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 Large-scale molecular data has revolutionized the field of biology. However, 

such data come with considerable challenges in experimental design, computational 

modeling, and interpretation. Here I present three papers which take advantage of 

large-scale molecular data and advance the statistical methods for identifying 

biologically relevant features. The first paper relates epistatic interactions identified 
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using gene knockouts to those identified using naturally occurring genetic variants. 

These interactions are further integrated with physical interaction data to produce a 

functional cellular map of yeast. The second paper implements genetic and physical 

interaction alignment in a user-friendly and interactive software package. The third 

paper investigates the effect of aging on the human methylome. Together, these works 

represent my principal contribution to the biological community to date and form the 

basis of my dissertation. 



 1 

INTRODUCTION 

 

The last decade has been an extraordinary time for the field of molecular 

biology. The development of high-throughput approaches for molecular screening has 

allowed researchers to measure the levels of thousands to millions of molecular 

markers in a single sample. Specifically, the advancement of array profiling and DNA 

sequencing methods have produced system-wide measurements of the genome and 

RNA transcription for hundreds of thousands of samples across dozens of organisms. 

In addition, equally impressive technology for the measurement of molecular 

interaction networks has yielded maps of the relationships between genes and proteins. 

These approaches have been further supported by the silicon revolution. The 

remarkable pace of improving computational power, algorithm design, and statistical 

methods have contributed to an environment where whole cellular systems are 

routinely investigated for novel findings. In addition, communities of researchers have 

constructed knowledge databases, collating literature on genomic variants, genes, 

proteins, metabolites, and phenotypes. While far from complete, these databases 

provide a framework for interpreting new findings and aggregating them in an 

iterative fashion. These integrative strategies promise a bright future, with the most 

relevant biological information easily accessible to scientists, doctors, and patients. 

Profound discoveries underlying disease and treatments should also follow. 

 Such large data sets come with a number of obstacles that stand in the way of 

appropriate use and interpretation. Among the biggest obstacles are the problem of 

statistical noise and power. By screening thousands of molecular profiles for a specific 
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pattern (ex. differences between cases and controls), statistical noise will produce 

many strong associations even in the absence of a true biological effect. In addition, 

even slight biases due to confounding variables or improper model assumptions can 

create the illusion of meaningful results, which often waste great resources in attempts 

at validation. For several years these issues plagued the high-throughput community, 

generating considerable skepticism from the lack of reproducibility in high-profile 

results. Scientific journals and reviewers quickly became much more careful about 

enforcing rigorous experimental design and statistical analysis, moving systems 

biology into the forefront of biological research. 

One approach to dealing with statistical noise in high-throughput data is to 

integrate multiple sources of data to generate a more robust model. This is particularly 

useful in the model yeast organism Saccharomyces Cerevisiae, as it has a great deal of 

diverse whole-genome measurements. An important example is the network of 

protein-protein interactions, which characterize the physical binding of proteins. At 

the same time, high-throughput techniques have been developed to measure genetic, or 

epistatic, interactions, which represent the cooperative functional effects of gene pairs 

(i.e. whether two genes independently or cooperatively contribute to a given 

phenotype). Both of these networks are subject to very high false-negative and false-

positive rates. However, when combined together they reinforce strengths and 

complement weakness, producing relatively accurate cellular maps of functional links 

between protein complexes and pathways. 
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Another type of genome-wide data consists of measurements of genetic 

variations and their correlates to gene expression, known as expression quantitative 

trait loci (eQTLs). We proposed that eQTLs can be investigated for genetic 

interactions and integrated with known physical complexes in a similar manner to 

traditional genetic interaction networks. Our work in this topic was published in PLoS 

Genetics under the title “Genome-wide association data reveal a global map of genetic 

interactions among protein complexes.” This work is reproduced as Chapter 1. 

 Such integrative techniques are widely applicable to many data sets, though 

their implementation can take considerable time. Furthermore, it is very useful to have 

interactive visualizations of the results. To address these needs, we developed a plugin 

for the network visualization tool Cytoscape which integrates physical and genetic 

interaction networks, and produces a detailed interactive cellular map. This work was 

published in Nature Protocols under the title “Assembling Global Maps of Cellular 

Function through Integrative Analysis of Physical and Genetic Networks”. This work 

is reproduced as Chapter 2. 

 Differences between model organisms and humans make it challenging to 

generate genome-wide network data. Large-scale data for humans is primarily based 

on DNA sequencing, including the measurement of genomic variants and transcription 

levels. Recently, genome-wide DNA methylation profiling has become affordable, 

driving a wave of new findings tying methylation to molecular profiles and diseases 

such as cancer and cardiovascular disease. One of the strongest associations is the 

effect of age on the methylome. We used this premise to generate a model of the aging 
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methylome and to use it to demonstrate differences in the apparent rate of aging 

between men and women. This work is currently in review at Nature under the title 

“Genome-wide Methylation Profiles Reveal Quantitative Views of Human Ageing 

Rates”. This work is reproduced as Chapter 3. 

 Supplemental materials for the published works can be found online at their 

respective journals. 
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CHAPTER 1: GENOME-WIDE ASSOCIATION DATA REVEAL A GLOBAL 

MAP OF GENETIC INTERACTIONS AMONG PROTEIN COMPLEXES 

 

Chapter 1.1: Abstract 

This work demonstrates how gene association studies can be analyzed to map a 

global landscape of genetic interactions among protein complexes and pathways. 

Despite the immense potential of gene association studies, they have been challenging 

to analyze because most traits are complex, involving the combined effect of 

mutations at many different genes. Due to lack of statistical power, only the strongest 

single markers are typically identified. Here, we present an integrative approach that 

greatly increases power through marker clustering and projection of marker 

interactions within and across protein complexes. Applied to a recent gene association 

study in yeast, this approach identifies 2,023 genetic interactions which map to 208 

functional interactions among protein complexes. We show that such interactions are 

analogous to interactions derived through reverse genetic screens and that they provide 

coverage in areas not yet tested by reverse genetic analysis. This work has the 

potential to transform gene association studies, by elevating the analysis from the level 

of individual markers to global maps of genetic interactions. As proof of principle, we 

use synthetic genetic screens to confirm numerous novel genetic interactions for the 

INO80 chromatin remodeling complex. 

 

Chapter 1.2: Author Summary 

One of the most important problems in biology and medicine is to identify the 

genetic mutations that affect human traits such as blood pressure, longevity, and onset 
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of disease. Currently, large scientific teams are examining the genomes of thousands 

of people in an attempt to find mutations present only in individuals with certain traits. 

Until now, mutations have been largely examined in isolation, without regard to how 

they work together inside the cell. However, large pathway maps are now available 

which describe in detail the network of genes and proteins that underlies cell function. 

Here we show how to take advantage of these pathway maps to better identify relevant 

mutations and to show how these mutations work mechanistically. This basic 

approach of combining genetic information with known maps of the cell will have 

wide-ranging applications in understanding and treating disease. 

 

Chapter 1.3: Introduction 

A central challenge in genetics is to understand how interactions among 

different genetic loci contribute to complex traits
1–7

. In model organisms such as yeast, 

genetic interactions are typically identified using reverse genetic approaches, in which 

different pairs of genes are systematically knocked out to create a collection of double 

mutants. Genetic interaction is indicated when the growth rate of the double mutant is 

slower than expected (e.g., synthetic sickness or lethality) or faster than expected (e.g., 

suppression)
4,8,9

. Rapid screening of such interactions has been made possible through 

a variety of methods including Synthetic Genetic Array (SGA) analysis
4
, diploid 

Synthetic Lethality Analysis by Microarray (dSLAM)
3
, and epistatic miniarray 

profiles (E-MAP)
1,2,10,11

. 



7 

  

In higher eukaryotes such as humans, reverse genetic analysis has not been so 

straightforward. Complex traits such as body weight or disease onset can be difficult 

to study in a cell-based assay, and null mutations are expensive to induce in 

mammals
12

. Instead, interactions amongst loci have been largely mapped from data 

generated through forward genetic approaches, such as genome-wide linkage
13

 or 

genome-wide association studies (GWAS)
14,15

. Such methods leverage naturally 

occurring mutations in the genome to pinpoint loci that have associations, ideally 

causal associations, with a trait of interest
7
. 

Mapping pair-wise locus associations has proven remarkably difficult, 

however. The most basic approach is to perform an exhaustive two-dimensional (2D) 

scan, in which all pairs of genetic markers are tested for joint association with the 

phenotype. Because billions of marker pairs must be tested, 2D scans are 

computationally demanding and suffer from low statistical power due to multiple 

hypothesis testing. One method to partially mediate this problem is to initiate searches 

for pair-wise interactions only for markers with strong individual effects
14,15

. Two 

recent studies by Storey et al. and Litvin et al. used this approach while accounting for 

information shared across multiple traits to further enhance statistical power
16,17

. 

These results indicate a major role for genetic interactions in the heritability of 

complex traits. However, it is likely that the interactions uncovered to date represent 

only a fraction of the true genetic network. 

Here, we show that both the power and interpretation of genetic interactions 

derived from association studies can be significantly improved through integration 
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with information about the physical architecture of the cell. We apply this integrative 

approach to an association study conducted in yeast, yielding a genetic network that 

complements, extends, and validates networks assembled through reverse genetic 

methods. 

 

Chapter 1.4: Results 

Chapter 1.4.1: Bi-clustering of marker pairs defines a network among genomic 

intervals 

We analyzed a recent GWAS in yeast which analyzed a population of 112 

segregants resulting from a cross of a laboratory S. cerevisiae strain with a wild 

isolate
5
. For each segregant, the states of 1,211 unique markers (genotypes) were 

mapped along with the expression profile of 5,727 genes (traits) (Table S1). To 

identify pairs of markers that genetically interact— i.e. for which the joint state of the 

marker pair was associated with one or more gene expression traits— we considered 

the method of Storey et al.
17

 which provides the best marker pair for each expression 

trait, resulting in a set of 4,687 distinct marker-marker interactions (removing 

redundancies due to marker pairs that associate with multiple traits). 

A preliminary examination of the genotype data showed few recombinations 

between neighboring markers, indicating that markers in close proximity were in 

linkage disequilibrium (LD). As a result, neighboring markers were often found to 

display similar patterns of interactions (Figure 1.1A). In much the same way that LD 

has allowed neighboring markers to be grouped into haplotype blocks
18

, we reasoned 

that LD between neighboring markers could also be exploited to enhance marker-
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marker interactions. To this end, we developed a bi-clustering algorithm to identify 

groups of marker-marker interactions that fall across common genomic intervals 

(Figure 1.1B; see Methods). We reasoned that bi-clustering the marker pairs might 

provide two distinct advantages: First, it allows many statistically insignificant 

marker-marker interactions to reinforce a single interval-interval interaction. Second, 

it leverages the structure between neighboring marker pairs to identify with greater 

precision the interval of DNA underlying the variance in a given trait. 
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Figure 1.1: Using genome-wide association data to identify natural genetic interactions. 

(A) Two interacting interval pairs (green and blue) which represent significantly dense groups of 

marker-marker interactions are shown. (B) A matrix view of the same genomic regions. The blue and 

green interval pairs appear as two rectangles. (C) The entire set of marker pairs was bi-clustered to form 

a set of high-confidence interval pairs (blue rectangles). 

 

Applied to the marker pairs from Storey et al., the bi-clustering procedure 

yielded a network of 2,023 interactions between 1,977 genomic intervals (Figure 

1.1C). Of these, 695 interval pairs garnered support from multiple marker pairs (five 

on average). The remaining 1,328 interval pairs consisted of singleton marker-marker 

interactions, which were not found to cluster with any others. The complete network 
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of interval-interval interactions can be found in Table S2. We refer to this network as a 

natural genetic network since it is derived from natural rather than engineered 

mutations. 

 

Chapter 1.4.2: Natural interactions define a map of functional links between protein 

complexes 

A common interpretation of genetic interactions measured in reverse genetic 

screens has been the “between-complex” or “between-pathway” model, in which 

interactions are found to span pairs of protein complexes or functional annotations. 

Such complex-complex interactions have been instrumental in identifying synergistic 

or compensatory relationships
4,8,19

. Similarly, pairs of functional terms have served to 

identify functions that are cooperative or buffer one another
4
. 

To evaluate natural networks in this fashion, we examined all pairs of 

documented protein complexes (out of 302 in Gavin et al.
20

 or the Munich Information 

Center for Protein Sequences [MIPS]
21

) and all pairs of functional terms (out of 1,954 

terms in the Gene Ontology [GO]
22

) for enrichment for natural genetic interactions. As 

further described in Methods, we inspected all complex pairs and found 208 

significant interactions in the natural network (False Discovery Rate<5%; Table 1). 

Similarly, we identified 17,714 significant interactions between functional terms. In 

contrast, far fewer results were found for complex or term interactions derived from 

the raw marker pairs of Storey et al. prior to bi-clustering these data into intervals 
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(Table 1). The full set of complex-complex and term-term interactions are available as 

a resource in Table S3 and on http://www.cellcircuits.org/qtlnet/. 

 

Table 1.1: Correspondence of interval and marker pairs with complexes and functions.  

 

 
 

Figure 1.2A shows a map of the 50 most significant complex-complex 

interactions. Because gene expression is the phenotypic trait, each complex-complex 

interaction is linked to a cluster of gene expression levels that it regulates (with each 

cluster containing an average of 287 genes). As the map integrates many traits 

simultaneously, it is distinct from previously-published genetic networks which have 

relied on cell viability as the single readout of interest. We found that two-thirds of the 

complex-complex interactions were linked to gene expression clusters that were 

highly functionally coherent (Figure 1.2A). In contrast, less than one one-hundredth of 

interval-pairs were found to influence a set of genes belonging to a single pathway or 

function. Thus, we conclude that integration of epistatic interactions with protein 
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complex maps helps to filter spurious interactions while simultaneously providing a 

putative mechanism for the pair-wise associations. 

 
 

Figure 1.2: Natural genetic networks elucidate pathway architecture. 

A global map of the top 50 complex–complex interactions found using the natural network. Each node 

represents a protein complex and each interaction represents a significant number of genetic interactions 

(False Discovery Rate<5%)
23

. We analyzed the set of gene expression traits associated with each 

complex-complex interaction for functional enrichment using the hypergeometric test. Nodes and edges 

are colored according to the functional enrichment of gene expression traits underlying the natural 

interactions (Bonferroni P′<0.05). Node sizes are proportional to the number of proteins in the complex. 

When available, nodes have been labeled with the common name of the complex. (B,C) Two specific 

examples of complexes spanned by dense bundles of natural genetic interactions. 

 



14 

  

As an illustrative example, Figure 1.2B shows the natural genetic interactions 

supporting a functional link between the synaptonemal complex and RNA Polymerase 

II. Mutations in the TOP2 gene of the synaptonemal complex have been shown to lead 

to higher levels of mitotic recombination in rDNA which can result in amplification 

and deletion of the rDNA array
24

. RNA polymerase II is responsible for the 

transcription of small nucleolar RNAs (snoRNAs) that physically and functionally 

interact with many other proteins required for ribosomal biogenesis
25

. Indeed, we 

found that the gene expression traits linked to this interaction were enriched for 

ribonucleoprotein complex biogenesis and ribosome biogenesis (both P′ = 10−8 by 

hypergeometric test; P′ is a Bonferroni corrected p-value). 

Figure 1.2C centers on two of the interactions for the Tim9-Tim10 complex, an 

essential component of the TIM machinery responsible for the transport of carrier 

proteins from the cytoplasm to the inner mitochondrial membrane
26

. Tim9-Tim10 is 

genetically connected with Mannan Polymerase II and the TRAPP complex. Mannan 

Polymerase II is a component of the secretory pathway and is involved in lengthening 

the mannan backbone of cell wall and periplasmic proteins
27

; the TRAPP complex 

plays an important role in trafficking of proteins from the golgi to the cell periphery
28

. 

The abundant genetic interactions between Tim9-Tim10 and these two complexes 

suggest they may jointly influence the make-up of cell surface proteins, possibly 

through control of trafficking. Consistent with this hypothesis, disruption of 

mitochondrial function has been shown to influence cell wall composition, including 

levels of phosphopeptidomannans
29

. 
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For comparison to the between-complex model, we also examined the natural 

genetic network for support for a “within-complex” model, in which single functional 

terms or complexes are enriched for genetic interactions among their member 

genes
4,8,19

. Searching across the 1,954 GO terms and 302 complexes, the natural 

network identified only 12 enriched GO terms and no significant complexes (Table 1 

and Table S3). Thus, genetic interactions in naturally-derived networks are far less 

likely to occur within a single pathway than to span between pathways. This result 

mirrors what has been observed in analysis of reverse genetic interaction networks, 

particularly amongst interactions characterized as synthetic lethal or synthetic sick, 

which have been shown to interconnect different pathways that are functionally 

synergistic or redundant
19,30

. 

 

Chapter 1.4.3: Complementarity between natural and synthetic genetic networks 

Next, we asked whether the natural genetic network had any direct overlap 

with “synthetic” networks derived using reverse genetic approaches such as SGA, 

dSLAM, or E-MAP platforms. To address this question, we considered four synthetic 

interaction networks: a network by Tong et al.
4
 including comprehensive interaction 

screens for 132 genes using SGA, a genetic network governing DNA integrity 

identified using dSLAM
3
, and E-MAPs centered on chromosomal biology

2
 and RNA 

processing
1
. The combined network from these four sources consisted of 2,117 genes 

linked by 29,275 genetic interactions. As with the natural network, we confirmed that 
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interactions in the combined synthetic network were more likely to fall between 

functional terms and protein complexes than within them (Table 1 and Table S4). 

To evaluate overlap, an interaction in the synthetic network was considered 

“supported” if the two genes mapped into two different intervals that were found to 

interact in the natural network. As shown in Figure 1.3A, the natural network 

supported on average 8.7% of interactions across the four synthetic networks as 

opposed to 5.7±0.5% expected by chance (Text S1). Thus, some regions are shared in 

common between natural and synthetic networks, although these regions appear to 

represent a minority of all genetic interactions. 
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Figure 1.3: Comparison of the natural and synthetic networks. 

(A) The overlap between the natural network and four previously-published synthetic genetic networks 

(Tong 
4
, Pan

3
, Collins

2
, Wilmes

1
) is shown as a percentage of the synthetic network size. An asterisk 

indicates significance at P<0.05. (B) A map of the functions and functional relationships supported by 

either the natural or synthetic networks. Each node represents a broad GO term, with colors (green, 

orange, blue) indicating terms that contain many within-term interactions (Text S1). Edges show the top 

30 between-term interactions for each of the natural and synthetic networks. Two broad GO terms 

(regulation of nucleotide metabolism and DNA repair) contained many within-term interactions in both 

the natural and synthetic networks. 
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We found that these common genetic interactions took place among genes 

encoding basal transcriptional activators (“regulation of nucleotide metabolism”, 

Figure 1.3B) including components of RNA polymerase II, Kornberg's mediator 

complex, the holo TFIIH complex, INO80, SET3, and COMPASS (Figure 1.4A). The 

expression traits linked to these common interactions were for genes encoding the 

cytosolic ribosome (P′<10−47), cell cycle checkpoints (P′<10−15, including RAD9 

and DDC1), and mitochondrial electron transport (P′<10−12). Thus, interactions that 

overlap between natural and synthetic genetic networks take place largely among core 

transcriptional activators and influence expression of core metabolic processes. 
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Figure 1.4: Guiding synthetic genetic screens using natural genetic networks. 

(A) Complex-complex interactions common to both the natural and synthetic networks at a relaxed 

threshold of P<0.05. Many of these complexes, including INO80 (orange), have more coverage in the 

natural network (node height) than in the synthetic network (node width). (B) Each point in the scatter 

plot represents the significance of support for a possible complex-complex interaction with INO80 from 

the natural (y-axis) versus synthetic (x-axis) networks. Due to low coverage, comparatively few 

complex pairs have support in the synthetic network. New E-MAP data for INO80 support nine new 

complex-complex interactions predicted by the natural network (blue arrows). (C) A network of natural 

genetic interactions for INO80 validated by the new E-MAP. Functional enrichment for traits is shown 

as in Figure 1.2. The thickness of each link is proportional to its support in the new genetic interaction 

screen. 

 



20 

  

Chapter 1.4.4: Novel interactions of the INO80 complex as suggested by natural 

networks 

One prominent complex highlighted by both natural and synthetic interactions 

was INO80, a multi-subunit ATP-dependent chromatin remodeling complex (Figure 

1.4A). At its core is the Ino80 protein, an ATPase of the SNF2 family which functions 

as the catalytic subunit. Recent studies have demonstrated that INO80 chromatin 

remodeling activity contributes to a wide variety of pivotal processes, including 

transcription, DNA replication, and DNA repair
31–34

. Consistent with these processes, 

both the natural and synthetic networks supported interactions of INO80 with TFIIH 

and alpha(I)-primase. However, INO80 had far more interactions in the natural 

network than the synthetic one. This result is reflected in Figure 1.4A (large height 

versus width of the INO80 node) and more explicitly in Figure 1.4B, which plots the 

p-values in the natural versus synthetic network for all complex pairs involving 

INO80. This plot suggests that the reason for few synthetic interactions is lack of 

coverage: most complex pairs (82%) have simply not yet been tested for interaction 

using reverse genetic screens, placing them at a significance score of P = 1 (i.e., on the 

y-axis of Figure 1.4B). 

To fill this gap, we genetically analyzed three genes encoding members of the 

INO80 complex (Arp8, Ies3, Nhp10) using the quantitative E-MAP approach. 

Complete genomic deletions of each gene were screened against a standard array of 

1,536 mutants to select double mutant combinations whose growth rates were slower 

or faster than expected (Methods). This screen uncovered 496 novel genetic 



21 

  

interactions (Table S5) supporting 20 complex-complex relationships (P<0.05; Table 

S6). Nine of the complex-complex interactions were also supported by the natural 

network, including interactions with four complexes (tRNA splicing, RNA polymerase 

II, Actin-associated proteins, and the Vps35/Vps29/Vps26 complex) that were already 

present in the common complex interaction map (see Figure 1.4B and 1.4C). 

The relationships identified here implicate a number of novel links between 

INO80-mediated chromatin remodeling and a wide range of important cellular 

processes. For example, numerous genetic interactions were identified between INO80 

and RNA Polymerase II. There is substantial evidence demonstrating that the rate of 

transcriptional elongation by RNA Polymerase II is reduced in the presence of 

nucleosomes and requires chromatin-modifying activities
35

. Since INO80 has been 

shown to mobilize/remove nucleosomes
33,36

, this functional link may indicate that the 

two complexes co-operate: INO80 may exchange histones at a particular location to 

facilitate transcriptional elongation by RNA polymerase II. Indeed, while this 

manuscript was in review, a new report has implicated a role for INO80 in histone 

redeposition during RNA polymerase II-mediated transcription of stress-induced 

genes
37

. 

Four of the nine novel INO80 interactions are involved in various aspects of 

vacuolar protein degradation including transport of hydrolases to the vacuole 

(Vps35/Vps29/Vps26 complex and Vps27/Hse1 complex), vacuole biogenesis 

(Vacuolar assembly complex), and targeting of proteins for degradation (Rubiquitin-

activating complex). Given INO80's role in transcription
33

, the new interactions 
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suggest that these complexes work in tandem to regulate the expression level of 

certain proteins, with INO80 controlling the level of transcription and these four 

complexes controlling the rate of protein degradation. This work serves as an example 

of how the broad coverage in the natural network can be used to focus future genetic 

screens and provide the basis for many mechanistic follow-up studies. 

 

Chapter 1.5: Discussion 

Currently, mapping genetic interactions using GWAS faces two major 

challenges: a lack of statistical power for finding genotype-phenotype associations, 

and a lack of tools for understanding the molecular mechanisms behind the 

associations found to be significant
14,15,38

. In this study, we have demonstrated that 

such challenges can be partly overcome by (1) accounting for bi-cluster structure in 

the data and (2) by integrating genetic interactions derived from GWAS with protein 

complexes and functional annotations. The result is a map of protein complexes and 

pathways interconnected by dense bundles of genetic interactions, which raises 

statistical power and provides biological context to the genetic interactions uncovered 

in natural populations. 

Despite exhibiting some overlap (8.7%), there was also much divergence 

between the natural and synthetic networks. Such divergence might be explained by a 

number of factors. First, the two types of genetic networks have major differences 

with respect to coverage and power. Natural networks are based on genome-wide 

variations and thus nearly all gene pairs are tested for pairwise interaction— i.e., the 
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coverage of gene pairs is practically complete. This large coverage comes at the price 

of low statistical power: gene association studies are limited by the number of 

individuals that can be surveyed which, in turn, limits the power of natural genetics to 

detect any given genetic interaction. On the other hand, a reverse genetic interaction 

screen explicitly tests the growth rate of gene pairs, with high power to detect 

interaction. However, the set of gene pairs that can be tested in a single study is 

limited by the throughput of the screening technology. The synthetic genetic network 

used here was a combination of four such studies which collectively cover 

approximately 5% of yeast gene pairs. Future efforts may seek to complement the 

coverage of reverse genetic screens by using natural genetics, or to improve the power 

of gene association studies through focused reverse genetic analysis. Here, we have 

demonstrated this concept by expanding the coverage of the synthetic network around 

the INO80 complex, based on the conserved interactions we found for this complex in 

both types of networks. 

Even with equivalent coverage and power, the two types of network would still 

likely diverge due to their different means of perturbation. The natural network is 

driven by variations in genome sequence including SNPs, repeat expansions, copy 

number variations, and chromosomal rearrangements which lead to a variety of effects 

on gene function such as hypo- and hypermorphic alleles, null alleles, and so on. In 

contrast, synthetic networks predominantly consist of complete gene deletion events, 

which are rarely experienced in nature and lead exclusively to null alleles. 
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A final difference is phenotype— the natural and synthetic networks in this 

study differ markedly in the underlying phenotypic traits they have measured, relating 

to gene expression versus cell growth, respectively. It is important to note, however, 

that the differences in traits are specific to the currently available data sets. They are 

not inherent to either mapping approach, and in general one can imagine synthetic 

genetic interactions related to gene expression (see Jonikas et al. for a recent 

example
39

) or natural interactions related to a single phenotypic trait such as cell 

viability or disease (which in fact describes the majority of GWAS data generated to-

date for humans)
7
. 

Despite all of these differences, we did observe a significant number of natural 

and synthetic genetic interactions in common. It is tempting to speculate that these 

common interactions might share certain characteristics with regard to cellular 

function. In particular, we found that natural interactions also present in the synthetic 

network were linked to expression levels of ribosomal genes as well as to core 

components of respiration and cell cycle. Several studies have noted a correlation 

between the expression levels of ribosomal or mitochondrial genes and growth 

rate
40,41

. Thus, the overlap between natural and synthetic interactions seems to occur 

among genes that strongly influence expression traits related to growth. 

A common issue in association studies, known as the “fine mapping 

problem”
42,43

, is that a strongly associated marker will fall near many candidate genes, 

leaving it ambiguous as to which of these candidates is the causal factor. Numerous 

methods have been developed to refine or prioritize these candidates, often through 
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incorporation of orthogonal information
44

. An extension of this problem applies to 

marker-marker interactions, which typically implicate one of many possible pairs of 

genes. Here, we have mitigated this problem by summarizing markers into protein 

complexes and functional terms. However, ambiguities can still arise in cases where 

several complex-complex interactions are supported by the same underlying set of 

marker pairs. Since it is likely that only one of these interactions is causally linked to 

phenotype, further work may be necessary to prioritize these candidates. It is 

important to note, however, that fine-mapping issues will be less of a concern in 

humans than in yeast, given the higher density of available markers which will 

improve the resolution in identifying causal genes. 

In summary, we have demonstrated that the logical framework developed for 

analysis of synthetic genetic networks can also be readily applied to natural genetic 

networks. Biologically and clinically, the clear and immediate application is towards 

the analysis of genome-wide association studies in humans. Many diseases, both 

common and rare, have so far been opaque to genome-wide association analysis
45

. The 

key question will be whether, using integrative maps such as those developed here, 

they can become less so. 

 

Chapter 1.6: Methods 

Chapter 1.6.1: Marker pair bi-clustering 

An interval is defined as a set of one or more contiguous markers along the 

chromosome. A pair of intervals induces a set of m tested marker pairs of which k 
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pairs are found to interact, drawn from a total genome-wide pool of N tested marker 

pairs of which n are found to interact. An exhaustive genome-wide scan is performed 

to identify interacting interval pairs, i.e. those that are enriched for marker-marker 

interactions, as follows. The counts (m, k) are tallied for all possible pairs of intervals 

(up to a maximum of 60 markers per interval) using a recursive algorithm in which the 

entire space of marker pairs is represented as an upper-triangular matrix A with each 

row and column denoting a marker. An interval pair is represented by a submatrix 

Ai,j,a,b, where i,j are the starting row and column indices and a,b are the dimensions 

of the submatrix. The number ki,j,a,b of interacting marker pairs in a submatrix is 

determined using the formula: 

An identical formula is used to count the number of tested marker pairs in each 

interval pair (substitute m for k). Following computation of the (m, k) counts, every 

interval pair is assigned a p-value of enrichment for marker-marker interactions based 

on the four parameters m, k, N, n using the hypergeometric distribution. The natural 

network is then assembled in an iterative fashion, where the most significant interval 

pair is selected from among all possible interval pairs, after which all interval pairs 

which contain any overlapping marker pairs (interacting or non-interacting) are 

removed from consideration. The process is repeated until there are no interval pairs 

remaining, which ensures that the final set of interval-interval interactions comprising 

the natural network is disjoint. 
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Chapter 1.6.2: Comparison of bi-clustering to a naïve algorithm 

We considered that the improved performance of bi-clustering might be non-

specific, i.e., that simpler methods for expanding marker-marker pairs to form 

genomic intervals might perform equally well. As one possibility, we compared the bi-

clustering approach to a naïve algorithm for generating interval-interval interactions, 

in which raw marker pairs were expanded to encompass the nearest x neighboring 

markers on either side. However, as shown in Figure S1 this naïve expansion method 

performed substantially worse than bi-clustering at identifying term-term or complex-

complex interactions, for any choice of x, suggesting that bi-clustering identifies more 

appropriate interval boundaries for each natural genetic interaction. 

 

Chapter 1.6.3: Mapping genes to intervals 

The chromosomal coordinates of open reading frames (ORFs) for all yeast 

genes were obtained from the Saccharomyces Genome Database
46

. Each gene was 

assigned to all markers found within its ORF and to the nearest marker within a 

window of x = 100 kb on either side (Figure S2). This mapping procedure resulted in a 

discrete number of genes mapped to a given marker. Intervals were mapped to all 

genes assigned to their constituent markers, again resulting in a discrete number of 

genes mapped to an interval. 

The complex-complex interactions identified in the natural network were 

robust to the particular choice of window size x. We varied x over a range of distance 

thresholds from 0 to 100 kb. As shown in Figure S3, the resulting complex-complex 
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interactions implicated by the natural network had a high degree of overlap with the 

results obtained using the original mapping procedure. 

 

Chapter 1.6.4: Enrichments of interactions within and between complexes and terms 

A within-complex (within-term) model is defined as the set of all gene pairs 

falling within a given physical complex (functional GO term). A between-complex 

(between-term) model is defined as the set of all gene pairs that span two complexes 

(terms), such that one gene belongs to the first complex, the other gene belongs to the 

second complex, and neither gene belongs to both. For each model we compute k, the 

number of gene pairs “supported” (see main text) by the network. The significance of 

this support is assessed using the hypergeometric distribution, governed by k and three 

additional parameters: 

n. The total number of gene pairs induced by the model. 

m. The total number of gene pairs having support in the entire network. 

N. The total number of gene pairs in the tested space of the entire network. 

Counts for all four parameters are based only on pairs of genes found in the 

corresponding space of interactions tested by the network and covered by the given 

annotation set (complexes or terms). Further details are given in Text S1. All models 

are visualized using Cytoscape
47

. 
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Chapter 1.6.5: Removing the effects of non-random gene order on annotation 

enrichment 

The above enrichment tests assume independence of genetic interactions from 

protein complexes and functional terms. However, intervals in the natural network 

typically cover several consecutive genes, which are more likely to be of similar 

function than genes chosen at random
48

. To correct for this effect, each complex/term 

annotation is assigned a score PminЄ[0, 1] measuring the degree to which its member 

genes are clustered [Pmin → 0] versus dispersed [Pmin → 1] along the genome (see 

Text S1 for more details). Annotations with Pmin<pT are removed from further 

consideration. We use a stringent threshold of pT = 0.1 for physical complexes and pT 

= 0.3 for functional terms resulting in less than one erroneous complex-complex or 

term-term interaction identified in randomized networks (Figure S4 and Figure S5). 

Further details regarding the randomization procedure is provided in Text S1. A list of 

the complexes used in this study is provided in Table S8. 

 

Chapter 1.6.6: INO80 Epistatic Mini-Array Profile (E-MAP) 

The arp8Δ, nhp10Δ, and ies3Δ knockout strains were constructed and E-MAP 

experiments were performed as described previously
49

. The array used to generate the 

double-knockout strains contained 1,536 strains involved in chromatin metabolism 

(including chromatin remodeling, repair, replication, and transcription) as well as 

global cellular processes like protein trafficking and mitochondrial metabolism (see 

Table S5). Genetic interaction scores were computed as described previously
9
. 
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CHAPTER 2: ASSEMBLING GLOBAL MAPS OF CELLULAR FUNCTION 

THROUGH INTEGRATIVE ANALYSIS OF PHYSICAL AND GENETIC 

NETWORKS 

 

Chapter 2.1: Abstract 

To take full advantage of high-throughput genetic and physical interaction 

mapping projects, the raw interactions must first be assembled into models of cell 

structure and function. PanGIA (for physical and genetic interaction alignment) is a 

plug-in for the bioinformatics platform Cytoscape, designed to integrate physical and 

genetic interactions into hierarchical module maps. PanGIA identifies 'modules' as sets 

of proteins whose physical and genetic interaction data matches that of known protein 

complexes. Higher-order functional cooperativity and redundancy is identified by 

enrichment for genetic interactions across modules. This protocol begins with 

importing interaction networks into Cytoscape, followed by filtering and basic 

network visualization. Next, PanGIA is used to infer a set of modules and their 

functional inter-relationships. This module map is visualized in a number of intuitive 

ways, and modules are tested for functional enrichment and overlap with known 

complexes. The full protocol can be completed between 10 and 30 min, depending on 

the size of the data set being analyzed. 

 

Chapter 2.2: Introduction 

Genetic interactions are defined as functional relationships between genes that 

result when the phenotypic effect of one gene is altered by one or several other 

genes
8,50

. Such interactions have been used to uncover pathway architecture in model 
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organisms
2,4,11,51

. In humans, genetic interactions are thought to influence numerous 

phenotypes of interest, from expression
6
 to complex diseases

7
 to drug resistance

52
. 

Recently, a number of technologies such as synthetic genetic arrays
4,9,49,53

 and 

heterozygote diploid-based synthetic lethality analysis with microarray
3
 have 

facilitated the rapid screening of genetic interactions in model organisms. In human 

cell lines, combinatorial RNA interference screening technologies have begun to show 

promise in uncovering genetic interactions
54,55

. As a result of these high-throughput 

technologies, the amount of genetic interaction data available in the public domain has 

increased rapidly. As of December 2010, the BioGRID interaction database housed 

nearly 175,000 genetic interactions spanning 11 different species
56

. 

Interpreting the functional significance of each genetic interaction remains a 

daunting task. One promising solution has been to interpret genetic interactions in the 

context of their relationships to physical protein-protein interactions (Figure 

2.1a)
19,30,57,58

. At least two distinct models have been put forth to reconcile genetic and 

physical interactions. The 'within-cluster' model seeks to identify clusters of proteins 

that are enriched for both physical and genetic interactions (Figure 2.1b). We refer to 

such clusters of proteins and the interactions occurring among them as a module. 

Modules are often interpreted as functional protein complexes
4,19,30,57

 or signaling 

pathways
52

. In contrast, the 'between-cluster' model seeks genetic interactions that are 

enriched across two clusters of interacting proteins (Figure 2.1b). Such intermodule 

links have been shown to identify synergistic or compensatory relationships between 

protein complexes or signaling pathways
2,19,58

. Figure 2.1c shows an example module 
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map consisting of four modules connected by three intermodule links. The genes in 

each of these four modules are associated with a strong within-cluster signal, and, 

furthermore, they coincide with known Saccharomyces cerevisiae physical complexes 

(Figure 2.1c). Set3p and Rpd3s are both histone deactylase complexes involved in 

transcriptional regulation. The Hir complex functions in replication-independent 

nucleosome assembly, whereas the UTP-C complex is a component of the 90S 

preribosome. The intermodule link between Set3p and Rpd3s suggests a functional 

synergy between the two complexes. Consistent with this hypothesis, several studies 

have illustrated that the two are jointly responsible for the the activation of DNA 

damage response genes via the recruitment of RNA Polymerase II (ref. 21). 



34 

  

Figure 2.1: Overview of PanGIA's method for identifying a module map of cellular function from 

physical and genetic networks. 

(a) PanGIA takes as input a physical and genetic network. Black edges refer to physical interactions, 

whereas turquoise edges refer to genetic interactions. (b) Both within-cluster and between-cluster 

models are identified using the physical and genetic network. A within-cluster model or module 

consists of a set of genes connected by a large number of physical and genetic interactions. In this 

example four within-cluster models are identified. A between-cluster model or intermodule link consists 

of two within-cluster models spanned by a bundle of genetic interactions. Here, five putative between-

cluster models have been identified. The size of within-cluster models can be controlled via the Module 

Size parameter. Higher values of the Module Size parameter lead to larger complexes (denoted by the 

dashed line). (c) If quantitative interaction data have been made available, the significance of each 

between-cluster model can be assessed. Only significant intermodule links are displayed in the final 

module map (three of the five putative intermodule links are significant in this example). The thickness 

of the line reflects the score of the intermodule link, which is based on the number of physical and 

genetic edges spanning the two modules. If a biological annotation set is provided, PanGIA will check 

the overlap between the set of genes comprising the annotation and the set of genes comprising each 

module. If the overlap exceeds a user-specified threshold, the module will be labeled with the name of 

the annotations. Here, all four modules overlap with known complexes and are labeled accordingly. 
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Several methods have been previously published
19,30,57,59

 for analyzing 

interactions to identify both within-cluster and between-cluster functional 

organization. However, these methods have not yet been made available through a 

publicly accessible software package. Here we introduce a novel software tool, 

PanGIA, along with a general bioinformatics protocol for integrative analysis of 

genetic interactions. PanGIA implements a previously published framework
58

 as a 

plug-in for the open-source network analysis platform, Cytoscape
47,60

, and allows the 

user to easily generate maps of modules and module inter-relationships from genetic 

and physical interaction data (see Figure 2.1 for an overview). A number of options 

are available to the user for constructing and visualizing the resulting module map. 

PanGIA is built on the new Cytoscape 2.8 architecture
61

, which features the ability to 

view and manipulate nested networks, thereby enabling the user to explore both the 

global map as well as individual modules in an intuitive manner. Finally, individual 

modules can be interrogated using a number of functional enrichment options. 

The computational workflow presented here has been used in the analysis of 

genetic networks centered on genes involved in chromosomal biology
2,58

, RNA 

processing
1
, secretory pathways

51
 and DNA damage response

52
. This analysis has also 

been used in comparing genetic networks across two different species
10

. In each case, 

the module maps generated have helped to identify novel pathways as well as new 

components and functions for existing complexes
10,19,30,52,58

. While this workflow has 

proven useful in the analysis of numerous genetic interaction data sets, the module 

search process works best when there is a high density of protein and genetic 
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interactions among the set of genes being studied. For species in which there is a 

scarcity of either genetic interaction or physical interaction data, this protocol may not 

identify a significant number of modules or intermodule relationships. This limitation 

will become less relevant as large-scale interaction screens continue to populate the 

scientific databases. 

This protocol is divided into five basic sections (Figure 2.2). The first section, 

'Importing physical and genetic networks into Cytoscape', describes the available 

sources of interaction data and means of acquiring these data within Cytoscape. 

Second, 'Generating a module map using the PanGIA plug-in' covers the use of the 

PanGIA plug-in and is further divided into four subsections covering the various 

aspects of its use ('Selecting a physical and genetic network', 'Setting the module size 

and edge reporting parameters', 'Training PanGIA' and, finally, 'Labeling modules'). 

The third section, 'Visualization of the module map using nested networks', introduces 

ways in which the user can navigate and visualize the resulting module map. Fourth, 

'Functional enrichment of the modules' illustrates methods to identify enriched 

biological functions and pathways among the identified modules. Finally, 'Exporting 

the results' covers the various ways in which the module map can be exported from 

Cytoscape for further analysis or for inclusion as figures in a publication. 
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Figure 2.2: Outline of the protocol. 

Analyses listed in black indicate required steps in the protocol. Analyses listed in orange represent 

optional steps, which may be performed if quantitative interaction data are present; those listed in light 

blue are optional steps, which may be performed if a biological annotation data set is present. The 

yellow boxes indicate the desired outcome at the end of each major section in the protocol. 
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Importing physical and genetic networks into Cytoscape: 

This section of the PROCEDURE (Steps 1–18) describes the various ways in 

which a physical or genetic network can be imported for analysis into Cytoscape. A 

previous protocol has outlined the various file formats Cytoscape can recognize as 

well as provided detailed instructions on how each file type can be imported
60

. The 

present protocol will instead focus on importing networks in a tab-delimited format 

(Box 1). Table 1 provides examples of several different databases from which 

interaction data (both genetic and physical) can be downloaded in a tab-delimited 

format for over 50 organisms. 
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Table 2.1: List of databases of physical and genetic interaction data. 

Database 

Name 
URL 

# of 

Organism

s Covered 

Physical 

Interaction 

Data 

Available? 

Genetic 

Interaction 

Data 

Available? 

Quantitative 

Interaction 

Data Available? 

STRING string-db.org 630 yes no yes 

DIP 

dip.doe-

mbi.ucla.edu/dip/

Main.cgi 

372 yes no yes 

IntAct 
www.ebi.ac.uk/i

ntact/main.xhtml 
305 yes no yes 

Consensus

PathDB 

cpdb.molgen.mp

g.de 
3 yes no no 

BioGRID thebiogrid.org 18 yes yes no 

MINT 

mint.bio.uniroma

2.it/mint/Welco

me.do 

30 yes no yes 

 

Generating a module map using the PanGIA plug-in: 

Selecting a physical and genetic network. This section of the PROCEDURE 

(Steps 19–23) describes the steps necessary to select which physical and genetic 

networks are to be analyzed. At this point, PanGIA is fully configured and the module 

search process can be initiated. However, PanGIA is designed with four optional 

features designed to fine-tune and enhance the search process. We describe these 

optional features in the subsequent sections. 

Setting the module size and edge reporting parameters (Steps 24–26): 

The first optional feature is the 'module size' parameter. This parameter helps 

to control both the size and number of modules by rewarding the formation of larger 

modules. Thus, higher values of this parameter results in the formation of larger, but 

fewer modules. Lower values produce the opposite effect (Figure 2.1b). It is 

recommended that the module size parameter initially be left at the default value. If 
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the resulting module map contains very large modules, the module size parameter can 

be suitably altered and the module search process re-run to produce smaller and more 

biologically meaningful modules. 

The second optional feature is dependent on the presence of quantitative 

genetic interaction data. Many of the recent experimental technologies for measuring 

genetic interactions go beyond reporting interactions in a simple binary format 

(interacting or noninteracting) and provide some measure of confidence in a given 

interaction. For example, in the synthetic genetic array technology
53

 and a recent 

variant called epistatic mini-array profiles
2,9

, each double mutant is assigned a 

quantitative signed score, where positive scores indicate that the double mutant grew 

better than expected (e.g., suppression) and negative scores indicate pairs for which 

the double mutant grew worse than expected (e.g., synthetic sick or synthetic 

lethal)
9,53

. Table 1 outlines numerous databases that contain quantitative interaction 

data. 

If quantitative genetic interaction data are provided, each intermodule link can 

be assessed for significance. A P value is assigned by comparing the sum of the 

interaction confidence values for all genetic interactions spanning two modules (i.e., 

intermodule link) to a distribution of the sums of confidence values of an equal 

number of genetic interactions drawn at random
58

 (Figure 2.1c). The edge reporting 

parameter serves as a threshold; only those interactions with a P value less than this 

threshold are displayed in the final module map. By default, this parameter is set to 

0.1, thus displaying only those intermodule links with P < 0.1. 
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Training PANGIA (Steps 27–29): 

The next optional feature relies on the presence of a biological annotation set. 

Examples of an annotation set that can be used include physical complexes, signaling 

pathways, metabolic pathways or even broad biological processes. Table 2 provides a 

list of databases where an annotation set can be downloaded for a range of different 

organisms. 

 

Table 2.2: Examples of databases from which to obtain annotation data. 

 

The optional training procedure built into PanGIA is designed to help identify 

modules that are more likely to be biologically relevant, i.e., modules that contain 

Database 

Name 
URL 

# of Organisms 

Covered 
Annotation Type 

Gene 

Ontology 

(GO) 

www.geneontology.org/GO.d

ownloads.annotations.shtml 
48 

Physical complexes, 

biological processes, 

signaling pathways, 

metabolic pathways 

MIPS 

CORUM 

mips.helmholtz-

muenchen.de/genre/proj/coru

m 

3  Physical complexes 

KEGG 
www.genome.jp/kegg/pathwa

y.html 
833 

Metabolic pathways, 

signaling pathways 

CYC2008 wodaklab.org/cyc2008/ 1 (S. cerevisiae) Physical complexes 

SGD Pathways pathway.yeastgenome.org 1 (S. cerevisiae) Metabolic pathways 

MetaCyc metacyc.org 2000 Metabolic pathways 

Reactome www.reactome.org 20 Metabolic pathways 
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genes that operate in the same complex or biological process. By default, the module 

search process is designed to identify sets of genes that are densely connected by 

physical and genetic interactions. However, some interactions can be given more or 

less influence based on their quantitative score. PanGIA can determine how likely a 

certain interaction (either physical or genetic) is to connect two genes within a known 

complex or biological process using an existing annotation set. Examples of such a set 

include physical complexes (e.g., INO80 complex), signaling pathways (e.g., the 

mitogen-activated protein kinase (MAPK) pathway), metabolic pathways (e.g., 

glycolysis) or biological processes (e.g., DNA damage response genes). Using this 

annotation set, PanGIA assigns each interaction a weight based on the unsigned 

logistic regression of all interaction confidence scores of a given type (physical, 

genetic) against its proteins' co-membership in an annotation. If no quantitative scores 

are available, PanGIA uses logistic regression to assign a constant confidence score 

for all interactions of a given type. For specific details regarding the regression 

procedure, please see Bandyophadyay et al.
58

. The module search process will now 

seek to identify sets of genes that are connected by highly weighted physical and 

genetic interactions. As the weight of an interaction corresponds to how likely it is to 

connect two genes belonging to the same physical complex or pathways, the modules 

identified will contain genes that are functionally similar. 

Labeling modules: 

The genes composing a module may function in the same biological process or 

encode members of the same protein complex. If a biological annotation set is 
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provided, PanGIA will check to see if the module gene set overlaps with the 

annotation gene set. Here overlap is defined using the Jaccard similarity coefficient 

(intersection/union), which ranges from 0 (no overlap) to 1 (perfect overlap). If the 

Jaccard coefficient exceeds a user-specified threshold, then the module will be labeled 

with the name of the annotation in the final module map (Figure 2.1c). This 

PROCEDURE subsection (Steps 30–32) covers how this labeling feature can be 

enabled and provides instructions on how to set the overlap threshold. 

Visualization of the module map using nested networks: 

PanGIA is built on the new Cytoscape 2.8 architecture, which features the 

ability to view nested networks (i.e., each node in a network can represent an entire 

subnetwork). Instructions are provided for laying out the network of modules and 

intermodule links and for probing individual modules. This PROCEDURE section is 

divided into three subsections, 'Navigating the module map' (Steps 33–35), 'Finding 

modules of interest' (Step 36) and 'Exploring modules of interest' (Steps 37–45), which 

cover the various ways in which both the module map and individual modules can be 

interrogated. 

Functional enrichment of the modules: 

Modules will often contain genes of unknown function. One way to dissect the 

function of modules uncovered in this workflow is to examine if they are substantially 

enriched for any functional annotations. This can be used to identify new components 

of existing complexes or to identify entirely new physical complexes or 

pathways
2,19,58

. This PROCEDURE section (Steps 46–49) outlines the steps for 
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checking for enriched Gene Ontology (GO) functional terms
22

 using the BiNGO plug-

in
62

. 

Exporting your results: 

This PROCEDURE section (Step 50) covers the various options for exporting 

the resulting module map. 

 

Chapter 2.3: Materials 

Equipment:  

Personal computer with Internet access and an Internet browser. 

Equipment setup: 

Hardware requirements: 

PanGIA hardware requirements depend on the size of the physical and 

genetic networks to be imported and analyzed. For networks containing up to 

200,000 edges, we recommend a 2.0-GHz CPU or higher, a medium-end 

graphics card, 150 MB of available hard disk space and at least 2 GB of free 

physical RAM. If you are analyzing very large networks (>500,000 

interactions), at least 8 GB of free physical RAM is recommended. To view the 

modular map produced by PanGIA, we recommend a monitor with a minimum 

screen resolution of 1024 × 768. 

Operating system: 

PanGIA and Cytoscape are supported on Windows (XP, Vista and 

Windows 7), Mac OS X (version 10.6 (Snow Leopard) or higher) and Linux. 



47 

  

Java standard edition: 

Version 1.6 or higher is required (can be downloaded from 

http://www.java.com/). 

A three-button mouse: 

This is recommended (but not required) as an aid in navigating the 

module map. 

Cytoscape v2.8.0: 

PanGIA requires Cytoscape version 2.8.0 or higher. The steps for 

downloading and installing the latest version of Cytoscape can be found in a 

previously published protocol24 or online at 

http://www.cytoscape.org/documentation_users.html. 

Plug-ins: 

The analysis capabilities of Cytoscape are expandable and extensible 

through add-on software packages called plug-ins. This protocol requires the 

installation of four plug-ins: PanGIA, BiNGO
62

, Enhanced Search
63

 and 

CyThesaurus
64

. Instructions for installing these plug-ins are outlined in 

PROCEDURE Steps 2–4. 

MeV version 4.6 or higher: 

MeV or MultiExperiment Viewer
65

 is an integrated toolkit for 

clustering and visualizing large-scale genomic data. This protocol uses MeV to 

view modules as a hierarchically clustered heat map. Instructions for 

downloading and installing MeV can be found at http://www.tm4.org/mev/. 
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Data files: 

PanGIA requires both a physical and genetic network in a tab-delimited 

format (Box 1). Sample protein and genetic interaction networks are provided 

as examples to illustrate the protocol. The physical interaction network 

(Supplementary Data 1) was taken from a recent integration of two high-

throughput protein interaction screens
66

. Each physical interaction was 

assigned a Purification Enrichment score, with larger values representing 

greater confidence in the physical interaction. The genetic interaction network 

(Supplementary Data 2) was obtained from a large epistatic mini-array profile 

screen, which measured all possible genetic interactions among 743 genes 

involved in yeast chromosomal biology
2
. Each genetic interaction was 

assigned an S-score representing both the magnitude and confidence in the 

interaction. Additional supplementary information can also be accessed at 

http://prosecco.ucsd.edu/PanGIA/. Table 2.1 lists several public databases 

where protein and genetic interaction data can be downloaded for many 

different species. 

Additional data files: 

The file CYC2008_yeast_complexes.txt (Supplementary Data 3) 

contains a list of 408 protein complexes in the yeast S. cerevisiae hosted by the 

CYC2008 database
67,68

. This file illustrates an example of a Cytoscape node 

attribute file, which allows nodes in a network to be mapped to a particular 

attribute (Box 2). In this case, yeast genes are mapped to the various physical 
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complexes in which they participate. This file is used to demonstrate how a set 

of known biological modules can be used to train PanGIA to identify more 

biologically meaningful modules and intermodule relationships (covered in the 

'Training PanGIA' PROCEDURE subsection, Steps 27–29). Additionally, this 

file is used during the 'Module labeling' section of this protocol (Steps 30–32) 

to check if the identified modules correspond to known protein complexes. 

Table 2.2 outlines several different public databases from which an annotation 

set can be downloaded for a variety of species. 

 

Chapter 2.4: Procedure 

Chapter 2.4.1: Steps 1-18: Importing physical and genetic networks into Cytoscape 

1. Start Cytoscape. If Cytoscape is not yet installed on your computer, instructions 

for downloading and installing the latest version can be found at 

http://www.cytoscape.org/documentation_users.html. Cytoscape can be started by 

navigating to the directory in which it was installed and executing the file 

cytoscape.bat (Windows users) or cytoscape.sh (Linux and Mac OS X users). 

Critical step: PanGIA requires Cytoscape version 2.8.0 or higher. If your current 

installation of Cytoscape does not meet this requirement, download and install the 

latest version from http://www.cytoscape.org/. 

2. Next, install the required plug-ins by navigating to the Plug-ins menu and clicking 

on Manage Plug-ins. 
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3. Double-click on the Analysis folder located under the Available for Install folder 

and select the plug-in for PanGIA version 1.1 or later. Click Install. Accept the 

plug-in license agreement and then click Finish. 

4. Repeat the above step with BiNGO29 version 2.42 or later (located in the 

Functional Enrichment folder), EnhancedSearch30 version 1.2 or later (located in 

the Analysis folder) and CyThesaurus version 1.2 or later (located in the Network 

and Attribute I/O Folder). 

5. After installing the required plug-ins, start the PanGIA plug-in by navigating to the 

Plug-ins menu and selecting Module Finders right arrow PanGIA. 

6. After PanGIA has started, the PanGIA console will appear (Figure 2.3). The 

console is divided into three main panels: the Physical Network panel, where 

details regarding the physical network will be entered; the Genetic Network panel, 

where details regarding the genetic network will be entered; and the Advanced 

Options panel, which can be expanded by clicking on the triangle located next to 

the word 'Advanced'. This panel contains multiple advanced options for tuning the 

module-finding process. Four additional areas of interest are the Cytoscape canvas, 

which displays network visualizations and may be initially blank; the Data Panel, 

which is used to display node, edge and network attribute data; the Toolbar, which 

contains numerous command buttons; and the Network Browser, which can be 

accessed by clicking on the tab titled 'Network' (Figure 2.3). The Network Browser 

provides a list of networks currently available along with the number of nodes and 

edges in each network. 
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Figure 2.3: The PanGIA console. 

The Cytoscape canvas displayed the network data and may initially be blank. The Data Panel (bottom) 

is used to display node, edge and network attribute data. The Toolbar (top) contains numerous 

command buttons used for navigating the network. The PanGIA console (left) is divided into three main 

panels, including the Physical Network panel, the Genetic Network panel and the Advanced Options 

panel. The Network Browser may be accessed by clicking on the Network tab located to the left of the 

PanGIA console tab. 

 

7. Next, we import both a physical and a genetic network to be used in the analysis. 

Assemble the data in a tab-delimited format as described in Box 1. Users wishing 

to follow this protocol as a tutorial should download the Supplementary Data 1 

(Collins_physical_network_example.txt) and Supplementary Data 2 

(Collins_genetic_network_example.txt) and continue with Step 8. Critical step: 

PanGIA is designed to work with both quantitative and nonquantitative interaction 

data. However, any single network (either physical or genetic) must consist of a 

single type of interactions (i.e., either all quantitative interactions or all non-

quantitative interactions). 
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8. Click on the File menu, then select Import right arrow Network from Table 

(Text/MS Excel). The Import Network and Edge Attributes from Table window 

will appear. 

9. Click on the button titled 'Select File(s)' and specify the file containing the 

physical interaction network. A preview of the file should appear in the Preview 

panel located at the bottom. Select the column number representing the gene, 

which is the source node in the selection box titled 'Source Interaction'. Select the 

column number representing the target node in the Target Interaction selection 

box. If the example files (Supplementary Data 1 and Supplementary Data 2) are 

being used, the source and target nodes are, respectively, columns 1 and 2. 

10. Specify an interaction type that will enable Cytoscape to differentiate between 

protein and genetic interactions. Check the box titled 'Show Text File Import 

Options' and, under Network Import Options, enter a meaningful string character 

in the Default Interaction box (e.g., 'pi' or 'gi', depending on whether physical 

interactions or genetic interactions are being imported). 

11. Optional step: Use this step if quantitative interaction strengths are attached to the 

network. In the Preview panel launched in Step 9, left-click the column, which 

represents the quantitative attribute under the Preview panel, to enable the import 

of this attribute into Cytoscape. Right-click the same column, and, when prompted, 

type in an appropriate Attribute name (e.g., PScore or GScore, depending on 

whether the physical or genetic network is being imported); click OK. Make sure 

to note the name used. You will need it later when selecting the attribute to be used 
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in the training process. If the sample data are being used, the quantitative attribute 

for each interaction will be present in the third column. Critical step: The 

quantitative attribute provided should be either an integer (e.g., numbers such as 1, 

−2 or 514) or a floating point (e.g., numbers such as 2.343, −45.7687 or 74.3). 

12. Click the Import button located in the lower right-hand corner. The physical 

network should now appear in the Cytoscape canvas area. The title of the network 

should be the name of the file provided. 

13. Repeat Steps 8–12 to import the genetic network. 

14. Optional step: Steps 14–18 should be used if the physical and genetic networks use 

different gene identifier systems (e.g., UniProt ID versus Ensembl ID). PanGIA 

requires that the two networks use the same gene identifier system. To convert 

between two gene identifier systems, assemble an ID translation file into a tab-

delimited format as described in Box 3. This file should contain a map between the 

gene identifier system currently being used and the target gene identifier system. 

Users following this protocol as a tutorial using the sample data provided should 

skip to Step 19. 

15. Optional step: Start the CyThesaurus plug-in by clicking on the Plug-ins menu and 

then selecting CyThesaurus. A window titled 'CyThesaurus plug-in' should appear. 

16. Optional step: Configure the CyThesaurus plug-in to use the ID mapping file 

generated in Step 14 by clicking on ID Mapping Resources Configuration. A new 

window titled 'ID Mapping Source Configuration' will open up. In the left panel of 

this window, click on the folder titled 'Local Remote Files', which will bring up 
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another window titled 'File-based ID Mapping Resources Configuration'. Under 

the panel named 'Data source', click Select file to specify the location of the ID 

mapping file. Click on Open, then OK, and finally Close. 

17. Optional step: Select both the physical and genetic networks by clicking on them 

in the Available Networks panel, then click the right arrow button. The two 

networks will appear in the Selected Networks panel. 

18. Optional step: Choose the two different gene identifier names used in the genetic 

and physical network in the Source ID Type(s) selection box. In the Target ID 

Type selection box choose the target gene identifier you wish to map to. Finally, in 

the selection box titled 'All target ID(s) or first only?' select the option to keep the 

first target ID only. Next, click OK. A message will pop up indicating how many 

gene identifiers were successfully mapped. 

 

Chapter 2.4.2: Steps 19-23: Generating a module map using the PanGIA plug-in: 

selecting the physical and genetic network 

19. In the uppermost panel in the PanGIA console (Physical Network panel, see Figure 

2.3), select the physical network to be used in the Network selection box. The 

name of the physical network will correspond to the name of the file from which 

the network was imported. 

20. Select the genetic network to be used in the Network selection box located in the 

Genetic Network panel. Again, the name of the network will correspond to the 

name of the file from which it was imported. 
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21. Optional step: Use this step if quantitative interaction data are being used. In the 

Attribute drop-down menu located in the Physical Network panel, select the 

appropriate attribute name (i.e., the name assigned to the quantitative attribute for 

physical interactions from Step 11). Similarly, select the appropriate attribute 

name for genetic interactions in the Attribute drop-down menu located in the 

Genetic Network panel. 

22. Optional step: Use this step if quantitative interaction data are being used and no 

biological annotation data are present. Even without a set of known complexes or 

pathways, PanGIA can leverage the confidence values assigned to each interaction 

(physical or genetic) to identify modules and intermodule links that contain highly 

confident interactions. However, it is necessary to let PanGIA know how the 

quantitative information is scaled. In the Scale selection menu located in both the 

Physical Network and Genetic Network subpanels (Figure 2.3), choose one of the 

following options: 'lower'—this option indicates that smaller quantitative values 

(both positive and negative) represent more confident interactions; 'upper'—this 

option indicates that larger quantitative values (both positive and negative) 

represent more confident interactions; or 'none (prescaled)'—this option should 

only be chosen if the quantitative attribute attached to either the physical or genetic 

interactions already represents the likelihood that a given interaction falls within a 

known biological module. This option enables the user to perform the training 

procedure outside of PanGIA and use the subsequent results in the module search 

process. If the example files are being used, simply choose 'none'. During the 
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training process, PanGIA will automatically scale the score attached to each 

interaction to reflect how likely that interaction is to fall either within a module or 

between two modules. 

23. Optional step: Use this step if the gene identifiers in either the physical or genetic 

network were mapped to a new gene identifier. In the Advanced Options panel, 

select the target gene identifier to which genes in both networks were mapped to 

under the Node Identifiers subpanel. If no gene identifier mapping was performed 

or if the user is following this protocol with the sample data, skip to Step 24. 

 

Chapter 2.4.3: Steps 24-26: Generating a module map using the PanGIA plug-in: 

setting the module size and edge reporting parameters (optional) 

24. Optional step: PanGIA features a number of advanced options for tuning the 

search process. The size and number of modules returned by the search process 

can be controlled by changing the Module Size parameter (located in the 

Advanced Options panel). This can be done using the graphical slider in the 

Search Parameters panel. Dragging the slider to the right will result in fewer 

modules with larger average size, while dragging the slider to the left will result in 

more modules with a smaller average size (Figure 2.1b). The value of the Module 

Size parameter will be displayed in a text box to the right of the slider. It is 

recommended to leave the slider in its default position for the first run and to 

adjust it later if the results are unsatisfactory. For the sample data provided, set the 

Module Size parameter to −1.6 by moving the slider to the left. 
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25. Optional step: Often, the physical network being used covers a much larger set of 

proteins than those examined in the genetic interaction screen. In such a case, it is 

often useful to trim the physical network to include only proteins that are either 

present in the genetic network or are neighbors of such proteins within the physical 

network. This trimming is controlled by setting the 'network filter degree' 

parameter (located in the Advanced Options panel). A value of 0 will trim the 

physical network to only include nodes from the genetic network. Higher values 

represent the acceptable distance (through edges) separating a protein in the 

physical network from a node in the genetic network. If no trimming is desired, 

leave the box blank to prevent PanGIA from filtering any nodes. If the sample data 

file is being used, leave the network filter degree parameter at its default value of 

two. Critical step: The network filter degree parameter provided should be a 

positive integer (e.g., numbers such as 1, 2 or 10). 

26. Optional step: Use this step only if quantitative interaction data are present. Every 

intermodule link found by PanGIA can be assigned a P value, after which 

insignificant edges are filtered from the resulting module map. The significance 

threshold can be set by changing the position of the slider in the Edge Reporting 

subpanel. Dragging the slider to the left (toward 'Less') will result in a higher 

significance threshold and less intermodule links in the final map (Figure 2.1c). 

The P value cutoff will be displayed in a text box immediately to the right of the 

slider. If the example files are being used, move the slider to the left and set the 

threshold to 0.05. 
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Chapter 2.4.4: Steps 27-29: Generating a module map using the PanGIA plug-in: 

training PanGIA (optional) 

27. Optional step: Steps 27–29 should be used only if an annotation set is present. The 

training and module labeling steps require a list of annotations to be imported into 

Cytoscape. Assemble your list of annotations into the node attribute file format as 

described in Box 2. Import this file into Cytoscape by navigating to File right 

arrow Import right arrow Node Attribute.... Navigate to the appropriate file and 

click Open. If using the sample data, the file CYC2008_yeast_complexes.txt 

(Supplementary Data 3) should be used in this step. 

28. Optional step: In the Annotation subpanel under Advanced Options, select the 

annotation attribute that will be used during the training and labeling process. The 

name of the annotation set is specified in the node attribute file, which was 

uploaded in the previous step (see Box 2 for more details). If the sample data have 

been used, the attribute name will be CYC2008. Select the annotation set name in 

the selection box titled Annotation attribute. 

29. PanGIA can be trained to better identify module and intermodule links by 

examining actual examples of biological modules provided in the annotation set. 

To train PanGIA, simply check the box titled 'Train PanGIA' in the Annotation 

subpanel. If the sample data are being used, make sure this box is checked. 
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Chapter 2.4.5: Steps 30-32: Generating a module map using the PanGIA plug-in—

labeling modules (optional) 

30. Optional step: This step should only be used if an annotation set is present. 

PanGIA can label individual modules with the name of an annotation, if their 

member genes overlap with the genes belonging to that annotation (Figure 2.1c). 

To have PanGIA label modules, check the Label modules box in the Annotation 

subpanel (Figure 2.3). Next, specify the overlap threshold (defined here as the 

Jaccard index) in the Labeling Threshold text box. If the sample data are being 

used, set the Labeling Threshold to 0.2. 

31. Optional step: If desired, PanGIA can output a report containing a summary of the 

module-finding process. This includes a summary of the networks used by 

PanGIA, the results of the training process and a summary of the resulting module 

map. To have PanGIA output a report, specify an output file in the Report 

subpanel. After a successful search, an HTML file will be created, which can be 

viewed using any Internet browser. 

32. At this point, PanGIA is fully configured. The module search process can be 

initiated by clicking the Search button located at the bottom-right corner of the 

PanGIA console. Depending on the size of the network and the computer 

hardware, the module-finding process should take anywhere from 1 to 10 min. If 

the sample data are being used, the search process should take less than 1 min. 
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Chapter 2.4.6: Steps 33-35: Visualization of the module map using nested networks: 

navigating the module map 

33. Once the search process is complete, a window titled 'Module Overview Network' 

will appear in the Cytoscape Canvas panel (Figure 2.4a). This network is the 

resulting global module map. Each node represents an individual module 

composed of a set of genes densely interconnected by genetic and physical 

interactions. The area of a module scales according to the number of genes that it 

contains. Links between modules are composed of genetic interactions; the 

thickness of the interactions corresponds to the number of genetic interactions 

spanning the two modules. If the labeling option was chosen, modules that overlap 

with one of the annotations provided will be labeled as such (Figure 2.4a,b). 
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Figure 2.4: PanGIA output. 

(a) The module map returned by PanGIA. Each node is a separate module or complex and the area of 

the node reflects the number of genes contained within the module. (b) A zoomed-in portion (blue box) 

of the module map shown in a. If an annotation set was provided and the labeling option was chosen, 

modules which overlap substantially with an annotation are labeled as such (e.g., Rpd3S complex). 

Modules not overlapping with any of the provided annotations are either given a generic name (e.g., 

Module 24) or labeled with a gene name (e.g., [SAC3,THP1]) if the module contains only one or two 

genes. (c) A detailed view of a single module. Each node represents a single gene that was assigned to 

this module. Physical interactions are colored black, whereas genetic interactions are colored turquoise. 

(d) A detailed view for two modules. Edges are colored similarly to c. The layout algorithm seeks to 

physically separate each module. (e) The same detailed view of two modules as shown in d, except that 

positive genetic interactions are colored yellow, whereas negative genetic interactions are colored 

turquoise. (f) The same network as shown in e, but visualized as a hierarchically clustered heat map 

using MeV
65

. 
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34. You can zoom into the module map using the Zoom In button on the toolbar. This 

icon is displayed as a magnifying glass with a '+' symbol in the middle. You can 

zoom out by clicking on the Zoom Out button (magnifying glass with a '−' symbol 

in the middle). Alternatively, you can zoom in and out using the scroll wheel on 

the mouse. Scrolling up zooms into the area centered on the mouse pointer. 

Scrolling down zooms out on the area centered on the mouse pointer. 

35. To pan around the module map, two options are available—using the mouse 

(option A) or using the network browser (option B): 

A. Using the mouse: Click the middle button on the mouse (or the scroll 

wheel, if present) anywhere in the active network being viewed in the 

Cytoscape canvas and drag the mouse in the desired direction. 

B. Using the network browser: Navigate to the 'Network Browser' by clicking 

on the Network tab (Figure 2.3) located to the left of the PanGIA tab. In the 

bottom half of the Network Browser is a bird's-eye view of the active 

network being viewed in the Cytoscape canvas; a blue selection box 

highlights the particular region of the network currently being viewed. To 

pan around the network, click and hold the blue selection box and move it 

in the desired direction. 
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Chapter 2.4.7: Step 36: Visualization of the module map using nested networks—

identifying modules of interest 

36. To further investigate modules of interest (i.e., function enrichment or detailed 

visualization), the module or modules of interest must be selected. We describe 

three different options for doing so: direct selection of modules (option A), direct 

selection of intermodule links (option B) and search-based selection of modules 

(option C).  

A. Direct selection of modules: Select any single module by clicking on it the 

with the left mouse button. The selected module will turn yellow. Several 

modules can be selected by holding down and dragging the left mouse 

button to define a rectangular selection region. Alternatively, multiple 

modules may be selected by holding down the shift button and left-clicking 

on multiple modules. 

B. Direct selection of intermodule links: To select any edge, click on the edge 

with the left mouse button. The selected edge will turn red. Several edges 

can be selected by holding down and dragging the left mouse button to 

define a rectangular selection region. 

C. Search-based selection of modules: To find and highlight modules in the 

map that contain a gene of interest, enter the name of the gene into the 

Enhanced Search plug-in search box located in the command toolbar 
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(Figure 2.3). If your gene of interest falls within a module, that module and 

its intermodule links will be highlighted yellow. 

 

Chapter 2.4.8: Steps 37-45: Visualization of the module map using nested networks—

exploring modules of interest 

37. PanGIA returns numerous useful statistics or attributes regarding the modules 

identified, including module size, number of physical/genetic interactions among 

the genes in this module and so on. A complete list of attributes returned by 

PanGIA is provided in Table 2.3. The Data Panel (Figure 2.3) can display any/all 

of the attributes listed in Table 2.3. Select a module(s) of interest from the module 

map displayed in the Cytoscape Canvas as described in Step 36. When a single 

module or groups of modules have been selected in the Cytoscape Canvas, the 

selected modules will be listed in the Data Panel (Figure 2.3). Next, click on the 

Select Attributes button located in the upper left corner of the Data Panel. This will 

cause a list of attributes to appear; select which attributes you wish to view by 

clicking on their name. Exit this menu by clicking anywhere else. 
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Table 2.3: Description of Module-Level Attributes Returned by PanGIA. 

Attribute Name 
Attribute Type  

(Node or Edge) 
Description 

PanGIA Member Count Node Number of genes present in module 

PanGIA Module Physical 

Interaction Count 
Node 

Number of physical interactions present 

in this module. 

PanGIA Module Genetic Interaction 

Count 
Node 

Number of genetic interactions present in 

this module. 

PanGIA Source Size Edge Member count of the source module 

PanGIA Target Size Edge Member count of the target module 

PanGIA Genetic Interaction Count Edge 
Number of genetic interactions spanning 

the two modules connected by this edge 

PanGIA Physical Interaction Count Edge 
Number of physical interactions spanning 

the two modules connected by this edge 

PanGIA P-value Edge Significance of the inter-module link 

PanGIA Edge Score Edge 

The total score of genetic interactions 

spanning two modules minus the score of 

the physical interactions 

PanGIA Genetic Interaction Density Edge 
Represents the Edge Score divided by the 

Genetic Interaction Count.  

 

38. The Data Panel can also display detailed information regarding intermodule links 

in the map. Select one or more intermodule links of interest in the map as 

described in Step 36. In the Data Panel, click on the tab labeled Edge Attribute 

Browser. The panel will display the edges that have been selected. Similar to the 

modules, intermodule links identified by PanGIA also have several informative 

attributes as outlined in Table 2.3. These attributes can be viewed by selecting 

them through the Select Attributes menu (see Step 37). 
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39. To visually inspect a single module or a group of modules in greater detail, select 

the module(s) of interest as outlined in Step 36. Next, right-click any of the 

selected module(s) and choose PanGIA right arrow Create Detailed View. A new 

window will appear in the Cytoscape Canvas area containing the module (Figure 

2.4c) or modules (Figure 2.4d) of interest. In this detailed view, each node 

represents a single gene. Edges represent either physical interactions (colored 

black) or genetic interactions (colored turquoise). If quantitative genetic 

interaction data are used, positive genetic interactions will be colored yellow, 

whereas negative genetic interactions will be colored turquoise (Figure 2.4e). 

40. The network displayed in the detailed view can be laid out and manipulated 

similarly to the module map as described in Steps 33–35. Individual genes and 

interactions between genes can be selected similarly to the way in which modules 

are selected in the module map as described in Step 36. 

41. Optional step: Steps 41–44 should be followed if quantitative interaction data are 

present. An alternate means of visualizing a single module or a set of connected 

modules is via a hierarchically clustered heat map (Figure 2.4f). In this view, each 

row or column represents a single gene. Each cell in the matrix is colored to 

represent the quantitative value attached to the interaction between those two 

genes. For example, Figure 2.4f is a hierarchically clustered representation of the 

between-cluster model shown in Figure 2.4e. The colors in the heat map represent 

the genetic interaction confidence scores between the genes. PanGIA can output a 

matrix containing either the genetic interaction confidence scores or physical 
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interaction confidence scores between individual genes (option A), between all 

genes in a module or set of modules (option B): 

A. Output interaction matrix for a select number of genes 

a. Select the genes of interest from a detailed view as described in Step 

36. Right-click on any of the selected genes and select PanGIA right 

arrow Save Selected Nodes to Matrix File. 

b. Next, choose the desired quantitative attribute to be outputted (i.e., 

physical interaction confidence or genetic interaction confidence). The 

names of these quantitative attributes will be the ones assigned by the 

user in Step 11. 

c. A dialog box will appear prompting to you enter the output file name. 

Enter the file name and click Save. 

B. Output interaction matrix for all genes in a module or set of modules 

a. Select a module(s) of interest as outlined in Step 36. Right-click on any 

of the selected modules and select PanGIA right arrow Save Selected 

Nodes to Matrix File. 

b. Choose the desired attribute to be outputted. Enter the output filename 

and click Save. If you are using the Sample data, select the modules 

labeled 'Swr1p complex' and 'Set3p complex'. Right-click on one of 

these two modules and select PanGIA right arrow Save Selected Nodes 

to Matrix File right arrow GScore. 

c. Provide an appropriate file name and click Save. 
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42. Optional step: Start the MeV program. The Multiple Array Viewer window should 

pop up. Load the interaction matrix generated in the previous step by navigating to 

File right arrow Load Data. The Expression File Loader dialog window will 

appear. Click the 'Browse' button and specify the file containing the interaction 

matrix. A preview of the interaction matrix should appear in the Expression Table 

panel. Click the upper-leftmost interaction confidence score and then click Load. 

A heat map of the interaction matrix will appear in the Multiple Array Viewer 

window. 

43. Optional step: To hierarchically cluster the heat map, click on the Clustering tab 

located near the top of the window and then select Hierarchical Clustering. In the 

HCL: Hierarchical Clustering window that will open, check the boxes to Optimize 

Gene Leaf Order and Optimize Sample Leaf Order. This will ensure that genes 

with similar interaction profiles will be placed close to one another. Finally, click 

OK. 

44. Optional step: In the rightmost panel of the Multiple Array Viewer navigate to 

Analysis Results right arrow HCL (1) right arrow HCL Tree. A hierarchically 

clustered version of the heat map will appear. This image can be saved by clicking 

on File right arrow Save Image. Multiple output formats are available. If using the 

example data, the heat map should look similar to Figure 2.4f. 

45. In cases in which a module may contain one or more genes with an unknown 

function, it is useful to be able to query an external web-based database such as 

Ensembl or Entrez. Cytoscape features the ability to automatically connect to and 
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query external web databases. Right-click on a gene of interest within the Detailed 

View and navigate to the LinkOut menu. Numerous databases will be listed 

including Ensembl, KEGG, UniProt and Entrez. Select one of these databases. An 

Internet browser window will open automatically displaying any information the 

selected database has on the gene of interest. This feature provides an effective 

way to interrogate the function of unannotated genes. 

 

Chapter 2.4.9: Steps 46-49: Functional enrichment of the modules 

46. Start the BiNGO plug-in by selecting Plug-ins right arrow Start BiNGO. The 

BiNGO Settings window will appear. 

47. Select the module or modules of interest that will be examined for an enriched 

function. Create a Detailed View as outlined in Step 39. Select the genes contained 

in the module(s) that will be screened for an enriched GO function. To select all 

genes, simply press Ctrl + A simultaneously (or Command + A, if using Mac OS 

X). 

48. Type in a meaningful name for the set of genes being examined in the box titled 

'Cluster name'. Under the Select Organism/Annotation menu, choose the 

appropriate organism (for the sample data choose Saccharomyces cerevisiae). For 

the remaining options, the default values will typically suffice. Click Start BiNGO. 

Depending on the number of genes selected and the computer hardware, this 

process will take 5–10 min. 
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49. BiNGO will return an output window containing a list of GO terms that were 

found to be enriched along with their respective P values. BiNGO will also return 

a network of GO terms showing the inter-relationships between the various GO 

terms that were found to be enriched. The color of each term represents its 

significance of enrichment. 

 

Chapter 2.4.10: Step 50: Exporting your results 

50. Cytoscape enables multiple ways to export individual modules as well as the 

global module map. For a thorough explanation of each of these export methods, 

please refer to the online tutorial 

(http://www.cytoscape.org/documentation_users.html). Note: for general 

troubleshooting and timing advice, please refer to Tables 2.4 and 2.5. 

A. Export network as a graphics object 

a. The module map, as well as individual modules, can be exported as a 

graphics file. Numerous output formats are supported including PDF, 

JPEG, SVG, PNG and BMP. 

b. To export a network as a graphics object, make sure it is the active 

window and then select File right arrow Export right arrow Network 

View as Graphics.... 

c. In the Export Network View as Graphics dialog box, select the output 

file name and choose the desired output format. Click OK. 
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d. If the graphics object will be further manipulated in a graphics software 

package, such as Adobe Illustrator, we recommend exporting the 

network as a PDF file. Make sure to also check the box titled 'Export 

text as font', which will enable the manipulation of the text labels in the 

network image. 

B. Export modules as a tab-delimited file 

a. Each of the individual modules can be exported in a tab-delimited file, 

where each line consists of two parts separated by a tab character: the 

name of the module and the genes comprising the module. If multiple 

genes have been assigned to a module, each gene will be separated by 

the '|' character. 

b. To export the modules as a tab-delimited file, right-click on any 

module in the module map (i.e., the Module Overview Network in the 

Cytoscape Canvas) and select PanGIA right arrow Export right arrow 

Export Modules to Tab-Delimited file. 

c. Specify the output file in the dialog box that pops up and click Save. 

C. Export module map as a tab-delimited file 

a. The entire module map can be exported as a tab-delimited file, where 

each single line represents a single interaction between two modules. A 

single line is split into nine different parts separated by a tab character. 

The first two parts represent the source and target module. The 
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remaining seven parts represent various attributes describing each 

interaction as outlined in Table 2.3. 

b. To export the module map as a tab-delimited file, right-click on any 

module in the module map (i.e., the Module Overview Network in the 

Cytoscape Canvas) and select PanGIA right arrow Export right arrow 

Export Module Map to Tab-Delimited file. 

c. Specify the output file and click Save. 

D. Export the entire PanGIA session as a Cytoscape session file 

a. The entire PanGIA session can be saved to file. A session file contains 

all of the results of this entire workflow. This includes all networks that 

were loaded or generated (physical, genetic, module map, individual 

modules), any custom visualization styles that were employed and any 

enrichment results obtained from BiNGO. Saving to a session file will 

enable the user to continue the analysis at a later point. 

b. To save the entire PanGIA session to file, select File right arrow Save 

As. Type in the name of the output file and click Save. 

 

Chapter 2.5: Troubleshooting 

Troubleshooting advice for specific steps in the protocol can be found in Table 

2.4. In addition, we outline two of the biggest problems a user may face and potential 

solutions to these problems below: 
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Table 2.4: Troubleshooting Table 

Step Problem 
Possible 

Reason 
Solution 

1 

Executing cytoscape.bat 

(Windows) or 

Cytoscape.sh (Mac OSX, 

Linux) does not open 

Cytoscape. 

Java is not 

installed 

properly. 

Make sure Java Version 1.6.014 or higher is 

installed. Java can be downloaded at 

http://www.java.com 

21 

PanGIA fails to label any 

of the modules in the final 

module map. 

Threshold for 

labeling may 

be set too high. 

Set the labeling threshold slightly lower to 

allow more modules to be labeled. 

23 

The module search 

process is taking a very 

long time. 

Insufficient 

memory 

and/or 

processing 

power. 

Very large physical or genetic networks 

(>500,000 interactions) require a larger 

amount of memory than specified in the 

Equipment Setup section. See the Timing 

section for recommendations on the amount 

of memory and processing power required 

for larger networks. 

34 

The queried database fails 

to return any information 

on the selected gene(s) of 

interest. 

Mismatched 

gene 

identifiers. 

When querying an external database, the 

identifier of the selected gene(s) must be 

identical to the identifier used by the 

external database. For example, if querying 

the Ensemble database, selected genes need 

to use Ensembl identifiers in order to have 

any information returned. Use one of the 

recommended website to map gene 

identifiers if there is any discrepancy
26,27

.  

37 

BiNGO supplies an error 

message asking to ‘Please 

select one or more nodes.’ 

No genes were 

selected for 

examining 

functional 

enrichment. 

Visualize the module(s) of interest as 

outlined in Step 27. In the detailed view, 

select one or more genes of interest. All 

nodes (genes) can be selected in a detailed 

view by pressing ‘Ctrl’ (or ‘Cmd’ if using 

Mac OS X) + ‘A’ 

 

Module size issues: In some cases PanGIA may fail to return any modules or it 

may return modules that are either very large or very small (i.e., that consist of a single 

gene). The problem may be addressed by moving the Module Size slider bar in the 

Advanced Options panel (see Step 24). Dragging the slider to the right will generally 

result in fewer but larger modules. Dragging it to the left will have the opposite effect. 

Once the slider has been set to a new position, make sure the rest of PanGIA is 
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properly configured (Steps 19-31) and hit the Search button located at the bottom of 

the PanGIA console. 

Edge reporting issues: Another common issue is that the module map may 

contain either too few or too many intermodule links. PanGIA utilizes a sampling-

based procedure to assign P values to every intermodule link and only those links with 

a P value below a specified threshold are displayed in the final module map. If the 

threshold is set too high, this may cause a number of spurious interactions to appear in 

the module. On the other hand, if the threshold is set too low, this may cause PanGIA 

to filter out intermodule links of biological interest. This problem may be addressed by 

adjusting the threshold by moving the Edge Reporting slider bar in the Advanced 

panel (as described in Step 26). Moving the slider to the right will result in a higher 

threshold and subsequently a larger number of intermodule links in the final map. 

Moving it to the left will have the opposite effect. 

 

Chapter 2.6: Timing 

The time required to complete this protocol is almost entirely dependent on the 

size of the genetic and physical networks being analyzed. Table 2.5 charts the amount 

of time required for the module-search process (under default options) using networks 

of various sizes as input. For a physical and genetic network containing less than 

100,000 interactions each (~200,000 interactions total), PanGIA takes, on average, 

~10 min. 
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Table 2.5: Time Required to Run PanGIA on Networks of Various Sizes 

 
Number of 

interactions  

(Genetic + 

Physical) 

Run Time 

 

Processor: Dual Core, 32-bit (3.2 GHz) 

Memory: 2 gb 

Graphics Card Memory: 256 mb  

Processor: 8-core, 64-bit (2.8 GHz) 

Memory: 8 gb 

Graphics Card Memory: 256 mb 

10,000 <1 minute <30 seconds 

50,000 1 minute <1 minute 

100,000 2 minutes 1.5 minutes 

500,000 15 minutes 10 minutes 

1,000,000 Insufficient Memory 30 minutes 

 

Chapter 2.7: Anticipated results 

Using the sample physical (Supplementary Data 1) and genetic 

(Supplementary Data 2) interaction networks with PanGIA, configured as suggested in 

this protocol (module size parameter = −1.6, edge filtering parameter = 0.05, network 

filter = 2, training enabled, labeling threshold = 0.2), will produce a module map 

containing 82 modules and 164 intermodule links (Figure 2.4a). Overall, 34 of these 

modules overlap with known complexes provided in the file 

CYC2008_yeast_complexes.txt (Supplementary Data 3) and will be labeled 

accordingly. 

The resulting module map provides a wealth of hypotheses that can form the 

basis for follow-up experiments. Because PanGIA has been trained on databases of 

known complexes and pathways, it is likely that many modules will correspond to 

known protein complexes in the PanGIA results
19,30,58

. Other modules that do not 

correspond to prior knowledge are prime candidates for novel complexes or pathways. 

The module map produced using the sample data contains 21 modules (out of 82) with 



76 

  

two or more genes that do not overlap with any known S. cerevisiae physical 

complexes. One could test the members of these 21 modules for co-complex 

membership. An alternate strategy for revealing novel biological functions is to 

identify modules that are enriched for a common biological function, yet contain some 

genes that are not yet annotated to that particular function. For example, Module 24 

(Figure 2.4b) is enriched for genes involved in nuclear pore organization (P < 7.05 × 

10
−11

). However, two of the genes in Module 24, SEC31 and SEC16, are not annotated 

to this function. The logical hypothesis in this case would be that these two genes are 

involved in nuclear pore organization and that a deletion or knockdown of these genes 

should have an impact on this function. 

Intermodule links, on the other hand, predict functional overlap or synergy 

between the two connected modules
19,58

. For example, a large number of genetic 

interactions span the two modules corresponding to the Rpd3S complex and Swr1p 

complex (Figure 2.4d,e). The Swr1p complex has been well established as a chromatin 

remodeler, which deposits H2A.Z, a histone variant, onto chromatin. The function of 

the Set3p complex is less well understood. The intermodule link between the two 

complexes suggests that Set3p may have a role similar to that of the Swr1p complex. 

Indeed, a recent publication has provided evidence suggesting that this may be the 

case
69

. 
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CHAPTER 3: GENOME-WIDE METHYLATION PROFILES REVEAL 

QUANTITATIVE VIEWS OF HUMAN AGEING RATES 

 

Chapter 3.1: Summary 

The ability to measure human ageing from molecular profiles has practical 

implications in many fields, including disease prevention and treatment, forensics, and 

extension of life. In particular, ageing has been linked to changes in DNA methylation, 

but the nature and extent of this relationship are not well understood. Here, we 

investigate the changes in genome-wide methylation patterns as people age, using 

quantitative measurements at more than 450,000 CpG markers from the whole blood 

of 679 human individuals, aged 19 to 101. We find two distinct signatures of ageing in 

the data and show that these signatures are reflected in the transcriptome. Building on 

these results, we formulate a predictive model for the rate at which an individual’s 

methylome ages, and we show that this rate is impacted by gender and genetic 

variants. Our ageing model highlights specific components of the ageing process and 

provides a quantitative read-out for studying the role of methylation in age-related 

disease. 

 

Chapter 3.2: Introduction 

Not everyone ages in the same manner. It is well known that women tend to 

live longer than men, and lifestyle choices such as smoking and physical fitness can 

hasten or delay the ageing process
70,71

. These observations have led to the search for 

molecular markers of age which can be used to predict, monitor, and provide insight 

into age-associated physiological decline and disease. One such marker is telomere 
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length, a molecular trait strongly correlated with age
72

 which has been shown to have 

an accelerated rate of decay under environmental stress
73,74

. Another marker is gene 

expression, especially for genes that function in metabolic and DNA repair pathways 

which are predictive of age across a range of different tissue types and organisms
75–77

. 

A growing body of research has reported associations between age and the 

state of the epigenome— the set of modifications to DNA other than changes in the 

primary nucleotide sequence
78

. In particular, DNA methylation associates with 

chronological age over long time scales
79–83

 and changes in methylation have been 

linked to complex age-associated diseases such as metabolic disease
84

 and cancer
85,86

. 

Studies have also observed a phenomenon dubbed “epigenetic drift”, whereby the 

DNA methylation marks in identical twins increasingly differ as a function of age
81,87

. 

Thus, the idea of the epigenome as a fixed imprint is giving way to the model of the 

epigenome as a dynamic landscape that reflects a variety of chronological changes. 

The current challenge is to determine whether these changes can be systematically 

described and modeled to detect different rates of human ageing, and to tie these rates 

to related clinical or environmental factors. 

The mechanisms that drive changes in the ageing methylome are not well 

understood, although they have been attributed to at least two underlying factors
87,88

. 

First, it is possible that environmental exposure will over time activate cellular 

programs associated with consistent and predictable changes in the epigenome. For 

example, stress has been shown to alter gene expression patterns through specific 

changes in DNA methylation
89

. Alternatively, spontaneous epigenetic changes may 
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occur with or without environmental stress, leading to fundamentally unpredictable 

differences in the epigenome between ageing individuals. Spontaneous changes may 

be caused by chemical agents that disrupt DNA methyl groups or through errors in 

copying methylation states during DNA replication. Both mechanisms lead to 

differences between the methylomes of ageing individuals, suggesting that 

quantitative measurements of methylome states may identify factors involved with 

slowed or accelerated rates of ageing. 

To better understand how the methylome ages and to determine whether 

human ageing rates can be quantified, we initiated a project to perform genome-wide 

methylomic profiling of a large cohort of individuals spanning a wide age range. 

Analysis of these data reveals two distinct signatures of ageing and suggests that age-

associated changes in the methylome lead to changes in transcriptional patterns over 

time. Based on these findings, we construct a predictive model of ageing rate which 

we show is influenced by gender and specific genetic variants. These findings are 

replicated in a second large cohort. 

 

Chapter 3.3: Results 

Chapter 3.3.1 Global data on the ageing methylome 

We obtained methylome-wide profiles for a mixed population of 397 

Caucasian and 91 Hispanic individuals. Samples were taken as whole blood and 

processed using the Illumina Infinium HumanMethylation450 BeadChip
90

 assay, 

which measures the methylation states of 485,577 CpG markers. Methylation was 
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recorded as a fraction between zero and one, representing the frequency of 

methylation of a given CpG marker across the population of blood cells taken from a 

single individual. Conservative quality controls were applied to filter spurious markers 

and samples (Methods). The distribution of methylation was bimodal, with most 

markers methylated at either very high or very low levels across all ages (Figures 

3.1a,b), which is consistent with the findings of previous studies of the methylome
91

. 

The resulting data set represents the largest and highest-resolution collection of 

methylation data produced for the study of ageing, providing an unprecedented 

opportunity to understand the role of epigenetics in the ageing process. The complete 

methylation profiles are available at the Sage Bionetworks Commons 

(http://www.sagebase.org/commons/repository.php). 
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Figure 3.1 A high-density methylation map of human ageing 

a, A density plot of methylation fraction values across all markers and individuals. Markers tend to be 

either predominantly methylated or not. b, A histogram of the age distribution for all individuals. c, A 

heat map of the top 1000 age-associated methylation markers, sorted by the magnitude of association 

(regression coefficient). The individuals are ordered youngest to oldest. d, An example association map 

for the gene FHL2. A strong ageing association is shown for several markers (red: ˗log10(p-value)) at a 

CpG island in the center of the gene (black: average methylation fraction). 
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Chapter 3.3.2 Two signatures of ageing 

We were able to identify a robust ageing signal in the methylome data at high 

resolution, with at least 65,473 (14%) of the markers having significant associations 

between methylation fraction and age (Figure 3.1c, FDR < 0.05 by F-Test). One 

example is the gene Four and a Half LIM Domains 2 (FHL2), in which several strong 

age-associated methylation markers were identified within a single CpG island (an 

area enriched for CpG sites), coincident with an internal promoter (Figure 3.1d). This 

finding sheds light on previous work tying FHL2 to ageing and tumorigenesis
92,93

. 

Genes with nearby age-associated markers were enriched for functions in epigenetic 

regulation, such as sequence-specific DNA binding and cell differentiation (Methods, 

Supplementary Table 1). Interestingly, these genes were depleted for key DNA 

replication functions, including cell cycle arrest and DNA repair, suggesting that these 

essential functions are less tolerant to, or protected from, ageing-related changes in 

methylation. As a positive controls on this analysis, we observed that the age-

associated markers included most CpG sites found to be associated with age in two 

previous studies which surveyed approximately 5% of those covered by the present 

data set
82,83

 (significance of overlap P < 10
˗98

, P < 10
˗34

, by Fisher exact test). 

 In addition to age-associated changes in methylation fraction, we also observed 

evidence for a second ageing signature: many methylation markers become less stable 

with age, such that their variance in methylation fraction is greater among older 

individuals than younger individuals. To quantify this effect, we computed the 

deviance of each marker value as its squared-distance from the expected population 
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mean (Figure 3.2a, Methods). Then, in addition to testing for markers whose 

methylation fraction changes with age (Figures 3.2b,c), we were able to test for 

markers whose deviance changes with age (Figures 3.2d,e)
94

. Increasing deviance was 

a widespread phenomenon—we identified 10,083 markers for which the deviance was 

significantly associated with age (FDR < 0.05), of which 10,056 (99.7%) represented 

increased rather than decreased deviance (Figure 3.2e). While there was some 

concordance between the two signatures of ageing (association with methylation 

fraction versus association with methylation deviance, Spearman R = 0.31), the 

changes in methylation fraction were far more numerous and there were 2996 markers 

with an increase in deviance with no change in mean (Supplementary Figure 1). Thus, 

these two signatures— in which the methylation fraction and/or deviance associate 

with age— can act independently, raising the question of whether they reflect one or 

more than one ageing process. 
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Figure 3.2 Methylation marker trends with age 

a, Methylation fraction values for are shown for the marker cg24724428. Over any subset of the cohort, 

we consider two group methylation statistics: the mean and variance. Marker variance is a measure of 

the mean methylation deviance, which is defined as the squared difference between an individual’s 

methylation fraction and their expected methylation fraction. b, A density plot showing the change in 

mean methylation with age for the marker cg24724428. Young and old groups are based on the top and 

bottom 10%. c, A histogram of the significance of association between the methylation fraction of all 

markers and age. P-values are signed such that positive values represent an increase of methylation with 

age. Markers which exceeded the FDR < 0.05 threshold are grouped into the most extreme bins. d, A 

density plot showing the change in methylation deviance with age for the marker cg24724428. e, A 

histogram in the same form as ‘d’, of the significance of association between the methylation deviance 

of all markers and age.  
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One way to conceptualize the two ageing signatures is in terms of Shannon 

Entropy, or loss of information content in the human methylome over time
95

. An 

increase in entropy of a CpG marker means that its methylation state in the cell 

population becomes less predictable over time, i.e. its methylation fraction tends 

towards more moderate values (Methods). Indeed, over all markers associated with a 

change in methylation fraction in the sample cohort, 81% tended towards a 

methylation fraction of 50% (Figure 3.3a, Binomial P ~ 0, Supplementary Table 2). 

The corresponding increase in methylome entropy with age was highly significant (R 

= 0.17, p = 1.3x10
˗4

, Figure 3.3b). This suggests that the ageing methylome is 

characterized by increased heterogeneity across cells, possibly due to stochastic 

changes to the methylome or the composition of the cell population. 
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Figure 3.3 Methylome-wide trends with age 

a, All methylation fraction values for increasing markers (red) and decreasing methylation markers 

(green) were regressed against age. The darkest colour represents the median and the bounds represent 

the 25% and 75% quantile. Both tend to converge to moderate methylation fraction values. b, 

Corresponding to 50% methylation, methylome entropy increases with age. c, An aggregate genomic 

map of the methylation fraction for 27,176 CpG islands (black). The ageing coefficient relating 

methylation fraction to age is shown in the same region (green). Color bars indicating the island and 

shore regions represent 75% confidence intervals. d, The same CpG island map (black), shown with the 

average methylation deviance in the same region (green). 

 

Chapter 3.3.3 Correspondence with the transcriptome 

 As changes in methylation have been directly linked to changes in gene 

expression
96

, we were interested in whether the two ageing signatures were mirrored 
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in the human transcriptome. For this purpose, we obtained and analyzed publicly-

available gene expression profiles from the whole blood of 488 individuals spanning 

an age range of 20 to 75
97
. We found strong evidence for both signatures: i.e., genes 

whose expression associates with age (412 genes, FDR < 0.05) and increasing 

expression deviance (Binomial P < 10
˗276

, Methods). Furthermore, genes with age-

associated expression profiles were also more likely to have nearby age-associated 

methylation markers (P < 0.01, Supplementary Table 3). Thus, the age-associated 

gene expression patterns are at least partially explained by age-associated changes in 

the methylome. These findings are supported by previous studies within ageing mouse 

populations, which reported a loss of molecular coordination with age in murine gene 

expression data
98,99

. 

A link between the transcriptome and the methylome was further supported by 

the incidence of age-associated methylation markers within CpG islands. CpG islands 

are often coincident with gene promoters and are un-methylated to permit gene 

expression; increases in methylation of these regions have been associated with ageing 

and cancer
79,100

. Indeed, we found that CpG islands mapped to highly significant 

increases in methylation fraction with age (Figure 3.3c, Supplementary Table 2). 

Moreover, we found that the methylation states of CpG islands were highly stable 

across individuals, as indicated by a sharp reduction in methylation deviance 

compared to other regions of the methylome (Figure 3.3d). These findings indicate 

that the methylation states of CpG islands are perhaps more tightly regulated than has 

been appreciated, such that very small changes to CpG islands are indicative of 
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advanced age. We further investigated the boundaries of CpG islands, known as 

shores. Contrary to the CpG islands, we observed a 23% increase of deviance in the 

shores (Figure 3.3d). This supports recent literature that describes the shores as active 

regulatory elements
101

, which may be more susceptible to variation between 

individuals. 

 

Chapter 3.3.4 A predictive model for the ageing methylome 

Given the reproducible signal of age present in the methylome, we used a 

penalized multivariate regression model
102

 and bootstrap (Methods) to build a 

predictive model of ageing that included both methylomic and clinical parameters 

such as gender and Body Mass Index (BMI) (Figure 3.4a). The optimal model selected 

a set of 67 methylation markers which were highly predictive of age (Figure 3.4a, 

Supplementary Table 4). The accuracy of the model was high, with a correlation 

between age and predicted age of 96% and an error of 3.8 years (Figure 3.4b). Nearly 

all markers in the model lay within or near genes with known functions in ageing-

related conditions including Alzheimer’s disease, cancer, tissue degradation, DNA 

damage, and oxidative stress. By way of example, two markers lay within the gene 

somatostatin (SST), a key regulator of endocrine and nervous system function
103

. SST 

is known to decline with age and has been linked to Alzheimer’s disease
104

. As a 

second example, five model markers lay within the transcription factor KLF14, which 

has been called a ‘master regulator’ of obesity and other metabolic traits
105

. Given the 
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links between ageing, longevity, and metabolic activity
106,107

, it is not surprising that 

several of our model markers are implicated in obesity and metabolism.  
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Figure 3.4 Model predictions and clinical variables 

a, A flow chart of the data (green boxes) and analyses (red ovals) used to generate ageing predictions 

(blue boxes). b, A comparision of predicted and actual ages for all individuals based on the full ageing 

model. c, Out-of-sample predictions for individuals in the validation cohort. d, Apparent methylomic 

ageing rate (AMAR) for each individual, based on the full ageing model without clinical variables. The 

distribution of ageing rates shows faster ageing for men than women. 
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 To validate this model, we sought and obtained an additional 180 independent 

samples consisting of 39 Caucasian and 141 Hispanic individuals. These samples were 

processed in the same manner as the original samples, then used to predict age based 

on the original model (i.e., as trained on the original cohort). The predictions were 

highly accurate, with a correlation between age and predicted age of 91% and an error 

of 4.6 years (Figure 3.4c). The validation cohort also supported our findings for the 

two signatures of ageing. Of the markers with an age-associated change in methylation 

fraction in the primary cohort, 20,005 (31%) were supported in the validation cohort 

(P < 0.05, Supplementary Figure 2). The new data also reproduced the trend for 

increasing deviance (Binomial P ~ 0, Methods), the trend towards more moderate 

methylation fractions with age (Binomial P < 10
˗116

), and the corresponding increase 

in methylome entropy (P = 5x10
˗3

). Finally, the validation cohort reproduced our 

earlier finding that CpG islands had increased methylation with age (Kruskal-Wallis 

test P < 10
˗226

) with only half the deviance of other regions, and increased deviance at 

the shores. 

 

Chapter 3.3.5 Methylome ageing rate associations 

While the ageing model is able to predict age with high accuracy, it is perhaps 

just as valuable as a tool for identifying individuals who do not follow the expectation. 

For example, Figure 3.4b highlights two individuals which appeared to age at different 

rates than the rest of the population. These deviations are possibly a combination of 

statistical or measurement error and biological differences which reflect diversity in 
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methylome ageing rates. To examine this, we sought to use the ageing model to 

quantify each individual’s apparent methylomic ageing rate (AMAR), defined as the 

ratio of their predicted age, based on methylation data, to their chronological age. 

Using AMAR we tested whether the model could distinguish ageing rates for possibly 

relevant clinical factors. We found that gender and BMI had significant contributions 

to ageing rate (F-test, P = 3 x 10
˗9

, P = 2 x 10
˗3

, Methods). In our cohort, the 

methylome of men appear to age approximately 4% faster than women (Figure 3.4d) 

and each point of BMI increases the ageing rate by 0.2%. We note that the distribution 

of ages for men and women were very similar (P > 0.1, KS-test). However, as BMI 

has an established correlation with age, we tested for the contribution of age-adjusted 

BMI, which was not found to significantly influence ageing rate. Likewise, the 

validation cohort confirmed the increased ageing rate for men (P < 0.01), but was 

inconclusive for BMI (P > 0.05). 

As genetic associations have been previously reported with human longevity 

and ageing phenotypes
108–111

, we examined whether the model could distinguish 

ageing rates for individuals with different genetic variants. For this purpose, we 

obtained 15x whole-exome sequences for 252 of the individuals in our methylome 

study. After sequence processing and quality control, these sequences yielded 10,694 

common single nucleotide variants across the population (Methods). As a negative 

control, we confirmed that none of these variants were significant predictors of age, 

which is to be expected since the genome sequence is considered to be relatively static 

over the course of a lifetime. On the other hand, one might expect to find genetic 
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variants that modulate the methylation of age-associated markers, i.e. methylation 

quantitative-trait loci or meQTLs
112

. Testing each genetic variant for association with 

the top age-associated methylation markers, we identified 248 meQTLs (Methods, 

FDR < 0.05, Figure 3.5a). For validation, we selected 15 genetic variants— 

corresponding to 37 meQTLs— to test in an additional 325 individuals. Analysis of 

this validation cohort found seven genetic variants in seven corresponding meQTLs to 

be significant in the validation cohort (FDR < 0.05, Supplementary Table 5). While 

some of these SNPs acted in a cis relationship, we confirmed that none of these 

methylation markers had observed genetic variants which directly modified the CpG 

site. 
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Figure 3.5 Genetic effects on methylomic ageing 

a, We surveyed genomic variants for an association with age-associated methylation markers. 15 

genetic variants, corresponding to 37 meQTLs, were chosen for validation. Of these, 7 were significant 

in the validation cohort and two showed an association with AMAR. b, A plot of the trend between the 

methylation marker cg27367526 (STEAP2) and age. The state of variant rs42663 (GTPBP10) causes an 

offset in this relationship. c, A second example for cg07906193 and rs17152433 (CTBP2, ZRANB1). 

 

The methylation marker cg27193080 was one of those found to be 

significantly associated with age (P < 10
˗19

), and its methylation fraction was found to 
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be influenced by the SNP rs140692 (P < 10
˗18

) (Figure 3.5b). This meQTL was 

particularly interesting as both the SNP and the methylation marker mapped to the 

gene methyl-CpG binding domain protein 4 (MBD4), one of the few known genes 

encoding a protein that can bind to methylated DNA. This meQTL thus captures a cis-

relationship in which rs140692 influences the methylation state of MBD4. That 

MBD4 plays a role in human ageing is supported by previous work linking MBD4 to 

DNA repair, as well as work showing that mutations and knock-downs of MBD4 lead 

to increased genomic instability
113,114

. 

Of these validated meQTLs, two were identified that had a statistically-

significant association with ageing rate (AMAR, FDR < 0.05, Figure 3.5b,c). One is 

the genetic marker rs17152433, which has a cis effect on the methylation marker 

cg07906193 near the genes CTBP2 and ZRANB1. Variants in this region have been 

previously shown to associate with increased incidence of prostate cancer
115

. The 

second genotype found to influence AMAR was rs42663 in the gene GTPBP10, which 

was associated with cg27367526 in the gene STEAP2. STEAP2 is known to play a 

role in maintenance of iron and copper homeostasis— metals which serve as essential 

components of the mitochondrial respiratory chain
116

. Studies have shown that 

perturbations of iron concentrations can induce DNA damage through oxidative stress 

in mammalian cells
117,118

. These meQTLs represent genetic variants that appear to 

broadly influence the ageing methylome and may be good candidates for further age-

associated disease and longevity research. 
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Chapter 3.4 Conclusions 

In this study we have shown that genome-wide methylation patterns represent 

a remarkably strong and reproducible biomarker of ageing. These patterns enable a 

quantitative model of the ageing methylome which demonstrates high accuracy and an 

ability to discriminate relevant factors in ageing, including gender and genetic 

variants. The ability to accurately measure age from molecular biomarkers has many 

potential practical implications, from health assessment and prevention of disease to 

forensic analysis. Similar to the effect of gender in this study, the identification of 

additional biometric or environmental factors that influence AMAR, such as smoking, 

alcohol consumption, or diet, will permit quantitative assessments of their impacts on 

health and longevity. A useful example would be to periodically assess the rate of 

ageing of an individual using AMAR and determine if diet or environmental factors 

can accelerate or retard the ageing process. As models of human ageing improve, it is 

conceivable that biological age, as measured from molecular profiles, might one day 

supersede chronological age in the clinical evaluation and treatment of patients. 

 

Chapter 3.5 Methods 

Chapter 3.5.1 Sample collection and test procedures 

This study was approved by the institutional review boards of the University of 

California, San Diego and the University of Southern California. All participants 

signed informed consent statements prior to participation. Blood was drawn from a 

vein in the patient's arm into blood collection tubes containing the anticoagulant acid 
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citrate dextrose. Genomic DNA was extracted from the whole blood using a Qiagen 

FlexiGene DNA Kit and stored at ˗20 degrees Celsius. Raw methylation values for the 

autosomal chromosomes were obtained using the Illumina Infinium 

HumanMethylation450 BeadChip
90

 assay. Markers with a detection p-value greater 

than 0.01 were set to missing. Two samples and 1481 markers were removed as they 

had greater than 5% missing values. The remaining missing values were imputed with 

the KNN approach (10 nearest markers) using the R “impute” package
119

. We 

performed exome sequencing on 258 of these samples, using a solution hybrid 

selection method to capture DNA followed by parallel sequencing on an Illumina 

HiSeq platform. Genotype calls were made using the SOAP program
120

. Calls with a 

quality score less than twenty were set as missing. Only variants which had fewer than 

10% missing calls, were within Hardy-Weinberg equilibrium (P <= 10
˗4

), and of a 

common frequency (> 5%) were retained (10,694). Individuals with less than 20% 

missing calls (252) were retained. Additional genotyping was done with multiplex 

PCR followed by MALDI-TOF mass spectrometry analysis using the 

iPLEX/MassARRAY/Typer platform.  

 

Chapter 3.5.2 Methylation quality control 

We used principal component (PC) analysis to identify and remove outlier 

samples. We converted each sample into a z-score statistic, based on the squared 

distance of its 1st PC from the population mean. The z-statistic was converted to a 

false-discovery rate using the Gaussian cumulative distribution and the Benjamini-
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Hochberg procedure
121

. Samples falling below an FDR of 0.2 were designated at 

outliers and removed. This filtering procedure was performed iteratively until no 

samples were determined to be an outlier. A total of 10 samples were removed in this 

manner. 

 

Chapter 3.5.3 Computing methylation deviance 

Methylation deviance was computed using the following approach: First, we 

removed the methylation trends due to all given variables, including age, gender, and 

BMI by fitting a linear model for each marker and acting only on the residuals. Next, 

we identified and removed highly non-normal markers based on the Shapiro-Wilk test 

(P < 10
˗5

). To allow for naturally occurring extreme deviations in the normality test, 

we first estimated the outliers of each marker based on the FDR of a z-score statistic. 

If any samples had an FDR less than 0.4, we ignored them and repeated the outlier 

detection until no outliers were detected. Finally, the deviance of each remaining 

marker was computed as the square of its adjusted methylation value. 

 

Chapter 3.5.4 Association testing 

Association tests were performed using nested linear models and the F-test. As 

methylation levels may be sensitive to a number of factors, we included several 

covariates, including gender, BMI, diabetes status, ethnicity, batch, P05 red, and P05 

green. P05 red and green represent the number of detected methylation values found in 

the red and green channels for each individual at a p-value cutoff of 0.05. Tests for 



100 

  

whole-methylome changes in deviance were computed using the binomial test, based 

on the number of markers with a positive rather than negative coefficient. 

 

Chapter 3.5.5 Annotation enrichment 

Methylation marker annotations for CpG islands and GO terms were obtained 

from the IlluminaHumanMethylation450k.db database from Bioconductor
122

. 

Annotation enrichment tests were performed using the two-sided Fisher’s exact test. 

 

Chapter 3.5.6 Entropy analysis 

Entropy statistics were computed on methylation data adjusted for covariates 

and filtered for normality (see Computing Methylation Deviance). We computed the 

normalized Shannon entropy
95

 of an individual’s methylome according to the formula: 

        
 

       
 
  

                                   

 

 

where MFi is the methylation fraction of the i
th

 methylation marker and N is the 

number of markers. 

 

Chapter 3.5.7 Mapping CpG islands 

Genomic positions and marker annotations for 27,176 CpG islands were 

obtained from the IlluminaHumanMethylation450k.db database from Bioconductor
122

. 

We obtained the positions for markers within each island with at least four markers 
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(25,028), as well as the nearest 100 markers upstream and downstream. These 

positions were then combined with the marker value of interest (i.e. methylation 

fraction, ageing coefficient, deviance) to produce a genomic map for each island and 

the surrounding region. After normalizing each map to the center of the island, we 

averaged the values at each relative genomic point across all islands to produce a 

common map. 

 

Chapter 3.5.8 Ageing model 

The diagnostic model of age was made using a multivariate linear model 

approach based on the elastic net algorithm implemented in the R package ‘glmnet’
123

. 

Optimal regularization parameters were estimated using cross-validation. Using 

bootstrap analysis (N = 500), we included only markers in the final model that were 

present in more than half of all bootstraps. Covariates were included in the model and 

were exempted from penalization (regularization). P-values are based on a least-

squares model built using the same terms and drop-one F-tests. We considered that the 

significance of gender and BMI might be explained through simple age correlations. 

This was not the case for gender, as it was not associated with age (Kruskal-Wallis test 

P > 0.5). BMI was found to lose significance in the model when first adjusted to 

account for age. AMAR was computed using the ageing model, but without the 

variables gender, BMI, and diabetes status. The coefficients were not changed. AMAR 

was then taken as an individual’s predicted age divided by her or his actual age. 
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Chapter 3.5.9 Genetic variant associations 

Each genetic variant was tested for association in an additive model with the 

top ageing associated methylation markers using nested linear models and the F-test. 

The same covariates used for age associations were included. Variant positions were 

based on the human reference build GRCh37 and gene annotations were based on 

chromosomal proximity within 20kbp. 

 

Chapter 3.6 Methods summary 

Methylation values were obtained using the Illumina Infinium 

HumanMethylation450 BeadChip
90

 assay
119

. Exome sequencing was performed by 

parallel sequencing on an Illumina HiSeq platform. Genotype calls were made using 

the SOAP program
120

. Association tests were performed using nested linear models 

and the F-test. We included the covariates gender, BMI, diabetes status, ethnicity, 

batch, source location, and assay summary statistics. Multiple-hypothesis corrections 

were performed using the Benjamini Hochberg procedure
121

. Methylation deviance 

was computed in three steps: First, we removed the trends due to all given variables, 

including age, gender, BMI, and batch by fitting a linear model for each marker and 

acting only on the residuals. Next, we identified and removed highly non-normal 

markers. Finally, the deviance of each marker was computed as the square of its 

residual methylation value. Methylation marker annotations for CpG islands and GO 

terms were obtained from the IlluminaHumanMethylation450k.db database
122

. 

Annotation enrichment tests were performed using the two-sided Fisher’s exact test. 
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Gene annotations were based on chromosomal proximity within 20kbp. Genomic 

positions for methylation markers were combined with marker values of interest (i.e. 

methylation fraction, ageing coefficient, deviance) to produce a genomic map for each 

CpG island. After normalizing each map to the center of the island, we averaged the 

values across all islands to produce a common map. Shannon entropy
95

 statistics were 

computed on methylation data adjusted for covariates and filtered for normality. The 

diagnostic model of age was built using the elastic net algorithm
123

. Regularization 

parameters were estimated using cross-validation and bootstrap analysis. Covariates 

were included in the model and were exempted from penalization. P-values are based 

on a least-squares model built using the same terms. 

 

Chapter 3.7 Supplementary information 

Supplementary information is linked to the online version of the paper at 

www.nature.com/nature. 
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