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ABSTRACT

We present geometric and dynamical modeling of the broad line region for the multi-wavelength

reverberation mapping campaign focused on NGC 5548 in 2014. The dataset includes photometric

and spectroscopic monitoring in the optical and ultraviolet, covering the Hβ, C iv, and Lyα broad

emission lines. We find an extended disk-like Hβ BLR with a mixture of near-circular and outflowing

gas trajectories, while the C iv and Lyα BLRs are much less extended and resemble shell-like structures.

There is clear radial structure in the BLR, with C iv and Lyα emission arising at smaller radii than the

Hβ emission. Using the three lines, we make three independent black hole mass measurements, all of

which are consistent. Combining these results gives a joint inference of log10(MBH/M�) = 7.64+0.21
−0.18.

We examine the effect of using the V band instead of the UV continuum light curve on the results and

find a size difference that is consistent with the measured UV-optical time lag, but the other structural

and kinematic parameters remain unchanged, suggesting that the V band is a suitable proxy for the

ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the Hβ

results to similar models of data obtained in 2008 when the AGN was at a lower luminosity state. We

find that the size of the emitting region increased during this time period, but the geometry and black

hole mass remain unchanged, which confirms that the BLR kinematics suitably gauge the gravitational

field of the central black hole.
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1. INTRODUCTION

Broad emission lines in active galactic nuclei (AGN)

are thought to arise from the photoionization of gas in

a region surrounding a central supermassive black hole.

The geometry and dynamics of this so-called broad line

region (BLR), however, are not well understood. Since

a typical BLR is only on the order of light days in ra-

dius, this region nearly always cannot be resolved even

in the most nearby AGN, with rare exceptions (e.g., 3C

273, Gravity Collaboration et al. 2018). Emission-line

profiles can provide some information about the line-

of-sight (LOS) motions of the gas, but more data are

required to extract the BLR structure and dynamics.

The technique of reverberation mapping (Blandford

& McKee 1982; Peterson 1993, 2014; Ferrarese & Ford

2005) utilizes the time lag between continuum fluctua-

tions and emission line fluctuations to extract a charac-

teristic size of the BLR. Paired with a velocity measured

from the emission-line profile, these data provide black

hole mass measurements to within a factor, f . This

factor, of order unity, accounts for the unknown BLR

structure and dynamics. Velocity-resolved reverbera-

tion mapping takes this one step further by breaking

up the line profile into velocity bins and studying how

each part responds to the continuum. This method has

found results that are consistent with gas in elliptical

orbits for some objects, while others indicate either in-

flowing or outflowing gas trajectories (e.g., Bentz et al.

2009; Denney et al. 2009; Barth et al. 2011a,b; Du et al.

2016; Pei et al. 2017). With a similar goal, the code

MEMEcho (Horne et al. 1991; Horne 1994) has been

used to recover the response function, which describes

how continuum fluctuations map to emission line fluc-

tuations in LOS velocity−time-delay space. Comparing

these velocity-delay maps to those produced by various

BLR models has pointed towards a similar range of BLR

geometries and dynamics (e.g., Bentz et al. 2010; Grier

et al. 2013b).

In this work, we utilize an approach to directly model

reverberation mapping data using simplified models of

the BLR, first discussed by Pancoast et al. (2011, 2012)

and Brewer et al. (2011). The goal of this approach is

not to model the physics of the gas in the BLR, but

∗ Packard Fellow
† Deceased, 19 July 2018
‡ Deceased, 6 February 2017
§ Carnegie Fellow
¶ Eberly Fellow
∗∗ Hubble Fellow
†† Pappalardo Fellow

rather to obtain a description of the geometry and kine-

matics of the gas emission. The processes at work within

the BLR are likely very complex, and an exhaustive BLR

model including numerical simulations would be com-

putationally expensive and time consuming. By using a

simple, flexibly parameterized model with a small num-

ber of parameters, one can quickly produce emission-line

time series and use Markov Chain Monte Carlo methods

to put quantitative constraints on the kinematic and ge-

ometrical model parameters. Realistic uncertainties can

still be estimated by inflating the error bars on the spec-

tra with a parameter T , accounting for the limitations

of a simplified model.

The dynamical modeling codes described by Pancoast

et al. (2014a, used in this work) and Li et al. (2013) have

so far been applied to 17 AGN (Pancoast et al. 2014b,

2018; Grier et al. 2017; Williams et al. 2018; Li et al.

2018). Each BLR in this sample is best fit with models

resembling thick disks that are inclined slightly to the

observer, despite there being no preference for this ge-

ometry built into the modeling code, and all MBH mea-

surements are consistent with those of other techniques.

The flexibility of the model is apparent in other param-

eters, such as model kinematics ranging from mostly in-

flow to mostly outflow. These applications of dynamical

modeling have been limited, however, to a single emis-

sion line, Hβ λ4861. Studies of the higher-ionization

lines have not been possible due to the lack of the high-

quality UV data required for such modeling.

The applications of the modeling approach have all

used the optical continuum as a proxy for the ionizing

continuum, as all ground-based reverberation mapping

studies must do. Recent work monitoring continuum

emission at a range of wavelengths has shown a mea-

surable lag between the UV fluctuations and the optical

continuum fluctuations (Edelson et al. 2015; Fausnaugh

et al. 2016), raising the question of whether the optical

continuum is a suitable proxy for the ionizing contin-

uum. In the case of black hole mass measurements based

on a scale factor f , the lag is, to first order, removed in

the calibration of f with the MBH−σ∗ relation. This is

not the case for the dynamical modeling approach, how-

ever, and it is unclear how the continuum light curve

choice affects the modeling results.

The AGN Space Telescope and Optical Reverbera-

tion Mapping (AGN STORM) Project provides a unique

data set that can allow us to address some of the mod-

eling assumptions and extend the modeling approach

to higher-ionization portions of the BLR. The AGN

STORM Project was anchored by nearly daily observa-

tions of the Seyfert 1 galaxy NGC 5548 for six months
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in 2014 with the Hubble Space Telescope Cosmic Ori-

gins Spectrograph (De Rosa et al. 2015). Concurrent

UV and X-ray monitoring was provided by Swift (Edel-

son et al. 2015). Ground-based photometry (Fausnaugh

et al. 2016) and spectroscopy (Pei et al. 2017) was car-

ried out at a large number of observatories and the

UV–optical data were used to study the structure of

the accretion disk (Starkey et al. 2017). The UV spec-

tra revealed both broad and narrow absorption features

of unusual strength compared to historical UV observa-

tions of NGC 5548 and this required careful modeling of

the emission and absorption features (Kriss et al. 2019)

that will be essential for this paper. These models were

also used to recover velocity–delay maps (Horne et al.

2020) for the strong emission lines that are the subject

of this paper. Much of the analysis of the AGN STORM

data has been with the aim of understanding an anoma-

lous period during the middle of the observing campaign

when the emission and absorption lines at least partially

decoupled from the continuum behavior, the so-called

“BLR holiday” (Goad et al. 2016; Mathur et al. 2017;

Dehghanian et al. 2019). In this work, we use both the

UV and optical continuum light curves to examine the

effect of continuum wavelength choice on the modeling

results, and we model the BLRs for three emission lines:

Hβ, C iv, and Lyα.

In Section 2, we provide a brief overview of the data

we use for the modeling, and in Section 3, we summa-

rize the modeling method used. In Section 4, we present

the modeling results for the Hβ, C iv, and Lyα BLRs,

and in Section 5, we combine the results to make a joint

inference on the black hole mass in NGC 5548. In Sec-

tion 6, we discuss how the continuum light curve choice

affects the modeling results, compare the Hβ results to

previous modeling, and discuss the similarities and dif-

ferences of the three line-emitting regions. Finally, we

conclude in Section 7.

2. DATA

2.1. Continuum light curves

We fit models to the data using two separate contin-

uum light curves. We use a UV light curve to fit models

for all three of the emission lines, plus a V -band light

curve to fit models to the Hβ light curve. Since the UV

light curve is a closer proxy to the actual ionizing con-

tinuum, we expect this to be the more realistic physical

model. However, the UV is inaccessible to ground-based

reverberation mapping campaigns targeting Hβ, and an

optical continuum is typically used in its place. Using

both continuum light curves allows us to study the effect

this has on modeling results.

The UV continuum light curve is constructed by join-

ing the HST 1157.5 Å light curve with the Swift UVW2

light curve. Including the Swift data allows us to extend

the light curve back in time to explore the possibility

of longer emission line lags. Details of the HST and

Swift campaigns can be found in the papers by De Rosa

et al. (2015, Paper I) and Edelson et al. (2015, Paper

II), respectively. To combine the light curves, we scale

the Swift UVW2 light curve to match the HST flux

where data overlap in time, and shift the scaled Swift

light curve by 0.8 days, the time lag between the Swift

UVW2 and HST 1157.5 Å light curves as measured by

Fausnaugh et al. (2016, Paper III). The final UV light

curve is then the portion of the Swift light curve that

lies before the start of the HST campaign, plus the full

HST light curve.

The V -band light curve data consist of approximately

daily observations obtained with several ground-based

telescopes between 2013 December and 2014 August.

The details of the optical continuum observing campaign

are described by Fausnaugh et al. (2016).

2.2. Emission lines

We model the line-emitting regions producing three

lines—Lyα, C iv, and Hβ. The raw data for Lyα and

C iv were obtained using the Cosmic Origins Spectro-

graph (COS, Green et al. 2012) on HST from 1 February

to 27 July 2014. Due to the strong absorption features in

the UV lines that can influence our modeling results, we

use the broad emission line models of Lyα and C iv from

Kriss et al. (2019, Paper VIII). The emission lines we

use in this paper are the sum of several Gaussian com-

ponents, namely components 30-38 for C iv and compo-

nents 5-9 for Lyα. The uncertainties are then calculated

following the prescription of Kriss et al. (2019).

The ∼15, 000 resolving power of HST COS renders

modeling the UV lines at full resolution computationally

infeasible given our current BLR model. We therefore

bin the Lyα and C iv spectra by a factor of 32 in wave-

length to reduce this computational load. Since we are

only interested in the larger-scale features of the BLR

and emission-line profile, no relevant information is lost

in this step. For C iv (Lyα), we model the spectra from

1500.8−1648.6 Å (1180.7−1278.8 Å) in observed wave-

length, giving 95 (80) pixels across the binned spectrum.

In LOS velocity, this is -14,000 to 13,900 km/s (-13,600

to 10,100 km/s).

The optical spectroscopic observing campaign is de-

scribed in detail by Pei et al. (2017, Paper V) and

is summarized briefly here. The Hβ spectra were ob-

tained from 2014 January 4 through 2014 July 6 with

roughly daily cadence using five telescopes. The result-
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ing spectra were decomposed into their individual com-

ponents to isolate the Hβ emission from other emission

features in the spectral region. Pei et al. (2017) fit mod-

els using three templates for Fe ii, but found the tem-

plate from Kovačević et al. (2010) provided the best fits.

We therefore use this version of the spectral decompo-

sition for this work. To produce the spectra used in

this work, we take the observed spectra and subtract

off all modeled components except for the Hβ compo-

nents. There are strong [O iii] residuals at wavelengths

longer than 5010 Å, so we only model the spectra from

4775.0−5008.75 Å in observed wavelength, totaling 188

pixels across the emission line. In LOS velocity, this

is -10,300 to 3,900 km/s. While this means we do not

use the information contained in the spectra redward of

5008.75 Å to constrain the BLR model, the model still

produces a full emission-line profile including the red

wing.

2.3. Anomalous emission line behavior

As discussed in several of the papers in this series, the

broad emission lines appear to stop tracking the contin-

uum light curve part way through the observing cam-

paign (Goad et al. 2016; Mathur et al. 2017; Dehgha-

nian et al. 2019). Our model of the BLR assumes that

the BLR particles respond linearly and instantaneously

to all changes in the continuum flux. Since the anoma-

lous behavior of NGC 5548 is a direct violation of this

assumption, we fit our models using only the portion of

the spectroscopic campaign in which the BLR appears

to be behaving normally. For this work, we use a cut-

off date of THJD = 6743 (THJD = HJD − 2, 450, 000),

as determined for Hβ by Pei et al. (2017). The time

of de-correlation was measured to be slightly later at

THJD = 6766 for C iv, but for continuity we use the
THJD = 6743 cutoff for all three lines. In the case of

Hβ, we also attempt to model the full spectral time se-

ries, but these models fail to converge.

3. THE GEOMETRIC AND DYNAMICAL MODEL

OF THE BROAD LINE REGION

We fit the same BLR model to all three emission

lines, allowing us to directly compare the parameters

for each line-emitting region. A full description of the

BLR model is given by Pancoast et al. (2014a), and a

summary is provided here.

3.1. Geometry

The BLR is modeled as a distribution of massless

point-like particles surrounding a central ionizing source

at the origin. These are not particles meant to represent

real BLR gas, but rather a way to represent emission line

emissivity in the BLR. The point particles are assigned

radial positions, drawn from a Gamma distribution

p(r|α, θ) ∝ rα−1 exp
(
−r
θ

)
(1)

and shifted from the origin by the Schwarzschild radius

Rs = 2GMBH/c
2 plus a minimum radius rmin. To work

in units of the mean radius, µ, we perform a change of

variables from (α, θ, rmin) to (µ, β, F )

µ = rmin + αθ, (2)

β =
1√
α
, (3)

F =
rmin

µ
, (4)

where β is the shape parameter and F is the minimum

radius (rmin, typically a few light days) in units of µ.

We assume that the observing campaign is sufficiently

long enough to measure time lags throughout the whole

BLR, so we truncate the BLR at an outer radius rout =

c∆tdata/2, where ∆tdata is the time between the first

continuum light curve model point and the first observed

spectrum. Note that this is not an estimate of the outer

edge of BLR emission, and for all cases with campaigns

of sufficient duration, the emission trails to near-zero

at much smaller radii than rout. The values of rout are

reported in Table 1.

Next, the full plane of particles is inclined relative to

the observer’s line of sight by an angle θi, such that a

BLR viewed face-on would have θi = 0 deg. The parti-

cles are distributed around this plane with a maximum

height parameterized by a half-opening angle θo. The

angle above the BLR midplane for an individual parti-

cle as seen from the black hole is given by

θ = arccos(cos θo + (1− cos θo)U
γ), (5)

where U is drawn from a uniform distribution between 0

and 1 and γ is a free parameter between 1 and 5. In the

case of γ = 1, the point particles are evenly distributed

between the central plane and the faces of the disk at

θo, while for γ = 5, the particles are clustered at θo.

The emission from each individual particle is assigned

a weight between 0 and 1 according to

W (φ) =
1

2
+ κ cos(φ), (6)

where φ is the angle measured between the observer’s

line to the origin and the particle’s line to the origin,

and κ is a free parameter between −0.5 and 0.5. For

κ→ −0.5, particles preferentially emit back towards the

ionizing source, and for κ→ 0.5, particles preferentially

emit away from the ionizing source.
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Additionally, we allow for the presence of an obscuring

medium in the plane of the BLR, such as an optically

thick accretion disk, that can block line emission from

the far side. The mid-plane can range from transparent

to opaque according to the free parameter ξ, ranging

from 0 (fully opaque) to 1 (fully transparent). To im-

prove computation time, this is achieved by reflecting a

fraction of the particles across the BLR midplane from

the far side to the near side.

3.2. Dynamics

The wavelength of emission from each particle is de-

termined by the velocity component along the observer’s

line of sight. To determine the velocities, we first split

the particles into two subsets. A fraction fellip are set

to have near-circular elliptical orbits around the black

hole, with radial and tangential velocities drawn from

Gaussian distributions centered on the circular velocity

in the vr− vφ plane. Since the circular velocity depends

on the particle position and the black hole mass, MBH

enters as a free parameter in this step.

The remaining 1− fellip particles are assigned to have

either inflowing or outflowing trajectories. In this case,

the velocity components are drawn from a Gaussian cen-

tered on the radial inflowing or outflowing escape veloc-

ity in the vr−vφ plane (see Pancoast et al. 2014a, Figure

2, for an illustration). Inflow or outflow is determined by

the binary parameter fflow, where fflow < 0.5 indicates

inflow and fflow > 0.5 indicates outflow. Additionally,

we rotate the velocity components by an angle θe in the

vr − vφ plane towards the circular velocity, increasing

the fraction of bound orbits as θe increases towards 90

degrees.

We include a contribution from macroturbulent veloc-

ities with magnitude

vturb = N (0, σturb)|vcirc|, (7)

where vcirc is the circular velocity and N (0, σturb) is the

normal distribution with mean 0 and standard deviation

σturb, a free parameter. This value is calculated for each

particle and added to its line-of-sight velocity.

Doublet emission lines are accounted for by produc-

ing flux shifted in wavelength relative to both dou-

blet rest wavelengths. Thus, the particles in the

C ivλλ1548, 1550 BLR model use both 1548 Å and

1550 Å as the reference wavelength.

3.3. Producing Emission-Line Spectra

The ionizing source is assumed to be a point source

at the origin that emits isotropically and directly fol-

lows the AGN continuum light curves described in Sec-

tion 2.1. This light propagates out to the BLR particles

which instantaneously reprocess the light and convert

it into emission line flux seen by the observer. There

is a time-lag between the continuum emission and the

line emission determined by the particles’ positions, and

the wavelength of the light is Doppler shifted from the

central emission line wavelength based on the particle’s

line-of-sight velocity. In the case of C iv, both compo-

nents of the doublet emission line are included.

Since the BLR particles can lie at arbitrary distances

from the central ionizing source, we need a way to cal-

culate the continuum flux at arbitrary times. We use

Gaussian processes as a means of flexibly interpolating

between points in the observed continuum light curve

as well as extending the light curve to times before or

after the start of the campaign to explore the possibility

of longer lags. The Gaussian process model parameters

are included in our parameter exploration which allows

us to include the continuum interpolation uncertainty in

our inference of the other BLR model parameters.

3.4. Exploring the Model Parameter Space

For each set of model parameters, we use 4000 BLR

test particles to produce an emission-line time series

with times corresponding to the actual epochs of ob-

servation. We can compare the observed spectra with

the model spectra using a Gaussian likelihood function

and adjust the model parameters accordingly. To ex-

plore the BLR and continuum model parameter space,

we use the diffusive nested sampling code DNest4

(Brewer & Foreman-Mackey 2016). Diffusive nested

sampling is a Markov Chain Monte Carlo method based

on Nested Sampling that is able to efficiently explore

high-dimensional and complex parameter spaces.

DNest4 allows us to do further analysis in post-

processing through the introduction of a temperature

T , which softens the likelihood function by dividing the

log of the likelihood by T . The temperature in this case

is not a physical temperature, but rather a parameter

commonly used in optimization algorithms such as sim-

ulated annealing (Kirkpatrick et al. 1983). In the case

of a Gaussian likelihood function, this is equivalent to

multiplying the uncertainties on the observed spectra by√
T . This factor can account for under-estimated uncer-

tainties on the spectra or the inability of the simplified

model to accurately fit the complexities of the real data.

The value of T is determined by examining the sam-

ple distributions at increasing levels of likelihood and

choosing the largest T for which the distributions re-

main smooth and do not contain several local minima.

The choices of T for each run are listed in Table 1. In

the cases of Lyα and C iv, we required very large tem-
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Table 1. BLR Model Parameter Values

Parameter Brief Description Lyα C iv Hβ vs. UV Hβ vs. V -band

log10(Mbh/M�) Black hole mass 7.38+0.54
−0.41 7.58+0.33

−0.21 7.72+0.20
−0.18 7.54+0.34

−0.24

rmean (light days) Mean line emission radius 12.3+5.0
−4.4 11.2+2.7

−2.3 12.2+6.3
−5.1 8.0+4.3

−2.6

rmedian (light days) Median line emission radius 4.0+2.4
−1.7 3.5+1.3

−0.8 9.1+5.2
−3.8 6.1+3.7

−2.1

rmin (light days) Minimum line emission radius 1.08+0.80
−0.49 1.17+0.42

−0.29 3.85+1.99
−2.14 2.38+1.96

−0.99

σr (light days) Radial width of line emission 23.3+15.3
−9.6 20.1+6.8

−4.8 11.7+11.7
−5.9 6.8+9.1

−2.4

τmean (days) Mean lag in observer frame 11.6+4.5
−4.7 11.3+2.4

−2.2 9.9+5.1
−3.8 7.0+3.2

−2.3

τmedian (days) Median lag in observer frame 3.6+1.9
−1.7 3.3+1.1

−0.7 7.1+3.1
−2.7 4.8+2.3

−1.7

β Shape parameter of radial distribution (Eqn. 3) 1.86+0.10
−0.14 1.89+0.07

−0.15 1.17+0.23
−0.24 1.12+0.22

−0.18

θo (degrees) Half-opening angle 31.9+20.5
−12.2 30.9+8.0

−7.9 35.8+13.8
−7.4 38.6+14.0

−13.5

θi (degrees) Inclination angle 23.7+23.6
−9.0 28.3+8.1

−9.2 46.1+13.4
−9.0 47.3+13.0

−15.8

κ Cosine illumination function parameter (Eqn. 6) −0.23+0.52
−0.24 −0.42+0.12

−0.06 0.00+0.10
−0.08 −0.01+0.09

−0.07

γ Disk face concentration parameter (Eqn. 5) 3.5+1.1
−1.5 4.1+0.7

−1.3 3.4+1.1
−1.4 3.0+1.3

−1.3

ξ Mid-plane transparency 0.33+0.45
−0.25 0.44+0.31

−0.27 0.20+0.17
−0.15 0.17+0.21

−0.12

fellip Elliptical orbit fraction 0.20+0.16
−0.13 0.23+0.17

−0.15 0.29+0.18
−0.18 0.29+0.18

−0.20

fflow Inflow/outflow flag 0.60+0.29
−0.40 0.41+0.40

−0.27 0.74+0.19
−0.19 0.73+0.18

−0.17

θe (degrees) Angle in vr − vφ plane 29+20
−19 26+15

−17 39+19
−15 42+16

−21

σturb Turbulence (Eqn. 7) 0.018+0.049
−0.016 0.008+0.033

−0.006 0.022+0.055
−0.019 0.029+0.038

−0.026

rout (light days) Outer line emission radius (fixed parameter) 145 145 81 80

T Temperature (statistical) 5000 500 300 200

Note—Median and 68% confidence intervals for the main BLR model parameters. Note that rout is a fixed parameter, so we do not
include uncertainties, and we also include the temperature T used in post-processing.

peratures due to the inability of the simple model to fit

the level of detail present in the high-SNR HST data.

Convergence of the modeling runs was determined by

ensuring that the parameter distributions for the second

half of each run matched the parameter distribution for

the first half of the run.

4. RESULTS

In this section, we describe the results of fitting our

BLR model to the data. For each emission line, we give

the posterior probability density functions (PDFs) for

the model parameters and use these to draw inferences

on the structural and kinematic properties of the BLRs.

From the posterior samples, we show one possible ge-

ometric structure of the BLR gas emission, selected to

have parameter values closest to the median inferred val-

ues. We also show the transfer function, Ψ(λ, τ), which

describes how continuum (C) fluctuations are mapped

to emission line (L) fluctuations as a function of wave-

length and time-delay:

L(λ, t) =

∫
Ψ(λ, τ)C(t− τ)dτ. (8)

The functions shown are calculated by producing trans-

fer functions for 30 random models from the posterior

and calculating the median value in each wavelength-

delay bin. Table 1 lists the inferred model parameters

for each line-emitting region.

4.1. Hβ

Multi-wavelength monitoring campaigns have shown

that longer continuum wavelengths tend to lag behind

shorter wavelengths (e.g., Edelson et al. 2015, 2017;

Fausnaugh et al. 2016, 2018), indicating that the UV is a

closer proxy to the ionizing continuum than the V band.

Additionally, the shorter-wavelength continuum varia-

tions show more short-timescale structure than longer

wavelengths. Since the emission lines respond to the

short-timescale ionizing continuum variations, one could

observe higher-frequency emission-line variability than

is present in the smoothed V -band continuum light

curve. Complicating matters even further, recent stud-

ies have shown that diffuse continuum emission arising

in the BLR gas can be strong enough to significantly en-

hance continuum lags, especially at optical wavelengths

(Korista & Goad 2001; Cackett et al. 2018; Lawther

et al. 2018; Korista & Goad 2019).

When the V band is used, these combined effects can

lead to shorter Hβ-optical lags and may result in MBH

underestimates if not accounted for. However, since the
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UV is not available for ground-based reverberation map-

ping campaigns, the V band is very often used as a proxy

for the ionizing continuum. Since both light curves are

available in the AGN STORM data set, we have a unique

opportunity to compare the modeling results using each

continuum light curve. We run our modeling code with
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Figure 1. Numbered 1-6 from top to bottom, Panels 1-
3 : The observed Hβ emission-line profile by observation
epoch, the profiles produced by one possible BLR model, and
the normalized residual ([Data − Model]/Data uncertainty).
Panel 4 : The observed Hβ profile of the tenth epoch (black)
and the emission-line profile produced by the model shown
in Panel 2 (red). The vertical dashed line shows the emis-
sion line center in the observed frame. Panel 5 : Time series
(THJD = HJD − 2, 450, 000) of the integrated Hβ emission
line data (black) and the integrated Hβ model shown in Panel
2 (red). Panel 6 : The same as Panel 5, but with the con-
tinuum flux rather than integrated Hβ flux. In Panels 4-6,
the light red band shows the 1σ scatter of all models in the
posterior sample.

the Hβ emission line data using both the UV and V -

band light curves as the driving continuum to study

potential systematics introduced by the choice of con-

tinuum wavelength.

4.1.1. Hβ vs. UV light curve

For the first Hβ modeling tests, we use the HST

1157.5 Å plus Swift UVW2 light curve as the driving

continuum. The data require a temperature of T = 300,

equivalent to increasing the spectral uncertainties by a

factor of
√

300 = 17.3. As shown in Figure 1, our model

fits the rough shape of the emission line light curve,

but there is clear structure in the residuals near the

line peak. Additionally, there is a small trough in the

emission line data at wavelengths just short of the line

peak that the models are unable to reproduce. Look-

ing at the integrated Hβ flux light curve, we see that

the models can reproduce the general structure of the

variations, but the full amplitude of variations is not

perfectly matched. In particular, the fluctuations in the

first half of the Hβ light curve are larger than those pre-

dicted by the models, while the same models are able

to reproduce the larger-scale rise and fall in the second

half of the light curve.

Geometrically, we find a BLR that has a thick disk

structure that is highly inclined relative to the observer

(Figure 2). The opening angle posterior PDF has a pri-

mary peak at 35 degrees and a small secondary peak

near 90 degrees (Figure 3, blue lines). Similarly, the in-

clination angle posterior PDF has a primary peak at 45
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Figure 2. Possible geometry for the Hβ-emitting BLR,
when modeled using the UV light curve. The left-hand panel
shows an edge-on view with the observer on the positive x-
axis, and the right-hand panel shows a face-on view of the
BLR, as seen by the observer. The size of the circles rep-
resents the relative amount of emission from the particles,
as seen by the observer. This value is determined by the
particle’s position and the parameter κ (Equation 6). Note
that few particles are shown in the bottom-left portion of
the left-hand panel due to how the code handles an opaque
mid-plane.
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Figure 3. Comparison of the posterior PDFs for the BLR model parameters obtained when using the UV (blue) and V band
(orange) as the continuum light curve driving the Hβ variations. The vertical dashed lines show the median parameter values,
and the shaded regions show the 68% confidence intervals.

degrees and a small secondary rise towards 80 degrees.

Simply taking the median and 68% confidence intervals

for these parameters gives θo = 35.8+13.8
−7.4 degrees and

θi = 46.1+13.4
−9.0 degrees.

The median radius of the BLR is rmedian = 9.1+5.2
−3.8

light days with an inner minimum radius of rmin =

3.9+2.0
−2.1 light days. The radial width of the BLR is

σr = 11.7+11.7
−5.9 light days, and the radial distribution of

BLR particles is close to exponential with β = 1.17+0.23
−0.24.

The relative distribution of particles within the disk

(either uniformly distributed or concentrated near the

opening angle) is not constrained (γ = 3.4+1.1
−1.4). We find

a preference for isotropic emission from all BLR parti-

cles, rather than emission back towards or away from

the ionizing source (κ = 0.00+0.10
−0.08). In previous model-

ing of the Hβ BLR in other AGN (Pancoast et al. 2014b,

2018; Grier et al. 2017; Williams et al. 2018), nearly ev-

ery object in which κ is well determined has κ < 0 at the

1σ level or greater. This is also the result that is pre-

dicted from photoionization models, so we discuss the

value from this work further at the end of the section.

Finally, models with an opaque midplane are preferred

over those without, with ξ = 0.20+0.17
−0.15.

Kinematically, the data prefer models in which a third

of the BLR particles are on elliptical orbits (fellip =

0.29+0.18
−0.18). The remaining particles are mostly outflow-

ing, with fflow = 0.74+0.19
−0.19, although some of these

may still be on bound, highly elliptical orbits, with

θe = 39+19
−15 degrees. We find little contribution from

macroturbulent velocities, with σturb = 0.022+0.055
−0.019).

Finally, we measure the black hole mass in this model

to be log10(MBH/M�) = 7.72+0.20
−0.18.

The Hβ vs. UV lag one would measure from the mod-

els is τmedian = 7.1+3.1
−2.7 days. This agrees with the Pei

et al. (2017) measurements of τcen,T1 = 7.62+0.49
−0.49 days

from cross-correlation and τJAVELIN,T1 = 6.91+0.64
−0.63 days

from JAVELIN (Zu et al. 2011). Both of these mea-

surements used the Fλ(1158 Å) light curve as the driving

continuum and the Hβ spectra up to THJD = 6743, the

same dates used to fit our models. To measure a black

hole mass, (Pei et al. 2017) use the cross-correlation

lag between Hβ and the 5100 Å continuum, and cal-

culate MBH/107M� = 7.53+1.96
−1.99 (log10[MBH/M�] =

7.88+0.10
−0.13), which is consistent with our measurement.

Horne et al. (2020) find velocity-delay maps that in-

terpreted as indicating a BLR with inclination angle

i = 45 degrees, a 20 light day outer radius with most

response between 5 and 15 days, and black hole mass

MBH = 7× 107M� [log10(MBH/M�) = 7.8]. Our black

hole mass and inclination angle measurements agree

with these values, but we do find models with BLR

emission extending to radii greater than 20 light days.
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Figure 4. Median transfer functions for each BLR, calculated by producing transfer functions for 30 random models from the
posterior and calculating the median value in each wavelength-delay bin. The bottom panels show the lag-integrated transfer
function, Ψ(λ), and the mean rest frame lag as a function of wavelength. The right-hand panel shows the velocity-integrated
response, Ψ(τ), as a function of rest frame lag. The greyed out regions indicate the wavelength range that was not modeled for
Hβ, and vertical dashed lines show the emission line center.
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We remind the reader that rout in our model is a fixed

parameter determined by the campaign duration and

should not be interpreted as a measurement of the BLR

outer radius.

The transfer function produced by our model (Figure

4, a) shows that the emission is enclosed within a virial

envelope, similar to the maps of Horne et al. (2020).

There is a slight angle to the transfer function, show-

ing more emission at short lags and bluer wavelengths,

which can be interpreted as an outflow. This agrees with

the fellip and fflow values in the model. Compared with

the velocity-resolved measurements of Pei et al. (2017,

Figure 10), our plot of the mean delay is noticeably lack-

ing the distinct ‘M’ shape with short lags at the core of
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Figure 5. Same as Figure 1, but for the Hβ models using
the V band as the driving continuum. The large scatter in
modeled continuum light curves before THJD ∼ 6650 is due
to extrapolation to times before the monitoring campaign
started.

the emission line. One way to achieve such a shape is

if the far side of the BLR does not respond to the con-

tinuum, possibly due to an obscurer. Our simple model

is unable to produce such an asymmetric effect, so it

is possible that the κ parameter was pushed to greater

values in order to dampen the response of the far side.

4.1.2. Hβ vs. V -band light curve

For the second Hβ modeling tests, we use the V -band

light curve as the driving continuum, with the same Hβ

spectra up until the Pei et al. (2017) cutoff. We use a

temperature T = 200, corresponding to an increase in

spectral uncertainties of a factor
√

200 = 14.1. Similar

to the Hβ vs. UV models, the Hβ vs. V band models are

able to reproduce the large-scale shape of the emission-

line profile, but they are unable to fit the smaller-scale

wiggles (Figure 5). Again, the amplitude of fluctuations

in the Hβ light curve is not fully reproduced in the V -

band-driven models, although the general structure is

still well captured. In general, the V -band-driven mod-

els produce integrated emission line light curves that are

smoothed compared to the UV-driven counterparts.

Geometrically, models with an inclined thick disk

structure are preferred, with θo = 38.6+14.0
−13.5 degrees

and θi = 47.3+13.0
−15.8 degrees (Figure 6). The median ra-

dius is rmedian = 6.1+3.7
−2.1 light days, the minimum ra-

dius is rmin = 2.4+2.0
−1.0 light days, and the radial width

is σr = 6.8+9.1
−2.4 light days. The radial distribution is

close to exponential with β = 1.12+0.22
−0.18 and the distri-

bution of particles within the disk is not constrained

(γ = 3.0+1.3
−1.3). The BLR particles emit isotropically

(κ = −0.01+0.09
−0.07), and there is a preference for an opaque

midplane (ξ = 0.17+0.21
−0.12).
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Figure 6. Same as Figure 2, but for the Hβ-emitting
BLR modeled using the V -band light curve as the driving
continuum.

Dynamically, models with roughly a third of the

particles on elliptical motions are preferred (fellip =

0.29+0.18
−0.20), and the remaining particles are outflowing
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fflow = 0.73+0.18
−0.17, although many may be on highly el-

liptical bound orbits (θe = 42+16
−21 degrees). There is

little contribution from macroturbulent velocities, with

σturb = 0.029+0.038
−0.026. The black hole mass in this model

is log10(MBH/M�) = 7.54+0.34
−0.24. The transfer function

for this model is very similar to those of the models that

use the UV light curve as the driving continuum, but the

preference for outflow is slightly more pronounced.

The emission line lag one would measure from the

models is τmedian = 4.8+2.3
−1.7 days. Within the uncertain-

ties, this agrees with the cross-correlation and JAVELIN

measurements of τcen,T1 = 3.82+0.57
−0.47 and τJAVELIN,T1 =

4.89+0.66
−0.71 days from Pei et al. (2017). Our black hole

mass is formally consistent with their measurement of

log10(MBH/M�) = 7.88+0.10
−0.13, but slightly smaller for

the reason described below.

If MBH,UV and MBH,V are the masses measured using

the UV and V -band continua, respectively, we expect to
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Figure 7. Same as Figure 1, but for the C iv BLR models.

find MBH,UV/MBH,V = τUV/τV . Since the lag between

the UV and V -band continua is τUV−V = τUV − τV , we

can write

log10

(
MBH,UV

M�

)
− log10

(
MBH,V

M�

)
= log10

(
1 +

τUV−V
τV

)
(9)

Using τUV−V = 1.86± 0.08 days from Fausnaugh et al.

(2016) and τV = τmedian,V , we expect a difference in

log10(MBH/M�) measurements 0.14+0.07
−0.05 solely due to

the UV-optical continuum lag. Our measurements are

consistent with this difference.

4.2. C iv (vs. UV light curve)

The C iv emission line has many absorption features

that can affect the modeling results. We therefore use

the models from Paper VIII of this series (Kriss et al.

2019), using the components corresponding to the C iv

emission line. Due to the high spectral resolution of the

data, we also bin the emission line spectra by a factor

of 32 in wavelength. This decreases the run-time of the

modeling code not only by reducing the number of data

points, but also by reducing the number of BLR test

particles that would be required to fit such high resolu-

tion data. We use a temperature of T = 500, which is

equivalent to increasing the uncertainties by a factor of√
500 = 22.4.
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Figure 8. Same as Figure 2, but for the C iv-emitting
BLR.

Figure 7 shows the model fits to the C iv emission

line data. Note that while the emission line appears to

be single-peaked in the figure due to the binning, both

peaks are accounted for in the modeling code. Since

the UV emission line light curves are shorter than the

ground-based optical emission line light curves, there are

fewer features allowing the code to determine the time-

lag and hence the radius of the BLR. The one strong
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Figure 9. Comparison of the posterior PDFs for the parameters of the Hβ (blue), C iv (orange), and Lyα (green) BLR models,
all using the UV light curve as the driving continuum. The vertical dashed lines show the median parameter values, and the
shaded regions show the 68% confidence intervals.

up-and-down fluctuation in the C iv light curve is well

captured by our model.

Geometrically, the C iv BLR has a thick disk struc-

ture (θo = 30.9+8.0
−7.9 degrees, Figure 8) that is inclined

relative to the observer’s line-of-sight (θi = 28.3+8.1
−9.2 de-

grees), similar to the results for Hβ (Figure 9). The

radial distribution, however, has a shape parameter of

β = 1.89+0.07
−0.15, indicating a very steep drop-off in the

density of BLR emission close to rmin. The median ra-
dius of the BLR is rmedian = 3.5+1.3

−0.8 light days with an

inner minimum radius of rmin = 1.17+0.42
−0.29 light days.

Formally, the standard deviation of the radial distribu-

tion of particles is σr = 20.1+6.8
−4.8 light days, although

this is likely biased high due to the long tails of the dis-

tribution. There is a slight preference for the particles

to be concentrated near the opening angle, but this pa-

rameter is not well determined (γ = 4.1+0.7
−1.3). There is a

strong preference for emission back towards the ionizing

source with κ = −0.42+0.12
−0.06, and there is no preference

for an opaque or transparent midplane (ξ = 0.44+0.31
−0.27).

The data prefer models in which roughly a quarter

of the BLR particles are on elliptical orbits (fellip =

0.23+0.17
−0.15). Perhaps surprisingly, C iv shows the weak-

est evidence for outflow, with fflow = 0.41+0.40
−0.27. This

can be seen in the transfer functions in which there is

a weak preference for inflow, with shorter responses at

longer wavelengths. There is little contribution from

macroturbulent velocities, with σturb = 0.008+0.033
−0.006).

From this model, we obtain a black hole mass of

log10(MBH/M�) = 7.58+0.33
−0.21.

The C iv emission line lag is τmedian = 3.3+1.1
−0.7 days.

This is consistent with the Kriss et al. (2019) cross-

correlation measurement of τcent = 4.4± 0.3 days, mea-

sured using the same C iv emission line models. We

should note that they use a slightly longer campaign

window ending at THJD = 6765 rather than 6743, but

this is unlikely to introduce a large change in the lag

measurement.

Compared to the results of Horne et al. (2020), we

find a smaller C iv BLR inclination angle (θi = 28.3+8.1
−9.2

degrees vs. i = 45 degrees), but we note that Horne

et al. (2020) do not estimate uncertainties in their incli-

nation angle fits. We also find a stronger C iv response

at shorter delays (< 5 days) in our models. This is evi-

dent in the velocity-integrated transfer function (Figure

4, c, right panel) with the sharp peak in response at 1-2

days.

4.3. Lyα (vs. UV light curve)

As with C iv, we use the models from Kriss et al.

(2019) for our Lyα data, binned by a factor of 32. The

model is able to fit the overall shape of the emission line
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quite well. The overall shape of the emission line light

curve is captured, but many of the models are unable

to reproduce the amplitude of the emission line fluctua-

tions (Figure 10, panel 5). In order to fit the data with-

out falling into local maxima in the likelihood space, we

soften the likelihood with a temperature of T = 5000,

which is equivalent to increasing the uncertainties on the

spectra by a factor of
√

5000 = 70.7. Including such a

high temperature allows us to measure realistic uncer-

tainties on the model parameters.
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Figure 10. Same as Figure 1, but for the Lyα BLR models.
The residuals at 1216 Å are likely due to geocoronal Lyα
emission.

We find a Lyα BLR structure that is an inclined thick

disk, with θo = 31.9+20.5
−12.2 degrees and θi = 23.7+23.6

−9.0

degrees (Figure 11). The radial distribution of par-

ticles drops off very quickly with radius, with β =

1.86+0.10
−0.14. The median radius of the BLR particles is
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Figure 11. Same as Figure 2, but for the Lyα-emitting
BLR.

rmedian = 4.0+2.4
−1.7 light days, the minimum radius is

rmin = 1.08+0.80
−0.49 light days, and the radial width is

σr = 23.3+15.3
−9.6 light days. There is a small prefer-

ence for emission back towards the ionizing source, with

κ = −0.23+0.52
−0.24. There is little preference for the parti-

cles to be either uniformly distributed within the thick

disk or located near the opening angles (γ = 3.5+1.1
−1.5),

nor is there a significant preference for either a trans-

parent or opaque midplane (ξ = −0.33+0.45
−0.25).

Dynamically, most of the particles are on either in-

flowing or outflowing trajectories (fellip = 0.20+0.16
−0.13),

but it is not determined which direction of flow dom-

inates (fflow = 0.60+0.29
−0.40). As with the models of the

BLRs of the other lines, there is little contribution from

macroturbulent velocities, with σturb = 0.018+0.049
−0.016.

The black hole mass based on the Lyα BLR models is

log10(Mbh/M�) = 7.38+0.54
−0.41

The models produce an emission line lag of τmedian =

3.6+1.9
−1.7 days, which is consistent with the Kriss et al.

(2019) cross-correlation measurement of τcent = 4.8±0.3

days. Similar to C iv, we find a smaller Lyα BLR in-
clination angle than Horne et al. (2020) (θi = 23.7+23.6

−9.0

degrees vs. i = 45 degrees), but the values are still con-

sistent due to the large uncertainty on our measurement

and the lack of error bars by Horne et al. (2020). We

also find a shorter response than Horne et al. (2020) for

Lyα, with our model response peaking within 5 days,

but the significance is difficult to asses without uncer-

tainty estimates.

5. JOINT INFERENCES ON THE BLR MODEL

PARAMETERS

Ideally, our BLR model would reproduce all three

emission lines and we would calculate the likelihood

over all three data sets and adjust the model parameters

for each region simultaneously. Since we do not know

which model parameters should be tied together, mod-

eling each region individually provides a check on the
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consistency of the modeling method. While the driving

continuum used for each BLR model is the same, the

spectra are all independent, and we can use the results

from the three emission lines to put joint constraints on

the model parameters.

5.1. Black hole mass

Of all the BLR model parameters, we know that the

black hole mass should be the same for all three emission

lines. Assuming that the three emission-line time series

are independent, we can write

P (MBH|DHβ ,DCIV,DLyα) = P (MBH|DHβ)

P (MBH|DCIV)P (MBH|DLyα)/P (MBH)2, (10)

where DHβ , DCIV, DLyα are the data for Hβ, C iv, and

Lyα, respectively. We use the Hβ BLR models fit with

the UV continuum light curve so that the continuum

data are the same for each emission line. The BLR

model uses a uniform prior in the log of MBH, so

P [log10(MBH/M�)|DHβ ,DCIV,DLyα] ∝∏
i∈{Hβ,CIV,Lyα}

P [log10(MBH/M�)|Di]. (11)

In practice, we estimate the posterior PDFs for the

three emission lines using a Gaussian kernel density es-

timate (KDE) and multiply the three KDEs to obtain

a joint constraint on the black hole mass. The result-

ing joint posterior PDF is shown in Figure 12. The

individual MBH measurements are all consistent with

each other, and together provide a joint measurement of

log10(MBH/M�) = 7.64+0.21
−0.18.
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Figure 12. Joint inference on log10(MBH/M�) from com-
bining the posterior PDFs for the three emission line region
models.

Using our joint constraint on the black hole mass, we

can use the method of importance sampling (see, e.g.,

Lewis & Bridle 2002) to further constrain the other pa-

rameters of our BLR models. Importance sampling is

a technique that allows one to sample an unavailable

distribution P2 via a distribution P1 that can be more

easily sampled. By writing P2 = (P2/P1)P1, we simply

need to determine the weighting factor P2/P1. In our

case, P2 is the posterior PDF for the BLR parameters

for, say, Hβ, given all emission line data:

P2 = P (θHβ ,MBH|DHβ ,DCIV,DLyα); (12)

and P1 is the posterior PDF given only the Hβ data:

P1 = P (θHβ ,MBH|DHβ). (13)

Here, θHβ are the Hβ BLR model parameters not includ-

ing the black hole mass. The weight P2/P1 is simply the

ratio of our joint PDF on MBH to the PDF based on the

individual lines.

The result of this method is that the posterior samples

with MBH in regions of high density in the joint PDF

will be weighted higher than those with MBH in regions

of lower density. This can be useful to exclude regions

of parameter space that might fit the emission-line time

series well, but with an incorrect black hole mass. Gaus-

sian KDE fits to the original and importance sampled

posterior PDFs are shown in Figures 13 - 15.

Examining the weighted results, we find little change

to the Hβ BLR parameters, other than a slight decrease

in the parameters indicating the size of the BLR. The

joint constraint on the black hole mass is slightly lower

than the individual Hβ constraint, so this results in pre-

ferring BLR geometries that are slightly smaller. The

C iv BLR parameters also show almost no change. The

posterior PDFs for the Lyα BLR parameters show the

largest change due to the largest difference between the

Lyα-only MBH PDF and the joint PDF. The solutions

with low MBH are essentially excluded, resulting in a

very slight increase in radius, and a more robustly de-

termined low inclination angle. Additionally, the kine-

matics go from being relatively undetermined towards a

preference for outflow.

5.2. Black hole mass and inclination angle

We can also examine the scenario in which both the

black hole mass and the inclination angle are assumed

to be the same for each line-emitting region. We fol-

low the same methods discussed in Section 5.1, ex-

cept in this case we examine the 2D posterior PDF

for (log10(MBH/M�), θi). Figure 16 shows the Gaussian

KDE fits to the 2D posterior PDFs, as well as the joint

posterior PDF. From the figure, we see that there is little

overlap between the Hβ model parameters and the C iv
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Figure 13. Gaussian KDE fits to the weighted (orange) and unweighted (blue) posterior PDFs for the Hβ BLR model
parameters with the UV light curve as the driving continuum. The weighting scheme used is the one described in Section 5.1
in which the black hole masses for all three BLR models are forced to be the same. The vertical dashed lines show the median
value and the dotted lines show the 68% confidence interval.
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Figure 14. Same as Figure 13, but for the C iv BLR models. The weighting scheme used is the one described in Section 5.1
in which the black hole masses for all three BLR models are forced to be the same.
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Figure 15. Same as Figure 13, but for the Lyα BLR models. The weighting scheme used is the one described in Section 5.1
in which the black hole masses for all three BLR models are forced to be the same.

and Lyα model parameters. Thus, when we calculate

the weights to importance sample the Hβ BLR poste-

rior PDFs, only a very small portion of the parameter

space receives a significant weight.

Examining the weighted posterior PDFs in Figure

17, we see that only models with extremely small Hβ

BLRs are not excluded. In fact, for the Hβ BLR in-

clination angle to match that of C iv and Lyα, the

Hβ-emitting BLR would need to be smaller than the

C iv- and Lyα-emitting BLRs. This directly contra-
dicts the plentiful studies showing ionization stratifica-

tion within the BLR (e.g., Clavel et al. 1991; Reichert

et al. 1994). Additionally, this would require an Hβ lag

of τmedian = 3.9+0.5
−0.5 days, which is significantly shorter

than the measurements of τcen,T1 = 7.62+0.49
−0.49 days and

τJAVELIN,T1 = 6.91+0.64
−0.63 days by Pei et al. (2017). Given

these contradictions as well as the clear offset in the

(log10(MBH/M�), θi) posterior PDFs, we conclude that

the assumption of identical θi must be faulty.

6. DISCUSSION

6.1. Effect of the continuum light curve choice on

modeling results

For most reverberation mapping data sets suitable for

dynamical modeling, the only continuum light curve we

have access to is the optical light curve, so we treat this

as a proxy for the ionizing continuum light curve. In

reality, these are not the same light curves and arise in

different locations both in space and time. The optical

continuum light curve is a delayed and smoothed ver-

sion of the ionizing continuum light curve with an ad-

ditional contribution from diffuse continuum emission,

so short time scale variability information is lost. The

UV continuum is closer to the ionizing continuum, and

is thus closer to the assumptions of our model. With

these data, we have access to both light curves, so we

can examine how the choice of continuum affects the

modeling results.

Figure 3 shows the model parameter posterior PDFs

for the two versions plotted on top of each other. Com-

paring the two sets of results, we find that the contin-

uum light curve choice primarily affects the parameters

dictating the scale of the BLR, but not the parame-

ters that describe the shape. The median radius of the

BLR is found to be roughly 3 light days smaller when

the V -band light curve is used instead of the UV light

curve, although the results still agree to within the un-

certainties. Similarly, the minimum radius is 1.5 light

days smaller, but is again in agreement to within the

uncertainties. Fausnaugh et al. (2016) measure a 1.86

day lag between the HST λ1157.5 Å and V -band light

curves, which is consistent with the differences in the

BLR model size parameters.
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Figure 16. Left : Gaussian KDEs for the 2d posterior PDFs
for (log10(MBH/M�), θi) in each BLR model as well as the
joint constraint (bottom). Right : Weighted posterior sam-
ples for the three BLR models (top 3), and the region of
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each point corresponds to the sample’s weight. The weight-
ing scheme used is the one described in Section 5.2 in which
the black hole masses and inclination angles for all three BLR
models are forced to be the same.

Since the black hole mass measurement depends on

the scale of the BLR, it is important to note that this

parameter will be affected by the choice of the contin-

uum light curve. In black hole mass measurements based

on the use of the scale factor f , this issue is mitigated by

the fact that f itself is calibrated using the same light

curves that exhibit the delay (e.g., Onken et al. 2004;

Collin et al. 2006; Woo et al. 2010, 2013; Grier et al.

2013a; Batiste et al. 2017). Since the dynamical mod-

eling approach treats the black hole mass directly as a

free parameter, the under-estimate of the BLR size leads

to under-estimating the black hole mass. In particular,

MBH as measured by the model with the V -band light

curve should be smaller than that measured with the UV

light curve by a factor of τV /τUV, where τV (τUV) is the

lag between the V -band (UV) continuum fluctuations

and emission line fluctuations. For this data set, this

is a factor of ∼2/3 (0.18 in log10[MBH/M�]), which is

consistent with our model masses. However, NGC 5548

deviated significantly from the typical rBLR−LAGN rela-

tion during this campaign, with an Hβ BLR size smaller

than expected by a factor of ∼ 5 (Pei et al. 2017). It

is possible that for most AGN, the BLR is significantly

larger than c× τV so that τUV/τV is closer to unity and

the effect of using the V band as a proxy is mitigated.

Unfortunately, the UV-optical lag is typically not avail-

able for the campaigns in which the V band is used,

which makes finding a MBH correction factor compli-

cated. Further research will be required to understand

how to make such corrections to models of these data.

We should also note that based on the Hβ BLR size

and the UV-optical lag, the optical light curve we mea-

sure arises in a region that is spatially extended as seen

by the BLR. However, this alone does not significantly

affect the point-like continuum assumption of our model

as long as the true ionizing source is still close to point-

like. Rather, the only effects are the shortened time-lags

discussed above and a smoothing of features in the con-

tinuum light curve. Reassuringly, we find that no other

parameters in the BLR model are affected.

6.2. Comparison with previous Hβ modeling

NGC 5548 was also monitored as part of the Lick

AGN Monitoring Project 2008 (LAMP, Walsh et al.

2009), and those data were modeled using the same

code as in this paper. The AGN was at a lower lu-

minosity state during the LAMP 2008 campaign, with

a host-galaxy + AGN flux density of fλ[5100 × (1 +

z)] = 6.12 ± 0.38 × 10−15 erg s−1 cm−2 Å
−1

(Bentz

et al. 2009). Comparatively, Pei et al. (2017) mea-

sure F5100,total = 11.31±0.08×10−15 erg s−1 cm−2 Å
−1

for the portion of the campaign before the BLR hol-

iday. While the exact host-galaxy correction depends

on the slit sizes and position angles for the two cam-

paigns, the fλ,gal[5100 × (1 + z)] = 3.752 ± 0.375 ×
10−15 erg s−1 cm−2 Å

−1
measurement from Bentz et al.

(2013) means that the AGN was roughly 4 times brighter

in 2014 than in 2008. From the rBLR − L relation (e.g.,
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Figure 17. Same as Figure 13, for the Hβ BLR models, but when both MBH and θi are enforced to be the same as those
inferred by the Lyα and C iv models (described in Section 5.2).

Bentz et al. 2013), we would expect the BLR size to be

smaller during the LAMP 2008 campaign than in the

2014 campaign by a factor of ∼2.

Pancoast et al. (2014b) found a BLR structure in

NGC 5548 that was also an inclined thick disk with

θo = 27.4+10.6
−8.4 degrees and θi = 38.8+12.1

−11.4 degrees. The

mean and minimum radii were rmean = 3.31+0.66
−0.61 and

rmin = 1.39+0.80
−1.01 light days, respectively, and the radial

width was σr = 1.50+0.73
−0.60 light days. They found a ra-

dial distribution between exponential and Gaussian with

β = 0.80+0.60
−0.31 and a spatial distribution described by

γ = 2.01+1.78
−0.71. Finally, they found a preference for emis-

sion back towards the ionizing source (κ = −0.24+0.06
−0.13)

and a mid-plane that is mostly opaque (ξ = 0.34+0.11
−0.18).

Dynamically, they find a BLR that is mostly inflow-

ing (fflow = 0.25+0.21
−0.16) with the fraction of particles

on elliptical orbits only fellip = 0.23+0.15
−0.15. Of the in-

flowing orbits, most are bound with θe = 21.3+21.4
−14.7

degrees. They do not find a significant contribution

from macroturbulent velocities (σturb = 0.016+0.044
−0.013).

The black hole mass Pancoast et al. (2014b) measure

is log10(MBH/M�) = 7.51+0.23
−0.14.

Figure 18 shows the change in model parameters from

Pancoast et al. (2014b) and the Hβ vs. V band modeling

results from this paper. As expected, the parameters

describing the size of the BLR increase from the 2008

campaign to the 2014 campaign.

Other parameters that changed from the 2008 cam-

paign and 2014 campaign were fflow and κ. The change

in fflow indicates a switch from net-inflowing gas to net-

outflowing gas. If true, this could suggest a significant

change in the kinematics of the broad-line region that

might be connected with the increase in AGN luminos-

ity. However, we should note that with θe = 42+16
−21

degrees for the AGN STORM campaign, the outflow-

ing particles could be on highly elliptical bound orbits

rather than on pure radial outflowing trajectories. The

parameter κ showed a preference for Hβ emission from

BLR clouds back towards the ionizing source in the 2008

campaign, but indicates a preference for isotropic emis-

sion in this data set.

Reassuringly, the black hole mass, opening angle, and

inclination angles all remain consistent for the two data

sets, as we would not expect these to change on a six-

year timescale. Additionally, ξ remains the same, indi-

cating a mostly opaque mid-plane. The parameters γ

and σturb were not well constrained in either the 2008

or 2014 campaign models. Finally, the β parameter of

the Gamma distribution was poorly constrained with

the 2008 campaign data but is better determined with

the 2014 campaign data.
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This comparison of modeling results of a single AGN

over multiple campaigns represents the second of its na-

ture, with the first being Arp 151, presented by Pancoast

et al. (2018).

6.3. Comparison of the three line-emitting regions

The AGN STORM data set is the first data set in

which this modeling technique can be applied to mul-

tiple emission lines for the same AGN. This gives us a

unique opportunity to examine how the structure and

kinematics of the three line-emitting regions are the

same and how they differ. In Figure 9, we compare the

posterior PDFs for the three BLR models. Each model

used the same UV light curve as the driving continuum.

Examining the differences in model parameters, we

clearly see radial ionization stratification (see, e.g., the

rmedian distributions). Additionally, the radial distribu-

tion of particles is significantly different, with the C iv

and Lyα BLRs having β close to 2 while the Hβ BLR

has β ∼ 1. This also becomes clear when we show possi-

ble geometries of the three BLRs plotted on top of each

other in Figure 19. There is clear radial structure in the

three line-emitting regions, with C iv and Lyα emission

coming from a very localized portion of a shell, while

the Hβ region is much more spread out in the radial

direction. The models displayed in the figure show the

C iv BLR with a smaller minimum radius than the Lyα

BLR, but the ordering of these two lines is not well con-

strained by the posterior parameter distributions.

While the rmin parameter is not well constrained for

the Hβ vs. UV models, the median value suggests that

there is a ∼2.5 light day region between rmin,Lyα and

rmin,Hβ in which there is Lyα emission but no Hβ emis-

sion. It is likely that there is still Hβ emission in this

region, but in order to fit the stronger emission at larger

wavelengths, the rmin parameter is shifted to larger

radii. We discuss the possibility of tying the line emis-

sion to the underlying BLR gas distribution in Section

6.4.4.

The opening angle is surprisingly consistent between

the three line-emitting regions. The inclination angle, on

the other hand, shows some discrepancy. While it does

not appear to be a huge difference, the discrepancy is at

the > 1σ level, with θi = 46.1+13.4
−9.0 (Hβ), θi = 28.3+8.1

−9.2

(C iv), θi = 23.7+23.6
−9.0 (Lyα). We examine this further

in Section 5.2 and find that enforcing θi to be equal

for all three regions leads to unphysical results in the

radial ionization stratification of the BLR. Given that

the Hβ BLR extends to a much larger radius than the

C iv and Lyα BLRs, it is possible that they may lie at

slightly different inclinations. For instance, a warped

disk geometry would show a different inclination angle
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Figure 19. Possible geometries of the three line-emitting
regions, with Hβ, C iv, and Lyα in blue, orange, and green,
respectively. All panels show the same three geometries from
different angles and different distance scales. Note that each
model displayed is only one possible model from the poste-
rior distribution, selected to have parameters closest to the
median values reported in Table 1, and the exact radial or-
dering of C iv and Lyα is not constrained.

near the center than at larger radii. Since our model

does not fit the underlying BLR gas, it is unclear if the

discrepancy arises from the gas distribution itself or is

an effect only present in the gas emission.

6.4. Systematic Uncertainties and Model Limitations

6.4.1. A simple physical model

When interpreting the results, it is important to keep

in mind that we are using a simple model to describe

what is likely a very complex region of gas. The current
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implementation of the code is not intended to explain

the exact physical processes within the BLR, but rather

to describe the overall size and shape of the BLR emis-

sion. It would be computationally infeasible to explore

the parameter space of a full physical model of the BLR,

so we neglect the details of, e.g., photoionization physics

and radiation pressure and instead use a simple, flexi-

ble model that is designed to account for a wide range

of possible BLR gometries and kinematics, while keep-

ing the number of parameters and computational speed

tractable. While these simplifications allow us to con-

strain the overall BLR structure and velocity field, there

are certain details of the BLR that go un-modeled (see

Raimundo et al. 2020, Section 2.2 for a discussion).

A blind test of reverberation mapping techniques

found that for a mock data set, the inferred model pa-

rameters were in excellent agreement with the input

BLR model, even though the details of the transfer func-

tion and RMS profile were not fully captured (Mangham

et al. 2019). Efforts are currently underway (Williams

et al., in prep) to include a more physically realistic

description of the photoionization physics in the BLR.

These additions to the model will provide the flexibility

to fit more variability features in the emission line, and

will naturally allow for effects such as “breathing” of the

BLR.

6.4.2. Correlations among model parameters

With the high dimensionality of the BLR model pa-

rameterization comes a number of correlations between

the model parameters. Grier et al. (2017) discuss in

detail a degeneracy between the opening angle and in-

clination angle, pushing these two parameters towards

similar values. In essence, in order to produce the single-

peaked emission-line profiles we observe, θo & θi, effec-

tively putting a prior on the opening angle from θi to 90

degrees. Therefore, it is possible that the BLRs actu-

ally have θo < θi, but have a structure and kinematics

that cannot be reproduced by the current version of the

model.

Additionally, given the parameterization of the model,

there are multiple ways to combine model parameters to

produce the same BLR model. For instance, as θe → 90

degrees, nearly all particles are placed in near-circular

orbits, regardless of the value of fellip or fflow. Simi-

larly, a model with θi, θo → 90 degrees and γ → 5 pro-

duces a line of particles perpendicular to the observer’s

line of sight. However, this is equivalent to a face-on

disk since rotations in the plane of the sky cannot be

resolved with reverberation mapping data. These situ-

ations can increase the uncertainty on individual model

parameters even if the particle distributions are very

well determined.

6.4.3. Emission line model

When modeling a BLR, we assume that we can accu-

rately isolate the broad emission line from contaminant

features in the region of the line. If the contaminants

are left in, the model will try to compensate by adjust-

ing the parameters to fit this extra emission. Williams

et al. (2018) show that the choices made when modeling

an emission line, such as choice of Fe ii template, may

influence the line profile enough to have an effect on the

resulting model parameters. Pei et al. (2017) discuss the

issues in decomposing the optical spectra for NGC 5548,

including degeneracies between weak Fe ii and the con-

tinuum light as well as weak He i emission blended with

Hβ. Similarly, the Lyα and C iv raw spectra have sig-

nificant amounts of broad and narrow absorption which

must first be modeled, making our resulting BLR models

inherently dependent on the emission line models.

6.4.4. Underlying BLR gas

It is important to understand that the model use in

this work is fitting the BLR gas emission and not the gas

itself. There is, of course, gas elsewhere in the BLR that

we do not see either because it is not emitting or because

the emission is obscured. For instance, the fact that

we see Lyα emission within rmin,Hβ shows that emitting

hydrogen gas is present in this region, yet we are unable

to detect sufficiently strong Hβ emission.

Given a distribution of gas around the central BH and

an ionizing spectrum, photoionization calculations are

able to predict line emissivities through the BLR. Fu-

ture dynamical modeling implementations can use these

calculations to determine the distribution and motions

of the underlying gas in the BLR, as well as the line

emission. This will help shed light on some of the ef-

fects we see, such as the different inclination angles for

C iv, Lyα, and Hβ emission.

Although the model used here does not have these

features, its current aim is not to provide a full physical

description of the BLR. Rather, we wish to describe the

overall structure and motions of the BLR emission, and

use this as a tool to measure black hole masses. Despite

its limitations, the simple model achieves these goals, as

evidenced by the consistent black hole mass measure-

ments, agreement with cross-correlation lag measure-

ments, and similar geometries to those inferred from the

velocity-delay maps of Horne et al. (2020).

7. SUMMARY

We have fit dynamical models of the BLR to three

emission lines using the AGN STORM data set. This is
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the first time the modeling approach has been used to

fit multiple emission lines for the same AGN, and is the

first time it has been used with UV emission lines. Ad-

ditionally, we fit the Hβ emission-line time series using

both the UV light curve and V -band light curve as the

driving continuum. This has allowed us to better un-

derstand the systematics involved in other modeling re-

sults when only the optical continuum is available (e.g.,

ground-based campaigns).

The main results of our analysis can be summarized

as follows:

1. Modeling of Hβ, C iv, and Lyα provides three in-

dependent black hole mass measurements that are

in good agreement. A joint inference combining

all three lines gives log10(MBH/M�) = 7.64+0.21
−0.18.

This is consistent with cross-correlation- and

MEMEcho-based measurements with these data.

2. Based on the model, we infer a radial structure

in the BLR, with C iv and Lyα emission aris-

ing at smaller radii than Hβ. The corresponding

lags for our models are consistent with the cross-

correlation and JAVELIN measurements of Pei

et al. (2017) and Kriss et al. (2019).

3. The different line-emitting regions do not need to

lie in the same inclination plane. In NGC 5548,

the C iv and Lyα BLRs share the same inclination

angle, while the more extended Hβ BLR lies at a

slightly higher inclination.

4. When the optical light curve is used as the driv-

ing continuum, the model parameters describing

the Hβ BLR size (rmean, rmedian, rmin) are smaller

by an amount comparable to the UV-optical lag,

as opposed to when the UV light curve is used,
and the black hole mass is under-estimated by a

factor of τV /τUV. The parameters describing the

BLR geometry and kinematics, however, are not

significantly affected. This indicates that the V -

band continuum is a suitable proxy for the ionizing

continuum when studying the BLR structure and

kinematics, but the UV-optical lag must be con-

sidered when measuring the BLR size.

5. The radius of the Hβ-emitting BLR increased by

a factor of ∼3 between the 2008 LAMP campaign

and the 2014 AGN STORM campaign, but the

measured black hole mass remained constant. The

other geometric parameters remained consistent in

this time frame. There may have been a change

in the BLR kinematics from inflow to outflow, al-

though this is not robustly determined.

With the exquisite data analyzed in this paper, we

have challenged the modeling method to recover the

same black hole mass given three sets of data and to pro-

vide BLR properties using multiple light curves as the

driving continuum. The consistent results have demon-

strated that the modeling approach is a robust method

of determining the BLR structural and kinematic prop-

erties, and reliable black hole mass measurements can

be extracted from Lyα and C iv in addition to Hβ. Fur-

ther, we have shown that the V -band continuum is a

suitable proxy for the ionizing continuum for measuring

BLR structural and kinematic properties, and reliable

black hole mass estimates can be made provided the UV-

optical lag is accounted for. The findings have provided

insights into how the different line-emitting portions of

the BLR fit together and how they evolve over time, and

will help inform future improvements to the BLR model.
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