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1 Chapter 1  
  

GENERAL INTRODUCTION  

1.1 Mammalian Sirtuin family 

1.1.1 Phylogenic classification of sirtuins 

 

The founding member of the Sirtuins group of proteins is Silent Information Regulator 

2(Sir2) in the budding yeast Saccharomyces cerevisiae [Frye, 1999].  The gene encoding the Sir2 

enzyme, SIR2, was first discovered by its role in transcriptional silencing of mating-type loci in 

budding yeast [Smith, 1997][Bryk, 1997]. Following studies proved that SIR2 was involved in 

silencing at yeast telomeres and in recombinant DNA [Smith, 1997], in partitioning of 

carbonylated proteins between mother and daughter cells [Aguilaniu, 2003], and in extending the 

life span of budding yeast by repressing genome instability [Smith, 1997][Sinclair, 1997]. Sir2 

was soon later found to be a nicotinamide adenine dinucleotide (NAD)-dependent histone 

deacetylase (HDAC) [Imai, 2000]. Since then, orthologs of SIR2, known as sirtuins, have been 

found in most organisms, including plants, bacteria, and animals, and play pivotal roles in 

promoting the health and survival of an organism [Sinclair, 2006].  

Sirtuins were described as NAD
+
-dependent deacetylases [North, 2004]. Sirtuins can be 

categorized into five classes, I–IV and U, based on the conservation of a 250 amino acid core 

domain (Figure 1.1). SIRT1, SIRT2, and SIRT3 are class I sirtuins, which show high homology 

to yeast homologs (Sir2, Hst1, Hst2) and exhibit robust deacetylase activity, whereas weak 

deacetylases, SIRT4 and SIRT5, belong to classes II and III, respectively [Frye, 2000]. There are 

7 mammalian sirtuins, SIRT1–7 (Table 1.1), which are evolutionarily highly conserved in the 

NAD
+
-binding region and in the 250 amino acid catalytic domain [Frye, 2000]. Despite this 
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similarity, mounting evidence suggests that their localizations differentially determine their 

expression patterns, catalytic activities, targets, and, ultimately, biological functions. The 

mammalian sirtuins have localized in different subcellular compartments, with SIRT1, SIRT6, 

and SIRT7 predominantly residing in the nucleus, SIRT2 in the cytoplasm, and SIRT3, SIRT4, 

and SIRT5 in mitochondria [Houtkooper]. Most sirtuins have deacetylase activity on lysine 

residues of protein substrates. SIRT4 is the only sirtuin whose biochemical role is still being 

debated as to whether it is an ADP-ribosylase, a deacetylases, or a possible deacylase 

[Laurent][Haigis, 2006][Du, 2009][Feldman]. SIRT5 displays an effective demalonylase and 

desuccinylase activity, but very weak deacetylase activity [Du, 2009][Zhang]. A very recent 

study reported that human SIRT6 could act as a demyristoylase and depalmitoylase from lysine 

residues on proteins [Jiang]. The discovery of novel deacylase activities of SIRT5 and SIRT6 

opens up the possibility that sirtuins in other classes with weak deacetylase activity, such as 

SIRT4, might possess other kinds of deacylase activity. 
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Figure 1.1. Phylogenic classification of sirtuins 

Phylogenetic analysis divides sirtuins into five classes, class I, II, III, IV, and U. SIRT3, SIRT4, 

and SIRT5 belong to classes I, II, and III, respectively. Sirtuins within a specific class seem to 

possess unique deacylase activities, although the activity for some classes is currently unknown 

(adapted from [Frye, 2000]). In addition, it is proposed that α-proteobacterium became engulfed 

by an archaean cell to form the first eukaryotic cell. The engulfed α-proteobacterium is 

characterized in a class II sirtuin and a class U sirtuin and the archaean parent contributed the 

class III sirtuin. 
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1.1.1 Sirtuin subcellular localization.  

Mammalian sirtuins are found in different subcellular localizations depending on 

their primary amino acid signal sequences. The subcellular localization of these proteins 

probably depends upon cell type, stress status, and molecular interactions. For example, 

SIRT1 and SIRT2 were found to localize in both the nucleus and the cytoplasm and to 

interact with both nuclear and cytosolic proteins [Cohen, 2004][Tanno, 2007][North, 

2007]. SIRT1 is mainly localized in the nucleus but is also present in the cytosol [Tanno, 

2007]. In addition to two nuclear localization signal regions, SIRT1 possesses two 

nuclear export signals [Tanno, 2007]. Therefore, the exposure of nuclear localization 

signals versus nuclear export signals may explain shuttling localization of SIRT1. 

Although the physiological relevance of this shuttling is unclear, it is possible that either 

cytosolic protein targets could be deacetylated or that shuttling is another level of control 

on nuclear target proteins. SIRT2 is primarily cytosolic but is also present in the nucleus 

in the G2 to M phase transition of the cell cycle [Vaquero, 2006]. SIRT3, SIRT4 and 

SIRT5 possess amino (N)-terminal mitochondrial targeting sequences and proved to 

localize to the mitochondrial matrix [Huang]. SIRT6 is predominantly nuclear 

[Mostoslavsky, 2006], and SIRT7 was reported to widely express in the nucleolus [Ford, 

2006], but further research is necessary to confirm this localization and its physiological 

relevance. 

1.1.2 Sirtuin enzymatic activity 

Originally, sirtuins were described as NAD-dependent type III HDACs, as the 

founding member in yeast, Sir2, silenced specific genomic loci by deacetylating histones 

H3 and H4 [Braunstein, 1996]. Sirtuin catalyzed deacetylation of proteins was first 
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reported in 2000 [Imai, 2000][Landry, 2000][Smith, 2000]. The enzymatic reaction is 

shown in Figure 1.1. Unlike other known protein deacetylases, which simply hydrolyze 

acetyl-lysine residues, the sirtuin-mediated deacetylation reaction couples lysine 

deacetylation to NAD hydrolysis. In this process, NAD
+
 is reacted with an acetyllysine 

substrate to produce nicotinamide, the deacetylated substrate, and an unusual compound 

called 2′-O-acetyl-ADPribose (2′-AADPR) [Sauve, 2001]. Interestingly, class I sirtuins 

not only target histones, but also deacetylate a wide range of proteins in different 

subcellular compartments (Table 1.1). In addition, SIRT4 [Haigis, 2006] and SIRT6 

[Liszt, 2005] were reported to function as ADP-ribosyltransferases, even though SIRT6 

also can act as a deacetylase [Zhong][Michishita, 2008]. Recently, it was reported that 

human SIRT6 efficiently removes long-chain fatty acyl groups, such as myristoyl and 

palmitoyl, from lysine residues on protein substrates [Jiang]. SIRT5 was initially reported 

to deacetylate the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) 

[Nakagawa, 2009], but was recently shown to primarily demalonylate and desuccinylate 

proteins [Peng, 2011], including CPS1 [Du, 2011] [Rardin and He, 2013](Figure 1.2). 

The role of NAD
+
 in the enzymatic reaction catalysed by sirtuins is as a substrate, 

where its concentration is determined by the cellular nutritional state [Houtkooper]. 

Sirtuins convert NAD
+
 to nicotinamide and, at higher concentrations, nicotinamide can 

inhibit sirtuin activity in a non-competitive manner as a feedback mechanism [Anderson, 

2003][Bitterman, 2002]. Interestingly, nicotinamide binds to a conserved C-pocket 

adjacent to NAD
+
 to block NAD

+
 hydrolysis and therefore inhibits the deacetylation 

reaction [Avalos, 2004][Bitterman, 2002]. O-acetyl-ADP-ribose, the other by-product of 

the sirtuin deacetylase reaction, was also indicated to be a signaling molecule [Liou, 

http://en.wikipedia.org/wiki/Hydrolyzation
http://en.wikipedia.org/wiki/Acetylated#Lysine_acetylation_and_deacetylation
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Deacetylation
http://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide
http://www.nature.com/nrm/journal/v13/n4/glossary/nrm3293.html#df3
http://www.nature.com/nrm/journal/v13/n4/glossary/nrm3293.html#df4
http://www.nature.com/nrm/journal/v13/n4/glossary/nrm3293.html#df5
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2005][Kustatscher, 2005], but its exact role in metabolic control needs further studies 

[Tong][Houtkooper]. 
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Figure 1.1. Enzymatic mechanisms of sirtuins 

(a) Sirtuin-catalyzed deacetylation and (b) ADP-ribosylation reactions. (c) Mechanism of 

sirtuin-catalyzed NAD
+
-dependent deacetylation of proteins. . NAD

+
 is consumed as a 

substrate, along with an acetylated protein substrate, and a water molecule. Upon 

reaction, the acetyl-group at the N(ɛ)-position is removed and nicotinamide and 2′-

AADPR are formed as co-products. (Based on [Du, 2009]) 
 

 

 

(a) 

(b) 

(c) 
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Figure 1.2. Summary reactions of sirtuins  

(a) Sirtuins remove an acetyl moiety from a histone or protein, (b) SIRT4 and SIRT6 

were described to act as ADP-ribosyl transferases, (c) SIRT5 possesses demalonylase 

activity and (d) desuccinylase activity, SIRT6 can remove (e) myristoyl and (f) palmitoyl 

groups from proteins.  
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1.1.3 SIRT1 

1.1.3.1 SIRT1 and metabolism 

SIRT1 has been involved in various signaling pathways and cancers (Table 1.1). 

Growing evidence indicates that SIRT1 is a significant target for alleviating metabolic 

dysfunction syndromes. SIRT1 expression levels increase in response to caloric 

restriction (CR), and the enzyme can deacetylate a variety of transcription factors and 

enzymes in charge of central metabolism and energy expenditure [Houtkooper]. An 

important factor among these factors is peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α), a transcriptional coactivator that regulates 

expression of metabolic genes involved in processes such as hepatic gluconeogenesis, 

fatty acid oxidation (FAO), and mitochondrial biogenesis [Gerhart-Hines][Dominy]. The 

deacetylation of PGC-1α by SIRT1 increases PGC-1α activity, enhancing the expression 

of transporters and catabolic enzymes for the uptake and utilization of free fatty acids 

(FAs) [Canto, 2009][Gerhart-Hines, 2007]. Consistent with these data, SIRT1 stimulates 

browning of adipose tissue by increasing the interaction between PPARγ and PRDM16 

[Qiang], a potent inducer of PGC-1 expression [Kajimura, 2008].  

Increased level of SIRT1 can protect against metabolic disorder. Specifically, 

mild overexpression of SIRT1 in mice on a high-fat diet (HFD) and in diabetic db/db 

mice resulted in improved glucose tolerance, with a significant reduction in blood 

glucose and plasma insulin levels without significant changes in body weight or fat 

composition [Pfluger, 2008][Banks, 2008][Herranz]. These effects were partly due to the 

ability of SIRT1 to maintain β cell integrity and function, as β cell–specific 

overexpression of SIRT1 remarkably improves insulin secretion and glucose tolerance 
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[Moynihan, 2005]. In addition, pancreatic expression of SIRT1 reduces the level of β cell 

death and the extent of glucose intolerance induced by the pro-diabetic drug 

streptozotocin [Tang]. Moreover, the protective effects of SIRT1 may occur through 

attenuation of inflammatory responses, as SIRT1 overexpression alleviates HFD-induced 

hepatic steatosis and adipose tissue–specific inflammation [Pfluger, 2008][Gillum]. In 

contrast, hepatocyte-specific SIRT1 deletion increased hepatic steatosis and inflammation 

and endoplasmic reticulum stress with chronic HFD feeding [Purushotham, 2009], as 

well as an age-dependent onset of hepatic steatosis with normal diet feeding [Wang].  

These findings suggest a role for SIRT1 in treating age-dependent non-alcoholic fatty 

liver disease.  



  12 

 

Table 1.1 SIRT1 targets in multiple signaling pathways  

PI3K, Phosphoinositide 3-Kinase; AKT, Protein Kinase B; HIC1, Hypermethylated In 

Cancer 1; NF-B, Nuclear Factor Kappa B; FOXO-1, -2, -4, Forkhead box O-1, -2, -4; 

PPAR, Peroxisome Proliferator-Activated Receptor gamma; AceCS1, Acetyl-CoA 

Synthetase 1; Atg-5, -7, -8, Autophagy-related genes; HIF-1, -2, Hypoxia-Inducible 

Factor 1-alpha, 2-alpha; PTEN, Phosphatase and Tensin homologue; Dvls, Dishevelled 

proteins; DKK1, Dickkopf-related protein 1; XPA, Xeroderma pigmentosum group A; 

XPC, Xeroderma pigmentosum C; NBS1, Nijmegen breakage syndrome 1.  

 

1.1.3.2 SIRT1 and cardiovascular diseases  

SIRT1 suppresses the development of atherosclerosis by modulating the activity 

of endothelial nitric oxide synthase (eNOS), FoxO1, and p53, and the expression of 

angiotensin II type 1 receptor (AT1R) [Borradaile, 2009][Brandes, 2008]. SIRT1 also 

promotes vasodilatory and regenerative functions in endothelial and smooth muscle cells 

of the vascular wall [Borradaile, 2009][Brandes, 2008]. SIRT1 also deacetylates liver X 

receptor proteins (LXR) at K432 to promote ubiquitination to alter cholesterol 

Signaling pathways Targets Reference 

Tumor suppressor p53, p73, and HIC1 [Chen, 2005][Dai, 2007][Luo, 

2001][Vaziri, 2001] 

Energy homeostasis FOXO1, FOXO3a, and 

FOXO4 

[Schug][Yeung, 2004][Kong] 

 PGC-1α, PPARγ, and 

AceCS1 

[Hallows, 2006][Han][Rodgers, 

2005][van der Horst, 2004][Motta, 

2004][Brunet, 2004] 

Autophagy Atg5, Atg7, and Atg8 [Powell] 

Hypoxia-inducible 

factors 

HIF-1α and HIF-2α [Leiser][Lim][Dioum, 2009] 

PI3K/AKT pathway PTEN [Ikenoue, 2008] 

TGF-β signaling 

pathway 

Smad3 and Smad7 [Li][Kume, 2007] 

Wnt signaling 

pathway 

β-catenin, DKK1, and 

Dvls 

[Cho][Holloway][Firestein, 2008] 

NF-κB signaling RelA/p65 [Chen, 2001][Kiernan, 2003][Chen, 

2002] 

DNA damage repair 

pathway 

Ku70, XPA, XPC, and 

NBS1 

[Yuan, 2007][Ming][Fan][Jeong, 

2007] 

http://en.wikipedia.org/wiki/Peroxisome_proliferator-activated_receptor_gamma
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biosynthesis in the liver and macrophages [Li, 2007] and to reduce serum lipid levels 

[Feige, 2008]. These results suggested SIRT1 play a major role in the prevention of 

atherosclerosis and other aging-associated diseases by calorie restriction.  

SIRT1 is highly expressed in the vasculature during blood vessel growth, where it 

controls the angiogenic activity of endothelial cells. Loss of SIRT1 function impairs 

sprouting angiogenesis and branching morphogenesis of endothelial cells with 

consequent down-regulation of genes involved in blood vessel development and vascular 

remodeling [Potente, 2007]. Moreover, activation of SIRT1 in endothelial tissues may be 

of benefit in the protection of endothelial cell function with age. Mice with endothelial-

specific SIRT1 overexpression on an Apoe–/– genetic background exhibit attenuated 

development of atherosclerotic lesions [Zhang, 2008]. Conversely, SIRT1 insufficiency 

results in greater foam cell formation and atherosclerotic lesioning [Stein]. Taken 

together, these findings uncover a novel and unexpected role for SIRT1 as a critical 

modulator of endothelial gene expression governing postnatal vascular growth and its 

protective effects in atherogenesis. 

Sirt1 could have beneficial effects on retard aging and confer stress resistance to 

the heart in vivo at low to moderate doses (up to 7.5-fold of Sirt1) [Alcendor, 2007]. 

Overexpression of SIRT1 at low to moderate levels in transgenic mouse hearts attenuates 

age-dependent increases in cardiac hypertrophy, apoptosis/fibrosis, cardiac dysfunction, 

and expression of senescence markers such as p15INK4b and p19ARF [Alcendor, 2007]. 

On the other hand, a high level of SIRT1 increased apoptosis and hypertrophy and 

decreased cardiac function, thereby stimulating the development of cardiomyopathy 

[Alcendor, 2007]. These data suggested that stimulation of Sirt1 may be useful for an 
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antiaging therapy for the heart, more careful evaluations on dosages of Sirt1 need to be 

investigated. 

1.1.3.3 SIRT1 and cancer 

SIRT1 expression is heightened in various cancers, including prostate cancers 

[Huffman, 2007], acute myeloid leukemia [Bradbury, 2005], colon carcinomas [Stunkel, 

2007], and non-melanoma skin carcinomas [Hida, 2007]. In these diseases, SIRT1 can be 

considered a cancer promoter, thus, inhibition of SIRT1 may be a strategy to induce cell 

cycle arrest and apoptosis in transformed cells [Lain, 2008][Ota, 2006][Heltweg, 

2006][Ford, 2005]. Furthermore, the SIRT1 activator SRT1720 was indicated to promote 

metastasis in a breast cancer mouse model [Suzuki].  In contrast, SIRT1 can be a tumor 

suppressor. The rescue of SIRT1 levels in some cancer types, such as mutant breast 

cancer 1 (early onset–mutant (BRCA1) breast cancer cells that have lower levels of 

SIRT1 compared to BRCA1), can result in inhibition of tumor growth [Wang, 2008]. 

Furthermore, SIRT1 overexpression reduces the growth rate of fibrosarcoma cells in a 

tissue allograft model [Lim]. In other cancer mouse models, SIRT1 has been shown to 

protect against the development and progression of intestinal tumors in a β-catenin–

driven colon cancer model [Firestein, 2008], sarcomas, lymphomas, teratomas, and 

carcinomas arising from deletion of p53 [Wang, 2008], HFD-induced hepatocarcinomas 

[Herranz], and age-associated spontaneous tumor development [Herranz]. However, what 

cellular determinants for SIRT1 to be a tumor suppressor or a tumor promoter remain to 

be uncovered.  
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1.1.3.4 SIRT1 and neurodegeneration  

Progress in understanding the neurobiological benefits of SIRT1 is still in its early 

stage and has been studied in different human CNS diseases. A hallmark of Alzheimer's 

disease (AD) is the accumulation of plaques of Abeta 1-40 and 1-42 peptides, which 

result from the sequential cleavage of APP by the beta and gamma-secretases. In 

Alzheimer’s disease mouse models, brain-specific knockout of SIRT1 showed a dramatic 

increase in β-amyloid, plaques, and reactive gliosis [Donmez].  These effects were 

decreased by deacetylation of retinoic acid receptor-β as a result of SIRT1 overexpression 

[Donmez]. Moreover, SIRT1 has been proposed to have a neuroprotection role in three 

different mouse models of Huntington’s disease [Jiang][Jeong]. Brain-specific deletion of 

SIRT1 results in exacerbation of neuropathology and mutant Huntingtin neurotoxicity in 

a mouse model of Huntington’s disease.  Conversely,  overexpression of SIRT1 improves 

the survival, neuropathology, mutant Huntingtin neurotoxicity, and the expression of 

brain-derived neurotrophic factor (BDNF) in these same mice [Jeong][Jiang]. The 

neuroprotective function of SIRT1 in Huntington’s disease models is thought to be 

modulated by the activation of multiple targets, including cAMP response element-

binding protein (CREB), CREB regulated transcription coactivator 1, and FOXO3a.  

In a mouse model of Parkinson’s disease with A53T -synuclein, overexpression 

of SIRT1 reduced α-synuclein aggregates, gliosis, and lethality [Donmez]. However, 

knockout of SIRT1 significantly increased aggregates, worsened gliosis, and hastened 

mortality [Donmez]. Deacetylation and activation of the heat shock factor HSF1 is 

proposed to be the crucial mechanism by which SIRT1 protects against Parkinson’s 

disease in this mouse model. Lastly, in a mouse model of injury-induced axonal 
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degeneration, stimulation of NAD
+
 biosynthesis, and its support of SIRT1 activity, was 

indicated to be a major factor in delaying axonal degeneration [Araki, 2004][Sasaki, 2006].  

1.1.4 SIRT2.  

1.1.4.1 The biological properties of the SIRT2  

SIRT2 is located primarily in the cytoplasm, where the protein colocalizes with 

microtubules and deacetylates α-tubulin, the major component of microtubules, at lysine 

40 [North, 2003]. SIRT2 also transiently migrates to the nuclei during G2/M transition 

and deacetylates histone H4 at lysine 16, thereby modulating chromatin condensation 

during metaphase [Vaquero, 2006]. SIRT1 also deacetylates lysine 16 of histone H4, 

indicating a possible synergistic relationship or functional redundancy between these 

sirtuins [Vaquero, 2006][Imai, 2000]. Interestingly, SIRT2 overexpression delays cell 

cycle progression [Dryden, 2003]. More specifically, SIRT2 expression levels are 

variable during different cell cycle phases and increase during mitosis. Together, these 

results suggested SIRT2 might have an important role in regulation cell cycle [Inoue, 2007].  

Sirtuin deacetylases and FOXO (Forkhead box, class O) transcription factors have 

important roles in many biological pathways, including cancer development. SIRT2 

deacetylates forkhead transcription factors of class O, FOXO1, and FOXO3 [Zhu, 

2012][Wang, 2007][Li, 2007]. Since FOXO transcriptional factors are involved in 

multiple cellular processes, such as DNA repair, the cell cycle, apoptosis, metabolism, 

and aging, SIRT2 is therefore proposed to regulate these diverse pathways [Calnan, 

2008]. One such mechanism of this regulation is through p300, a histone acetylase that 

also regulates the function of p53, a protein important for conserving genome stability, 

known as tumor suppressor. p300 has been shown to inactivate SIRT2 by acetylation, an 
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effect that may indirectly regulate the activity of p53. More specifically, SIRT2 

deacetylates lysine residues in the catalytic domain of p300, which maintains its active 

form by autoacetylation [Black, 2008]. As a consequence, p300 can inactivate SIRT2 by 

acetylation, which relieves the inhibitory effect of SIRT2 on the transcriptional activity of 

p53 [Han, 2008].  

Interestingly, post-translational phosphorylation also negatively modulates SIRT2 

activity. Phosphorylation at serine 331 inhibits SIRT2 catalytic activity [Pandithage, 

2008]. SIRT2 is phosphorylated by various cyclin dependent kinase (CDK) complexes at 

serine 331 and is dephosphorylated by dual specificity protein phosphatase (CDC14B 

[Pandithage, 2008][Dryden, 2003].  In addition, several proteins such as 14-3-3 β/γ and 

homeobox transcription factor 10 are binding partners, but not deacetylation substrates, 

of SIRT2 [Jin, 2008][Bae, 2004]. The currently known SIRT2 substrates/binding partners 

suggest a complex and apparently diverse function for this sirtuin in the cell (Table 1.2). 
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Table 1.2 SIRT2 substrates and interactors and their biological relevance. 

 

CDC14A/B, Dual-specificity protein phosphatase 14A/B; CDK1, Cyclin-dependent 

kinase 1; CyclinA/CDK2, Cyclin A/cyclin-dependent kinase 2 complex; CyclinE/CDK2, 

Cyclin E/cyclin-dependent kinase 2 complex; p35/CDK5, p35/cyclin-dependent kinase 5 

complex; FOXO, Forkhead box protein of class O; HDAC6, Histone deacetylase 6; 

HOXA10, Homeobox protein A10; Lys, Lysine; NF-κB, Nuclear factor-kappa B; Par-3, 

Polarity protein par-3; PEPCK1, phosphoenolpyruvate carboxykinase 1; P300, Histone 

acetyltransferase ac-P300; p53, tumor suppressor protein 53; p65, transcription factor 

p65; Ser, Serine; 14-3-3β/γ, 14-3-3 Protein β/γ isoforms. 

Interactor/sub

strate 

Interaction type Biological 

relevance 

Reference 

α-Tubulin Substrate (Lys-40) Cytoskeleton 

regulation 

Oligodendroglial 

differentiation 

[Zhu][North, 2003 ] 

Histone H3 Substrate (Lys-56) Cell cycle regulation [Das, 2009] 

Histone H4 Substrate (Lys-16) Cell cycle regulation [Vaquero, 2006] 

FOXO1 Substrate (Lys-residues 

surrounding Ser-253) 

Adipocyte 

differentiation 

[Li, 2007][Wang, 

2009] 

FOXO3 Substrate (residues not 

yet identified) 

Regulation of 

oxidative stress 

[Zhu] 

  Cell growth arrest 

apoptosis 

 

Par-3 Substrate (Lys-831, 848, 

881, 1327) 

Modulation of 

peripheral 

myelination 

[Beirowski] 

P300 Substrate (several Lys-

residues) 

Regulation of p300 

autoacetylation 

[Black, 2008] 

PEPCK1 Substrate (residues not 

yet identified) 

Blood glucose 

homeostasis 

[Jiang] 

p65 Substrate (Lys-310) Regulation of NF-

κB dependent gene 

expression 

[Rothgiesser] 

HOXA10 Binding partner Not known [Bae, 2004] 

HDAC6 Binding partner Cytoskeleton 

dynamics 

[North, 2003] 

14-3-3β/γ Binding partners Downregulation of 

p53 activity 

[Jin, 2008] 

CDK1, 

cyclinE/CDK2, 

cyclinA/CDK2, 

p35/CDK5 

Phosphorylation of 

SIRT2 at Ser-331,-368 

Inhibition of SIRT2 

catalytic activity 

[Pandithage, 

2008][Southwood, 

2007] 
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1.1.4.2 SIRT2 and metabolic syndromes 

Accumulating evidence indicates a role for SIRT2 in regulating adipose tissue 

development and function. SIRT2 expression is the most abundant sirtuin in adipocytes 

[Li, 2007]. SIRT2 level decreases during preadipocyte differentiation, whereas reducing 

SIRT2 expression promotes adipogenesis [Jing, 2007][Wang, 2009]. SIRT2 expression is 

also elevated in adipose tissue during CR [Wang, 2009] and is significantly reduced in 

white adipose tissue of obese patients [Krishnan]. As mentioned previously, SIRT2-

mediated deacetylation targets include the FOXO family of transcription factors. For 

example, SIRT2 deacetylates FOXO1, promoting the interaction of FOXO1 with PPARγ 

thereby repressing PPARγ transcriptional activity and inhibiting adipocyte differentiation 

[Wang, 2009][Jing, 2007]. Additionally, in cell-based assays, SIRT2 increases expression 

of oxidation and mitochondrial genes in a PGC-1α–dependent manner [Krishnan]. Thus, 

discovering the role of SIRT2 activators in metabolic homeostasis may be beneficial in 

the protection against obesity.  

Interestingly, SIRT2 expression is increased in white adipose tissue and kidney of 

calorie-restricted mice [Zhu]. In another observation, SIRT2 deacetylates and stabilizes 

phosphoenolpyruvate carboxykinase 1 (PEPCK1) in regulation of glucose homeostasis 

[Jiang]. In low glucose conditions, SIRT2 is activated, which stabilizes PEPCK1 and 

shifts the equilibrium toward the generation of glucose from non-carbohydrate carbon 

sources.  This mimics a fast or exercise state in the organisms. In contrast, under high 

glucose conditions, SIRT2 expression is decreased, resulting in degradation of PEPCK1 

by the ubiquitin proteasome system [Jiang]. Further studies need to be conduct to clarify 
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how nutrient availability affects SIRT2 protein level and cross-talk between sirtuin 

members during regulation of metabolic homeostasis.  

1.1.4.3 SIRT2 and cancer 

The known function of SIRT2 at the mitotic checkpoint confers a role for SIRT2 

in tumorigenesis [Inoue, 2007]. For example, SIRT2 protein and RNA levels are 

decreased in gliomas, melanomas, and gastric carcinomas [Peters][Hiratsuka, 2003], and 

SIRT2 expression inhibits colony formation in glioma cells [Hiratsuka, 2003]. 

Additionally, overexpression of SIRT2 mediates a delay in cellular proliferation 

dependent on serine 368 phosphorylation [North, 2007]. Furthermore, overexpression of 

SIRT2 with a mutation at serine 368 (phosphorylation site) leads to a reduction of 

hyperploid cells under mitotic stress [North, 2007].  

SIRT2 is also known to play a role in the regulation of cell cycle progression 

[Dryden, 2003][Pandithage, 2008][North, 2007] and chromatin assembly [Vaquero, 

2006][Das, 2009]. Knockout of SIRT2 in mice led to tumorigenesis due to failed mitosis 

complex regulation and disrupted genomic integrity [Kim]. However, studies have 

reported that pharmacological inhibition of SIRT2 suppresses tumor growth by activating 

p53 [Jin, 2008][Lain, 2008]. More evidence is needed to discover the therapeutic 

potential of targeting SIRT2 regulation of the cell cycle.  

SIRT2-deficient mice develop gender-specific tumorigenesis. In a recent study, 

SIRT2 deficiency in mice caused heighten levels of serine-threonine kinases Aurora-A 

and –B, which direct centrosome amplification, aneuploidy, and mitotic cell death [Kim]. 

Interestingly, SIRT2-deficient mice develop gender-specific tumorigenesis, with females 

primarily developing mammary tumors, and males developing more hepatocellular 
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carcinoma (HCC) [Kim]. These data suggested that SIRT2 is a tumor suppressor by its 

role in regulation of mitosis and genome integrity. 

 

In accordance with these findings, further studies to explore role of SIRT2 in 

tumor development has been reported. In fact, another study reported that lysine 56 of 

histone H3, which is deacetylated by SIRT2 and SIRT1, was hyperacetylated in cancer 

cells, suggesting that SIRT2 may act as a tumor suppressor gene [Das, 2009]. In addition, 

SIRT2 downregulation can cause apoptosis in a cancer cell line such as HeLa, but not in 

normal cells, suggesting SIRT2 could be a possible intervention therapy for cancer [Li]. 

Moreover, SIRT2 regulates the expression of the pro-apoptotic protein BIM by 

deacetylating FOXO3 [Wang]. In general, SIRT2 overexpression reduces cell 

proliferation and regulates cell death in response to stress-induced DNA damage, 

suggesting that SIRT2 is a tumor suppressor gene [Das, 2009]. Further studies will be 

important to elucidate the role of SIRT2 activation in specific human cancers and will 

shed light on feasible approaches for using SIRT2 for cancer interventions and treatments 

[Bosch-Presegue].  

1.1.4.4 SIRT2 and the central nervous system and neurodegenerative disorders 

SIRT2 is also the most abundant sirtuin in brain [Zhu,] and is primarily found in 

oligodendrocytes (OL), the myelin producing cells of the central nervous system (CNS) 

[Pandithage, 2008][Zhu]. Notably, the SIRT2.2 isoform is expressed significantly high in 

adult CNS, with maximal accumulation in aged brain, whereas SIRT2.1 is predominately 

expressed in skeletal muscle and immortalized cells in culture [Maxwell]. SIRT2 

expression in OL plays a role in myelinogenesis, although its function is essentially 

unknown in neurons. In OLs, SIRT2 is localized to the myelin sheath [Werner, 2007] 
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where the sirtuin has been shown to function at sites of microtubule remodeling by 

deacetylating α-tubulin to downregulate OL differentiation [Li, 2007] [Harting, 

2010][Southwood, 2007]. These results demonstrated a counterbalancing role of SIRT2 

against a facilitatory effect of tubulin acetylation on oligodendroglial differentiation. 

Selective SIRT2 availability to oligodendroglia may have important implications for 

myelinogenesis, myelin–axon interaction, and brain aging [Li, 2007]. 

The formation of myelin by Schwann cells (SCs) occurs via a series of 

orchestrated molecular events. Interestingly, Schwann cell–specific SIRT2 deletion in 

mice or overexpression of SIRT2 have uncovered a role for the sirtuin in demyelinating 

neuropathies in the peripheral nervous system [Beirowski]. In neurons, SIRT2 is found in 

the cytoplasm, neurites, and growth cones [Pandithage, 2008]. In postmitotic 

hippocampal neurons, neurite outgrowth and growth cone collapse are inhibited by 

SIRT2 [Pandithage, 2008]. This effect is abolished by CDK-dependent phosphorylation 

of SIRT2 [Pandithage, 2008]. This provides insights into the role of SIRT2 in control a 

pivotal polarity pathway in SCs during myelin assembly and the association between 

intracellular metabolism and SC plasticity [Pandithage, 2008]. 

SIRT2 is associated with the aggregation of α-synuclein and Huntingtin, proteins 

involved in Parkinson’s disease (PD) and Huntington’s disease (HD), respectively [Luthi-

Carter][Pallos, 2008][Outeiro, 2007]. Inhibition of SIRT2 by pharmacological and 

genetic means led to a rescue of α-synuclein toxicity in models of PD, namely 

dopaminergic neurons and an in vivo fly model [Outeiro, 2007]. Several studies reported 

that reduction of SIRT2 is protective in fly and worm models of HD by increasing 

photoreceptor neuron survival [Pallos, 2008] and decreasing sterol biosynthesis [Luthi-
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Carter]. Partial rescue of toxicity was also observed in a Drosophila model of PD 

[Outeiro, 2007]. However, SIRT2 knockout mice lacked a significant phenotype related 

to neurodegeneration [Bobrowska], calling into question the effect of SIRT2 on neuronal 

health in mammals. 

1.1.5 Mitochondrial SIRT3 

1.1.5.1 SIRT3 and metabolism  

Located in mitochondria, SIRT3 is the best-characterized major deacetylase 

[Lombard]. Basal SIRT3 expression varies widely but is highly expressed in the most 

metabolically active tissues, including liver, kidney, and heart [Palacios, 2009][Ahn, 

2008]. Diet and nutrient status significantly affect SIRT3 levels in different tissues, such 

that SIRT3 expression in liver and adipose tissue increases in glucose-poor, fasting states 

including CR [Alhazzazi][Tauriainen][Hallows][Caton][Hirschey]. Expression in skeletal 

muscle also increases in CR [Tauriainen][Jing], but has been reported to both increase 

[Caton][Palacios, 2009] and decrease [Jing] with fasting. Exercise increases SIRT3 

expression in skeletal muscle in both mice [Gurd][Palacios, 2009] and humans [Lanza, 

2008][Koltai]. Interestingly, although a HFD initially induces SIRT3 expression in liver 

and skeletal muscle, a chronic HFD decreases the expression of the sirtuin 

[Bao][Tauriainen][Palacios, 2009][Hirschey, 2010][Jing, 2011]. SIRT3 expression is also 

decreased in mouse models of type 1 or 2 diabetes mellitus [Palacios, 2009][Jing, 2011]. 

These findings suggest SIRT3 might play an important role in diabetes and metabolism, 

especially, fat metabolism through its deacetylation activity.   

The first identified SIRT3 substrate was human acetyl-CoA synthetase 2 

(AceCS2) [Schwer, 2006][Hallows]. AceCS2 is a mitochondrial matrix enzyme that 
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converts acetate to acetyl-CoA for oxidation through the tricarboxylic acid (TCA) cycle 

to produce ATP and carbon dioxide (CO2)[Fujino, 2001]. AceCS2 expression is abundant 

in the heart and muscle and is upregulated during starvation and ketogenesis [Fujino, 

2001]. SIRT3 has been shown to activate AceCS2 by a deacetylation reaction at lysine 

642 (human) or lysine 635 (mouse) in the active site of the enzyme [Hallows][Schwer, 

2006]. Since these studies were published, more than a dozen additional SIRT3 

deacetylation targets have been reported (Table 1.3). Many of these SIRT3 targets play a 

role in metabolism switch to regulate fasting metabolism, metabolic adaptation toward 

energy source availability as well as pathologic energy demands of cells. 
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Table 1.3 Known substrates of mitochondrial SIRT3  

Substrate name Biological relevance Reference 

PPID (Peptidylprolyl Isomerase D 

or Cyclophilin D)  

Glycolysis [Shulga]  

LCAD (Acyl-CoA Dehydrogenase, 

Long Chain) 

Fatty Acid Oxidation [Hirschey]  

HMGCS2 (3-Hydroxy-3-

Methylglutaryl-CoA Synthase 2, 

Mitochondrial) 

Ketone Body 

Synthesis 

[Shimazu]  

ACSS2 (Acyl-CoA Synthetase 

Short-Chain Family Member 2) 

Acetate Metabolism [Hallows, 

2006][Schwer, 2006]  

OTC (Ornithine 

Transcarbamoyltransferase) 

Urea Cycle [Hallows]  

GDH (Glutamate dehydrogenase 1) Amino Acid 

Catabolism 

[Schlicker, 2008]  

NDUFA9 (NADH Dehydrogenase 

(Ubiquinone) 1 α 

Subcomplex, 9, 39-kDa) 

Oxidative 

Phosphorylation 

[Ahn, 2008]  

SDHA (Succinate Dehydrogenase 

Complex, Subunit A, Flavoprotein) 

 [Cimen][Finley]  

ATP5A (F1F0-ATPase Subunit α)  [Bao]  

IDH2 (Isocitrate Dehydrogenase 2, 

Mitochondrial) 

TCA Cycle [Someya]  

SOD2 or MnSOD (Superoxide 

Dismutase 2, Mitochondrial) 

ROS [Chen][Tao][Qiu]  

ALDH2 (Aldehyde Dehydrogenase 

2 Family, Mitochondrial) 

Ethanol Metabolism [Xue]  

MRPL10 (Mitochondrial 

Ribosomal Protein L10) 

Mitochondrial Protein 

Synthesis 

[Yang]  

FOXO3 (Forkhead Box O3) Transcriptional 

Activation 

[Sundaresan, 2009]  

LBK1 or STK11 (Serine/Threonine 

Kinase 11) 

Tumor Suppressor, 

AMPK Signaling 

[Pillai]  

HISTH3 (Histone Cluster 3, H3) 

(Specific to H3K56-Ac) 

DNA Damage 

Response 

[Vempati]  

XRCC6 or Ku70 (X-ray Repair 

Complementing Defective Repair in 

Chinese Hamster Cells 6) 

Apoptosis [Sundaresan, 2008]  
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SIRT3 functions to deacetylase and activate enzymes important during CR, such 

as 3-hydroxy-3-methylglutaryl-CoA synthase 2 for generation of ketones [Shimazu] and 

long-chain acyl-CoA dehydrogenase for oxidation of long-chain FAs [Hirschey]. SIRT3 

also deacetylates and activates components of the electron transport chain, thereby 

increasing oxidative phosphorylation [Cimen][Kim][Ahn, 2008][Kendrick][Bao]. 

Supporting evidence reported a role for SIRT3 in metabolic disorders. Mice lacking 

SIRT3 who were fed a HFD showed accelerated obesity, glucose intolerance, insulin 

resistance, hyperlipidemia, and steatohepatitis [Hirschey]. These effects were partly due 

to increased stearoryl-CoA desaturase 1 (SCD1) activity in the liver that was caused by 

increased saturated lipid levels. Deletion of SCD1 rescued both wild-type and SIRT3-

knockout mice from HFD-induced metabolic disorders [Hirschey]. Furthermore, SIRT3-

knockout mice show impaired insulin signaling in skeletal muscle by increased oxidative 

stress, which led to activation of the c-Jun N-terminal kinase (JNK) and decreased insulin 

receptor substrate-1 (IRS-1) signaling following insulin receptor activation [Jing, 2011].  

In an independent study, SIRT3 knockout mice under 48 hours fasting showed 

increased levels of liver palmitoylcarnitine and of various blood acylcarnitines, indicating 

deficient hepatic β-oxidation [Ahn, 2008]. Furthermore, an analysis of an array of 

acetylated mitochondrial peptides identified potential targets of deacetylation by SIRT3, 

including some enzymes involved in FA β-oxidation, such as short-chain L-3-

hydroxyacyl-CoA dehydrogenase (SCHAD), the short/branched-chain acyl-CoA 

dehydrogenase (SBCAD), very-long-chain acyl-CoA dehydrogenase (VLCAD), and long 

chain acyl-CoA dehydrogenase (LCAD) [Ahn, 2008]. Prominently, patients with a 

functional SNP in SIRT3, such as the rs11246020 SNP that has a point mutation in the 
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catalytic domain that decreases its activity, have an increased susceptibility to developing 

metabolic syndrome [Hirschey, 2010]. However, it is still unknown which tissues are 

directly responsible for mediating the effects of SIRT3, emphasized by a recent report of 

both muscle-specific and liver-specific Sirt3
–/–

 mice lacking overt metabolic phenotypes 

[Fernandez-Marcos]. Moreover, acetate produced in the liver from acetyl-CoA is another 

soluble form of lipid-derived energy that can be distributed to extrahepatic tissues 

[Shimazu]. SIRT3 also deacetylates and activates AceCS2, an enzyme present in 

extrahepatic tissues that is used to activate acetate into acetyl-CoA [Hallows, 

2006][Schwer, 2006]. Therefore, SIRT3 alleviates the catabolism of FAs in the liver and 

the peripheral use of lipid-derived acetate and ketone bodies during fasting. 

1.1.5.2 SIRT3 and nitrogen metabolism  

SIRT3 stimulates amino acid metabolism and nitrogen waste disposal by deacetylating 

and activating the mitochondrial matrix enzyme glutamate dehydrogenase (GDH) 

[Schlicker, 2008]. Notably, GDH is ADP-ribosylated by SIRT4, leading to decreased 

GDH activity and insulin secretion in response to amino acids [Haigis, 2006]. These 

results suggest a co-ordinate regulation of sirtuins on GDH activity. More specifically, 

the transfer of the α-amino moiety to α-ketoglutarate by an aminotransferase forms 

glutamate in catabolism of most amino acids. GDH regenerates α-ketoglutarate from 

glutamate, and releases nitrogen to the urea cycle as ammonia [Shimazu]. SIRT3 

accelerates the urea cycle by deacetylating and activating ornithine transcarbamoylase 

(OTC), the key mitochondrial enzyme in the urea cycle. Mice lacking SIRT3 exhibit a 

metabolic profile similar to human disorders of the urea cycle, including increased serum 

ornithine and reduced citrulline levels – the substrate and product, respectively, of OTC 



  28 

[Hallows, 2011]. The results suggest that under low energy source, Sirt3 promotes amino 

acid catabolism and β-oxidation in mitochondria. 

1.1.5.3 SIRT3 and mitochondrial respiration  

SIRT3 facilitates mitochondrial oxidative phosphorylation (OXPHOS) by 

deacetylating and activating several components of the respiratory transport chain, 

including NAD dehydrogenase (ubiquinone 1) alpha subcomplex subunit 9 (NDUFA9) 

(complex I) [Ahn, 2008] and Succinate dehydrogenase complex, subunit A (SDHA) 

(complex II) [Cimen][Finley]. Accordingly, mice lacking SIRT3 show reduced complex I 

and II activity in the liver and brown adipose tissue [Finley][Cimen]. SIRT3 also 

regulates complex IV/V activity, probably by deacetylating ATP synthase [Bao]. 

Together, these effects on OXPHOS might be explained for the 10% reduced O2 

consumption and up to 50% reduced ATP production observed in mice lacking SIRT3 

[Jing, 2011][Ahn, 2008]. These indicate protein acetylation and SIRT3 play important 

roles in mitochondrial respiration to regulate basal ATP levels.  

1.1.5.4 SIRT3 and ROS  

SIRT3 also increases the ability of mitochondria to manage with reactive oxygen 

species (ROS) generated as a by-product of OXPHOS. First, SIRT3 deacetylates and 

activates isocitrate dehydrogenase 2 (IDH2), an enzyme in the TCA cycle that helps to 

replenish the mitochondrial pool of nicotinamide adenine dinucleotide phosphate 

(NADPH) [Someya]. NADPH is used by glutathione reductase to maintain glutathione in 

its reduced antioxidant form [Berg, 2012]. Normal mice develop age-related hearing loss 

caused by ROS-induced cochlear cell damage. CR could ameliorate this phenotype via 

SIRT3-dependent deacetylation of IDH2, leading to reduced ROS levels [Someya]. 
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Second, SIRT3 deacetylates and activates the ROS-scavenging enzyme Mn superoxide 

dismutase (SOD2), thereby reducing oxidative damage in the liver [Chen, 2011][Tao, 

2010][Qiu, 2010]. These results reveal the role of SIRT3 to promote oxidative stress 

resistance and to reduce cellular ROS, suggesting possible approaches to combat aging 

and oxidative stress-related diseases.  

1.1.5.5 SIRT3 and cardiovascular diseases  

SIRT3 has also been proposed to play a role in aging-related heart disease. 

SIRT3-deficient mice show mild cardiac hypertrophy and interstitial fibrosis at baseline 

and severe cardiac hypertrophy in response to hypertrophic stimuli, whereas SIRT3-

overexpressing mice are protected from similar stimuli [Sundaresan, 2009]. Although the 

exact mechanism for the anti-hypertrophic effects of SIRT3 remains unclear, some have 

suggested that the cardiac pathology of SIRT3 knockout mice stems from an increased 

activation of the mitochondrial permeability transition pore (mPTP), leading to apoptosis 

of cardiomyocytes [Hafner]. SIRT3 deacetylates and inhibits cyclophilin D, a regulatory 

component of mPTP, and cardiomyocytes from SIRT3 knockout mice show an age-

dependent increase in mitochondrial permeability transition [Hafner]. These data suggest 

that SIRT3 is necessary to prevent mitochondrial dysfunction and cardiac hypertrophy 

during aging.  

1.1.5.6 SIRT3 and cancer  

SIRT3 modulates carbohydrate metabolism in cancer cells [Alhazzazi]. The 

Warburg effect refers to the preference of cancer cells for glucose utilization as energy 

source [Bayley]. Downregulation of SIRT3 can enhance the Warburg effect by two 

mechanisms [Finley][Kim][Shulga]. First, SIRT3 regulates hypoxia-inducible factor 1 α 
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(HIF1α), a transcription factor that drives the expression of glycolytic genes, via cellular 

levels of ROS. In the absence of SIRT3, ROS production is increased, which leads to 

deactivation of prolyl hydroxylases [Kaelin, 2008] and stabilization of HIF1α [Finley]. 

Second, hyperacetylation of the peptidyl-prolyl isomerase cyclophilin D in the absence of 

SIRT3 helps maintain hexokinase II (HK2), an enzyme plays a pivotal role in highly 

malignant cancer cells in promoting cell growth and survival, in an active state on the 

outer mitochondrial membrane, facilitating the rapid production of glucose-6-phosphate 

[Pedersen, 2002][Shulga, 2010]. These results suggested that SIRT3 might have an 

important role in metabolism of some cancer cells and their susceptibility to 

mitochondrial injury and cytotoxicity. 

Several studies indicate that SIRT3 is a tumor suppressor [Haigis]. Important 

among these are these findings is that SIRT3-deficient mice develop mammary tumors, 

and embryonic fibroblasts from these mice exhibit a malignancy-prone phenotype with 

increased stress-induced superoxide levels and genomic instability [Kim]. These cellular 

defects can be rescued by the expression of SOD2, which is a target of SIRT3 

deacetylation that is involved in the detoxification of ROS, as discussed previously 

[Qiu][Tao]. Coinciding with animal data, SIRT3 expression is decreased in many human 

cancers, with loss of at least one copy of SIRT3 occurring in 40% of human breast and 

ovarian cancers [Finley][Kim]. Nonetheless, there are also reports that SIRT3 

overexpression promotes survival and enhances tumorigenesis, such as with oral cancer, 

emphasizing the importance of tumor type [Alhazzazi, 2011]. It seems SIRT3 function 

varies in different normal and tumor tissues and may be cell- and tumor-type specific. It 
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is necessary to conduct more thorough studies to determine whether SIRT3 as a tumor 

promoter or suppressor in each cancer type separately. 

1.1.6 Mitochondrial SIRT4: still a mysterious enzyme 

Among the three mitochondrial sirtuins, SIRT4 is the least known in terms of 

mechanism, substrates and regulating pathways in metabolism. SIRT4 is a soluble protein 

in mitochondrial matrix that becomes cleaved at amino acid 28 after importation into 

mitochondria [Michishita, 2005][Haigis, 2006][Ahuja, 2007]. SIRT4 is present in most 

tissues, with high levels of expression in liver, heart, kidney, brain and pancreatic β cells 

[Haigis, 2006][Ahuja, 2007]. The expression of SIRT4 slightly decreases during CR and 

increases in culture cell models of diabetes [Schwer, 2006][Nasrin][Haigis, 2006]. 

Interestingly, fasting and/or CR is incorporated with increased expression of hepatic 

SIRT1 and SIRT3 [Schwer, 2009][Hirschey][Cohen, 2004][Civitarese, 2007][Nasrin] 

suggesting that sirtuins might compensate their impacts in different states of metabolic 

demands to roundly regulate the production and utilization of energy in cells. 

Although seven mammal sirtuins share a conserved catalytic core domain [Frye, 

2000], while SIRT3 plays a major role in deacetylation of mitochondrial proteins, SIRT4 

has displayed no detectable NAD-dependent deacetylase activity [North, 2003][Lombard, 

2007][Schwer, 2006][Haigis, 2006][Ahuja, 2007]. Sirt4
−/−

 and Sirt5
−/−

 mice show no 

change in mitochondrial protein acetylation, in contrast, Sirt3
−/−

 mice exhibit a striking 

hyperacetylation of mitochondrial proteins [Lombard, 2007]. This is not excluded from 

the possibility that SIRT4 has very strict deacetylation substrate specificity. 

Nevertheless, SIRT4 is the only mitochondrial sirtuin that ADP-ribosylates and 

down-regulates GDH, leading to negative regulation of insulin secretion in islet β cells 
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[Haigis, 2006][Ahuja, 2007]. SIRT4 inhibits the enzymatic activity of GDH and limits 

the metabolism of glutamate and glutamine to generate ATP, thereby suppressing the 

ability of β cells to secrete insulin in response to these amino acids [Haigis, 2006]. SIRT4 

knockout mice, which express lower levels of ADP-ribosylated GDH, exhibit higher 

GDH activity and upregulates amino acid-stimulated insulin secretion [Haigis, 2006]. 

Intriguingly, SIRT3 has been reported to deacetylate and activate GDH [Schlicker, 

2008][Lombard, 2007] implicating a possible cooperated regulation of GDH activity by 

SIRT3 and SIRT4.  

SIRT4 also regulates functions of proteins that are substrates of other sirtuins. In 

an independent model, knockdown of SIRT4 via siRNA from insulin-producing INS-1E 

cells led to an increase in insulin secretion in response to glucose, while overexpression 

of SIRT4 in these cells suppressed insulin secretion [Ahuja, 2007]. In contrast to negative 

insulin regulation of SIRT4, SIRT1 positively regulates insulin secretion in pancreatic β 

cells by regulating genes involved in β cell function, including mitochondrial uncoupling 

protein 2 (Ucp2) [Moynihan, 2005][Bordone, 2006]. Thus it is of interest to address 

questions about the role of sirtuins in mice lacking either SIRT1 or SIRT4 in insulin 

secretion. Interestingly, SIRT4 was shown to interact with insulin degrading enzyme 

(IDE) and the ADP/ATP carrier proteins ANT2 and ANT3, although the biochemical and 

physiological inter-relationship of these interactions is not yet determined [Ahuja, 2007].  

In a recent study, Du et al stated that ADP-ribosylation activity of sirtuins is weak 

and may not be physiologically relevant [Du, 2009]. The sirtuin dependent-ADP-

ribosylation activity is >1000-fold slower than that of a bacterial ADP-ribosyltransferase 

or their deacetylation activity [Du, 2009]. This claim has cast doubt upon whether sirtuins 
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serve as physiologically relevant ADP ribosyltransferases. Moreover, two most updated 

reports by Peng et al and Du et al show that lysine malonylation and succinylation as two 

new post translational modifications and that SIRT5 is a major enzyme to NAD-

dependent demalonylate and desuccinylate multiple cellular proteins [Peng][Du]. 

Nonetheless, physiological relevance of reversible malonylation and succinylation is still 

need to be identified. While class I sirtuins, including SIRT1, SIRT2 and SIRT3 [Frye, 

2000].exhibit robust deacetylase activity in different cellular compartments [North, 

2003], class II (SIRT4), class III (SIRT5), and class IV (SIRT6 and SIRT7) have 

undetectable or weak deacetylase activity and weak ADP-ribosylase activity [Liszt, 

2005][Kawahara, 2009][Michishita, 2008][Mao][Nakagawa, 2009][Haigis, 2006]. Taken 

together, these findings challenge scientists as to whether SIRT4, SIRT6, or SIRT7 might 

have an undiscovered role in post-translational modifications or that they might have very 

strict deacetylation substrate specificity.  

In addition to the data supporting SIRT4 as an important metabolic regulator 

through its effects on insulin secretion in β cells, a recent study has revealed roles for 

SIRT4 in negatively regulating FAO in muscle and liver [Nasrin]. Knockdown of SIRT4 

expression both in vitro and in vivo increased the expression of genes involved in 

enhancing FAO and oxidative phosphorylation, including SIRT1, medium chain acyl-

CoA dehydrogenase (MCAD), carnitine palmitoyltransferase 1 (CPT1), PGC-1α, 

cytochrome c, ATP synthase, and IDH2 [Nasrin]. The effect of SIRT4 knockdown in 

enhancing FAO is dependent on SIRT1 [Nasrin]. These results once again show that 

SIRT4 activities might antagonize SIRT1 and SIRT3 functions. Whether sirtuins share 
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common substrates in pathways of energy metabolism or whether sirtuins have primary 

or secondary effects on other sirtuins or their targets remains elusive.     

Recent study emphasizes more on the role of SIRT4 in glutamine metabolism via 

regulating of GDH activity that SIRT4 expression is reduced in human cancer, and its 

overexpression reduces cell proliferation, transformation, and tumor development [Csibi]. 

In addition, SIRT4 is an important regulator of lipid homeostasis by deacetylation of 

malonylcoA decarboxylase (MCD) [Laurent]. These results demonstrated again the role 

of SIRT4 in regulation of glutamine and fatty acid metabolisms and thus its new role in 

cancer development.  

1.1.7 Mitochondrial SIRT5: the new role of protein deacylation 

Enzymatic activity of SIRT5 was unclear until recent finding demonstrated that it 

acts as potent demalonylase and desuccinylase [Peng][Du]. Malonyl-lysine and succinyl-

lysine modifications have been identified in a number of organisms, including yeast, 

worms, flies, mice, and humans [Zhang][Peng]. For example, mice lacking SIRT5 

showed global protein hypermalonylation and hypersuccinylation, suggesting that SIRT5 

is the major protein demalonylase and desuccinylase in mammals [Peng]. Accordingly, 

tyrosine 102 (Y102) and arginine 105 (R105), located within the catalytic pocket of 

SIRT5, are required for the demalonylase and desuccinylase activities [Du]. The positive 

charge of this arginine can explain the preference of SIRT5 for negatively charged acyl 

groups, such as malonyl-lysine and succinyl-lysine. Remarkably, these two amino acids 

are specifically conserved across class III sirtuins from lower organisms to mammals 

[Du], but are not conserved between different classes, suggesting a structural basis for 
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distinct enzymatic activities between sirtuin classes.  The biological relevance of these 

two new postmodifications of SIRT5 is currently undiscovered.  

Substrate proteins of demalonylation and desuccinylation of SIRT5 have been 

also identified using a variety of chemical and biochemical methods. Many of the 

malonylated or succinylated proteins identified so far are important metabolic enzymes, 

including IDH2, serine hydroxylmethyltransferase, glyceraldehyde 3-phosphate 

dehydrogenase, GDH, malate dehydrogenase 2, citrate synthase, carbamoyl phosphate 

synthetase 1 (CPS1), HMGCS2, thiosulfate sulfurtransferase, and aspartate 

aminotransferase [Zhang, 2011][Peng, 2011][Du, 2011]. Among these novel enzymatic 

activities, the most known function of SIRT5 as a protein deacetylase is on increasing the 

activity of the urea cycle enzyme CPS1 [Nakagawa]. SIRT5 has also been reported to 

regulate CPS1 activity through desuccinylation [Du]. It raises interest in further studies to 

identify more bona fide substrates of SIRT5 and their physiological significances.  

1.1.8 SIRT6: an additional discovery of protein deacylation   

1.1.8.1 SIRT6 and metabolism  

SIRT6 is found in heterochromatin, where the sirtuin plays a role in histone 

modification of metabolically relevant genes. SIRT6 was shown to negatively regulate 

glycolytic gene expression through deacetylation of histone H3 lysine 9 (H3K9) at their 

promoters [Zhong]. SIRT6 knockout mice show severe hypoglycemia around 4 weeks of 

age [Mostoslavsky, 2006]. In addition, SIRT6 liver-specific knockout mice display 

increased glycolysis and disruption of glucose homeostasis [Kim]. Interestingly, mice 

with neural deletion of SIRT6 have normal glycemia but develop adult-onset obesity 

[Schwer]. In sharp contrast, SIRT6 overexpression protects from diet-induced obesity, 
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with increased glucose tolerance and reduced fat accumulation [Kanfi]. SIRT6 

overexpression also highly decreases the insulin-like growth factor 1 (IGF-1) signaling 

pathway, resulting in increased life span in male mice [Kanfi]. Other studies supporting a 

protective role for SIRT6 activation from the onset of age-related metabolic dysfunction 

(i.e., diabetes and obesity) have been reported, including regulation of the inflammatory 

pathway [Kawahara, 2009], DNA damage response [Mostoslavsky, 2006][Kaidi], and 

genomic integrity [Michishita, 2009][Yang, 2009].  

In a most recent study reported that human SIRT6 efficiently removes long-chain 

fatty acyl groups, such as myristoyl, from lysine residues [Jiang]. SIRT6 promotes the 

secretion of tumor necrosis factor-α (TNF-α) by removing the fatty acyl modification on 

lysine 19 (K19) and lysine 20 (K20) residues of TNF-α [Jiang]. The discovery of SIRT6 

in regulation of protein lysine fatty acylation shed light on new opportunities to 

investigate the physiological relevance of a little known protein post-translational 

modification.  

1.1.8.2 SIRT6 and cancer  

Current evidence indicates that SIRT6 is important in the preservation of genomic 

integrity from DNA damage and stress stimuli [Michishita, 2008][Yang, 2009][Mao]. For 

example, SIRT6 knockout mice have an impaired DNA damage response, including 

genomic instability by irradiation [Mostoslavsky, 2006]. Notably, although SIRT6 

transgenic mice do not show a remarkable decrease in age-associated tumor formation 

[Kanfi], SIRT6 overexpression may still be considered as protective against 

tumorigenesis.  Further studies are required for the application of SIRT6 activation as a 

therapeutic strategy in cancer.  
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1.1.9 SIRT7 

1.1.9.1 SIRT7 and cardiovascular/metabolism functions  

Although SIRT7 is least characterized among the seven mammalian sirtuins, the 

outlook for future studies of this protein seem promising. SIRT7-deficient mice develop a 

lethal heart hypertrophy [Vakhrusheva, 2008]. This phenotype can be explained via the 

role of SIRT7 to deacetylate and activate p53 leading to increased apoptosis in the 

myocardium [Vakhrusheva, 2008]. Further studies are needed to identify more SIRT7 

targets relating to cardiovascular function.  

A recent study has reported that SIRT7 negatively regulates hypoxia-induce factor 

1 alpha (HIF-1α) and HIF-2α protein levels in a non-enzymatic mechanism that is 

independent of prolyl hydroxylation and proteasomal or lysosomal degradation [Hubbi, 

2013].  

Interestingly, SIRT7 deacetylates and activates polymerase-associated factor 53 

PAF53, a subunit of RNA polymerase I (Pol I) at lysine 373 [Chen, 2013]. SIRT7 is 

released from nucleoli in response to different stress conditions, leading to 

hyperacetylation of PAF53 and decreased Pol I transcription [Chen, 2013]. Remarkably, 

SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver 

disease [Shin, 2013]. This phenotype of fatty liver can be relieved by Myc inactivation or 

pharmacological suppression of endoplasmic reticulum (ER) stress [Shin, 2013].  

1.1.9.2 SIRT7 and cancer  

An additional deacetylation target of SIRT7, H3K18, was recently identified 

[Barber]. Surprisingly, hypoacetylation at H3K18 has been linked to aggressive cancer 

phenotypes [Seligson, 2009]. Furthermore, Myb-binding protein 1a Mybbp1a is capable 
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of inhibiting the deacetylation activity of H3K18Ac by SIRT7 [Karim]. In fact, SIRT7 

knockdown reduces tumor growth of human cancer cell xenografts in mice 

[Barber][Kim]. Notably, SIRT7 inhibits transcriptional activation of p21 (WAF1/Cip1) 

by repressing miR-125a-5p and miR-125b-tumor suppressors [Kim]. In another recent 

study demonstrated that SIRT7 knockdown efficiently suppresses both RNA and protein 

synthesis via regulating Pol III transcription through the mammalian target of rapamycin 

mTOR and the transcriptional factor IIIC2 (TFIIIC2) complex, thereby inhibits tumor 

growth [Tsai]. Taken together, SIRT7 downregulation appears to have an anti-tumor 

effect, partly through inhibition of protein synthesis. 

1.2 Mitochondria and ATP production 

During aerobic growth in nonphotosynthetic cells, mitochondria convert nutrient 

influx into ATP for cellular energy supply by mitochondrial OXPHOS,and also generate 

ROS due to electron leakage from the respiration chain to molecular oxygen [Schonfeld, 

2008]. The respiratory complex performs a sequence of redox reactions in which 

electrons passing through a series of enzymes, located in the inner mitochondrial 

membrane, release free energy for the translocation of protons across this membrane 

[Chaban]. This proton flow from the matrix to the intermembrane space creates a 

difference in proton electrochemical potential, called the proton-motive force or 

mitochondrial membrane potential (Δψm) ([Saraste, 1999]. This force is used by different 

energy transducers for OXPHOS, such as membrane bound ATP-synthase to synthesize 

ATP from ADP and phosphate [Saraste, 1999][Mitchell, 1961]. OXPHOS supports two 

important cell functions, the redox state maintenance (mainly nicotinamide adenine 

dinucleotide (NADH) reoxidation) and ATP synthesis [Saraste, 1999][Mitchell, 1961].  
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Interestingly, all living organisms need to maintain both a high phosphate 

potential and an intracellular redox balance for sustained metabolic function [Saraste, 

1999]. The cells need to have mechanisms to adapt to physiological fluctuations by 

varying the ratio of ATP/O (ATP synthesis over oxygen consumption - NADH 

reoxidation) in response to different demands in energy. There are several mechanisms 

that affect to ATP/O ratio to allow for modulation between ATP synthesis and NADH 

reoxydation.  First, the passive proton leak decreases the coupling efficiency to reduce 

the rate of ATP synthesis [Nobes, 1990]. This mechanism is dependent on the proton-

motive force and cannot be widely modulated [Nobes, 1990].  Second, uncoupling 

proteins (UCPs), discussed in more detail below, allow modulation of membrane proton 

permeability by dissipating the proton gradient before it can be used to provide energy for 

OXPHOS. Third is H
+
 transport, which is well established and highly regulated by 

guanosine triphosphate (GTP) as an inhibitor, and fatty acids as a stimulator [Nicholls, 

1984]. One example of this is facilitated H
+
 transport.  This function has been reported in 

yeast with a decrease in the proton-motive force by the activity of external NADH or 

glyceraldehyde 3-phosphate (G3P) dehydrogenases, leading to a decrease in redox 

pressure with little effect on ATP synthesis [Mourier]. In Saccharomyces cerevisiae, for 

example, complex I is not expressed, and the NADH and other dehydrogenases are not 

coupled to proton flux. These findings result in an increase in proton permeability 

associated with a high activity of these dehydrogenases is independent of the rest of the 

respiratory chain and the ATP synthase proton pump [Mourier]. Lastly, slip or intrinsic 

uncoupling is a mechanism tht decreases the efficiency of a proton pump because of a 

partial and variable decoupling of the chemical reaction from the proton transport 

http://en.wikipedia.org/wiki/Proton
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[Luvisetto, 1991]. In summary, cells use different mechanisms including passive proton 

leak, uncoupling protein generated heat, proton transport and proton permeability, and 

intrinsic uncoupling to modulate the balance between redox state and ATP synthesis.  

1.3 Adenine Nucleotide Translocators (ANTs) 

Adenine nucleotide translocator (ANT), also known as the ADP/ATP translocator, 

is the most abundant protein in the inner mitochondrial membrane [Kaukonen, 2000]. 

There are four ANT isoforms (ANT1, ANT2, ANT3, and ANT4) with their distinct 

tissue-specific expression patterns. ANT1 is majorly expressed in the heart, skeletal 

muscle, and brain. ANT2 predominates in the liver and in proliferating cells. ANT3 is 

ubiquitously expressed, and ANT4 is found in the liver, testis, and undifferentiated 

embryonic stem cells [Dolce, 2005]. 
 

ANT plays an important role in the translocation of ATP and ADP across the 

mitochondrial matrix [Kaukonen, 2000].
 

ANT exchanges ATP synthesized in the 

mitochondria for cytosolic ADP in order to supply continuous ADP for maintaining the 

OXPHOS process in mitochondria. ATP/ADP exchange by ANT is crucial for the 

maintenance of ATP synthase activity and normal levels of mitochondrial membrane 

potential (Δψm) [Vander Heiden, 1999]. Conversely, in the cellular context of impaired 

function of ATP/ADP exchange, ANT displays an essential role in inducing cell 

apoptosis and generating ROS [Bakker, 2000][Won].  

1.3.1 ANT and apoptosis 

Mitochondrial membrane permeabilization (MMP) is a rate-limiting step of 

apoptosis and is modulated by the mitochondrial permeability transition pore (mtPTP) 

[Halestrap, 2009]. mtPTP is a nonspecific pore, permeable to all molecules of less than 

http://en.wikipedia.org/wiki/Adenosine_diphosphate
http://en.wikipedia.org/wiki/Adenosine_triphosphate
http://en.wikipedia.org/wiki/Inner_mitochondrial_membrane
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1.5 kDa, and is formed by the voltage-dependent anion channel (VDAC), the 

proapoptotic and antiapoptotic Bax/Bcl2 protein family members, cyclophilin D, and the 

ANTs [Zoratti, 1995]. mtPTP opening causes swelling of the mitochondrial matrix and 

rupturing of the outer membrane to allow the release of cytochrome c and other 

proapoptotic proteins into the cytosol [Halestrap, 2009]. Interestingly, ANT is thought to 

be part of the mtPTP complex [Halestrap, 1990], however, ANT has been reported to 

interact with VDAC located in the outer mitochondrial membrane to form a large protein-

permeable channel [Leung, 2008]. Moreover, liver mitochondria from ANT knockout 

mice can still undergo normal permeability transition resulting in release of cytochrome c 

but need more Ca2+ than usual to activate the mtPTP. Interestingly, once the mtPTP was 

activated, it could no longer be regulated by ANT ligands [Kokoszka, 2004]. In addition, 

hepatocytes without ANT remained competent to respond to various initiators of cell 

death [Kokoszka, 2004]. Therefore, ANTs are non-essential structural components of the 

mtPTP, although they do contribute to regulation of mtPTP. Despite these arguments, 

ANT is still considered to have an important role in the genesis of mtPTP [Leung]. 

1.3.2 ANT and mitochondrial uncoupler 

The flow of electrons through the electron transport chain (ETC) of cellular 

respiration is tightly coupled to ATP synthesis under physiological conditions [Boudina, 

2006]. In other words, mitochondrial oxygen consumption is tightly coupled to ATP 

synthesis, such that the two sets of reactions cannot occur without the other.  More 

specifically, the proton flux re-enters the matrix via the F0F1 ATPase to regenerate ATP 

from ADP through coupling OXPHOS. A small proportion of proton can bypass the F0F1 

ATPase, leading to mitochondrial oxygen consumption that is not coupled to ATP 
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synthesis (mitochondrial uncoupling) [Boudina, 2006]. UCP1, a protein found in the 

inner mitochondrial membrane of brown adipose tissue, as described previously, 

regulates this process [Nicholls, 1984]. Following, four more UCP homologues have 

been discovered (UCP2, UCP3, UCP4 and UCP5/BCMP1 [brain mitochondrial carrier 

protein 1]) [Ledesma, 2002]. These proteins mediate proton leak across the mitochondrial 

membrane and decrease Δψm [Teshima, 2003], thereby decreasing ATP production. Since 

ROS production parallels an increase in Δψm, UCP-mediated uncoupling has been 

proposed to play a role in decreasing mitochondrial ROS production [Teshima, 

2003][Lee, 2005]. This implicates a possible mechanism in which mitochondria protect 

themselves from oxidative damage through uncoupling [Brand, 2005], which may delay 

mitochondrial ROS production, protect against cellular damage, and reduce insulin 

secretion [Brand, 2005]. Therefore, uncouplers are important potential targets for 

treatment of aging, degenerative diseases, diabetes, and, perhaps, obesity [Brand, 2005]. 

Several reports suggested that ANT is also a mitochondrial uncoupler and is 

responsible for basal uncoupling or proton leak [Boudina, 2006]. In rodents, ANT1 and 

ANT2 were shown to mediate uncoupling by fatty acids and to lower mitochondrial 

membrane potential in heart and skeletal muscle [Roussel, 2000]. Additionally, ANT1-

deficient mice were demonstrated to have a 50% decrease in proton conductance in 

skeletal muscle [Brand, 2005]. Furthermore, a 4-hydroxy-2-nonenal-induced proton leak 

could be inhibited by the ANT inhibitor carboxyatractyloside [Echtay, 2003]. These 

observations suggest that ANT might decrease mitochondrial ROS production by 

functioning as an uncoupler. 
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1.3.3 ANT and metabolic symdrome (impairs ATP/ADP translocase activity)  

Obesity is known to be associated with increased cytosolic triglyceride stores in 

non-adipose tissue such as muscles, liver and pancreatic β cells [Oakes, 1997][Lee, 

1997][Bakker, 2000]. Cytosolic triglyceride is a source of long chain acyl-CoA esters 

(LCACs), the metabolicly active form of fatty acids. LCACs might be accumulated under 

pathological conditions with excess lipid supply, such as obesity, and mitochondrial fatty 

acid β-oxidation defect [Franch, 2002]. LCACs were shown to inhibit the ATP/ADP 

translocase activity of the ANT by competitive displacement of the nucleotide from its 

binding site on the protein. Accordingly, increased concentrations of LCACs in the cell 

contribute to mitochondrial dysfunction in metabolic defects through inhibition of the 

ANT [Bakker, 2000][Ciapaite, 2006]. Inhibition of ATP/ADP translocase activity lowers 

cytosolic ATP and matrix ADP availability, and increases mitochondrial membrane 

potential (Δψm) [Bakker, 2000]. These reactions promote the formation of ROS, resulting 

in impaired cellular functions and cell death [Bakker, 2000][Ciapaite, 2006]. 

1.3.4 ANT and PGC-1α (increase ATP/ADP translocate activity preventing 

endothelial apoptosis)  

PGC-1α is a transcriptional coactivator of nuclear receptors and plays an important 

role in energy metabolism [Lin, 2005], mitochondrial biogenesis [Lin, 2005] and 

intracellular ROS [St-Pierre, 2006]. In a recent study, PGC-1α has been reported to 

regulate ROS generation and endothelial cell apoptosis by increasing FAO and enhancing 

ATP/ADP translocase activity by ANT [Won]. It is well known that fatty acids, such as 

linoleic acid (LA), increase ROS generation and cell apoptosis in endothelial cells [Lee, 

2005]. In addition, LA increased the mRNA and protein expression of antioxidant 
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enzymes, including manganese superoxide dismutase, copper-zinc superoxide dismutase, 

catalase, glutathione peroxidase, and uncoupling protein2 (UCP2), consistent with the 

notion that oxidative stress can induce cellular antioxidant responses [Bianchi, 2002]. 

Interestingly, LA significantly increased ANT1 expression and decreased ATP/ADP 

translocase activity, with a significant increase in Δψm (hyperpolarization) and ROS 

generation [Won]. Surprisingly, inhibitors of fatty acyl CoA synthase and ceramide 

synthase decreased LA-induced effects on ATP/ADP translocase activity [Won]. This 

suggests that lipid metabolites, such as LCAC, diacylglycerol, and ceramide caused an 

LA-induced impairment of ATP/ADP translocase activity [Won]. These results also 

imply that increased ROS generation with LA may be responsible for the increase in 

ANT1 expression. More importantly, changes in ANT1 expression may not account for 

the decrease in ATP/ADP translocase activity with LA. 

1.4 AMPK activation and metabolism  

In mammalian cells, AMPK was activated by an increase in cellular 5' adenosine 

monophosphate-activated protein (AMP), ADP or Ca2+ under different metabolic 

conditions. This mechanism of AMPK activation may explain reduced production of 

ATP during stress, such as starvation for glucose [Salt, 1998] or oxygen supply [Marsin, 

2000], a chemically-induced cellular stress response [Corton, 1994], or by stresses that 

increase ATP consumption, such as muscle contraction [Winder, 1996].  AMPK is also 

turned on by several drugs and xenobiotics, including antidiabetic drugs (such as 

metformin, phenformin and thiazolidinediones [Fryer, 2002][Zhou, 2001]), resveratrol 

from grapes and red wine [Baur, 2006], epigallocatechin gallate from green tea, capsaicin 



  45 

from peppers [Hwang, 2005], curcumin from turmeric [Lim, 2009],
 
and even garlic 

[Lee]) and plant products (berberine [Lee, 2006] and hispidulin [Lin]).  

Increasing evidence has shown that some cellular stresses activate AMPK by non-

classical mechanisms that may not involve increases in AMP, ADP or Ca2+ levels. 

AMPK is activated by ROS, such as hydrogen peroxide (H2O2), in a cell culture model 

[Alexander] or by DNA damaging agents such as etoposide [Fu, 2008], doxorubicin [Ji] 

and ionizing radiation [Sanli]. Interestingly, at high ROS concentrations, AMPK 

activation might be secondary to the inhibition of mitochondrial ATP synthesis, with 

consequent rises in AMP and ADP levels [Alexander]. This non-canonical AMPK 

activation of pathways may be more direct through oxidation or glutathionylation of two 

conserved Cys residues in the AMPK α-subunit [Zmijewski] or cytoplasmic form of the 

phosphoinositide 3-kinase-like kinase (PIKK) ataxia telangiectasia mutated (ATM) 

[Alexander]. 
 
Nuclear ATM has a role in the DNA damage-sensing pathway and in the 

response to oxidative stress
 
 [Ditch, 2009]. In another word, some interesting pathways 

including ROS and ATM dependent that can activate AMPK, leading to secondary 

alterations in AMP and ADP concentrations to redirect cellular metabolism from anabolic 

and energy-consuming processes. 

Cells turn on metabolic switch, specifically fatty acid metabolism to adapt changes in 

AMP and ADP levels upon AMPK activation. The activation of the AMP-activated 

protein kinase leads to phosphorylation and inactivation of the enzyme acetyl-CoA 

carboxylase (ACC) under the control of malonyl-CoA levels, and thus FAO, during 

exercise [Winder, 1996]. Cytosolic malonyl-CoA is synthesized by carboxylation of 

acetyl-CoA by ACC.  In contrast, the decarboxylation of malonyl-CoA by MCD 

http://www.nature.com/nrm/journal/v13/n4/glossary/nrm3311.html#df11
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regenerates acetyl-CoA [Sarggerson, 2008]. On the other hand, the mitochondrial 

malonyl-CoA, is generated by activity of propionyl-CoA carboxylase (PCC) on acetyl-

CoA, with the reverse reaction again catalyzed by MCD [Saggerson, 2008]. The activities 

of both ACC and MCD are regulated by many physiological factors including glucose, 

insulin, or AMPK, through allosteric or phosphorylation mechanisms [Saggerson, 2008]. 

Malonyl-CoA is not only the precursor for de novo FA synthesis but is also an inhibitor 

of FAO. Specifically, Malonyl-CoA binds to and inhibits CPT1 on the mitochondrial 

outer membrane, leading to the inhibition of the transport of FAs into mitochondria for β-

oxidation [Saggerson, 2008]. In mammals, there are two ACC isoforms, ACC1 and 

ACC2, with distinct tissue expression and function. ACC1 is dominant in lipogenic 

tissues where it produces malonyl-CoA in the cytoplasm for lipogenesis.  Meanwhile, 

ACC2 is highly expressed in oxidative tissues where it negatively regulates FA oxidation 

[Tong, 2005]. ACC2 is proposed to inhibit CPT1 by creating a local high concentration 

of malonyl-CoA at the mitochondrial outer membrane [Abu-Elheiga, 2000]. Activation of 

AMPK leads to decreased Malonyl-coA by down-regulating ACC activity, resulting in 

inhibiting fatty acid synthesis, and increasing fatty acid oxidation. 
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2.1 Abstract 

Efficient coupling of cellular energy production to metabolic demand is crucial to 

maintain organismal homeostasis. Here, we report that the mitochondrial sirtuin, Sirt4, 

regulates mitochondrial ATP homeostasis. We found that Sirt4 affects mitochondrial 

uncoupling via the adenine nucleotide translocator 2 (ANT2). Loss of SIRT4 expression 

led to decreased cellular ATP levels in vitro and in vivo, while SIRT4 overexpression 

was associated with increased ATP levels. Further, we provide evidence that lack of 

SIRT4 activated a retrograde signaling response from the mitochondria to the nucleus 

that includes AMPK, PGC1-, key regulators of -oxidation, such as Acetyl-CoA 

carboxylase, and components of the mitochondrial respiratory machinery. This study 

highlights the ability of Sirt4 to regulated ATP levels via ANT2 and a feedback loop 

involving AMPK. 

Keywords: Sirt4, ANT2, AMPK, ATP, mitochondrial signaling 
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2.2 Introduction 

Maintenance of energy balance is vital for cellular and organismal physiology. In 

addition to affecting cellular functions, deregulated energy homeostasis is associated with 

metabolic diseases, such as obesity and diabetes. Rates of utilization and metabolic fates 

of carbohydrates and lipids are coupled to the energy demands of a cell (and an 

organism). Organismal energy balance is regulated by multiple mechanisms and involves 

mitochondria, which contain the main intracellular machinery for ATP production. As 

such, mitochondria are key components that couple metabolic inputs to energy 

homeostasis. Integration of factors intrinsic and extrinsic to mitochondria affects 

mitochondrial functions to maintain the balance between metabolic inputs and energy 

homeostasis [Nunnari].  

Sirtuins are NAD
+
-dependent enzymes that mediate cellular physiology in response 

to metabolic inputs and energy demands [Schwer, 2008][Haigis]. While all sirtuins rely 

on NAD
+
 as a cofactor [Imai, 2000][Ghosh], only SIRT1, 2, and 3 exhibit robust 

deacetylase activity, and SIRT5 and 6 exhibit novel deacylase catalytic activities 

[Jiang][Kawahara, 2009][Du][Mostoslavsky, 2006][Laurent]. Three mitochondrial 

sirtuins, SIRT3, SIRT4 and SIRT5 in mammals, affect cellular and organismal 

physiology by regulating mitochondrial functions [Huang][Verdin]. SIRT4, the 

evolutionarily conserved mitochondrial sirtuin in metazoans, was initially identified as an 

ADP-ribosylase [Haigis, 2006] and shown to regulate insulin secretion [Haigis, 

2006][Ahuja, 2007]. In addition, the ability of SIRT4 to regulate glutamine metabolism 

via GDH has been shown to be important for cancer development [Jeong][Csibi]. SIRT4 

is a critical regulator of fat metabolism [Nasrin][Laurent]. SIRT4 deficiency leads to 
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increased β-oxidation, which involves an increased transcription of FAO genes in the 

nucleus [Nasrin]. However, the mechanism by which SIRT4 in mitochondria regulates 

nuclear transcriptional response is unknown. Recently, SIRT4 was shown to possess 

deacetylase activity [Laurent], and its ability to deacetylate malonyl-CoA-decarboxylase 

(MCD) has been implicated in regulating fat metabolism. In agreement with this finding, 

SIRT4 knockout mice burn more fat and hence are protected from high fat diet-induced 

obesity [Laurent].  

The metabolic switch between carbohydrate and fat is coupled with ATP 

homeostasis [Hock, 2009][Locasale]. Specifically, at the mitochondrial level, the 

transition between fed and starved conditions is regulated by mechanisms that alter 

carbon chain utilization to match cellular energy demand [Hock, 2009][Locasale]. 

Despite this knowledge, it is still unclear if SIRT4 has a role in controlling cellular ATP 

levels as an underlying cause of the described phenotypes of SIRT4 deficiency in cells 

and animals. Thus, understanding the function of SIRt4 in coupling metabolic flux and 

energy homeostasis is of major importance, and could potentially be exploited 

therapeutically. 

  AMPK is a central sensor of cellular energy status [Hardie, 1997][Steinberg, 

2009]. During energy-deprived conditions, such as starvation, fat oxidation is increased 

and mitochondrial functions are elevated [Hardie, 1997][Nunnari]]. AMPK 

phosphorylates and inhibits ACC, leading to a decrease in malonyl-CoA levels, which 

ultimately results in increased CPT1-dependent transport and oxidation of fatty acids in 

mitochondria [Munday, 1988][Winder, 1997][Saggerson, 2008]. AMPK also regulates 

the expression of nuclear-encoded mitochondrial genes via the peroxisome proliferator-
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activated receptor gamma coactivator-1α (PGC-1α) [Steinberg, 2009][Hock, 

2009][Hardie]. AMPK-dependent phosphorylation of PGC-1α results in increased 

transcription of genes involved in FAO and mitochondrial biogenesis [Steinberg, 

2009][Hock, 2009][Hardie][Canto, 2009]. Although AMPK senses AMP/ATP ratios, its 

role in mediating retrograde signaling from mitochondria to nucleus (and particularly, in 

a sirtuin-dependent manner) is poorly appreciated. 

In this study, we have investigated the role of SIRT4 in energy homeostasis. 

Moreover, we establish a functional relationship between SIRT4 and the ANT2, which is 

also known to act as an uncoupler [Klingenberg, 2008][Halestrap, 2003][Fiore, 1998]. 

Our results describe a SIRT4-dependent molecular mechanism that mediates a retrograde 

signaling to the nucleus. 

2.3 Materials and methods 

2.3.1 Antibodies and Reagents 

Antibodies used were specific for monoclonal and polyclonal AMPK, Phospho-

AMPK (Thr172), Acetyl-CoA Carboxylase (ACC), Phospho-ACC (Ser79) (Cell 

Signaling Technology), PGC-1 (Millipore and Sant Cruz), and SIRT4 (generous gift 

from Marcia Haigis (as described [Haigis, 2006])), FLAG-M2, MYC, Tubulin and -

Actin (Sigma Aldrich). Medium 199 (for culturing primary hepatocytes), Oligomycin, 

Trifluorocarbonylcyanide phenylhydrazone (FCCP), Rotenone and XF Assay medium 

(Seahorse Bioscience or Sigma Aldrich), AICAR, pyruvate and 2-deoxy glucose (Sigma 

Aldrich). Fetal bovine serum (FBS) and Horse serum (Invitrogen), and DMEM (Sigma 

Aldrich). 
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2.3.2 Animal Studies 

All animal studies were performed using IACUC-approved protocols. Studies 

used male WT littermate and SIRT4KO 129Sv mice [Haigis, 2006], at 10-14 weeks of 

age, maintained on a standard chow diet (5053 PicoLab diet), unless otherwise indicated. 

Mice were sacrificed at 7 hours for fed mouse studies, or transferred to a new cage 

without food for 18 hours (overnight), and then sacrificed for fasted mouse studies. 

2.3.3 Cell Culture and treatments 

HEK293T, HepG2, C2C12 and HHL-17 [Clayton, 2005] cells were grown in 

DMEM supplemented with 10% FBS containing 5 mM (low) or 25 mM (high) glucose. 

Confluent C2C12 cells differentiated into myotubes using 1% horse serum. Cells were 

grown in high glucose medium unless otherwise mentioned. Transfected cells were 

treated with 20 mM 2-deoxy-glucose (2-DG) for 2 hours to transiently inhibit glycolysis 

and 500 µM AICAR for 16 hours for AMPK activation. Cells treated with PBS or DMSO 

were used as controls.  

2.3.4 Transfection 

For SIRT4 and ANT2 overexpression, cells were either stably transfected and 

selected on puromycin or transiently transfected. Empty pBABE-puro or pcDNA3.1 were 

used for control transfection. 20 nM (unless mentioned otherwise) of scrambled and 

SIRT4 siRNAs were transfected in HEK293T and 50 nM in C2C12. Lipofectamine 2000 

(Invitrogen) was used for transfections per manufacturer instructions. 
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2.3.5 ATP and ADP/ATP ratio measurement 

ATP was measured spectrophotometrically as described previously [Saha] using 

the method of Oliver H and Lowry JVP (A flexible system of enzymatic analysis, 

Academic Press, 1972, p 151-153). Total ATP and ADP/ATP from cells were determined 

using ATP bioluminescence assay mix (Sigma Aldrich) and ADP/ATP kits 

(Mitosciences), respectively. 

2.3.6 Immunoblot analysis 

Organs were harvested and homogenized using a tissue homogenizer. Cell and 

tissue lysates were prepared at 4°C in ice-cold RIPA buffer (50 mM Tris [pH 7.4], 0.1% 

SDS, 0.5% sodium deoxycholate, 150 mM NaCl, 1% NP40) containing protease 

inhibitors (EDTA-free Complete; Roche Molecular Biochemicals)), halt or PHOSTOP 

phosphatase inhibitor cocktail (Thermo scientific and Roche). The lysates were clarified 

by centrifugation for 15 minutes at 4°C at 14,000 rpm and protein concentrations were 

estimated by BCA assay. The lysates were resolved on SDS-PAGE gel, 

electrophoretically transferred, immunoblotted and signal was detected using ECL 

(Amersham Biosciences, Thermo Scientific or Roche).  

2.3.7 Plasmids, siRNA and Primers 

Human SIRT4 and ANT2 cDNAs were cloned into pBABE-puro and pCDNA3.1 

vectors, respectively. Scrambled and SIRT4 siRNAs were obtained from Imagenes and 

Sigma Aldrich. ANT1 and ANT2 siRNAs were obtained from Sigma Aldrich. List of 

primers used for cloning is provided in Supplementary Table 1.  
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2.3.8 RNA isolation and quantitation 

Total RNA was isolated using Trizol reagent (Invitrogen) and reverse transcribed 

using random hexamers and SuperScript-III kit (Invitrogen). Real-time PCR was carried 

out using primer pair listed in Supplementary Table 1 using Eppendorf or Roche real-

time machines, and SYBR kit (Kapa Biosystems ). 

2.3.9 Oxygen consumption 

For primary hepatocytes from SIRT4KO and WT littermates: Oxygen 

consumption rates (OCR) and extracellular acidification rates (ECAR) were measured in 

XF assay media (nonbuffered DMEM containing 25 mM glucose, 2 mM L glutamine, 

and 2 mM sodium pyruvate) under basal conditions and in response to 1 uM oligomycin, 

0.5 uM fluoro-carbonyl cyanide phenylhydrazone (FCCP), and 2 uM rotenone with the 

Seahorse XF-96 Extracellular Flux Analyzer (Seahorse Bioscience). The XF-96 measures 

the concentration of oxygen and free protons in the medium above a monolayer of cells 

in real-time. Protein concentration was determined for each well using a standard BCA 

protein assay. OCR and ECAR values are normalized to mg/protein and plotted as the 

mean ± standard deviation.  

For cultured cells: Cells were trypsinized and oxygen consumption flux was 

determined using OROBOROS high resolution respirometer in DMEM (with 25 mM 

glucose and 2 mM L glutamine with or without 2 mM pyruvate) under basal and in 

response to 2.5 mM rotenone, 10 mM succinate, 1 mM ADP, 1 mM orthophosphate (Pi), 

0.5 µM FCCP and 1 mg/mL oligomycin. Two million cells in a total volume of 2.1 ml 

were used for the assays.  
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2.3.10 ATP synthase activity assay  

Complex-V enzyme activity was measured with ATP synthase enzyme activity 

microplate assay kit (Mitosciences) according to manufacturer instruction. Briefly, the 

ATP synthase enzyme, from equal amounts of mitochondria, isolated from cells (as 

described above), was immunocaptured within the wells of the microplate and the 

enzyme activity was measured.  

2.3.11 Estimation of mtDNA 

Total genomic DNA was isolated using the genomic DNA isolation kit 

(Bangalore Genei/Merck). The relative mitochondrial DNA (mtDNA) content was 

quantified by qRT-PCR, using primers for cytochrome b (mitochondrial genomic DNA) 

and nuclear β-Actin (for nuclear genomic DNA). 

2.3.12 Data processing and Statistical Analyses 

Student’s T-test and analysis of variance (ANOVA) were used for statistical 

analysis (p value: * < 0.05, ** < 0.01, *** < 0.001, or as indicated). Microsoft Excel was 

used for data processing, and statistical significance was calculated using Excel or 

Sigmaplot. Results are given as the mean ± standard error. All experiments were 

performed at least three times. 

2.4 Results  

2.4.1 SIRT4 regulates cellular ATP levels  

To test whether SIRT4 regulates cellular bioenergetics, we assayed for total ATP 

in cells after upregulating or downregulating SIRT4 expression in several cell types 

(Figure 2.1 A-F and Figure 2.9 [Supplementary Figure S1A]). Overexpression of SIRT4 
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led to an increase in cellular ATP in both HEK293T and HHL-17 cells (Figure 2.1 B and 

C). Conversely, knocking down endogenous SIRT4 led to a marked decrease in total 

ATP in HepG2, HEK293T and C2C12 myotubes (Figure 2.1 D-F and Figure 2.9 

[Supplementary Figure 1A]).  

Next, we tested whether SIRT4 is involved in energy homeostasis in vivo. 

Measurement of total ATP levels in muscles and liver from wild-type and SIRT4 

knockout (SIRT4KO) mice showed a significant decrease in ATP content in SIRT4KO 

tissues (Figure 2.1G and H; Figure 2.10 [Supplementary Figure S1B]). Interestingly, lack 

of SIRT4 led to reductions in ATP under both fed and starved conditions (Figure 2.1G 

and H).  

The total cellular ATP pool is affected by ATP production from glycolysis and 

mitochondrial OXPHOS [Locasale]. To determine if the SIRT4-dependent increase in 

ATP was due to mitochondrial ATP synthesis, ATP levels were measured in cells treated 

for 2 hours with 2-deoxy-glucose (2-DG), an inhibitor of glycolysis. Interestingly, the 

difference in total ATP levels was maintained in 2-DG treated cells (Figure 2.9 

[Supplementary Figure S1C]). To determine whether this change was secondary to an 

elevated total nucleotide pool or a change in ATP homeostasis, we measured ADP/ATP 

ratios. We found that cells overexpressing SIRT4 have a lower ADP/ATP ratio than 

controls (Figure 2.9 [Supplementary Figure S1D]). Conversely, ADP/ATP ratios 

increased in SIRT4KO tissues (Figure 2.9 [Supplementary Figures S1E and S1F]). 

Therefore, these data provide evidence that SIRT4 regulates ATP synthesis within 

mitochondria. 
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2.4.2 Sirt4 regulates mitochondrial respiration via ANT2-mediated coupling 

efficiency  

Net changes of intracellular ATP levels are a function of its production and 

consumption. Mitochondrial respiration and the coupled flux through the ETC drive ATP 

synthesis. To determine if components of cellular ATP production are regulated by 

SIRT4, we examined mitochondrial respiration in loss- and gain-of-function experiments. 

Since endogenous SIRT4 expression was drastically reduced during fasting (Figure 

2.2A), we wanted to assess the effect of SIRT4 perturbations on respiration under normal 

and conditions that mimick starvation by adding 2 mM pyruvate to the culture medium 

[Rodgers, 2005]. Transient knockdown of SIRT4 in HEK293T cells led to increased 

oxygen consumption under basal and FCCP treated conditions (Figure 2.2B). In contrast, 

SIRT4 overexpression (SIRT4OE) led to decreased oxygen consumption (Figure 2.2C). 

Interestingly, knocking down SIRT4 in cells under starvation-like conditions abolished 

the difference in basal oxygen flux (Figure 2.2D). In agreement with these findings, basal 

oxygen consumption was unaffected in primary hepatocytes (media supplemented with 

pyruvate) isolated from SIRT4KO mice. However, oxygen consumption during FCCP-

mediated uncoupling was much greater in SIRT4KO mice than in control animals (Figure 

2.2E). The rate of extracellular acidification, which indicates the amount of glycolysis 

within a cell, remained unchanged (Figure 2.2F).  

To test whether SIRT4 directly affects ATP synthase activity, we measured the 

activity of immunocaptured ATP-synthase and detected a comparable enzymatic activity 

in control and SIRT4OE cells (Figure 2.9G [Supplementary Figure 1G]). Failure to 

maintain ATP levels despite increased oxygen consumption in SIRT4-deficient cells and 
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the lack of change in ATP-synthase activity indicate that SIRT4 affects the coupling of 

ETC flux to ATP production and OXPHOS efficiency. 

UCPs and ANTs regulate the coupling efficiency of the electrochemical gradient 

across the inner mitochondrial membrane. Interestingly, ANTs have a dual role in 

regulating energy homeostasis: they transport ADP-ATP across the inner mitochondrial 

membrane, and they act as uncoupling proteins. Acylated ANTs uncouple mitochondria 

and reduce the efficiency of OXPHOS [Klingenberg, 2008][Forman, 1983][Brustovetsky, 

1994]. Moreover, uncoupling in the liver predominantly depends on ANT2 [Shabalina, 

2006]. Our results show that SIRT4-dependent changes in ATP and mitochondrial 

respiration correlate negatively.  

Since we previously reported that SIRT4 interacts with endogenous ANT2 

[Ahuja, 2007], we tested whether SIRT4 affects the coupling efficiency of OXPHOS in 

an ANT2-dependent manner and determined whether SIRT4-dependent changes in 

oxygen consumption are due to coupling efficiency. The reduced oxygen flux in 

SIRT4OE cells was lost when cells were treated with Rotenone (inhibitor of complex-I) 

(Figure 2.3A). Further, the difference between control and SIRT4OE cells was retained 

when permeabilized cells were provided with succinate and ADP/Pi (Figure 2.3B). This 

difference in oxygen consumption (when succinate was provided as a substrate) also 

ruled out possible effects from alterations in SIRT4-mediated and GDH-dependent 

changes in TCA flux via a-ketoglutarate (a-KG). Importantly, the decrease and increase 

in oxygen consumption observed in SIRT4KD and in SIRT4OE cells was insensitive to 

Oligomycin treatment (ATP synthase inhibitor) (Figure 2.3C, D; Figure 2.11 
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[Supplementary Figure 3]). Based on these results, we conclude that SIRT4 regulates 

coupling efficiency.  

Next, we tested whether the increased uncoupling in SIRT4KD cells was 

mediated by ANT2. As shown earlier, knocking down SIRT4 led to increased oxygen 

consumption (Figure 2.3C, D). Interestingly, downregulation of ANT2 in these cells 

suppressed the basal rate of respiration (Figure 2.3C, D). Importantly, the oxygen flux 

between SIRT4KD and SIRT4KD/ANT2KD was significantly different post-Oligomycin 

treatment (Figure 2.3). Knocking down ANT2 along with SIRT4 restored oxygen 

consumption to control levels (Figure 2.3D). These results indicate that SIRT4 regulates 

coupling efficiency in an ANT2-dependent manner. 

2.4.3 SIRT4 regulates ATP in an ANT2-dependent manner  

The results presented above prompted us to investigate whether the SIRT4-ANT2 

interaction was required for maintaining cellular ATP levels. As shown earlier, we 

detected elevated ATP levels in SIRT4OE cells. Importantly, this increase was reduced to 

control levels when ANT2 was knocked down simutaneously (Figure 2.4A and Figure 

2.10 [Supplementary Figure S2A]).  

ANT protein family members are expressed in a tissue-specific manner and may have 

different functions [Klingenberg, 2008][Doerner, 1997]. While mice have two proteins 

(ANT1 and ANT2), humans have four (ANT1–4) [Doerner, 1997]. Of these four, the 

functions of ANT1 and ANT2 are well characterized. To check if the ability of SIRT4 to 

affect ATP homeostasis was restricted to its interaction with ANT2, we knocked down 

ANT1 in SIRT4OE HEK293T cells (Figure 2.10 [Supplementary Figure S2B]). In 

contrast to what we had seen with ANT2 knockdown, downregulation of ANT1 did not 
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reduce the SIRT4-mediated increase in total ATP (Figure 2.4B). Importantly, only ANT2 

is expressed in liver (Figure 2.10 [Supplementary Figure S2D]) [Shabalina, 

2006][Doerner, 1997], and these results demonstrate the specificity of the SIRT4-ANT2 

interaction in energy metabolism. 

2.4.4 Reduction of ATP levels by Sirt4 deficiency initiates a homeostatic feedback 

loop via ANT2/AMPK  

Sensing and signaling of cellular energetic status depends on the activity of 

AMPK, which is allosterically activated by AMP/ADP [Steinberg, 2009][Hardie][Canto, 

2009]. Since SIRT4 activity regulates ATP levels, we addressed whether AMPK activity 

was affected. Importantly, overexpression of SIRT4 led to a marked decrease in pAMPK 

levels (Figure 2.5A). Conversely, knocking down SIRT4 resulted in an increase in 

AMPK activity (Figure 2.5B). In agreement with these observations, measurement of 

pAMPK in vivo showed a strong increase in its levels in livers of mice lacking SIRT4 in 

comparison to littermate controls (Figure 2.5C).  

 Notably, the decrease of pAMPK in SIRT4OE cells was rescued when ANT2 was 

simultaneously knocked down, demonstrating that the cross-talk between SIRT4 and 

AMPK requires ANT2 (Figure 2.5D). These results establish a novel functional 

interaction between SIRT4 and AMPK and its dependency on ANT2. 

 Increased FAO during fasting depends on AMPK activity. AMPK-mediated 

phosphorylation of ACC leads to decreased malony-CoA levels, derepression of CPT1 

[Winder, 1997][Saggerson, 2008][Munday, 1988] and increased mitochondrial FAs 

uptake [Alam, 1998]. Since SIRT4 has been implicated in the regulation of FA 

metabolism [Nasrin][Laurent], we tested the effect of SIRT4 on ACC phosphorylation. In 
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agreement with the observed increase in AMPK activity, we found that mice lacking 

SIRT4 showed increased phosphorylation of ACC (Figure 2.5E). 

 In addition to modifying metabolic enzymes, AMPK also regulates the 

transcriptional coactivator PGC-1α. We found that PGC-1α protein levels were inversely 

correlated with SIRT4 in cells (Figure 2.5F). Induction of PGC-1α was also observed in 

liver from SIRT4KO mice (Figure 2.5G). Treating SIRT4OE cells with AICAR (an 

AMPK activator) rescued the decrease of both pAMPK and PGC-1α (Figure 2.12 

[Supplementary Figure S4]). These results support the model that SIRT4 and AMPK 

interact via ANT2 to mediate a retrograde signaling to ACC and PGC-1α. 

2.4.5 Sirt4-AMPK mediated retrograde signaling regulates expression of fatty acid 

oxidation genes 

PGC-1α plays an important role in the fasting response by activating transcription 

of FAO genes [Vega, 2000][Leone, 2005]. Having established a retrograde signaling 

from SIRT4 to PGC-1α via ANT2 and AMPK, we measured the transcription of FAO 

genes. As predicted, PGC-1α and its downstream FAO genes (such as ERRa, CPT1 and 

MCAD) were significantly downregulated in SIRT4OE cells than in controls (Figure 

2.6A-D). Importantly, knocking down ANT2 in these cells rescued the downregulation 

and restored their expression.  

2.4.6 Sirt4 regulates mitochondrial biogenesis in a feedback loop via 

ANT2/AMPK/PGC-1 signaling 

The cellular response to restore energy homeostasis includes mitochondrial 

biogenesis, which is often seen during exercise, fasting or mild uncoupling [Hock, 2009]. 

Increased expression of nuclear-encoded mitochondrial genes by AMPK-PGC-1α 
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regulates mitochondrial mass under these conditions [Hardie][Hock, 2009]. Transcription 

of genes, such as PGC-1, ERR, TFAM, NRF1 and Cyt.C, is a hallmark of 

mitochondrial biogenesis [Hock, 2009].   

 Measurement of expression of these genes showed lower mRNA levels in 

Sirt4OE cells than in controls (Figure 2.7A-C). Knocking down ANT2 in SIRT4OE cells 

rescued the decreased mRNA levels of PGC-1, ERR, TFAM, NRF1, and Cyt.C (Figure 

2.7A-C and Figure 2.6B). This finding further strengthens an important role of the 

SIRT4-ANT2 interaction in mediating a compensatory change in the expression of 

nuclear-encoded mitochondrial genes. 

 In agreement with these changes, we also found a significant decrease in the 

protein levels of transcription factor A (TFAM) and cytochrome C in both HEK293T 

(Figure 2.7D) and HEPG2 (Figure 2.13 [Supplementary Figure 5]) upon SIRT4 

overexpression. We also observed a small but notable effect on Porin levels (Figure 

2.7D). Importantly, mtDNA, a marker of mitochondrial biogenesis, was decreased in 

SIRT4OE cells and this was suppressed in cells lacking ANT2 (Figure 2.7E). Our data 

indicate that mitochondrial SIRT4 controls key regulators of mitochondrial mass, as well 

as the transcription of OXPHOS components via a feedback regulatory loop involving 

ANT2-AMPK-PGC-1α. 

2.5 Discussion and conclusion 

The results presented above support an important role for SIRT4 in energy 

homeostasis. Specifically, the abilityof SIRT4 to alter cellular ATP requires the ANT2, a 

transmembrane protein located on the inner mitochondrial membrane. Furthermore, we 

show that ANT2-mediated OXPHOS efficiency is regulated by SIRT4, and loss of SIRT4 
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leads to increased oxygen consumption by uncoupling. SIRT4 deficiency that mimics 

energy-deprived condition initiates a homeostatic response involving AMPK and PGC-

1α. We propose that SIRT4 controls the efficiency of ATP production. Further, 

integration of mitochondrial signaling with nuclear transcription couples fluctuations in 

cellular energy needs with metabolic inputs. In this regard, we have uncovered a 

previously unknown function of SIRT4 and show that the sirtuin establishes a retrograde 

signaling to the nucleus to maintain energy homeostasis. 

 By overexpressing and knocking down SIRT4 as well as using SIRT4 knockout 

animals to study this gene in vivo, we define its role in energy homeostasis. Importantly, 

lack of SIRT4 led to a decrease in ATP levels, both in cells and in tissues from SIRT4KO 

mice. SIRT3 has been reported to increase ATP production by deacetylating ETC 

components and increasing cellular respiration [Shi, 2005][Huang][He][Ahn, 2008]. Our 

results clearly indicate that, in contrast to SIRT3, the SIRT4-dependent increase in 

cellular ATP is not due to increased respiration. To dissect out the mechanism of SIRT4-

dependent ATP changes, we investigated the role of ANT2, as ANT2 was previously 

reported to interact with SIRT4 [Ahuja, 2007]. ANTs are ADP/ATP translocators with 

various expression and functions in different tissues [Klingenberg, 2008][Doerner, 1997]. 

Although, ANT1 and ANT2 are evolutionarily conserved, ANT2 is more widely 

expressed [Shabalina, 2006][Doerner, 1997]. By knocking down ANT2 in cells that 

overexpressed SIRT4, we established that SIRT4 requires ANT2 to affect cellular ATP. 

We also found that, while the SIRT4-ANT2 interaction was required for ATP 

homeostasis, ANT1 did not seem to play a role in SIRT4-dependent changes.  
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While SIRT4 positively influenced ATP levels, the sirtuin was negatively 

correlated with respiration. Dissipation of the electrochemical gradient by proton leak (or 

uncoupling) leads to increased respiration and also results in decreased ATP production. 

Interestingly, ANTs have dual functions in mitochondria with regards to energy 

homeostasis [Ko, 2003][Klingenberg, 2008][Brustovetsky, 1994]. While they play a 

critical role as antiporters for ADP and ATP, they uncouple the mitochondrial membrane 

upon acylation [Klingenberg, 2008][Forman, 1983][Brustovetsky, 1994]. Thus, we 

hypothesized that SIRTR4 deficiency leads to an ANT2-dependent increase in respiration 

due to uncoupling. By providing excess substrates (succinate and ADP/Pi), we have 

shown that the SIRT4 dependent changes in oxygen consumption are not due to 

alterations in TCA flux. Importantly, we found that the increased respiration in SIRT4 

knockdown cells was lost when ANT2 expression was downregulated. These results 

suggest that ANT2 could be a potential substrate for SIRT4.  

SIRT4 exhibits both ADP-ribosylase and deacetylase activities 

[Laurent][Kawahara, 2009]. Although ANT2 might be ADP-ribosylated [Mowbray, 

1996], its activity as an uncoupler has been largely attributed to acylation [Klingenberg, 

2008][Forman, 1983][Brustovetsky, 1994]. It will be interesting to investigate whether 

SIRT4 possesses a deacylase activity similar to what has been reported for SIRT5 [He]. 

However, by identifying the nexus of ANT2 and SIRT4, we added a new component to 

the understanding of the complex biology of SIRT4.  

We have shown that SIRT4 modulates AMPK activity and is part of a retrograde 

signaling pathway from the mitochondria to the nucleus. There was a significant increase 

in pAMPK levels in the absence of SIRT4 (SIRT4KD cells and SIRTKO tissues), which 
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was consistent with energy deficit. Importantly, the decrease in AMPK activity in SIRT4 

overexpressing cells was rescued when ANT2 was knocked down, demonstrating the 

crucial role of ANT2 in mediating a SIRT4-dependent signal to AMPK. As, energy 

homeostasis is intricately linked to alterations in metabolic flux and mitochondrial 

functions, our results support the hypothesis that the inputs from mitochondria via AMPK 

activity restore energy balance.  

The increased AMPK-dependent phosphorylation of ACC that we observed in 

SIRT4KO mice highlights the physiological significance of SIRT4-AMPK signaling in 

FAO. Specifically, AMPK-dependent pACC-mediated changes in cytosolic malonyl-

CoA are critical for regulating CPT1 (on the outer mitochondrial membrane) mediated 

FA transport [Saggerson, 2008][Alam, 1998]. Interestingly, the lean phenotype displayed 

by SIRT4 deficient mice was shown to be due to increased activity of MCD in the 

mitochondria [Laurent]. Our observations demonstrate that the other side of the reaction, 

mediated via acetyl-CoA carboxylase, is also regulated by SIRT4 via its activation of 

AMPK.  

Finally, we tested the effect of SIRT4-AMPK-mediated retrograde signaling on 

PGC-1α dependent transcription of FAO genes [Vega, 2000][Leone, 2005]. Notably, in 

the absence of SIRT4, AMPK-dependent signaling increased the expression of PGC-1α 

and its downstream FAO genes. In agreement with the effects on AMPK activity, 

reduced expression of PGC-1, MCAD, CPT1 and ERR in SIRT4-overexpressing cells 

were rescued by ANT2 knockdown. These results demonstrate that SIRT4 in the 

mitochondria not only regulates mitochondrial uptake of FAs via AMPK-ACC, but it also 

controls FAO through AMPK-PGC-1α signaling to the nucleus. 
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  Our findings show that SIRT4-AMPK-PGC-1α signaling affects mitochondrial 

biogenesis (transcription of OXPHOS components) in an ANT2-dependent manner. We 

provide conclusive evidence to suggest that SIRT4 in the mitochondria creates a feedback 

loop to regulate mitochondrial homeostasis. In response to calorie restriction, starvation 

and mild uncoupling, AMPK-PGC-1α signaling regulates mitochondrial biogenesis 

[Hock, 2009]. Although, transcriptional regulation of nuclear encoded genes has been 

extensively studied [Hock, 2009], the ability of mitochondria to provide an instructive 

cue to control mitochondrial mass and function is poorly understood [Nunnari][Hock, 

2009].  

We found that mitochondrial SIRT4 mediates retrograde signaling. Crosstalk 

between the NAD
+
-dependent mitochondrial factor, SIRT4, and an AMP/ADP sensor in 

the cytoplasm/nucleus (AMPK) orchestrates cellular physiology (Figure 2.8). Retrograde 

signaling from mitochondria has been well studied in yeast and in plants [Liu, 

2006][Butow, 2004][Biswas, 2005]. Although, ATP and calcium dependent signaling are 

thought to be important in mitochondrial signaling, it is poorly addressed in mammals 

[Butow, 2004][Biswas, 2005][Liu, 2006].  Therefore, it is interesting to note that the 

NAD+-dependent SIRT4 in the mitochondria provides instructive cues to alter cellular 

physiology, in addition to regulating a feedback for mitochondrial functions. 

To conclude, an inability to utilize FAs has been implicated in the onset and 

progression of metabolic diseases, such as obesity and diabetes. Efforts to increase FAO, 

for example by activating AMPK, have been only partially successful because of a lack 

of concomitant alteration in the energy status of a cell [Steinberg, 2009][Hoehn]. In fact, 

a simultaneous increase in FAO and energy dissipation (either through exercise or 



  67 

mitochondrial uncoupling) has been speculated to be critical in providing a therapeutic 

intervention [Thrush][Klaus][Hoehn]. Thus, our report highlights that the central role of 

SIRT4 in regulating OXPHOS efficiency, ATP homeostasis and FAO may also have 

important clinical relevance.   
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Figure 2.1.  SIRT4 regulates cellular ATP levels.  

(A) Western blot showing overexpression of SIRT4. (B–F) ATP levels in SIRT4 

overexpressing or knockdown cells (HEK293T, HHL-human hepatocytes, HEPG2 and 

C2C12 myotubes), as indicated. (G, H) ATP levels in wild-type and SIRT4KO (G) liver 

and (H) muscles under fed and fasted conditions. Statistical significance was calculated 

using student’s t-test: * p < 0.05, ** p < 0.01, *** p < 0.001, or as indicated.  CTL, 

control. 
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Figure 2.2. Cellular respiration is negatively associated with SIRT4 expression.  

(A) Western blot showing liver SIRT4 expression during fed, fasted and refed conditions. 

(B) and (C) Oxygen flux (respiration) in Control, SIRT4KD (B) and SIRT4OE (C) 

HEK293T cells. (D) Oxygen flux (respiration) in control and SIRT4KD HEK293T cells 

in media supplemented with 2mM pyruvate. (E) Oxygen consumption rate (OCR, 

respiration) in primary hepatocytes isolated from wild-type and SIRT4KO mice. OCR 

was measured under basal and Oligomycin (Oligo), FCCP and Rotenone/Antimycin-A 

treated conditions (media supplemented with 2 mM pyruvate). (F) ECAR (glycolysis 

flux) in primary hepatocytes isolated from wild-type and SIRT4KO mice. Oxygen flux 

was measured under basal and FCCP treated conditions. Statistical significance was 

calculated using student’s t-test: * p < 0.05, ** p < 0.01, *** p < 0.001, or as indicated. 
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Figure 2.3. SIRT4 regulates mitochondrial respiration via ANT2-mediated 

coupling efficiency.  

(A) Oxygen consumption in Control and SIRT4OE HEK293T cells under basal and 

Rotenone treated conditions. (B) Oxygen consumption in permeabilized Control and 

SIRT4OE HEK293T cells under basal conditions and in response to sequential addition 

of substrates, succinate and ADP/Pi. Rotenone was added to inhibited complex-I when 

measuring respiration in response to succinate and ADP/Pi addition, as indicated. (C, D) 

Oxygen consumption in control and SIRT4KD HEK293T cells under basal (C, D) and 

Oligomycin treated (D) conditions. SIRT4 alone or SIRT4 and ANT2 were 

simultaneously knocked down to measure ANT2-dependent uncoupled respiration as 

indicated. Statistical significance was calculated using student’s t-test and ANOVA: * p < 

0.05, ** p < 0.01, *** p < 0.001, or as indicated. 
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Figure 2.4. SIRT4 regulates ATP in an ANT2-dependent manner.  

(A) ATP levels in HEK293T cells that were transfected with Control, ANT2-siRNA, 

SIRT4-FLAG and SIRT4-FLAG/ANT2-siRNA constructs, as indicated. # indicates p < 

0.05 for cells transfected with SIRT4-FLAG in the presence or absence of ANT2 (+/- 

ANT2-siRNA). (B) ATP levels in HEK293T cells that were transfected with Control, 

ANT1-siRNA, SIRT4-FLAG and SIRT4-FLAG/ANT1-siRNA constructs, as indicated. 

Statistical significance was calculated using student’s t-test and ANOVA: * p < 0.05, ** 

p < 0.01, *** p < 0.001, or as indicated. 
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Figure 2.5. SIRT4 deficiency initiates a homeostatic feedback loop via 

ANT2/AMPK. 

(A) Western blots for p-AMPK, AMPK, SIRT4-FLAG and actin in Control and 

SIRT4OE HEK293T cells. (B) Western blots for p-AMPK, AMPK and actin in Control 

and SIRT4KD HEK293T cells. (C) Western blots for p-AMPK, AMPK, Sirt4 and tubulin 

in liver lysates from wild-type and SIRT4KO mice under fed conditions. (D) Western 

blots for p-AMPK, AMPK and actin in Control and SIRT4OE HEK293T cells in the 

presence or absence of ANT2 (+/- ANT2-siRNA), as indicated. (E) Western blots for p-

ACC, ACC, SIRT4 and actin in liver lysates from wild-type and SIRT4KO mice under 

fed conditions. (F) Western blots for PGC-1α and actin in Control and SIRT4OE or 

SIRT4KD HEK293T cells, as indicated. (G) Western blots for PGC-1α and actin in liver 

lysates from wild-type and SIRT4KO mice under fed conditions.  
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Figure 2.6. SIRT4-AMPK mediated retrograde signaling regulates FAO gene 

expression.  

(A–D) Quantitative RT-PCR of genes involved in fatty acid oxidation (FAO) (A) PGC-

1, (B) ERR, (C) CPT1b and (D) MCAD from RNA isolated from HEK293T cells 

transfected with Control, SIRT4-FLAG, ANT2-siRNA and SIRT4-FLAG/ANT2-siRNA 

constructs. Statistical significance was calculated using ANOVA: * p < 0.05, ** p < 0.01, 

*** p < 0.001, or as indicated. 
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Figure 2.7. SIRT4 regulates expression of nuclear encoded mitochondrial genes in 

a feedback loop via ANT2/AMPK/PGC-1α signaling.  

(A–C) Quantitative RT-PCR of nuclear encoded mitochondrial genes (A) TFAM, (B) 

NRF1 and (C) Cytochrome C from RNA isolated from HEK293T cells transfected with 

Control, SIRT4-FLAG, ANT2-siRNA and SIRT4-FLAG/ANT2-siRNA constructs. (D) 

Western blots for TFAM, Porin, cytochrome c, SIRT4-FLAG and actin in Control and 

SIRT4OE HEK293T cells. (E) Quantitative RT-PCR of mitochondrial DNA (normalized 

to nuclear DNA) in DNA isolated from HEK293T cells transfected with Control, SIRT4-

FLAG, ANT2-siRNA and SIRT4-FLAG/ANT2-siRNA constructs. Statistical 

significance was calculated using ANOVA: * p < 0.05, ** p < 0.01, *** p < 0.001, or as 

indicated. 
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Figure 2.8. SIRT4-ANT2 interplay regulates energy homeostasis and mediates a 

retrograde signaling from mitochondria.  

SIRT4-ANT2 interaction in the mitochondria is required for cellular ATP homeostasis. 

SIRT4-dependent increase in ATP reduces AMPK activity to mediate a retrograde 

signaling to affect ACC and PGC-1α functions. In SIRT4 deficient conditions, ANT2-

dependent uncoupling results in a reduction in cellular ATP levels and activates AMPK. 

Since acylation of ANT2 is known to uncouple mitochondria, we speculate that SIRT4 

possesses a deacylase activity. AMPK activation in the absence of SIRT4 consequently 

leads to phosphorylation of ACC (inhibitory effect), which is known to reduce malonyl 

CoA levels in the cytosol and thus increase mitochondrial fatty acid (FA) uptake (via de-

repression of CPT1). In addition, AMPK activation in the absence of SIRT4 increases the 

expression of PGC-1α and its downstream targets involved in β-oxidation and 

mitochondrial biogenesis. Together, we propose that SIRT4 in the mitochondria mediates 

a feedback control to regulate FA metabolism and oxidative phosphorylation (OXPHOS) 

components. 
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Figure 2.9. Supplementary Figure. 

A) RT-PCR to show the efficiency of SIRT4 knockdown. B) Western Blot using anti-

SIRT4 antibodies in Control and SIRT4KO mice. C) Total ATP levels in Control and 

SIRT4-overexpressing HEK293T cells, and in response to 2-deoxyglucose treatment. D-

F) ADP/ATP ratios in (D) Control and SIRT4-overexpressing HEK293T cells, (E) 

Control and SIRT4-knockout liver under fasting conditions and (F) Control and 

SIRT4KO muscles under fasting conditions G) ATP synthase activity in Control and 

SIRT4-overexpressing HEK293T cells.    
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Figure 2.10. Supplementary Figure 2.  

A-B) RT-PCR to show knockdown of (A) ANT2 and (B) ANT1 in HEK293T cells. C) 

RT-PCR to show ANT2 overexpression in HEK293T cells. D) RT-PCR to show 

differential expression of ANT1, ANT2 and ANT3 in HEK293T cells, HepG2 cells and 

liver samples.      
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Figure 2.11. Supplementary Figure 3.  

Oxygen flux in Control and SIRT4-overexpressing HEK293T cells in response to 

Oligomycin treatment.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  79 

 

 

 

 

 

 

 

 

 

 

 

 

.      

 

 

 

 

 

Figure 2.12. Supplementary Figure 4. 

Western blot to show the protein levels of SIRT1, phospho-AMPK, SIRT4-FLAG, PGC-

1α and AMPK in Control and SIRT4-overexpressing HEK293T cells, and in response to 

AICAR treatment. 
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Figure 2.13. Supplementary Figure 5.   

Western blot to show the protein levels of TFAM and cytochrome c in Control and 

SIRT4-overexpressing HepG2 cells.        
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Table 2.1 Supplementary Table 1: List of primers use for RT-qPCR   
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