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ARTICLE

HNRNPK maintains epidermal progenitor function
through transcription of proliferation genes and
degrading differentiation promoting mRNAs
Jingting Li 1, Yifang Chen1, Xiaojun Xu2, Jackson Jones1, Manisha Tiwari1, Ji Ling1, Ying Wang1,

Olivier Harismendy 2,3 & George L. Sen1

Maintenance of high-turnover tissues such as the epidermis requires a balance between stem

cell proliferation and differentiation. The molecular mechanisms governing this process are

an area of investigation. Here we show that HNRNPK, a multifunctional protein, is necessary

to prevent premature differentiation and sustains the proliferative capacity of epidermal stem

and progenitor cells. To prevent premature differentiation of progenitor cells, HNRNPK is

necessary for DDX6 to bind a subset of mRNAs that code for transcription factors that

promote differentiation. Upon binding, these mRNAs such as GRHL3, KLF4, and ZNF750 are

degraded through the mRNA degradation pathway, which prevents premature differentiation.

To sustain the proliferative capacity of the epidermis, HNRNPK is necessary for RNA Poly-

merase II binding to proliferation/self-renewal genes such as MYC, CYR61, FGFBP1, EGFR, and

cyclins to promote their expression. Our study establishes a prominent role for HNRNPK in

maintaining adult tissue self-renewal through both transcriptional and post-transcriptional

mechanisms.
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Mammalian epidermis is the outermost layer of the skin,
which serves as the initial line of defense to protect our
body from environmental and pathogenic factors. The

deepest layer of the epidermis, known as the basal layer, contains
the undifferentiated stem and progenitor cells. As the cells dif-
ferentiate they exit out of the cell cycle and migrate upwards
towards the surface of the skin and progressively form the more
differentiated layers of the epidermis including the suprabasal and
granular layers. Terminal differentiation occurs in the stratum
corneum where these dead corneocytes eventually gets sloughed
off the surface of the skin. Epidermal homeostasis is achieved by
the proper balance between self-renewal and differentiation of
stem and progenitor cells residing within the basal layer1. Per-
turbations in this delicate balance can lead to skin diseases which
can impact up to 20% of the population2. A tremendous amount
of effort has been focused on defining transcriptional mechanisms
that regulate epidermal stem and progenitor cell self-renewal and
differentiation. Work by our laboratory and others have shown
that transcription and epigenetic factors such as p63, DNMT1,
ACTL6A, YAP1, and EZH2 can actively promote epidermal stem
and progenitor cell self-renewal while factors such as ZNF750,
KLF4, GRHL3, JMJD3, and CEBP alpha/beta are necessary for
differentiation3–13.

While transcriptional mechanisms that regulate epidermal self-
renewal or differentiation have been well described as discussed
above, it is not clear whether post-transcriptional mechanisms
(non-miRNA) regulate this process. Recently, we found the
DEAD-box RNA helicase, RCK/p54 (DDX6) to be necessary for
maintaining epidermal stem and progenitor cell function through
both the mRNA translation and degradation pathways14,15.
DDX6 promotes self-renewal and proliferation while actively
suppressing premature differentiation through two distinct
mechanisms. First, DDX6 promotes the translation of self-
renewal (EZH2, ACTL6A) and proliferation (CDK1, CDK2)
transcripts to maintain epidermal self-renewal. The RNA binding
protein, YBX1 recruits DDX6 and EIF4E to these self-renewal/
proliferation mRNAs through the stem loop structures found in
their 3’UTRs. EIF4E is then required for the initiation of trans-
lation of these transcripts while DDX6 is necessary for loading of
the mRNAs to polysomes. Second, DDX6 binds to mRNAs
coding for potent differentiation promoting transcription factors
such as KLF4 to promote its degradation in progenitor cells to
prevent premature differentiation. DDX6 promotes the degra-
dation of these transcripts by associating with key mediators of
the mRNA degradation pathway including EDC314–16. Currently,
it is unclear how DDX6 targets these mRNAs for degradation
since YBX1 recruits DDX6 to self-renewal/proliferation tran-
scripts but not differentiation mRNAs such as KLF414,15.

In an attempt to identify proteins that recruit DDX6 to dif-
ferentiation promoting mRNAs for degradation, we perform a
small RNA interference (RNAi) screen targeting RNA binding
proteins that we previously identified by mass spectrometry to
associate with DDX614. Through this screen we find hetero-
geneous nuclear ribonucleoprotein K (HNRNPK) to have a
prominent role in epidermal progenitor cell maintenance.
HNRNPK was initially discovered as a component of hnRNP
complexes of which there were originally 20 proteins identified
and named A1 to U17. It contains three K homologue (KH)
domains that can bind RNA or DNA. HNRNPK has been pro-
minently studied in cancer and has been described as both an
oncogene and tumor suppressor. HNRNPK has been found to be
overexpressed in a variety of tumors with its oncogenic functions
attributed to regulation of EIF4E, C-SRC, and C-MYC18–23. In
epithelial tumors, HNRNPK interacts with Keratin 17 to promote
tumor growth through inflammatory responses mediated through
the CXCR3 and AIRE pathways24,25. Its tumor suppressive roles

were uncovered in haploinsufficient mice which resulted in
hematopoietic neoplasms26. HNRNPK has been implicated in all
aspects of gene regulation including both transcriptional and
post-transcriptional mechanisms. This includes regulation of
transcription, mRNA stability, splicing, export, and translation23.
While there is a wide array of gene regulatory functions attributed
to HNRNPK, it is not clear whether HNRNPK performs more
than one of these functions at a time since previous studies have
only focused on one aspect of its gene regulatory functions. It is
also unclear whether HNRNPK has any role in adult stem cell or
tissue renewal since knockout mice are embryonic lethal26.
This brings up an interesting and exciting question of whether
cell fate choices such as the decision for a stem cell to renew or
differentiate can be controlled by both transcriptional and post-
transcriptional mechanisms through a single factor.

Here, we show that HNRNPK prevents premature differ-
entiation of human epidermal progenitor cells by degrading
mRNAs coding for differentiation promoting transcription fac-
tors through the DDX6 pathway. HNRNPK is also necessary to
sustain the proliferative capacity of progenitor cells through
transcriptional regulation of critical proliferation genes. These
findings highlight the importance of HNRNPK in regulating adult
tissue homeostasis by utilizing both transcriptional and post-
transcriptional mechanisms.

Results
HNRNPK promotes proliferation and prevents differentiation.
To identify proteins that can potentially recruit DDX6 to degrade
mRNAs that code for differentiation inducing transcription fac-
tors such as KLF4, a small RNA interference (RNAi) screen was
performed. We previously showed that knockdown of DDX6 in
epidermal progenitor cells led to increased KLF4 mRNA stability
and expression14. Thus, we knocked down all seven of the RNA
binding proteins that we previously found by mass spectrometry
to associate with DDX6 to determine if they have similar impacts
on KLF4 expression (Supplementary Fig. 1a)14. Of the seven
genes, knockdown of HNRNPK resulted in an increase of KLF4
gene expression levels (Supplementary Fig. 1b). RNAi knockdown
of HNRNPK in primary human keratinocytes using two distinct
sequences [HNRNPKi and HNRNPK-Bi] inhibited proliferation
by more than 80% as compared to knockdown controls (CTLi)
(Fig. 1a, b and Supplementary Fig. 1c, d). There was also an
increase in apoptotic cells upon HNRNPK knockdown although
it was not statistically significant (Supplementary Fig. 1e).
HNRNPK knockdown cells also prematurely differentiated with
increased levels of differentiation specific genes many of which
have been implicated in skin diseases including KRT1, KRT10,
FLG, and LOR (Fig. 1c and Supplementary Fig. 1f)27–30. Notably,
the mRNAs levels (KLF4, ZNF750, and GRHL3) for genes that
code for differentiation promoting transcription factors were also
increased (Fig. 1c and Supplementary Fig. 1f).

To determine the impacts of HNRNPK loss in a 3D tissue
setting which allows faithful representation of the stratification
and gene expression program of human epidermis, CTLi and
HNRNPKi cells were used to regenerate human epidermal
tissue7,31,32. Epidermal tissue was harvested at an early timepoint
to determine if HNRNPK depletion altered the kinetics of
differentiation. Keratin 1 (K1), a differentiation specific cytoske-
letal protein, which is normally only expressed beginning in the
suprabasal layer was robustly expressed in the basal layer of
HNRNPKi tissue suggesting that the stem cell compartment had
prematurely differentiated (Fig. 1d, e). Similarly, keratin 10 (K10)
and Filaggrin (FLG) were expressed robustly in HNRNPKi tissue
whereas expression of these proteins was just starting to appear in
control tissue (Fig. 1d, e). Coinciding with the premature
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differentiation of the stem/progenitor cell compartment in
HNRNPKi tissue, there was also a loss of the proliferative
capacity of the basal layer (Fig. 1d).

HNRNPK maintains epidermal self-renewal in-vivo. To deter-
mine whether HNRNPK is acting through non-cell autonomous
or cell autonomous mechanisms, as well as whether HNRNPK is
necessary for progenitor cell function in-vivo, we used the

competition assay we previously developed11,14,33,34. To do this,
GFP expressing keratinocytes were knocked down with control
(CTLi) shRNAs and dsRED cells were knocked down with
HNRNPK shRNAs. These cells were mixed at a 1:1 ratio. All
genetic modifications such as gene overexpression or knockdown
were mediated through retroviral infections and thus are stable
in-vivo11,14,33,34. To rule out impacts from the fluorescent pro-
teins, dsRED expressing CTLi cells were also mixed with GFP
expressing HNRNPKi cells at equal ratios. These different cell
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mixtures were used to regenerate human epidermis on immune
deficient mice. Initially (Day 3), epidermis generated from GFP-
CTLi+ dsRED-HNRNPKi cells or GFP-HNRNPKi+ dsRED-
CTLi cells showed an equal percentage of contribution to the
tissue (Fig. 1f, g). In contrast, by 18 days post-grafting, epidermis
regenerated from GFP-CTLi mixed with dsRED-HNRNPKi cells
were mainly composed of control GFP cells (Fig. 1f, g). Epidermis
derived from dsRED-CTLi mixed with GFP-HNRNPKi cells also
led to a huge depletion of the GFP expressing HNRNPK
knockdown cells. The few remaining GFP-HNRNPKi cells were
all found in the upper differentiated layers of the epidermis
(Fig. 1f: white arrowheads). These remaining cells will likely be
sloughed off the surface of the skin as they terminally
differentiate.

HNRNPK suppresses differentiation and promotes prolifera-
tion. RNA-seq analysis was performed on control and HNRNPKi
cells to understand the gene expression program that HNRNPK
controls. Nine hundred and twenty-two genes (≥2 fold change
and p ≤ 0.05, one way Anova) were upregulated in HNRNPKi
cells which were enriched in gene ontology (GO) terms such as
keratinocyte differentiation, negative regulation of cell prolifera-
tion and epidermis development (Fig. 1h, i and Supplementary
Data 1). 1311 genes were downregulated with GO terms including
mitotic cell cycle phase transition and DNA replication indicating
that HNRNPK is necessary for the proliferative capacity of the
epidermal cells (Fig. 1h, j and Supplementary Data 1). To
determine the extent to which depletion of HNRNPK resembles
the differentiation program, the HNRNPK signature was com-
pared to a previously generated RNA-seq data set of genes that
changed during calcium mediated epidermal differentiation35.
Nine hundred and fourteen genes were found in the overlap with
the vast majority of the genes regulated in the same direction as
the differentiation signature (Supplementary Fig. 1g). The over-
lapped upregulated genes were enriched in GO terms such as
keratinocyte differentiation while downregulated genes were
enriched in mitotic cell cycle (Supplementary Fig. 1h, i).

HNRNPK degrades differentiation promoting mRNAs. Since
HNRNPK has been shown to bind RNA to modulate post-
transcriptional gene expression, we performed RNA immuno-
precipitations (RIP) under native conditions using a HNRNPK
antibody or control IgG on epidermal cell lysates to determine all
the transcripts that HNRNPK binds. RNA was purified from the
immunoprecipitates and subjected to next generation RNA
sequencing (RIP-Seq)36,37. HNRNPK bound to 921 genes (≥4
fold increase over IgG and p ≤ 0.05, one way Anova) which were

enriched for GO terms including positive regulation of cell dif-
ferentiation, polarized epithelial cell differentiation, and regula-
tion of cell proliferation (Fig. 2a, b and Supplementary Data 2).
There was also a tight correlation between the replicate HNRNPK
RIP-Seq data sets (Supplementary Fig. 1j). To assess whether
HNRNPK bound transcripts also changed in expression levels
upon HNRNPK depletion, the HNRNPK RIP-Seq dataset was
overlapped with the HNRNPK knockdown data. Interestingly,
16% (150/921) of the HNRNPK bound genes were differentially
regulated upon HNRNPK knockdown which were enriched for
GO terms such as epithelial cell differentiation, regulation of cell
proliferation, and negative regulation of cyclin-dependent protein
kinase activity (Fig. 2c, d). These results suggest that HNRNPK
may regulate epidermal growth and differentiation at the post-
transcriptional level. Among the genes involved in regulating
epithelial cell differentiation and growth that is both bound by
HNRNPK and found to be increased in mRNA levels upon
knockdown were transcripts coding for differentiation promoting
transcription factors including KLF4, ZNF750, and GRHL3, as
well as the cell cycle inhibitor P21 (CDKN1A) (Figs. 1h, 2a, c).

To validate the RIP-Seq results, RIP was performed in control
and HNRNPK depleted cells using a HNRNPK antibody or IgG.
KLF4, ZNF750, CDKN1A, and GRHL3 mRNAs were found to
robustly associate with HNRNPK in control but not in HNRNPKi
cells (Fig. 2e, Supplementary Fig. 2a). The transcripts were
specifically bound to HNRNPK since binding depended on the
presence of HNRNPK in the cells and did not bind transcripts
such as GAPDH (Fig. 2e). No binding was detected in the IgG
pulldown samples (Fig. 2e, Supplementary Fig. 2a). Since
knockdown of HNRNPK led to increases in the mRNA levels
of these HNRNPK bound genes, it suggests that HNRNPK may
normally be targeting these transcripts for degradation in
progenitor cells to prevent premature differentiation and
premature cell cycle exit (Fig. 2f). To test this, control and
HNRNPKi cells were treated with actinomycin D to determine
the half-lives of the mRNAs. Loss of HNRNPK significantly
increased the mRNA stability/half-lives of GRHL3, KLF4, and
CDKN1A (Fig. 2g, Supplementary Fig. 2b). While not statistically
significant, HNRNPK depletion also led to the increased half-life
of ZNF750 (Fig. 2g). These results suggest that HNRNPK binds
and degrades these transcripts in progenitor cells to prevent
premature differentiation.

To determine if HNRNPK may be regulating growth and
differentiation through these bound genes, we overlapped our
published gene expression signatures of KLF4 and ZNF750
knockdown in differentiated keratinocytes with our HNRNPK
gene expression profile7. Since we have shown that KLF4 and
ZNF750 are required for epidermal differentiation we would

Fig. 1 HNRNPK is necessary to sustain epidermal progenitor cell function. a Epidermal progenitor cells were knocked down with control (CTLi) or HNRNPK
(HNRNPKi) siRNAs and the remaining HNRNPK mRNA levels were measured by RT-QPCR. QPCR results were normalized to L32 levels. n= 3 independent
experiments b CTLi and HNRNPKi cells were seeded at 100,000 and counted 4 days later. c RT-QPCR for epidermal differentiation gene expression in CTLi
and HNRNPKi cells. QPCR results were normalized to L32 levels. n= 4. d Human epidermis was regenerated using three-dimensional organotypic cultures
with CTLi or HNRNPKi cells. Expression of differentiation markers (K1, K10, and FLG) and proliferation index (Ki67) were characterized by immunostaining
at day 3. White scale bar= 20 μm, n= 2. e RT-QPCR for epidermal differentiation gene expression in CTLi and HNRNPKi regenerated human epidermis.
n= 2. f The in-vivo progenitor cell competition assay was performed by mixing an equal number of GFP or dsRED labeled CTLi or HNRNPKi cells and used
to regenerate human epidermis on immune-compromised mice. Skin grafts were harvested at days 3 and 18 post-grafting. shRNA knockdown of HNRNPK
in-vivo was mediated through retroviral gene transfer to obtain stable gene suppression. The dashed white lines denote the basement membrane zone.
White arrows mark remaining HNRNPKi cells in the epidermis. n= 3 animals grafted per timepoint per group. White scale bar= 20 μm. g Quantitation of
the percentage of GFP and dsRED cells remaining in the epidermis at days 3 and 18 using ImageJ. h RNA-Seq analysis of CTLi and HNRNPKi cells. Cells
were cultured for 7 days and subjected to RNA-Seq. Heatmap of the genes that change upon HNRNPK depletion are shown in red (induced) and blue
(downregulated) on a log2 scale. RNA-Seq was performed in biological replicates. i Top 6 gene ontology terms for the genes upregulated in HNRNPKi cells
using Enrichr. j Gene ontology terms for the downregulated genes in HNRNPKi cells using Enrichr. n= 3 independent experiments performed in Fig. 1
unless otherwise indicated. Mean values are shown with error bars= SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001: a, b, c, e, g: t-test (two sided)
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Fig. 2 HNRNPK binds and degrades mRNAs coding for differentiation promoting transcription factors to prevent premature differentiation. a Profiling of
HNRNPK bound transcripts by RNA immunoprecipitation (RNA IP) coupled with deep sequencing (RIP-Seq). Heatmap of 921 genes bound to HNRNPK
defined by 4-fold enrichment over IGG and p < 0.05, one way Anova. n= 2 independent experiments. b Gene ontology terms of the 921 genes bound by
HNRNPK using Enrichr. c Venn diagram of overlapped genes between HNRNPKi RNA-Seq and HNRNPK RIP-Seq datasets. d Gene ontology terms of the 150
overlapped genes. e RNA IP was performed in CTLi and HNRNPKi cells using an HNRNPK antibody. RT-QPCR was used to determine the levels of binding
between HNRNPK and GRHL3, KLF4, ZNF750, GAPDH, or CDKN1A mRNAs in CTLi and HNRNPKi cells. IGG IPs in CTLi and HNRNPKi cells were used as
specificity controls. Binding was calculated as a percent of input. f RT-QPCR for changes in the levels of GRHL3, KLF4, ZNF750, and CDKN1A mRNA
expression in HNRNPKi cells. QPCR results were normalized to L32 levels. g CTLi and HNRNPKi cells were treated with actinomycin D to determine the half-
lives of the differentiation associated transcripts. RT-QPCR was used to measure the levels of the transcripts. h Double knockdown of HNRNPK with GRHL3
or KLF4 was performed and differentiation markers were evaluated by RT-QPCR (n= 2). n= 3 independent experiments performed in Fig. 2 unless
otherwise indicated. Mean values are shown with error bars= SD. *p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001 (2 way ANOVA followed by Tukey’s
multiple comparison test for h, e. T-test for f, g). Overlap significance in Venn diagrams was determined using hypergeometric distribution p-values (c)
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expect the knockdown expression profiles to be counter
correlated. One hundred and sixty-six genes were upregulated
in HNRNPK knockdown and downregulated in KLF4i cells
which were enriched for GO terms such as epidermal cell
differentiation and skin development (Supplementary Fig. 3a, b).
Three hundred and sixty-six genes were downregulated in
HNRNPKi and upregulated in KLF4i cells which were enriched
in GO terms such as positive regulation of cell cycle (Supple-
mentary Fig. 3a, c). Similar results were obtained with the
ZNF750 overlap suggesting that these factors may mediate
HNRNPK’s impact on growth and differentiation (Supplemen-
tary Fig. 3d-f).

To directly determine if the impacts of HNRNPK on epidermal
growth and differentiation is mediated through the increased
expression of GRHL3, KLF4, or CDKN1A, HNRNPK and each of
the genes were simultaneously knocked down and compared
to control and HNRNPKi cells (Fig. 2h). The levels of differentia-
tion induced genes LCE3D, FLG, TGM1, and K10 were increased
in HNRNPKi cells but were restored similar to control levels
in HNRNPK+GRHL3 or HNRNPK+KLF4 double knockdown
cells (Fig. 2h). Simultaneous HNRNPK and CDKN1A knockdown
had no impact on the premature differentiation phenotype
(Supplementary Fig. 2c). These results suggest that HNRNPK
prevents premature differentiation of epidermal progenitor cells by
binding to and degrading GRHL3 and KLF4 transcripts.

To determine if HNRNPK promotes epidermal growth
through suppression of these transcripts, double knockdown
experiments were performed and cell number counted 5 days
after normalization of the cell number. Again, HNRNPKi cells
exhibited dramatic inhibition of proliferation with loss of
expression of key proliferation genes such as CCNA2, CDK4,
andMKI67. Double knockdown of HNRNPK with GRHL3, KLF4
or CDKN1A resulted in a similar loss of proliferation as
HNRNPK knockdown alone and did not restore the proliferation
back to control levels (Supplementary Fig. 2d-g). It is intriguing
to note that HNRNPK+ CDKN1A double knockdown did not
correct the proliferation defect even though CDKN1A is a major
cell cycle inhibitor that upon knockdown by itself led to ~4
increase in cell numbers as compared to control cells (Supple-
mentary Fig. 2d).

HNRNPK is necessary for DDX6 to bind differentiation
mRNAs. We previously demonstrated that DDX6 degrades KLF4
transcripts however it was unclear how DDX6 was targeted to the
mRNA14. To determine whether HNRNPK recruits the targeted
mRNAs to DDX6 or vice versa, RIP experiments were performed.
RIP was performed using a DDX6 antibody or IgG in control and
HNRNPKi cells. DDX6 was able to bind to KLF4, ZNF750, and
GRHL3 transcripts in control but not HNRNPK depleted cells
suggesting that HNRNPK is necessary for DDX6 to associate with
its target mRNAs (Fig. 3a). HNRNPK depletion had no impacts
on DDX6 protein levels suggesting that the loss of DDX6 binding
to transcripts is not due to an absence of its protein (Fig. 3c). In
the reverse experiment, the mRNAs associated with HNRNPK
were pulled down in both control and DDX6i cells. Despite, the
slight decrease of HNRNPK protein levels upon DDX6 knock-
down, HNRNPK was still able to bind KLF4, ZNF750, and
GRHL3 transcripts robustly in the absence of DDX6 (Fig. 3b, c).
These results suggest that HNRNPK recruits the mRNAs to
DDX6, which can then degrade the transcripts. HNRNPK may
potentially associate with DDX6 directly or through the targeted
transcripts. To test this, co-immunoprecipitations (Co-IPs) of
HNRNPK and DDX6 were performed in the presence or absence
of RNase A. In the absence of RNase A, DDX6 and HNRNPK
could associate with each other (Fig. 3d). However upon RNase A

addition, the association was diminished suggesting that the
interaction was mediated primarily through the binding of
RNA (Fig. 3d). To gain insight into how much of the HNRNPKi
gene expression signature and thus regulation of epidermal
growth and differentiation is through the DDX6 pathway, we
compared our previously published DDX6 knockdown mRNA
expression signature with it14. Sixty six percent (336/521) of the
DDX6 signature overlapped with HNRNPK which included sig-
nificant genes involved in epidermal development and cell cycle
(Supplementary Fig. 3g, h). This suggests that a majority of
the DDX6 function is mediated through HNRNPK. However,
the DDX6 signature only accounts for ~15% (336/2233) of the
HNRNPK signature suggesting that HNRNPK can potentially
mediate its effects on epidermal growth and differentiation
through DDX6 independent mechanisms.

Genome-wide binding sites of HNRNPK. HNRNPK has been
reported to be a multi-faceted protein which can also bind to
DNA and regulate gene expression through transcriptional
mechanisms. To explore this possibility, chromatin immunopre-
cipitation (ChIP) followed by deep sequencing (ChIP-Seq) was
performed using a HNRNPK antibody on primary human ker-
atinocytes. MACS2 was used to call 4624 peaks enriched with
HNRNPK binding (Supplementary Data 3a)38,39. A majority
(68%) of the binding was found within genes which includes the
5’ UTR, intron, exon, transcriptional termination site/TTS, and 3’
UTR (Fig. 4a). The rest of the peaks were within intergenic,
promoter, or non-coding regions (Fig. 4a). The peaks mapped
back to 2,095 genes which were enriched for GO terms such as
positive regulation of telomere maintenance, epidermis develop-
ment, and positive regulation of mesenchymal cell proliferation
(Fig. 4b and Supplementary Data 3a). To gain a better under-
standing of the distribution of HNRNPK binding across genes, its
localization was mapped +/− 5 kb of the transcriptional start site
of genes. HNRNPK binding was also compared to histone marks
from the ENCODE consortium data set for human keratino-
cytes40 (Fig. 4c). Interestingly, HNRNPK binding correlated with
marks of open chromatin and active transcription including RNA
Pol II, H3K4me3, DNase I HSS, and H3K27ac while being
depleted from closed/repressive chromatin marks such as
H3K27me3 (Fig. 4c). Quantitation of HNRNPK binding +/−
5 kb from the TSS also showed that HNRNPK signals were
broadly distributed throughout the region which was similar to
RNA Pol II binding (Fig. 4d). In contrast, DNase I HSS sites
accumulated at the TSS with diminished signal away from the
TSS (Fig. 4d). Analysis of all HNRNPK bound peaks also showed
HNRNPK correlated the most with RNA Pol II binding (Sup-
plementary Fig. 4).

Since HNRNPK binding was the most similar to RNA Pol II,
we performed RNA Pol II ChIP-Seq on primary human
keratinocytes in order to directly compare our HNRNPK ChIP-
Seq data. RNA Pol II bound to 9485 peaks which mapped back to
3433 genes (Supplementary Data 3b). Interestingly, ~50% (1041/
2095) of the genes HNRNPK bound to also had RNA Pol II
binding (Fig. 5a). A search for transcription factor binding motifs
on the HNRNPK and RNA Pol II co-bound peaks showed
enrichment for TEAD2, TCF7L2, LIN54, FOXH1, and BARHL2
(Fig. 5b). The top 2 enriched motifs, TEAD2 and TCF7L2 (also
known as TCF4), have been shown to be essential for epidermal
stem cell self-renewal13,41 (Fig. 5b). The 1041 genes co-bound by
HNRNPK and RNA Pol II were also enriched for GO terms such
as epidermis development, hemidesmosome assembly, and
regulation of keratinocyte proliferation (Fig. 5c). These regulators
of keratinocyte proliferation included critical self-renewal and
proliferation genes such as MYC, FGFBP1, and CCNA2 (Fig. 5d,
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e, Supplementary Data 3). At each of these sites, HNRNPK bound
in a similar manner as RNA Pol II (Fig. 5d, e). Knockdown of
HNRNPK also decreased binding of HNRNPK to those genomic
regions demonstrating the specificity of HNRNPK binding to the
genomic regions of MYC, FGFBP1, HMG20B, and CCNA2
(Fig. 5f). Loss of HNRNPK binding also resulted in decreased
expression of those genes (Fig. 5f, g).

Because half (1,041/2,095) of HNRNPK bound genes had RNA
Pol II enrichment, it may suggest that HNRNPK is necessary for
RNA Pol II to bind a subset of sites in the genome. In support of
this, RNA Pol II can be found in the immunoprecipitate of
HNRNPK and vice versa suggesting that these two proteins can
associate with each other (Fig. 6a). This association was also
dependent on the presence of RNA since RNAse A treatment
diminished the interaction (Fig. 6a). To test if HNRNPK is
necessary for RNA Pol II binding to HNRNPK bound sites, RNA
Pol II ChIP-Seq was performed on HNRNPK knockdown cells.
diffReps was used to determine the differential RNA Pol II peaks
between control and knockdown cells42. These peaks were
mapped back to their nearest genes which accounted for 1,310
genes with diminished/lost RNA Pol II binding upon HNRNPK
knockdown while 284 genes gained/increased RNA Pol II binding
(Fig. 6b, Supplementary Data 4). Incredibly, 36% (373/1041) of
the HNRNPK and RNA Pol II co-bound genes lost RNA Pol II
binding and resulted in diminished gene expression upon
HNRNPK knockdown (Fig. 6b, k and Supplementary Fig. 5a).
These genes were enriched for GO terms such as regulation of
keratinocyte proliferation suggesting that HNRNPK is necessary
for RNA Pol II association with proliferation genes to sustain the
proliferative capacity of the epidermis (Fig. 6c). These genes
include CCND2, CYR61, EGFR, ITGB4, PTHLH, MYC, and
FGFBP1 where loss of HNRNPK diminishes the ability of RNA
Pol II to bind those regions (Fig. 6d–h, Supplementary Data 4).
Validation of these results by ChIP-QPCR demonstrate that
HNRNPK is necessary for RNA Pol II binding to these genes

(Fig. 6i). Loss of RNA Pol II binding also led to the
downregulation of each of these genes (Figs. 5g, 6j).

There were 668 genes co-bound by HNRNPK and RNA Pol II
that did not significantly lose RNA Pol II binding upon HNRNPK
knockdown. To analyze if HNRNPK was impacting RNA Pol II at
these sites, the mean density profiles of RNA Pol II binding across
the 668 genes were compared between control and HNRNPKi
cells. Despite not being significant there was diminished RNA Pol
II binding across these 668 genes upon HNRNPK knockdown
(Supplementary Fig. 5b). This suggests that HNRNPK presence is
required for RNA Pol II binding to HNRNPK bound genes.

It is also possible that the loss of RNA Pol II from the
proliferation genes is due to the premature differentiation
phenotype of HNRNPK knockdown cells rather than a direct
requirement for HNRNPK presence in order for RNA Pol II to
load onto the genes. To distinguish between these possibilities,
HNRNPK and KLF4 double knockdown experiments were
performed to prevent the premature differentiation phenotype
of HNRNPK knockdown alone (Fig. 2h). In control cells, RNA
Pol II bound to each of the proliferation genes whereas in
HNRNPK knockdown cells the binding diminished (Supplemen-
tary Fig. 5c). In HNRNPK and KLF4 double knockdown cells, the
RNA Pol II binding was similar to HNRNPK knockdown cells
and significantly reduced compared to controls (Supplementary
Fig. 5c). This suggests that loss of RNA Pol II binding to
proliferation genes is not just due to the differentiation status of
the cells but rather a requirement for HNRNPK binding.

While HNRNPK is required for RNA Pol II loading onto
proliferation genes, it is not clear if active transcription of the
proliferation genes is necessary for HNRNPK binding to the
genes. To test this, keratinocytes were treated +/− with
Actinomycin D to block transcription. As a validation that the
Actinomycin D blocked transcription, RNA Pol II CTD phospho
Serine 2 (Ser2) ChIP was also performed. RNA Pol II CTD
phospho Ser2 recognizes the elongating form of RNA polymerase.
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Primers were built at the TSS and past the 3’end of each gene. In
all 3 proliferation genes tested, Actinomycin D treatment resulted
in a dramatic decrease in RNA Pol II phospho Ser2 signal from
the 3’ end of the gene and a buildup of signal at the TSS
(Fig. 7a–c). This is in line with prior reports on how Actinomycin
D inhibits transcription by causing the accumulation of CTD
phosphorylated RNA Pol II at the TSS43,44. Importantly, blockade
of transcription with Actinomycin D had no impact on HNRNPK
binding to both the TSS and the 3’ end of MYC, EGFR, or CYR61
(Fig. 7a–c). This suggests that active RNA transcription is not
required for HNRNPK binding to these proliferation genes and
thus HNRNPK association with the genome is not co-
transcriptional. Furthermore, there is only an overlap of 184
genes bound by HNRNPK on both the RNA and DNA level with
enriched GO terms such as regulation of transcription (Supple-
mentary Fig. 5d, e). These data support a model where
HNRNPK’s genomic and mRNA targets are for the most part
different.

Since HNRNPK is localized throughout the gene body and past
the 3’end of genes, it may be possible that it is also regulating
other aspects of transcription such as elongation or termination.
Transcription elongation is controlled through cyclin T and
CDK9 which form P-TEFb to phosphorylate Serine 2 on RNA Pol
II CTD to promote elongation. In leukemia cell lines, HNRNPK
and CDK9 can associate45. However, in keratinocytes no

association between cyclin T or CDK9 could be detected with
HNRNPK (Supplementary Fig. 6a, b). HNRNPK associates with
the transcription termination factor, XRN2 to play a role in
termination of EGR1 in HCT116 cancer cell lines46. In
keratinocytes, HNRNPK did not associate with XRN2 (Supple-
mentary Fig. 6c). If HNRNPK regulated transcription elongation
then loss of its expression may lead to accumulation of mRNA at
the 5’ end of regulated genes. Similarly, if HNRNPK regulates
transcription termination, then knockdown of HNRNPK may
lead to readthrough transcription due to failure to properly
terminate transcription as has been reported for loss of gene
function for XRN247 and HNRNPK46 in other systems. To
determine potential HNRNPK impacts on either transcription
elongation or termination, RNA-Seq data for the proliferation
genes were analyzed. Notably, none of the proliferation genes had
accumulation of transcripts past the 3’ end of the genes or
accumulation at the 5’ end of the genes (Supplementary Fig. 7). In
addition, there were no accumulation of RNA Pol II at the 5’ or 3’
end of HNRNPK targeted proliferation genes upon HNRNPK
knockdown (Fig. 6d–h).

Discussion
HNRNPK has been extensively studied for its role in tumor-
igenesis where it can act both as a tumor suppressor or oncogene
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depending on context23,48. Understanding the mechanisms for
how HNRNPK either promotes or inhibits tumors have been
more difficult to address due to the sheer number of cellular
processes that it controls. The clear impact of HNRNPK on
tumor growth and differentiation suggests that HNRNPK under
normal circumstances may be a potent regulator of tissue
homeostasis. Progress into this area has been hampered by
embryonic-lethal phenotypes in Hnrnpk knockout mouse mod-
els26. Hnrnpk+/− mice showed diminished survival with high
penetrance of cancer phenotypes such as myeloproliferation,
lymphomas, and hepatocellular carcinomas suggesting that
Hnrnpk is necessary for inhibiting proliferation and promoting
differentiation in those cell types26.

Interestingly, we find an opposite role for HNRNPK in epi-
dermal cells where it is necessary to maintain cell proliferation
while inhibiting premature differentiation. To explore how
HNRNPK maintains stem and progenitor cell status, we used
RIP-Seq to define the transcripts that HNRNPK directly binds.
Notably, HNRNPK bound to 3 of the most important genes
known that code for differentiation inducing transcription factors
such as GRHL3, KLF4, and ZNF750. We and others have pre-
viously published that these factors are absolutely required for
promoting epidermal differentiation4,5,7. Knockdown of
HNRNPK led to increased transcript stability and thus increased
the mRNA levels of these genes. This suggests that HNRNPK
normally functions in stem and progenitor cells to bind and
degrade these transcripts to prevent premature differentiation.
Supporting this, double knockdown of HNRNPK with KLF4 or

GRHL3 can partially reverse the premature differentiation phe-
notype of just HNRNPKi alone suggesting that these transcrip-
tion factors are the key factors downstream of HNRNPK that
promotes differentiation.

The next question we addressed was how HNRNPK promotes
the degradation of differentiation transcripts. Our prior work
suggested that the RNA helicase DDX6 which is part of the
mRNA degradation complex with enhancer of mRNA-decapping
protein 3 (EDC3) binds and degrades mRNAs such as KLF4 to
prevent premature differentiation14–16. However it was unclear
what was recruiting DDX6/EDC3 to these transcripts since these
factors have no inherent RNA binding specificity. Here, we
demonstrated that in the absence of HNRNPK, DDX6 could not
bind to KLF4, GRHL3, or ZNF750 mRNAs, whereas HNRNPK
can still bind in the absence of DDX6. This suggests that
HNRNPK is necessary for DDX6 to bind target mRNAs.

Besides its ability to regulate RNA, HNRNPK has also been
described to bind DNA. It has been reported as both an activator
and repressor of gene expression on the chromatin level. As a
repressor, HNRNPK is necessary to recruit the PRC1 complex to
Xist targeted regions to mediate chromosomal silencing49. As an
activator, HNRNPK can bind promoter regions to facilitate
transcription of genes such as c-myc50. In leukemic cell lines,
HNRNPK is necessary to bring together lineage determining
transcription factors with the transcriptional machinery to med-
iate 5-azacitidine sensitive chromatin structure45. HNRNPK has
also been described to promote transcriptional termination
through the XRN2 pathway46. Since HNRNPK binding to
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genomic DNA may potentially regulate genes involved in epi-
dermal self-renewal, we focused on determining its genomic
binding sites. HNRNPK binding tended to localize throughout
the gene similar to RNA Pol II binding.

Surprisingly, half of the HNRNPK bound genes also had RNA
Pol II binding which were specifically enriched in genes reg-
ulating keratinocyte proliferation and hemidesmosome forma-
tion. These co-bound genes were also enriched for TEAD2 and
TCF7L2 (TCF4) transcription factor binding motifs. TEAD2 is
part of the YAP1 signaling pathway absolutely essential for
epidermal growth and TCF4 is necessary for epidermal stem cell
self-renewal13,41. This suggests that HNRNPK/RNA Pol II may
be acting downstream of these factors to promote the tran-
scription of genes important for epidermal growth. In support of
this, HNRNPK could associate with RNA Pol II through RNA in
co-immunoprecipitation experiments. Knockdown of HNRNPK
led to the depletion of RNA Pol II from 36% of the HNRNPK

and RNA Pol II co-bound genes many of which coded for
proliferation genes. The loss of RNA Pol II binding on pro-
liferation genes upon HNRNPK knockdown is not just a con-
sequence of the cells prematurely differentiating as blocking
the differentiation phenotype by HNRNPK and KLF4 double
knockdown did not restore RNA Pol II binding. This suggests
that RNA Pol II loading onto HNRNPK bound genes is
dependent on the presence of HNRNPK. These genes that
require HNRNPK for proper RNA Pol II localization include
growth signaling molecules (FGFBP1, EGFR, PTHLH, CYR61),
proliferation cyclins (CCND2, CCND1), transcription factors
promoting proliferation (MYC, FOSL1), and hemidesmosome
assembly (ITGB4, LAMB3, LAMC2, LAMA3). In contrast,
HNRNPK presence on proliferation genes was not dependent on
active transcription of the proliferation genes since inhibition of
transcription with Actinomycin D had no impacts on HNRNPK
genomic localization.

Co-IP between HNRNPK and RNA Pol II

Hypergeometric distribution
P < 3.17 × 10–208

Gene ontology terms
(373 genes co-bound between HNRNPK and RNA Pol II

with loss of RNA Pol II peaks in HNRNPKi cells)

Regulation of ERK1 and ERK2 cascade

Positive regulation of gene expression

Regulation of keratinocyte proliferation

Regulation of cell proliferation

Epidermis development

0 5

–log10 (p-value)

10

668 373 937

1034 7

Not significant
p > 0.05

277

HNRNPK & RNA Pol
II co-bound genes

Genes with loss of RNA Pol II
peaks in HNRNPKi cells

Genes with gain of RNA Pol II
peaks in HNRNPKi cells

HNRNPK & RNA Pol
II co-bound genes

–RNAse A

RNA Pol II 220 KD

60 KDHNRNPK

In
pu

t

M
ou

se
 IG

G

M
ou

se
 IG

G

Rab
bit

 IG
G

Rab
bit

 IG
G

RNA P
ol 

II 
IP

RNA P
ol 

II 
IP

HNRNPK IP

HNRNPK IP

CCND2

ITGB4 PTHLH

CYR61
EGFR

HNRNPK CTLi-RNA Pol II HNRNPKi-RNA Pol II HNRNPK CTLi-RNA Pol II HNRNPKi-RNA Pol II

HNRNPK CTLi-RNA Pol II HNRNPKi-RNA Pol II

HNRNPK CTLi-RNA Pol II HNRNPKi-RNA Pol II

HNRNPK CTLi-RNA Pol II HNRNPKi-RNA Pol II

10 kb

10 kb 5 kb

1 kb 20 kb

15

R
P

M
a

d

g

i j k

h

e f

b c

9

9

75

R
P

M

10

10

0.6
CTLi-RNA Pol II CHIP

CTLi-IGG
HNRNPKi-IGG

CTLi
HNRNPKi

HNRNPK
Actin

RNA Pol II

Actin
60 KD

45 KD

220 KD

45 KD

CTLi
HNRNPKi

CTLi
HNRNPKi

HNRNPKi-RNA Pol II CHIP

ChIP-qPCR

0.4

0.2%
 IN

P
U

T

0.0 0.0

HNRNPK

CCND2

EGFR

IT
GB4

PTHLH

CYR61

0.5

F
ol

d 
ch

an
ge 1.0

Cell cycle and growth associated genes Protein expression of RNA Pol II upon HNRNPK knockdown

gC
CNA2

gM
YC

gF
GFBP1

gI
TGB4

gP
THLH

gC
CND2

gE
GFR

gC
YR61

14

R
P

M

9

9

50

R
P

M 50

50

18

R
P

M 25

25

+RNAse A

Fig. 6 HNRNPK is necessary for RNA Pol II to bind proliferation genes to maintain the proliferative capacity of epidermal progenitor cells. a
Immunoprecipitations (IPs) were performed using either an HNRNPK, RNA POL II antibody or IGG and Western blotted for HNRNPK or RNA Pol II protein
expression. IPs were performed +/− RNase A. Five percent of the cell lysate was used as input. Representative blots are shown. n= 3. b Venn diagram
showing the 1041 HNRNPK and RNA Pol II co-bound genes that lose RNA Pol II peaks upon HNRNPK depletion (top). The bottom Venn diagram depicts
the 1041 HNRNPK and RNA Pol II co-bound genes that gain RNA Pol II peaks upon HNRNPK knockdown. c Gene ontology analysis of the 373 genes bound
by both HNRNPK and RNA Pol II that lose RNA Pol II peaks upon HNRNPK knockdown. d–h Gene tracks showing HNRNPK (purple) and RNA Pol II binding
to CCND2, CYR61, EGFR, ITGB4, and PTHLH genomic regions. RNA Pol II binding is shown in CTLi (blue) and HNRNPKi (red) cells. The x-axis shows
genomic position and y-axis denotes signal strength (RPM, reads per million). Bars over peaks indicate significantly bound peaks with cutoff q-value of
0.05. i ChIP was performed on CTLi (white bar) and HNRNPKi (black bar) cells using a RNA Pol II antibody. ChIP was also performed using IGG as a
specificity control in CTLi (light gray bar) and HNRNPKi (dark gray bar) cells. RNA Pol II binding to each gene was calculated as a percentage of input. n=
2. j RT-QPCR for mRNA expression of genes that are co-bound by HNRNPK and RNA Pol II, as well as lose RNA Pol II binding upon HNRNPK depletion.
QPCR results were normalized to L32 levels. n= 3. k Western blot analysis of RNA Pol II protein levels upon HNRNPK knockdown. Mean values are shown
with error bars= SD. n= 3. **p < 0.01, ****p < 0.0001 (2 way ANOVA followed by Tukey’s multiple comparison test for 6i, 6j). Overlap significance in
Venn diagrams was determined using hypergeometric distribution p-values (b)
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Given the multitude of functions for HNRNPK, it is also
possible that HNRNPK regulates other aspects of transcription
such as through elongation or termination to control the
expression of proliferation genes. HNRNPK has been reported to
associate with CDK9 and XRN2 in cancer cells to potentially
regulate transcription elongation and termination,
respectively45,46. However, we did not find clear evidence for this
mode of regulation in keratinocytes. HNRNPK did not associate
with either cyclin T or CDK9. HNRNPK depletion also resulted
in diminished RNA Pol II binding throughout the entire gene
rather than RNA Pol II stalling/buildup at the 5’ end which would
be indicative of alterations in transcription elongation. Similarly,
HNRNPK did not associate with XRN2 and there were no
detectable alterations in transcription termination.

HNRNPK may also be loading RNA Pol II onto genes through
binding enhancers. Twenty-one percent of HNRNPK binding
sites are found in intergenic regions and its sites are enriched for
YAP1 signaling pathway components which are known to bind
enhancers51. This may be an area of future investigation.

HNRNPK’s mechanism of function has been difficult to deci-
pher due to its role in numerous cellular processes. To our
knowledge, we are the first to comprehensively determine its
targets in a high-throughput manner on the RNA and DNA
levels, as well as characterize its impacts on adult tissue self-
renewal. Furthermore, we have described 2 separate mechanisms
by which HNRNPK mediates epidermal self-renewal and pre-
vention of premature differentiation through both mRNA
degradation and transcriptional activation (Fig. 7d). It is also

interesting to note that our results suggest a previously unknown
mode of regulation where HNRNPK is necessary for RNA Pol II
to drive the expression of potent regulators of growth and self-
renewal.

In summary, our findings describe a novel mechanism for
HNRNPK regulated tissue self-renewal through both transcrip-
tional and post-transcriptional mechanisms.

Methods
Cell culture. Primary human epidermal keratinocytes were derived from neonatal
foreskin and cultured in EpiLife medium (ThermoFisher: MEPI500CA) mixed with
human keratinocyte growth supplement (HKGS, ThermoFisher: S0015) and pen/
strep11,14,33. Phoenix cells (ATCC CRL-3214) were cultured in DMEM with 10%
fetal calf serum.

Knockdown of genes. To knockdown HNRNPK stably, retroviruses expressing
HNRNPK shRNAs were used. The retroviral constructs (3 µg) were transfected using
Lipofectamine 2000 (Life Technologies: 11668027) into amphotropic phoenix cells.
Viral supernatants were collected 48 h post-transfection and used to infect primary
human keratinocytes33. Cells were incubated in the viral supernatants and centrifuged
at 1000 rpm for 1 h with hexadimethrine bromide (Sigma-Aldrich: H9268). Cells were
transduced on two consecutive days. Cells were selected in puromycin 24 h after the
last transduction to select for cells stably expressing the shRNAs (the retroviral vector
encodes a puromycin resistance gene). shRNA retroviral constructs were generated by
cloning oligos into the pSuper retroviral vector14,52. The shRNA sequence targeting
HNRNPK is GGTTTCAGTGCTGATGAAA. The scrambled control shRNA
sequence is GATACTGACTACCAAGGAT and cloned into the pSuper retroviral
vector. siRNAs targeting HNRNPK, GRHL3, KLF4, CDKN1A and control siRNAs
were purchased from Dharmacon. The following siRNA sequences were used to
target the following genes: HNRNPK: GTCGGGAGCTTCGATCAAA; GRHL3:
CATCAAGTCAGGCGAGTCA, CCACAGGAGTCGATGCTCT, CCAACAAAG
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Fig. 7 HNRNPK binding to proliferation genes is not dependent on active transcription and model of HNRNPK regulation of epidermal stem and progenitor
cell self-renewal through mRNA transcription and degradation. a–c Keratinocytes were treated +/− actinomycin D (ACTD) to inhibit transcription. ChIP
was performed using a HNRNPK or RNA Pol II CTD phospho Ser2 antibody in +/− actinomycin D (ACTD) treated cells. ChIP was also performed using
IGG in +/− ACTD treated cells as a specificity control. Primers for each gene was designed at the 5’ end (genomic region #1) and past the 3’ end (genomic
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error bars= SD, *p < 0.05, **p < 0.01, ****p < 0.0001, one-way ANOVA with Tukey’s multiple comparison test (a–c). n= 2. d Top panel: HNRNPK recruits
DDX6 to degrade mRNAs that code for potent differentiation promoting transcription factors to prevent premature differentiation of epidermal cells.
Bottom panel: HNRNPK recruits RNA polymerase II to self-renewal and proliferation genes to promote epidermal self-renewal
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TCAAGAGTGT, and TTGAGGAGGTGGCCTATAA; KLF4: TGACCAGGCACT
ACCGTAA; CDKN1A: GATGGAACTTCGACTTTGT, GCGATGGAACTTCGAC
TTT, CGATGGAACTTCGACTTTG, and CGACTGTGATGCGCTAATG.

Organotypic cultures and in vivo competition assays. For the organotypic skin
cultures, one million control or HNRNPK knockdown cells were seeded onto
devitalized human dermis to regenerate human epidermis11,31,33. Human dermis
was purchased from the New York Firefighters Skin Bank. Dermis seeded cells were
raised to the air liquid interface to promote differentiation and stratification. Tissue
was harvested 3 days after initial seeding. For the in-vivo epidermal progenitor cell
competition assay, primary human keratinocytes were first transduced with a
retrovirus encoding GFP or dsRED. The GFP or dsRED cells were than infected
with retroviruses encoding control (CTLi) or HNRNPK (HNRNPKi)
shRNAs14,33,34. GFP-CTLi cells were mixed at a 1:1 ratio with dsRED-HNRNPKi
cells. dsRED-CTLi cells were also mixed with GFP-HNRNPKi cells at equal ratios
to ensure results were not due to the influence of fluorescence proteins. A total of
one million cells were seeded on the devitalized human dermis to regenerate
human epidermis. The regenerated human epidermis was then grafted on immune
compromised mice (NOD SCID Gamma/NSG) purchased from Jackson Labs.
Three and eighteen days post-grafting, the human skin grafts were harvested from
the mice. The human skin grafts were fixed in 4% paraformaldehyde for 1 h and
embedded into OCT compound for sectioning. The contribution of GFP and
dsRED expressing cells to the epidermis was quantified as a percentage of GFP or
dsRED positive cells divided by the combined number of GFP and dsRED cells in
the epidermis. Analysis was performed using ImageJ. Ten independent sections
each from three skin grafts per group per timepoint were imaged and quantified.
All animal work was conducted in accordance with UCSD’s IACUC guidelines.

Measurement of mRNA stability and half-life. Control and HNRNPK knock-
down cells were treated with actinomycin D (10 µg/mL) for 0, 0.5, 1, 2, 4, and 6 h to
determine the half-lives of CDKN1A, GRHL3, KLF4, and ZNF750 mRNAs. RNA
was isolated from the samples and RT-QPCR was used to determine the levels of
respective mRNAs. Half-lives was calculated using the formula T1/2= 0.3t/log(D1/
D2)14,33,53.

Apoptosis assay. Control and HNRNPK knockdown cells were stained with
Annexin V conjugated to Alexa Fluor 488 (Life Technologies: A13201) and ana-
lyzed using the Guava flow cytometer (Millipore) according to manufacturers
instructions14.

RNA isolation and RT-QPCR. Total RNA from cells or tissue was extracted using
the GeneJET RNA purification kit (Thermo Scientific: K0732) and quantified using a
Nanodrop. One µg of total RNA was reversed transcribed using the Maxima cDNA
synthesis kit (Thermo Fisher: K1642). Quantitative PCR was performed using the
Roche 480 Light Cycler. L32 was used as internal control for normalization. Primer
sequences for GAPDH, LCE3D, LOR, KLF4, ZNF750, and GRHL3 were previously
published10,14,32–34 and are as follows: GAPDH forward: CTGAGAACGGGAAG
CTTGT, GAPDH reverse: GGGTGCTAAGCAGTTGGT; LCE3D forward: GCTGC
TTCCTGAACCAC, LCE3D reverse: GGGAACTCATGCATCAAG; LOR forward:
CCGGTGGGAGCGTCAAGT, LOR reverse: AGGAGCCGCCGCTAGAGAC; KLF4
forward: GCCTCCTCTTCGTCGTC, KLF4 reverse: GGCTCACGTCGTTGATGT,
ZNF750 forward: AGCTCGCCTGAGTGTGAC, ZNF750 reverse: TGCAGACTCT
GGCCTGTA; GRHL3 forward: GCCAGTTCTACCCCGTCA, GRHL3 reverse:
GTCAATGACCCGCTGCTT. Sequences for L32, FLG, TGM1, K1, K10, CDKN1A,
HMG20B, CCNA2, CDK4, MKI67, MYC, FGFBP1, HNRNPK, PTHLH, CCND2,
ITGB4, CYR61, and EGFR are as follows: L32 forward: AGGCATTGACAACAG
GGTTC, L32 reverse: GTTGCACATCAGCAGCACTT; FLG forward: GGCAAA
TCCTGAAGAATCCA, FLG reverse: TGCTTTCTGTGCTTGTGTCC; TGM1 for-
ward: TCAGACGCTGGGGAGTTC, TGM1 reverse: GGTCCGCTCACCAATCTG;
K1 forward: TACCTCCACTAGAACCCAT, K1 reverse: GCTGCAAGTTGTCAA
GTT; K10 forward: CGCCTGGCTTCCTACTTGG, K10 reverse: CTGGCGCAGA
GCTACCTCA; CDKN1A forward: CCTTCCCATCGCTGTCAC, CDKN1A reverse:
TCACCCTGCCCAACCTTA; HMG20B forward: ACGCGCTACACTGGCTCT,
HMG20B reverse: CCACCCATCTGGGGTACA; CCNA2 forward: AGACGAGAC
GGGTTGCAC, CCNA2 reverse: AAAGCCAGGGCATCTTCA; CDK4 forward:
GCTGCCTCCAGAGGATGA, CDK4 reverse: GCTGCAGAGCTCGAAAGG;
MKI67 forward: TGGCCAAGAACGCCTAAG, MKI67 reverse: GGCCATTGC
TTTGTGCTT; MYC forward: CGGACACCGAGGAGAATG, MYC reverse:
GCTTGGACGGACAGGATG; FGFBP1 forward: TCTGGGCAACACCCAGAT,
FGFBP1 reverse: GGCATGAGGTTGGATTGC; HNRNPK forward: AAGAATG
CTGGGGCAGTG, HNRNPK reverse: CAGGCCCTCTTCCAAGGT; PTHLH for-
ward: GATGCAGCGGAGACTGGT, PTHLH reverse: GGAAGAATCGTCGCC
GTA; CCND2 forward: GCTCCAGCAGGATGAGGA, CCND2 reverse: CCGACT
TGGATCCGTCAC; ITGB4 forward: AGGCCCAAGCTGTGACTG, ITGB4 reverse:
AGCGTAGGTCCTCGCAGA; CYR61 forward: GGTTTCCAGGGCACACCT,
CYR61 reverse: AGTGTCCATCCGCACCAG; EGFR forward: GGGCCGACAGCTA
TGAGA, EGFR reverse: GGCAGGATGTGGAGATCG.

Western blotting. Twenty microgram of the cell lysates were used for immuno-
blotting and resolved on 10% SDS-PAGE and transferred to PVDF membranes.
Primary antibodies used include beta-actin (Santa Cruz: sc-47778) at 1:5000,
HNRNPK (Bethyl Laboratories: A300–674A) at 1:3000, DDX6 (Novus Biologicals:
NB200–192) at 1:2000, RNA Pol (Active motif: 39097) at 1:4000, Cyclin T1 (Bethyl
Laboratories: A303–499A) at 1:1000, XRN2 (Cell Signaling: 13760) at 1:1000 and
CDK9 (Bethyl Laboratories: A303–493A) at 1:1000. Secondary antibodies including
donkey anti-rabbit IgG HRP (Sigma: NA934V) and goat anti-mouse IgG-HRP
(Santa Cruz: sc-2005) were used at 1:2000. All original blots can be found in the
accompanying Source Data.

Histology and immunofluorescence. Cultured cells or tissue were fixed in 4%
paraformaldehyde for 11 min followed by blocking in PBS with 2.5% normal goat
serum, 0.3% triton X-100, and 2% bovine serum albumin for 30 min Primary
antibodies used were Keratin 1 (Biolegend: PRB-149P) at 1:1000, Filaggrin (Abcam:
ab3137) at 1:200, MKi67 (Abcam: ab16667) at 1:300, Keratin 10 (Abcam: ab9025)
at 1:500, HNRNPK (Bethyl Laboratories: A300–674A) at 1:1000 for 1 h. The sec-
ondary antibodies used were Alexa 555 conjugated goat anti-mouse IgG (Ther-
moFisher: A11029) or Alexa 488 conjugated donkey anti-rabbit IgG
(ThermoFisher: A21206) both at 1:500. Nuclear dye, Hoechst 33342 was used at
1:1000 (ThermoFisher: H3570).

RNA-seq and bioinformatics analysis. Control or cells knocked down for
HNRNPK were harvested 6 days after the last infection. Two technical duplicates
were obtained for both CTLi and HNRNPKi and total RNA was isolated using the
GeneJET RNA purification kit (Thermo Scientific: K0732) and quantified by
Nanodrop. RNA-seq was performed using the Illumina Hi Seq 4000 machine at the
Institute of Genomic Medicine core facility at UCSD. RNA-seq libraries were
prepared with TruSeq RNA Library Prep Kit (Illumina: RS-122–2001) then mul-
tiplexed and ~40 million reads per sample were obtained. Reads were aligned to the
GENCODE v19 transcriptome hg19 using TopHat2 with default settings54. Dif-
ferential expression among samples was calculated using ANOVA from the Partek
Genomic Suite (Partek Incorporated). Analysis of the read count distribution
indicated that a threshold of ten reads per gene generally separated expressed from
unexpressed genes, so all genes with fewer than ten reads were excluded from
ANOVA analysis. Gene lists for significantly upregulated or downregulated genes
were created using p < 0.05 and 2-fold change. Enriched GO terms for RNA-seq
differentially expressed gene sets were identified using Enrichr55,56. Heatmaps for
the RNA-seq data were generated using Partek’s Genomic Suite (http://www.
partek.com/partek-genomics-suite/).

RNA immunoprecipitation/high-throughput sequencing (RIP-Seq). Three
million control, HNRNPK, or DDX6 knockdown cells and 3 µg of each antibody
were used for each pulldown experiment. The following antibodies were used for
RNA-IP: HNRNPK (Bethyl Laboratories: A300–674A), DDX6 (Novus Biologicals:
NB200–192) and rabbit IgG control (Millipore: 12–370). RNA-IP was performed
using the Magna RIP RNA IP kit (17–700) from Millipore according to manu-
facturer’s protocol. The same volume of immunoprecipitated RNA was converted
into cDNA using the Maxima cDNA synthesis kit (Thermo Fisher: K1642). RT-
QPCR was used to determine the amount of RNA bound and presented as a
percentage of input. For RIP-Seq, 3 million proliferating primary human kerati-
nocytes were IP’d using 3ug of the HNRNPK antibody or 3 µg of IgG using the
Magna RIP RNA IP kit. The eluted immunoprecipitated RNA from the HNRNPK
antibody pulldown or with IgG was subject to sequencing (HiSeq400) with
methods and analysis as described in the RNA-Seq and Bioinformatics Analysis
section with the following modifications. RNA associated with HNRNPK was
determined by comparing the HNRNPK pulldown samples to the IgG pulldown
samples. Differential expression among samples was calculated using ANOVA
from the Partek Genomic Suite (Partek Incorporated). Transcripts significantly
enriched in the HNRNPK pulldowns were defined as ≥4 fold change over IgG and
p < 0.05 (ANOVA). Heatmaps for the RIP-seq data were generated using Partek’s
Genomic Suite (http://www.partek.com/partek-genomics-suite/).

ChIP-qPCR and ChIP-Seq. Ten million cells and 5 µg of antibody were used for
each antibody pulldown experiment for ChIP32,34. ChIP was performed using the
following antibodies: HNRNPK (Bethyl Laboratories: A300-674A), RNA Pol II
(Active motif: 39097), RNA Pol II CTD Phospho S2 (Active Motif: 91115), Rabbit
IgG (Millipore: 12–370) and mouse IgG (Abcam: ab18413). Cells for the RNA Pol
II ChIP-QPCR or ChIP-Seq were fixed at a final concentration of 1% formaldehyde
(ThermoFisher 28908). Cells for the HNRNPK ChIP-QPCR or ChIP-Seq were
fixed in both formaldehyde (1% final concentration) and disuccinimidyl glutarate
(DSG, Thermo Fisher 20593, 2 mM final concentration). QPCR results are repre-
sented as a percentage of input DNA. QPCR primers for ChIP are as follows:
CCNA2 FOR: AGTTGCCCAACATCACTGCT, CCNA2 REV: CGGCGGCTAC
GACTATTCT; FGFBP1 FOR: TCCCAGACACCTGACCTCTC, FGFBP1 REV:
TGGAGCTGGATTTTGGAAAG; HMG20B FOR: CCCTGAGTCACCCCCTACC,
HMG20B REV: GGGCCATGTAGAAGTCCAGA; MYC FOR: CAAAAATGA
GGGGCTGTGTT, MYC REV: GGCAAGGATTTGCTTTTCAG; PTHLH FOR:
ACCTGCAACAGAAGGGAATG, PTHLH REV: ACTTGGGAGATGCCCT
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TGAT; ITGB4 FOR: CCTTCTGTGCCTGGTCTCTC, ITGB4 REV: CCCACAC
TGTGACTGCCATA; CCND2 FOR: CCGAAAACCCCCTATTTAGC, CCND2
REV: CCCTCTCCCTCCTGCTTTC; EGFR FOR: AGGGAAGCTGAGGAAGG
AAC, EGFR REV: CCGGCTTCAGTTTGAGACCT; CYR61 FOR: ACCAGCTTG
TTGGCGTCTT, CYR61 REV: GGTCAAGTGGAGAAGGGTGA; MYC position 1
FOR: GGAGATCCGGAGCGAATAG, MYC position 1 REV: GCTGCTATGGG
CAAAGTTTC; MYC position 2 FOR: GTCCCAAGCACTCCTAAGCA, MYC
position 2 REV: CAGTGAATCTTGGGCATGTG; CYR61 position 1 FOR:
ACCAGCTTGTTGGCGTCTT, CYR61 position 1 REV: GGTCAAGTGGAGAA
GGGTGA; CYR61 position 2 FOR: AAGGTGTGAGGCTTTTGTGG, CYR61
position 2 REV: TTGTTGGACTCCAGTGTTGG; EGFR position 1 FOR: AGGG
AAGCTGAGGAAGGAAC, EGFR position 1 REV: CCGGCTTCAGTTTGAGA
CCT; EGFR position 2 FOR: GGGAAAGGGTGTAGCCCATA, EGFR position 2
REV: TTCCTGTTGGGTTTTCAGGT.

For ChIP-Seq, the ChIP DNA library was prepared using the TruSeq DNA
sample prep kit (Illumina). Sequencing was done on HiSeq 4000 System (Illumina)
using single 1 × 75 reads at the Institute for Genomic Medicine Core, UCSD.
HNRNPK ChIP-seq was performed in triplicates. The RNA Pol II ChIP-Seq was
performed in CTLi and HNRNPKi cells in duplicates. The ChIP-seq reads were
processed by the Kundaje ChIP-seq pipeline (https://github.com/kundajelab/
chipseq_pipeline) on our local workstation. The reads were first trimmed based on
quality score before alignment to reference hg19; Upon alignment and
deduplication, the peak-calling was then carried out by MACS238,39 with a cutoff
q-value of 0.05. The heatmaps for the ChIP-Seq data were generated using
seqMINER57. Gene tracks were visualized using UCSC genome browser along with
annotation tracks. Differential peaks between samples were obtained by diffReps
1.55.442 using negative binomial test with a scanning window size of 1000 bp, step
size of 100 bp, and a cutoff p-value of 0.0001.

Co-immunoprecipitation experiments. Cells were lysed in a non-denaturing IP
buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40 and 5%
glycerol). Three microgram of HNRNPK antibody (Bethyl Laboratories:
A300–674A), DDX6 (Novus Biologicals: NB200–192), RNA Pol II (Active motif:
39097), CDK9 (Bethyl Laboratories: A303–493A) or rabbit IgG were complexed
with 50 µl of Protein G Dynabeads (Life Technologies: 10004D) at room tem-
perature for 30 min The antibody conjugated Dynabeads were then incubated with
cell lysates on a rotator at 4 °C overnight. The next day, the supernatant was
removed and the immunoprecipitated complex was washed with 500 µl of IP wash
buffer for a total of 6 times at room temperature. Then 30 µl of RIPA buffer (25
mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1%
SDS) and 15 µl NuPAGE® LDS Sample Buffer (Life Technologies: NP0008) were
used to elute at 70 °C. Immunoprecipitates were loaded onto SDS-PAGE gels for
Western blot. For samples with RNase treatment, after the last wash of IP wash
buffer, the immunoprecipitated complexes were then washed with PBS once and
then equally dividing into two tubes in 1 mL of PBS. One tube was subjected to 100
µg/mL RNase A treatment for 1.5 h on ice. The immunoprecipitated complexes
with or without RNase A treatment were washed three times with IP wash buffer
before elution and blotted using Western blot14.

Inhibition of transcription with actinomycin D. Proliferating primary human
keratinocytes were treated +/− with Actinomycin D at 1ug/ml final concentration
for 3 h before harvesting. Cells were harvested for ChIP as described in the “ChIP-
qPCR and ChIP-Seq” section.

Statistical analysis. Graph data are presented as mean ± SD. Statistical analyses
were performed using GraphPad Prism. Student’s t tests and One-way ANOVA
were used to compare between two or more groups, and significant changes were
defined as p < 0.05. The number of biological experiments performed is indicated
by N in the figure legends.

Scatter plot of ChIP-Seq data comparisons. Replicate ChIP-Seq bam files of
HNRNPK and RNA Pol II were merged using Samtools. Bam files of H3K27ac,
H3K4me3, H3K36me3, DNAse I, and H3K27me3 were downloaded from the
ENCODE database. Total count for each sample was obtained by Samtools. The
read counts over the HNRNPK peak regions were then obtained using bedtools.
RPKM for each peak region was computed using the following formula:

RPKM ¼ read count ´ 109

total read count ´ peak length

A RPKM cutoff (0.0001 for counts over HNRNPK peaks) was then applied to
remove the low count peak regions followed by log2 transformation. R package
ggplot2 was used to plot the scatter plot.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The GEO accession number for RNA-Seq, RIP-Seq, and ChIP-Seq data reported in this
paper is GSE122327.
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