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ABSTRACT OF THE DISSERTATION 

 

2D Image Guided Cell Sorter and 3D Imaging Flow Cytometer 

 

by 

 

Xinyu Chen 

 

Doctor of Philosophy in Electrical Engineering (Medical Devices and Systems) 

 

University of California San Diego, 2024 

 

Professor Yu-Hwa Lo, Chair 

 
 

Flow cytometry is one of the most used and powerful equipment in cell counting and 

biomarker detection, and fluorescent-activated cell sorter (FACS) allows users to sort out single 

cells based on user-defined features. Despite its high throughput, the lack of cell image 

information may result in false-positive and false-negative, which limits the application of 

FACS. As a result, imaging flow cytometer (IFC) was developed for imaging of large cell 

volume in the flow system. However, the integration of sorting function and 3-dimensional (3D) 
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imaging capabilities in IFC remains to be challenged. Here we developed 2-dimensional (2D) 

image-guided cell sorters, and 3D imaging flow cytometer, which will be eventually upgraded to 

a cell sorter based on 3D images. Chapter 2 describes a microfluidic cell sorter that uses fast 

scanning laser excitation sources and photomultiplier tubes, coupled with real-time image 

processing, to image and sort cells based on user-defined spatial features. However, flow 

confinement for most microfluidic devices is generally only one-dimensional using sheath flow. 

As a result, the equilibrium distribution of cells spreads beyond the focal plane of commonly 

used Gaussian laser excitation beams, resulting in a large number of blurred images that hinder 

subsequent cell sorting based on cell image features. To address this issue, chapter 3 presents a 

Bessel Gaussian beam image-guided cell sorter with an ultra-long depth of focus, enabling 

focused images of >85% of passing cells. 

IFC that can isolate cells of interest in a label-free environment would simplify the 

process flow, reduce cost, minimize cell disruptions by labeling, and overcome limitations of 

biomarker availability and specificity. On the other hand, collapsing 3D cell volume to 2D 

images always greatly reduces information content. To address these needs, we developed a 

label-free 3D imaging flow cytometer and presented it in chapter 4. The array of photomultiplier 

tubes (PMTs) collected forward scattering signals from multiple imaging depths, which were 

reconstructed by software to 3D cell image.
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Chapter 1 INTRODUCTION 

 

 

1 Principles of Flow Cytometry 

Flow cytometry is a powerful tool that rapidly analyzes single cells in solution, with a 

wide range of applications such as immunology, virology, molecular and cancer biology [1]. It 

analyzes optical and fluorescence characteristics of mixed populations of cells from blood and 

bone marrow, cells dissociated from solid tissues, human-constructed cell lines and particles 

such as phytoplankton and nuclei. The obtained data could give valuable information about 

biochemical, biophysical  and  molecular  aspects  of  particles [2], including protein expression, 

apoptosis, cell cycle, and even calcium influx and membrane potential [3]. 

In a common flow cytometer design, cells or particles are being pumped into a channel 

with hundreds of micrometers in size, which is called a “flow cell”. Sheath fluid would also be 

injected into the flow cell at a much higher speed, so the cells would be confined to the center of 

the channel, passing through one by one. Each cell is illuminated by a single laser, or multiple 

lasers focusing on the same spot, called the “interrogation zone”. Membrane, nucleus, and 

organelles make a cell to be a scattering object, which scatters the incident laser light in all 

directions. On the other hand, cells can also be labeled with viral transfection, immunostaining or 

staining with fluorescent dyes. These fluorescent compounds absorb light energy, making the 

electrons rise from ground states to excited states. The excited electrons quickly go back to their 

ground state while giving the excess energy as photons. The emitted photons are called 

fluorescence light. People usually choose fluorescent compounds such that each of them will 

generate fluorescent light that peaks at different colors.  
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Light signals with mixed wavelengths, generated by laser-particle interaction, are 

separated by optical elements called dichroic mirrors, followed by band-pass filters. Dichroic 

mirrors (DMs) spectrally separate light by transmitting and reflecting light as a function of 

wavelength. For example, long-pass DMs transmit light with a wavelength higher than the cut-

off value and reflect light with a wavelength lower than the cut-off value. A band-pass filter 

allows only  a  narrow  range  of  wavelengths to pass through, which  is  close  to  the emission  

peak  of  a fluorescent  dye. Behind each band-pass filter is a photodetector, which converts light 

intensity to electric current. The scattering signals are detected in two directions, forward and 

side, with the former one generally being considered as indicating cell size and the latter one 

being considered as indicating cell granularity. 

Photodiodes (PDs) and photomultiplier tubes (PMTs) are the two most used detectors in 

flow cytometry. PMTs amplify the incident photon by secondary electron emission, thus they 

have higher sensitivity and better performance in detecting weak light signals. However, PDs are 

much smaller in size and can be easily multiplexed to an array. The current outputs of PMTs or 

PDs travel to the amplifier, which also serves as a current-to-voltage converter. The analog 

signals are then sampled by a digitizer for computer processing, and the software displays the 

scattering or fluorescent intensity of each cell as histograms or plots. Nowadays, with the 

increased number of excitation lasers and fluorescent channels, large volumes of datasets enable 

new methods of analysis like principal component analysis (PCA), t-stochastic neighbor 

embedding (tSNE) to be implemented. 

2 Fluorescence Activated Cell Sorter  

Classification, detection, and isolation of different cell types among cell populations can 

bring significant insight to biology and medicine [4-5]. Cell heterogeneity in biological systems 
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has been a mechanism of maintaining the system’s stability and functionality [6]. The cell-to-cell 

differences in structure, composition, and morphology have demonstrated functional 

consequences in a variety of biological processes including cell adhesion, immune interactions, 

intracellular signaling, and cell growth [7-10]. Hence detecting and classifying new cell types in 

highly heterogeneous biological samples is crucial to understand the complex functions and 

behaviors of biological systems. On the other hand, in diseased tissues such as cancers, tumor 

cells display enormous heterogeneity and new types of tumor cells can develop with the 

progression of the disease. Certain tumor cells, even with very low population, can play 

significant roles in drug resistance and metastasis [11-12]. All of the above underscore the 

importance of detecting, classifying, and isolating cell types even for cells of very low 

abundance. Currently microscopy and FACS are the workhorses to perform such functions, as 

the former produces high information content, i.e., imaging features of cells, and the latter has 

the high throughput and the ability of isolating specific cell types based on expression levels of 

biomarkers. 

FACS is an advanced variant of flow cytometry, which can sort a heterogeneous mixture 

of particles into at least two containers, based on the scattering and/or fluorescence 

characteristics of each particle. The software allows users to choose their target of interest by 

defining a numerical or graphical boundary on the one-dimensional or two-dimensional 

histogram, which is called the gate. Cells whose characteristics fall within the gate will be 

separated from those cells who do not. A variety of sorting mechanisms have been developed in 

the past several decades, including electrostatic sorting, microfluidic on-chip sorting, and 

acoustic sorting. 

2.1 Electrostatic Sorting 
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Electrostatic sorting is the most widely used technique in commercial FACS. An 

ultrasonic transducer applies vibration to the flow stream, and droplets form at the end of the 

stream because of rapid pressure fluctuations superimposed upon the ambient pressure [13]. 

Cells are illuminated by the laser in the flow stream. If the detected signals fall within the gating 

criteria, a charging pulse, in the order of tens volts, is applied to an electrode which contacts the 

electrically conducting fluid. The cell-containing droplet will carry charge when it breaks off 

from the stream. All the droplets, both charged and uncharged, then pass through a 2000V 

transverse electrostatic field established by two parallel plates. Charged droplets are deflected 

transversely by an amount proportional to their charge, and the uncharged droplets remain 

traveling straight down, thus they can be separated to different collection tubes [14]. 

2.2 Microfluidic Cell Sorting 

However, most FACS based on electrostatic sorting are bulky, expensive and require 

highly skilled personnel to operate, which limits lots of researchers from accessing FACS. As a 

result, people came up with the idea of applying microfluidic techniques to flow cytometers, and 

developed cell sorting devices called µFACS. Microfluidics is a research area in which fluids are 

manipulated on the microscale level. At this scale, people can take advantage of the scaling of 

many physical laws such as rapid diffusion, laminar flows, Dean flows etc. [15]. Taking the 

cytometer to a microfluidic platform could transform the device into a compact and low-cost 

machine. Additionally, microfluidic cartridges are disposable, which means cross-contamination 

and clogging will not be a concern [16]. Instead of spending countless hours and money on 

troubleshooting, problems can be solved by simply replacing the cartridge. The three major 

components of a FACS system: (1) fluidic system, (2) optics system, (3) sorting system, can all 

be miniaturized in µFACS, while maintaining performance. Here I will look at some of the 
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recent advancements in microfluidic devices, as well as on-chip high throughput sorting 

methods. 

2.2.1. Microfluidic Hydrodynamic Focusing 

Flow focusing has always been an important concern in microfluidic-based flow 

cytometers. When fluid moves freely in a pipe, due to surface friction, the portions that are close 

to the walls travel much slower than the portion near the center. The flow velocity profile thus 

follows a parabolic distribution [17]. The one-dimensional flow focusing on the lateral direction 

can be easily achieved by adding two flanking sheath flow lines to the center sample flow line. 

The sheath versus sample flow rate is usually 10:1 [18]. However, particles will still randomly 

distribute in the channel in the vertical direction. Inconsistent traveling speed of the sample 

would cause variations in signal intensity, which limits the stability of the instrument. 

A significant amount of work has been devoted to developing microfluidic devices with 

two-dimensional flow focusing. Chiu et.al. designed a device where the two sheath channels are 

100µm high while the sample channel height is 30µm [19]. The centers of the sample and sheath 

channel are on the same level, and the tight flow focusing was achieved after they merged in the 

main channel. The flow properties are visualized by using fluorescent dye mixed in the sample 

flow. The sample flow was confined to a stream of ~30µm in both directions at 1:40 

sample/sheath flow ratio. In beads and cells tests, the coefficient of variance (CV) of the particle 

velocity was reduced by 50%-87.5%, depending on the sample/sheath flow ratio, compared to 

the device with 1D flow focusing. However, the multi-layer 3D structure of this device makes 

the fabrication process very complicated. To solve this problem, Zhao et.al. developed a single 

layer device with similar performances [20]. The device has four sheath flow inlets, with two of 

them confine the sample flow in horizontal direction and the other two confine the sample flow 
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in vertical direction. The key is to add sheath flow number 3 and 4 before and after the sample 

inlet to squeeze the sample stream. They used rhodamine solution as sample flow and observed 

that it was confined to an area of about 15µm x 17µm. In the polystyrene beads test, the CV of 

forward scattering (FSC) intensity is about 7.56%, which is comparable to the traditional flow 

cytometer using the non-microscale fluidic system.  

2.2.2. Microfluidic Cell Sorter with Integrated Piezoelectric Actuator 

Numerous types of µFACS have been developed for particle and cell sorting. The most 

used working principles are electroosmotic [21], dielectrophoretic [22], magnetic [23] and 

hydrodynamic [24]. However, they all suffer from some limitations like high operation voltage, 

complicated device fabrication or sample preparation, low throughput, etc. Chen and Cho et.al. 

was able to develop a microfluidic cell sorter based on the mechanical bending of a piezoelectric 

actuator (PZT) [25-26]. Some key features of this cell sorter are high throughput, low voltage 

and power and precise control of each single cell. The device, made of polydimethylsiloxane 

(PDMS), has a 200µm wide main channel, followed by a sorting junction and three sorting 

channels. The center channel is for collecting unwanted cells and the left and the right channels 

are for collecting the targeted cells. 

The fluorescent or scattering light emitted by the beads or cells was collected by a PMT. 

The output signal from the PMT was imported into the electronic control system for real-time 

processing. The control system is programmed with an external driver that has an embedded 

field programmable gate array (FPGA) chip. If the signal, after denoising, is higher than the user-

defined threshold value, it means the particle is the one targeted for sorting. In that case, a pre-

defined voltage signal is delivered to the PZT actuator at an appropriate time delay. The PZT 

actuator, located in the sorting chamber, has a lead-zirconate-titanate (PZT)-stainless steel 
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bimorphous structure, and it bends upward or downward according to the polarity of the applied 

voltage. The exact volume of fluid displacement by the PZT actuator can be precisely controlled 

by the amplitude of the applied voltage. The bending of the PZT actuator induces a transverse 

displacement of fluid in less than 0.1ms, thus the trajectory of the target cell would change from 

moving to the center channel to moving to the left or right sorting channel. This sorting device, 

as well as all the optics and electronics systems, have been commercialized as a product [27]. 

2.2.3. Microfluidic Cell Sorter with Laser-Induced Jet Sorting 

Even though the µFACS in the previous section has been optimized to achieve about 

1000 cells per second sorting rate, it is still much lower than the commercial aerosol based FACS, 

which has a throughput of 70,000 cells per second and 90% purity. As a result, Chen et.al. 

successfully used the phenomena of the pulsed laser induced cavitation bubble to switch 

particles/cells in high speed [28]. The microfluidic chip made of PDMS consists of a main channel 

with two outlets, collection and waste. The pulsed channel was in parallel with the main channel and 

was connected to the main channel through a straight narrow nozzle at the tip of the junction. Allura 

Red dye was added in the pulsed channel flow. A Q-switched Nd:YVO4 laser operating at 532nm 

wavelength was focused through a 100X objective lens into the pulsed channel, which induced an 

explosive cavitation bubble which expanded and displaced the surrounding fluid. The liquid jet 

deflected the desired object into the collection channel. FPGA logic was programmed using LabView 

to perform real-time detection, threshold comparisons, and timed triggering of the pulsed laser. A 

collection purity of 90% was achieved under a sorting throughput of 3000 particles per second. To 

further enhance the sorting throughput, later they combined 2D flow focusing microfluidic devices 

with laser induced jet sorting, and they were able to achieve 90% sorting purity at a speed of 23,000 

cells per second [29]. The first version of the device took advantage of a 3D multilayer structure, and 

the second version was greatly simplified by a non-sheath flow design [30].  



8 

3 Imaging flow cytometer (IFC) 

In contrast to conventional flow cytometry, which measures forward scattered light to 

estimate the relative cell size, microscopy, a technology invented in the seventeenth 

century,  yields the exact cell size through its bright field image. While the microscopy system 

produces rich information from the cell’s spatial characteristics, the FACS system used to isolate 

cells cannot take advantage of such information contents, thus greatly limiting our ability of 

discovering new, especially rare, cell types the biomarkers of which are not known or 

sufficiently specific. To address this challenge, imaging flow cytometers, capable of capturing 

single cell images like a fluorescence microscope while retaining the high throughput of flow 

cytometer, have been demonstrated. As an integration of fluorescence microscopy and 

conventional flow cytometry, IFC combines flow cytometry's single-cell identification and high 

throughput with microscopy's cell image acquisition. Therefore, it becomes an ideal approach to 

simultaneously fulfill both analysis of morphological characteristics and phenotypic 

characterization of single cells within an enormous and heterogeneous population [33].  

3.1. 2D Imaging Flow Cytometer 

3.1.1. Camera-Based IFC 

Amnis ImageStream system is the first commercial IFC [34]. Similar to FACS, cells are 

hydrodynamically focused into a core stream and orthogonally illuminated for both side 

scattering and fluorescence imaging. Light is collected from the cells with an imaging objective 

lens, and then passes through a spectral decomposition optical system that directs different 

spectral bands to different lateral positions. The separated light beams are then projected on a 

charge-coupled detector (CCD). The CCD is operated using a technique called time-delay-

integration (TDI), a specialized detector readout mode that preserves sensitivity and image 
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quality even with fast relative movement between the detector and the objects being imaged. The 

sensor arrays on CCD are divided into N columns to detect emission or scattered light 

of N different spectral ranges from cells. Since its first demonstration, the system has been used 

to study apoptosis quantification, nuclear translocation, protein co-localization, cell 

morphological analysis, cell cycle classification, DNA damage, etc. [35-39]. However, The TDI 

reading out technique requires translation of the cell to be exactly synchronized with the vertical 

charge transfer of each pixel on the CCD. This means the fluidic system needs to be delicately 

controlled to avoid inconstant cell speed. Besides, the intrinsic data downloading method of 

CCD also prevents the system to reach throughput higher than 3000 cells per second [33].  

3.1.2. PMT-Based IFC 

Compared to CCD, PMT has better sensitivity and dynamic range, as well as lower dark 

noise. However, the readout of single-pixel PMT is only the number of photons detected in the 

time domain without spatial information. several systems have been developed to transfer spatial 

information to either the frequency domain or time domain in order to image the cells in flow 

system, including serial time-encoded amplified microscopy (STEAM) [40-41], radiofrequency-

tagged emission (FIRE) [42], and spatial–temporal transformation [10,43]. STEAM can produce 

bright field and phase contrast cell images, but not fluorescence images. FIRE has a throughput 

of up to 50,000 cells per second, but a Fourier transform is required in restoring cell images from 

the PMT detected waveforms. To solve these problems, Han et. al. retrofit a conventional flow 

cytometer into an IFC system with minimal modification using the spatial–temporal 

transformation technique. The fluorescence and scattering light emitted from the cells are 

collected by an objective lens. A spatial filter with an array of slits is inserted at the image plane 

of the objective lens. Fluorescence, scattering, as well as the transmitted laser light from different 
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parts of the cell would pass through different slits at different times. The cell images can be 

reconstructed from the PMT detected waveforms using a simple algorithm. Due to the quick 

response time of the PMTs, this technique is well suited for high-throughput, real-time image-

based cell classification and sorting. 

3.2. 3D Imaging Flow Cytometer 

The advancement of confocal and light sheet microscopy has made the acquisition of 3D 

tomography of single cell or even thick tissue accessible. However, only a few groups have been 

able to demonstrate IFCs with 3D imaging capability [44-48]. In a previous work of our group, a 

light-sheet scanning illumination design is combined with the spatial-temporal transformation 

technique, illustrated in the former section, to produce 3D fluorescence and side scattering cell 

images with a decent throughput of 500 cells per second [49].  

The optical interrogation area is defined by a scanning light sheet (x-y plane) of 200-400 

µm in height, scanning along the z-direction at 200kHz. A pinhole array on the spatial filter is 

aligned at a tilting angle to the flow stream, such that each pinhole allows light from voxels with 

a distinct x index to reach the PMT detector. As the cell flows through pinhole 1, the entire 2D 

slice of one y-z plane would be excited by the scanning laser. And when the cell flows through 

the last pinhole the entire cell volume can be imaged. As a result, the resolution in the z-direction 

is determined by the number of pinholes. The authors were able to image cells labeled by 

carboxyfluorescein dye (CFSE) and bonded with 1 µm fluorescent carboxylate-modified 

polystyrene beads, as well as radiation-induced DNA-damaged CMK3 cells. This 3D-IFC 

system offers unique capabilities for studies of many important biomedical characteristics, such 

as protein or receptor translocations, tracking of organelle formation or trafficking, chromosome 

structural aberrations and 3D orientation and polarity. The label-free 3D side scattering images 
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and 2D transmission images were also proved to carry rich information about the properties and 

functions of cells because researchers were able to demonstrate cell classification using 

convolutional neural network (CNN) and deep convolutional autoencoder (DCAEC) based on 

these images [50-51].  

4 Image-guided Cell sorter 

4.1 Fluorescence Image-guided Cell Sorter  

To better understand the differences that exist between cells, even those with identical , 

genomes, new approaches are needed to rapidly search through and sort out cells with unique 

chemical and morphological features from large heterogeneous populations [52]. Imaged guided 

cell sorting will accelerate a variety of research areas like gene editing, immunotherapy, cell 

therapy, phenotype drug discovery [53-56].  So far only a few cell sorting systems can isolate 

cells in this manner, including a real-time image-guided cell sorter using spatial-temporal 

transformation for cell imaging and machine learning for cell classification [57], and an 

intelligent image-activated cell sorter (IACS) which can make cell sorting decisions based on a 

deep CNN [58]. 

The intelligent IACS has a two-step 2D on-chip hydrodynamic cell focuser to confine the 

cells in the center of the flow channel. A 3D on-chip acoustic cell focuser is also adopted for 

maintaining the focused cell stream for a long distance greater than 3cm. The cells are imaged by 

a frequency-division-multiplexed (FDM) microscope, which scans a linear array of multiple 

intensity-modulated excitation beams on the cells. The fluorescence and scattering signals are 

detected by avalanche photodetectors. The cell travelling speed is measured by a speed meter for 

predicting their arrival time at the sorting position. All the information is fed into a real-time 

intelligent image processor composed of a FPGA, three central processing units (CPUs), and a 
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graphics processing unit (GPU). This FPGA-CPU-GPU infrastructure is on a 10-Gbps all-IP 

network, which enables real-time multidimensional feature extraction, classification, and sort-

decision-making. If a sorting decision is made, piezoelectrically actuated dual glass-membrane 

pumps will isolate the target cells to the sorting channel. 

Gu et.al. developed another IACS by combining the IFC in [43], the microfluidic cell 

sorter in [25-26], and machine learning. Cell images are reconstructed using the spatial-temporal 

transformation algorithm. To better assist users to make sorting decisions, training samples are 

first flown through the system to produce a set of training data. Off-line processing is employed 

to construct high resolution cell images. The real-time processing module reconstructs cell 

images, extracts image features, and makes sorting decisions based on the off-line trained sorting 

criteria. They were able to sort cells by spatial distribution of specific protein, and number 

particle binding on cell membrane, as well as radiation-damaged cells, and the classification 

accuracy was greater than 90%.  

To further enhance the image quality, sorting purity and throughput, we came up with a 

new optics design for the fluorescence image-guided cell sorter, which will be discussed in 

chapter 2. 

4.2 Label-Free Image-guided Cell Sorter 

Characterization, classification, and isolation of cell types among a heterogenous 

population based on their stain-free morphological characteristics can yield significant biological 

insight, especially when coupled with phenotype-genotype correlations. Cell classification 

processes often require both the multiparametric spatial information of intracellular structures and 

high data volume analysis. In recent years, genome sequencing and population genomic analysis 

have had a profound impact in biological research by enabling high-volume comparative analysis, 
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enabling new cell type discovery, and uncovering previously unknown cellular heterogeneities 

[59]. This has significantly increased the need for methods capable of isolating cells of interest in 

a label-free environment to simplify the process flow, reduce cost, minimize cell disruptions by 

labeling, and overcome limitations of biomarker availability and specificity. Conventional 

methods of cell sorting include optical microscopy [60], deterministic lateral displacement [61], 

density gradient methods [62], and magnetic-activated cell sorting (MACS) [63]. However, these 

techniques suffer from some of the following aspects, including lack of specificity, low 

throughput, high cell loss, population-based sorting without single cell resolution, and the need for 

biochemical labeling.  

Image-guided cell sorters have greatly pushed the field of label-free cell sorting forward. 

This microfluidic-based technology enables the highly informative morphological and spatial 

characterization of intracellular structures and subsequent sorting of cells of interest at a 

throughput of over two hundred cells per second [64]. Various possible configurations exist, each 

with unique characteristics and applications ranging from inexpensive, custom laboratory tools to 

precise clinical instruments. Examples of compatible on-chip cell sorting techniques include 

surface acoustic waves (SAWs) [65], magnetic forces [66], and dielectrophoretic forces [67]. An 

image guided cell sorter based on 2D transmission images will be presented in Chapter 3. A newly 

developed image guided cell sorter based on 3D forward scattering images will be presented in 

Chapter 4. 
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Chapter 2 IMAGE GUIDED CELL SORTER USING FAST SCANNING LASER 

 

 

1. Materials and Methods 

1.1 Overall System Design of Image-Guided Cell sorter 

The overall system architecture is shown in Figure 2.1(a). The optical system interrogates 

each travelling cell in the microfluidic channel by scanning laser excitation beams and generates 

temporal fluorescent and transmission signal waveforms of each cell. These optical signals, after 

being detected by PMTs and converted to electronic waveforms, are sent to a FPGA that 

reconstructs the cell image from these waveforms in real time. The image features are then 

extracted and compared against the cell sorting criteria, or the “sorting gate”, to determine if the 

cell falls within the gated region. If so, then the FPGA sends a voltage signal to activate the on-

chip piezoelectric actuator. Here we choose on-chip PZT actuation due to its low-cost and 

manufacturability, suitable for disposable devices to prevent cross contamination [25-26]. Under 

the applied voltage signal, the piezoelectric actuator bends upward or downward mechanically, 

deflecting the flow and the target cell within the flow into the designated channel in the mode of 

population sorting where the selected cells are sorted into a designated collection tube. In the 

mode of single-cell sorting, each deflected single cell exits the designated channel in a cartridge 

and enters a programmable cell-placement unit that places each cell into a well in the 386-well 

plate. The programmable cell placement unit relates the cell in each well to the cell’s image 

features, allowing users to check the cell image, the image features, and its “position” within the 

“sorting gate” or within one of the “clusters” the cell belongs to. 
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While the real-time process is carried out by the FPGA, many off-line processes also take 

place in parallel. The cell images are stored and further processed to help users to visually 

inspect the cells. Via a graphical user interface (GUI), users can use these images and their 

feature distribution charts to (re)define or (re)classify cells and modify the gating criteria for cell 

isolation. 

1.2 Design of Imaging System 

Within the microfluidic device shown in Figure. 2.1I, suspended cells are hydro-

dynamically focused to the center of the channel by a sheath flow. At the optical interrogation 

zone, each cell is illuminated simultaneously by a scanning dual-wavelength 488/561 nm laser 

for imaging and a non-scanning 455 nm light emitting diode (LED) for cell speed measurement. 

The 488/561 nm wavelength laser is coupled to an Acousto Optic Deflector (AOD) (OAD948, 

Isomet) to create a scanning beam along the y-direction (width of the microfluidic channel) with 

a spot size of 1µm in diameter. Two 10X (NA=0.28) objective lenses (378-803-3, Mitutoyo) on 

the opposite sides of the microfluidic channel are used, one for focusing the scanning laser 

illumination beam and the other to collect the fluorescent or transmitted light. Higher than 10X 

objectives can be used, if preferred, to enhance the resolution and light collection efficiency, 

with a tradeoff for the depth of focus. 

A series of dichroic mirrors with different reflection bands separate LED, transmission, 

and fluorescent signals to different channels, which are detected by PMTs (H10721-20, 

Hamamatsu). A spatial mask, having a design of two slits separated in the cell flow (z-) 

direction, is placed at the image plane of the optical system to generate speed information signal. 

Depending on the scanning range of AOD and the signal recording time period, the field of view 



16 

is chosen to be 30µm by 30µm, which covers the size of most biological cells. The resolution is 

determined by the diffraction limit of the objective lens, which is 1µm here. 

 
Figure 2.1. (a). Overall system architecture. The scanning laser beam and the cell travel produce 

an equivalence of a 2D raster scanning system. The bright field and fluorescent signals of the cell 

are detected by PMTs and the temporal signals are reconstructed to form cell images via real-

time processing by a field-programmable-gate-array (FPGA). Meanwhile, the features of each 

cell image are extracted by a PC or GPU. According to the sorting criteria (gating) based on 

user-selected image features, the on-chip piezoelectric (PZT) actuator is triggered to sort out 

cells that have the target features. (b). Design of imaging system. AOD, acousto-optic deflector; 

DM, dichroic mirror; OL, 10X/0.28 objective lens; PMTs, photomultiplier tubes; SM, the spatial 

mask for cell speed detection with its design shown on the left. (c). Microfluidic chip design. 

Suspended cells are focused to the center of the microfluidic channel by a sheath flow. The on-

chip piezoelectric actuator bends upward or downward mechanically, deflecting the flow and the 

target cell within the flow into the designated channel. Scale bar: 1mm.  

1.3 Real-time Image processing 

To achieve image-guided cell sorting with high throughput, real-time processing and 

computation of cell image features against the “sorting gate” are required. A FPGA-CPU (or 

FPGA-GPU) hybrid design is adopted to meet such requirements. The voltage waveform 
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modulating the AOD and the detected PMT signals from each cell are acquired and digitized. 

FPGA reconstructs the cell images from the acquired signals based on the principle described 

next, and the reconstructed cell images are transferred to the CPU for imaging feature extraction. 

Dozens of image features, which include area, perimeter, shape, circularity, concentricity, aspect 

ratio (major axis length/minor axis length), integrated intensity, mean intensity (intensity divided 

by area), standard variation of intensity over space, granularity, spot count, etc. from each 

fluorescent color and the transmitted signal are extracted, compared, and analyzed in a parallel 

fashion. Then the features directly related to the cell sorting criteria are transferred back to the 

FPGA. These image features of each cell passing the interrogation zone is computed in less than 

1ms in most cases.  

The system contains a user-interface (UI) that can display cell images, histograms of 

chosen cell features, and 2D distribution plots. Users can go through these histograms or plots to 

decide by themselves or rely on the built-in algorithms to determine which features are most 

relevant to the intended applications and can be used as the “sorting gate”. The process is 

interactive and intuitive and allows the cell sample to be divided into subpopulations 

characterized by cell image features (e.g. spatial distribution of the fluorescent intensity, shape or 

size of cells or organelles). To sort a cell, a voltage pulse is applied to the on-chip piezoelectric 

PZT actuator, which instantaneously bends the bimorph PZT disk to deflect the cell away from 

the central flow into the sorting channel. 

1.4 Image Reconstruction Principle and Algorithm 

1.4.1 Mathematical model of waveform-image transformation 

The detected PMT measured signal S(t) is related to the object 𝑂(𝑦, 𝑧) by the following 

equation: 
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𝑆(𝑡) = 𝐶 ∬ 𝑂(𝑦, 𝑧)
⬚

𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤
∙ 𝑝𝑠𝑓(𝑦 − 𝑦′, 𝑧 − 𝑧′)𝑑𝑦𝑑𝑧    (2.1) 

where 𝐶 is a proportional constant due to the effect of optical loss and detector quantum 

efficiency, 𝑂(𝑦, 𝑧) is the spatial distribution of the object (cell), and 𝑝𝑠𝑓(𝑦 − 𝑦′, 𝑧 − 𝑧′) is the 

point spread function of illumination light, with (𝑦′, 𝑧′) being the center of the excitation beam.  

In the image-guided cell sorter, the object is illuminated by a Gaussian beam, and its 

electrical field can be written as  

E(y, z) = 𝐸0
𝑊0

𝑊(𝑥)
𝑒𝑥𝑝[−

𝑦2+𝑧2

𝑊2(𝑥)
]𝑒𝑥𝑝(−𝑗𝑘𝑥 + 𝑗𝜑)     (2.2) 

where 𝑥 is the beam propagating direction, 𝑊(𝑥) is beam width, 𝑘 is wave vector. 

The depth of focus can be calculated by: 

2𝑧0 =
2𝜋𝑊0

2

𝜆
    (2.3) 

where 𝑧0 is the half focal depth and 𝑊0 is the radius of beam waist at the focal spot. Due 

to the use of 10X objectives for excitation and light detection, the depth of focus is 

approximately 10µm. Here we ignore the effect of beam waist change and treat cells that are 

within the depth of focus. Considering the excitation light intensity which the fluorescent signal 

is proportional to, we can write: 

𝑝𝑠𝑓(𝑦 − 𝑦′, 𝑧 − 𝑧′) = 𝑘 𝑒𝑥𝑝 [−
(𝑦−𝑦′)

2
+(𝑧−𝑧′)2

2𝜎2 ]     (2.4) 

where 𝜎 =
1

2
𝑊0. Substitute (2.4) into (2.1) and augment the limits of the double integral 

from the finite field of view to infinity,  

𝑆(𝑡) = 𝐶 ∬ 𝑂(𝑦, 𝑧) ∙ 𝑘𝑒𝑥𝑝 [−
(𝑦−𝑦′)

2
+(𝑧−𝑧′)

2

2𝜎2
] [𝑢(𝑦 − 𝑦𝑚𝑖𝑛) − 𝑢(𝑦 − 𝑦𝑚𝑎𝑥)][𝑢(𝑧 −

∞

−∞

𝑧𝑚𝑖𝑛) − 𝑢(𝑧 − 𝑧𝑚𝑎𝑥)] 𝑑𝑦𝑑𝑧 = 𝐶 𝑂′(𝑦, 𝑧) ∗ 𝑒𝑥𝑝 [−
𝑦2+𝑧2

2𝜎2
]     (2.5) 
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where 𝑂′(𝑦, 𝑧) = 𝑂(𝑦, 𝑧)[𝑢(𝑦 − 𝑦𝑚𝑖𝑛) − 𝑢(𝑦 − 𝑦𝑚𝑎𝑥)][𝑢(𝑧 − 𝑧𝑚𝑖𝑛) − 𝑢(𝑧 − 𝑧𝑚𝑎𝑥)]. 𝑢 

is the Heaviside step function. 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 correspond to the limits for the field of 

view. 

Next, we relate the position of the beam center (𝑦′, 𝑧′) to the time, 𝑡, when the cell enters 

the field of view. Since the cell is travelling in the z-direction,  

𝑧′ = 𝑣𝑧,𝑐𝑒𝑙𝑙 ∙ 𝑡   (2.6) 

Let 𝑡∗ denote the interval between the time when the cell enters the field of view and the 

beginning of next laser scanning cycle. We can write: 

𝑦′ = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 (
𝑡+𝑡∗

1/𝑓
) ∙ 𝑣𝑦,𝑠𝑐𝑎𝑛    (2.7) 

where 𝑓 is AOD scanning frequency; 𝑣𝑦,𝑠𝑐𝑎𝑛 is laser beam scanning speed in the y-

direction, and 𝑣𝑦,𝑠𝑐𝑎𝑛 =
𝑙𝑎𝑠𝑒𝑟 𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒

1/𝑓
.  

Using the relations in Eqs. (2.6 and 2.7), we can represent the measured PMT signal 𝑆(𝑡) 

as 𝑆(𝑦′, 𝑧′). The 2D spatial Fourier transform on both sides of Eq. (2.5) becomes: 

𝑆(𝑓𝑦, 𝑓𝑧) = 𝐶ℱ(𝑂′)ℱ (𝑒𝑥𝑝 [−
𝑦2+𝑧2

2𝜎2 ]) = 𝐷ℱ(𝑂′)𝑒𝑥𝑝 [−
𝜎2(2𝜋)2(𝑓𝑦

2+𝑓𝑧
2)

2
]     (2.8) 

where 𝐷 includes 𝐶 and all other coefficients that produce no effect in our process of 

finding the cell image 𝑂(𝑦, 𝑧). For convenience, in the following we will omit all such 

proportional constants and rewrite Eq. (2.8) as  

ℱ(𝑂′) = 𝑆(𝑓𝑦, 𝑓𝑧)𝑒𝑥𝑝 [
𝜎2(2𝜋)2(𝑓𝑦

2+𝑓𝑧
2)

2
]      (2.9) 

For cells having their entire images within the field of view (i.e. non-truncated cell 

images), the intensity at the boundary of and outside the field of view can all be set to be zero. 

This means 𝑂(𝑦, 𝑧) = 𝑂′(𝑦, 𝑧), and as a result, ℱ[𝑂] = ℱ[𝑂′]. Under this condition, 
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ℱ[𝑂] = 𝑆(𝑓𝑦, 𝑓𝑧)𝑒𝑥𝑝 [
𝜎2(2𝜋)2(𝑓𝑦

2+𝑓𝑧
2)

2
]     (2.10) 

Taking the 2D inverse Fourier transform of (2.10), we have: 

𝑂(𝑦, 𝑧) = ∬ 𝑆(𝑓𝑦, 𝑓𝑧)𝑒𝑥𝑝 [
𝜎2(2𝜋)2(𝑓𝑦

2+𝑓𝑧
2)

2
] ∙ 𝑒𝑥𝑝[𝑗2𝜋(𝑓𝑦𝑦 + 𝑓𝑧𝑧)]𝑑𝑓𝑦𝑑𝑓𝑧

∞

𝑓𝑦,𝑓𝑧=−∞
    (2.11) 

From Eq. (2.11), we can construct the cell image, 𝑂(𝑦, 𝑧), from the spatial Fourier 

transform, 𝑆(𝑓𝑦, 𝑓𝑧), of the measured PMT signal. This process can, in principle, yield cell 

images with higher resolution than the spot size of Gaussian beam if the signal has a high S/N 

ratio. However, the above method can be computationally intensive and is more suitable for off-

line processes. For the real-time process, we can reduce the computation complexity 

considerably by approximating the point spread function of a Gaussian beam by a delta function, 

𝑝𝑠𝑓(𝑦 − 𝑦′, 𝑧 − 𝑧′) = 𝐴𝛿(𝑦 − 𝑦′, 𝑧 − 𝑧′)     (2.12) 

Substituting Eq. (2.12) into Eq. (2.1) and using Eqs. (2.6,2.7), we can directly relate the 

PMT signal to the cell image: 

𝑆(𝑡) = 𝑆(𝑦′, 𝑧′) = ∬ 𝑂(𝑦, 𝑧) ∙ 𝐴𝛿(𝑦 − 𝑦′, 𝑧 − 𝑧′)
⬚

𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤
𝑑𝑦𝑑𝑧 = 𝐴 𝑂(𝑦′, 𝑧′)    (2.13) 

From Eq. (2.13), at each “t”, there exists a corresponding (𝑦′, 𝑧′) within the field of view 

such that the magnitude 𝑆(𝑡) corresponds to the transmission or fluorescent intensity of the cell 

at position (𝑦′, 𝑧′).  

A comparison of images reconstructed from a Gaussian beam using Eq. (2.11) and from a 

delta function approximation using Eq. (2.13) is shown in Fig. 2.2. We observe that for both 

bead and cell images, the difference is insignificant. For real-time processing, the delta function 

approximation offers a convenient approach although the image resolution is limited by the spot 

size of Gaussian beam. Unless specially mentioned, we use the delta function approximation to 

process cell images for image-guided sorting in this paper. 
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Figure 2.2. (a) Fluorescent signal of a 15µm bead. (b) Reconstructed bead image using delta 

function approximation. Scale bar: 5µm. (c) Reconstructed bead image using the true Gaussian 

beam. Scale bar: 5µm. (d) Fluorescent signal of a cell. I Reconstructed cell image using delta 

function approximation. Scale bar: 5µm. (f) Reconstructed cell image using the true Gaussian 

beam. Scale bar: 5µm. (g) Simulated PSF of the Gaussian beam within 30x30𝜇𝑚2 field of view. 

Scale bar: 1µm. 

1.4.2 Digital Implementation of Image Reconstruction Algorithm 

In a digital implementation with the “delta function approximate point-spread-function”, 

our image construction process contains the following steps: I. conversion of the temporal 

waveform of PMT into a 2D cell image, II. Correction of the effect caused by a time delay 

between the modulating voltage applied to the AOD and the corresponding laser beam spot, 

which we call correction of “phase shift” below, and III. Correction of image contraction or 

stretch due to the effect of cell travelling speed, which we call “image resizing” below. 

 

I. Conversion of the temporal waveform of PMT output into a 2D cell image without cell speed 

correction.  

We use a periodic sawtooth waveform to modulate the AOD. Within each period, the 

AOD scans the laser spot from one extreme position to another at a uniform speed along the 
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channel width (y-axis), and then the laser spot returns quickly (in ~150ns) to the starting position 

for the next scan. Each time the AOD scans the laser excitation beam spot in the y direction, the 

resulting fluorescent or transmission signals recorded by the PMTs are registered to form a 1D 

slice of the cell image along the y-direction. Since the cell is travelling in the z-direction during 

laser scanning, the laser y-scanning actually produces a line scan of the cell image with a small 

angle (𝜃~𝑡𝑎𝑛−1(
v𝑧,𝑐𝑒𝑙𝑙

𝑣𝑦,𝑠𝑐𝑎𝑛
)). Due to the much faster laser beam scanning speed than the cell travel 

speed (e.g. 600cm/s for 𝑣𝑦,𝑠𝑐𝑎𝑛 and 20cm/s for v𝑧,𝑐𝑒𝑙𝑙), such effect is rather small and can be 

neglected or easily corrected, if needed. Mathematically, each cell travelling through the optical 

interrogation area will produce a series of image data registered as 𝑆𝑧1(𝑦1), 𝑆𝑧1(𝑦2)… ,

𝑆𝑧1(𝑦𝑁); 𝑆𝑧2(𝑦1), 𝑆
𝑧2(𝑦2)… , 𝑆𝑧2(𝑦𝑁);… 𝑆𝑧𝑀(𝑦1), 𝑆

𝑧𝑀(𝑦2)… . 𝑆𝑧𝑀(𝑦𝑁). The above data set 

can be arranged into a MxN matrix, representing a 2D cell image in the y-z plane. The MxN 

matrix defines the pixels of the image frame that is 30µmx30µm, in accordance with the physical 

scanning range of the laser. The column number (N) is determined by the ratio of the A/D 

sampling rate and AOD scanning frequency, and the row number (M) is determined by the 

scanning range and cell speed. A higher ratio of the A/D converter sampling rate to the AOD 

scanning rate and a slower cell traveling speed will yield smaller pixel size and thus higher pixel 

resolution at the expense of throughput. In our experiment, we have used 25MHz A/D sampling 

rate, 200KHz AOD scanning rate, and an average cell speed of 20 cm/s, giving rise to an 

effective pixel size of 1 µm (z-direction) by 0.24µm (y-direction). To construct cell images from 

the data stream, we first find the troughs and peaks of the voltage waveform that modulates the 

AOD as they specify the beginning and ending times and the duration of each line scanning 

cycle. We then stitch each 1D slice of PMT readout, 𝑆𝑧𝑖(𝑦1), 𝑆
𝑧𝑖(𝑦2)… , 𝑆𝑧𝑖(𝑦𝑁), to form an 

MxN matrix, which gives rise to the raw image (Fig 2.3(a)).  
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II. Correction of the “phase shift”.   

Under DC bias condition, the laser beam spot matches the applied voltage to the AOD in 

a fashion that the laser beam points to the leftmost position at the lowest AOD bias voltage.  

However, when a sawtooth voltage waveform is applied, a time delay 𝛥𝑡 develops between the 

laser beam spot position and the voltage value due to the electric capacitance of the AOD and the 

parasitic capacitance. To be discussed next, this time delay can cause a “phase shift” in the cell 

image. To detect the time delay and the amount of phase shift, we choose a few z- (cell flow) 

positions and plot the transmitted light intensity along the y- (laser scanning) direction. Due to 

time delay, the intensity plot along the y-direction may not show a continuous profile but a 

profile of two discrete regimes (Fig 2.3(b)). By shifting the left part of the profile to join the right 

part to make a continuous intensity profile and to center the entire intensity profile within the 

image frame, we can obtain the “phase-shift corrected image”. The same correction for the phase 

shift is also applicable to the fluorescent signals and other scattering signals since they are all 

produced by the same scanning laser beam and synchronized with each other.   

III. Correction of image distortion caused by cell speed variation 

Even with hydrodynamic flow focusing, cells may not be at the same position in the 

microfluidic channel due to the variation of cell size, stiffness, and other effects. In a laminar 

flow where cell speed is determined by the cell position within the channel, the above effects can 

produce appreciable speed variations among cells. As described previously, the process of cell 

image construction converts a temporary signal (detected by PMTs) into a spatial signal 

represented by an MxN matrix, and cell speed variation directly affects the value of M, 

determined by the ratio of the laser scanning speed to the cell travel speed. Under a predefined 

image frame with 30x30 pixels, the reconstructed cell image would be contracted for cells at 
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greater than the average speed and elongated for those at lower than the average speed.  

Therefore, to form the correct cell image, we need to measure the speed of each cell, which is 

achieved by a static LED light source and a spatial mask described next. 

 

Figure 2.3. Corrections of “phase shift” effect and “cell velocity variation effect” in image 

reconstruction process. (a) Temporal waveforms of AOD modulating voltage and PMT output. 

𝑡∗ denotes the interval between the time when the cell enters the field of view and the beginning 

of next laser scanning cycle, which can cause “phase shift” for the reconstructed image. (b) 

Correction of the time delay, 𝑡∗, between the AOD modulating voltage and the corresponding 

laser beam spot position. (I) reconstructed image before phase shift correction, (II) reconstructed 

image after phase shift correction, (III) integrated signal along the z-axis before phase shift 

correction, (IV) integrated signal along the z-axis after phase shift correction. (c) Correction of 

the cell velocity effect: histograms of measured diameter of 15µm beads before (I) and after (II) 

speed variation correction. 

As shown in Fig 2.1. (b), the LED light passing the sample and the objective lenses is 

reflected by the first dichroic mirror after the detection objective lens, and transmits through the 

spatial mask before reaching the PMT. The transmitted LED light through the slit produces a dip 
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in the light intensity each time a cell travels through the light path due to light scattering or 

absorption. The two parallel slits on the spatial mask are 10µm wide and 1mm long each, with a 

center-to-center distance of 200µm. By measuring the time interval between two dips, the 

travelling speed of each individual cell can be calculated, and the measured cell speed can be 

used to find the “true image frame” along the cell travel (z-) direction. As a result, image 

distortion along the z-direction due to cell speed variations can be corrected. 

2. Experimental Results 

2.1 System calibration 

To characterize the performance of the image-guided cell sorter, we first imaged 

suspended fluorescent (Dragon Green) polystyrene beads with a mean diameter of 0.96µm 

(Bangs Laboratories, FSDG004). As shown in Fig 2.4(a), the transmission and fluorescent 

images of these beads allow us to characterize the optical resolution and sensitivity of the 

system. 

To demonstrate image-guided sorting capabilities, we first sort beads by their diameter. 

The 1:1 mixture of polystyrene beads of two different diameters, 10µm and 15µm, are isolated 

by the image-guided cell sorter. The example images generated by the system are shown in Fig 

2.4(b), and the diameter histogram is shown in Fig 2.4(c). To verify the purity of the sorted 

sample, the beads that are sorted by their diameter are subsequently imaged by a fluorescent 

microscope; and the results based on 170 fluorescent microscope images indicate a sorting purity 

of 97%.  
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Figure 2.4. Image and histogram of polystyrene beads generated by the image-guided cell sorter. 

(a) Example transmission images (first row) and fluorescent images (second row) of polystyrene 

beads with 0.96µm diameter. Scale bar: 2µm (b) Example transmission images (first row) and 

fluorescent images (second row) of polystyrene beads with 10µm (first column) and 15µm 

(second column) diameter. Scale bar: 5µm. (c) Histogram of bead diameter.  

2.2 Sorting of Cells According to the Number of Bonded Beads 

Specific cell-surface markers on immune cells or stem cells indicate their unique 

properties or subpopulation, which may also indicate functional abnormalities [68]. To evaluate 

the system’s capability of sorting cells based on the attachment of marker specific beads, we 

have 1µm diameter fluorescent beads, functionalized with carboxylic groups, randomly bonded 

to the membrane of Human Embryonic Kidney (HEK-293T) cells and sort cells based on the 

number of attached beads. To help visualization, the HEK-293T cells are stained with 
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intracellular carboxyfluorescein dye (CFSE). The example cell images generated by the image-

guided cell sorter are shown in Fig 2.5(a). In the sorting experiment, only cells bonded with 3 or 

more beads are collected. The number of beads attached to each cell is counted in real-time, and 

the histogram is shown in Fig 2.5(b). The sorting purity was verified by examining 197 

fluorescent microscope images of sorted cells, which confirms 96% sorting purity (i.e. 96% of 

sorted cells contain 3 or more beads bonded to their surface). 

 

Figure 2.5. Images and histogram of HEK-293T cells bonded with 1µm polystyrene beads. (a) 

Example images generated by the image-guided cell sorter. First to fourth column: transmission, 

green fluorescence, red fluorescence, and overlay images. Scale bar: 5µm. (b) Histogram of bead 

number counted by the image-guided cell sorter. (c) Example microscope images of sorted HEK-

293T cells bonded with 3 or more beads. 

2.3 Sorting of EGFP-GR Plasmids Translocated HEK-293T Cells 
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To maintain cell functions and activities, proteins must be transported from cytosol to the 

correct destination [69]. The localization of specific proteins could be different between normal 

cells and cancer cells, and abnormal protein translocation can cause cell dysfunction. For 

example, in normal cells retinoblastoma (RB) tumor suppressor protein is localized in nucleus, 

but an oncogenic mutation may alter the gene expression pathway and cause delocalization of 

nuclear RB to cytoplasm [70]. Therefore, detecting and isolating cells according to the spatial 

distribution of protein has biomedical significance. In the following we demonstrate cell sorting 

based on the state of protein localization, which cannot be done by conventional FACS because 

the integrated signal intensity from the labelled protein is not necessarily affected by protein 

location. We use the image-guided cell sorter to detect and isolate EGFP-GR plasmids 

translocated HEK-293T cells from un-translocated HEK-293T cells. 

Two groups of HEK-293T cells are cultured under the same condition and transfected by 

the same amount of EGFP-GR, which is localized in cytoplasm. One group of cells is treated 

with dexamethasone that causes the migration of GR-GFP protein from cytoplasm to nucleus. 

The 1:1 mixture of these two groups of cells is imaged and the translocated cells are sorted based 

on the ratio between the GR-GFP protein distribution represented by the fluorescent area and the 

total cell area from the transmission image. The translocated cells would have a smaller area 

ratio than un-translocated cells, and the histogram of area ratio is shown in Fig 2.6(b). Same as 

the previous experiment, the sorting purity is verified by fluorescent microscope images of the 

sorted cells. We have obtained 100% sorting purity after examining the image of 130 sorted 

cells. 
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Figure 2.6. Images and histogram of GR-GFP transfected HEK-293T cells. (a) Example 

transmission, green fluorescence and overlay images generated by image-guided cell sorter. 

Scale bar: 5µm. (b) Histogram of area ratio, defined by area(fluorescent image) / 

area(transmission image). (c) Example microscope images of sorted translocated HEK-293T 

cells. 

2.4 Sorting of SKNO-1 Acute Myeloid Leukemia (AML) Cells from Normal White Blood 

Cells 
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Leukemia, as one of the most common types of cancer, causes the death of thousands of 

people every year [71]. Traditional flow cytometers rely on antibody panels to diagnose 

leukemia cells, which requires costly reagents and a long and tedious process [72]. The image-

guided cell sorter offers the possibility of detecting and isolating low concentration of leukemia 

cells from normal WBCs without antibody or fluorescent labeling, which helps early detection. 

In a proof-of-concept experiment, a patient-derived SKNO-1 AML cell line is cultured at 

37ºC with 5% CO2 [73]. These SKNO-1 AML cells are spiked into white blood cells of healthy 

donors (San Diego Blood Bank, 3636 Gateway Center Ave Suite 100, San Diego). To decide the 

best sorting criteria for this experiment, we first ran both SKNO-1 cells and WBCs separately to 

collect cell images, as shown in Fig 2.7(a). A total of 19 features, including area, perimeter, 

roughness, granularity, contrast, texture, etc., are extracted from these cell images by offline 

analysis, which concludes that the overall cell area turns out to be the most distinct feature that 

separates SKNO-1 AML cells from WBCs. The area histogram of SKNO-1 and WBCs in Fig 2.7 

I shows that normal WBCs have most of their population in the stationary phase, with an average 

size of 10µm diameter. For the more frequently dividing SKNO-1 cells, a number of them are 

expected to be dividing and caught at either mitosis (larger size) or cytokinesis phase (smaller 

size), so they will have a broader cell size distribution. 

To demonstrate the system’s ability to sort cells based on label-free image features, ~1-

2% of live SKNO-1 cells without fluorescent or antibody labeling are sorted out from live 

WBCs. Since the apparent area of out-of-focused WBCs may be larger than their actual size, a 

parameter of “focusing score” is defined to quantify the extent of focus of the cell image, and 

only the image of cells achieving a sufficiently high focusing score (i.e. >0.5) is analyzed for a 

sorting decision, as shown in Fig 2.7(f).  
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Figure 2.7. (a) Example transmission images generated by image-guided cell sorter. The first row 

shows the images of normal white blood cells. The second row shows the images of SKNO-1 

leukemia cells. Scale bar: 5µm. (b) Wright-Giemsa stain of SKNO-1 leukemia cells on a 

transparent polyester membrane filter. (c) Wright-Giemsa stain of normal white blood cells on a 

transparent polyester membrane filter. (d) Example microscope images of SKNO-1 leukemia 

cells being sorted. (e) Histogram of cell area measured by the image-guided cell sorter. (f) Two-

dimensional distribution of cell area and focusing score in real-time sorting experiment. In the 

sorting experiment, we omit any cells that are poorly focused (i.e. focusing score < 0.5).  

To evaluate the sorting performance, we perform Wright-Giemsa staining to WBCs and 

SKNO-1 leukemia cells. The steps of Wright Giemsa staining can be found in supplementary 

material. As shown in Figs. 2.7(b) and (c), there is a clear difference between SKNO-1 leukemia 

cells and WBCs and among different kinds of WBCs after staining. In particular, SKNO-1 

leukemia cells are characterized by their irregularly shaped nucleus and larger nucleus to 

cytoplasm ratio. After the sorting experiment, the collected cells are placed on a polyester 

transparent membrane filter (1300019, Sterlitech). The stained cells on the membrane filter are 



32 

then imaged under bright field by a microscope. After analyzing the image of 251 sorted cells, 

we have found that 96% of them are SKNO-1 leukemia cells. Considering that the SKNO-1 cells 

have a relative population of 1-2% initially, the result indicates that the image-guided cell sorter 

has enriched the SKNO-1 cell population by around 1,200 times in a label-free operation. 

3. Conclusion and Discussion 

By adopting a design that combines a cameraless imaging technique, microfluidic 

cartridge with an integrated piezoelectric cell sorter, and real-time image processing and image 

feature extraction, we have demonstrated an image-guided cell sorting system capable of 

isolating cells based on their fluorescent and transmission image characteristics. The imaging 

design uses an AOD controlled dual-color laser scanning system for optical excitation and PMTs 

for detection of transmitted bright-field and fluorescent signals; and the cell images are obtained 

by converting the temporal intensity signals into spatial distributions. Cell sorting is directed by 

the image features of each cell against the defined “image gating”, offering much richer 

information contents for the sorting criteria than conventional intensity-based sorting. Our 

system can sort cells within the “image gating” into a tube, or sort and dispense each individual 

cell into one of the wells in a 386-well plate according to the “image gating clusters”. For the 

former operation, the throughput is around 200 cells per second. For the latter, the system can 

place single cells in a 386-well plate in less than 10 minutes. Various experiments show that our 

system can consistently achieve sorting purity of over 96% for both labelled and label-free 

operations. In this paper, we have demonstrated the system’s functions for spot counting, protein 

translocation, and label-free rare cell detection and enrichment. As the trend of combining flow 

cytometer system and microscopy system continues and biomedicine relies more on image 

features to understand cell behaviors and find relations between phenotype and genotype, the 
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ability of cell sorting based on image features marks an important milestone as an enabling tool 

for the fields of biology and medicine.   

The throughput of our system is currently limited by the variations of cell position in the 

microfluidic channel. With 1D hydrodynamic flow focusing, cells in the microfluidic channel are 

confined in one direction only and can take different positions in the other direction, the direction 

along the optical axis. This causes 30 to 40% of cells to be out of focus and produce blurred 

images. Our current algorithm instructs the system to disregard those cells without sorting to 

assure high purity, but the process reduces the sorting yield and overall system throughput. At a 

rate of 400 cells/s entering the system with an average cell speed of 20 cm/s, the current system 

produces a throughput of 200 cells/s at 5.6% rate of doublets after subtracting 30-40% of the 

cells that are out of focus and 10-20% cell loss due to tubing connections and interfaces between 

the microfluidic chip and the cartridge. To overcome these problems, we can produce 

microfluidic devices with 2D hydrodynamic focusing, improve interface connections between 

fluidic devices, and extend the focal depth of the scanning laser beam. 
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Chapter 3 LABEL-FREE IMAGE-ENCODED MICROFLUIDIC CELL SORTER WITH A SCANNING BESSEL 

BEAM  

 

  

1. Background 

In the previous chapter we demonstrated an image-guided cell sorter using a fast-

scanning laser as the excitation source. In a simple microfluidic device suitable for low-cost, 

disposable applications that minimizes cross contamination, one-dimensional flow focusing 

confines the procession of cells into the center of the microfluidic channel only in one axis 

perpendicular to the flow direction. In the other perpendicular axis, however, the cell positions 

are not confined. As a result, particles in the flow channel tend to have a wide distribution in 

their positions affected by their size, stiffness, shape, and morphology. To extract image related 

features of high fidelity, keeping the cells at the focal spot of the interrogating beam is essential. 

Cells positioned outside the focal depth of the interrogating beam will give rise to blurred 

images. Furthermore, given the typical 10-15 𝜇m cell size, even for the cells located in the focal 

plane, a significant portion of the cell features can be out of focus. As a result, today’s image-

guided flow cytometer cell sorters using a tightly focused Gaussian beam from a high numerical 

aperture (NA) objective face two major challenges: (a) to keep cells of different properties in the 

flow channel all in focus and (b) to keep all parts of the cells across their thickness along the 

optical axis in focus. Inability to meet the former requirement gives rise to a large number of out-

of-focus cells, resulting in low throughput and biased analysis since some cell subpopulations 

tend to be in focus more than others. Failure to meet the latter requirement increases the risk of 

misleading the gating criteria for sorting since the apparent crisp cell image represents only the 

feature of one cross section of the cell, leaving features outside the focal plane blurry or not 
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detectable. In this chapter, we demonstrate a scanning Bessel beam system with extended focal 

depth to overcome the above limits and develop innovative approaches to perform image-guided 

cell sorting in a disposable microfluidic cartridge. The sorting criteria were directly determined 

from the image-encoded temporal waveform without image restoration. The system is simple to 

set up and can operate in a label-free manner. 

Although not used in a flow cytometer system before, Bessel beam-based illumination 

microscopy methods have previously been leveraged to increase the depth of focus in biological 

specimens with near-isotropic spatial resolution, achieving significant merit in light-sheet 

microscopy, illumination microscopy, and electron microscopy [74-76]. A Bessel beam is a 

diffraction-free mode solution of the Helmholtz equation and possesses a number of unique 

properties which make it useful for imaging applications, including non-diffractive behavior and 

the ability to self- heal when partially obstructed [77]. A mathematically ideal Bessel beam 

cannot exist as it is unbounded and carries an infinite amount of energy. An experimentally 

achievable approximation is to modulate the Bessel beam by a broad width Gaussian function, 

which is called a Bessel-Gaussian beam. The most used method of generating the Bessel-

Gaussian beam is by illuminating a conically shaped element called an axicon with a Gaussian 

beam [78]. 

Here we demonstrate an imaging flow cytometer and cell sorter with an ultra-long depth 

of focus, accomplished by a scanning Bessel-Gaussian laser beam. The two-dimensional cell 

images can be reconstructed from one dimensional waveform information collected from a PMT. 

From this waveform, a number of cellular morphological features are quantified, and these 

values can be used to create appropriate gates for cell sorting. Sorting is accomplished via an 

integrated PZT as previously described. The PZT-integrated microfluidic device is made of 
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cyclo-olefin copolymer (COC) material integrated with a cartridge that contains microfluidic 

channels and interfaces with the fluidic pumps. Both the microfluidic chip and the cartridge are 

injection molded and can be disposed to eliminate concerns of cross contamination. 

Experiments were conducted to evaluate the sorting performance of the system for 

multiple sizes of polystyrene beads, label-free identification and sorting of acute myeloid 

leukemia (AML) cells from white blood cells, and the label-free sorting of Scenedesmus sp., a 

green algae, from field-collected microorganisms. Our results indicate a sorting accuracy of 

97%, 97%, and 98%, respectively. We also demonstrate an increased percentage of in-focus cell 

images from 30-40% for a Gaussian beam system to >85% by using a Bessel Gaussian beam, 

effectively increasing the throughput by about three folds to around 300 cells/second, limited by 

the response of the on-chip piezoelectric actuator and the presence of cell doublets. 

2. Methods 

2.1 Design of the Imaging System 

The optical system design is shown in Fig. 3.1(a). The Gaussian beam output from a 

488nm diode laser illuminates on an axicon (AX1025-A, Thorlabs) with an angle of 0.5º. A 

Bessel-Gaussian beam is formed by the superposition of two sets of plane waves propagating 

with a cone angle. The Bessel-Gaussian beam is then modulated by an acousto-optic deflector 

(OAD948, Isomet). The acoustic transducer deflects the beam to different angles along the y- 

(scanning) direction at a frequency of 200KHz. Lens1 performs a Fourier transform of the zero 

order Bessel-Gaussian beam to create an annulus-shaped beam at its focal plane. This annulus-

shaped beam is then magnified by lens2 before reaching the exit pupil of a 10X illumination 

objective lens (378-803-3, Mitutoyo). The illumination objective lens transforms the annulus-

shaped beam back to a Bessel-Gaussian beam onto the cells in the microfluidic channel. The 
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position of the AOD is conjugated with the back focal plane of the objective lens. This schematic 

creates a fan scan of the laser beam at the front focal plane. The microfluidic chip, which is made 

of cyclic olefin copolymer (COC) as shown in Fig. 3.1(b), is put at the front focal plane.  

Our design uses a single PMT detector and an AOD-scanned CW laser to encode the 2D 

cell transmission profile into a temporal signal, which can be used as the gating criteria for cell 

sorting and classification. A spatial mask (mask2 in Fig. 3.1(a)) with one 500µm x 15µm slit is 

put at the image plane of the 488nm laser channel, which creates a 50µm x 1.5µm transparent 

area at the focal plane. The slit is aligned to the center of the Bessel-Gaussian beam. As a result, 

the sidelobes of the Bessel-Gaussian beam along the flow direction are blocked while the 

sidelobes along the scanning direction can pass the slit.  

Since cell speed in the microfluidic channel is position dependent and the speed 

information is required to correctly relate the temporal waveform to the cell image, we use a 455 

nm LED, a PMT, and a spatial mask (mask1 in Fig. 3.1(a)) to detect the speed of each individual 

cell. The spatial mask contains two 1mm x 10µm slits separated in the cell flow (z-) direction, 

placed at the image plane of 455nm LED channel. The speed of each cell is obtained by dividing 

the slit distance with the magnification factor (10x in our case) and the time difference between 

the minimum in the LED transmission signal. In our experiment, cell speeds are typically 

between 10 cm/s and 25 cm/s with an average speed of around 20 cm/s. 
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Figure 3.1. (a) Optical imaging system design. AOD, acousto-optic deflector; DM, dichroic 

mirror; IL, 10×/0.28 illumination objective lens; DL, 10×/0.28 detection objective lens; PMTs, 

photomultiplier tubes; and SM: spatial filter. The spatial masks for cell speed detection and 

transmission imaging are shown on the bottom left. (b) Microfluidic chip design. The chip is 

made of cyclic olefin copolymer (COC) by injection molding. 

 

The microfluidic sorting chip was made of COC (Cyclic Olefin Copolymer) by injection 

molding. COC was chosen due to its high transparency in the visible wavelength, low 

autofluorescence, and low fabrication cost. The piezoelectric actuator was attached to the top of 

the COC microchip via a thin layer of double-sided pressure sensitive adhesive (PSA). The 

sample stream is focused by the sheath flow hydrodynamically. When a target cell is detected, 
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the piezo-actuator is triggered to push or pull the target cell to sorting outlet 1 or 2 and eventually 

into either the collection tubes or specific wells in a 384-well plate. Cells that are not of interest 

travel through the center channel to the waste outlet. 

2.2 Simulation of the Bessel Gaussian Beam Transmission Signal 

To gain insight into the transmission of a Bessel Gaussian beam through an object, we 

use COMSOL Multiphysics simulation software to show how a 7µm bead (n=1.6) changes the 

optical intensity distribution of a Bessel-Gaussian beam (Fig. 3.2). Since our system measures 

the far field of the transmitted light, we simulate the electric field distribution 400µm away from 

the bead to satisfy the Fraunhofer far-field condition. When there is no object in the interrogation 

zone, the laser light transmits through the slit and generates a constant DC background. When 

the laser beam intersects the bead, the light will be partially reflected and partially diffracted. If 

the diffraction angle 𝜃 is greater than the collection angle of the detection objective lens, the light 

intensity on the PMT decreases, resulting in a dark region in the transmission image of the 7µm 

bead due to the combined effects of reflection and diffraction assuming the effect of light 

absorption is negligible. According to the simulation, when the Bessel-Gaussian beam hits the 

center of the 7µm bead, the calculated diffraction angle 𝜃 is around 2 degrees, much smaller than 

the collection angle of the detection objective (10X, NA=0.28). Thus, the small angle diffraction 

beam can pass the slit and reach the PMT, producing a “bright spot” at the center of the image of 

the bead. This explains why we observe a bright spot at the center of the restored bead image 

from the transmitted signal (Fig. 3.2(b)). As a general rule, areas of large optical density and 

large angle scattering give rise to dark regions; and areas of low optical density and small angle 

scattering give rise to bright regions in the restored transmission images.  



40 

 

Figure 3.2. (a) COMSOL simulation of the electric field when a Bessel-Gaussian beam 

illuminates on the center of a 7µm bead. (b) Example transmission image of a 7µm bead 

generated by the image-guided cell sorter using a scanning Bessel-Gaussian beam. The image 

was reconstructed using the mathematical algorithm discussed in Section D. Scale bar: 5µm.  

 

2.3 Depth of Focus Comparison 

As discussed previously, the main motive of using a Bessel Gaussian beam to replace a 

Gaussian beam is to extend the focal depth such that objects in different positions in a 

microfluidic channel and different cross sections of the cell can all be focused to generate high 

fidelity 2D cell image information. Fig 3.3 shows the intensity profile and focal depth of the 

Bessel Gaussian beam measured by a camera. Fig 3.3(a) and (b) show the intensity profile of the 

Bessel Gaussian beam at the image plane. The full width half maximum (FWHM) of the center 

lobe is between 1µm and 1.5µm. As expected, a significant amount of energy is in the side lobes, 

which excite areas outside the central spot and complicate the waveform analysis when we use a 

single PMT for detection to keep the system simple and at low cost. A mathematical algorithm to 

be discussed in the next section is required to deconvolve the signal when we reconstruct the 

transmission image. To measure the focal depth, beam profiles at different depths are recorded 

by moving the detection objective lens along the beam propagation (x-) direction. Both the 

maximum intensity and FWHM of the center lobe have relatively small changes within a 

distance of 160µm, as shown in Fig. 3.3(c). In contrast, a Gaussian beam produced by the same 

objective lens has a much shorter focal depth of about 7.37µm. 
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Figure 3.3. Bessel-Gaussian beam profile. (a) Camera measured beam profile at the image plane. 

(b) Normalized intensity from the center of the Bessel-Gaussian beam. (c) Full-width-half-

maximum and normalized light intensity of the main lobe of Bessel-Gaussian beam.  

 

To assess how the extended focal depth of a Bessel-Gaussian beam can improve the 

detection yield compared to a Gaussian beam, we ran a mixture of cells and beads, including 

15µm beads, 7µm beads, HEK 293T cells, MCF7 cells and Hela cells, in both Gaussian beam 

and Bessel-Gaussian beam image-guided cell sorters. The results are summarized in Table 3.1. In 

the Gaussian beam system, the short focal depth cannot keep the majority of objects in focus due 

to the wide distribution of the objects along the microfluidic channel. Except for 15µm beads 

that tend to take a stable position in the channel, only 30-40% 7µm beads, and only 40-60% cells 

are in focus. In sharp contrast, > 90% of 7µm beads, 98% of 15µm beads, and 85% of the cells of 

all kinds are in focus in the Bessel-Gaussian beam system.  
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Fig 3.4 shows example in-focus and out-of-focus 15µm bead and 7µm bead images 

generated by the Gaussian beam system. In sharp contrast, the vast majority of both 15µm and 

7µm diameter beads are well focused for the Bessel-Gaussian beam system.  

 

Figure 3.4. Examples of in-focus (first row) and out-of-focus (second row) images for 15µm and 

7µm beads, generated by a scanning Gaussian beam image-guided cell sorter. In comparison, 

nearly all images from the scanning Bessel Gaussian beam system are well in focus (see Fig. 

3.5). Scale bar: 5µm. 

 

Table 3.1. Comparison of the ratio of in-focus objects between the scanning Gaussian beam 

system and the scanning Bessel-Gaussian beam system. 

 

 Gaussian System Bessel-Gaussian System 

7µm beads 30%-40% 90%-95% 

15µm beads ~98% ~98% 

Cell Mixture 40%-60% 85%-90% 

 

2.4 Image reconstruction algorithm 

In this section we describe the mathematical algorithm to reconstruct images from the 

label-free, transmission signal by a Bessel Gaussian beam. It is noted that because of the 
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correlation between the PMT temporal signal and the image features, we do not need to use the 

restored cell images as gates to sort cells. Instead, we sort cells directly from the features in the 

waveform, thus saving time and resources for real time signal processing. Therefore, image 

reconstruction can be performed off-line for validation of the results and improved human-

machine interface when users would like to observe image differences between sorted and 

unsorted cells and visualize image related features such as size, shape, granularity, contrast, etc.   

The electric field of Bessel-Gaussian beam: 

𝐸𝐵𝐺(𝑟, 𝑥)~ 𝐸0𝐽0(𝑘𝑟𝑟)
𝑤0

𝑤(𝑥)
𝑒

−
𝑟2

𝑤0
2
∙ 𝑒−𝑖𝑘𝑥𝑥𝑒−𝑖∅  (3.1) 

where 𝑟 = √𝑦2 + 𝑧2 is the distance from the center of the Bessel Gaussian beam.  𝐸0 is a 

field amplitude constant. 𝑘𝑟 is the wavevector in the transverse plane and 𝑘𝑟
2 + 𝑘𝑥

2 = 𝑘2. 𝑤0 is 

the waist width of Gaussian amplitude. ∅ = 𝑡𝑎𝑛−1 𝑥

𝑥0
. 𝑥0 is Rayleigh length of the Gaussian 

beam. 

We use 𝑛(𝑥, 𝑦, 𝑧) to denote the cell or bead index profile 𝑛(𝑥, 𝑦, 𝑧) = 𝑛𝑜 + ∆𝑛(𝑥, 𝑦, 𝑧). 

We assume 𝑛𝑜 is the index of water and ∆𝑛 > 0 since the index of cells and beads is greater than 

the index of water. Assume cell or bead thickness is within 𝑥𝑐. For the 2D imaging system, we 

cannot resolve index change along the beam propagation direction, so we make the following 

approximation: 

∫ ∆𝑛(𝑥, 𝑦, 𝑧)𝑑𝑥
𝑥𝑐

0
= ∆�̅�(𝑦, 𝑧)𝑥𝑐  (3.2) 

Adding a slit in parallel with the laser scanning (y-) direction on the image plane and 

assuming the slit is narrow enough to be approximated by a 1-D delta function in its transmission 

characteristic, the transmitted field focused by a lens and after the slit can be approximated by 

(3.3). 
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The term (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦,𝑧)

2𝑛𝑜+∆�̅�(𝑦,𝑧)
) in Eq. (3.3) is the approximate transmission coefficient 

assuming there is no absorption. Here (𝑦, 𝑧) refers to the transverse coordinate in the object 

plane, and (𝑦′, 𝑧′) refers to the transverse coordinate in the image (detection) plane.  For 

simplicity, we have transformed the actual position (𝑌′, 𝑍′) in the image plane into (𝑦′, 𝑧′) by 

defining 𝑦′ =
𝑌′

𝑀
 and 𝑧′ =

𝑍′

𝑀
 with M being the magnification of the detection optics.   

Also note that (𝑦′, 𝑧′) is related to time by the following relations: 

𝑦′ =
𝐹𝑂𝑉𝑦

𝑇
 𝑡  (3.4-a) 

𝑧′ = 𝑣𝑐𝑒𝑙𝑙𝑡  (3.4-b) 

From the relations in Eq.(3.4), we can relate a signal in time domain to the space domain, 

thus reconstructing the image from a temporal waveform. 

To analyze the detected cell transmission signal behind the slit when the center of the 

scanning Bessel Gaussian beam is at a given position in the flow (𝑧′-) direction, we can represent 

the transmitted field in (3.5) under a given position 𝑧′. 

𝐸𝑡(𝑦
′)|𝑧′ ∝ ∫ (

2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦)|𝑧′

2𝑛𝑜+∆�̅�(𝑦)|𝑧′
) 𝐽0[𝑘𝑟√(𝑦′ − 𝑦)2]𝑒

−
(𝑦′−𝑦)2

𝑤0
2

𝑒−𝑖𝑘𝑜∆�̅�(𝑦)|𝑧′𝑥𝑐𝑑𝑦
⬚

𝑦
     (3.5) 

Equation (3.5) shows that 𝐸𝑡(𝑦
′)|𝑧′ is the convolution of the index function  

(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦)|𝑧′

2𝑛𝑜+∆�̅�(𝑦)|𝑧′
) 𝑒−𝑖𝑘𝑜∆�̅�(𝑦)|𝑧′𝑥𝑐 and the Bessel Gaussian function  𝐽0[𝑘𝑟𝑦]𝑒

−
𝑦2

𝑤0
2
 along the 

scanning (y-) direction.  To save computational power for image reconstruction, we approximate 

the Bessel function 𝐽0[𝑘𝑟𝑦] by a series of delta functions at its maxima and minima (Fig. 3.5): 

𝐽𝑜(𝑢)~∑ 𝑐𝑚𝑎𝑥,𝑚𝛿(𝑢 − 𝑢𝑚𝑎𝑥,𝑚)𝑚 + ∑ 𝑐𝑚𝑖𝑛,𝑛𝛿(𝑢 − 𝑢𝑚𝑖𝑛,𝑛)𝑛   (3.6) 
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𝑢𝑚𝑎𝑥,𝑚: positions of mth maximum of 𝐽𝑜(𝑢). 𝐽𝑜(𝑢𝑚𝑎𝑥,𝑚) > 0;  𝑚 = 0,±1,±2,±3,⋯ 

𝑢𝑚𝑖𝑛,𝑛: positions of nth minimum of 𝐽𝑜(𝑢). 𝐽𝑜(𝑢𝑚𝑖𝑛,𝑛) < 0;  𝑛 = ±1,±2,±3,⋯ 

The coefficients for each delta function are defined as 

𝑐𝑚𝑎𝑥,𝑚 = 𝐽0(𝑢𝑚𝑎𝑥,𝑚)      𝑚 = 0,±1,±2,±3,⋯   

𝑐𝑚𝑖𝑛,𝑛 = 𝐽0(𝑢𝑚𝑖𝑛,𝑛)      𝑛 = ±1,±2, ±3,⋯  (3.7) 

Substituting (3.6) and (3.7) into (3.5) and dropping the parameter 𝑧′ for simplicity, we 

obtain the following approximate expression of the transmitted E-field behind the slit, 

𝐸𝑡(𝑦
′)|𝑧′~[∑ 𝐶𝑚𝑎𝑥,𝑚𝑒𝑥𝑝 [−

𝑢𝑚𝑎𝑥,𝑚
2

(𝑘𝑟𝑤𝑜)2
]𝑚 (

2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

)𝑒
−𝑖𝑘𝑜∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚
𝑘𝑟

)|𝑧′𝑥𝑐] −

[∑ 𝐶𝑚𝑖𝑛,𝑛𝑒𝑥𝑝 [−
𝑢𝑚𝑖𝑛,𝑛

2

(𝑘𝑟𝑤𝑜)2
]𝑛 (

2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′

)𝑒
−𝑖𝑘𝑜∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛
𝑘𝑟

)|𝑧′𝑥𝑐] (3.8) 

 

Figure 3.5. Approximate a Bessel function by a series of delta functions at the maxima and 

minima. 𝑢𝑚𝑎𝑥,𝑚 and 𝑢𝑚𝑖𝑛,𝑛 are positions of 𝑚𝑡ℎ maximum and 𝑛𝑡ℎ minimum of 𝐽𝑜(𝑢).  

𝑐𝑚𝑎𝑥,𝑚 = 𝐽0(𝑢𝑚𝑎𝑥,𝑚), 𝑐𝑚𝑖𝑛,𝑛 = 𝐽0(𝑢𝑚𝑖𝑛,𝑛).  

 

Representing 𝐸𝑡(𝑦
′)~𝐴 − 𝐵 in brief form, we can write the transmitted power through 

the slit as: 

𝐽𝑡(𝑦
′)|𝑧′ ∝ 𝐸𝑡

∗(𝑦′)|𝑧′𝐸𝑡(𝑦
′)|𝑧′ ∝ 𝐴𝐴∗ + 𝐵𝐵∗ − 𝐴𝐵∗ − 𝐵𝐴∗         (3.9) 
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Next, we analyze each term in (3.9):  

𝐴𝐴∗(𝑦′)~

[
 
 
 
 
 ∑ 𝐶𝑚𝑎𝑥,𝑚𝑚,𝑚′ 𝐶𝑚𝑎𝑥,𝑚′𝑒𝑥𝑝 [−

𝑢𝑚𝑎𝑥,𝑚
2 +𝑢𝑚𝑎𝑥,𝑚′

2

(𝑘𝑟𝑤𝑜)
2 ]

∙ (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

)(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚′
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚′

𝑘𝑟
)|𝑧′

)

]
 
 
 
 
 

 ∙

𝑒
−𝑖𝑘𝑜[∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚
𝑘𝑟

)−∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚′

𝑘𝑟
)]𝑥𝑐

  (3.10) 

It can be shown that the imaginary part of 𝐴𝐴∗ is zero.  Thus 

𝐴𝐴∗(𝑦′)~

[
 
 
 
 
 ∑ 𝐶𝑚𝑎𝑥,𝑚𝑚,𝑚′ 𝐶𝑚𝑎𝑥,𝑚′𝑒𝑥𝑝 [−

𝑢𝑚𝑎𝑥,𝑚
2 +𝑢𝑚𝑎𝑥,𝑚′

2

(𝑘𝑟𝑤𝑜)
2 ]

∙ (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

)(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚′
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚′

𝑘𝑟
)|𝑧′

)

]
 
 
 
 
 

  

∙ 𝑐𝑜𝑠 [𝑘𝑜[∆�̅� (𝑦′ −
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)−∆�̅� (𝑦′ −

𝑢𝑚𝑎𝑥,𝑚′

𝑘𝑟
)]𝑥

𝑐
]     (3.10-a) 

For 𝑚 ≠ 𝑚′, the summation of the phase mismatched terms in Eq.(3.10-a) leads to 

cancellation and produce small effects.  Keeping the 𝑚 = 𝑚′ terms only and having 𝑢𝑚𝑎𝑥,𝑚=0 =

0 (i.e. the first max for the zero-order Bessel function is at the origin). 

𝐴𝐴∗(𝑦′) ≅
4𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′)|𝑧′

(2𝑛𝑜+∆�̅�(𝑦′)|𝑧′)2
+ [∑ 𝐶𝑚𝑎𝑥,𝑚

2
𝑚≠0 𝑒𝑥𝑝 [−

2𝑢𝑚𝑎𝑥,𝑚
2

(𝑘𝑟𝑤𝑜)2
]

4𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

(2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′)

2] 

 (3.10-b) 

Similarly, we have 

𝐵𝐵∗(𝑦′)~

[
 
 
 
 ∑ 𝐶𝑚𝑖𝑛,𝑛𝑛,𝑛′ 𝐶𝑚𝑖𝑛,𝑛′𝑒𝑥𝑝 [−

𝑢𝑚𝑖𝑛,𝑛
2 +𝑢𝑚𝑖𝑛,𝑛′

2

(𝑘𝑟𝑤𝑜)2
]

∙ (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′

)(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛′
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)|𝑧′

)

]
 
 
 
 

 𝑒
−𝑖𝑘𝑜[∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛
𝑘𝑟

)−∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)]𝑥𝑐

 (3.11) 

𝐵𝐵∗(𝑦′)~

[
 
 
 
 ∑ 𝐶𝑚𝑖𝑛,𝑛𝑛,𝑛′ 𝐶𝑚𝑖𝑛,𝑛′𝑒𝑥𝑝 [−

𝑢𝑚𝑖𝑛,𝑛
2 +𝑢𝑚𝑖𝑛,𝑛′

2

(𝑘𝑟𝑤𝑜)2
]

∙ (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′

)(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛′
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)|𝑧′

)

]
 
 
 
 

 𝑐𝑜𝑠 [𝑘𝑜[∆�̅� (𝑦′ −

𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)−∆�̅� (𝑦′ −

𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)]𝑥𝑐] (3.11-a) 
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For the same argument as before, we take only the terms where 𝑛 = 𝑛′, then Eq.(3.11-a) 

can be represented approximately as 

𝐵𝐵∗(𝑦′) ≅ [∑ 𝐶𝑚𝑖𝑛,𝑛
2

𝑛 𝑒𝑥𝑝 [−
2𝑢𝑚𝑖𝑛,𝑛

2

(𝑘𝑟𝑤𝑜)2
]

4𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′

(2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′)

2]       (3.11-b) 

Similarly, 

𝐴𝐵∗(𝑦′)~

[
 
 
 
 
 ∑ 𝐶𝑚𝑎𝑥,𝑚𝑚,𝑛′ 𝐶𝑚𝑖𝑛,𝑛′𝑒𝑥𝑝 [−

𝑢𝑚𝑎𝑥,𝑚
2 +𝑢𝑚𝑖𝑛,𝑛′

2

(𝑘𝑟𝑤𝑜)
2 ]

∙ (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

)(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛′
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)|𝑧′

)

]
 
 
 
 
 

  ∙

𝑒
−𝑖𝑘𝑜[∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚
𝑘𝑟

)−∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)]𝑥𝑐

     (3.12) 

 

𝐴𝐵∗(𝑦′)~

[
 
 
 
 ∑ 𝐶𝑚𝑎𝑥,𝑚𝑚,𝑛′ 𝐶𝑚𝑖𝑛,𝑛′𝑒𝑥𝑝 [−

𝑢𝑚𝑎𝑥,𝑚
2 +𝑢𝑚𝑖𝑛,𝑛′

2

(𝑘𝑟𝑤𝑜)2
]

∙ (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

)(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛′
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)|𝑧′

)

]
 
 
 
 

  

∙ 𝑐𝑜𝑠 [𝑘𝑜[∆�̅� (𝑦′ −
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)−∆�̅� (𝑦′ −

𝑢𝑚𝑖𝑛,𝑛′

𝑘𝑟
)]𝑥𝑐] (3.12-a) 

For the same argument as above, we have 𝐴𝐵∗(𝑦′)~0, since the 𝑐𝑜𝑠 terms contain 

random phases. 

𝐵𝐴∗(𝑦′)~

[
 
 
 
 ∑ 𝐶𝑚𝑖𝑛,𝑛𝑛,𝑚′ 𝐶𝑚𝑎𝑥,𝑚′𝑒𝑥𝑝 [−

𝑢𝑚𝑖𝑛,𝑛
2 +𝑢𝑚𝑎𝑥,𝑚′

2

(𝑘𝑟𝑤𝑜)2
]

∙ (
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′

)(
2√𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−

𝑢𝑚𝑎𝑥,𝑚′
𝑘𝑟

)|𝑧′

2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚′

𝑘𝑟
)|𝑧′

)

]
 
 
 
 

 

 𝑒
−𝑖𝑘𝑜[∆�̅�(𝑦′−

𝑢𝑚𝑖𝑛,𝑛
𝑘𝑟

)−∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚′

𝑘𝑟
)]𝑥𝑐

    (3.13) 

For the same reason above, 𝐵𝐴∗(𝑦′)~0.  

As a result, we have 

𝐽𝑡(𝑦
′, 𝑥)~

4𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′)|𝑧′

(2𝑛𝑜+∆�̅�(𝑦′)|𝑧′)2
+ [∑ 𝐶𝑚𝑎𝑥,𝑚

2
𝑚≠0 𝑒𝑥𝑝 [−

2𝑢𝑚𝑎𝑥,𝑚
2

(𝑘𝑟𝑤𝑜)2
]

4𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′

(2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
)|𝑧′)

2] +

[∑ 𝐶𝑚𝑖𝑛,𝑛
2

𝑛 𝑒𝑥𝑝 [−
2𝑢𝑚𝑖𝑛,𝑛

2

(𝑘𝑟𝑤𝑜)2
]

4𝑛𝑜(𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′

(2𝑛𝑜+∆�̅�(𝑦′−
𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
)|𝑧′)

2] (3.14) 
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Define 𝑓(𝑦, 𝑧) =
4𝑛𝑜(𝑛𝑜+∆�̅�(𝑦)

(2𝑛𝑜+∆�̅�(𝑦))
2 |𝑧. By solving 𝑓(𝑦, 𝑧), we can obtain the index profile of the 

object ∆�̅�(𝑦, 𝑧). 

According to (3.14), we have 

𝐽𝑡(𝑦
′, 𝑧′) = 𝑓(𝑦′, 𝑧′) + [∑ 𝐶𝑚𝑎𝑥,𝑚

2
𝑚≠0 𝑒𝑥𝑝 [−

2𝑢𝑚𝑎𝑥,𝑚
2

(𝑘𝑟𝑤𝑜)2
] 𝑓 (𝑦′ −

𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
, 𝑧′)] +

[∑ 𝐶𝑚𝑖𝑛,𝑛
2

𝑛 𝑒𝑥𝑝 [−
2𝑢𝑚𝑖𝑛,𝑛

2

(𝑘𝑟𝑤𝑜)2
] 𝑓 (𝑦′ −

𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
, 𝑧′)]  

= 𝑓(𝑦′, 𝑧′) + [∑ 𝑎𝑚𝑎𝑥,𝑚
2

𝑚≠0 𝑓 (𝑦′ −
𝑢𝑚𝑎𝑥,𝑚

𝑘𝑟
, 𝑧′)] + [∑ 𝑎𝑚𝑖𝑛,𝑛

2
𝑛 𝑓 (𝑦′ −

𝑢𝑚𝑖𝑛,𝑛

𝑘𝑟
, 𝑧′)] (3.15) 

𝑎𝑚𝑎𝑥,𝑚
2 = 𝐶𝑚𝑎𝑥,𝑚

2𝑒
−

2𝑢𝑚𝑎𝑥,𝑚
2

𝑘𝑟
2𝑊𝑜

2
      𝑚 = ±1,±2,±3,⋯  (3.16-a) 

𝑎𝑚𝑖𝑛,𝑚
2 = 𝐶𝑚𝑖𝑛,𝑛

2𝑒
−

2𝑢𝑚𝑖𝑛,𝑛
2

𝑘𝑟
2𝑊𝑜

2
         𝑛 = ±1,±2, ±3,⋯   (3.16-b) 

Next, we discuss how to determine the limits of 𝑚 and 𝑛 in (S15).  We assume the 

scanning range of the laser beam is from −𝐿𝑦/2 to 𝐿𝑦/2, and the laser beam spot covers a range 

from −𝑊𝑦/2 to +𝑊𝑦/2 due to the side lobes of the Bessel Gaussian beam. Assume a scanning 

rate of 200kHz and a sampling rate of 25 MS/s, we have 125 sampling points for each scan 

corresponding to the beam center position.   

We assume the width of the side lobes of a Bessel Gaussian beam is 𝑊𝑦. The transmitted 

light intensity becomes nonzero when −
𝑊𝑦

2
< 𝑦′ − 𝑦 <

𝑊𝑦

2
.   Then   

−
𝐿𝑦

2
−

𝑊𝑦

2
< 𝑦 <

𝐿𝑦

2
+

𝑊𝑦

2
            (3.17) 

Equation (3.17) defines the integration range for (3.15).  In other words, we need to 

integrate at least over this range defined in (3.17) to restore the object image from the measured 

data in each scan.   

The dimension of the T-matrix we will discuss next would be a {125 [1 +
𝑊𝑦

𝐿𝑦
] + 1} ×

{125 [1 +
𝑊𝑦

𝐿𝑦
] + 1} matrix.  If we choose 

𝑊𝑦

𝐿𝑦
= 1, then the T-matrix is a 251x251 matrix. 
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We write 𝐽𝑡(𝑦
′, 𝑧′) into a column matrix with 125 non-zero elements defined by the 

“width” of the Bessel Gaussian beam. Arbitrarily, we choose these 125 nontrivial points in an 

index range from -2 to 122, as shown in (3.18).  Outside this range, we define the “padding 

values” 𝐵 = 𝐽𝑡(𝑦
′
0
, 𝑧′) and 𝐵′ = 𝐽𝑡(𝑦

′
120

, 𝑧′). 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐵
⋯
𝐵

𝐽𝑡(𝑦
′
−2

, 𝑧′)

𝐽𝑡(𝑦
′
−1

, 𝑧′)

𝐽𝑡(𝑦
′
0
, 𝑧′)

𝐽𝑡(𝑦
′
1
, 𝑧′)

𝐽𝑡(𝑦
′
2
, 𝑧′)

....
𝐽𝑡(𝑦

′
120

, 𝑧′)

𝐽𝑡(𝑦
′
121

, 𝑧′)

𝐽𝑡(𝑦
′
122

, 𝑧′)

𝐵′

𝐵′

⋯
𝐵′ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

251𝑥1

= [𝑇]251𝑥251

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑓(𝑦′

−65
, 𝑧′)

⋯
𝑓(𝑦′

−3
, 𝑧′)

𝑓(𝑦′
−2

, 𝑧′)

𝑓(𝑦′
−1

, 𝑧′)

𝑓(𝑦′
0
, 𝑧′)

𝑓(𝑦′
1
, 𝑧′)

𝑓(𝑦′
2
, 𝑧′)

....
𝑓(𝑦′

120
, 𝑧′)

𝑓(𝑦′
121

, 𝑧′)

𝑓(𝑦′
122

, 𝑧′)

𝑓(𝑦′
123

, 𝑧′)

𝑓(𝑦′
124

, 𝑧′)
⋯

𝑓 (𝑦′
185

, 𝑧′)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

251𝑥1

 (3.18) 

𝐽𝑡(𝑦
′
0
, 𝑧′),⋯ , 𝐽𝑡(𝑦

′
120

, 𝑧′) and 𝑓(𝑦′
0
, 𝑧′),⋯ , 𝑓(𝑦′

120
, 𝑧′) are within the “chosen” field 

of view. 𝐽𝑡(𝑦
′
−2

, 𝑧′), 𝐽𝑡(𝑦
′
−1

, 𝑧′), 𝐽𝑡(𝑦
′
121

, 𝑧′), 𝐽𝑡(𝑦
′
122

, 𝑧′) are measured signal within the laser 

scanning range. The reason why we have nontrivial 𝑓(𝑦′
−65

, 𝑧′),⋯ , 𝑓(𝑦′
−3

, 𝑧′) and 

𝑓(𝑦′
123

, 𝑧′),⋯ , 𝑓(𝑦′
185

, 𝑧′) is because the side lobes of the Bessel Gaussian beam can 

illuminate objects outside the field of view.  

Calculating the inverse of the T-matrix, we can solve 𝑓(𝑦′, 𝑧′) 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑓(𝑦′

−65
, 𝑧′)

⋯
𝑓(𝑦′

−3
, 𝑧′)

𝑓(𝑦′
−2

, 𝑧′)

𝑓(𝑦′
−1

, 𝑧′)

𝑓(𝑦′
0
, 𝑧′)

𝑓(𝑦′
1
, 𝑧′)

𝑓(𝑦′
2
, 𝑧′)

....
𝑓(𝑦′

120
, 𝑧′)

𝑓(𝑦′
121

, 𝑧′)

𝑓(𝑦′
122

, 𝑧′)

𝑓(𝑦′
123

, 𝑧′)

𝑓(𝑦′
124

, 𝑧′)
⋯

𝑓(𝑦′
185

, 𝑧′)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

251𝑥1

= [𝑇]−1
251𝑥251

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐵
⋯
𝐵

𝐽𝑡(𝑦
′
−2

, 𝑧′)

𝐽𝑡(𝑦
′
−1

, 𝑧′)

𝐽𝑡(𝑦
′
0
, 𝑧′)

𝐽𝑡(𝑦
′
1
, 𝑧′)

𝐽𝑡(𝑦
′
2
, 𝑧′)

....
𝐽𝑡(𝑦

′
120

, 𝑧′)

𝐽𝑡(𝑦
′
121

, 𝑧′)

𝐽𝑡(𝑦
′
122

, 𝑧′)

𝐵′

𝐵′

⋯
𝐵′ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

251𝑥1

 (3.19) 

The elements of the T-matrix are defined as follow: 

𝑇𝑖𝑗 = 1.     𝑖𝑓    𝑖 = 𝑗,     − 65 ≤ 𝑖, 𝑗 ≤ 185 

𝑇𝑖𝑗 = 𝐶𝑙
2𝑒𝑥𝑝 [−

2𝑢𝑙
2

(𝑘𝑟𝑤𝑜)2
] ≡ 𝑎𝑙

2  where 𝑢𝑙 is the 𝑙𝑡ℎ 𝑚𝑖𝑛 or 𝑚𝑎𝑥 for 𝐽0(𝑢) if 𝑦𝑖
′ −

𝑢𝑙

𝑘𝑟
= 𝑦𝑗

′ 

𝑇𝑖𝑗 = 0.     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (3.20) 

Equations (3.19) and (3.20) describe how we reconstruct the transmission images for 

cells or beads from the PMT signal. 

2.5 Waveform-Based Real-Time Sorting 

The mathematical algorithm in the previous section can recover the object image from 

the PMT signal. However, the computation of 251x251 matrix multiplication is time-consuming 

and can limit the throughput. On the other hand, because most cell features, including size, 

spottiness, granularity, etc., are encoded in the PMT output waveform, we can extract many 

image features that differentiate cell types directly from the temporal waveform without 

reconstructing the 2D cell images. This saves tremendous computation time and resources, and 
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the method is suitable for cell sorting by image features. For all sorting experiments reported in 

this paper, we define gating based on the characteristics of the temporal waveform, which are 

closely correlated to specific image features. We then use the mathematical algorithm discussed 

in the previous section to reconstruct the cell transmission images off-line for verification 

purposes. To quantify sorting accuracy, we also apply additional methods such as staining and 

microscopy to verify the performance of waveform-based image-guided cell sorting. 

Fig 3.6 shows an example of how the temporal waveform carries features about particle 

size and how we can use the waveform features to distinguish 15µm and 7µm diameter beads. 

When there is no object in the microfluidic channel, the scanning Bessel Gaussian beam 

transmits through the slit and the PMT shows a periodic background signal, caused by any 

imperfections or dust particles in the COC microfluidic chip intersected by the laser beam. Since 

these features are still, they appear to be periodic in each scan and can be subtracted by software. 

When a cell or bead travels through the optical interrogation area, it creates an instantaneous 

change in the PMT output signal on top of the background. The PMT waveforms in Figs. 3.6(a-i) 

and 3.6(b-i) show an envelope with a series of spikes. Each spike represents a single scan 

spanning a duration of 5µs, and the width of the spike is proportional to the size of the bead 

along the scanning (y-) direction. On the other hand, the width of the overall signal envelope is 

proportional to the dimension of the bead in the flow direction after correction of the effect of the 

flow speed. Based on this argument, we develop the following sorting criterion that is equivalent 

to the particle size: 
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Figure 3.6. Transmission PMT signals for 15µm and 7µm beads and reconstructed images. Scale 

bar: 5µm. (i) The overall signals. Each “*” represents the peak of each scan. The product of the 

bead speed 𝑣𝑏𝑒𝑎𝑑 and the width of the overall envelope 𝑇1 produces the bead dimension along 

the flow direction. (ii) Detailed waveforms for a single 5µs AOD scan. At each specific z-

position, the dimension of the bead along the scanning direction is 𝑇2 ∗ 𝑣𝑠𝑐𝑎𝑛 where 𝑣𝑠𝑐𝑎𝑛 =
8𝑚/𝑠 is the beam scanning speed. (iii) Reconstructed transmission images of a 15 µm and 7 µm 

bead. The relations between the temporal waveforms and the image features are also indicated in 

the figures. 
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We find the time interval between the first negative peak and the last negative peak 𝑇1, 

which corresponds to the duration when the bead crosses the optical interrogation zone defined 

by the width of the slit in the spatial mask. The bead length 𝐿 along the flow direction equals 𝑇1 ∗

𝑣𝑏𝑒𝑎𝑑, where 𝑣𝑏𝑒𝑎𝑑 is bead traveling speed. We then analyze the detailed waveform of each 5µs 

scan (labelled by “*” in the envelope waveform) to find the bead dimension in the scanning 

direction. Figs 3.6(a-ii) and (b-ii) show the detailed waveform of each 5µs scan at a given z 

position. By slicing the object into N sections along the z-position, the object width at the nth 

section can be represented as 𝑇2
𝑛 ∗ 𝑣𝑠𝑐𝑎𝑛 with 𝑛 being the index of the z-position and 𝑣𝑠𝑐𝑎𝑛 is the 

beam scanning speed (𝑣𝑠𝑐𝑎𝑛 = 8𝑚/𝑠). Fig 3.6(a-ii) shows two (10th and 16th) of such scans for a 

15µm bead. The 10th scan gives the largest value of 𝑇2
𝑛 ∗ 𝑣𝑠𝑐𝑎𝑛, indicating the widest part (i.e. 

diameter) of the bead. Similar characteristics can be found in the waveform of 7µm beads. The 

above example demonstrates how one can relate the temporal waveform features to the 

geometric features of a travelling object such as size, shape, aspect ratio, etc. 

3 Experimental Results 

3.1 Sorting of 10 and 15µm beads 

To validate the sorting algorithm described above, a sorting experiment was done using 

7µm, 10µm and 15µm beads. The histogram of (𝑇1 ∗ 𝑣𝑏𝑒𝑎𝑑) ∗ (𝑇2 ∗ 𝑣𝑠𝑐𝑎𝑛) is shown in Fig. 

3.7(b). To evaluate sorting performance, we sorted 10µm beads from a 1:1 mixture of 7µm and 

10µm beads, as well as 15µm beads from a 1:1 mixture of 7µm and 15µm beads. The sorted 

beads were imaged using a microscope to verify the sorting accuracy. The first experiment 

demonstrated a sorting purity of 97%, verified by 233 microscope images; and the second 

experiment demonstrated 100% sorting purity, verified by 173 microscope images.  
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Figure 3.7. Images and histograms of polystyrene beads generated by the Bessel-Gaussian beam 

image-guided cell sorter. (a) Transmission images of polystyrene beads with 7µm (left) and 

10µm (right) diameter. Scale bar: 5µm. (b) Histogram of (𝑇1 ∗ 𝑣𝑏𝑒𝑎𝑑) ∗ (𝑇2 ∗ 𝑣𝑠𝑐𝑎𝑛) for 7µm, 

10µm and 15µm beads. 

 

3.2 Label-free sorting of leukemia cells  

Blood cancers such as acute myeloid leukemia (AML) are estimated to account for 9.9% 

of the 1.8 million new cancer cases diagnosed in 2020 [23]. Leukemia, lymphoma and myeloma 

are expected to account for 9.4% of all cancer deaths in 2020 [79]. 

Acute myeloid leukemia is derived from the myeloid line of blood cells and is 

characterized by its rapid and unchecked growth of abnormal cells in the bone marrow that 

interferes with normal blood cell production. Diagnosis usually occurs via bone marrow 

aspiration or antibody-specific blood tests [80]. However, these require costly panels and tedious 

procedures. An image-guided cell sorter enables the identification and subsequent sorting of 

AML cells without any antibody or fluorescent labeling, aiding early detection and eliminating 

the need for costly reagents and tedious laboratory procedures. 
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In a proof-of-concept experiment, patient-derived SKNO1 acute myeloid leukemia 

(AML) cells were cultured in cell culture media (90% RPMI + 8% FBS + 1% penicillin + 1% 

streptomycin) at 37℃ with 5% CO2.  The SKNO1 cells were spiked into white blood cells from 

healthy donors (San Diego Blood Bank, 3636 Gateway Center Ave Suite 100, San Diego). A 

number of feature parameters were extracted from the transmission waveform of these cells, 

which are intuitively related to cell area, perimeter, granularity, roughness, contrast, and texture. 

The most distinguishing features between SKNO1 cells and white blood cells were determined to 

be 𝑇1 ∗ 𝑣𝑐𝑒𝑙𝑙 and the number of positive peaks of the waveform. The former is related to cell size 

and the latter to intracellular granularity. To demonstrate image-guided label-free cell sorting, a 

2D plot of these parameters was generated and the appropriate gating parameters were chosen to 

sort SKNO1 cells from healthy white blood cells in a ratio of 1:50. To evaluate the cell sorting, 

Wright-Giemsa staining was performed. The full details for the staining procedure can be found 

in the supplementary material. The sorted cells were collected in a tube and deposited on a 

polyester transparent membrane filter (1300019, Sterlitech). Wright-Giemsa staining was 

performed and the stained cells were imaged using brightfield microscopy. A total of 124 

SKNO1 cells were imaged from a total of 128 cells found on the membrane, giving rise to a 

sorting purity of 97%. Given the initial population of 2% SKNO1 cells, the sorting has enriched 

the sample by 1600 times. 
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Figure 3.8. (a) Transmission PMT signals and images for SKNO-1 and WBC generated by the 

Bessel-Gaussian beam image-guided cell sorter. Scale bar: 5µm. (b) Distribution plots using 

these two parameters: 𝑇1 ∗ 𝑣𝑐𝑒𝑙𝑙 and 𝑁 ∗ 𝑣𝑐𝑒𝑙𝑙 where 𝑁 is the number of positive peaks in the 

PMT waveform. Multiplication of cell speed to both parameters remove feature distortions due 

to cell speed variations. 

 

3.3 Label-Free Sorting of Scenedesmus sp. 

Algae are a group of photosynthetic, eukaryotic organisms that can be found in oceans, 

waterways, lakes, and soils all over the world. Algae are commonly used to monitor 

environmental changes and have a number of industrial uses, including the production of 

biodiesel, ceramic products, glass products; in wastewater and oil spill cleanup; and in the 

biotechnology field as anticoagulant, antiviral and antitumor agents [81-84]. Despite their 

usefulness, little is known regarding the majority of these algae, with the estimated number of 

microalgae species exceeding one million [85]. In comparison, the best algae culture collections 

often contain only a few thousand species [86]. Isolation of microalgae species from the 

environment is a useful and necessary approach to understanding these organisms and 
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uncovering potential technological solutions. Traditionally, these organisms are isolated by hand 

using micropipettes or capillary tubes, or by fluorescence-activated cell sorting, and are 

subsequently cultured [87]. However, the throughput and usefulness of these approaches are 

limited, as microalgae and other microorganisms experience complex relationships with 

surrounding organisms that affect algae phenotype. 

Scenedesmus sp. is one of the most common freshwater green algae. These colonial, non-

motile algae have been researched for its high biomass productivity and its efficiency at 

capturing CO2 [88]. Scenedesmus is capable of producing many types of biofuels and has been 

most extensively studied for biodiesel production. As there are over seventy taxonomically 

accepted species of Scenedesmus, including some with unique properties that only exist in local 

populations, the high-throughput identification and sorting of these algae from field-collected 

samples could unlock new opportunities [88]. 

As a proof-of-concept sorting experiment, Scenedesmus (Carolina Biological Supply, 

152510) were spiked into field-collected microorganisms (Miramar Lake, San Diego, California) 

in a ratio of 1:5. The sample was run through a 35µm filter to remove clumps and large particles. 

The distinguishing feature of Scenedesmus from the other microorganisms was 𝑇1 ∗ 𝑣𝑎𝑙𝑔𝑎𝑒, 

which intuitively relates to size. A histogram with these parameters was generated and the 

appropriate portion was gated. The sorted samples were collected into tubes and visualized using 

brightfield microscopy. From a total of 253 sorted cells verified by microscope, 248 of them 

were Scenedesmus and 5 were other microorganisms, resulting in a sorting purity of 98%. 
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Figure 3.9. (a) Transmission channel waveforms and reconstructed images of Scenedesmus and 

microorganisms in Miramar Lake water. Scale bar: 5µm. (b) Optical microscope images of 

Scenedesmus being sorted on membrane filter. (c) Histogram of 𝑇1 ∗ 𝑣𝑎𝑙𝑔𝑎𝑒 for Scenedesmus 

and other microorganisms in lake water. 
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Chapter 4 LABEL-FREE THREE-DIMENSIONAL FORWARD SCATTERING IMAGING FLOW CYTOMETER  

 

  

1 Background 

We have illustrated the importance of detecting cell images in a label-free manner in the 

previous chapter. Current imaging flow cytometers, including the commercialized ones like 

Amnis® ImageStream®X and the IFC with 3D imaging capabilities are able to provide 2D 

transmission (brightfield) images and 2D/3D side scattering images. Forward scattering is also 

one of the most important parameters in flow cytometry analysis. However, due to technical 

challenges, flow cytometers that can produce 2D or 3D forward scattering images are still under 

development. Here we propose a method to solve this problem, leveraging fast laser scanning, 

needle-shaped beam and PMT array detector.  

Though an ideal Bessel beam can theoretically retain its intensity profile after an infinite 

travel distance in space, the sidelobes can still complicate the computation or optical setup. As a 

result, people developed needle-shaped beam (NB), which is capable of maintaining high 

transverse resolution over a large depth-of-focus, also featured by the removal of sidelobes [89]. 

Zhao et.al. developed a spatially multiplexed phase pattern that creates many axially closely 

spaced foci as a universal platform for customizing various NBs, allowing flexible manipulations 

of beam length and diameter [90]. The phase mask was created on a diffractive optical element 

(DOE) that was fabricated on a fused silica wafer via several rounds of lithography. The DOE is 

composed of 1024×1024 10 µm pixels (Fig. 4.1 (a-c)), with a beam length of 40um and 9 foci 

(Fig. 4.1 (d)).  
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Figure 4.1. (a) Laser microscope (VK-X3000, Keyence) images of the diffractive optical 

element. (b) One enlarged area of (a). (c) height profile of (b). (c) Laser beam profile at the focal 

plane of the imaging system. 

 

2 Methods 

2.1 Design of the Imaging System 

The optical system design is shown in Fig. 4.2 (a). The Gaussian beam output from a 

488nm diode laser with a beam diameter of 0.7mm is modulated by an acousto-optic deflector 

(488-A, CASTECH). The acoustic transducer deflects the beam to different angles along the y- 

(scanning) direction at a frequency of 200kHz. The laser beam is then expanded to a diameter of 

3mm and illuminates on the DOE shown in Fig. 4.1. The needle-shaped beam is formed at the 
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focal plane of a 20X objective lens (378-804-3, Mitutoyo). The position of the AOD is 

conjugated with the DOE. An LED is also coupled into the optical path as a light source during 

sample alignment. Forward scattering signals, as well as laser transmission light are collected by 

a 50X objective lens (378-805-3, Mitutoyo). However, a black square with 8mm width and 4mm 

height blocks all the transmission light, only allowing forward scattering light passing through.  

The three-dimensional field of view, which is 40µm (scanning, or x-direction) by 40µm 

(flow, or y-direction) by 40µm (laser propagating, or z-direction), is artificially divided to eight 

x-y planes with roughly equal intervals. As shown in Fig. 4.2 (a), scattering signals from the first 

x-y plane are collected by the 50X objective lens and then focused by a 150mm lens. A micro-

mirror is placed right at the focal point. The mirror is tilted at a 45-degree angle to the optical 

axis such that the scattering light beam is reflected down to the optics table. The scattering 

signals from the second x-y plane are also focused by the 150mm lens, with a focal point that is 

behind the focal point corresponding to the first x-y plane. Though part of the light beam 

corresponding to the second x-y plane will be intersected by the first micro-mirror, due to the 

relatively small size of the mirror, most of the beam will still reach the geometrically determined 

focal point, where a second micro-mirror is placed. As a result, it is not hard to imagine that a 

series of micro-mirrors with same geometries and intervals, with each of them placed at the focal 

point corresponding to one artificial object plane, will split the mixed forward scattering signals 

from different depth to spatially separated paths, which can be quantified by different detectors. 

Here we use a detector array composed of eight PMTs (H9530-20, Hamamatsu), and the 

intervals between focal points are designed to match the pitches of the PMTs. 
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Figure 4.2. (a) Design of the imaging system. DOE: diffractive optical element. (b) Design of the 

micro-mirror array  

2.2 Devices Fabrication 

To make the fabrication process feasible, the micro-mirror array is designed to be an 

array of prism, each of which has a length of 5mm, aligned to the x-direction, and a height of 

70µm. The prism array is made by layer-by-layer deposition of negative-tone resins on a silicon 

wafer (Photonic Pro GT2, Nanoscribe), followed by developing in propylene glycol methyl ether 

acetate (PGMEA) for 10min and rinsing in isopropyl alcohol (IPA). To make the surface 

reflective, a 125nm aluminum layer was sputtered on the array (Discovery 18, Denton). The 

layer is formed under 80 sccm Argon air flow, 5mT chamber pressure, 100W DC power and a 

deposition time of 5min. The scattering target (Fig 4.3 (b)) is made of a similar process by 

depositing resins on a transparent substrate.  

3 Results 

3.1 Channel crosstalk quantification 

As shown in Fig 4.3 (a), the forward scattering signals from any focal planes (FPs), 

except for the first FP, will be partially intersected by the previous mirror, which means that even 
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if the scattering center is only located at the second FP, the first PMT will also receive some 

signals. We call this phenomenon “crosstalk”. The situation of other FPs can be speculated 

accordingly. The crosstalk between all the PMTs within the 40µm range is simulated by moving 

a scattering center along z axis (Fig. 4.3 (c)). We can observe that when PMT j (1<j<8) reaches 

its maximum, PMT j-1 and PMT j+1 also have signal output. The reasons can be related to the 

relatively large size of the needle-shaped beam (4 µm 1 𝑒2⁄  diameter), which leads to the 

excitation of off-axis scattering centers,  as well as the variations of scattering angles from the 

scattering center.  

A test sample which serves as a 3D scattering object was fabricated as described in the 

previous chapter. The sample has eight steps forming a staircase-like structure, with a step size 

of 2.5µm. Several 1µm x 1µm x 1µm bumps are placed on each tier, including the ground floor, 

which will generate strong scattering signal under laser illumination. We fixed the laser position 

on one of the bumps and move the test sample along z-axis with an incremental of 1µm. The 

output intensity of each PMT was recorded and plotted against the z position (Fig 4.3 (d)). 

 

Figure 4.3. (a) Schematic of 3D forward scattering detection working principles and the reasons 

for crosstalk. (b) Scattering target test sample. (c) Simulated crosstalk (Zemax, Ansys). (d) 

Measured crosstalk. 
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3.2 Forward Scattering image reconstruction 

The test sample in Fig 4.3 (b) was mounted on a xyz stage, placed within the focal length 

of the DOE, with the step edges aligned with the scanning direction of the laser beam. We 

manually moved the sample along flow direction with a distance corresponding to three tiers and 

recorded the outputs of all the PMTs. For each PMT, the temporal waveforms were reconstructed 

to a 3D image using the algorithm described in Chapter 2 (Fig 4.4 (a)). The strong signals with 

line structures come from the step edges. We can observe that signals from tier 1 reach their 

highest at PMT#5. Signals from tier 2 have similar intensities at PMT#4 and PMT#5, and signals 

from tier 3 reach their highest at PMT#4. 

 

Figure 4.4. (a) Reconstructed 2D images of the scattering target test sample using the output 

signals from each PMT. (b) Reconstructed 3D image of the scattering target, considering the 

steps. 
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For the images in Fig 4.4 (a), we extracted the part of tier 1 at PMT#5, the average of tier 

2 at PMT#4 and PMT#5, and tier 3 at PMT#4. Since the relationship between PMT output and 

the positions of object planes is known, we can reconstruct the 3D forward scattering images of 

the test sample, which is shown in Fig 4.4 (b). 
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