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Symposium

Symposium: What Does the Microbiome Tell Us about
Prevention and Treatment of AD/ADRD?
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Alzheimer’s disease (AD) and Alzheimer’s disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative
diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at
the 2024 Society for Neuroscience meeting which emphasized the gut microbiome’s role in AD pathogenesis by influencing brain
function and neurodegeneration through the microbiota–gut–brain axis. This emerging evidence underscores the potential for
targeting the gut microbiota to treat AD/ADRD.

Introduction
Alzheimer’s disease and Alzheimer’s disease-related dementias
(AD/ADRDs) are among the leading causes of death in the
United States, creating a significant health, economic, and socie-
tal burden for patients, caregivers, and society at large (Wong,
2020). AD/ADRDs are late onset, multifactorial, progressive,
and terminal neurodegenerative diseases characterized by
impaired cognition and behavior, memory loss, and dementia.
The pathophysiological hallmarks of AD include the aggregation
and spread of hyperphosphorylated tau proteins and amyloid-
(Aβ) plaques accumulation in the brain, which lead to neuroi-
nflammation, neuronal loss, and neurodegeneration (Ballatore
et al., 2007; Sexton et al., 2024). AD and ADRDs—including
frontotemporal dementia (FTD), Lewy body dementia, and other
brain disorders—share many cognitive and physiological pathol-
ogies. These characteristics are observed beyond AD, represent-
ing a host of tau-mediated neurodegenerative disorders and

dementias. Despite its significant health impact, clinical rele-
vance to a broad scope of disorders, and prolific research invest-
ment, AD etiology is not completely understood.

Genes such as apolipoprotein E (APOE) and triggering recep-
tor expressed on myeloid cells 2 (TREM2) are risk factors for
late-onset AD; however only a small number of AD cases are
caused by autosomal dominant mutations in amyloid precursor
protein (APP), presenilin (PSEN) 1/2 (Guerreiro et al., 2013;
Perkovic and Pivac, 2019). Most cases are believed to result
from interactions between the genome and the exposome—non-
heritable environmental factors such as diet, microbes, lifestyle,
socioeconomic status, and environmental exposures (Tamiz
et al., 2022). Peripheral influences on brain health are important
to understand AD complexity and heterogeneity toward the
development of effective treatments. Symbiotic microbes live in
the gastrointestinal tract and are referred to as the gut micro-
biota. The gastrointestinal tract hosts ∼70% of the body’s
immune cells, >100million enteric neurons, and∼40 trillion bac-
teria (Yoo and Mazmanian, 2017). This colocalization of a myr-
iad of immune, neural, and bacterial cells creates complex
interactions regulating human health across all systems, includ-
ing the central nervous system (Schroeder and Backhed, 2016).
The bidirectional communication between the gastrointestinal
tract and the brain suggests that the gut microbiota impacts brain
function and influences neurodegenerative processes in AD
(Erny et al., 2015; Thion et al., 2018; Kling et al., 2020; Spichak
et al., 2021; Chandra et al., 2023). Furthermore, genetic overlap
between AD and gastrointestinal disorders suggests an interac-
tion between the gut microbiome and genetics in AD pathogen-
esis (Adewuyi et al., 2022). A better mechanistic understanding
of how themicrobiome influences AD/ADRD onset and progres-
sion is leading toward new molecular targets for drug develop-
ment and the potential use of pre- and probiotics as an added
therapeutic intervention.
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This review describes the current understanding of how the
microbiome, genetics, and the nervous system interact to influ-
ence AD, neurodegeneration, and neuroinflammation. Talks
presented at the 2024 Society for Neuroscience meeting high-
lighted the importance and implications of the gut microbiome
in AD. This review is divided into three sections. The first
discusses the role of the gut microbiome and its metabolites in
disease pathogenesis. The second examines implications of the
gut microbiome in experimentation: primarily, the importance
of well-designed studies to consider the gut microbiome–brain
axis and how the gut microbiome impacts the reliability of ani-
mal models. The third section highlights microbiome-based
interventions for treatment and management of AD. Research
presented on AD and the microbiome has broad implications
for many neurodegenerative diseases, tauopathies, and ADRDs
which present conserved pathophysiological patterns.

The Microbiome and Neurodegeneration
Gut dysbiosis
A mutualistic and balanced relationship between microbiota and
the host (eubiosis) supports human health, while dysbiosis, or dis-
ruptions to microbial communities, is linked to disease. Gut bac-
terial communities differ between AD patients and cognitively
normal individuals (Hung et al., 2022; Chen et al., 2023). Similar
findings have been found in individuals with mild cognitive
impairment (MCI), suggesting that shifts in microbiome compo-
sition and metabolism may contribute to dementia progression,
possibly through impaired adult hippocampal neurogenesis
(Sheng et al., 2021). In AD patients, the relative abundance of
the bacterial phylum Firmicutes, which produces essential metab-
olites, is lower whereas the proinflammatory taxa Bacteroidetes is
higher (Cattaneo et al., 2017; Murray et al., 2022; Grabrucker et al.,
2023). Additionally, the relative abundance of serotonin-
transporting bacterium Turicibacter spp. decreases in cohorts of
AD patients in an age-dependent manner (Vogt et al., 2017).
Animalmodels that recapitulate humanADdisplay similar micro-
biome and microbial metabolic profiles. For example, the relative
abundance of Turicibacter spp. decreases with age in the trans-
genic Aβ mouse model, 5xFAD, when compared with wild-type
animals (Dunham et al., 2022). Further, the microbiota composi-
tion of hAβ-KI (late-onset AD) mouse models differed from
3xTg-AD (early-onset AD) mouse models and from wild-type
controls, driven primarily by dissimilar abundance of
Romboutsia ilealis and Turicibacter species (Dunham et al., 2024).

In AD, the hippocampus is one of the first brain regions
affected (Braak et al., 1993). Although still debated, the hippo-
campus is host to a population of neural stem cells in the dentate
gyrus subfield, which generate new neurons throughout the life-
span in a process of neural plasticity called adult hippocampal
neurogenesis (Kempermann et al., 2015; Kozareva et al., 2019).
Adult-born neurons integrate into the hippocampal circuitry
required for episodic memory functions such as pattern separa-
tion, one of the initial cognitive impairments in aging AD
patients (Moreno-Jimenez et al., 2019; Tobin et al., 2019; Salta
et al., 2023; Lazarov et al., 2024). Expounding the role of the
gut microbiota in adult hippocampal neurogenesis, germ-free
mice devoid of microorganisms and antibiotic treatment experi-
ments in rats have shown decreased adult hippocampal neuro-
genesis and associated AD behavior (Ogbonnaya et al., 2015;
Nicolas et al., 2024).

Fecal microbiota transplantation is the transfer of a microbial
community from a donor to a recipient host, and is a tool to

establish causal relationships between altered microbiomes and
the host’s physiological or pathological condition. Fecal trans-
plantation from AD patients into microbiota-depleted young
rats increased the abundance of harmful Desulfovibrio bacteria
compared with control rats receiving fecal samples from healthy
subjects (Grabrucker et al., 2023). Notably, the gut microbiota
from AD patients caused memory deficits in the recipient
rats. In particular, impairments in pattern separation were
observed coupled with reduced adult hippocampal neurogenesis
and an altered caecal and hippocampal metabolome. These
results suggest that Desulfovibrio may be a compositional gut
microbiome signature for AD cognitive status. Similar results
have been observed in preclinical studies where fecal microbiota
transplantation from an AD transgenic mouse model resulted in
memory and adult hippocampal neurogenesis impairments in
healthy control mice (N. Kim et al., 2021). These studies demon-
strate that AD’s symptoms are transferred to a healthy organism
via the gut microbiota and suggest that AD pathogenesis is a con-
verging cellular process impacted by circulatory and gut-
mediated factors, including microbe-derived metabolites
(Maruszak et al., 2023).

Microbial-derived metabolites
Gut microbiota secrete bioactive metabolites into the blood-
stream, including neuroactive molecules that modulate host
brain function. Metabolomics (study of metabolites) allows for
the simultaneous detection of compounds that may be involved
in disease pathology and progression and provides a snapshot
of the individual overall metabolic state. Bacteria-derived metab-
olites are associated with biological pathways altered in AD such
as peripheral immunity, adult hippocampal neurogenesis, and
cognitive decline (Hernandez-Benitez et al., 2012; Gebara et al.,
2015; MahmoudianDehkordi et al., 2019; Nho et al., 2019;
Baloni et al., 2020; Jia et al., 2020; Grabrucker et al., 2023;
Schweickart et al., 2023; Seo et al., 2023). Though causative
mechanisms have not yet been described, shifts in microbiome
composition are associated with metabolic neurodegenerative
processes (C. S. Kim, 2024). Bioavailability and metabolism of
various metabolites have been experimentally associated with
AD/ADRD, including biosynthesis of tryptophan, short-chain
fatty acids (SCFAs), trimethylamine N-oxide (TMAO), neuro-
transmitters like histamine, GABA, serotonin, dopamine, indole-
containing compounds, and branched-chain amino acids (Bravo
et al., 2011; Pedersen et al., 2016; Toledo et al., 2017) Human hip-
pocampal progenitor cells exposed to serum (containing circula-
tory metabolites) from AD patients resulted in a decrease in
proliferation and differentiation of the progenitor cells; these in
vitro neurogenic readouts correlated with cognitive screening
scores and key gut microbial species of the AD patients
(Maruszak et al., 2023).

Neuroinflammation and neurodegeneration in AD are
influenced by SCFAs, which affect Aβ plaque pathogenesis, mod-
ulate plaque neurotoxicity, and mediate anti-inflammatory sig-
naling in vitro (Ho et al., 2018). Notably, SCFAs are reduced in
the blood of AD patients with brain Aβ pathology (Marizzoni
et al., 2020). Additionally, gut SCFA production alters microglial
response to plaque burden in the AD brain by modulating
expression of disease-associated microglial genes such as
TREM2, APOE, and others involved in activation or suppression
of the neuroinflammation-neurodegeneration pathway (Erny
et al., 2021; Huang et al., 2023). Specific mechanisms involved
in glial modulation are unknown; SCFAs may regulate glial func-
tion after entering the brain via epigenetic and mitochondrial
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metabolic mechanisms (Erny et al., 2021). These results support
previous reports implicating the brain innate immunity (i.e., glia)
in the development of Aβ and tau pathology and neurodegenera-
tion (Shi and Holtzman, 2018; Shi et al., 2019).

Serotonin, carnosine, several phosphatidylcholines, and phe-
nylacetone are differentially abundant in AD mouse model bio-
samples (5xfAD and APP transgenic mice) when compared
with wild-type animals (Kimball et al., 2016; Dunham et al.,
2022). Serotonin is a neurotransmitter regulating brain function,
cognition, and mood (Aaldijk and Vermeiren, 2022; Goncalves
et al., 2022; Baker et al., 2024). Consistent with shifts in micro-
biota, the serotonin system is altered in MCI and AD (Smith
et al., 2023a,b). Peripheral serotonin bioavailability, and neuro-
transmitter metabolism more broadly, is regulated in the intes-
tine by bacteria species, including Turicibacter spp. (Fung et al.,
2019). Although 90% of the human body’s serotonin is gut
derived, serotonin secreted to the periphery does not cross the
blood–brain barrier (El-Merahbi et al., 2015; Dunham et al.,
2022). The influence of microbial serotonin on and its mechanis-
tic relationship with pathogenesis in the brain is complex and
requires further investigation.

The gut microbiome–brain axis is also altered in mood distur-
bances such as depressive episodes, anxiety, and aggression,
which are common behavioral presentations of neurodegenera-
tive pathology (Grossberg et al., 2020). Altered gut microbial
composition, bacteria-derived metabolites, and intestinal symp-
toms are linked to neuropsychiatric disorders inlcuding anxiety
and depression (Brydges et al., 2021; MahmoudianDehkordi
et al., 2022). Altogether, these findings suggest that the gut micro-
biota impact the CNS beyond the secretion of proinflammatory
or immunemediators into the periphery but throughmodulation
of neurotransmitter metabolism and other neuroactive molecules
such as secondary bile acids. Thus, bacteria-derived metabolites
may serve as biomarkers for AD pathology and could be used
as a noninvasive screen for progression of diseases.

Experimental Considerations
Among other environmental factors, microbiota significantly
influence AD/ADRD and should be considered in preclinical
research. Reliable animal models and effective study designs are
essential to identify the complex biological networks defining the
gut microbiome–brain axis in AD/ADRD (Vogt et al., 2017).
Most animal studies of neurodegenerative disease do not consider
themicrobiome, despite emerging clues about the role ofmicrobial
exposures on disease onset and progression. For example, timing
of neurological symptoms onset and lifespan aremodified whether
pathogen-free conditions are used (Figueroa-Romero et al., 2019),
phenotypes are lost in animal models when moving to new facil-
ities, and phenotypes differ between cages or facilities (Servick,
2016). These suggest thatmicrobial exposures interact with biolog-
ical processes and genetic factors triggering neuronal pathology.

Cage effects
Cohoused animals share strong microbial features, similarly to
how humans share microbes within households (Song et al.,
2013). Cage-dependent microbiome and metabolomic signals
often outweigh those related to genotype or disease progression
and should be carefully considered in study design (Ericsson
et al., 2018). Across microbiome studies, individual and
family-related microbiome variance is greater than other factors,
such as disease state. “Cage effects” can obscure results, especially
in animals like mice, where these effects account for up to 80% of

microbiome variance and 20% of metabolite variance (Dunham
et al., 2022). In addition, mice are coprophagic rodents; they obtain
essential nutrients by eating feces from their cages. This fecal
microbial self-reinoculation affects mouse gut microbial composi-
tion. Co-housing experiments have demonstrated that healthy ani-
mals can develop AD-like phenotypes via coprophagic exposure to
mice with AD (Wang et al., 2019). Thus, reducing animal density
and treating the cage as the unit of replication will reduce experi-
mental variance and will improve the reproducibility of the micro-
biome in neurodegeneration animal studies (Bogatyrev et al., 2020;
Ericsson and Franklin, 2021; Russell et al., 2022).

Animal models and treatments
The conditions in which laboratory animal models are raised
suggest that microbial exposure influences AD pathology, pro-
gression, and lifespan. AD transgenic gnotobiotic mice—animals
born and raised in sterile conditions—or antibiotic-treated ani-
mals present decreased Aβ brain pathology, reduced glial reactiv-
ity, and altered immune response compared with wild-type mice
(Minter et al., 2016; Harach et al., 2017). Although antibiotics are
widely used to perturb the commensal gut microbiome in animal
models, behavioral off-target effects such as water and food con-
sumption should be considered (Bongers et al., 2022).

New animal models are emerging to better recapitulate human
conditions and to improve the validity and translatability of AD
preclinical studies to humans. The wildling mice are natural
microbiota-based models, which have shown to better resemble
human immune responses than the conventional laboratory
mice (Rosshart et al., 2019). Humanized AD/ADRD wildling
mice could offer better understanding on how environmental con-
ditions impact the gut microbiome–brain axis in AD/ADRD.

Genome and sex-specific effects
Investigating the interplay betweenmetabolomics and the micro-
biome in AD has uncovered gene- and sex-dependent differ-
ences, shedding light on how these factors together influence
disease progression and biological processes. Dunham and col-
leagues used shotgun metagenomic sequencing and untargeted
metabolomics to show that female hAβ-KI mice (late-onset
AD) harbored distinct microbiomes when compared with their
age- and sex-matched wild-type counterparts (Dunham et al.,
2024). Eighteen percent of the microbiome variance was attribut-
able to genotype, and the differences were largely driven by the
increased abundance of several low abundance microbes (2% rel-
ative abundance or lower), as well as a single high-abundance
Muribaculum species, which was significantly depleted in female
hAβ-KI mice. Conversely, the male hAβ-KI microbiomes were
indistinguishable from control mice.

Neurodegenerative disease mousemodels differ by sex in their
presentation of pathology and their response to experimental
treatments. Pathological phenotypes of female mice from amy-
loidosis and tau pathology models respond to microbiome per-
turbations and antibiotic treatment dissimilarly to their male
counterparts when compared with wild-type mice (Dodiya
et al., 2019; Chandra et al., 2023; Seo et al., 2023). In addition,
ovariectomy to females decreases Aβ pathology and plaque-
associated microglia. These observations implicate the complex
interaction between sex-specific hormonal modulations, gut
microbiota dynamics, and pathology (Saha et al., 2024). Future
studies combining ovariectomy and antibiotics in different AD
animal models may clarify the differential response to antibiotics
in the tau- and Aβ-mediated neurodegeneration.
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Seo and colleagues investigated whether the gut microbiota
regulates tau-mediated neurodegeneration by interacting with
APOE isoforms. AD is the most common of tauopathies,
presenting with tau-associated neurodegeneration comparable
with other primary tauopathies, including frontotemporal
dementia (FTD) and Pick’s disease, primary supranuclear palsy
(PSP), and corticobasal degeneration (CBD). The gut microbiota
structure in tau-mediated neurodegeneration is affected by apo-
lipoprotein E (APOE) isoforms, the strongest genetic risk factors
for AD (Shi et al., 2017; Tran et al., 2019; Parikh et al., 2020).
Manipulation of the gut microbiota in a mouse model of tauopa-
thy expressing P301S human mutant tau and different forms of
human APOE revealed a significant microbial contribution to
tauopathy. Under germ-free conditions (those devoid of micro-
organisms), tau-mediated neurodegeneration was blocked.
Following short-term antibiotic treatment during early life, Seo
et al. observed a drastic reduction of AD pathological hallmarks,
such as neuroinflammation, hyperphosphorylated tau, and
severe brain atrophy in male mice carrying APOE3, but not
APOE4. Notably, these phenotypic effects of early life antibiotics
were not observed in females. In addition, when supplementing
SCFAs to adult germ-free P301S/APOE4 mice, reactive glial phe-
notype and gene expression, tau pathology, and neurodegenera-
tion increased (Seo et al., 2023). These observations suggest that
the gut microbiota may play an essential role in modulating tau-
mediated neurodegeneration and the severity of the pathology is
altered depending on APOE genotype and by sex.

Finally, interactions between microbial produced metabolites,
microbiota, AD pathology, and sex have been observed in the
APOE4*TREM2 and hAB-KI AD animal models, which exhibit
different levels of amino acids, glycerophospholipids, acylcarni-
tines, secondary bile acid, taurodeoxycholic acid, and peptides
in a sex-dependent manner (Dunham et al., 2024; Pandey
et al., 2024). Sex-dependent metabolite biomarkers may also
facilitate early AD diagnosis.

Microbiome-Based Interventions for AD/ADRD
Incomplete etiology of most neurodegenerative diseases halts
the development of efficient therapies. Current strategies for
treating AD include targeting abnormal protein formation by
using pharmacological modulation of tau microtubules and
hyperphosphorylation and Aβ plaque clearance (Pardo-
Moreno et al., 2022). However, none of these strategies have
proven effective in humans, perhaps due to the complex path-
ophysiology of the disease and other unknown factors beyond
biochemical abnormalities with tau and Aβ. Clinical and pre-
clinical studies suggest that the gut microbiota could serve as
a therapeutic strategy to slow the progression of AD and other
tauopathies (Seo et al., 2023). Approaches to shift the micro-
biome composition from dysbiosis to eubiosis in AD/ADRD
include antibiotics, prebiotics (beneficial foods), probiotics
(live beneficial organisms), and postbiotics (metabolites; Seo
and Holtzman, 2024).

Antibiotic treatment has been suggested as a potential therapy
for AD. A recent epidemiological study analyzing public health
insurance data in Germany reported that antibiotics decreased
the likelihood of developing dementia (Rakusa et al., 2023).
However, there are reports indicating that antibiotic treatment
is associated with cognitive impairment (Ye et al., 2024). Thus,
a better understanding of the microbes and pathways altered
by antibiotics is needed.

Fecal microbiota transplantation is an emerging approach for
restoring gut microbiota in neurodegenerative disease (Ghezzi
et al., 2022). A case study reported that an AD patient receiving
a fecal microbiota transplant from a healthy donor to treat
Clostridioides difficile, an infection of the gastrointestinal tract,
presented with attenuated AD symptoms (Hazan, 2020).
Refinement of fecal microbiota transplantation to optimize and
prolong engraftment efficiency and mitigate risk of side effects
from potential transmission of detrimental microbiota will
offer therapeutic strategies for intervention in AD. In addition,
microbiome composition can be altered by diet. The modified
Mediterranean ketogenic diet and curcumin intake shift gut
microbial composition in AD patients, resulting in improved
cerebrospinal fluid AD biomarker profiles, modulation of
gamma-aminobutyric acid (GABA) metabolism, and restoration
of bile acid pool. Dietary interventions, including antioxidants
and anti-inflammatory rich diets, reduced caloric intake, and
supplementation of gut-derived fatty acids, are noninvasive
means to positively influence metabolic profile, gut microbiota,
and health in those at risk for AD (Nho et al., 2019; Dilmore
et al., 2023; Ross et al., 2024).

Conclusion
The gut microbiome–brain axis significantly impacts AD/ADRD
pathogenesis, the study of neurodegeneration, and the develop-
ment of prospective therapeutics for neurodegenerative diseases.
First, the microbiome is associated with neurodegenerative mech-
anisms; gut dysbiosis is linked toADwith compositional character-
istics correlating to pathophysiology and neurogenesis. Second,
microbiomes are a significant confounding factor and promising
target in the study of neurodegenerative diseasemechanisms in ani-
mal models. Microbiota variation confers cage effects and signifi-
cantly influences AD animal research outcomes. Robust animal
models that consider microbial exposure, genetic factors, diet,
and sex-specific responses are essential for replicating and translat-
ing human diseasemechanisms and testing treatments. Third, ther-
apeutic strategies targeting the gut microbiome, such as fecal
microbiota transplantation and dietary changes, show promise in
modulating AD by restoring microbial balance.

Novel tools analyze how the microbiome interacts with other
biological systems. Resources like the Human Microbial
Metabolome Database (MiMeDB) are essential for identifying
key interactions between microbes and metabolites, providing
valuable support for AD/ADRD research (Wishart et al., 2023).
Initiatives such as the AD Metabolomics Consortium (ADMC)
and the AD Neuroimaging Initiative (ADNI) are using advanced
technologies to map metabolic dysregulation in AD, offering new
insights into disease mechanisms and potential treatments
(Wishart et al., 2023).

Continued exploration of the gut microbiome’s role in path-
ogenesis and methods for microbiota reconditioning will
advance the study and treatment of AD/ADRD. Understanding
biochemical connections between the gut, brain, and other
organs will progress effective interventions in the fight against
debilitating neurodegenerative diseases. More mechanistic
research is needed to fully understand the complex interactions
between microbiota, microbial metabolism, and disease-related
molecular targets. Collaborative efforts across various fields,
including neurology and microbiome research, are crucial for
advancing our understanding and developing innovative inter-
ventions for AD/ADRD.
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