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• Land subsidence (LS) effects around the
world are substantial.

• LS effects while accounted for, are nei-
ther well quantified nor economically
valued.

• We developed a Land Subsidence
Impact Extent (LSIE) index comparing
LS effects across sites.

• We use statistical means to map physi-
cal, human, and policy effects on LSIE.

• Lithology, policy interventions, and ex-
cess groundwater usage affect LSIE.
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Depletion of groundwater aquifers along with all of the associated quality and quantity problems which affect
profitability of direct agricultural and urban users and linked groundwater-ecosystems have been recognized
globally. During recent years, attention has been devoted to land subsidence—the loss of land elevation that oc-
curs in areas with certain geological characteristics associated with aquifer exploitation. Despite the large socio-
economic impacts of land subsidencemost of these effects are still notwell analyzed and not properly recognized
and quantified globally. In this paperwe developed a land subsidence impact extent (LSIE) index that is based on
10 land subsidence attributes, and applied it to 113 sites located around theworldwith reported land subsidence
effects. We used statistical means to map physical, human, and policy variables to the regions affected by land
subsidence and quantified their impact on the index. Our main findings suggest that LSIE increases between
0.1 and 6.5% by changes in natural processes, regulatory policy interventions, and groundwater usage, while
holding all other variables unchanged. Effectiveness of regulatory policy interventions varies depending on the
lithology of the aquifer system, in particular its stiffness. Our findings suggest also that developing countries
aremore prone to land subsidence due to lower performance of their existingwater governance and institutions.
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1. Introduction

Land subsidence (LS), defined as the settlement of the land surface,
is generated by human-induced and natural-driven processes, including
natural compaction of unconsolidated deposits (Zoccarato et al., 2018),
and human activities such as subsurface water mining, or extraction of
oil and gas (Gambolati et al., 2005). LS is a global problem (Galloway
et al., 2016; Herrera-Garcia et al., 2021; Kok and Costa, 2021), mostly
studied and recognized, to different extents, in association with aquifer
overexploitation (which is the focus of this paper). LS occurrence
around theworld ismost prominent in those aquifer systems composed
of loose unconsolidated materials (e.g., sands, clays, and silts) that are
over-pumped (e.g., Poland, 1984; Tomás et al., 2005; Gambolati and
Teatini, 2015; Bonì et al., 2015).

Climate change impacts onwater availability and population growth
are expected to increase competition for water, leading to extensive
groundwater withdrawals. The expected overexploitation of aquifers
will exacerbate current and future damage from various LS impacts. LS
causes significant damages to local communities and to the environ-
ment (Yoo and Perrings, 2017; Teatini et al., 2018). As such, identifying
the types of damages and quantifying them in terms of the various
physical impacts and their short- and long-term economic costs
would be an essential first step for preparing policies to address
this problem. However, most studies on LS are indicative in the
sense that they identify the driving processes, and measure the
physical effects of LS in specific localities. Few are the works that
assess the global impacts of LS in terms of social, environmental,
and/or economic consequences.

A review of existing literature suggests that LS can cause the follow-
ing impacts (e.g., Poland, 1984; Holzer and Galloway, 2005; Lixin et al.,
2010; Bru et al., 2013; Erkens et al., 2016), as summarized in Dinar et al.
(2020): (1) Socio-economic impacts, such as structural damages (Bru
et al., 2013); (2) Environmental damages, such as malfunctioning of
drainage systems (Viets et al., 1979); (3) Geological-related damages
that affect underground lateralwaterflows (Poland, 1984); (4) Environ-
mental damages, such as reduced performance of hydrological systems
(Poland, 1984); (5) Environmental damages, such as wider expansion
of flooded areas (Poland, 1984); (6) Hydrogeological damages that re-
sult in groundwater storage loss (Holzer and Galloway, 2005; Béjar-
Pizarro et al., 2017); (7) Impact on adaptation ability to climate change,
such as the loss of the buffer value of groundwater in years of scarcity
(Erkens et al., 2016); (8) Groundwater contamination, such as seawater
intrusion resulting in decrease of farmland productivity in coastal aqui-
fer systems and decrease of fresh-water availability (Holzer and
Galloway, 2005; Poland, 1984); (9) Loss of high-value transitional
areas (e.g., saltmarshes) (Viets et al., 1979); and (10) Shift of land use
to poorer activities (e.g., from urbanized zones to rice fields, from rice
fields to fish and shellfish farms, from fish farms to wastewater
ponds) (Heri et al., 2018). A summary of the literature used for the ten
LS attributes and their impacts is provided in Appendix A (Table A1).

Estimates of economic damages from land subsidence are not yet
widely available, andmost of thepublished studies on this phenomenon
focus on a physical quantification of subsidence and on cataloguing the
damages (Borchers and Carpenter, 2014). Few works have assessed
local LS damages (e.g., Jones and Larson, 1975; Warren et al., 1975;
Lixin et al., 2010; Tomás et al., 2012; Sanabria et al., 2014; Yoo and
Perrings, 2017; Wade et al., 2018; and Díaz et al., 2018). Selected eco-
nomic damages cited in the literature range from $756 million in the
Santa Clara Valley of California (Borchers and Carpenter, 2014), to $1.3
billion in the San Joaquin Valley of California between 1955 and 1972,
in 2013 dollars, to $18.03 billion in the Tianjin metropolitan area in
the period up to 2007 (Lixin et al., 2010). It is worth noting that, since
the studies leading to these estimates use different approaches, refer
to different sizes of affected regions, and span over different periods of
time, one should not attempt to compare the values but rather use
them as indicative only. A recent study (Kok and Costa, 2021)
2

enumerates the various types of costs associated with LS and suggests
a standardize economic framework for their cost evaluation.

In a recent publication, Herrera-Garcia et al. (2021) identified 200
locations (mostly urban) in 34 countries that experienced LS during
the past century. However, these authors also indicate that the LS extent
is knownonly in one third of these locations. Given lack of direct data on
damages, Herrera-Garcia et al. (2021) usewhat they define as the expo-
sure to potential land subsidence (PLS) and focus on areas where the
probability for potential subsidence is high. Their calculations suggest
that PLS affects 8% of the global land surface, and that 2.2 million square
kilometers of global land is exposed to high to very high probability for
PLS, involving 1.2 billion urban inhabitants and threatening nearly US$
8.2 trillion in GDP. This estimate on the global economic exposure
could be a lower-level estimate because the authors assumed that the
GDP per capita is homogenous within each country, not taking into ac-
count the geographical variations in productivity, for example, between
different regions within a country, or between cities and rural areas.
However, this economic estimate on the global subsidence exposure
does not directly translate to subsidence impact or damages. The lack
of information on the cost of damages caused by current and historical
subsidence worldwide, prevents these authors from evaluating the im-
pact of global land subsidence.

Realizing the need for a global assessment of LS impacts and the
present difficulty to provide global economic quantification for those ef-
fects (Kok and Costa (2021), Herrera-Garcia et al. (2021)), in this paper
we have taken an approach of quantitatively (not economically)
assessing global LS impact extents and their determinants. We start
with a meta-analysis and review of relevant literature on LS occurrence
and physical quantification of its impacts in various sites around the
world. In the absence of economic value for the LS-induced damage,
we develop an index to assess the LS impact extent (LSIE), using the
classification of the 10 LS impacts listed above. This assessment allows
us to identify different types of impacts in different locations and is
used to explain the effects of physical, regulatory, and population condi-
tions on LSIE. Such conditions include aquifer lithology, managing insti-
tutions, social systems, existing policies, population pressure, water-
level depletion from over-pumping, and several others.

From here on the paper develops as follows: Section 2 explains the
principles used to develop the LSIE index. We then present in
Section 3 an empirical investigation into the social, physical and institu-
tional determinantsmost likely affecting land subsidence and its impact
as measured by LSIE. Section 4 presents the data-collection process, the
variables constructed, and the hypotheses regarding their effects on
LSIE. This is followed in Section 5 by the empirical specifications of our
models and the derived hypotheses. Section 6 includes results from
the LSIE global distribution, and results from the statistical analysis.
The results are followed by policy simulations in Section 6, with esti-
mates of the incremental impact of policy variables on LSIE. Discussion
on the policy results is provided in Section 7. In Section 8 we present
our conclusions and policy implications.

2. The LS Impact Extent (LSIE) Index

Use of indicative indexes to assess environmental health status has
been practiced by many national and international agencies (OECD,
2003; EEA—Gabrielsen and Bosch, 2003; EPA—Fiksel et al., 2012). Use
of indexes allows comparison across states and geographical regions
(OECD, 2003). As explained below, we developed an indicative index
tomeasure LS impact extent in the locations of the datasetwe compiled.

Due to the heterogeneous and partial nature of the information we
extracted from all reviewed LS studies, and following the earlier discus-
sion on the difficulties in comparing the extent of impacts within an LS
site and across LS sites, we adopted and adapted the Qualitative Struc-
tural Approach for Ranking (QUASAR) method, as explained in Galassi
and Levarlet (2017). QUASAR allows to compile the various impacts of
LS, which were identified in a given location into one index. A review



A. Dinar, E. Esteban, E. Calvo et al. Science of the Total Environment 786 (2021) 147415
of approaches to assess non-continuous impacts of human intervention
on the environment can be found in Purvis and Dinar (2020).We follow
Purvis andDinar (2020), who apply a similar scoringmethod to indicate
various effects of inter- and intra-basinwater transfers on basinwelfare.

Our assessment model was developed as follows: We conducted an
exhaustive review (details are provided below) of related literature that
indicate different types of land subsidence impacts. During the litera-
ture review we identified impacts that were discussed by the authors
of the publications. Each LS site reviewed was associated with up to N
impact types (we identified N = 10 in the papers reviewed). We iden-
tified several publications referring to the same LS site. Someof them in-
cluded subsets of the N LS attributes. For example, if we identified 2
sources for the same site having LS issues, with one source reporting
the existence of LS attributes 3, 5, 6 and the second source for the
same site reporting the existence of LS attributes 2, and 4, then we
assigned attributes 2, 3, 4, 5, 6 to that site. Therefore, in these cases we
combined the LS attributes from the various reports. Because no quanti-
tativemeasurementwas provided, we justmarkedwhether or the non-
existance/existance of an attribute with a value of 0 or 1 (No/Yes), re-
spectively. Let S be the set of sites with LS impacts that we identified,
and let Asi be LS impact i, i = 1, …, N in site s, s = 1, …, S. Then:

Asi ¼ 0 if LS impact i has no effect on site s
1 if LS impact i has any effect on site s

�
∀i ¼ 1;…;N; s ¼ 1;…; S

ð1Þ

and the total net effect (NE) of LS (the composite impact) in a given site s
is the sum of the number of LSIE attributes that affect a given site:

NEs ¼
XN
i¼1

Asi ð2Þ

withNE being an integer. Given thenature of theAsi’swe can expect that
0 < NEs ≤ N. Then the LSIE is defined as:

LSEIs ¼ NEs=N;where 0 < LSEIs≤1 ð3Þ

It is assumed that the more LS impact types (coined ‘attributes’) are
identified in a site, the larger the overall impact of LS. It should bemen-
tioned that the lack of detailed information of the impact of LS of differ-
ent study cases can lead to a bias in the evaluation of the index. That is,
for some sites recorded in the database, the available information about
land subsidence and its effects is very limited and this fact can introduce
deviations in our calculations of the index. Another caveat of the LSIE is
that a subsidence event could occur with only one type of impact, but
severe, and would be seen as less important. For example, the case of
Iran or Mexico, where subsidence occurs inland and flooding effects
are unlikely, but the intensity of the other impacts is very harmful. In
that respect LSIE does not provide a good quantification of the LS im-
pact, but rather ameasure of its extent. To address someof these caveats
we introduced weights to the LSIE attributes, in an attempt to more ap-
propriately reflect differences in the relative effects of these attributes.

3. Land subsidence extent and its causes

LS is caused by a combination of social, policy, and physical factors—
stratigraphic, lithological and geomechanical characteristics of the aqui-
fer system, and groundwater table depletion, or lowering of the piezo-
metric head for a phreatic or confined aquifer system, respectively
(Poland, 1984; Tomás et al., 2011; Gambolati and Teatini, 2015). This
latter variable is controlled by the anthropogenic pressure on the aqui-
fer system, usually represented by urban and agricultural demands, and
is strictly related to the rate of groundwater pumping and policies to
regulate water pumping (Poland, 1984; Freeze, 2000; Zhou et al.,
2019). For the sake of completeness of reporting about the survey and
3

analysis of literature LS impacts, definitions, impact evaluation, proxy
variables, and results, we refer the readers to Appendix A Table A1.

We follow (see Appendix Table A1) the suggested list of causes iden-
tified in the various publications cited earlier, referring mainly to water
availability, human pressure, aquifer lithology characteristics, gover-
nance and regulations (see also Kok and Costa, 2021; Herrera-Garcia
et al., 2021). The general relationship that we estimate can be described
by the following implicit equation:

LSIE ¼ f Scr; Pop; Irr; Suw; Lit;Dep;Reg;Devð Þ ð4Þ

where Scr indicates existence of water scarcity in the region that de-
pends on the aquifer system. Scarcity leads to higher dependency on
the aquifer system, leading to a higher level of LSIE. Pop is a measure
for population growth rate in the region that depends on the aquifer
system during the years over which the land has subsided, indicating
the pressure for water supply on the aquifer system. Higher values of
Pop mean a larger level of pressure on the aquifer system and thus,
higher level of LSIE; Irr is a measure of whether or not irrigation
occurs in the vicinity of the aquifer system that potentially can be
overexploited, and increase the LSIE level; Suw measures availability
of surface water in the region, suggesting a reciprocal impact of Suw
on LSIE; Lit is ameasure of the lithology of the aquifer system, indicating
its stiffness. Aquifer systems that are based on loose material will be
more prone to LSIE;Dep is ameasure of the groundwater level depletion
during the years in which the aquifer system has subsided. A higher
level ofDep is expected to lead to a higher value of LSIE; Reg is ameasure
of existence andeffectiveness of groundwater pumping regulatorymea-
sures. A higher value of Reg is expected to lead to a lower level of LSIE.
Finally, we introduce a variable (Dev) that indicates whether or not
the aquifer system is located in a developing or a developed country,
expecting that due to a more advanced governance in a developed
country the associated LSIE level will be lower. An analysis of possible
multicollinearity among these independent variables suggests that they
are not correlated and, thus, multicollinearity is not a problem.

In summary, the model incorporates three types of causes: charac-
teristics of the aquifer hydrogeological setting (Lit), regulatory interven-
tion and governances (Reg, Dev), and pressure on the aquifer system
(Scr, Pop, Irr, Suw, Dep). Each of these is expected to affect the extent
of land subsidence in a different direction, as is analyzed below (See Ap-
pendix Table A1, columns 1 and 4).

4. Study area, data, variable construction, and general hypotheses

Technical published articles were retrieved, using search engines
and publication databases, such as Jstore (www.jstor.org) and Agricola
(https://www.ebsco.com/products/research-databases/agricola). We
focused on technical papers in peer-reviewed journals and on books
and book chapters. We searched only for English-written documents.
We used the following keywords—land subsidence, groundwater,
over-pumping, economic analysis, hydrology, land subsidence impacts
—to search for titles, abstract contents, and keyword lists of the publica-
tions. The search team included one graduate student and two upper-
level undergraduate students (serving as data analysts) overseen by
the lead author of this paper over the period January 2019–June 2020.

A set of 183 papers was identified and read, separately, by the data
analysts and was discussed for consistency and accuracy of the coding.
Of the papers read, 45 were dismissed either because the information
on LS impact was not included, or because they focused on methods
to model LS rather than to describe LS. A total of 38 papers referred to
same locations. For each location, information in the various papers re-
lated to that location was examined and consolidated. By the end of the
data collection phase, we ended up with 119 different sites. Each site is
characterized by an additional set of the variables, including coordinates
of location of the aquifer system, to be used for collection of additional
data that is geographically related. The variables that were collected or

http://www.jstor.org
https://www.ebsco.com/products/research-databases/agricola
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constructed are presented belowwith an explanation of how theywere
constructed. The 119 sites with identified LS span over 32 countries
across the globe (Fig. 1).

A recent publication (Herrera-Garcia et al. (2021)) identified 200
land subsidence locations around the world. Our search yielded 119
(119/200 = 59%) locations, but due to data deficiencies, we ended up
with 113 (113/200 = 56%) locations in our operational dataset. Given
the objective of devising the LSIE, the number of observations and
their distribution around the world, in our study is sufficient. Since we
used published papers in peer reviewed journals we have considered
their content as highly reliable.

LSIE was calculated as described in Eq. (3). A given location facing LS
effects could have between 1 and 10 types of LS impacts, thus, LSIE
ranges between 0.1 and 1.0 (see Eq. (3)). The higher the LSIE value
the more extreme is the LS effect in that site. LSIE is calculated in our
empirical application, using two assumptions: LSIE-EW assumes an
equal weight for each of the ten attributes. We also developed a
weighted version of LSIE (LSIE-W), employing a Delphi technique for
obtaining a vector of weights assigned to each of the ten attributes.
For a detailed description of the Delphi technique and the procedure
we employed to obtain the weights of the ten attributes see Appendix
B. LSIE-EW and LSIE-W are used as the dependent variable in the statis-
tical analyses presented in the next section.

While the objectives of the various papers we surveyed and the
methods they use differ, the information in the different papers sur-
veyed provide also background information on the aquifer system
researched, independent of the objective of the particular paper and
the methods used. This allowed us to assign the binary (0/1) values to
the different attributes we identified across the different studies. Be-
cause we measure the (existence of the) attributes as yes/no, we mini-
mize the level of bias due to use of different measurement approaches
and techniques. Indeed, this could be at the expense of assigning differ-
ent groups of attributes the same score, even though, they might have
different impacts.

4.1. Impact of explanatory variables on LSIE

The discussion below sets the direction of impacts of each of the ex-
planatory variables on LSIE (directions of impacts are the same in the
Fig. 1. Global impact extent of land s
Source: Authors' elaboration.
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case of LSIE-EW and LSIE-W), ceteris paribus. Our hypotheses regarding
the directions of impact between the explanatory variables and the LSIE
are based on evidence found in the literature summarized in Appendix
A (Table A1).

Scr, indicatingwater scarcity in the region that depends on the aqui-
fer system, is a dichotomous variable (0/1)with a value of 1 if the region
wasmentioned as subject to drought, with no alternatewater resources
from groundwater or surfacewater (that can ease the pressure from the
aquifer on site), or just a direct statement of water scarcity. A value of 0
would be assigned otherwise. Facing scarcity would imply a higher
value of LSIE.

Pop, the population pressure on the water resources in the region, is
measured by annual population growth and estimated as the slope of
the linear regression equation of the three-year population observations
in that site, spanning between 1995 and 2015 (or the nearest census
years in the study area) as an indication for population growth trends.
Note that this variable is drawn from either the jurisdiction where the
study area is located at or nearest the provincial level jurisdiction if
the area of study spans more than a single community. Positive values
indicate an increase in population and negative values indicate popula-
tion decrease.We assume that the effect of the Pop variable is quadratic.
That is, as population grows, pressure on the aquifer water increases,
but that effect is incrementally reduced due to population self-
realization of water scarcity, and behavioral adjustment, beyond a cer-
tain level of consumption (Singh et al., 2018).Mathematicallywe expect

∂LSIE
∂Pop

≥ 0;
∂2LSIE

∂Pop2
≤ 0.

Irr indicates whether irrigated lands are identified in or around the
subsiding area, suggesting higher possible pressure on the aquifer sys-
tem. This would imply that groundwater has been used for agricultural
purposes. Irr is a binary variable (0/1) where 0 indicates that there is no
evidence of groundwater use for irrigation, and 1 indicates otherwise.
Having irrigated land in the region would imply a higher value of LSIE.

Suw indicates whether the area currently has access to alternative
surface water sources (surface water such as lakes, rivers or reservoirs).
It is a binary variable (0/1)where 0 indicates no evidences of alternative
water source at surface level, and 1 indicates otherwise. The determina-
tion of surface water availability was based on two methods:
ubsidence in sites in the dataset.



Table 1
Lithology class ranking for land subsidence propensity resulting from groundwater
pumping.
Source: authors elaboration based on map in Hartmann and Moosdorf (2012).

Lithology class LS propensity ranking

1. Sedimentary unconsolidated 1
2. Sedimentary siliciclastic 2
3. Carbonates 3
4. Sedimentary mixed 2
5. Plutonic acid 3
6. Volcanic acid 3
7. Metamorphic 3
8. Pyroclasts 1
9. Volcanic intermediate 3

Note: Propensity to LS declines as values increase from 1 to 3.
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(1) whether existing research identifies the use of such water source in
the area of study; and (2) if a major surfacewaterbody is locatedwithin
the geographical boundary of the study area. Having access to alterna-
tive surface water sources would imply a lower level of LSIE.

Lit is a ranking variable associated with the lithology of the aquifer
system, based on data in the global map by Hartmann and Moosdorf
(2012). We ranked the identified lithologies of the aquifers based on
their impact on LS. Sediment-based lithologies are more prone to LS
than rock-based lithologies, and between sediments the unconsolidated
ones are themost susceptible to face LS. Table 1 presents a classification
of the main lithologies generally composing aquifer systems in relation
to LS propensity. Class 1 encompasses unconsolidated sediments made
by mixtures of sand, silt, and clays together with pyroclasts. Their stiff-
ness is generally low and, consequently, Class 1 aquifer systems are
very prone to subsidence. Class 2 includes the rocks “derived” from
those sediments (e.g., mainly sandstones and conglomerates) with a
lesser subsidence propensity. Aquifer systems belonging to Class 3 are
all other kinds of rocks with extremely low subsidence propensity.
The lithology variable, Lit, captures what the LS literature suggests to
be the lithological control of land subsidence (Notti et al., 2016). A
higher lithology class —i.e. a stiffer soil—is associated with a lower
level of LS.

Dep represents the groundwater depletion during a given period (loss
in water table levels) and is based on data generated by the WaterGAP
model (Döll et al., 2014). The generated data provide year-to-year change
in groundwater levels between 1960 and 2010 for each aquifer system in
our dataset. Negative values represent depletion andpositive ones are rise
of groundwater levels. Based on this dataset, we created two depletion
variables: (1) Dep1 = GW_Depletion_1960–2010 which is the net deple-
tion during 1960–2010, measured as the difference between the GW
level in 2010 and in 1960; (2) Dep2 = Trend_GW_Depletionwhich is the
slope of the regression line going through the set of five decadal GW
depletion data points.1 Decadal GW Depletion 2000–2010, for example,
is the loss in GW level between 2000 and 2010. It is assumed that Dep1
or Dep2 are affecting LSIE such that the larger is Depj, j = 1, 2, the larger
is the effect on LSIE, and that this effect increases at an increasing rate
as Depj, j = 1, 2, grows beyond a given level (because higher values of
Depj j = 1, 2, introduce new dimensions/attributes of LSIE). Mathemati-

cally we expect that ∂LSIE
∂Dep j

> 0 , and ∂2LSIE
∂Dep j

2 > 0 for j= 1,2.

Reg is an ordinal (ranking) variablemeasuringwhether each site has
established adequate control measures on groundwater extraction. A
value of 1 indicates that the site has no legislations or regulations to con-
trol groundwater use and has no enforcement efforts in place. A value of
2 was assigned if some regulatory efforts are in place but are not
enforced or have suffered through prolonged mismanagement of its
groundwater resources. A value of 3 was assigned to the site if evidence
1 Decadal GW Depletion 2000–2010, Decadal GW Depletion 1990–2000, Decadal GW
Depletion 1980–1990, Decadal GW Depletion 1970–1980, and Decadal GW Depletion
1960–1970.
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suggests a history of regulatory efforts are in place and such regulations
have been adequately managed. Themore effective the regulations and
enforcement, the lower is LSIE.

Dev indicates whether the country in which the aquifer with LS im-
pact is a developing country (=1) or a developed country (=0). Devel-
oped countries with improved level of governance may face lesser
problems of water mismanagement (Saleth and Dinar, 2004), and
thus, a developed country is expected to face a lower level of LSIE.

We also introduced two interaction terms in ourmodel. The interac-
tion variable Irr × Suw allows to determine whether or not the effect of
nearby irrigated land in the site depends on whether the site has access
to alternative water sources. In the samemanner we introduced the in-
teraction variable Reg × Dev to determine whether or not a site with
higher level of regulation of GW extraction depends on whether or
not the country to which it belongs is a developed or a developing
country.

5. Empirical specifications and hypotheses

Themodel in (4) is developed using linear terms for all variables and
quadratic relationships for Pop and Dep. Given that our dependent var-
iable, LSIE, contains real values that range from 0.1 to 1.0 and between
0.028 and 0.960 for LSIE-EW and LSIE-W, respectively, we use the ordi-
nary least squares (OLS) estimation procedure to uniquely identify the
model. Since our dependent variable is continuous it is justified to em-
ploy a linear equationwith quadratic terms for the continuous indepen-
dent variables. By estimating a linear relationship between LSIE and the
explanatory variables we allow a simple procedure to calculate their
marginal effect on LSIE. In addition, because several of the dependent
variables are dichotomous, we can include them in the estimated rela-
tionship only as dummies.

The variables Scr, Irr, Suw, Dev are dichotomous variables and are in-
troduced in the estimated equation as dummies that affect the level of
the intercept (constant) of the estimated equation. Reg and Lit are intro-
duced as linear ranking variables. Pop and Dep are introduced in linear
and quadratic forms, due to the expectation that their marginal impact
on LSIE would be marginally diminishing or increasing, respectively.

The general expression in (4) was transformed into explicit func-
tions with linear terms for the non-continuous variables (Scr, Irr, Suw,
Lit, Reg, Dev), and linear and quadratic terms for the continuous vari-
ables (Pop, Depj, j = 1, 2) as can be seen in Eq. (5), and two interactive
terms Irr×Suw and Dev×Reg. Just to reiterate, it has to be considered
that a quadratic variable with linear and quadratic terms indicates
that the effect of that variable (whether positive or negative) on the de-
pendent variable could be either marginally diminishing (if the coeffi-
cient of the quadratic term is negative) or marginally increasing (if the
coefficient of the quadratic term is positive).

The general empirical version of the estimated relationship is as
follows2:

LSEIkj ¼ αk
j þ βk

j � Scr þ γk
j � Popþ δkj � Pop2 þ εkj � Irr þ θ j � Suwþ ϑ j

k

� Lit þ λk
j � Depj þ ξkj � Depj

2 þ μk
j � Reg þ ϕk

j � irr � Suwþ ζk
j

� Reg � Devþ uk: ð5Þ

where⊡j
k is any of the estimated coefficientsα, β,…,ϕ, ζ, j=1, 2 stands

for the two versions of groundwater depletion variables that were de-
fined earlier, and k stands for any possible version of this equation, such
as a version that is solely linear (excluding the quadratic terms of Pop2

and Depj
2(j = 1, 2), or a version that does not include certain explana-

tory variables). uk is the error term.We employed the software Stata 13
to estimate the various model equations.

To keep the values of the independent variables within similar
scales, we transformed Pop from persons to thousands of persons
2 The estimated coefficients of Eq. (5) are used to infer our hypotheses, as they were
spelled out in Section 4.



Table 3
LSIE-W weights (percent) of the ten attributes as obtained from the Delphi technique
(sum= 100).

LS attribute

1 2 3 4 5 6 7 8 9 10

Weights (percent)
18.111 10.778 2.778 6.667 22.777 12.556 9.556 7.667 5.222 3.888
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PopK=Pop/1000 and Dep2 frommm (as is in the original dataset) to m:
Dep2K=Dep2/1000. The weights of the ten attributes that we obtained
from the Delphi technique are presented in Section 6.1 (for more expla-
nation see Appendix Table B4).

6. Results

The analysis in this paper utilizes only 113 of the 119 observations in
our dataset, due to missing values of depletion of groundwater in aqui-
fers in someof the sites and due to one outlier observation (TheMekong
Delta). One possible explanation for The Mekong Delta, being an outlier
is that the observation of the Mekong Delta (serving 10.7 million
people) spans over a very wide region with many different geological,
hydrological, and social/economic conditions that could lead to unex-
pected behavior of LS effects. Therefore, we decided to remove that ob-
servation from our dataset and remained with 113 observations for the
statistical analysis.

6.1. Land subsidence sites and their attributes

Amapwith all sites that were identified in our literature review and
included in the dataset with LS impacts is presented in Fig. 1.

A distribution of the 10 attributes that comprise the LSIE, based on
what has been reported for the various locations in our dataset, is pre-
sented in Table 2. The values in the column “Mean” should be
interpreted as the frequency of each of the LSIE attributes in the regions
with LS impacts. Remember that attributes are non-mutually exclusive,
so that some locations may experience one attribute, somemay experi-
ence 10 attributes, and somemay experience anywhere between 1 and
10 attributes. Because all locations in our dataset face LS effects, there is
no location reporting 0 attributes.

The results in Table 2 suggest that the most common impact attri-
bute that was identified in the literature we reviewed reported in 77%
of the cases as socioeconomic impacts of LS, while the least common im-
pact attribute, reported in 11% of the cases, is shift of land use to poorer
activities. Impact attributes 1–6 show frequency of 55–77%, while im-
pact attributes 7–10 are relatively rare (11–30%). An interesting result
in Table 2 is that impact attributes with higher occurrence levels are
also characterized with a lower coefficient of variation (CV), indicating
a lower degree of variability. For example, the socioeconomic impacts
of LS (mean of 0.771) are characterized with a CV of 54.7, while shifts
of land use to poorer activities (mean of 0.110) are characterized with
a much higher CV equal to 285.4. Yet, these CV values are considered
relatively small and, thus, the mean is representative of the sample.

Theweights of the ten attributes resulting from theDelphi technique
are presented in Table 3.
Table 2
Distribution of land subsidence attributes across the sites in the dataset.

LSIE impact attributes Mean SD CV (%)

1. Socio-economic impacts, such as structural damages 0.771 0.422 54.7
2. Environmental damages, such as malfunctioning of
drainage systems

0.593 0.493 83.1

3. Geological-related damage altering subsurface
lateral water flow direction

0.568 0.497 87.5

4. Environmental damages, such as reduced
performance of hydrological systems

0.568 0.497 87.5

5. Environmental damages, such as wider expansion of
flooded areas

0.559 0.499 89.2

6. Hydrogeological damages that result in
groundwater storage loss

0.551 0.500 90.7

7. Impact on adaptation ability to climate change 0.297 0.459 154.5
8. Groundwater contamination 0.229 0.422 184.2
9. Loss of high-value transitional areas
(e.g., saltmarshes)

0.127 0.335 263.8

10. Shift of land use to poorer activities 0.110 0.314 285.4

Note: A more detailed description of each impact attribute can be found in the introduc-
tion section.
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6.2. Descriptive statistics

Table 4 presents the descriptive statistics of the change in
groundwater level change (m) over the 50 years from 1960 to
2010. A few aquifer systems show an increase in water table level,
while most show depletion. Mean depletion over the 50 years
was 12.11 m. The decadal results are interesting by themselves be-
cause it is very clear that the mean decline increases from 0.89 m
per decade in 1960–1970, to 3.61 m per decade in 2000–2010. In
addition, the standard deviation of depletion increases as well
over the five decades from 2.23 m to 9.21 m. Both trends suggest
that the long-term effects of pumping groundwater will most likely
result in a higher likelihood of land subsidence, as reflected in the
LSIE.

The mean decline of groundwater level is more than 12 m during
1960–2010. Decadal variation of groundwater depletion level ranges
between a decline of 66 m, and a 1.5-m increase.

Results in Table 5 indicate that, LSIE-EWmean level in our dataset
is 0.444, which suggests 4–5 attributes per location. LSIE-W mean
level in the dataset is 0.508, suggesting 5 attributes per location. A
total of 96% of the locations in the analysis face water scarcity,
which makes this variable irrelevant for the statistical analysis due
to lack of variance; 62% of the regions have irrigation projects that
also utilize a groundwater source; only 42% of the regions have ac-
cess to surface water; the mean lithology is between Class 1 and
Class 2, suggesting that aquifer systems in our dataset are prone to
LS. The mean regulation ranking is 1.761, which suggests that, on av-
erage, regulation of groundwater pumping occurs but it is not effec-
tive. Finally, nearly 50% of the regions experiencing LS in our sample
are in developing countries.

6.3. Estimation results

We estimated models of LSIE causes. We used two versions of
LSIE as the dependent variable: LSIE-EW and LSIE-W. The vari-
able Dep1K was not significant in any of the estimations and is
not included in the results. Models 2 and 4, include the regula-
tory variable Reg, while models 1 and 3 do not include this vari-
able. Furthermore, all models include also the interaction terms
of Irr×Suw and Dev×Reg. Estimation results are presented in
Table 6.

In general, the results of the various estimatedmodels (Table 6) sup-
port our different a-priori hypotheses. All estimated coefficients have
Table 4
Descriptive statistics of decadal groundwater level change (m per decade) between 1960
and 2010 in the various aquifer systems of the dataset.

Decade 1960–2010 1960–1970 1970–1980 1980–1990 1990–2000 2000–2010

Mean −12.11 −0.89 −1.81 −2.65 −2.91 −3.61
SD 32.14 2.23 5.86 7.65 7.96 9.21
Min −239.38 −14.92 −51.43 −66.04 −61.18 −54.66
Max 0.59 0.33 0.48 0.51 1.46 0.75

Note: Negative values (Mean and Min) indicate a decline, positive values (Max) indicate
an increase.



Table 5
Descriptive statistics of variables considered for the regression analysis.

Variable Description (units) Mean Standard deviation Minimum Maximum

LSIE-EW Land Subsidence Extent Index with equal weights
(real number between 0.1 and 1.0)

0.444 0.227 0.1 1

LSIE-W Land Subsidence Extent Index with weights
(real number between 0.028 and 0.960)

0.508 0.247 0.028 0.960

SCR Water scarcity
(dichotomous)

0.964 0.186 0 1

PopK Population change
(1000 people per year)

92.856 212.353 −3.529 1384.200

Irr Irrigation water use
(dichotomous)

0.619 0.487 0 1

Suw Available surface water (dichotomous) 0.451 0.499 0 1
Reg Effective GW regulations

(ranking)
1.761 0.735 1 3

Lit Lithology
(ranking)

1.460 0.762 1 3

Dep1K GW depletion 1960–2010
(meters)

12.11 0.301 −0.041 239.38

Dep2 GW periodical depletion
(meters/decade)

−6.470 −17.776 −112.430 13.922

Dev Developing country
(dichotomous)

0.487 0.502 0 1

Note: For the continuous variables negative values indicate decrease and positive values indicate increase.
Number of observations is 113.
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the expected sign, they show robustness across themodels, they are sig-
nificant at 1 to 10%. Adjusted R-square values of the 4 estimated equa-
tions range between 8 and 12%, which is reasonable for a dataset that
includes variables that were collected from various sources. The F-
tests are significant at the 1% level for models 1 to 3 and at the 5%
level for model 4. The fact the models with the two dependent vari-
ables—LSEI-W and LSEI-EW—resulted in very, statistically, similar sets
of coefficients indicates a high level of robustness of our analytical
framework.
Table 6
Results of the LSIE equation estimates.

Model 1 2

LSIE-EW LSIE-E

Intercept 0.565
(9.29)⁎⁎⁎

0.620
(7.91)

PopK 1.057E−03
(3.49)⁎⁎⁎

1.014E
(3.32)

PopKsq −8.082E−07
(−3.03)⁎⁎⁎

−7.66
(−2.8

Reg – −0.03
(−1.1

Suw −0.176
(−2.57)⁎⁎⁎

−0.18
(2.65)

Lit −0.053
(−1.79)⁎⁎

−0.05
(−1.8

Dep2 6.040E−03
(2.00)⁎⁎

5.962E
(1.98)

Dep2sq 5.99E−5
(1.96)⁎⁎

6.043E
(1.98)

Irr × Suw 0.106
(1.46)⁎

0.115
(1.57)

Dev × Reg −0.051
(−1.91)⁎⁎

−0.04
(1.84)

Observations 113 113
Adjusted R-Square 0.114 0.116
F-test 2.804⁎⁎⁎ 2.640⁎

Note: in parentheses are t-statistic.
⁎ Indicates significance at 10%.
⁎⁎ Indicates significance at 5%.
⁎⁎⁎ Indicates significance at 1%.
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For all models the population variable indicates a quadratic effect
with PopK being positive and PopKsq being negative, which indicates a
quadratic effect on LS. Because PopKsq is very small, the quadratic ef-
fects on LSIE are monotonic. But, in general for all models, the larger
the annual population growth trend the greater is the extent of LS,
and this effect is incrementally declining with the increase in popu-
lation growth.

The variable Reg, measuring effectiveness of regulatory policies,
has a negative coefficient suggesting that as regulations become
3 4

W LSIE-W LSIE-W

⁎⁎⁎
0.651
(9.75)⁎⁎⁎

0.673
(7.77)⁎⁎⁎

−03
⁎⁎⁎

9.869E−04
(2.96)⁎⁎⁎

9.699–04
(2.88)⁎⁎⁎

7E−07
5)⁎⁎⁎

−7.872E−07
(−2.69)⁎⁎⁎

−7.709E−07
(−2.60)⁎⁎⁎

1
2)

– −0.012
(−0.40)

3
⁎⁎⁎

−0.142
(−1.88)⁎⁎

−0.144
(−1.90)⁎⁎

3
1)⁎⁎

−0.0590
(−1.84)⁎⁎

−0.059
(−1.85)⁎⁎

−03
⁎⁎

7.134E−03
(2.15)⁎⁎

7.10E−03
(2.14)⁎⁎

−05
⁎⁎

7.759E−05
(2.31)⁎⁎

7.777E−05
(2.30)⁎⁎

⁎
0.051
(0.65)

0.055
(0.68)

9
⁎⁎

−0.055
(−1.90)⁎⁎

−0.055
(−1.86)⁎⁎

113 113
0.091 0.084

⁎⁎ 2.410⁎⁎⁎ 2.143⁎⁎
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more effective, LSIE is reduced. However, the estimated coefficients
of this variable are not significant. Suspecting that level of effec-
tiveness of groundwater regulatory policies is also affected by the
overall level of water governance in the country, we introduced
the interaction variable Dev×Reg, which measures the effect of
overall governance and the specific effect of groundwater manage-
ment regulatory policies. The coefficient of the interaction term is
negative and significant in all models, suggesting that in develop-
ing countries and in regions with effective policies, the level of
LSIE is lower.

The variable Suw, which indicates whether or not there is a
source of surface water to satisfy the needs of the region, in addition
to groundwater, has a negative and significant coefficient. This
means that having an additional surface water source releases the
pressure from aquifers, which translates into a lower LSIE. However,
an interaction term Irr×Suwwas also introduced to capture the pos-
sible effect of utilization of the surface water source for irrigation
and creating pressure on the region. Estimated coefficients in
Table 6 suggest that this interaction term has a positive sign, sug-
gesting that both irrigation site and a source for surface water
used for irrigation will increase the level of LSIE, suggesting that
having the additional source of surface water used for irrigation in-
troduces additional pressure on the water resources in the site. This
interaction term is significant at 10% level in models 1 and 2 (LSIE-
EW).

The Lit variable, characterizing the lithology type of aquifer
systems suggests that higher levels of the lithology ranking
(Table 1), which means a stiffer aquifer system, is associated with
lower LSIE. The estimated coefficients of the Lit variable are signifi-
cant at 5% in all models).

Finally, the decline of groundwater level is modeled as a qua-
dratic relationship. We use the variable Dep2. In all models both the
linear component (Dep2) and the quadratic component (Dep2sq)
are positive and significant, which means that the effect of ground-
water level depletion on land subsidence extent increases in an in-
creased rate.
7. Policy simulations

Several of the variables in the investigated models provided in
Table 6 could be considered for policy intervention options using
the sign and value of the regressors to quantify their incremental
effects. To keep the paper length, we will demonstrate the effects
of policy impacts using model 1 only. The analysis includes the
effects of population change (Pop), access to surface water
(Suw), reduction in GW level (Dep), and indirectly the interac-
tions between governance level and regulation effectiveness
(Dev×Reg) and between access to surface water and irrigation
(Sue×Irr).

We conduct two simulations: First we analyze marginal effects,
using mean values of the relevant variables, and then we conduct a
‘with and without’ analysis of those variables.
7.1. Marginal effect of policy interventions

Each of the marginal effects below is analyzed, assuming all
others remain unchanged. The marginal effect of population change,
which represents pressure on the aquifer system, is determined by
∂LSEI
∂Pop ¼ 0:001057−2 � 8:082 � 10−7 � PopK , where PopK is the sample

mean (=92.856). The calculation of the incremental effect of popu-
lation change at the sample mean yields ∂LSEI

∂Pop ¼0.0009085. This

means that the incremental effect of population growth, will result
in an increase of nearly 0.0009 units of the land subsidence extent
or less than 0.1%.
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The marginal effect of access to surface water source is measured
as 0:1058 � Irr, where Irr is the sample mean (=0.619) of having the
irrigation sector use of such water. The calculation yields a marginal
effect that equals 0.065. This means that having access to a surface
water source used for irrigation, in addition to the aquifer water
will result in an increase in the land subsidence impact extent of
nearly 0.065 units, or 6.5%.

The marginal effect of groundwater level depletion is measured by
∂LSEI
∂Dep2

¼ 0:00604þ 2 � 5:997 � 10−5 � Dep2 , where Dep2 is the sample

mean (=−6.470). The calculation of the incremental effect of ground-
water level depletion at the sample mean yields ∂LSEI

∂Dep2
¼0.00526. This

means that the incremental effect of the groundwater level depletion
will result in an increase of nearly 0.0053 units of the land subsidence
extent, or nearly 0.5%.

The marginal effect of the variable that measures interaction
between regulation effectiveness and level of governance is −0:051
�Dev, where Dev is the sample mean (=0.487). This means that the
increase in groundwater regulations and governance, in general,
will result in a reduction of the land subsidence extent by nearly
0.025 LSIE units. Due to themeasurement of LSIE, this means a reduc-
tion of nearly 2.5%.

To sum up, the marginal effects of regulation (Reg), population
(PopK), groundwater level depletion (Dep2), and of access to sur-
face water source (Suw) on the LSIE-W are −0.025, +0.0009085,
+0.0053, and +0.065, respectively, with a total sum of the mar-
ginal effects of −0.013, or nearly 1.5%. This also means that the
variables included in our estimation have opposite effects on
land subsidence and, thus, policy interventions with opposed ef-
fects should be carefully considered. In addition, the variable
with the most measurable effect (of 6.5%) is the existence of a
source of surface water supply, which for our purposes could
also be any other source of manufactured water. This result pro-
vides a direction to prioritize policies for addressing land subsi-
dence. This set of considerations will be discussed in the next
section.

7.2. With and without effects

Under the with and without analysis we use the mean value for
the continues variables (Pop, and Dep) and for the ranking variables
(Lit, and Reg) while we switch between 1 and 0 to account for ‘with’
and ‘without’, respectively for Dev, Irr and Suw. Results are presented
in Table 7.

Results in Table 7 imply that the level of LSIE-EW is sensitive
to the combination of the dichotomous variable that indicated
access to surface water sources, competition between the
urban and the irrigated sector, and whether or not the country
under which land subsidence occurs is a developed or develop-
ing one.

Indeed, it appears that for all combinations of the 3 dichotomous
control variables, the impact of having an irrigation project resulted
in a higher level of LSEI-EW, suggesting higher stress on the ground-
water resources when irrigation is present. In the same way it is
evident that the level of LSEI-EW is higher when access to surface
water resources is not available and the site relies only on the aquifer
water.

8. Discussion, policy implications, and limitations

In spite of its major social cost in hundreds of sites around the
world, the majority of which have irreversible negative physical
and economic impacts, land subsidence has not been given proper
preventive attention by regulatory agencies and local water man-
agement organizations in many countries. We were able to identify



Table 7
Impact of dichotomous variables on level of LSIE-EW using ‘with and without’ effects.

Senario 1
SUW = 1
IRR = 1
DEV = 1

2
SUW = 0
IRR = 0
DEV = 0

3
SUW = 1
IRR = 0
DEV = 1

4
SUW = 1
IRR = 1
DEV = 0

5
SUW = 0
IRR = 1
DEV = 1

6
SUW = 0
IRR = 1
DEV = 0

7
SUW = 0
IRR = 0
DEV = 1

8
SUW = 1
IRR = 0
DEV = 0

LSIE-EW 0.3829 0.3667 0.2769 0.4727 0.4529 0.5427 0.4529 0.4708

Equation used: LSIE-EW = 0.565 + 0.001057*POP-0.000000808*POP*POP-0.176*SUW-0.053*LIT+0.00596*DEP + 0.0000604*DEP*DEP + 0.106*IRR*SUW-0.051*DEV*REG.
Mean values used for continuous variables: POP = 92.856; LIT = 1.46; DEP = -6.47; REG = 1.761.
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and analyze land subsidence effects in 113 locations where mainly
physical consequences of land subsidence have been assessed but
economic damages, likely in the range of billions of dollars, have
not been quantified. In the absence of a method for estimating eco-
nomic value for the LS-induced damage, we developed a land subsi-
dence extent index (LSIE) that relies on the occurrence of up to 10
land subsidence effects that were observed in these sites. This as-
sessment allows the identification of different types of impacts in
different locations and is used to explain the effects of physical con-
ditions—aquifer lithology, managing institutions, social systems,
existing policies, population pressure, water-level depletion from
over pumping, and several other variables on LSIE.

The results of our analysis indicate the importance of effective
policy regulations on reducing impact of land subsidence, captured
in lower values of LSIE. Our results suggest also that developing
countries are more prone to higher levels of LSIE, mainly because of
mal-performing institutions and lesser success of their governance
system. This suggests that improving groundwater management in
developing countries may be more beneficial once the negative
impacts of land subsidence are considered. In addition, a general
conclusion from this analysis is that more resources and efforts
should be allocated by international agencies to the systematic and
comparative analysis of drivers of land subsidence and measure-
ments of land subsidence economic impacts.

The results obtained in this study may provide useful insights for
policy implications such as that policies for groundwater regulation
could be less effective for land subsidence in developing countries
than in developed countries. This suggests that a more rigorous reg-
ulatory intervention approach should be considered for countries
with malfunctioning institutions and lower levels of governance.
We also can derive several lessons regarding the need to establish
policies that consider development of various water resources and
their conjunctive use in order to ease pressure on the aquifer systems
in regions under risk of land subsidence. This includes importing sur-
face water, developing or investing in technologies (desalination of
brackish or seawater, treating wastewater) to amend water supply
to the regions, policies for curbing groundwater extractions, devel-
oping programs to introduce incentives for recharge of various
types of water into the aquifer in years of supply abundance, and in-
stituting the framework to allowwater trade within and between re-
gions that face risk of land subsidence.

Several limitations of our study should bementioned. First, in an ab-
sence of exact number of the population relying on the aquifer system
and the size of the aquifer system in question, we can introduce a bias
to the LSIE calculation. Second, we have used for the calculation of pop-
ulation growth rate an acceptable range of years (1995–2015) within
which the land subsidence reported in the regions in our sample have
taken place. However, it could well be that significant increase in the
population in these regions started much earlier and triggered the im-
pacts on the aquifer systems. Therefore, results regarding population
growth have to be cautiously viewed.

One important aspect that we were not able to accomplish in our
work is to compare our results with those obtained in previous stud-
ies on LS. This is unfortunately impossible to obtain mainly due to the
innovative nature of our approach in developing a global LSIE index.
All known studies that estimate physical impact or even economic
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impact of land subsidence are limited to one region, or several re-
gions within one country, and thus cannot be compared with global
findings. One study that could be considered the closest to our work
in terms of global assessment of land subsidence impacts, the
Herrera-Garcia et al. (2021), evaluates the impacts in terms of gen-
eral, state-level, welfare losses, while we look at LS site-specific
effects.

Our plan of research for the coming years is to develop a framework
to estimate the total effects of land subsidence and to apply it to a series
of studies in different parts of theworld. This will allow building a set of
comparable case studies that will facilitate the aggregation of economic
effects of land subsidence in various parts of the world.

CRediT authorship contribution statement

ArielDinar:Conceptualization, Formal analysis, Funding acquisition,
Investigation, Methodology, Supervision, Validation, Writing – original
draft, Writing – review & editing. Encarna Esteban: Conceptualization,
Methodology, Validation,Writing – review& editing. Elena Calvo: Con-
ceptualization, Methodology, Validation, Writing – review & editing.
Gerardo Herrera: Conceptualization, Formal analysis, Data curation, In-
vestigation, Methodology, Supervision, Validation, Writing – review &
editing. Pietro Teatini: Conceptualization, Methodology, Writing – re-
view& editing. Roberto Tomás: Conceptualization,Methodology,Writ-
ing – review & editing. Yang Li: Methodology, Data curation. Pablo
Ezquerro: Data curation, Formal analysis, Writing – review & editing.
Jose Albiac:Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The authors were inspired by a session on land subsidence at the
Rosenberg International Forum, San Jose, California, USA, October 7-
10, 2018, dedicated to sustainable groundwater management. The
authors acknowledge input from the UNESCO experts to the Delphi
process. Partial funding was provided by the Giannini Foundation
of Agricultural Economics Minigrant Program. Dinar would like to
acknowledge support from the W4190 Multistate NIFA-USDA-
funded Project, “Management and Policy Challenges in a Water-
ScarceWorld.” Esteban, Calvo, and Albiac would like to acknowledge
support from the project INIA RTA2017-00082-00-00 by the Spanish
Ministry of Science and Innovation, and support by funding to the re-
search group ECONATURA from the Government of Aragon. Tomás
would like to acknowledge support from the Spanish Ministry of
Economy and Competitiveness, the State Agency of Research and
the European Funds for Regional Development under project
TEC2017-85244-C2-1-P. Tomás, Herrera, Ezquerro, and Teatini ac-
knowledge the European Union support from the RESERVOIR project
(GA n° 1924) developed in the framework of the PRIMA program.
The data used for the analysis can be made available upon request
from the corresponding author.



A. Dinar, E. Esteban, E. Calvo et al. Science of the Total Environment 786 (2021) 147415
Appendix A
Table A1
Summary of the survey and analysis of literature LS impacts, definitions, impact evaluation, proxy variables, and results.

Notes: Attributes in Table A1 are not in order due to need to fit the impact evaluation criteria.
References: [1] = Bru et al. (2013); [2] = Viets et al. (1979); [3] = Poland (1984); [4] = Holzer and Galloway (2005);
Appendix B
Assigning weights to the LSIE attributes using the Delphi technique.

Deciding on parameters to be used in analyses is always a challenge, especially when the knowledge base is narrow, or without measurable in-
formation. Regulators, politicians, managers, and public officials have been benefiting from the application of the Delphi technique – a widely used
instrument to aggregate individual expert judgments into refined opinion, either to forecast future events, or to estimate current status, intentions, or
parameter values. A detailed description of and discussion about the Delphi Technique can be found in various publications such as, Linstone and
Turoff (1975) and Webler et al. (1991).

The Delphi technique relies on a structured, yet indirect, approach to quickly and efficiently elicit responses relating to group learning and fore-
casting from experts who bring knowledge, authority, and insight to the problem, while, at the same time, promoting learning among panel mem-
bers. It records facts and opinions of the panelists, while avoiding the pitfalls of face-to-face interaction, such as group conflict and individual
dominance.

Several limitations have also been recognized in the application of the Delphi technique. Besides possible poor design, and execution of the pro-
cess, which might affect the application of any other technique, the Delphi technique is sensitive to selection of panelists that can deliberately pro-
mote desired outcomes or influence future decisions – making the selection of panelists very important. Another disadvantage of the Delphi
technique is that there is no way to assign higher or lower reliability scores to technical panelists compared with lay panelists.

The Delphi process exists on ‘iterative’ and ‘almost simultaneous’ forms.While the first form consists of a monitoring team that regulates and co-
ordinates the process, the latter one is mechanized (computer, web), and allows real-time responses and updates. However, the Delphi process, in
either form, consists of four basic phases: (a) exploration of the subject under consideration, (b) understanding how each panelist views the
issue, (c) in case of disagreement, understanding the reasons for such differences, and (d) feedback, final evaluation and consensus.

We applied the Delphi process to estimatingweights of the 10 land subsidence attributes that comprise the LSIE. We selected a team of 9 experts
on land subsidence [from the Netherlands, China, Pakistan, Spain, Italy, California (USA), Louisiana (USA), and Virginia (USA)].

[5] = Erkens et al. (2016); [6]= Heri et al. (2018).
10



A. Dinar, E. Esteban, E. Calvo et al. Science of the Total Environment 786 (2021) 147415
The experts were provided with a table that describes the components of the LSIE and were asked to assign weights (in %) to each (summing to
100). We used the same definitions as in the manuscript:
1. Socio-economic impacts: Damage to infrastructure
2. Environmental damages: malfunctioning of drainage systems
3. Geological-related damages: Effects on underground lateral water flows
4. Environmental damages: Such as reduced performance of hydrological systems
5. Environmental damages: Such as wider expansion of flooded areas
6. Hydrogeological damages: Resulting in groundwater storage loss
7. Impact on adaptation ability to climate change: Such as the loss of the buffer value of groundwater in years of scarcity
8. Groundwater contamination: Such as seawater intrusion resulting in decrease of farmland productivity in coastal aquifer systems and decrease

of fresh-water availability
9. Loss of high-value transitional areas: Such as saltmarshes

10. Shift of land use to poorer activities: Such as from urbanized zones to rice fields, from rice fields to fish and shellfish farms, from fish farms to
wastewater ponds

At the onset of the Delphi process, the 9 experts were given the basic information on the 10 attributes and their definitions. The experts were
asked to assign weights to each attribute. Two co-authors of the paper administered the process and collected and analyzed the feedback from
the panel experts. The process would be terminated when there is no attribute with a coefficient of variation across the experts or the mean across
the 10 attributes which exceeds 50–60% (Woudenberg, 1991). The process terminated after two rounds. The data and analysis of the feedback from
the experts per round are presented below (Table B1-B4).
Table B2
Descriptive statistics of the results for the LSIE attributes in Round 1 (9 experts)

LSIE attribute

1 2 3 4 5 6 7 8 9 10

CV 31.814 59.959 71.807 46.034 35.773 76.034 105.120 48.804 38.654 68.200
Mean 18.889 11.000 4.000 6.333 22.222 11.778 8.667 7.667 5.333 4.111
Standard deviation 6.009 6.595 2.872 2.915 7.949 8.955 9.110 3.742 2.062 2.804
Standard error 2.003 2.198 0.957 0.972 2.650 2.985 3.037 1.247 0.687 0.935
Minimum 10 3 1 2 5 4 0 4 2 1
Maximum 30 25 10 10 30 30 30 15 10 10

Table B1
Data from round 1 of the Delphi technique

Expert LSIE attribute

1 2 3 4 5 6 7 8 9 10

Percent

1 25 25 2 2 30 4 2 4 5 1
2 15 8 1 5 25 30 5 5 5 1
3 20 15 5 5 25 5 5 5 10 5
4 20 15 2 5 25 5 10 10 5 3
5 30 8 5 5 30 7 6 5 2 2
6 10 3 1 10 20 5 30 10 6 5
7 15 10 5 10 5 15 15 15 5 5
8 15 5 10 10 15 20 0 10 5 10
9 20 10 5 5 25 15 5 5 5 5

Table B3
Data from round 1 of the Delphi technique

Expert LSIE attribute

1 2 3 4 5 6 7 8 9 10

Percent

1 23 20 2 5 25 8 5 5 5 2
2 15 8 1 5 25 30 5 5 5 1
3 20 14 4 5 25 7 6 6 8 5
4 20 12 2 5 25 8 10 10 5 3
5 20 10 5 5 25 10 10 8 3 4
6 10 3 1 10 20 5 30 10 6 5
7 20 10 5 10 15 10 10 10 5 5
8 15 10 0 10 20 20 5 10 5 5
9 20 10 5 5 25 15 5 5 5 5
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Table B4
Descriptive statistics of the results for the LSIE attributes in Round 2 (9 experts)

LSIE attribute

1 2 3 4 5 6 7 8 9 10

CV 21.990 42.462 71.498 37.500 15.947 63.481 83.902 31.277 24.926 39.512
Mean 18.111 10.778 2.778 6.667 22.778 12.556 9.556 7.667 5.222 3.889
Standard deviation 3.983 4.577 1.986 2.500 3.632 7.970 8.017 2.398 1.302 1.537
Standard error 1.328 1.526 0.662 0.833 1.211 2.657 2.672 0.799 0.434 0.512
Minimum 10 3 0 5 15 5 5 5 3 1
Maximum 23 20 5 10 25 30 30 10 8 5
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As can be seen from Table B2 the first round of elicitation of land subsidence attribute weights yielded coefficients of variations values in access of
50% for 5 of the 10 attributes. In addition, the overall variation across all 10 attributes, measured via the coefficient of variation of all attributes and
panel experts was 59.25%.

As a result, we shared the mean weight values for the 10 attributes with the group of experts and requested that they consider modifying their
weight assessment of all 10 attributes. The results of the second round of assessment is presented in Table B3.

We repeated our calculation of the coefficient of variation for all 10 LSIE attributes in Round 2. The descriptive statistics of the 10 attributes is pre-
sented in Table B4.

As can be seen from Table B4, the values of the coefficients of variation have declined for all attributes in Round 2 compared to Round 1. Themean
CV across all 10 attributes declined from 59.25% in round 1 to 43.24% in round 2. These two results led us to truncate the process of getting feedback
from the 9 LS experts. The mean weights for each attribute in Table B4 were used for the calculation of the weighted LSIE in our regression analysis
(rounding values beyond the decimal point to obtain a total value of 100 for the LSIE).
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