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Quintin N. Meier ,1,* Adrien Stucky ,2 Jeremie Teyssier,2 Sinéad M. Griffin,3,4

Dirk van der Marel,2 and Nicola A. Spaldin 1

1Materials Theory, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
2Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

3Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 31 January 2020; revised 9 June 2020; accepted 17 June 2020; published 10 July 2020)

Structural phase transitions described by Mexican hat potentials should in principle exhibit aspects of
Higgs and Goldstone physics. Here, we investigate the relationship between the phonons that soften at such
structural phase transitions and the Higgs- and Goldstone-boson analogs associated with the crystallographic
Mexican hat potential. We show that, with the exception of systems containing only one atom type, the usual
Higgs and Goldstone modes are represented by a combination of several phonon modes, with the lowest-
energy phonons of the relevant symmetry having substantial contribution. Taking the hexagonal manganites
as a model system, we identify these modes using Landau theory, and predict the temperature dependence
of their frequencies using parameters obtained from density functional theory. Separately, we calculate the
additional temperature dependence of all phonon mode frequencies arising from thermal expansion within
the quasiharmonic approximation. We predict that Higgs-mode softening will dominate the low-frequency
vibrational spectrum of InMnO3 between zero Kelvin and room temperature, whereas the behavior of ErMnO3

will be dominated by lattice expansion effects. We present temperature-dependent Raman scattering data that
support our predictions, in particular confirming the existence of the Higgs mode in InMnO3.

DOI: 10.1103/PhysRevB.102.014102

I. INTRODUCTION

Phase transitions that break a symmetry spontaneously
occur in a wide range of physical systems, from low-energy
cold atoms, through magnetic, structural, and superconduct-
ing transitions in condensed matter, to high-energy collisions
at the large hadron collider [1–8]. Perhaps the simplest and
most-studied form of spontaneous symmetry breaking is that
described by the “φ4” Lagrangian, which is used in the
Landau-Ginzburg theory of phase transitions, as well as in the
standard model of particle physics,

L = 1

2
(∂μφ)2 − 1

2
m2φ2 − λ

4!
φ4, (1)

where φ is a complex order parameter which is zero in the
disordered phase at T > TC and acquires a nonzero value
below T = TC . The energy density of such a Lagrangian has
the so-called “Mexican hat” potential with continuous U(1)
symmetry (see Fig. 1) in which the ground-state value of
the field φ0 is degenerate in energy around the entire 360◦
rim of the Mexican hat potential. This form was originally
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suggested by Landau to describe ferromagnets near the critical
point [9–11] and has recently achieved notoriety following
the discovery of the Higgs boson, whose formation it also
describes.

Perturbing the field φ around the ground state φ0 gives
two types of fluctuations, the Higgs and Goldstone modes,
which correspond respectively to oscillations of the amplitude
(toward and away from the peak of the hat) and phase (around
the brim of the hat) of the broken continuous symmetry
(Fig. 1).

Since the energy of the field is invariant with phase,
the Goldstone mode is characteristically massless with zero
frequency and a corresponding zero-energy gap [12,13].
Many manifestations of the Goldstone mode are known in
condensed-matter systems: For example, a massless spin wave
has been measured using neutron scattering in the prototypical
Heisenberg ferromagnet EuS [14], for which the Hamilto-
nian is invariant under the rotation of spins. Inelastic neu-
tron scattering was also used to detect a gapless mode in
a Bose-Einstein condensate of spin-triplet states in TlCuCl3

[15], consistent with theoretical predictions [16]. Polarized
Raman scattering detected the development of a peak at zero
frequency with divergent intensity at the structural phase
transition in Cd2Re2O7 pyrochlore, which has been associ-
ated with the Goldstone phonon [17]; similar behavior has
been predicted for Ruddeldsen-Popper-structure PbSr2Ti2O7

[18] and Jahn-Teller coupled d-d orbital excitations in the
orthorhombic perovskite LaMnO3 [19]. Finally, Goldstone
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FIG. 1. The Mexican hat potential describing a broken U(1)
symmetry, with the Higgs and Goldstone modes indicated.

modes also appear as sound waves at the normal-to-superfluid
transition in 4He [20]. In superconductors, the Goldstone
mode gains mass by its interaction with an applied external
field through the Anderson-Higgs mechanism [21,22], giving
rise to the Meissner effect.

In contrast, the Higgs, or amplitude, mode is massive
and harmonic [6], with a finite-energy excitation gap. It is
harder to detect because it can decay into Goldstone bosons
[23], although successful observations have been made in
condensed-matter systems for which the effective theory de-
scribing the system has a relativistic form. This is the case
for the superconducting phase transition in 2H-NbSe2 [24],
which provided the first experimental evidence of the Higgs
mode in a condensed-matter system [25] through its unusual
Raman response, which was consistent with the occurrence of
an amplitude mode of the charge density wave (CDW) order
parameter. Likewise, in TlCuCl3, neutron spectroscopy mea-
surements of the magnetic excitations revealed a Higgs mode
that softened and vanished at the pressure-induced quantum
phase transition from a sea of spin-singlet pairs to a long-
range antiferromagnet [26]. Cold atoms in two-dimensional
optical lattices have provided indirect measurement of the
Higgs mode at the quantum phase transition between the
superfluid and insulating phases, through observation of a
finite-frequency response in the superfluid phase [27], con-
sistent with Monte Carlo simulations [28] and the scaling ex-
pected for a Higgs mode. Recently, the presence of structural
Goldstone and Higgs modes was suggested by first-principles
calculations on a strained perovskite oxide, SrMnO3 [29].
Finally, the observation and manipulation of a Higgs mode
has recently been demonstrated in a supersolid quantum
gas [30]. A summary of experimental efforts to observe the
Higgs mode in condensed-matter systems can be found in
Ref. [31].

Notably, no occurrences of the Higgs mode corresponding
to structural phase transitions have been experimentally re-
ported to date. Such an example would be convenient since
the order parameters in structural phase transitions are usu-
ally given by the positions of the atoms, which in turn can
often be measured unambiguously and remain stable for long

times. Indeed, a field-theoretical treatment of both Higgs and
Goldstone phonons has recently been developed and would in
principle be applicable to such a transition [32].

Here, we show that for compounds containing multiple
atomic species, an unambiguous association of specific single
phonons with the Higgs and Goldstone modes can not in
general be made because the different atomic masses of the
species cause the eigenvectors of the force constant and dy-
namical matrices to differ. Nevertheless, we show that phonon
modes carrying substantial Higgs and Goldstone character can
be identified, and demonstrate their existence in the multifer-
roic hexagonal manganite family of improper ferroelectrics,
which are unusual in that they have a structural phase tran-
sition whose energy landscape is described by a Mexican-
hat-like potential [33,34]. By combining symmetry analysis,
first-principles calculations, and phenomenological modeling,
we analyze the potential and dynamical energy landscapes
of two representative hexagonal manganite materials ErMnO3

and InMnO3. We evaluate the signatures of Higgs-Goldstone
coupling in the temperature dependence of the phonon fre-
quencies, and separate these from frequency shifts due to
thermal lattice expansion. We then use temperature-dependent
Raman spectroscopy to verify the predicted behavior. We
find that, while the behavior of ErMnO3 is dominated by
lattice expansion effects up to room temperature, Higgs-mode
softening can be clearly identified in the vibrational spectrum
of InMnO3, providing a crystallographic Higgs mode analog
associated with the structural phase transition.

A. Structural Higgs and Goldstone modes in multispecies
crystalline materials

We begin by reviewing the approximations inherent in
reducing the large number of structural modes associated with
the many atomic displacement degrees of freedom in a solid
to the effective theory φ4 theory of Eq. (1) in terms of the
Higgs and Goldstone modes. Expanding the total energy of
a system of atoms around their ground-state positions in the
zero-temperature structure, one obtains the total energy of the
system E as the sum of its kinetic and potential energies:

E = 1

2

∑
i

mi(∂t ui )
2 +

∑
i, j

�i j (0)uiu j +
∑
i jk

�i jkuiu juk

+ 1

4

∑
i, j,k,l

�i jkl uiu jukul − · · · , (2)

where i ∈ {1x, 1y, 1z, 2x, 2y, 2z, . . . , Nx, Ny, Nz} can be a
large number, leading to a large number of modes, even when
periodic boundary conditions are used to constrain N to the
number of atoms in the unit cell. Here, 1

2

∑
i

mi(∂t ui )2 is the

kinetic energy of the atoms, �i j (0) = ∂2E
∂ui∂u j

is the harmonic
force constant matrix at zero temperature (E is the internal
energy and ui, u j are displacements of the ith and jth atoms
from their positions in the zero-temperature structure), and
�i jk and �i jkl are the anharmonic third- and fourth-order
force constant matrices.
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At low temperatures, the amplitudes of the atomic dis-
placements are small, the average atomic positions are un-
changed from the zero-temperature positions, and the phonon
eigenmodes are obtained by diagonalizing the sum of the
first two terms. As temperature is increased, the anharmonic
couplings become relevant, leading to two effects: First, the
normal modes can no longer be separated into the zero-
temperature phonons and the average positions of the atoms
are changed, leading to the well-established lattice expansion
in conventional solids; we treat this behavior later in Sec. III C.
Second, in systems close to a structural phase transition, the
response is dominated by an additional change of atomic
positions associated with the anharmonicity of a single soft-
mode coordinate; we focus on this behavior here.

To avoid calculation of the full partition function of Eq. (2),
the anharmonicities are renormalized into a harmonic approx-
imation around the new atomic positions at each temperature.
A renormalized force constant matrix �i j (T ) = ∂2F (T )

∂u∗
i ∂u∗

j
then

describes the energy cost of small atomic displacements u∗
i

away from the minimum-energy atomic coordinates at tem-
perature T . In this renormalized harmonic approximation the
total free energy F (T ) is given by

F (T ) = F0(T ) + 1

2

∑
i

mi(∂t u
∗
i )2 +

∑
i j

�i j (T )u∗
i u∗

j , (3)

where F0(T ) is the free energy of the minimum energy struc-
ture (u∗

i = 0) at the temperature T .
Next, we use the Landau theory of phase transitions to an-

alyze the finite-temperature force-constant matrix, assuming
that the temperature evolution is fully captured by the evo-
lution of the two eigenvectors (φ1 and φ2 say) that represent
the two-dimensional order parameter and form the soft mode.
We can then write the free energy in the usual Landau form
for a broken continuous U(1) symmetry [35] in terms of the
two-component order parameter φ = (φ1, φ2) as

F = a(T )

2

(
φ2

1 + φ2
2

) + b

4

(
φ2

1 + φ2
2

)2 + · · · (4)

which has the same form as Eq. (1). Here,

a(T ) =
⎧⎨
⎩

> 0 if T > TC,

0 if T = TC,

< 0 if T < TC .

(5)

This approximation implies that the temperature dependence
of the energy landscape is determined entirely by the an-
harmonicity in these two soft modes with no anharmonic
coupling to other modes, and at any temperature, �i j (T ) is
diagonalized by the same basis set, with the anharmonicities
confined in the subspace (φ1, φ2).

Next we calculate the eigenvalues ∂2F
∂φ2

i
, of these two modes,

above and below TC . Above TC , the expectation values of φ1

and φ2 are equivalently zero, and so

∂2F

∂φ2
1

∣∣∣∣
φ1=0,φ2=0

= ∂2F

∂φ2
2

∣∣∣∣
φ1=0,φ2=0

= a(T ). (6)

Below TC , the two modes correspond to the Goldstone and
Higgs modes. The Goldstone mode has an eigenvalue of zero
for all temperatures below the phase transition. The Higgs
mode, in contrast, softens with increasing temperature, so that
its eigenvalue goes to zero at the phase transition. Formally,
we obtain the solutions below TC by minimizing the free
energy F [Eq. (4)] with respect to φ1 and φ2 to extract the
expectation value of the order parameter. This yields two
solutions, the trivial vacuum solution with 〈φ1〉 = 〈φ2〉 = 0
for −a(T )/b > 0, and a nontrivial solution describing a de-
generate circle of vacua φ2

1 + φ2
2 = 〈φ〉2 = −a(T )/b, which

is the Mexican hat potential. Because of the U(1) symmetry
we can choose 〈φ1〉 = 0 and 〈φ2〉 = 〈φ〉 without loss of gen-
erality, and expand around the low-symmetry vacuum ground
state to obtain the excitation modes. This gives the massless
Goldstone mode, corresponding to distortions along the φ1

coordinate around the brim of the hat, and the massive Higgs
mode, corresponding to distortions along the perpendicular φ2

coordinate.
The frequencies of the Goldstone and Higgs modes are

∂2F

∂φ2
1

∣∣∣∣
φ1=0,φ2=〈φ〉

= 0, (7)

∂2F

∂φ2
2

∣∣∣∣
φ1=0,φ2=〈φ〉

= a(T ) + 3b〈φ〉2 = −2a(T ) (8)

with the eigenvalues of all other modes still temperature
independent. We assume therefore a strong temperature de-
pendence of the eigenvalue of the force-constant matrix cor-
responding to the Higgs mode on approaching the structural
phase transition, with the remaining eigenvalues being largely
temperature independent.

Finally, for this section we emphasize that, since the Mexi-
can hat is a potential energy surface, the Higgs and Goldstone
modes are the relevant eigenmodes of the force-constant ma-
trix. There is no obvious way, however, to directly measure the
eigenmodes of the force-constant matrix and, therefore, the
phonon modes, which are readily accessible via vibrational
spectroscopies, are often used as proxies. The phonon modes,
however, are eigenmodes of the dynamical matrix, which is
related to the force-constant matrix by (see, for example,
Ref. [36]):

Di j = �i j√
MiMj

, (9)

where Mi is the mass of the ith atom. It is clear that the force-
constant and dynamical matrices have different eigenvalues
and eigenvectors. As a result, the Higgs and Goldstone modes
associated with a crystallographic phase transition do not
correspond to single phonons, except in the special case that
the system contains atoms of only one mass M, in which case
the eigenvectors of the force constants and dynamical matrices
are the same, and the phonon frequencies corresponding to the
Goldstone and Higgs modes ωG and ωH are given by

ωG =
√

α1/M, (10)

ωH =
√

α2/M, (11)
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FIG. 2. (a) Crystal structure of the hexagonal manganites, black
arrows indicating the tilt amplitude Q and orange circle indicating
the tilt angle θ of the oxygen-manganese bipyramids. The oxygens
are marked red, the manganese atoms are purple, and the R atoms are
green. (b) Mexican hat free-energy landscape showing the energy as
a function of amplitude (Q) and phase (θ ) of the order parameter.
The U(1)-like symmetry at small order parameter values, and the six
discrete minima at large order parameter values can be clearly seen.
The fluctuations in the amplitude δq (Higgs) and in the phase δθ

(Goldstone) are indicated with red and orange arrows.

where α1 and α2 are the corresponding eigenvalues of the
force-constant matrix. In a general multicomponent system,
however, each element of the force-constant matrix must be
divided by the product of the square roots of the relevant
masses before diagonalization to extract the phonons, and in
general the static eigenvectors of the force-constant matrix do
not correspond to specific single phonons. For the special case
of the zero-frequency Goldstone mode, the atomic masses
are not relevant, and as a result there is a zero-frequency
phonon for each zero-frequency force-constant mode, and the
zero-frequency eigenvectors of the force-constant matrix are
identical to the atomic displacements of the corresponding
zero-frequency phonon mode. The static Higgs mode, how-
ever, is a linear combination of all dynamical phonon modes
with the same irreducible representation, and the entire sub-
space of phonon modes with the same symmetry as the Higgs
mode should exhibit the strong temperature dependence that
we derived above. A detailed description of the generation
of the force-constant matrices and the calculation of the
frequencies can be found in the Appendix.

B. Structural phase transition in the hexagonal manganites

The multiferroic hexagonal manganites consist of lay-
ers of corner-sharing MnO5 trigonal bipyramids separating
hexagonal planes of R ions (R = In, Sc, Y, or Dy–Lu).
They undergo a spontaneous symmetry-breaking structural
phase transition between a high-temperature centrosymmetric
P63/mmc phase and a ferroelectric P63cm structure. The
primary order parameter is defined by trimerizing tilts of
the MnO5 trigonal bipyramids, and is two dimensional, with
its amplitude set by the magnitude of the tilt, and its phase
set by the tilt angle. The crystal structure and the distortion
are illustrated in Fig. 2(a). A combination of Landau theory
and first-principles calculations [33,37,38] have shown that

for small tilt amplitudes, the energy is independent of the
polyhedral tilt angle, and so near the phase transition the
energy landscape can be described by a continuous Mexican
hat potential with U(1) symmetry [see Fig. 2(b)]. Thus, un-
usually for a crystallographic transition, the structural phase
transition in the hexagonal manganites is described by a
continuous primary two-dimensional order parameter (φ1, φ2)
with an energy landscape similar to the one analyzed in the
previous section. As such, it might be expected to display
Higgs and Goldstone modes. Importantly, the chemistry of
the R ion can strongly modify the details of the energy
landscape, causing differences in the height of the peak in the
Mexican hat potential and in turn influencing the transition
temperature; for the ErMnO3 and InMnO3 considered in
this work the transition temperatures are 1200 and 500 K,
respectively [39].

We note that the discreteness of the lattice manifests at
larger amplitudes of the tilt mode through coupling to a
secondary ferroelectric order parameter P, corresponding to
a net shift of the rare-earth ions relative to the manganese
oxygen layers along the vertical axis [37]. This mode has
shown to be irrelevant in the region of the phase transition
[40], a concept referred to as dangerous irrelevance [41]. The
recent demonstration that the hexagonal manganites disorder
continuously on all length scales close to Tc [42] reinforces the
continuous U(1) behavior in the region of the phase transition.

The coupling between P and the primary order parameter
yields a low-temperature ground state with six minima around
the brim of the hat reflecting the hexagonal symmetry so that
the transition deviates from the ideal field theory of Eq. (1)
and is instead described by an extended Landau free energy,
which is conventionally written in the form [33]

F = a

2
Q2 + b

4
Q4 + 1

6
(c + c′ cos 6θ )Q6

− gQ3P cos 3θ + g′

2
Q2P2 + ap

2
P2. (12)

For consistency with the hexagonal manganites literature,
we use polar coordinates for the order parameter, with the

amplitude Q =
√

φ2
1 + φ2

2 and the phase θ = arctan(φ1/φ2).
The energy landscape of the primary order parameter corre-
sponds to an almost perfect Mexican hat, while the secondary
order parameter induces the minima in the brim [33]. The
energy landscape for a minimized secondary order parameter
is shown in Fig. 2(b) for the case of ErMnO3. The detailed
chemistry affects the coupling to the polar mode, and thus the
height of the barriers around the brim of the hat. In particular,
in the case of InMnO3 these are close to zero and the brim
is smoother than that shown here [43]. Perturbations of the
phase δθ and the amplitude δq of the order parameter are also
indicated. Perturbations of the amplitude conserve the space-
group symmetry, thus they belong to the irreducible represen-
tation A1. Perturbations of the order-parameter angle change
the space-group symmetry from the ferroelectric P63cm to
P3c1, which corresponds to the irreducible representation
B1 [42].
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II. METHODS

A. Sample preparation

Thin platelets of ErMnO3 were prepared using the
PbO-PbF2 flux method as described in Refs. [44,45]. The
InMnO3 samples were prepared as described in Ref. [46]. The
energy balance between the usual polar P63cm and an an-
tipolar P3̄c1 structure, formed at tilt angles halfway between
those of the usual polar structures, is known to be sensitive
to the details of the defect chemistry in InMnO3 [43,47,48],
and samples with the two phases were obtained by appropriate
annealing treatment.

B. Raman spectroscopy

We performed Raman spectroscopy using a home-made
spectrometer equipped with a liquid-nitrogen-cooled CCD
camera and an Ar laser for the excitation with a wavelength
of 514.5 nm. The Raman spectra were collected at the Stokes
side of the elastic peak in the range from 50 to 850 cm−1.
Samples were mounted in a compact flow cryostat operating
between 4 and 300 K. The power of the laser was low enough
to limit local heating of the sample. Of the six different
irreducible representations that classify the phonon modes in
the hexagonal manganites, only A1 and E2 are Raman active.
We use two configurations of the polarization of the incoming
and scattered photons: For the z(xx)z̄ (polarization of the
scattered photons is parallel to that of the incoming ones), both
A1 and E2 modes are allowed by the Raman selection rules.
For the z(xy)z̄ configuration (scattered photons are polarized
perpendicular to the incoming ones), only E2 modes can
be observed. The relative angle of the two polarizers was
calibrated using the selection rules for the 514-cm−1 phonon
line of silicon.

C. Density functional calculations

For our first-principles calculations we used density func-
tional theory as implemented in the ABINIT code [49,50]. We
treated the exchange-correlation functional within the LDA +
U approximation, with U and J values of 8 and 0.88 eV
[51], and the core electrons using the projector augmented
wave (PAW) method [52] from the JTH pseudopotential table
provided by the ABINIT PSEUDODOJO [53]. We used a cut-
off energy of 30 hartree and �-centered k-point meshes of
8 × 8 × 2 for the 10-atom unit cells, and 6 × 6 × 2 for the
30-atom unit cells. Note that with these parameters InMnO3 is
ferroelectric; small adjustments in the parameters can stabilize
the antipolar P3̄c1 state [54]. We obtained force-constant
matrices using the finite-displacement method provided in the
PHONOPY package [55]. We calculated the Landau parameters
for ErMnO3 by displacing the atoms from their positions in
the high-symmetry structure along the force-constant eigen-
vectors. For our calculations within the quasiharmonic ap-
proximation, we calculated the phonons in 30-atom unit cells
and computed the internal energies and phonon free energies
as a function of in-plane and out-of-plane lattice parameters.
We then interpolated between the calculated values to extract
the minimum energy lattice parameters at each temperature.

III. THEORETICAL RESULTS

A. Density functional calculation of zero-Kelvin energetics
and lattice dynamics

We begin by comparing the zero-temperature energetics of
our two representative hexagonal manganites, ErMnO3 and
InMnO3. As stated above, the different chemistries of the two
materials lead to quantitative differences in their Mexican hat
potentials, with a hat height of ∼500 (170) meV and a barrier
in the brim of ∼200 (50) meV for ErMnO3 (InMnO3). The
calculated Landau parameters from which these values were
obtained are given in Table I.

Next, we calculate the phonon mode frequencies and
eigenvectors for the two materials using density functional
theory. Our calculated frequencies and the symmetries of
each mode are listed in Table IV of Appendix B. We see
that the lowest-frequency A1 mode, which we expect to have
the largest Higgs character, has almost the same frequency
(∼130 cm−1) in both materials, reflecting the similar curva-
tures of their Mexican hat potentials in the brim of the hat
in the direction toward and away from the peak. The lowest-
frequency B1 modes, which we expect to have the strongest
Goldstone character, are strikingly different, however, with
the frequency in ErMnO3 (∼107 cm−1) considerably higher
than that in InMnO3 (∼65 cm−1). This is consistent with the
larger barriers around the brim of the hat in the ErMnO3 case.
Note that even in the case of InMnO3, where the brim of the
hat is very smooth, the frequency is still quite far from zero.

Finally, in anticipation of differences in the Higgs-
Goldstone coupling caused by the different Mexican hats,
we calculate the phonon-phonon couplings between the low-
frequency A1 and B1 modes in the two materials. Our results
are presented in Table II, with the form of the coupling given
by

Ephonon-phonon = ωA1

2

2
A2

ωA1
+ ωB1

2

2
A2

ωB1
+ cA3

ωA1
+ dAωA1 A2

ωB1

+ eA4
ωA1

+ f A4
ωB1

+ gA2
ωA1

A2
ωB1

.

For the lowest-lying A1 and B1 modes, we observe that the
lowest-order coupling term d is larger in InMnO3 than in
ErMnO3.

B. Landau theory calculation of the temperature dependence
of the Higgs- and Goldstone-like phonon modes

Next, we use Landau theory based on our calculated
density functional theory parameters to calculate the explicit
temperature dependence of the phonon frequencies. We begin
by extending the Landau theory framework that we developed
in Sec. I A to include, in addition to the two-component
primary order parameter, the secondary order parameter that
is relevant in the hexagonal manganites. We then calculate
explicitly the temperature dependence of the phonons in both
ErMnO3 and InMnO3 using the coefficients of Table I. We
proceed by expanding the free energy of Eq. (A11) in terms
of small perturbations of the primary (treating each com-
ponent separately) and secondary order parameters around
the minimum energy positions θ = 0 + δθ , Q = Q̃ + δq, P =
P̃ + δp. Here, Q̃ is the expectation value of Q, given by the
solution of the equation ∂F

∂Q |
θ=0,P=P̃

=0. Correspondingly, P̃ is
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TABLE I. Landau parameters for ErMnO3 (calculated in this work) and InMnO3 (from Ref. [56]).

a (eV Å−2) b (eV Å−4) c (eV Å−6) c′ (eV Å−6) g (eV Å−4) g′ (eV Å−4) ap (eV Å−2)

ErMnO3 −3.83 6.20 1.06 0.06 3.76 17.43 0.54
InMnO3 −0.82 1.13 0.81 0.04 1.02 4.85 3.48

the expectation value of P, which we obtain from the solution
of ∂F

∂P |
Q=Q̃,θ=0

= 0, yielding

P̃[Q, θ ] = gQ3 cos 3θ

g′Q2 + ap
. (13)

We obtain the following effective susceptibilities for the per-
turbations of each component:

χ−1
δq = a(T ) + 3bQ̃2 + 5bQ̃4(c + c′) − 6gQ̃P̃ + g′P̃2, (14)

χ−1
δθ = −6c′Q̃4 + 9gQ̃P̃, (15)

χ−1
δp = g′Q̃2 + ap. (16)

We then calculate the phonon frequencies at each tem-
perature by replacing the calculated zero-temperature sus-
ceptibilities by the response functions (A13)–(A15) in the
force-constant matrix, and assuming the usual linear evolution
a(T ) = a0(T − Tc)/Tc for the temperature dependence of the
a parameter of the soft mode. Our calculated phonon frequen-

TABLE II. Phonon-phonon coupling between A1 and B1 modes
in InMnO3 (top) and ErMnO3 (bottom), calculated in this work.
Frequencies are given in cm−1, units of the coupling constants are
meV (amu Å)−3/2 for c and d, and meV/(amu Å)−2 for e–g. Slight
differences in the frequencies to the calculated values are due to
fitting. Only the lowest-lying A1 and B1 modes were considered.

InMnO3

ωA1 ωB1 c d e f g

127.8 63.4 0.9 9.2 0.2 0.5 1.5
127.9 204.8 0.9 1.5 0.2 0.7 0.6
202.9 63.4 2.8 11.0 0.7 0.5 2.7
202.9 204.8 2.8 2.0 0.7 0.7 1.4
236.0 63.6 −6.7 2.5 1.7 0.5 0.2

ErMnO3

ωA1 ωB1 c d e f g

129.6 106.1 0.8 3.3 0.0 0.1 0.1
129.6 267.0 0.9 3.9 0.1 0.9 0.5
129.6 273.4 0.8 5.3 0.1 0.8 0.2
242.3 105.9 7.8 7.4 0.8 0.1 0.9
242.5 267.5 8.0 10.3 0.8 0.8 2.5
242.6 274.1 7.9 3.1 0.7 0.5 1.1
273.6 105.4 −7.7 4.6 0.4 0.2 0.3
273.3 267.2 −7.7 17.0 0.5 0.8 0.2
273.4 273.6 −7.8 19.8 0.5 0.7 0.7
314.5 105.6 −8.9 −2.2 1.3 0.2 0.0
314.5 267.6 −8.9 −7.6 1.4 0.7 1.8
314.5 274.1 −8.9 11.6 1.4 0.5 1.0

cies as a function of temperature are shown in Fig. 3(a) for
InMnO3 and in Fig. 3(b) for ErMnO3. Modes of A1 symmetry
(and therefore Higgs character) are indicated in blue, B1 sym-
metry (Goldstone) modes in red, and polar modes in green.
The frequencies of all the other phonons are temperature
independent by construction in our approximation. A detailed
description of the construction of the force-constant matrices
is given in the Appendix.

We begin by comparing, in Table III, the frequencies
obtained from our Landau theory approach in the zero-Kelvin
limit with those calculated for the fully relaxed cell using

FIG. 3. Calculated evolution of phonon frequencies from the
Landau theory approach for (a) ferroelectric InMnO3 and (b)
ErMnO3. Modes changing due to freeze-in of the primary order
parameter are marked red (Goldstone, B1) and blue (Higgs, A1),
while the phonon modes related to the polar instability (A1) are
marked green. Shaded areas mark the temperature range accessible
by our Raman experiments.
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TABLE III. Zero-temperature frequencies of the modes with
Higgs and Goldstone character in ErMnO3 and InMnO3 extrapolated
from the Landau model and calculated using DFT for the relaxed
low-symmetry structures. All frequencies are given in units of cm−1.

Higgs 1 Goldstone 1 Higgs 2 Goldstone 2

ErMnO3 (Landau) 106 93 285 338
ErMnO3 (DFT) 130 107 315 424
InMnO3 (Landau) 96 47 232 265
InMnO3 (DFT) 128 65 235 302

density functional theory. We find that the Landau theory
frequencies underestimate the DFT values by around 30%.
This is mostly a result of our neglecting the weak coupling
of the order parameter modes to two additional modes, as
described in Ref. [37]. This additional coupling would harden
the relevant phonon modes in the Landau description.

Next, we discuss the temperature dependence of the
modes, beginning with the softest mode. First, we note that
this mode, which softens on approaching TC from above, is
doubly degenerate above TC due to the equivalence of the
order-parameter directions in the high-symmetry phase. The
degeneracy is lifted and the mode splits into two below the
phase transition, an amplitude mode with A1 symmetry,
which can be regarded as the primary Higgs mode of the
structural transition (shown in blue) and a phase mode with
B1 symmetry which represents the primary Goldstone mode
(shown in red). The Goldstone mode in InMnO3 retains a
lower frequency down to zero Kelvin than that in ErMnO3,
reflecting the smaller barriers in the brim of the hat in the
InMnO3 case. The Higgs modes have a similar temperature
dependence and zero-Kelvin frequency in both compounds.
We note, however, that the zero of ( T −Tc

Tc
) corresponds to a

very different temperature in the two cases (∼1200 K for
ErMnO3 and ∼500 K for InMnO3). We find, as expected, the
occurrence of additional temperature-dependent Higgs- and
Goldstone-type modes at higher frequencies, indicated with
dashed lines in Fig. 3. These modes have the same symmetry
as the soft modes, and their temperature dependence is
a consequence of the mixing of eigenmodes caused by the
transformation from the force-constant to dynamical matrices.
This mixing is stronger in ErMnO3 than in InMnO3, because
of the larger mass of Er, resulting in a stronger temperature
dependence of the higher-frequency A1 and B1 phonons in
ErMnO3.

The temperature evolutions of the phonons corresponding
to the polar modes are plotted in green. These are independent
of temperature above TC , but we find that their frequencies in-
crease below the phase transition, as the increase in magnitude
of the primary order parameter stabilizes the polar mode. We
see that the frequency of the polar mode increases more in
ErMnO3 than InMnO3, consistent with the larger coupling g
in the Q3P cos 3θ term of the Landau free energy for ErMnO3.

C. Effect of change in lattice parameters on the phonon
mode frequencies

Finally for this section, we calculate how the change
in lattice parameters with temperature affects the phonon

FIG. 4. (a) Lattice parameters for ErMnO3 calculated within the
quasiharmonic approximation. (b) Temperature dependence of the
phonon frequencies calculated for ErMnO3 within the quasiharmonic
approximation. We show only the A1 (red) and E2 (blue) modes for
comparison with the Raman spectroscopy measurements in the next
section.

frequencies in ErMnO3, with the goal of isolating any mode
softening due to thermal expansion from the mode softening
due to approaching the phase transition discussed above.
ErMnO3 and the other rare-earth hexagonal manganites are
known experimentally to have an unusual lattice response to
temperature, with the in-plane lattice parameter a increasing
with temperature as expected, but the out-of-plane c lattice
parameter decreasing with increasing temperature [57].

We begin by demonstrating that this unusual evolution
can be captured within the quasiharmonic approximation, in
which the total free energy as a function of the lattice parame-
ters Ftot is obtained by minimization of the sum of the internal
energy E (a, c) plus the phonon free energy Fphonons(a, c):

Ftot = min
a,c

[E (a, c) + Fphonons(a, c)], (17)

where a and c are the in-plane and out-of-plane lattice pa-
rameters. E (a, c) is obtained by relaxing all internal degrees
of freedom for the P63cm structure for the set of given lattice
parameters, and the phonon free energy is calculated using the
partition function for harmonic phonons:

Fphonons = 1

2

∑
q,ν

h̄ωq,ν + kBT
∑
q,ν

ln [1 − exp h̄ωq,ν/(kBT )],

(18)

where q, ν is the sum over the reciprocal lattice and all
bands ν.

Using this approach, we calculate the temperature depen-
dence of the lattice parameters, which we present in Fig. 4
for ErMnO3. The excellent agreement with experiment [42]
suggests that the quasiharmonic population of phonons with
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increasing temperature is the dominant contribution to the
thermal evolution of the lattice parameters. We then approxi-
mate the temperature dependence of the phonon frequencies,
by calculating the eigenmodes of the dynamical matrix at
the a, c lattice parameters for the corresponding temperature.
We deliberately omit anharmonic interactions and phonon
populations in this step, in order to isolate specifically the
effect of the change in lattice parameters. We show our results
for the Raman-active A1 and E2 phonons in Fig. 4. We
find that in this limit, most modes, in particular the A1 and
B1 (not shown) phonons relevant to the Higgs-Goldstone
coupling, are largely temperature independent. Therefore, we
can exclude that any measured temperature dependence of the
Higgs and Goldstone modes is a result of the change in lattice
parameters with temperature.

IV. EXPERIMENTAL RESULTS

A. Raman spectroscopy

In Fig. 5 the Raman spectra at 10 K are displayed for
(a) ferroelectric P63cm ErMnO3, (b) InMnO3 in the antipolar
P3̄c1 state, and (c) the ferroelectric P63cm variant of InMnO3,
for parallel (red) and perpendicular (black) polarizations of
incoming and scattered photons. Our ErMnO3 data [Fig. 5(a)]
are in excellent agreement with previously published re-
sults [58], showing all the previously reported A1 and E2
Raman-active modes with the expected relative intensities and
positions. The extinction of the A1 modes in the perpendicular
configuration confirms the selection rules for the P63cm space
group, and the narrow linewidths confirm the high quality of
the ErMnO3 single crystal used in this study. For both the
P63cm and P3̄c1 InMnO3 crystals we observe in Figs. 5(b)
and 5(c) the extinction of the mode at 680 cm−1 and of
the shoulder at 280 cm−1 for the perpendicular polarizer
configuration, which indicates that these modes belong to the
A1 representation. The peaks at ∼140, 280, and 330 cm−1

persist for perpendicular polarization and therefore have E2
symmetry. The small crystal size leads to broad peaks and
difficulty in umambiguously assigning the remaining peak
frequencies, although the peaks at around 450 and 600 cm−1

are likely of A1 symmetry.
In Figs. 6(a)–6(c) we show the detailed temperature depen-

dence of the Raman spectra of all three crystals. For the sake
of clarity, the curves have been shifted vertically proportional
to their temperatures. By fitting the curves with Lorentzian
functions, we extracted the temperature dependence of the
phonon frequencies, shown in Fig. 6(d) for the ErMnO3

sample, Fig. 6(e) for the P3̄c1 InMnO3 sample, and Fig. 6(f)
for the P63cm InMnO3 sample.

We begin by analyzing the ErMnO3 spectrum, which
shows all the A1 and E2 Raman-active modes reported pre-
viously in the literature [58] with the expected relative inten-
sities and positions. Moreover, we observe a new small peak
below 80 cm−1 that was not resolved in the 10-K spectrum and
increases in intensity with increasing temperature. Our calcu-
lations indicate that this is an E2 (and therefore Raman-active)
mode, and its temperature dependence is likely the result
of low Raman activity, which increases due to anharmonic
mixing with other E2 modes as the temperature is increased.

(a)

(b)

(c)

FIG. 5. Raman spectra collected at 10 K on single crystals of
(a) ErMnO3, (b) InMnO3 (P3̄c1), and (c) InMnO3 (P63cm). The red
and black lines show the intensity of Raman scattering in the paral-
lel and perpendicular configurations, respectively. The polarization
selection rule for the ErMnO3 sample (P63cm symmetry) is clearly
manifested.

We also observe a general softening of all the modes as
the temperature is increased. The frequency of the lowest-
frequency A1 mode, which has the strongest Higgs character,
reduces by ∼10 cm−1 between 10 and 300 K, with the higher-
energy A1 modes reducing in frequency by a similar amount.
Since the ferroelectric phase transition in ErMnO3 occurs
at ∼1200 K, the 300-K limit of our experiment corresponds
to T −TC

TC
= −0.75, which we see from Fig. 3(b) corresponds

to a predicted Landau theory drop in frequency of around
10 cm−1, consistent with the experiment. The high TC of
ErMnO3 means that definitive experimental confirmation of
Higgs behavior in ErMnO3 would require measurement of the
phonon frequencies to higher temperature than is available in
our setup. The E1 mode at 250 cm−1 shows a particularly
strong broadening and redshift; we suggest that this corre-
sponds to a shear mode which we find in our quasiharmomic
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Raman spectra at selected temperatures from 4 to 300 K
for three hexagonal manganite samples: (a) ErMnO3, (b) InMnO3

(P3̄c1), and (c) InMnO3 (P63cm). The colored triangles mark calcu-
lated values from our DFT calculations. (d)–(f) Temperature depen-
dence of the mode frequencies for the three samples: (d) ErMnO3,
(e) InMnO3 (P3̄c1), and (f) InMnO3 (P63cm). The black vertical bars
indicate the peak widths.

calculations to be particularly sensitive to the change in lattice
parameters.

Next, we analyze the InMnO3 spectra. Our first observation
is that, despite their different ground-state crystal structures,
the Raman spectra of the two InMnO3 crystals are almost
identical, confirming the similarity in the shapes of their
Mexican hat potentials. In both InMnO3 cases, the main
Higgs excitation associated with the lowest-frequency mode
is lower in frequency and softens more rapidly with increasing
temperature than in ErMnO3, consistent with the lower Curie
temperature of ∼500 K. Once again we find a good agreement
with the Landau theory prediction, with the calculated drop
in frequency between 0 and 300 K (corresponding to T −TC

TC
=

−0.4) of around 30 cm−1 compared with the measured value
of ∼20 cm−1. Interestingly, for InMnO3 the E2 modes show a
much weaker temperature dependence than in ErMnO3, with
the mode at 135 cm−1 largely temperature independent and
the mode at 225 cm−1 even hardening upon increasing the
temperature. We attribute this behavior to the In-O covalency,
which is known to lead to a larger c lattice parameter for
InMnO3 compared to other members of the hexagonal man-
ganite series [54], and likely also causes markedly different
changes in lattice parameters with thermal expansion [59].

V. SUMMARY

In summary, we have analyzed the role of phonons as
Higgs and Goldstone modes at the structural phase transitions
in crystalline materials, focusing particularly on the case
of the hexagonal manganites. We showed that, in materials
containing atoms of more than one mass, the static Higgs
and Goldstone modes only map uniquely onto single-phonon
modes at TC , where both the Higgs and Goldstone frequencies
are zero. Below TC , the different masses of the ions cause a
softening of several phonon modes with the same symmetry as
the static soft-mode distortion. Nevertheless, in both ErMnO3

and InMnO3, our Landau theory analysis identified one pri-
mary A1 phonon corresponding to the Higgs mode, and one
main B1 phonon corresponding to the Goldstone-like mode.
We then used Landau theory with parameters from density
functional theory to calculate the temperature evolution of
these modes, noting that the formalism is strictly only valid for
displacive phase transitions, in which the structural distortion
is zero in the high-temperature phase.

Using Raman spectroscopy, we showed that the lowest A1
modes in both ErMnO3 and InMnO3 indeed have a redshift
in the frequency on warming. For InMnO3, in which the
temperature range measured is substantial with respect to the
Curie temperature, the magnitude of the shift is also substan-
tial, and similar to that predicted by the Landau theory. The
good match between the temperature evolution of the Higgs
mode in our Raman measurements and in our calculations
using Landau and density functional theories suggests that
the phase transition in InMnO3 is well described within a
standard displacive picture. A definitive measurement of the
temperature dependence of the Higgs mode in ErMnO3 will
require Raman or inelastic neutron scattering measurements
to higher temperatures. To motivate such measurements, we
suggest that ErMnO3 might show intriguing deviations from
the temperature evolution that we calculated within Landau
theory since it will likely have at least partial order-disorder
character, in which the high-temperature structure is locally
distorted, but the distortion vanishes on average. Such order-
disorder behavior was recently identified in the related ma-
terial YMnO3 [42], where inelastic neutron scattering indi-
cated only limited phonon softening [60–62]. We suggest that
ErMnO3 is a good candidate for detection of the predicted
emergence of a central peak at the transition (see for example
[63]), which has so far proved elusive.

ACKNOWLEDGMENTS

We thank M. Bieringer, Department of Chemistry, Univer-
sity of Manitoba, for providing the InMnO3 single crystals and
K. Kohn, Waseda University, for providing the ErMnO3 single
crystals. We also thank A. Cano and A. Mozzafari for helpful
discussions and M. Miller for graphical assistance. Comput-
ing resources were provided by the Euler cluster at ETHZ
and CSCS under project IDs eth3 and s889. This work was
supported by the Körber Foundation, by the Swiss National
Science Foundation through the National Center of Compe-
tence in Research (NCCR) MARVEL, by the ETH Zurich,
and has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research

014102-9



QUINTIN N. MEIER et al. PHYSICAL REVIEW B 102, 014102 (2020)

and innovation programme Grant Agreement No. 810451.
S.M.G. was supported by the Quantum Information Science
Enabled Discovery (QuantISED) for High Energy Physics
(Grant No. KA2401032) at LBNL. Work at the Molecular
Foundry (S.M.G) was supported by the Office of Science,
Office of Basic Energy Sciences, of the U. S. Department of
Energy under Contract No. DE-AC02-05CH11231.

APPENDIX A: TECHNICAL DETAILS OF THE
COMBINED DFT/LANDAU THEORY TREATMENT

1. Perfect Mexican hat

In this Appendix we discuss how we combine Landau
theory with density functional theory calculations to obtain
the phonon spectrum as a function of the atmonic displace-
ment. We start by calculating the force-constant matrix of the
high-symmetry phase (�i j), which is the second derivative
of the Kohn-Sham total energy EKS with respect to atomic
displacements ui, u j (�i j = ∂EKS

∂ui∂u j
) in the limit of small ui.

As this is a harmonic treatment, the generalized susceptibility
χ−1

ii = ∂2EKS

∂φ2
i

for an eigenmode φi is the corresponding eigen-
value of the �i j matrix. For a system with N atoms in the unit
cell, �i j is a 3N × 3N matrix, and we label the eigenvalues
α1, . . . , α3N . In the structural ground state, all eigenvalues are
positive. Negative eigenvalues occur when atomic displace-
ments do not induce restoring forces and correspond to energy
lowering structural distortions.

Since structural phase transitions are determined by the
eigenvectors with negative eigenvalues, next we treat their
anharmonicity, while assuming that they have no interaction
with the stable modes. We assume without loss of generality
that we have two negative, degenerate eigenvalues, α1, α2

say, and we take α3, . . . α3N to be constant with temperature.
In order to incorporate the anharmonicity of these modes in
our Landau potential, we perform a series of calculations of
the Kohn-Sham energy, for several amplitudes of each mode
eigenvector superimposed onto the high-symmetry structure.
We then fit a Landau polynomial to the resulting energy
landscape. In the case of of a perfect Mexican hat potential,
the form of the energy landscape is

EKS(φ1, φ2) = a

2

(
φ2

1 + φ2
2

) + b

4

(
φ2

1 + φ2
2

)2
, (A1)

where one can extract the parameters a and b by fitting to the
calculated EKS. We then take into account the temperature
by allowing the a coefficients to be temperature dependent
with the usual Landau form a(T ) = a0

T −TC
TC

, giving a(T ) < 0
below TC and a(T ) > TC above TC . Above TC , the expectation
values of φ1 and φ2 are equivalently zero, and the inverse
generalized susceptibility matrix has the form

χ−1
11 = ∂2F

∂φ2
1

∣∣∣∣
φ1=0,φ2=0

= χ−1
22 = ∂2F

∂φ2
2

∣∣∣∣
φ1=0,φ2=0

= a(T ).

(A2)

Making use of our assumption that α3, . . . , α3N are temper-
ature independent, and the entire temperature dependence of

the free energy is contained in α1 and α2, the susceptibility
matrix above TC is then

χ−1(T ) =

⎡
⎢⎢⎢⎢⎣

a(T ) 0 0 . . . 0
0 a(T ) 0 . . . 0
0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . α3N

⎤
⎥⎥⎥⎥⎦

. (A3)

Below TC , φ1 and φ2 correspond to the Goldstone and
Higgs modes. The Goldstone mode has an eigenvalue of zero
for all temperatures below the phase transition. The Higgs
mode, in contrast, softens with increasing temperature, so that
its eigenvalue goes to zero at the phase transition. Formally,
we obtain the solutions below TC by minimizing the free
energy F [Eq. (4)] with respect to φ1 and φ2 to extract the
expectation value of the order parameter. This yields two
solutions, the trivial vacuum solution with 〈φ1〉 = 〈φ2〉 =
0 for −a(T )/b > 0, and a nontrivial solution describing a
degenerate circle of vacua φ2

1 + φ2
2 = 〈φ〉 = −a(T )/b, which

is the Mexican hat potential. Because of the U(1) symmetry
we can choose 〈φ1〉 = 0 and 〈φ2〉 = 〈φ〉 without loss of gen-
erality, and expand around the low-symmetry vacuum ground
state to obtain the excitation modes. This gives the massless
Goldstone mode, corresponding to distortions along the φ1

coordinate around the brim of the hat δφ1, with

φ1 = δφ1, (A4)

and the massive Higgs mode, corresponding to distortions
along the perpendicular φ2 coordinate δφ2, with

φ2 = 〈φ〉 + δφ2 = δφ2 − a(T )/b. (A5)

The modes satisfy

〈δφ1〉 = 〈δφ2〉 = 0. (A6)

The frequencies of the Goldstone and Higgs modes are

χ−1
11 (T ) = ∂2F

∂φ2
2

∣∣∣∣
φ1=0,φ2=〈φ〉

= 0, (A7)

χ−1
22 (T ) = ∂2F

∂φ2
1

∣∣∣∣
φ1=0,φ2=〈φ〉

= a(T ) + 3b〈φ〉2 = −2a(T )

(A8)

and the whole susceptibility matrix below TC is

χ−1(T ) =

⎡
⎢⎢⎢⎢⎣

0 0 0 . . . 0
0 −2a(T ) 0 . . . 0
0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . α3N

⎤
⎥⎥⎥⎥⎦

. (A9)

Finally, we remark that to obtain the phonon frequen-
cies, that is the eigenvalues of the dynamical matrix,
as opposed to the eigenvalues of the force-constant ma-
trix that we have analyzed here, we first have to trans-
form the inverse susceptibility back to the force-constant
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matrix using � = M−1χ−1M where M is the transfor-
mation matrix from the diagonalization. The phonon fre-
quencies are then obtained by diagonalizing the dynamical
matrix Di j :

Di j = �i j√
MiMj

. (A10)

2. h-RMnO3

The case of h-RMnO3 is similar to the simple case
discussed in the previous section in that the structural

transition in the hexagonal manganites is described by a
two-dimensional (2D) primary order parameter parametrized
by (Q,�). In addition, we now have to take into account
the improper coupling of the primary order parameter to the
secondary order parameter P. The Landau Free energy is then
given by

F = a(T )

2
Q2 + b

4
Q4 + 1

6
(c + c′ cos 6θ )Q6

− gQ3P cos 3θ + g′

2
Q2P2 + ap

2
P2. (A11)

Above TC , the inverse susceptibility matrix has the form

χ−1(T ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(T ) 0 0 0 0 . . . 0

0 a(T ) 0 0 0 . . . 0

0 0 aP 0 0 . . . 0

0 0 0 α4 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . α3N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A12)

Calculating perturbations of the order parameter below TC we obtain the mode inverse susceptibilities:

χ−1
δq (T ) = ∂2F

∂Q2

∣∣∣∣
Q=Q̃,θ=0,P=P̃

= a(T ) + 3bQ̃2 + 5bQ̃4(c + c′) − 6gQ̃P̃ + g′P̃2, (A13)

χ−1
δθ (T ) = 1

Q2

∂2F

∂θ2

∣∣∣∣
Q=Q̃,θ=0,P=P̃

= −6Q̃4 + 9gQ̃P̃, (A14)

χ−1
δp (T ) = ∂2F

∂P2

∣∣∣∣
Q=Q̃,θ=0,P=P̃

= g′Q̃2 + ap (A15)

and thus the matrix

χ−1(T ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ−1
δq (T ) 0 0 0 0 . . . 0

0 χ−1
δθ (T ) 0 0 0 . . . 0

0 0 χ−1
δp (T ) 0 0 . . . 0

0 0 0 α4 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . α3N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A16)

The phonon frequencies are then again found by transforming back to the force-constant matrix, normalizing by the atomic
masses and diagonalizing the resulting dynamical matrix.

014102-11



QUINTIN N. MEIER et al. PHYSICAL REVIEW B 102, 014102 (2020)

APPENDIX B: LIST OF CALCULATED PHONON FREQUENCIES

TABLE IV. Calculated zero-Kelvin DFT phonon frequencies for InMnO3 (left) and ErMnO3 (right).

Frequency (cm−1) Irrep Frequency (cm−1) Irrep

64.8 B1 76.3 E2
86.3 E2 84.8 A2
95.6 A2 103.9 B2
114.4 B2 107.3 B1
128.0 A1 130.3 A1
134.3 E2 154.3 E2
159.7 E1 155.5 E1
167.5 E1 159.7 B2
168.9 E2 162.1 E1
174.3 E2 163.9 E2
176.0 E1 169.8 E2
178.3 B2 171.0 E1
189.2 E2 206.0 E2
193.2 B2 207.6 E1
202.7 A1 225.0 B2
204.0 E1 245.9 A1
204.2 B1 247.6 E2
210.3 E2 256.2 E1
216.1 E1 263.2 A2
230.7 A2 270.2 B1
235.1 A1 271.5 B2
255.8 B2 278.3 A1
272.1 E1 279.1 B1
289.1 A2 293.4 E1
292.0 E2 300.5 E2
303.0 A1 315.2 A2
302.9 B1 315.9 A1
307.8 B2 341.3 E2
340.7 E2 347.4 B2
356.3 E1 364.0 E1
378.9 E1 385.4 E2
380.8 E2 390.2 E1
392.3 B2 400.7 A2
397.2 E1 409.9 B2
404.4 A1 412.8 E2
406.6 E2 416.4 E1
408.9 E1 424.0 B1
410.2 E2 426.2 A1
429.6 A2 433.1 E1
429.9 B1 451.2 E2
445.7 B2 454.5 E2
446.9 A1 456.5 E1
470.8 A1 458.2 B2
494.0 B2 463.7 A1
494.8 A2 494.7 E1
495.6 B1 495.7 E2
501.7 E2 505.0 A1
509.7 E1 521.2 B1
527.5 E1 526.4 A2
533.2 E2 535.9 B2
573.7 A1 603.1 A1
609.3 E1 632.0 E2
611.6 E2 632.3 E1
614.8 E2 637.4 E2
618.9 E1 637.9 E1
645.4 B2 686.2 B2
657.0 A1 688.9 A1
736.5 B2 771.5 B2
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