ur

ul ≤ m and ur ≤ m

ul ≥ m and ur ≤ m and f(ul) < f(ur).

(6.22)

Proof. Following definition 6.6, we characterize the cases in which the solution to the Rie-
mann problem with initial datum (ul, ur) exhibits no wave (first line of equations (6.21)-
(6.22)), or waves entering the domain, with at least one non-characteristic wave speed. The
second line of equations (6.21)-(6.22) corresponds to entering shock waves or rarefaction
waves arising between left and right states with characteristic speed of the same sign, and
the third line corresponds to the case of shock waves entering the domain arising between
left and right states with characteristic speed of opposite sign.
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One may note that in proposition 6.2, the term ul corresponds to the boundary condition
at boundary a and to the boundary trace at boundary b. Similarly the term ur corresponds
to the boundary trace at boundary a and to the boundary condition at boundary b.

A graphical representation of the control space for the left boundary a is presented in
figure 6.2, in the case of the Burgers flux, i.e. a quadratic convex flux with minimum at
0. Cases for which the minimum is not zero can be retrieved by translation. For a general
smooth strictly convex flux, a similar representation is obtained by local horizontal and
vertical dilatations of the figure.

Figure 6.2: Control space.
In the case of a convex quadratic flux with minimum at 0. Top-right quadrant, first bisector, and
upper part of top left quadrant (points D, E, F ): the control applies, i.e. the boundary trace takes
the value of the boundary condition, as represented by the horizontal arrow. Left zone except first
bisector (points A, B, C): the control does not apply, the couple boundary condition-boundary
trace prevails for a non-zero time duration. Bottom right quadrant (point F ): any control yields a
zero boundary trace, represented by a horizontal projection onto the vertical axis.

Figure 6.2 illustrates the following distinct interactions between the boundary condition, or
control, and the boundary trace, or observed value.

• In the domain of weak boundary conditions with negative wave speed arising at the
boundary (white zone on the left of vertical axis), the control does not apply. If the
upstream value u(t, a) is observed, and a control is applied such that the couple u(t, a),
ua(t) is represented by the point A, no actuation happens. The trace u(t, a) does not
change, it is not impacted by the control chosen. Similarly, no actuation is possible at
points B and C, and in general in the left white zone.
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• In the top right quadrant and upper part of top left quadrant of the control space
(striped zone), corresponding to line 2 and 3 of equation (6.21) respectively, a control
action applies; the trace u(t, a) of the solution takes the control value. If a control is
applied to a boundary trace value such that the pair is represented by the point D,
the trace instantaneously takes the value of the control and the resulting configuration
is the projection of D onto the first bisector. Similar behavior occurs with the points
E and F , which belong to the control space. The part of the bottom left quadrant
such that the control and the trace of the solution are equal is also part of the strong
boundary conditions domain according to definition 6.6 and its characterization in
proposition 6.2.

• In the bottom right quadrant, any control action yields a vanishing boundary trace,
which is illustrated in the case of the application of a control ua(t) such that the couple
(u(t, a), ua(t)) is represented by the point G. The trace of the solution u(t, a) takes the
value 0, as illustrated by a horizontal projection onto the axis x = 0. The control has
an action, but not the one intended (i.e. applied), thus the bottom right quadrant is
not part of the control space (see definition 6.6).

Using the characterization of the control space introduced in this section, we show in the
following section that the system is stabilizable.

6.5.2 Lyapunov stabilization

In this section, we prove that there exists boundary conditions in the control space (6.21)-
(6.22) such that the candidate Lyapunov function (6.15) is strictly decreasing.

Lemma 6.3. Let g : u 7→ (u − u∗) f(u) − F (u), with f a smooth strictly convex function,
and F a primitive of f . Let m denote the minimum of f . The function g is smooth on the
real line, and satisfies the following properties:

• g is strictly increasing in (−∞,min(m,u∗)), strictly decreasing in (min(m,u∗),max(m,u∗)),
and strictly increasing in (max(m,u∗),+∞).

• For u > v such that f(u) = f(v), we have g(u) > g(v).

Proof. The fact that g is smooth results from the smoothness of f . The first property is
obtained by computing the derivative g′(u) = (u−u∗) f ′(u) of g, and noting that f is strictly
convex with minimum at m. To prove the second property, let us consider u > v such that
f(u) = f(v). The difference g(v)− g(u) reads g(v)− g(u) = F (u)−F (v) + (v− u) f(u) that
is strictly negative by strict convexity of f .

The function g is represented for the case of the Burgers flux function in figure 6.3 with
the arbitrary choice of g(m) = 0.
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Figure 6.3: Representation of the variations of g.
For a Burgers flux function f in the case u∗ < 0 (left) and in the case u∗ > 0 (right). The points
u = m (m = 0 in this case) and u = u∗ (u∗ = ±0.5 in this case) are local extrema of g.

Theorem 6.4. Let V (·) denote the Lyapunov function candidate (6.15) for the PDE (6.1).
There exists boundary conditions ua(·), ub(·) in the control space (6.21) (6.22), respectively,
such that the function V (·) is strictly decreasing. Hence if there exists a solution to the
PDE (6.1) with such controls, it is asymptotically stabilizable in the sense of Lyapunov.

Proof. We show that it is always possible to choose ua(t), ub(t) in the control space such that
g(ua(t)) < g(ub(t)). We consider the case of u∗ < m.

• If u(t, a) ≥ m and u(t, b) > m then any boundary condition ua(t) ≥ m is in the
upstream control space. Since g is strictly increasing in [m;∞), with ub(t) = u(t, b), it
is possible to obtain the strict decrease of the Lyapunov function.

• If u(t, a) > m and u(t, b) ≤ m then any boundary conditions ua(t) ≥ m, ub(t) ≤ m are
in the control space. Since g is decreasing in [u∗,m] it is possible to choose boundary
controls in the control space that guarantees g(ua(t)) < g(ub(t)).

• If u(t, a) ≤ m and u(t, a) 6= u∗ and u(t, b) ≤ m any boundary condition ub(t) ≤ m is
in the downstream control space. Since u∗ is a local maximum of g, it is possible to
obtain the strict decrease of the Lyapunov function.

• If u(t, a) = u∗ and u(t, b) ≤ m the choice u(t, b) = u∗ gives a neutral effect of the
boundary terms on the Lyapunov function. By assumption we know that the solution
u is in PWS+, hence in this case either the solution is identically equal to u∗ or contains
shock waves which yields a strictly decreasing Lyapunov function.

• If u(t, a) < m and u(t, b) > m,
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– If g(u(t, a)) < g(u(t, b)) the choice ua(t) = u(t, a) and ub(t) = u(t, b) in the control
space leads to the strict decrease of the Lyapunov function.

– If g(u(t, a)) ≥ g(u(t, b)) and u(t, a) 6= u∗, since u∗ is a local maximum of g and
according to second result of lemma 6.3, it is possible to pick ub(t) ≤ m such that
f(ub) > f(u(t, b)) and g(ub) > g(u(t, a)).

– If g(u(t, a)) ≥ g(u(t, b)) and u(t, a) = u∗, the choice ub(t) = u∗ is in the down-
stream control space and yields a neutral effect of the boundary terms. Similarly
to above, by assumption on the regularity of the solution, we have either the
solution identically equal to u∗ or the Lyapunov function strictly decreasing.

The case u∗ > m can be treated similarly. The case u∗ = m can be treated similarly,
however involves greater reliance on the internal dynamics. Specifically internal dynamics
are the sole contributor to the decrease of the Lyapunov function in the case 2 and 4 above,
and the controller is passive (equal to the boundary trace) in the case 5 above.

Remark 6.5. From the proof of theorem 6.4 it is clear that the stabilizing control is a
piecewise continuous function of the boundary trace. Since the solution is piecewise smooth
with a finite number of discontinuities, the boundary condition exhibits no more than a finite
number of discontinuities. These discontinuities induce rarefaction waves or shock waves,
which preserve the piecewise smooth nature of the solution.

In the following section we propose a control design which maximizes the instantaneous
decrease rate of the Lyapunov function.

6.6 Maximizing Lyapunov function decrease rate

In this section, we characterize the values of the control, in the control space, that min-
imize the Lyapunov function derivative. Since boundary controls introducing a shock wave
contribute with a negative term to the internal dynamics, we propose to first characterize
the type of wave introduced in specific regions of the control space.

6.6.1 Nature of the waves created by boundary control

The type of wave created at the boundary impacts the value of the derivative of the
Lyapunov function. In the scalar case, the type of wave arising is defined by the Lax entropy
condition (6.8). This allows us to partition the control space according to the type of wave
introduced by the control. Table 6.1 summarizes for the upstream boundary the cases in
which the boundary control belongs to the control space, with mention of the type of wave
introduced.
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u(t, a) < m u(t, a) ≥ m

ua ≥ m
f(ua) > f(u(t, a)):
Shock

ua > u(t, a): Shock

ua = u(t, a): No wave
ua < u(t, a): Rarefaction wave

ua < m
ua = u(t, a): No
wave

ua ∈ ∅

Rarefaction with vanishing
boundary trace

Table 6.1: Upstream boundary.
Admissible boundary controls and corresponding wave created at the upstream boundary based on
the value of the trace of the solution at this boundary.

From proposition 6.1, we have that the internal dynamics resulting from the existence
of entropic shock waves contributes to the decrease of the Lyapunov function. Here we
characterize the benefits of the change in the number of shock waves in the solution, resulting
from internal interaction, and entrance or exit of a discontinuity at the boundary.

Proposition 6.3. At a time t at which the number of approximate jump discontinuities
N(t) changes:

• If two shock waves interact, the derivative of the Laypunov function decreases.

• If a discontinuity crosses the boundary, let us note u− the value of the boundary trace at
time t− and u+ the value of the boundary trace at time t+. The jump in the derivative
of the Lyapunov function for the upstream case reads

S(u−, u+)
.
=
dV

dt
(t+)− dV

dt
(t−) =

(
f(u+)− f(u−)

) ũ− + ũ+

2
, (6.23)

and the opposite for the downstream case.

Proof. We show each part of proposition 6.3 separately.

• We show that in the case of |N(t+)| = |N(t−)|−1 due to the interaction of two shocks
inside the domain, there is a decrease in the slope of the derivative of the Lyapunov
function if and only if the Rankine-Hugoniot speed of the left shock is greater than
the Rankine-Hugoniot speed of the right shock, which is a necessary condition for the
interaction.

We compute the difference in the right and left derivative, at time t, of the Lyapunov
function, by taking the difference of equation (6.18) at time t+ and t−. It is clear
that the boundary terms cancel out, and that in the sum terms, only the terms corre-
sponding to the interacting shocks and the created shock do not cancel out. We note



Section 6.6. Maximizing Lyapunov function decrease rate 135

(u+
l , u

+
r ) the left and right values at the created shock at time t+. We use similar no-

tations for the interacting shocks at time t−. The left and right states of the left shock
at time t− are denoted (u−1l, u

−
1r), and the left and right states of the right shock at

time t− are denoted (u−2l, u
−
2r). We note that by continuity outside of the approximate

jump locations, we have u−1r = u−2l, and u−1l = u+
l and u−2r = u+

r . After some long but
straightforward algebra, this allows us to simplify the difference to:

dV

dt
(t+)− dV

dt
(t−) =

1

2

[(
f(u−1r)− f(u−1l)

) (
u−2l − u

−
2r

)
+
(
f(u−2r)− f(u−2l)

) (
u−1r − u−1l

)]
,

and the right side is negative if and only if the two shocks intersect, which is satisfied
by assumption.

• In the case of a shock entering or exiting from the boundary, we show that the sign
of the difference in the right and left derivative, at time t, of the Lyapunov function,
depends on the sign of u∗ − (u− + u+)/2. We compute the difference between the
Lyapunov function derivative at time t+ and at time t−. It is clear that only the
boundary term at time t+ and t−, and the term corresponding to the entered or exited
shock do not cancel out. If we note u− the boundary trace at t− and u+ the boundary
trace at t+, we obtain after simplification:

dV

dt
(t+)− dV

dt
(t−) =

(
f(u+)− f(u−)

) ũ− + ũ+

2
,

for both entering and exiting shocks. We treat the case of a shock entering the domain
from upstream boundary for a convex flux. We have u+ > u− from the entropy
condition, hence from the Rankine-Hugoniot relation we obtain f(u+) > f(u−) since
the shock speed is positive. So the jump in the Lyapunov derivative is negative if and
only if ũ− + ũ+ < 0, which is equivalent to (u− + u+)/2 < u∗.

In the following section, we leverage these results to design a stabilizing boundary con-
troller that maximizes the instantaneous decrease rate of the Lyapunov function.

6.6.2 Greedy boundary control

The boundary control that maximizes the decrease rate of the Lyapunov function is
the boundary control in the control space, that either introduces a rarefaction wave and
minimizes the jump in the Lyapunov function derivative (6.18), or introduces a shock wave
at the boundary and minimizes the jump in the Lyapunov function derivative resulting from
the change in the boundary trace and in the number of shock waves (6.23). The corresponding
optimization problem can be formulated as follows.



Section 6.7. Numerical examples 136

Proposition 6.4. Let u denote the solution to the IBVP associated with the scalar conser-
vation law (6.1). The upstream boundary control ura and downstream boundary control urb
that minimize the decrease of the Lyapunov function by introducing rarefaction waves or no
waves at the boundary can be obtained by solving

ura
.
= arg min

{u|(u,u(t,a))∈Ca and u≤u(t,a)}
g(u)− g(u(t, a))

urb
.
= arg max

{u|(u(t,b),u)∈Cb and u≥u(t,b)}
g(u)− g(u(t, b)).

The upstream boundary control usa and downstream boundary control usb that minimize the
decrease of the Lyapunov function by introducing discontinuities at the boundary, can be
obtained by solving

usa
.
= arg min

{u|(u,u(t,a))∈Ca and u>u(t,a)}
S(u(t, a), u)

usb
.
= arg max

{u|(u(t,b),u)∈Cb and u<u(t,b)}
S(u(t, b), u).

Proof. This results from the characterization of the cases when the boundary control intro-
duces a rarefaction wave or a shock wave, and the previous analysis on the resulting evolution
of the Lyapunov function derivative.

In the following section we present numerical results of the implementation of the bound-
ary control proposed.

6.7 Numerical examples

In this section, we present numerical results obtained for a benchmark scenario. The
numerical scheme used is the standard Godunov scheme [103] with 600 cells in space and a
time discretization satisfying the tight Courant-Friedrich-Levy (CFL) condition [156]. We
consider the flux function u 7→ u2/2, the equilibrium state u∗ = −0.2, and the space domain
[0, 1] with the initial condition:

u0(x) =


0.5 if 0 ≤ x ≤ 1

−0.5 if 1 ≤ x ≤ 2

0.4 if 2 ≤ x ≤ 3

(6.24)

which corresponds to a stationary shock wave at location x = 1. The characteristic speeds
associated with the boundary traces are positive. In figure 6.4 we present the evolution of
the system under the greedy boundary control solution to the optimization problem defined
in proposition 6.4. As a benchmark, we also present the evolution of the system under the
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Figure 6.4: Numerical solution of Burgers equation.
For the greedy boundary control defined in proposition 6.4 (solid line) and for the brute force
boundary conditions ua = ub = u∗ (dotted line), the solution is stabilized at the point u∗ (dashed
line) in the domain [0, 1]. In the case of no control (circle markers), the solution is not stabilized
at u∗.
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brute force boundary control ua = ub = u∗, and in the case of no control, i.e. when the
control is defined as equal to the boundary trace at all times.

The evolution of the solution under the action of the greedy boundary control and the
brute force boundary control are very similar. The decrease of the corresponding Lyapunov
functions is represented in figure 6.5, center sub figure. One can note that the main difference
in the Lyapunov functions arises close to time 0. Later in time, the control has been achieved
at the boundary, and the evolution of the system is purely due to internal dynamics. Due
to the specific benchmark test used, the brute force controller slowly catches up with the
advantage taken initially by the greedy controller before time 10. The slight increase in the
difference between the Lyapunov function around time 10 is due to the fact that the solution
controlled by the greedy method reaches a discontinuity (see figure 6.4, between time 9 and
10).

This evolution of the Lyapunov functions and their difference is explained by the values
of the boundary control and the corresponding values taken by the boundary trace, presented
in figure 6.5, left and right sub figures.
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Figure 6.5: Boundary controls and Lyapunov functions.
The Lyapunov functions for different controls are represented in the center sub figure, for the
greedy boundary control defined in proposition 6.4 (solid line), for the brute force boundary control
ua = ub = u∗ (dashed line), and in the case of no control (circular markers). The upstream and
downstream boundary are represented in the left and right sub figure respectively. The greedy
boundary condition is represented in solid line, and the corresponding boundary trace in dash-dot
line. The brute force control is represented by the horizontal dashed line, and the corresponding
boundary trace is represented in dotted line. The case of no control is represented in circular
markers.

The upstream control represented in the left sub figure is constantly set to 0, corre-
sponding to a characteristic boundary condition, which introduces a rarefaction wave. In
this case, the action of the greedy control and the brute force control yield similar system
reaction, but the value of the greedy control, which is in the control space, is taken, as
indicated by the convergence of the dash-dot line to the solid line (with a non-instantaneous
convergence due to diffusion).

The downstream greedy control introduces a shock wave from the initial time. Since the
distance, in the right sub figure, around time 0, between the solid and dashed line (objective)
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is smaller than the distance between the circular marker (boundary trace with no action) and
the dashed line, this clearly contributes to the decrease of the Lyapunov function. However,
it is observed that the dash-dot line decreases instantaneously toward the solid line but then
stays stationary at a value different from the solid line. This discrepancy is a consequence
of discretization, and of the fact that the discrepancy prevails in time, which is due the fact
that the boundary condition cannot propagate further into the domain, due to the current
value of the solution, before time 1.7. Indeed the stationary boundary trace is close to 0.2,
and the boundary condition is around −0.4, hence the trace should take the value −0.4.
However the value of the solution inside the domain toward the downstream boundary is
0.4, hence the action of the control is exactly compensated by the internal dynamics, which
is not observable from the boundary. Hence the control does not have significant action.
This is an inherent limitation to boundary control for conservation laws.

Note that while it might seem disappointing that the greedy Lyapunov approach per-
forms as well as the brute force approach, its superiority is twofold:

• It is proven to stabilize the system, whereas the brute force approach can only be
checked post-facto, assuming it works.

• The controller does effectively apply. Conversely the brute force approach is ineffective
in the sense that the prescribed value of the controller does not necessarily apply.
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Chapter 7

Contributions and open problems

This dissertation work has been pursued in the context of the Mobile Millennium project
and the revolution in traffic monitoring systems owing to the explosion of mobile devices in
the world. The resulting paradigm changes in the field of traffic engineering motivated a
significant proportion of the research endeavors considered in this work.

The emergence of mobile sensing and the mass of associated streaming velocity measure-
ments motivated research efforts on novel traffic models and estimation algorithms. Investi-
gations on the equivalence of velocity-based conservation laws and density-based conservation
laws, as well as the theoretical research on higher-order PDE models, led to successful im-
plementations at a large scale (Northern California road network) in the real-time Mobile
Millennium system.

However, the issues of data quality and model error, considerably emphasized by crowd-
sourcing in an online real-time environment, called for the development of advanced data
assimilation techniques and the proper understanding of their underlying uncertainty struc-
ture given the properties of the mathematical models used. Precise knowledge of the accu-
racy of the estimates provided in real-time is a critical factor to the applicability of a traffic
monitoring system, especially in a large-scale system in which so-called ground-truth is not
directly available.

The control problems investigated during this dissertation, at a macroscopic level for flow
control in the previous chapter, as well as the stochastic on-time arrival routing problem [191,
35], which was implemented and applied in an operational setting to traffic estimates based on
the modeling and estimation work described in this dissertation and in [227] in particular,
delineate the state of the art in the mathematics of traffic monitoring, and the emerging
directions for the future science of intelligent large-scale infrastructure.
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The contribution of this thesis and the natural extensions to this work are as follows.

2×2 phase transition model of traffic flow. Chapter 2 presented an extension to the
original phase transition model presented by Colombo. The model proposed accounts for the
variability of traffic state due to heterogeneous driving behaviors, and different traffic pat-
terns at different locations. The Cauchy problem associated with the system of hyperbolic
conservation laws was shown to be well-posed in L1 ∩ BV . A Riemann solver was con-
structed, and a numerical discretization scheme derived from the classical Godunov scheme
implemented.

Extensions to this work include the proper formulation of the junction problem for
modeling traffic flow at road crossings using a 2×2 traffic model. It is known that congestion
is created at junctions and at the location of sudden driving maneuvers. The contribution of
this work has been to provide mathematical tools to model non standard individual traffic
behaviors. The problem of junction modeling has been solved for scalar traffic models but
few results exist for non-scalar network models of traffic flow.

A theoretical problem of significant practical importance is the problem of mixed dis-
tributed and boundary control from eulerian and lagrangian actuators in the presence of
limited information. Mathematical resolution of this problem would allow identifying a set
of optimal ramp metering and probe-enforced variable speed limits for congestion mitigation.
Unfortunately, standard approaches lead to ill-posed problems and non-realistic results. The
use of a non-scalar model that properly accounts for macroscopic and microscopic traffic
phenomena would allow great progress in this direction.

Estimation methods for non-scalar traffic models. Chapter 3 presented an as-
sessment of the performance of the 2 × 2 phase transition model for time space diagram
reconstruction, based on initial and boundary data extracted from high resolution camera-
based experimental vehicle trajectories. The results were shown in a forward-simulation
setting, in which perfect joint measurements from coincidental loop detectors and probe
vehicles are collected. This ideal scenario allowed the identification of the propagation of
forward-moving discontinuity in congested traffic flow, which had not been surely observed
previously in the literature, and the assessment of the greater robustness of the 2× 2 model
to calibration error.

Extensions to this work include the use of a proper estimation framework in order to
assess the impact of observation error and model error on the accuracy of the estimates.
The problem of data fusion from loop detectors and probe vehicles is also a very important
practical question.

Finally, the use of such macroscopic models able to account for heterogeneous driving
behavior would be of great interest for the design of stochastic routing algorithms [35, 191],
which require the knowledge of the cause of the traffic state estimate distribution variance;
from a routing perspective, a large link travel-time variance caused by driver heterogeneity is
very different from a large link travel-time variance due to algorithmic and data limitations
corresponding to numerical uncertainty.
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Adaptive estimation algorithms. In Chapter 5, a model-based analysis of the con-
sequence of nonlinearity and non-differentiability on estimation error, and specifically on the
structure of the uncertainty propagated by suboptimal filtering algorithms was presented. It
was shown that the emergence of discontinuities in the solution to scalar hyperbolic conser-
vation laws causes the emergence of mixture uncertainty distribution on the traffic state, and
the robustness of stochastic filters to this uncertainty structure was assessed numerically.

This work paves the ground for smart adaptive estimation methods and filtering al-
gorithms. Advanced estimation methods currently applied to traffic monitoring are derived
from the theory of linear dynamical systems. The design of real-time online provably optimal
sequential estimation algorithms for specific non-linear conservation law models is still an
open problem.

A second extension to this work relates to the notion of data quality. With the increased
volume of crowd-sourced data used for large scale civil infrastructure monitoring, the ability
to track down the nature of errors and the location of uncertainty is a critical feature of
estimation algorithms, in particular for safety-sensitive cyber-physical systems. State-of-the
art estimation methods provide online estimates which are derived from prior knowledge
of model and observation errors. However, estimation algorithms are currently not bound
to online quality criteria, which could be designed using the methods introduced in this work.

Boundary stabilization of weak entropy solutions. Chapter 6 proposed a bound-
ary control design that guarantees the greedy decrease of a Lyapunov function candidate.
This result solves a problem that has been approached in the literature with many different
tools. In particular, our method accounts for the proper treatment of weak boundary con-
ditions, the correct structure of emerging entropic shock waves in the solution to the partial
differential equation, and allows the consideration of physical constraints on the control, in
particular its total variation.

The approach chosen in this work is based on the assumption of the piecewise regularity
of the solution, which is a standard assumption in the conservation laws community. A
different approach can be based on general wave-front tracking approximations, which exhibit
by nature a piecewise-constant property and approximate arbitrarily closely a BV solution.
Another approach can be considered from the perspective of Hamilton-Jacobi equation, for
which the gradient of the Barron-Jensen-Frankowska solutions has recently been shown to
coincide with the classical weak entropy solutions of the associated conservation law.

Extensions to this work include the development of similar techniques for non-scalar
models of traffic, in which the more complex structure of the Riemann invariants allows
more complex controls. A problem of great interest for practical applications is the problem
of well-posed distributed stabilization of traffic flow on corridors.
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