
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
The Interplay Between Energy Efficiency and Resilience for Scalable High Performance
Computing Systems

Permalink
https://escholarship.org/uc/item/2ms6f538

Author
Tan, Li

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ms6f538
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

The Interplay Between Energy Efficiency and Resilience for Scalable High

Performance Computing Systems

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Li Tan

December 2015

Dissertation Committee:

Dr. Zizhong Chen, Chairperson
Dr. Nael Abu-Ghazaleh
Dr. Laxmi N. Bhuyan
Dr. Sheldon Tan

Copyright by
Li Tan
2015

The Dissertation of Li Tan is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I feel indebted to my advisor, Dr. Zizhong Chen, without whose help, I would not have

been here. Back to five years ago, I came to my dreamland of doing research in Computer

Science. It took me until now to realize what the real research should look like. Dr. Chen is

the one who leads me to the zen of research in a graceful way. I would have left my research

career but for the all-the-way-through support from Dr. Chen. It is him who enlightens me

all the time with a holistic view of what High Performance Computing (HPC) is. It is him

who inspires me to find the right new research topics during the Ph.D. study. It is him who

opens my mind to see a self-fulfilling career path after the pursuit of a Ph.D. degree.

I am also grateful to our collaborators who help me in different manners during my

research efforts. Dr. Rong Ge, as my academic model of doing energy efficiency research,

motivated me a lot on how to see the big picture comprehensively and professionally, brain-

stormed with us actively for a potential reserach direction, and provided me great hardware

support, without which my research could not be evaluated. In particular, I highly appre-

ciate the technical writing help from Dr. Ge, from which I do learn a lot. Dr. Shuaiwen

Leon Song offered me a chance to revive the research idea that has been floating around

the mind of Dr. Chen and me, and made it come true a solid and meaningful work for

my career. Dr. Darren J. Kerbyson enrolled me and checked me out for the wonderful

4-month internship at Pacific Northwest National Laboratory in Summer 2014. Dr. Dong

Li showed me promising research directions of HPC, and Dr. Ziliang Zong helped me learn

more interesting interdisciplinary research topics in HPC.

iv

I would like to thank my colleagues in the supercomputing laboratory, Hongbo Li,

Panruo Wu, Longxiang Chen, Dingwen Tao, Jieyang Chen, Xin Liang, Teresa Davies, and

Sihuan Li, and numerous friends I made within my life in Riverside, my conference trips,

and my internship. They really helped me, encouraged me, and relaxed me a lot during

the persistent Ph.D. grind. My heartfelt appreciation goes to our departmental Graduate

Student Affairs Officer Amy S. Ricks’s help on my questions of all kinds.

Particularly, I am thankful to other professors in my Ph.D. dissertation committee,

Dr. Nael Abu-Ghazaleh, Dr. Laxmi N. Bhuyan, and Dr. Sheldon Tan. They guided me to

a well-structured and highly-refined thesis, and paid unique efforts in my Ph.D. proposal

and final defense, with insightful comments and valuable suggestions.

Last but not least, I express my sincere gratitude for the love from my family.

My parents always recognize my talent of doing what I like, and back me up without any

complaints throughout the five years. My wife gives me the earnest and endless love to

endorse most of my personal decisions. “What do you learn from this?” – I will keep this

in mind and really learn a lot from your everlasting and true love in the world.

Funding Acknowledgments

The research work in this dissertation is partly supported by the US National

Science Foundation grants CCF-1305622, ACI-1305624, and CCF-1513201, and the SZSTI

basic research program JCYJ20150630114942313.

v

To my parents and my wife for all the support. Without you, I cannot survive my

PhD.

vi

ABSTRACT OF THE DISSERTATION

The Interplay Between Energy Efficiency and Resilience for Scalable High Performance
Computing Systems

by

Li Tan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2015

Dr. Zizhong Chen, Chairperson

As the exascale supercomputers are expected to embark around 2020, supercomputers nowa-

days expand rapidly in size and duration in use, which brings demanding requirements of

energy efficiency and resilience. These requirements are becoming prevalent and challenging,

considering the crucial facts that: (a) The costs of powering a supercomputer grow greatly

together with its expanding scale, and (b) failure rates of large-scale High Performance

Computing (HPC) systems are dramatically shortened due to a large amount of compute

nodes interconnected as a whole. It is thus desirable to consider both crucial dimensions for

building scalable, cost-efficient, and robust HPC systems in this era. Specifically, our goal

is to fulfill the optimal performance-power-failure ratio while exploiting parallelism during

HPC runs.

Within a wide range of HPC applications, numerical linear algebra matrix opera-

tions including matrix multiplication, Cholesky, LU, and QR factorizations are fundamental

and have been extensively used for science and engineering fields. For some scientific appli-

cations, these matrix operations are the core component and dominate the total execution

vii

time. Saving energy for the matrix operations thus significantly contributes to the energy

efficiency of scientific computing nowadays. Typically, when processors are experiencing idle

time during HPC runs, i.e., slack, energy savings can be achieved by leveraging techniques

to appropriately scale down processor frequency and voltage during underused execution

phases. Although with high generality, existing OS level energy efficient solutions can effec-

tively save energy for some applications in a black-box fashion, they are however defective

for applications with variable workloads such as the matrix operations – the optimal energy

savings cannot be achieved due to potentially inaccurate and high-cost workload prediction

they rely on. Therefore, we propose to utilize algorithmic characteristics of the matrix

operations to maximize potential energy savings. Specifically, we achieve the maximum

of energy savings in two ways: (a) reducing the overhead of processor frequency switches

during the slack, and (b) accurately predicting slack of processors via algorithm-based slack

prediction, and eliminating the slack accordingly by respecting the critical path of an HPC

run.

While energy efficiency and resilience issues have been extensively studied individ-

ually, little has been done to understand the interplay between them for HPC systems. We

propose to quantitatively analyze the trade-offs between energy efficiency and resilience in

the large-scale HPC environment. Firstly, we observe that existing energy saving solutions

via slack reclamation are essentially frequency-directed, and thus fail to fully exploit more

energy saving opportunities. In our approach, we decrease the supply voltage associated

with a given operating frequency for processors to further reduce power consumption at

the cost of increased failure rates. We leverage the mainstream resilience techniques to

viii

tolerate the increased failures caused by the undervolting technique. Our strategy is the-

oretically validated and empirically evaluated to save more energy than a state-of-the-art

frequency-directed energy saving solution, with the guarantee of correctness. Secondly, for

capturing the impacts of frequency-directed solutions and undervolting, we also develop

analytic models that investigate the trade-offs among resilience, energy efficiency, and scal-

ability for large-scale HPC systems. We discuss various HPC parameters that inherently

affect each other, and also determine the optimal energy savings at scale, in terms of the

number of floating-point operations per Watt, in the presence of undervolting and fault

tolerance.

ix

Contents

List of Figures xiv

List of Tables xvii

1 Introduction 1
1.1 Background Knowledge: High Performance Numerical Linear Algebra . . . 3
1.2 Algorithm-Based Energy Saving for Numerical Linear Algebra Operations . 7
1.3 Entangled Effects: Energy Efficiency and Resilience in Scalable Systems . . 11
1.4 Contributions . 15

2 A2E : Adaptively Aggressive Energy Efficient DVFS Scheduling for Data
Intensive Applications 18
2.1 Motivation: DVFS Scheduling for Different Workload Intensive Applications 22
2.2 Energy Efficient DVFS Scheduling Strategies for Data Intensive Applications 25

2.2.1 Energy Saving Blocks . 25
2.2.2 Basic DVFS Scheduling for Comp-ESB and Comm-ESB 25
2.2.3 Aggressive DVFS Scheduling for Mem-ESB and Disk-ESB 26
2.2.4 Adaptively Aggressive DVFS Scheduling for Mem-ESB and Disk-ESB 29
2.2.5 Speculative DVFS Scheduling for Imbalanced Branches 33
2.2.6 Performance Model . 34
2.2.7 Energy Model and Energy Efficiency Analysis 38

2.3 Implementation and Evaluation . 40
2.3.1 Experimental Setup . 41
2.3.2 Performance Degradation . 43
2.3.3 Energy Savings for Memory Access Intensive Applications 45
2.3.4 Energy Savings for Disk Access Intensive Applications 46
2.3.5 Energy Savings for Imbalanced Branches 47
2.3.6 Energy and Performance Efficiency Trade-off 49

2.4 Summary . 50

x

3 HP-DAEMON : H igh Performance Distributed Adaptive Energy-efficient
M atrix-multiplicatiON 52
3.1 Distributed Matrix Multiplication . 56

3.1.1 Algorithmic Details . 56
3.1.2 DAG Representation . 57

3.2 Adaptive Memory-aware DVFS Scheduling Strategy 59
3.2.1 Memory-aware Grouping Mechanism 60
3.2.2 DAEMON Algorithm . 62
3.2.3 Energy Efficiency Analysis . 62

3.3 High Performance Communication Scheme 64
3.3.1 Binomial Tree and Pipeline Broadcast 65

3.4 Implementation and Evaluation . 68
3.4.1 Experimental Setup . 69
3.4.2 Overhead on Employing DVFS . 70
3.4.3 Memory Cost Trade-off from HP-DAEMON 72
3.4.4 Performance Gain via Tuned Pipeline Broadcast 72
3.4.5 Overall Energy and Performance Efficiency of HP-DAEMON 75

3.5 Summary . 78

4 Algorithm-Based Energy Saving for Cholesky, LU, and QR Factorizations 79
4.1 Introduction . 79

4.1.1 Motivation . 79
4.1.2 Limitations of Existing Solutions . 82
4.1.3 Our Contributions . 84

4.2 Background: Parallel Cholesky, LU, and QR Factorizations 86
4.2.1 2-D Block Cyclic Data Distribution 86
4.2.2 DAG Representation of Parallel Cholesky, LU, and QR Factorizations 88

4.3 Fundamentals: Task Dependency Set and Critical Path 90
4.3.1 Task Dependency Set . 91
4.3.2 Critical Path . 93
4.3.3 Critical Path Generation via TDS 94

4.4 TX: Energy Efficient Race-to-halt DVFS Scheduling 95
4.4.1 Custom Functions . 96
4.4.2 Scheduled Communication Approach 96
4.4.3 Critical Path Approach vs. TX Approach 97

4.5 Implementation and Evaluation . 107
4.5.1 Experimental Setup . 110
4.5.2 Results . 110

4.6 Summary . 117

5 Investigating the Interplay between Energy Efficiency and Resilience in
High Performance Computing 118
5.1 Problem Description and Modeling . 125

5.1.1 Failure Rate Modeling with Undervolting 125
5.1.2 Performance Modeling under Resilience Techniques 129

xi

5.1.3 Power and Energy Modeling under Resilience Techniques and Under-
volting . 134

5.2 Experimental Methodology . 144
5.2.1 Experimental Setup and Benchmarks 144
5.2.2 Failure Rate Calculation . 145
5.2.3 Undervolting Production Processors 146
5.2.4 Error Injection and Energy Cost Estimation 147

5.3 Experimental Results . 149
5.3.1 Disk-Based Checkpoint/Restart (DBCR) 152
5.3.2 Diskless Checkpointing (DC) . 152
5.3.3 Triple Modular Redundancy (TMR) 153
5.3.4 Algorithm-Based Fault Tolerance (ABFT) 153
5.3.5 Energy Savings over Adagio . 154

5.4 Summary . 155

6 Scalable Energy Efficiency with Resilience for High Performance Com-
puting Systems: A Quantitative Methodology 156
6.1 Background: Energy Savings, Undervolting, and Failures 159

6.1.1 Frequency-Directed DVFS Techniques 159
6.1.2 Fixed-Frequency Undervolting Technique 161
6.1.3 Checkpoint/Restart Failure Model 163

6.2 Modeling Scalable Energy Efficiency with Resilience 165
6.2.1 Problem Description . 165
6.2.2 Amdahl’s Law and Karp-Flatt Metric 165
6.2.3 Extended Amdahl’s Law for Power Efficiency 166
6.2.4 Extended Karp-Flatt Metric for Speedup with Resilience 170
6.2.5 Quantifying Integrated Energy Efficiency 171
6.2.6 Energy Saving Effects of Typical HPC Parameters 178

6.3 Evaluation . 182
6.3.1 Experimental Setup . 182
6.3.2 Implementation Details . 184
6.3.3 Validation of Modeling Accuracy . 191
6.3.4 Effects on Energy Efficiency from Typical HPC Parameters 194

6.4 Summary . 198

7 Related Work 199
7.1 Energy Efficient DVFS Scheduling Strategies 199
7.2 Interplay between Energy Efficiency and Resilience in High Performance

Computing . 204

8 Conclusions 211
8.1 Conclusive Remarks . 211

8.1.1 Consolidating Energy Efficient High Performance Scientific Comput-
ing in Large-scale HPC Systems . 211

8.1.2 Balancing Energy Saving and Resilience Tradeoffs in HPC Systems . 213

xii

8.2 Future Directions . 214
8.2.1 Algorithm-Based Energy Efficiency 215
8.2.2 Integrated High Performance, Energy Efficient, and Fault Tolerant

Hardware and Software . 215

Bibliography 217

xiii

List of Figures

1.1 Stepwise Illustration of LU Factorization without Pivoting. 5
1.2 Matrix Representation of a 4 × 4 Blocked Cholesky Factorization. 6
1.3 DAG Representation of Task Scheduling for the 4 × 4 Blocked Cholesky

Factorization in Figure 4.3 on a 2 × 2 Process Grid. 6

2.1 DVFS Scheduling for Compute Intensive Application. 22
2.2 DVFS Scheduling for Compute/Non-Compute Comparable Application. . . 22
2.3 Typical Kernel Pattern of Communication Intensive Code. 24
2.4 Typical Kernel Pattern of Memory and Disk Access Intensive Code. 24
2.5 Basic and Aggressive DVFS Scheduling for Typical Communication, Memory

Access, and Disk Access Mixed Code with Imbalanced Branches. 27
2.6 AGGREE and A2E DVFS Scheduling for Typical Communication, Memory

Access, and Disk Access Mixed Code with Imbalanced Branches. 32
2.7 Performance Loss and Energy Savings on a Cluster with 8 Nodes, 64 Cores

of {0.8, 1.3, 1.8, 2.5} GHz CPU frequencies, and 8 GB Memory/Node. . . . 42
2.8 Performance and Energy Efficiency upon Employing Speculation in AG-

GREE and A2E for the DT Benchmark with Imbalanced Branches. 47
2.9 Energy-Performance Efficiency Trade-off in Terms of EDP and ED2P. . . . 48

3.1 A Distributed Matrix Multiplication Algorithm with a Global View. 57
3.2 Matrix Multiplication DAGs with Two DVFS Scheduling Strategies. 58
3.3 Binomial Tree and Pipeline Broadcast Algorithm Illustration. 67
3.4 DVFS Energy and Time Overhead. 70
3.5 Performance Efficiency of Binomial Tree Broadcast and Pipeline Broadcast. 73
3.6 Energy Savings and Performance Gain on the HPCL Cluster (64-core, Eth-

ernet). 74
3.7 Performance Gain on the Tardis Cluster (512-core, Infiniband). 77

4.1 2-D Block Cyclic Data Distribution on a 2 × 3 Process Grid in Global View
and Local View. 87

4.2 Stepwise Illustration of LU Factorization without Pivoting. 89

xiv

4.3 Matrix Representation of a 4 × 4 Blocked Cholesky Factorization (We hence-
forth take parallel Cholesky factorization for example due to algorithmic sim-
ilarity among three types of matrix factorizations). 90

4.4 DAG Representation of Task and Slack Scheduling of CP and TX Approaches
for the 4 × 4 Blocked Cholesky Factorization in Figure 4.3 on a 2 × 2 Process
Grid Using 2-D Block Cyclic Data Distribution. 98

4.5 Power Consumption of Parallel Cholesky Factorization with Different Energy
Saving Approaches on the ARC Cluster using 16 × 16 Process Grid. 112

4.6 Energy and Performance Efficiency of Parallel Cholesky, LU, and QR Factor-
izations on the HPCL Cluster with Different Global Matrix Sizes and Energy
Saving Approaches using 8 × 8 Process Grid. 114

4.7 Energy and Performance Trade-off of Parallel Cholesky, LU, and QR Factor-
izations on the HPCL Cluster with Different Global Matrix Sizes and Energy
Saving Approaches using 8 × 8 Process Grid. 115

5.1 Entangled Effects of Undervolting on Performance, Energy, and Resilience
for HPC Systems in General. 122

5.2 Observed and Calculated Failure Rates λ as a Function of Supply Voltage
Vdd for a Pre-production Intel Itanium II 9560 8-Core Processor (Note that
the observed failures are ECC memory correctable errors for one core. Vh:
the maximum voltage paired with the maximum frequency; Vl: the minimum
voltage paired with the minimum frequency). 128

5.3 Checkpoint/Restart Execution Model for a Single Process. 130
5.4 Algorithm-Based Fault Tolerance Model for Matrix Operations. 132
5.5 Normalized Difference in Energy Consumption w/ and w/o Undervolting and

Resilience Techniques. 141
5.6 Normalized Difference in Energy Consumption w/ and w/o Undervolting and

Resilience Techniques (Relaxed). 143
5.7 Estimating Energy Costs with Undervolting at Vsafe min for Production Pro-

cessors via Emulated Scaling. 148
5.8 Performance and Energy Efficiency of Several HPC Runs with Different

Mainstream Resilience Techniques on a Power-aware Cluster. 150
5.9 Performance and Energy Efficiency of the HPC Runs with an Energy Saving

Solution Adagio and a Lightweight Resilience Technique ABFT. 151

6.1 DAG Notation of Two DVFS Solutions for a 3-Process HPC Run. 160
6.2 Fault Tolerance using the Checkpoint/Restart Technique. 164
6.3 Investigated Architecture – Symmetric Multicore Processors Interconnected

by Networks. 165
6.4 Energy Efficiency of HPC Runs with Faults and Resilience Techniques (Check-

point/Restart). 173
6.5 Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and DVFS

Techniques. 175
6.6 Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and Un-

dervolting (Setup I). 177

xv

6.7 Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and Un-
dervolting (Setup II). 181

6.8 Measured and Predicted System Power Consumption for HPC Runs on the
HPCL Cluster. 192

6.9 Measured and Predicted System Speedup with Resilience for HPC Runs on
the HPCL/ARC Clusters. 193

6.10 Energy Efficiency (MG and LULESH) for Different Checkpoint Intervals on
the HPCL Cluster. 195

6.11 Energy Efficiency for HPC Runs with Different Supply Voltage on the HPCL
Cluster. 196

xvi

List of Tables

2.1 Notation in Performance Efficiency Formalization. 35
2.2 Notation in Energy Efficiency Formalization. 37
2.3 Frequency-voltage Pairs for the AMD Opteron 2380 Processor. 38
2.4 Benchmark Details. 43

3.1 Notation in the Adaptive Memory-aware DVFS Scheduling Strategy. 61
3.2 Notation in Binomial Tree and Pipeline Broadcast. 66
3.3 Memory Overhead Thresholds for Different Matrices and Ngrp. 71

4.1 Notation in Algorithms 1, 2, 3, and 4 and Henceforth. 91
4.2 Notation in Energy Saving Analysis. 104
4.3 Frequency-Voltage Pairs for Different Processors (Unit: Frequency (GHz),

Voltage (V)). 107
4.4 Hardware Configuration for All Experiments. 109

5.1 Notation in the Formulation and Text. 126
5.2 Hardware Configuration for All Experiments. 145
5.3 Empirical Resilience Techniques and Applicable Failures. 145
5.4 Northbridge/CPU FID/VID Control Register Bit Format. 146

6.1 Benchmark details. From left to right: benchmark name, benchmark suite,
benchmark description and test case used, problem domain, lines of code
in the benchmark, parallelization system employed, and parallelized code
percentage relative to the total. 183

6.2 Hardware Configuration for All Experiments. 184
6.3 Northbridge/CPU FID/VID Control Register Bit Format. 185
6.4 Architecture-Dependent Power Constants in Our Models on HPCL/ARC

Clusters. 188
6.5 Calculated Failure Rates at Different Supply Voltage on the HPCL Cluster

(Unit: Voltage (V) and Failure Rate (errors/minute)). 189
6.6 Communication Time to Total Time Ratio for All Benchmarks with Different

Number of Cores and Problem Sizes on the ARC Cluster (Unit: κ(N,P)
(second) and T (second)). 190

xvii

Chapter 1

Introduction

With the expected embarking time of around 2020 for the exascale supercomputers

[76], i.e., High Performance Computing (HPC) systems that are able to deliver the perfor-

mance up to ExaFLOPS (1018 FLoating-point OPerations per Second), HPC architects

become aware of two crucial facts: (a) The costs of powering a supercomputer are rapidly

increasing nowadays due to expansion of its size and duration in use, and (b) although small

on a single node, failure rates of large-scale computing systems are dramatically shortened

– can be of the order of magnitude of hours [72] due to a large amount of compute nodes

interconnected as a whole. The ever-growing and demanding requirements for improving

energy efficiency and resilience of HPC systems have been regarded as a pressing issue. It

is highly desirable to consider both critical dimensions for building scalable, cost-efficient,

and robust HPC systems nowadays. HPC architects start to concern not only compute

capability of a supercomputer, ranked by the TOP500 list [27], but also energy efficiency

1

and fault tolerance of the computing system. The Green500 list [10], ranks the top 500

supercomputers worldwide by performance-power ratio in six-month cycles.

Solutions of curtailing energy consumption of HPC runs without sacrificing per-

formance via preserving parallelism (e.g., respecting the critical path of an HPC run) have

been widely studied. With different focuses of studying, holistic hardware and software ap-

proaches for reducing energy costs of running high performance scientific applications have

been extensively proposed. Software-controlled hardware solutions such as DVFS-directed

(Dynamic Voltage and Frequency Scaling [141]) energy efficient scheduling are deemed to

be effective and lightweight [46] [67] [69] [86] [124] [116] [115]. Performance and mem-

ory constraints have been considered as trade-offs for energy savings [92] [70] [139] [127]

[132]. Generally, energy savings can be achieved by leveraging power-aware techniques that

strategically switch power-scalable hardware components to low-power states, when the

peak performance of the components is not necessary.

DVFS is a runtime technique that is able to switch operating frequency and supply

voltage of a hardware component (CPU, GPU, memory, etc.) to different levels (also known

as gears or operating points). Energy efficient approaches employ DVFS strategically per

workload characteristics of HPC runs to exploit energy saving opportunities dynamically.

CPU and GPU are the most widely applied hardware components for saving energy via

DVFS due to two primary reasons: (a) Compared to other components such as memory,

CPU/GPU DVFS is easier to implement [54] – various handy DVFS APIs have been indus-

trialized for CPU/GPU DVFS such as CPUFreq kernel infrastructure [5] incorporated into

the Linux kernel and NVIDIA System Management Interface (nvidia-smi) [21] for NVIDIA

2

GPU; (b) CPU energy costs dominate the total system energy consumption [71] (CPU and

GPU energy costs dominate if heterogeneous architectures are considered), and thus saving

CPU and GPU energy greatly improves energy efficiency of the whole system. In our work,

we focus on distributed-memory HPC systems with or without accelerators such as GPU,

where CPU DVFS or GPU DVFS is conducted for energy saving purposes.

For instance, energy can be saved by reducing CPU frequency and voltage during

non-CPU-bound operations such as large-message MPI communication, since generally ex-

ecution time of such operations barely increases at a low-power state of CPU, in contrast to

original runs at a high-power state. Given the fact that energy consumption equals prod-

uct of average power consumption and execution time (E = P × T), and the assumption

that dynamic power consumption of a CMOS-based processor is proportional to product of

operating frequency and square of supply voltage (P ∝ fV 2) [108] [80], energy savings can

be effectively achieved using DVFS-directed strategical scheduling approaches with little

performance loss.

1.1 Background Knowledge: High Performance Numerical

Linear Algebra

Improving energy efficiency of commonly used libraries is a promising solution

to building energy efficient HPC systems. Linear algebra has been widely used in almost

all science and engineering fields, and has been considered as the core component of high

performance scientific computing nowadays. While many linear algebra libraries have been

developed to optimize their performance, no linear algebra libraries optimize their energy

efficiency at the library design time.

3

As classic dense numerical linear algebra operations for solving systems of linear

equations, such as Ax = b where A is a given coefficient matrix and b is a given vector,

Cholesky factorization applies to the case that A is a symmetric positive definite matrix,

while LU and QR factorizations apply to any general M × N matrices. The goal of these

operations is to factorize A into the form LLT where L is lower triangular and LT is the

transpose of L, the form LU where L is unit lower triangular and U is upper triangular,

and the form QR where Q is orthogonal and R is upper triangular, respectively. Thus from

LLTx = b, LUx = b, QRx = b, x can be easily solved via forward substitution and back sub-

stitution. In practice, Cholesky, LU, and QR factorizations are widely employed in extensive

areas of high performance scientific computing. Various software libraries of numerical linear

algebra for distributed multicore scientific computing such as ScaLAPACK [26], DPLASMA

[8], and MAGMA [18] provide routines of these matrix factorizations as standard function-

ality. Matrix multiplication is the core computation workload within Cholesky, LU, and

QR factorizations, and it is also extensively used in many other areas, including quantum

mechanics and economics. Therefore, saving energy for numerical linear algebra matrix

operations such as matrix multiplication, Cholesky, LU, and QR factorizations contributes

significantly to the energy efficiency of high performance scientific computing nowadays.

Next we present basics of Cholesky, LU, and QR factorizations. Details of matrix multipli-

cation is introduced in Chapter 2. We also describe an effective graph representation for

parallelism present during the execution of high performance matrix operations.

A well-designed partitioning and highly-efficient parallel algorithms of compu-

tation and communication substantially determine energy and performance efficiency of

4

task-parallel applications. For such purposes, classic implementations of high performance

Cholesky, LU, and QR factorizations are as follows: (a) Partition the global matrix into a

number of computing cores as a process grid using 2-D block cyclic data distribution [134]

for load balancing; (b) perform local diagonal matrix factorizations in each core individ-

ually and communicate factorized local matrices to other cores for panel matrix solving

and trailing matrix updating, as shown in Figure 4.2, a stepwise LU factorization with-

out pivoting. Due to frequently-arising data dependencies, parallel execution of the matrix

operations can be characterized using Directed Acyclic Graph (DAG), where data depen-

dencies among parallel tasks are appropriately represented. DAG for the matrix operations

is formally defined below:

Figure 1.1: Stepwise Illustration of LU Factorization without Pivoting.

Definition 1. Data dependencies among parallel tasks of high performance matrix opera-

tions running on a HPC system are modeled by a Directed Acyclic Graph (DAG)G = (V,E),

where each node v ∈ V denotes a task of the matrix operations, and each directed edge

e ∈ E represents a dynamic data dependency from task tj to task ti that both tasks ma-

nipulate on either different local matrices (i.e., an explicit dependency) or the same local

matrix (i.e., an implicit dependency), denoted by ti → tj .

5

A11 AT

21
AT

31
AT

41

A21 A22 AT

32
AT

42

A31 A32 A33 AT

43

A41 A42 A43 A44

=

L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44

×

LT

11
LT

21
LT

31
LT

41

0 LT

22
LT

32
LT

42

0 0 LT

33
LT

43

0 0 0 LT

44

=

L11L
T

11
L11L

T

21
L11L

T

31
L11L

T

41

L21L
T

11
L21L

T

21
+ L22L

T

22
L21L

T

31
+ L22L

T

32
L21L

T

41
+ L22L

T

42

L31L
T

11
L31L

T

21
+ L32L

T

22
L31L

T

31
+ L32L

T

32
+ L33L

T

33
L31L

T

41
+ L32L

T

42
+ L33L

T

43

L41L
T

11
L41L

T

21
+ L42L

T

22
L41L

T

31
+ L42L

T

32
+ L43L

T

33
L41L

T

41
+ L42L

T

42
+ L43L

T

43
+ L44L

T

44

Figure 1.2: Matrix Representation of a 4 × 4 Blocked Cholesky Factorization.

Figure 1.3: DAG Representation of Task Scheduling for the 4 × 4 Blocked Cholesky Fac-

torization in Figure 4.3 on a 2 × 2 Process Grid.

6

Example. Due to similarity among the three matrix factorizations and space limitation,

we henceforth take Cholesky factorization for example to elaborate our approach. Consider

a 4 × 4 blocked Cholesky factorization as given in Figure 4.3. The outcome of the task

factorizing A11, i.e., L11, is used in the tasks solving local matrices L21, L31, and L41

in the same column as L11, i.e., the tasks calculating the panel matrix. In other words,

there exist three data dependencies from the tasks solving L21, L31, and L41 to the task

factorizing A11, denoted by three solid directed edges from the task Factorize(1,1) to the

tasks Solve(2,1), Solve(3,1), and Solve(4,1) individually as shown in Figure 4.4. Besides the

above explicit dependencies, there exists an implicit dependency between the task updating

local matrix A32 and the task subsequently solving L32 on the same local matrix, denoted

by the dashed directed edge from the task Update1(3,2) to the task Solve(3,2) in Figure 4.4.

Note that communication among tasks is not shown in Figure 4.4, and updating diagonal

local matrices and updating non-diagonal local matrices are distinguished as Update2() and

Update1() respectively due to different computation time complexity.

1.2 Algorithm-Based Energy Saving for Numerical Linear

Algebra Operations

Based on the task-parallel DAG representation, we can effectively pinpoint poten-

tial energy saving opportunities in terms of slack among the tasks, via identifying Critical

Path (CP) in runs of the matrix operations.

Although load balancing techniques are leveraged for distributing workloads into

a number of computing cores as evenly as possible, assuming that all cores have the same

7

hardware configuration and thus the same computation and communication capability, slack

can result from the fact that different cores can be utilized unfairly due to three primary

reasons: (a) imbalanced computation delay due to data dependencies among tasks, (b) im-

balanced task partitioning, and (c) imbalanced communication delay. Difference in CPU

utilization results in different amount of computation slack. For instance, constrained by

data dependencies, the start time of processes running on different cores differs from each

other, as shown in Figure 4.4 (see page 15) where P1 starts earlier than the other three

processes. Moreover, since the location of local matrices in the global matrix determines

what types of computation are performed on the local matrices, load imbalancing from dif-

ference in task types and task amount allocated to different processes cannot be eliminated

completely by the 2-D block cyclic data distribution, as shown in Figure 4.4 where P2 has

lighter workloads compared to the other three processes. Imbalanced communication time

due to different task amount among the processes further extends the difference in slack

length for different processes.

Definition 2. Critical path is one particular task trace from the beginning task of one run

of a task-parallel application to the ending one with the total slack of zero.

Per the definition, any delay on tasks on the CP increases the total execution

time of the application, while dilating tasks off the CP into their slack individually without

further delay does not cause performance loss as a whole. Energy savings can be achieved

by appropriately reducing frequency to dilate tasks off the CP into their slack as much as

possible, which is referred to as the CP approach. Numerous existing OS level solutions

8

effectively save energy via CP-aware analysis [46] [101] [116] [115] [33] [30]. Figure 4.4

highlights one CP for the provided parallel Cholesky factorization with bold edges.

We can generate a CP for high performance matrix operations via their algorithmic

characteristics. Consider the same Cholesky factorization above. The heuristic of the CP

generation algorithm is as follows: (a) Each task of factorizing is included in the CP, since

the local matrices to factorize are always updated last, compared to other local matrices

in the same row of the global matrix, and the outcome of factorizing is required in future

computation. In other words, the task of factorizing serves as a transitive step that cannot

be executed in parallel together with other tasks; (b) each task of Update1() is excluded from

the CP, since it does not have direct dependency relationship with any tasks of factorizing,

which are already included in the CP; (c) regarding Update2(), we select the ones that are

directly depended by the tasks of factorizing on the same local matrix into the CP; (d) we

choose the tasks of solving that are directly depended by Update2() (or directly depends on

Factorize(), not shown in the algorithm) into the CP. Note that CP can also be identified

using methods other than TDS analysis [46] [33] [30].

Although effective, existing energy efficient approaches for slack reclamation can be

defective and thus cannot achieve the optimal energy savings. Thus we propose Algorithm-

Based Energy Saving (ABES) for the widely used matrix operations to fully exploit energy

saving opportunities. Firstly, the DVFS-based solutions may bring disadvantageous im-

pacts to performance and energy efficiency: introducing DVFS itself in HPC runs can incur

non-negligible overhead that may offset energy savings gained. Regardless of the efforts that

keep only necessary processor frequency switches when CPU or GPU is idle, we propose to

9

further reduce the DVFS overhead by utilizing algorithmic characteristics of distributed ma-

trix multiplication. In a loop-fashion interleaving of computation and communication, there

exist a large number of frequency switches issued by DVFS. We minimize the number of

DVFS switches via aggregating blocked computation and blocked communication as groups

and employ DVFS individually at group level. Moreover, we leverage a high performance

communication scheme for fully exploiting network bandwidth via pipeline broadcast. Sec-

ondly, the existing OS level workload prediction approaches are costly and inaccurate to

predict slack for applications with variable workloads, such as the matrix operations. There-

fore, the maximum of energy savings cannot be obtained due to the workload prediction

strategies OS level approaches rely on. We utilize algorithmic characteristics of the matrix

operations to accurately predict slack and maximize energy savings accordingly by respect-

ing the CP of an HPC run. With negligible overhead, our optimized matrix operations

are able to deliver high performance – comparable performance to other highly optimized

linear algebra kernels, energy efficiency – energy savings achieved is close to the theoretical

upper bound, and high portability – the optimized matrix operations are standardized as

a numerical linear algebra library, with which it can benefit a wide range of scientific ap-

plications with mininal programming efforts, and the equipped energy saving techniques is

hardware-transparent, making it outperform others across different architectures.

10

1.3 Entangled Effects: Energy Efficiency and Resilience in

Scalable Systems

Energy efficiency and resilience are two crucial challenges for HPC systems to

reach exascale. While energy efficiency and resilience issues have been extensively studied

individually, little has been done to understand the interplay between energy efficiency and

resilience for HPC systems. The average power of the top 5 supercomputers worldwide has

been inevitably growing to 10.1 MW according to the latest TOP500 list [27], as opposed to

the power consumed by a city with a population of 20,000 is about 11 MW [25]. The 20 MW

exascale computing power-wall prediction by the US Department of Energy [9] indicates the

severity of constrained energy budget against the necessity of performance requirements

due to ever-growing computational complexity. Empirically, running HPC applications on

supercomputers can be interrupted by failures including hardware breakdowns and soft

errors. Although small on a single node, failure rates of large-scale computing systems can

be of the order of magnitude of hours [72] due to a large amount of nodes interconnected

as a whole. Greatly shortened Mean Time To Failures (MTTF) of such systems at large

scales entails less reliability. For instance, a compute node in a cluster of 692 nodes (22,144

cores in total) at Pacific Northwest National Laboratory can experience up to 1,700 ECC

(Error-Correcting Code) errors in a two-month period [24]. K computer, ranked the first on

the TOP500 list in June/Nov. 2011, held a hardware failure rate of up to 3% and affected

by up to 70 soft errors in a month [14]. Larger forthcoming exascale systems are expected

to suffer from more errors of different types in a fixed time period [118].

Both energy efficiency and resilience are considered to fulfill an optimal performance-

11

cost ratio with a given amount of resources, as the trend of future exascaling computing

implies. Widely studied individually, energy saving techniques and resilience techniques

may restrict each other to attain the optimal effectiveness if employed jointly. In HPC

runs, different forms of slack can result from numerous factors such as load imbalance, net-

work latency, commmunication delay, and memory and disk access stalls. Such slack can

be exploited either as energy saving opportunities, since during the slack the peak perfor-

mance of processors (e.g., CPU, GPU, and even memory) is generally not necessary for

meeting time requirements of the applications, and thus slack reclamation techniques can

be employed to save energy [115] [102] [132]; or exploited as fault tolerance opportunities,

since resilience techniques such as Checkpoint/Restart (CR) [110] [53] and Algorithm-Based

Fault Tolerance (ABFT) [58] [48] can be performed during the slack without incurring per-

formance loss overall. Therefore, given a specific schedule of an HPC application, energy

saving techniques and resilience techniques can compete for the fixed amount of slack, which

can restrict each other to attain the best extent.

During the slack where the peak performance of processors is not necessary, energy

savings can be achieved with negligible performance loss, by fine-grained slack utilization via

DVFS in two fashions: CP-aware slack reclamation [115] and race-to-halt [64]. For detected

slack, both DVFS techniques can effectively save energy by reducing frequency and voltage

to different extents, due to the facts that dynamic power consumption of a CMOS-based

processor is proportional to product of operation frequency and square of supply voltage,

and that overall runtime is barely increased. For non-slack durations, e.g., computation,

frequency reduction generally incurs a proportional reduction in runtime, which is usually

12

not acceptable for HPC runs. Therefore, for such durations, both DVFS techniques employ

the highest frequency and voltage to guarantee the performance overall.

However, for both slack and non-slack, existing DVFS techniques do not fully ex-

ploit potential energy savings, since they are essentially frequency-directed: Voltage is only

lowered together with frequency when frequency reduction is necessary in the presence of

slack. There still exist further energy saving opportunities from undervolting [143] [29] [39]

regardless of frequency scaling, i.e., lowering only supply voltage of a chip without corre-

sponding reduction of its operating frequency, when frequency cannot be further lowered

during either slack or non-slack due to performance requirements. Per the previous defini-

tion of power consumption, decreasing the supply voltage associated with a given operating

frequency for processors and other CMOS-based components can significantly reduce power

consumption. Nevertheless, this often raises system failure rates and consequently increases

application execution time and energy consumption.

Energy efficiency and resilience are by nature two correlated but mutually con-

strained goals to achieve, from both theoretical and experimental perspectives. For energy

saving purposes, reducing operating frequency and/or supply voltage of processors such as

CPU will increase their failure rate, assuming that failures of combinational logic circuits

follow a Poisson distribution (i.e., an exponential failure model) [119] [154], and thus incur

more overhead on fault tolerance that may lead to performance loss and less energy savings.

For reliability improving purposes, keeping operating frequency and/or supply voltage of

the hardware at a conservatively high scale will lead to unnecessary energy costs without

performance gain [39]. There exists an optimal trade-off between system reliability and

13

energy costs. It is a challenging issue to accomplish the most balanced energy efficiency

and resilience on large-scale systems nowadays without performance degradation, which is

especially substantial to be addressed for the forthcoming exascale systems.

As a technique of high generality, undervolting is advantageous to save extra en-

ergy for any phases of HPC runs since required performance of processors is not degraded,

at the cost of increased failure rates. Unlike traditional simulation-based approaches [143]

[29], Bacha et al. [39] first implemented an empirical undervolting system on Intel Itanium

II processors, which is intended for reducing voltage margins and thus saving power, with

ECC memory correcting arising faults. Their work indeed maximized potential power sav-

ings since they used pre-production processors that allows thorough undervolting until the

voltages lower than the lowest voltage corresponding to the lowest frequency supported. In

general, production processors are locked for reliability purposes, and they will typically

shut down when the voltage is lowered below the one corresponding to the minimum fre-

quency. For generality purposes, we propose a scheme that works for general production

processors and thus can be deployed on large-scale HPC clusters nowadays.

Moreover, their work requires ECC memory to correct greatly-increased faults.

Conventional supercomputer ECC memory extensively uses a Single Error Correcting, Dou-

ble Error Detecting (SECDED) code [91] [142] [14], which relies on hardware support of

ECC memory and can be limited to handle real-world hard and soft failures. For further

achieving energy savings, a general and/or specialized lightweight resilience technique is

expected to tolerate more complicated failures in the scenario of undervolting on HPC sys-

tems. We investigate the interplay between energy efficiency and resilience in HPC systems,

14

and demonstrate theoretically and empirically that the two significant goals in HPC nowa-

days can be traded-off in different scenarios. In this work, we consider two popular fault

tolerance schemes: the classic CR approach, and the state-of-the-art ABFT approach.

For further analyzing the trade-offs between energy efficiency and resilience in the

HPC environment, we quantitatively model the impacts of various HPC paramenters that

inherently affect each other, and also determine the maximum of balanced performance and

energy efficiency at scale, with the guarantee of resilience in the scenario of undervolting.

Specifically, we look into typical parameters in scalable HPC runs including operating fre-

quency and supply voltage of processors, number of used cores, problem size, checkpoint

and restart overhead, and checkpoint interval. We discuss the optimal values of these pa-

rameters that contribute to the most balanced integrated performance and energy efficiency

for large-scale HPC systems, in terms of the performance-power ratio, i.e., the number of

floating-point operations per Watt, in the presence of energy saving DVFS, undervolting,

and fault tolerance techniques.

1.4 Contributions

In summary, in this dissertation, the following contributions are achieved:

• We propose an adaptively aggressive DVFS scheduling strategy to achieve energy ef-

ficiency for data intensive applications, and further save energy via speculation to

mitigate DVFS overhead for imbalanced branches. We implemented and evaluated

our approach using five memory and disk access intensive benchmarks with imbal-

anced branches against another two energy saving approaches. The experimental

15

results indicate an average of 32.6% energy savings were achieved with 6.2% aver-

age performance loss compared to the original executions on a power-aware 64-core

cluster.

• We propose a strategy that gains the optimal energy savings for distributed matrix

multiplication via algorithmically trading more computation and communication at a

time adaptively with user-specified memory costs for less DVFS switches. Combining a

high performance pipeline broadcast communication scheme, the integrated approach

achieves substantial energy savings (up to 51.4%) and performance gain (28.6% on

average) compared to ScaLAPACK matrix multiplication on a cluster with an Ether-

net switch, and outperforms ScaLAPACK and DPLASMA counterparts respectively

by 33.3% and 32.7% on average on a cluster with an Infiniband switch;

• we propose TX, a library level race-to-halt DVFS scheduling approach that analyzes

Task Dependency Set of each task in parallel Cholesky, LU, and QR factorizations to

achieve substantial energy savings OS level solutions cannot fulfill. Partially giving

up the generality of OS level solutions per requiring library level source modification,

TX leverages algorithmic characteristics of the applications to gain greater energy

savings. Experimental results on two power-aware clusters indicate that TX can save

up to 17.8% more energy than state-of-the-art OS level solutions with negligible 3.5%

on average performance loss;

• We present an energy saving undervolting approach that leverages the mainstream

resilience techniques to tolerate the increased failures caused by undervolting. Our

strategy is directed by analytic models, which capture the impacts of undervolting

16

and the interplay between energy efficiency and resilience. Experimental results on

a power-aware cluster demonstrate that our approach can save up to 12.1% energy

compared to the baseline, and conserve up to 9.1% more energy than a state-of-the-art

DVFS solution;

• By extending the Amdahls Law and the Karp-Flatt Metric, taking resilience into

consideration, we quantitatively model the integrated energy efficiency in terms of

performance per Watt, and showcase the trade-offs among typical HPC parameters,

such as number of cores, frequency/voltage, and failure rates. Experimental results

for a wide spectrum of HPC benchmarks on two HPC systems show that the pro-

posed models are accurate in extrapolating resilience-aware performance and energy

efficiency, and capable of capturing the interplay among various energy saving and

resilience factors. Moreover, the models can help find the optimal HPC configuration

for the highest integrated energy efficiency, in the presence of failures and applied

resilience techniques.

The rest of this dissertation is organized as follows. Chapter 2 introduces adaptive

and aggressive energy saving for data intensive workloads. Chapter 3 and Chapter 4 presents

algorithm-based energy savings for high performance matrix multiplication, Cholesky, LU,

and QR factorizations. We discuss the interplay between energy efficiency and resilience for

HPC systems in Chapter 5, and the quantitative relationship among HPC parameters for

achieving the integrated optimal energy efficiency and resilience for scalable HPC systems

in Chapter 6. Chapter 7 discusses related work and Chapter 8 concludes.

17

Chapter 2

A2E : Adaptively Aggressive

Energy Efficient DVFS Scheduling

for Data Intensive Applications

With the growing severity of power and energy consumption on high performance

distributed-memory computing systems nowadays in terms of operating costs and system

reliability [69] [92], reducing power and energy costs has been considered as a critical issue in

high performance computing, in particular in this big data era. Featured by high portability

and programmability, Dynamic Voltage and Frequency Scaling (DVFS) [141] [5] techniques

have been empirically applied for scaling down power and energy costs with little or limited

performance loss [108] [46] [86] [80] [67] [124] [93] [70] [116] [115] [128]. Generally, energy

efficiency can be achieved during runs of high performance applications by scaling down

operating voltage and frequency of CPU, where peak CPU performance is not necessary

18

such as slack from load imbalance, communication delay, memory and disk access latency,

etc., given the assumption that CPU dominates the total system-wise energy consumption.

DVFS is thus deemed an effective approach to address the concerns of operating costs and

system reliability for high performance applications nowadays.

Per the functionality of an application, types of workloads within the application

consist of computation, communication, memory accesses, and disk accesses, etc. For com-

munication intensive applications, an effective way of improving energy efficiency, referred

to as basic DVFS scheduling strategy, is to scale down CPU voltage and frequency dur-

ing communication, while keep peak CPU performance when CPU is fully loaded during

computation. This approach can be easily fulfilled, since at source code level the bound-

ary between communication and computation is explicit. Appropriate CPU frequency can

be assigned via DVFS techniques at the boundary between communication and computa-

tion. Since the execution of communication is not CPU-bound, communication time will

barely increase due to low CPU performance. Moreover, computation time will not grow

since CPU performance during computation is kept the same as the orignal by not altering

CPU frequency. Since generally voltage is proportional to frequency, energy savings can

be achieved using basic DVFS scheduling strategy with negligible performance loss due to

lower CPU voltage and frequency on average compared to the original execution.

Similarly, peak CPU performance is not needed when CPU is waiting for data

from memory and disk. Typically, for memory and disk access intensive applications, mem-

ory and disk access latency are performance bottleneck of the applications. According to

the fundamental memory hierachy of moderm computer architectures, compared to CPU,

19

main memory access takes hundreds of clock cycles while local disk access time is of the

order of magnitude of millisecond, 106 greater than memory access time in general. As for

memory and disk access intensive applications, energy efficiency can be intuitively achieved

by reducing CPU frequency when memory and disk accesses are performed and CPU is

waiting for data.

Despite the straightforward deployment of DVFS for communication intensive ap-

plications, it is however not intuitive to achieve energy efficiency for other types of data

intensive applications such as memory and disk access intensive applications due to two

reasons: Firstly, employing DVFS in our approach is implemented at source code level

within the application via system calls for modifying CPU frequency configuration files at

runtime. Empirically, memory and disk accesses are generally accompanied by CPU-bound

operations at source code level, which causes the boundary between memory and disk ac-

cesses and computation implicit. As a consequence, it is difficult to separate memory and

disk accesses from computation and then apply DVFS for energy savings. Secondly, the

overhead on employing DVFS can be high: Given the iterative nature of many high perfor-

mance applications, the time and energy costs on employing fine-grained DVFS scheduling

can be non-negligible due to a large number of CPU frequency switches [93] [126] [132]. A

lightweight DVFS scheduling strategy is thus desirable.

In this chapter, we introduce an adaptively aggressive DVFS scheduling strategy

(A2E) for energy efficient memory and disk access intensive applications with imbalanced

branches, where memory and disk accesses are mixed with minor computation. Instead

of separating memory and disk accesses from computation for an Energy Saving Block

20

(ESB) with different types of workloads, and then performing fine-grained DVFS scheduling

accordingly, we aggressively apply DVFS to the hybrid ESB holistically, and adaptively

set an appropriate CPU frequency to the hybrid ESB according to the computation time

proportion within the total execution time of the ESB. In summary, the contributions of

this chapter are as follows:

• We analyze the impact of factors such as CPU frequency and execution time on

energy consumption of applications consisting of different dominant workloads, which

motivates our idea of A2E;

• We demonstrate the significance of code boundary for achieving energy efficiency via

DVFS, and thus define ESB to refine energy saving opportunities and model energy

and performance efficiency of our approach;

• We propose A2E to improve energy efficiency for memory and disk access intensive

applications with mixed minor computation, and further save energy using speculation

to mitigate DVFS overhead for imbalanced branches. Our approach is evaluated to

achieve considerable energy savings (32.6% on average) and incur minor performance

loss (6.2% on average) compared to the original runs of five benchmarks.

The rest of this chapter is organized as follows. Section 2.1 motivates and Section

2.2 introduces three energy saving approaches for data intensive applications. We provide

implementation details and evaluate our approach in Section 2.3, and Section 2.4 concludes.

21

Figure 2.1: DVFS Scheduling for Compute
Intensive Application.

Figure 2.2: DVFS Scheduling for
Compute/Non-Compute Comparable
Application.

2.1 Motivation: DVFS Scheduling for Different Workload

Intensive Applications

In order to learn the impact of factors such as CPU frequency and execution time

that may affect energy consumption of applications with different dominant workloads, we

conducted some experiments and the results are plotted in Figures 2.1 and 2.2. Motivated

by the experimental results on DVFS scheduling for compute intensive and compute/non-

compute comparable applications, we observe that the proportion of non-compute opera-

tions in an application determines whether energy consumption of the application is time-

directed or frequency-directed. In other words, energy consumption is affected more by

exectuion time in a compute intensive application, and is affected more by CPU frequency

in a compute/non-compute comparable application, given the fact that energy consumption

equals product of average power and time, where power is proportional to frequency and

voltage.

As shown in Figure 2.1, CPU performance degradation for the compute intensive

application EP from NPB [20] leads to more energy costs due to the longer execution time

that is the more dominant factor compared to CPU frequency. On the other hand, for

22

an application with comparable proportion of computation and non-computation such as

pdgemm() routine from ScaLAPACK [132] shown in Figure 2.2, there exists even a slight

decrease of energy costs as CPU frequency goes down, despite the increasing execution time

due to low CPU performance. We can further infer from the experimental results that if

computation only takes a small proportion of the total execution time of an application

as in the case of data intensive applications such as memory and disk access intensive

applications, performance loss at a low CPU frequency is comparatively limited, and the

less computation exists, the less performance loss is incurred from reducing CPU frequency.

Therefore, the resulting reduction of power from lowering frequency dominates the ultimate

energy costs. Compared to the compute/non-compute comparable application, more energy

savings can be achieved by aggressively reducing CPU frequency for a non-compute intensive

application.

Non-compute intensive applications can be any applications with a dominant pro-

portion of non-compute workloads such as communication, memory accesses, and disk ac-

cesses, etc., where memory and disk access intensive applications are commonly regarded

as data intensive applications. Different from communication intensive applications, it is

challenging to employ DVFS on memory and disk access intensive applications for achiev-

ing energy efficiency, since data operations such as memory and disk accesses generally mix

with minor computation at source code level. As we know, energy savings can be achieved

by applying DVFS at source code level by lowering CPU frequency for data intensive op-

erations where peak CPU performance is not necessary. It is however difficult to separate

non-computation from computation for later assignment of appropriate CPU frequency to

23

1: while (caseA) {
2: ...

3: buffer = (char*)malloc(num*sizeof(char));

4: /* MPI communication routine call I */

5: MPI Bcast(&buffer, count, type, root, comm);

6: /* Independent computation code */

7: computation();

8: /* MPI communication routine call II */

9: MPI Alltoall(&sb, sc, st, &rb, rc, rt, comm);

10: ...

11: }

Figure 2.3: Typical Kernel Pattern of Communication Intensive Code.

1: while (caseA) {
2: ...

3: /* Memory accesses mixed with computation */

4: valueA = arrayA[baseA+offset];

5: arrayB[baseB] += valueB;

6: arrayC[baseC++] = arrayB[baseB++]+valueC;

7: ...

8: /* Disk accesses mixed with computation */

9: buffer = (char*)malloc(num*sizeof(char));

10: fread(buffer, size, count, read file stream);

11: fwrite(buffer, size, count, write file stream);

12: ...

13: }

Figure 2.4: Typical Kernel Pattern of Memory and Disk Access Intensive Code.

different workloads. To fulfill energy efficiency for data intensive applications, our goals

include: (a) Reducing the performance loss from computation accompanying data inten-

sive operations due to low CPU frequency, i.e., low-performance trade-off; (b) reducing the

number of CPU frequency switches by DVFS, i.e., DVFS overhead. Both low-performance

trade-off and DVFS overhead result in higher execution time and thus greater energy costs.

24

2.2 Energy Efficient DVFS Scheduling Strategies for Data

Intensive Applications

In this section, we present our adaptively aggressive energy efficient DVFS schedul-

ing strategy (A2E) for data intensive applications, e.g., memory and disk access intensive

applications. Leveraging speculation, A2E can also handle conditional statements with im-

balanced branches whose possibilities of occurrence are significantly different. Next we first

introduce the concept of Energy Saving Blocks at source code level.

2.2.1 Energy Saving Blocks

Similarly as the common term basic block in the area of compilers, from the per-

spective of energy, an Energy Saving Block (ESB) is defined as a statement block of one

specific type of workload such as computation, communication, memory accesses and disk

accesses, etc., where runtime energy savings may be achieved by different means. For sim-

plicity, such ESBs are referred to as Comp-ESB, Comm-ESB, Mem-ESB, and Disk -ESB

respectively in the later text. For instance, in the code example shown in Figure 2.5 (a),

there exist six ESBs located at Lines 5, 7, 8, 9, 11, and 17, respectively, i.e., two Comp-

ESBs, two Comm-ESBs, one Mem-ESB, and one Disk -ESB, each of which can be assigned

an appropriate CPU frequency accordingly via DVFS for energy saving purposes.

2.2.2 Basic DVFS Scheduling for Comp-ESB and Comm-ESB

We can apply a basic DVFS scheduling strategy for Comp-ESB and Comm-ESB

that simply sets CPU frequency to as high as possible for Comp-ESB and sets CPU fre-

25

quency to as low as possible for Comm-ESB, which can be easily fulfilled since the boundary

of Comm-ESB is explicit as shown in Figure 2.3: Little computation is involved in the MPI

communication routine calls at Lines 5 and 9 respectively, and computation independent

of communication at Line 7 is conducted after the communication code. The basic DVFS

scheduling strategy is shown in Figure 2.5 (a), where a low-high CPU frequency pair is as-

signed around the communication code, since CPU is barely utilized in the communication

and peak CPU performance is thus not necessary. Yet, the basic DVFS scheduling strategy

suffers from two disadvantages: (a) It can only work at inter-ESB level but fail at intra-ESB

level, i.e., towards single ESB with mixed workloads as shown in Figure 2.4 (we discuss it

next); (b) the number of CPU frequency switches can be considerably large if the number of

Comm-ESBs and the number of iterations of the loop are large, which incurs non-negligible

overhead on time and energy [132].

2.2.3 Aggressive DVFS Scheduling for Mem-ESB and Disk-ESB

Figure 2.4 depicts typical kernel of memory and disk access intensive applications.

Lines 4, 5, and 6 give three typical memory accesses mixed with computation. At Line 4,

valueA is assigned until the finish of calculating the array index and accessing the content

of corresponding memory location. Lines 5 and 6 show how array values are involved in

computation after and before addressing, respectively. Likewise, for disk accesses given at

Lines 10 and 11 that read and write blocks of data from and into local disk files individually,

the value of input/output buffer pointer is frequently accessed and updated for current and

next reading/writing position as the file reading and writing operations proceed. If the

26

1: while (caseA) { 1: SetFreq(LDV FS);
2: if (caseB) { P1 2: while (caseA) {
3: ... 3: if (caseB) { P1
4: SetFreq(LDV FS); 4: ...

5: communication(); 5: communication();

6: SetFreq(HDV FS); 6: memory access();

7: memory access(); 7: disk access();

8: disk access(); 8: computation();

9: computation(); 9: communication();

10: SetFreq(LDV FS); 10: ...

11: communication(); 11: }
12: SetFreq(HDV FS); 12: else { P2 (P2 ≪ P1)
13: ... 13: ...

14: } 14: SetFreq(HDV FS);
15: else { P2 (P2 ≪ P1) 15: computation();

16: ... 16: SetFreq(LDV FS);
17: computation(); 17: ...

18: ... 18: }
19: } 19: }
20: } 20: SetFreq(HDV FS);

(b) Aggressive DVFS Scheduling
(a) Basic DVFS Scheduling with Speculation (AGGREE)

Figure 2.5: Basic and Aggressive DVFS Scheduling for Typical Communication, Memory

Access, and Disk Access Mixed Code with Imbalanced Branches.

27

CPU-bound computation time is significant among the total execution time of the Mem-

ESB/Disk -ESB, i.e., in the case of compute intensive applications, considerable slowdown

will be incurred from reducing CPU frequency for the ESB as a whole, and thus energy

consumption grows as the trend shown in Figure 2.1.

Yet for applications with a small proportion of computation mixed with memory

and disk accesses depicted in Figure 2.4, aggressively reducing CPU frequency for the whole

ESB only causes minor performance loss while obtains considerable energy savings from

low CPU frequency and voltage during waiting for memory and disk data, since memory

and disk access time dominate the total execution time. Basic DVFS scheduling strategy

fails to achieve energy savings for such applications since it is difficult to separate non-

computation from computation and then apply DVFS accordingly. Even if the programmer

manages to rewrite the source code for categorizing ESBs with explicit boundary between

each other via the use of temporary variables, etc. (we use this method to calculate the

proportion/percentage of different types of workloads within a hybrid ESB), performance

and energy loss can be caused by numerous CPU frequency switches within the loop of ESBs,

as shown in Figure 2.5 (a), the kernel of an application with different types of workloads

including computation, communication, memory accesses and disk accesses. The basic

DVFS scheduling strategy sets CPU frequency to low before the Comm-ESBs at Lines 5

and 11 respectively and sets it back to high after the Comm-ESBs. It keeps CPU frequency

high for all Mem-ESB, Disk -ESB, and Comp-ESB if the Mem-ESB and the Disk -ESB

are accompanied by minor computation as shown in Figure 2.4. Potential energy saving

opportunities can be leveraged by aggressive DVFS scheduling (AGGREE) as presented in

28

Algorithm 1 Adaptively Aggressive DVFS Scheduling Algo.

SetDVFS(ESB, pcomp) /*Assume f0 < f1 < · · · < fNf−1*/

1: Bcast(pcomp)
2: Nf ← GetNumFreq()
3: p′comp ← Max(pcomp of all ESBs)

4: pSet0,...,Nf−1 ← GetRange(p′comp, Nf)

5: while 0 ≤ i < Nf − 1 do
6: if (0 ≤ pcomp < pSeti) then
7: SetFreq(f0)
8: else if (pSeti ≤ pcomp < pSeti+1) then
9: SetFreq(fi)

10: else if (pcomp ≥ pSetNf−1) then

11: SetFreq(fNf−1)

12: end if
13: i ← i+ 1
14: end while

Figure 2.5 (b). Instead of fine-grained deployment of DVFS for setting appropriate CPU

frequency to Comm-ESBs without exploiting energy saving opportunities from Mem-ESBs

and Disk -ESBs, AGGREE aggressively sets CPU frequency to low once for the whole loop

given that the loop is data intensive, which achieves higher energy efficiency than the basic

DVFS scheduling strategy due to lower CPU power at the cost of minor performance and

energy loss from the small proportion of computation. Moreover, AGGREE overcomes the

excessive number of CPU frequency switches by croase-grained DVFS scheduling outside

the loop.

2.2.4 Adaptively Aggressive DVFS Scheduling for Mem-ESB and Disk-

ESB

Recall one of our goal is to reduce the performance loss from minor computa-

tion accompanying data intensive operations at low CPU frequency. One effective way

29

to moderate the low-performance trade-off from AGGREE for data intensive applications

is to set an intermediate CPU frequency adaptively on case-by-case basis for Mem-ESBs

and Disk -ESBs within such applications, instead of always employing the lowest CPU fre-

quency during executions. We refer to this adaptively aggressive DVFS scheduling strategy

as A2E. The heuristic of A2E is similar to AGGREE: For those ESBs with implicit bound-

aries, we specify an appropriate CPU frequency for them as a whole, since fine-grained

DVFS scheduling upon the finish of separating non-computation from computation is dif-

ficult. Considering the code example shown in Figure 2.5 (b), AGGREE aggressively sets

CPU frequency to the lowest possible value once outside the data intensive loop, while

A2E calculates an intermediate CPU frequency adaptively according to the proportion of

computation time among the total execution time of an ESB, and also aggressively sets the

calculated frequency once for the ESB with mixed workloads. Algorithm 1 details the steps

of employing A2E. For each ESB in the application, we empirically obtain in advance the

proportion of computation time pcomp among the total execution time of the ESB. The A2E

algorithm first broadcasts the pcomp of current ESB to all other ESBs and thus the highest

pcomp, p
′
comp can be used as a threshold for future reference. Given a set of CPU frequencies

defined for DVFS, we divide the range of possible pcomp [0, p
′
comp] into Nf sub-ranges, where

Nf is the number of available CPU frequencies. Which sub-range the pcomp of an ESB sits

determines which CPU frequency to apply for the ESB. Figure 2.6 contrasts AGGREE and

A2E using the same code example shown in Figure 2.5.

Example. Consider a data intensive application with 10 ESBs, among which the highest

proportion of computation time within the total execution time is 20%, and there are four

30

gears of CPU frequency available for DVFS. According to Algorithm 1, the range of CPU

frequency for adaptively aggressive DVFS scheduling consists of four individual sub-ranges

from 0 to 20%, i.e., [0, 5%), [5%, 10%), [10%, 15%), and [15%, 20%]. If the proportion of

computation time for an ESB is within the range of [0, 5%), we set CPU frequency to f0,

i.e., the lowest frequency; if the proportion falls into the range of [5%, 10%), we set CPU

frequency to f1, i.e., the second lowest frequency, and so on. Consequently for each ESB,

we can assign a fitting frequency based on the amount of computation within the ESB.

Although the low-performance trade-off is moderated by A2E, the overhead on

employing DVFS increase a bit due to more CPU frequency switches issued by A2E. From

Figure 2.6, we can see that the number of CPU frequency switches approximates the number

of ESBs in the if branch, since for each ESB, we at least set an appropriate CPU frequency

for it once. For the code example shown in Figure 2.6, we do not need to switch CPU

frequency for the ESB within the else branch, because we guarantee at the end of the

if branch CPU frequency is set to high. Overall, the number of CPU frequency switches

for A2E approximates NNiP1, comparable to that for the basic DVFS scheduling 2NiNm,

where N is the number of ESBs in the loop, Ni is the number of iterations of the loop, and

Nm is the number of Comm-ESBs in the loop. Note that different types of workloads do not

necessarily appear in a loop, we let Ni = 1 when hybrid workloads are not present in a loop,

but in a code segment without loops. In this case, the number of CPU frequency switches

for A2E dramatically decreases to NP1 that is of the same order of magnitude as that for

AGGREE. In other words, the DVFS overhead of A2E and AGGREE are comparable when

different types of workloads are present in a code segement without loops.

31

1: SetFreq(LDV FS); 1: SetFreq(LDV FS);
2: while (caseA) { 2: while (caseA) {
3: if (caseB) { P1 3: if (caseB) { P1
4: ... 4: ...

5: communication(); 5: communication();

6: memory access(); 6: SetFreq(MDV FS);
7: disk access(); 7: memory access();

8: computation(); 8: SetFreq(M ′
DV FS);

9: communication(); 9: disk access();

10: ... 10: SetFreq(HDV FS);
11: } 11: computation();

12: else { P2 (P2 ≪ P1) 12: SetFreq(LDV FS);
13: ... 13: communication();

14: SetFreq(HDV FS); 14: ...

15: computation(); 15: }
16: SetFreq(LDV FS); 16: else { P2 (P2 ≪ P1)
17: ... 17: ...

18: } 18: SetFreq(HDV FS);
19: } 19: computation();

20: SetFreq(HDV FS); 20: SetFreq(LDV FS);
21: ...

22: }
23: }
24: SetFreq(HDV FS);

(a) Aggressive DVFS Scheduling (b) Adaptively Aggressive DVFS
with Speculation (AGGREE) Scheduling with Speculation (A2E)

Figure 2.6: AGGREE and A2E DVFS Scheduling for Typical Communication, Memory

Access, and Disk Access Mixed Code with Imbalanced Branches.

32

2.2.5 Speculative DVFS Scheduling for Imbalanced Branches

Speculation is a technique that allows a compiler or a processor to predict the

execution of an instruction so that an earlier execution of other instructions depending on

the speculated instruction may be enabled. In our case, we speculate the outcome of a

branching statement for energy saving purposes. If the application consists of conditional

statements with significantly different possibility of occurrence (i.e., imbalanced branches)

such as the if-then-else construct shown at Lines 2 and 15 in the kernel of an application

with different workloads with imbalanced branches as depicted in Figure 2.5 (a). There are

two branches to take where the taken possibility P1 of the if branch is much greater than

that of the else branch P2, which is a real case for the benchmark DT from NPB. As shown

in Figures 2.5 (b) and 2.6, we can speculatively set CPU frequency to low outside the rarely

taken else branch inside the loop, and set CPU frequency to high for computation within

the else branch, as a recovery mechanism used for incorrect speculation, so that the overall

performance is not compromised even if the else branch is taken empirically.

Speculation can be applied to both AGGREE and A2E to reduce the number of

CPU frequency switches for less DVFS overhead. Although in comparison to AGGREE

with no speculation and A2E with no speculation, the use of speculation within both ap-

proaches slightly increases the number of CPU frequency switches by additional 2NiP2

times, respectively. Overall, the speculative DVFS scheduling together with AGGREE and

A2E effectively reduce the number of CPU frequency switches from 2NiNm of the basic

DVFS scheduling strategy to 2 + 2NiP2 and NNiP1 + 2NiP2 individually. Following the

33

constraint P2 ≪ P1 due to the imbalanced branches, AGGREE with speculation is more

effective on reducing DVFS overhead against A2E with speculation.

2.2.6 Performance Model

Next we model the performance efficiency of the three approaches (Basic DVFS,

AGGREE, and A2E) at ESB level for a data intensive application. Since the applica-

tion consists of different types of ESBs, performance efficiency of each ESB reflects the

overall performance efficiency of the application. Table 2.1 lists the notation used in the

formalization of performance. Given an application with different types of workloads com-

prised of computation (CPU-bound), communication (network-bound), memory accesses

(memory-bound), and disk accesses (disk-bound), we model the performance of the original

application without any DVFS scheduling strategies as sum of execution time of different

components:

T = Tcomp + Tcomm + Tmem + Tdisk (2.1)

Let us assume the application is executed with the optimal efficiency (100%), Tcomp

can be represented as:

Tcomp =
Ocomp

fNcNF
(2.2)

As we know, only CPU frequency f in calculating Tcomp is affected by DVFS, while

execution time of operations other than computation is bounded by non-CPU hardware

factors such as network bandwith and disk data transfer rate, and is not related to CPU

frequency. Therefore we separate the computation accompanying memory and disk accesses

34

Table 2.1: Notation in Performance Efficiency Formalization.

T Total execution time of the application

Tcomp Computation time of the application

Tcomm Communication time of the application

Tmem Average memory access time of the application

Tdisk Average disk access time of the application

Ocomp Time complexity of computation of the application

f Current CPU operating frequency

fh A high CPU frequency set by DVFS

fm A medium CPU frequency set by DVFS adaptively

fl A low CPU frequency set by DVFS

Nc Number of cores within one node of the cluster

NF Floating Point Unit of one core divided by 64-bit

TDV FS Time consumed by a DVFS CPU frequency switch

P1 Taken possibility of the likely taken imblanced branch

P2 Taken possibility of the rarely taken imblanced branch

Ni Number of iterations of a loop with hybrid workloads

N Number of ESBs in a hybrid loop/application

Nm Number of Comm-ESBs in a hybrid loop/application

from the actual memory and disk accesses for each approach below, where T ′
mem and T ′

disk

denote the actual memory and disk access time respectively, and the impact of DVFS on

execution time is shown by setting different CPU frequencies. Note that each approach

employs the same heuristic for energy efficient computation and communication: Keeping

the highest CPU performance for computation and applying the lowest CPU performance

for communication.

Torig =
Ocomp

fhNcNF
+ Tcomm + T ′

mem +
Ocomp mem

fhNcNF

+ T ′
disk +

Ocomp disk

fhNcNF
(2.3)

35

Tbasic =
Ocomp

fhNcNF
+ Tcomm + T ′

mem +
Ocomp mem

fhNcNF

+ T ′
disk +

Ocomp disk

fhNcNF
+ TDV FS × 2NiNm (2.4)

T aggree =
Ocomp

flNcNF
+ Tcomm + T ′

mem +
Ocomp mem

flNcNF

+ T ′
disk +

Ocomp disk

flNcNF
+ TDV FS × (2 + 2NiP2) (2.5)

Ta2e =
Ocomp

fhNcNF
+ Tcomm + T ′

mem +
Ocomp mem

fmNcNF

+ T ′
disk +

Ocomp disk

f ′
mNcNF

+ TDV FS × (NNiP1 + 2NiP2) (2.6)

Without loss of generality, given a data intensive application with different types

of workloads and imblanced branches, since computation only takes a small proportion of

the total execution time of the application, we assume Tcomm+T ′
mem+T ′

disk = n×Tcomp =

nOcomp

fhNcNF
, where n > 1. The last added items in Equations 2.4, 2.5, 2.6 are the overhead

on employing DVFS. We know P2 approximates to 0 since this branch is rarely taken, so

the DVFS overhead is negligible for AGGREE. Additionally, from Table 5.2 we can see

that in our experimental platform fh ≈ 3fl if we adopt Gear 0 as fh and Gear 3 as fl

for AGGREE, and we assume fm = mfl and f ′
m = m′fl. Thus we obtain the simplified

formulae of performance for the three approaches as:

Torig ≈
(n+ 1)Ocomp +Ocomp mem +Ocomp disk

3flNcNF
(2.7)

36

Table 2.2: Notation in Energy Efficiency Formalization.

Esys Total energy consumption of the whole cluster

Enode Total energy consumption of all components in a node

Pnode Total power consumption of all components in a node

PCPU d CPU dynamic power consumption in the busy state

PCPU s CPU static/leakage power consumption in any states

Pother Power consumption of components other than CPU

A Percentage of active gates in the CMOS-based chip

C Total capacitive load in the CMOS-based chip

V Current CPU supply voltage

Vh A high supply voltage set using DVFS

Vl A low supply voltage set using DVFS

n Time ratio between non-computation and computation

Tbasic ≈
(n+ 1)Ocomp +Ocomp mem +Ocomp disk

3flNcNF

+ TDV FS × 2NiNm (2.8)

Taggree ≈
(n3 + 1)Ocomp +Ocomp mem +Ocomp disk

flNcNF

+ TDV FS × (2 + 2NiP2) (2.9)

Ta2e =
(n+1

3)Ocomp +
1
mOcomp mem + 1

m′Ocomp disk

flNcNF

+ TDV FS × (NNiP1 + 2NiP2) (2.10)

From the comparison between Equations 2.7, 2.8, 2.9, and 2.10, we can see that

against the original application without any DVFS strategies, the basic DVFS scheduling

strategy only results in performance loss due to additional DVFS overhead, while both

37

Table 2.3: Frequency-voltage Pairs for the AMD Opteron 2380 Processor.

Gear Frequency (GHz) Voltage (V)

0 2.5 1.35

1 1.8 1.2

2 1.3 1.1

3 0.8 1.025

AGGREE and A2E incur performance loss from reducing CPU performance during com-

putation. Compared to AGGREE, performance loss from A2E is moderated, since each

coefficient of computation time complexity of A2E is smaller than that of AGGREE. More-

over, A2E suffers from DVFS overhead comparable to the basic DVFS scheduling strategy,

while AGGREE has the minimal overhead on using DVFS due to the constraint P2 ≪ P1

for imbalanced branches.

2.2.7 Energy Model and Energy Efficiency Analysis

We next formalize energy saving opportunities provided by the three energy effi-

cient approaches individually using the notation in Table 2.2. Within a given time interval

(t1, t2), the total energy costs of a distributed-memory computing system consisting of mul-

tiple computing nodes can be formulated as below, where we denote the execution time as

T = t2 − t1 and the nodal average power consumption as Pnode:

Esys =

#nodes
∑

1

Enode =

#nodes
∑

1

∫ t2

t1

Pnodedt =

#nodes
∑

1

Pnode × T (2.11)

Assuming each node in the computing system has the same hardware configuration

and local energy efficiency results in global energy efficiency according to Equation 2.11, we

only consider nodal energy consumption in the later discussion. Generally, we break down

nodal power consumption as:

38

Pnode = PCPU d + PCPU s + Pother; PCPU d ≈ ACfV 2 (2.12)

In (4.3), we categorize the nodel power consumption by power consumption of

CPU and other components. By substituting PCPU d, we obtain the ultimate nodal power

consumption formula with DVFS-dependent parameters f and V as:

Pnode ≈ ACfV 2 + PCPU s + Pother (2.13)

In our case, PCPU s and Pother barely change during the execution and thus we

denote PCPU s + Pother as a constant Pc. From Equation 2.9, we know that the DVFS

overhead of AGGREE is negligible due to the presence of P2. Following the constraints of

Equations 2.11, 4.3, and 4.6, we can calculate energy costs of running a data intensive appli-

cation with different DVFS scheduling strategies respectively. Further, we model the energy

savings achieved by AGGREE and A2E in contrast to the original application individually

as below:

∆Eaggree = Eorig
node − Eaggree

node = P orig
node × Torig − P aggree

node × Taggree

≈ (ACfhV
2
h + Pc)Torig − (ACflV

2
l + Pc)Taggree (2.14)

∆Ea2e = Eorig
node − Ea2e

node = P orig
node × Torig − P a2e

node × Ta2e

≈ (ACfhV
2
h + Pc)Torig − (ACfV 2 + Pc)Ta2e (2.15)

From Equations 2.14 and 2.15, we observe that there exists a performance-energy

trade-off that should be considered to determine the optimal CPU frequency to employ

39

in different requirements. In our scenario, achieving the maximal energy savings with

minor performance loss is the goal. For evaluating if the energy efficiency achieved and the

performance degradation incurred are balanced, we adopt an integrated metric to quantify

the energy-performance efficiency: Energy-Delay Product (EDP), a widely used metric to

weigh the comprehensive effects of energy and performance for a given application under

different configurations [71]. Therefore, we leverage the EDP metric and its variant ED2P

to evaluate among the three energy efficient approaches, which one is able to achieve the

optimal energy-performance efficiency (the smaller value, the better efficiency) for data

intensive applications. Details of the implementation and evaluation of all three energy

efficient approaches are illustrated next.

2.3 Implementation and Evaluation

We have implemented all three energy efficient DVFS scheduling strategies and

evaluated their effectiveness towards five high performance data intensive applications with

different dominant workloads such as memory and disk accesses with imbalanced branches.

Instead of assigning appropriate CPU frequencies to an ESB with differet types of workloads

in a fine-grained fashion, we aggressively schedule CPU frequency to an intermediate value

for memory and disk accesses mixed with minor computation adaptively according to the

proportion of computation time among the total execution time, in order to achieve consid-

erable energy savings at the cost of minor performance loss. As for imbalanced branches,

we adopt speculative DVFS scheduling to reduce the number of CPU frequency switches to

minimize the overhead on employing DVFS. The DVFS technique in our approach through

40

modifying CPU frequency configuration files dynamically at system level enables us to scale

CPU voltage and frequency up and down if necessary for energy efficiency. Benchmarks

used consist of various sources of memory and disk access intensive programs with imbal-

anced branches, such as DT and MG from NPB and ASC benchmark suites [20] [1], an MPI

version of the high-quality data compressor bzip2 [23], and an self-written MPI version of

the Linux standard file copy command cp [16]. Table 6.1 shows the details of benchmarks.

2.3.1 Experimental Setup

We applied the three DVFS scheduling approaches individually to the five bench-

marks to assess their effectiveness of energy savings and performance loss trade-off. Ex-

periments were performed on a computing cluster with an Ethernet switch consisting of 8

computing nodes with two Quad-core 2.5 GHz AMD Opteron 2380 processors (totalling 64

cores) and 8 GB RAM running 64-bit Linux kernel 2.6.32, The power-aware and DVFS-

enabled cluster was equipped with power sensors and meters for energy measurement. In

our experiments, time was measured using the MPI Wtime() routine. Energy consumption

was measured using PowerPack [71], a comprehensive software and hardware framework for

energy profiling and analysis of high performance systems and applications. The range of

CPU frequency on HPCL was {0.8, 1.3, 1.8, 2.5} GHz. PowerPack was deployed and run-

ning at a meter node within the cluster to collect energy costs on all involved components

such as CPU, memory, disk, motherboard, etc. on all 8 computing nodes of the cluster.

The collected energy information was recorded into a log file in the local disk and accessed

after execution of these benchmarks.

41

Figure 2.7: Performance Loss and Energy Savings on a Cluster with 8 Nodes, 64 Cores of

{0.8, 1.3, 1.8, 2.5} GHz CPU frequencies, and 8 GB Memory/Node.

42

Table 2.4: Benchmark Details.

Benchmark Source Test Case Category

DT NPB Class B
Memory Access Intensive
and Imbalanced Branches

MG NPB Class C
Memory and Disk
Access Intensive

SPhot ASC
Track 4000

Memory Access Intensive
particles

MPIBZIP2 bzip2
Compress a

Disk Access Intensive
0.77GB file

cp MPI Linux
Copy a file

Disk Access Intensive
of 54.4MB

2.3.2 Performance Degradation

All three DVFS scheduling approaches improve energy efficiency for data inten-

sive applications at the cost of minor performance loss as shown in Figure 2.7, where the

x axis label Original denotes the original application without any DVFS scheduling strate-

gies, and Basic DVFS, AGGREE DVFS, and A2E represent the basic, AGGREE, and A2E

DVFS scheduling strategies introduced in the last section, respectively, where speculation

is applied to both AGGREE and A2E. We can see that in general A2E incurs similar per-

formance loss as the basic DVFS scheduling strategy compared to the original no-DVFS

executions: 6.2% and 4.7% on average, respectively, while AGGREE degrades performance

more (8.1% on average) due to aggressively lowering down CPU performance regardless of

minor computation within the data intensive application.

The overhead on employing DVFS in the basic DVFS scheduling strategy primar-

ily results from two factors: (a) The additional time spent on modifying CPU frequency

configuration files dynamically at system level and (b) CPU frequency transition latency.

43

Thus the number of CPU frequency switches by DVFS determines the DVFS overhead.

Some application such as MG incurs up to 13.0% performance loss due to applying DVFS,

since there exist a great amount of alternate Comm-ESBs and Comp-ESBs as shown in

Figure 2.5 (a), which requires a large amount of CPU frequency switches by DVFS as well.

The communication time for some application like cp MPI is negligible and the amount of

Comm-ESBs is limited. Therefore constrained by both factors, the overhead on employing

DVFS for cp MPI is also negligible (1.5%).

As discussed before, performance loss from AGGREE is attributed to low per-

formance of the small proportion of computation mixed with memory and disk accesses.

According to Equation 2.5, reducing CPU frequency aggressively results in longer execu-

tion time for the CPU-bound computation and thus incurs overall performance degradation,

although performance of memory and disk accesses is barely affected. Since the ratio be-

tween computation and non-computation is significantly low in memory and disk access

intensive applications, the impact of performance loss from computation is limited on the

total execution time. A2E further decreases the performance loss by adaptively scheduling

an appropriate CPU frequency to an ESB according to the computation time proportion

instead of always setting the lowest CPU frequency. On the other hand, AGGREE and

A2E successfully reduce the number of CPU frequency switches by applying DVFS outside

of a loop of ESBs and inside a rarely taken branch, respectively. The DVFS overhead is

reduced accordingly compared to the basic DVFS scheduling strategy where there exist a

larger number of CPU frequency switches due to fine-grained DVFS scheduling before and

after each Comm-ESB within the loop. Consequently, with less DVFS overhead, AGGREE

44

and A2E only suffer from 3.4% and 1.5% more performance loss than that of the basic

DVFS scheduling strategy, respectively.

2.3.3 Energy Savings for Memory Access Intensive Applications

Figure 2.7 also reflects energy efficiency achieved by the three approaches. Com-

pared to the basic and AGGREE DVFS scheduling strategies, A2E is able to achieve more

energy savings, since energy saving opportunities from memory and disk accesses that the

basic DVFS scheduling strategy fails to leverage are exploited by AGGREE and A2E as de-

picted in Figures 2.5 (b) and 2.6 (b) respectively, and further moderation of low-performance

trade-off is performed by A2E against AGGREE. Specifically, considering energy consump-

tion of the original executions as the baseline, 32.6% on average energy savings are fulfilled

by A2E, in contrast to 17.3% and 31.7% energy savings on average achieved by the basic

and AGGREE DVFS scheduling strategies individually.

The most energy savings 43.4% AGGREE achieves is for the memory access inten-

sive application SPhot, while A2E manages to achieve less energy savings 40.9%. We applied

AGGREE and A2E to a code segment within SPhot, where a great amount of memory ac-

cesses mixed with calculating array indices before accessing corresponding memory locations

are present in a double-loop. The basic DVFS scheduling strategy only obtains 13.9% en-

ergy savings, since it fails to handle Mem-ESBs accompanied by computation but only saves

energy for Comm-ESBs. With AGGREE employed, performance of SPhot is degraded by

7.2% due to low performance of memory address calculation interleaved in memory accesses

as a consequence of aggressively scaling down CPU frequency. Performance loss is moder-

ated by A2E to 4.9% at the cost of less energy savings, since the Mem-ESBs of SPhot have

45

similar proportion of computation time and thus most CPU frequencies adaptively assigned

are close to the highest one.

2.3.4 Energy Savings for Disk Access Intensive Applications

Besides memory access intensive applications, A2E performs better than the other

two approaches in gaining energy efficiency for disk access intensive applications. Regarding

the disk access dominant application cp MPI, the basic DVFS scheduling strategy saves a

limited amount of energy (2.1%) since the communication time is significant low compared

to the disk access time. AGGREE and A2E can obtain more energy savings for this type of

applications, since aggressively reducing CPU frequency barely affects performance of the

application. As for cp MPI, most execution time is spent on non-CPU-bound opertions, disk

accesses, whose execution time is constrained by non-CPU hardware factors such as average

seek time and disk data transfer rate. Low CPU performance brings in considerable energy

savings from CPU during data waiting time without significant performance loss as a whole.

Another disk access intensive application MPIBZIP2 also benefits from the moderation of

low-performance loss by A2E with 40.5% energy savings achieved compared to 37.1% from

AGGREE.

Note that although similar percentage of energy savings are fulfilled for memory

access intensive and disk access intensive applications, performance degradation for employ-

ing aggressive DVFS scheduling strategies like AGGREE and A2E towards the two types of

applications differ: Despite MG, an application with comparable memory and disk accesses,

memory access intensive applications (DT and SPhot) suffer from average performance loss

46

Figure 2.8: Performance and Energy Efficiency upon Employing Speculation in AGGREE

and A2E for the DT Benchmark with Imbalanced Branches.

of 7.2% for AGGREE and 4.7% for A2E, while disk access intensive applications (MPIBZIP2

and cp MPI) only sacrifice minor performance loss on average of 3.4% for AGGREE and

2.7% for A2E. This is attributed to two causes: (a) Memory access time is much smaller

than disk access time (typically with a ratio of the order of magnitude 1/106) and thus is

closer to CPU clock cycles; (b) The amount of computation mixed with memory accesses

is generally more than that with disk accesses. Both reasons make the impact of CPU

performance degradation on the total execution time of memory access intensive applica-

tions greater than that of disk access intensive applications. It is notable that moderating

performance loss from A2E shrinks the gap.

2.3.5 Energy Savings for Imbalanced Branches

AGGREE and A2E adopt speculation to further gain energy efficiency for code

with imbalanced branches by reducing the DVFS overhead. DT is a memory intensive

graph application where a great amount of imbalanced branches exist. Figure 2.8 shows

energy consumption and execution time of DT using AGGREE and A2E with and without

47

Figure 2.9: Energy-Performance Efficiency Trade-off in Terms of EDP and ED2P.

48

speculation individually. We can see that employing speculation within AGGREE and A2E

mitigates performance degradation and thus saves energy: Performance loss from AGGREE

drops from 10.8% to 7.1%, while energy savings increase from 22.7% to 27.4%; performance

loss from A2E drops from 6.8% to 4.4%, while energy savings increase from 27.3% to

28.6%. The effectiveness of speculation for saving time and energy results from aggressively

reducing CPU frequency for the frequently taken branch while keeping CPU frequency

high for computation within the rarely taken branch as the recovery mechanism used for

incorrect speculation, as shown in Figures 2.5 (b) and 2.6. Note that A2E is empirically

less effective than AGGREE in reducing the DVFS overhead upon the use of speculation,

which is consistent with the performance loss from employing DVFS calculated formally in

Section 2.2.

2.3.6 Energy and Performance Efficiency Trade-off

From Equations 2.14 and 2.15, we observe there exists an energy-performance effi-

ciency trade-off for AGGREE and A2E. In general, moderating CPU performance degrada-

tion by adaptively scheduling an intermediate rather than always the lowest CPU frequency

for a Mem-ESB or a Disk -ESB decreases performance loss at the cost of higher average

power, since power is proportional to CPU frequency and voltage. Variation of perfor-

mance and energy efficiency at different operating points can be quantified by an integrated

metric that both impacts of performance and energy are considered. We adopt the EDP

(Energy-Delay Product) metric and its variant ED2P (Energy-Delay-Squared Product) to

evaluate the balance between energy and performance efficiency for the three energy saving

approaches, as presented in Figure 2.9.

49

Since a smaller value in the EDP and ED2P metrics represents higher energy

and performance efficiency as a whole, we can see that for data intensive applications, the

basic DVFS scheduling strategy is not the optimal approach since it fails to exploit the

energy saving opportunities present in the operations other than communication. Except

that for SPhot, A2E and AGGREE have similar EDP and ED2P values, A2E is superior to

AGGREE for all other applications in terms of the balance of energy-performance efficiency.

The average values of EDP and ED2P for A2E and AGGREE over all five benchmark

consolidate this observation.

2.4 Summary

Driven by the growing energy concerns, DVFS techniques have been widely ap-

plied to improve energy efficiency for high performance applications on distributed-memory

computing systems nowadays. Energy saving opportunities from slack in terms of load

imbalance, network latency, communication dalay, memory and disk access stalls, etc. are

exploited to save energy through scaling up and down CPU voltage and frequency via DVFS,

since peak CPU performance is not necessary during the slack. We propose an adaptively

aggressive energy efficient DVFS scheduling strategy (A2E) for data intensive applications

such as memory and disk access intensive applications with imbalanced branches. Instead of

assigning CPU frequency in a fine-grained fashion towards an Energy Saving Block (ESB)

with different types of workloads, A2E adaptively schedules an appropriate CPU frequency

for the hybrid ESB aggressively as a whole and reduces the overhead on employing DVFS

via speculation to save energy with minor performance loss. The experimental results in-

50

dicate the effectiveness of A2E for saving energy of running target applications with minor

performance loss.

51

Chapter 3

HP-DAEMON : H igh

Performance Distributed Adaptive

Energy-efficient

M atrix-multiplicatiON

With the trend of increasing number of interconnected processors providing the

unprecedented capability for large-scale computation, despite exploiting parallelism for

boosting performance of applications running on high performance computing systems,

the demands of improving their energy efficiency arise crucially, which motivates holistic

approaches from hardware to software. Software-controlled hardware solutions [69] [67]

[124] [116] of improving energy efficiency for high performance applications have been rec-

52

ognized as effective potential approaches, which leverage different forms of slack in terms

of non-overlapped latency [127] to save energy.

For applications running on distributed-memory architectures, Dynamic Voltage

and Frequency Scaling (DVFS) [141] has been leveraged extensively to save energy for com-

ponents such as CPU, GPU, and memory, where the performance of the components is

modified by altering its supply voltage and operating frequency. Reduction on supply volt-

age generally results in decrease of operating frequency as a consequence, and vice versa.

Given the assumption that dynamic power consumption P of a CMOS-based processor

is proportional to product of working frequency f and square of supply voltage V , i.e.,

P ∝ fV 2 [108] [86], and also existing work that indicates energy costs on CPU dominate

the total system energy consumption [71], DVFS is deemed an effective software-based dy-

namic technique to reduce energy consumption on a high performance computing system.

For instance, DVFS can be leveraged to reduce CPU frequency if the current operation is

not CPU-bound. In other words, execution time of the operation will barely increase if CPU

frequency is scaled down. CPU frequency is kept at the highest scale if performance of the

operation is harmed by decreasing CPU frequency. Energy savings can thus be achieved

due to lower CPU frequency as wells as supply voltage with negligible performance loss.

As a fundamental component of most numerical linear algebra algorithms [50] employed

in high performance scientific computing, state-of-the-art algorithms of matrix multipli-

cation on a distributed-memory computing system perform alternating matrix broadcast

and matrix multiplication on local computing nodes with a local view [49]. Given that

the communication in distributed matrix multiplication is not bound by CPU frequency

53

while the computation is, one classic way to achieve energy efficiency for distributed matrix

multiplication is to set CPU frequency to low for broadcast while set it back to high for

multiplication [46] [93]. In general, considerable energy savings can be achieved from the

low-power communication phase.

Although employing DVFS is beneficial to saving energy via software-controlled

power-aware execution, introducing DVFS itself can cost non-negligible energy and time

overhead from two aspects. Firstly, using DVFS in our approach is via dynamically mod-

ifying CPU frequency configuration files that are essentially in-memory temporary system

files, for setting up appropriate frequencies at OS level. It incurs considerable memory

access overhead if there exist a large number of such virtual file read and write operations

for switching CPU frequency. Secondly, CPU frequency (a.k.a., gear [67]) transition la-

tency required for taking effect (on average 100µs for AMD Athlon processors and 38µs for

AMD Opteron 2380 processors employed in this work) results in additional energy costs,

since a processor has to stay in use of the old frequency while switching to the newly-set

frequency is not complete. We need to either minimize the time spent on memory accesses

for switching frequency, i.e., the latency required for changing the gears successfully, or

reduce the number of frequency switches to save energy. It is challenging to reduce the first

type of time costs, since it depends on hardware-related factors such as memory accessing

rate and gear transition latency. Alternatively, a software-controlled energy efficient DVFS

scheduling strategy to reduce frequency switches is thus desirable.

Numerous efforts have been conducted on devising energy efficient DVFS-directed

solutions, but few of them concern possible non-negligible overhead incurred from employing

54

DVFS. In this work, we propose an adaptive DVFS scheduling strategy with a high per-

formance communication scheme via pipeline broadcast to achieve the optimal energy and

performance efficiency for distributed matrix multiplication, named HP-DAEMON. Firstly,

we propose a memory-aware mechanism to reduce DVFS overhead, which adaptively limits

the number of frequency switches by grouping communication and computation respec-

tively, at the cost of memory overhead within a certain user-specified threshold. Further,

we take advantage of a pipeline broadcast scheme with tuned chunk size to boost perfor-

mance of communication, with which network bandwidth is exploited thoroughly compared

to binomial tree broadcast.

In summary, the contributions of this chapter are as follows:

• We propose an adaptive DVFS scheduling strategy aware of memory overhead in

distributed matrix multiplication for reducing the number of CPU frequency switches

to minimize DVFS overhead, i.e., algorithmically performing more computation and

communication at a time for less DVFS switches, which saves 7.5% extra average

energy compared to a classic strategy;

• We analyze the impact on performance of chunk size in pipeline broadcast to achieve

communication speed-up in distributed matrix multiplication;

• Our integrated approach is evaluated to achieve up to 51.4% energy savings and

on average 28.6% speed-up compared to ScaLAPACK [26] on an Ethernet-switched

cluster, and achieve on average 33.3% and 32.7% speed-up compared to ScaLAPACK

and DPLASMA [8] on an Infiniband-switched cluster, respectively.

55

The rest of this chapter is organized as follows. Section 3.2 introduces distributed

matrix multiplication. We present an adaptive DVFS scheduling strategy in Section 3.3 and

a high performance pipeline broadcast communication scheme in Section 3.4. We provide

details of implementation and evaluation in Section 3.5. Section 3.6 summarizes.

3.1 Distributed Matrix Multiplication

Matrix multiplication is one fundamental operation of most numerical linear al-

gebra algorithms for solving a system of linear equations, such as Cholesky, LU, and QR

factorizations [50], where runtime percentage of matrix multiplication can be up to 92%

[126]. Moreover, nowadays matrix multiplication has been widely used in many areas other

than scientific computing, including computer graphics, quantum mechanics, game theory,

and economics. In scientific computing, various software libraries of numerical linear al-

gebra for distributed multi-core high performance scientific computing (ScaLAPACK [26]

and DPLASMA [8]) have routines of various functionality where matrix multiplication is

involved. In this work, we aim to achieve the optimal energy and performance efficiency

for distributed matrix multiplication in general. Our approach works at library level and

thus serves as a cornerstone of saving energy and time for other numerical linear algebra

operations where matrix multiplication is intensively employed.

3.1.1 Algorithmic Details

The matrix multiplication routines from ScaLAPACK/DPLASMA are essentially

derived from DIMMA (Distribution-Independent Matrix Multiplication Algorithm), an ad-

56

Figure 3.1: A Distributed Matrix Multiplication Algorithm with a Global View.

vanced version of SUMMA (Scalable Universal Matrix Multiplication Algorithm) [49]. The

core algorithm consists of three steps: (a) Partition the global matrix into the process grid

using load balancing techniques, (b) broadcast local sub-matrices in a row-/column-wise

way as a logical ring, and (c) perform local sub-matrix multiplication. Applying an op-

timized communication scheme, DIMMA outperforms SUMMA by eliminating slack from

overlapping computation and communication effectively. Next we illustrate DIMMA using

Directed Acyclic Graph (DAG) representation.

3.1.2 DAG Representation

In general, a task-parallel application such as distributed matrix multiplication

can be partitioned into a cluster of computing nodes for parallel execution. The method of

partitioning greatly affects the outcomes of energy and performance efficiency. During task

partitioning, data dependencies between tasks must be respected for correctness. When the

application is partitioned, data dependencies between distributed tasks can be represented

57

(a) DAGbasic (b) DAGdaemon

Figure 3.2: Matrix Multiplication DAGs with Two DVFS Scheduling Strategies.

using DAGs, which characterize parallel executions of tasks effectively. A formal definition

of DAGs is given below:

Definition 1. Data dependencies between tasks from partitioning a task-parallel applica-

tion are modeled by a Directed Acyclic Graph (DAG) G = (V,E), where each node v ∈ V

denotes a task, and each directed edge e ∈ E denotes a dynamic data dependency between

the tasks.

Next we show how a task-parallel application is partitioned to achieve parallelism

and represented in DAG, taking distributed matrix multiplication for example. Consider

multiplying of a m × k matrix A and a k × n matrix B, to produce a m × n matrix

C. For calculating a matrix element (i, j) in C, denoted as C(i, j), we apply a cache

efficient blocking method, where columns of A multiply rows of B to reduce cache misses,

as shown in Figure 3.1. Recall that distributed matrix multiplication requires alternating

58

matrix broadcast and matrix multiplication, as two DAGs shown in Figure 3.2. Each DAG

represents an execution of calculating C(i, j) with a DVFS scheduling strategy, where Figure

3.2 (a) gives the DVFS scheduling strategy employed in [46] [93], and the adaptive DVFS

scheduling strategy proposed in this work is shown in Figure 3.2 (b). Given matrices A

and B, each matrix row needs to be broadcasted to other rows located in different nodes

and likewise each matrix column needs to be broadcasted to other nodes, such that sub-

matrices of the resulting matrix C are calculated locally and accumulated to C globally. As

the strategy shown in Figure 3.2 (a), each broadcast step is followed by a multiplication step

alternatingly until all sub-matrices ofA andB involved in calculating C(i, j) are broadcasted

and computed, where Bcast(C(i, j)) denotes step-wise broadcasting sub-matrices of A and B

that are involved in calculating C(i, j), and MatMul(C(i, j)) denotes step-wise multiplying

and accumulating these sub-matrices of A and B that are broadcasted.

3.2 Adaptive Memory-aware DVFS Scheduling Strategy

Next we present an adaptive memory-aware DVFS scheduling strategy (referred to

as DAEMON henceforth) that limits the overhead on employing DVFS, at the cost of user-

specified memory overhead threshold, which determines the extent of DVFS overhead. The

heuristic of DAEMON is straightforward: Combine multiple broadcasts/multiplications as

a group to reduce the number of frequency switches by DVFS, i.e., trade more computa-

tion and communication at a time with the memory cost trade-off for less DVFS switches,

as shown in Figure 3.2 (b). Instead of performing a multiplication immediately after a

broadcast, we keep broadcasting several times as a group, followed by corresponding mul-

59

tiplications as a group as well. Note that the number of broadcasts in a broadcast group

must equal the number of multiplications in a multiplication group to guarantee the cor-

rectness. The number of DVFS switches is thus decreased since we only need to perform

one DVFS switch for a group rather than individual broadcast/multiplication. Table 4.1

lists the notation used in Figure 3.2 and the later text.

As shown in Figure 3.2 (a), the basic DVFS scheduling strategy sets CPU fre-

quency to low during broadcast while sets it back to high during matrix multiplication for

energy efficiency [46] [93]. A primary defect of this strategy is that it requires two DVFS

switches in one iteration, totally 2×Nproc DVFS switches for one process. For performance

purposes in high performance computing, block-partitioned algorithms are widely adopted

to maximize data reuse opportunities by reducing cache misses. In a blocked distributed

matrix multiplication such as the pdgemm() routine provided by ScaLAPACK, if the ba-

sic strategy is applied, the total number of DVFS switches is 2 ×Nproc × N/Nproc

BS ×N2
proc,

since there are
N/Nproc

BS pairs of local communication and computation for each process and

totally N2
proc processes in the process grid, where N/Nproc is the local matrix size. Given a

huge number of DVFS switches, the accumulated time and energy overhead on employing

DVFS can be considerable. Next we introduce details of DAEMON to minimize the DVFS

overhead and thus achieve the optimal energy savings.

3.2.1 Memory-aware Grouping Mechanism

Intuitively, the heuristic of DAEMON for grouping broadcasts/multiplications re-

quires for each process, keeping several sub-matrices of A and B received from broadcasts of

60

Table 3.1: Notation in the Adaptive Memory-aware DVFS Scheduling Strategy.

N Global matrix size in blocked distributed matrix multiplication

BS Block size in blocked distributed matrix multiplication

HDV FS The highest CPU frequency set by DVFS

LDV FS The lowest CPU frequency set by DVFS

Nproc Square root of the total number of processes in a process grid

Ngrp Number of broadcasts/multiplications executed at a time as a group

Smem The total system memory size for one node

Tmem A user-specified memory cost threshold for grouping, in terms of a % of Smem

eunitDV FS Energy consumption from one frequency switch

ebasicDV FS Energy consumption from the basic strategy employed in [46] [93]

edaemon
DV FS Energy consumption from DAEMON proposed in this work

other processes in memory for later multiplications at a time. DAEMON restricts the mem-

ory costs from holding matrices in memory for future computation to a certain threshold,

which can be modeled as:

8×
(

N

Nproc

)2

× 2×Ngrp ×Nproc ≤ Smem × Tmem

subject to 1 ≤ Ngrp ≤ Nproc

(3.1)

where 8 is the number of bytes used by a double-precision floating-point number

and N
Nproc

is the local matrix size. For each process, we need to keep totally 2×Ngrp sub-

matrices of A and B in the memory of one node for Ngrp broadcasts and Ngrp multiplications

performed at a time, and there are Nproc processes for one node. Following the constraints

of Equation 3.1, we can calculate the optimal Ngrp from a memory cost threshold value

Tmem for specific hardware.

61

3.2.2 DAEMON Algorithm

We next show how DAEMON reduces DVFS overhead via grouping. In accor-

dance with Equation 3.1, given a memory cost threshold Tmem and a specific hardware

configuration, the optimal Ngrp that determines the extent of grouping can be calculated.

At group level, CPU frequency is then set to low for Ngrp times grouped broadcasts and set

back to high for Ngrp times grouped multiplications at a time, instead of being switched for

individual broadcast/multiplication. Consequently, the number of CPU frequency switches

are greatly decreased by DAEMON.

Algorithm 1 presents detailed steps of calculating Ngrp and then employ DVFS at

group level. It first calculates Ngrp using the user-specified threshold Tmem, and then set

frequency accordingly for grouped broadcasts/multiplications, where the number of DVFS

switches is minimized. Variable freq denotes current operating CPU frequency, and func-

tions GetSysMem(), GetMemTshd(), SetFreq(), IsBcast(), and IsMatMul() were implemented

to get the total system memory size, get memory cost threshold specified by the user, set

specific frequencies using DVFS, and determine if the current operation is either a broadcast

or a multiplication, respectively.

3.2.3 Energy Efficiency Analysis

DAEMON minimizes DVFS overhead by reducing the number of frequency switches,

at the cost of memory overhead within a user-specified threshold Tmem. The optimal value of

Ngrp for minimizing DVFS overhead can be calculated from the threshold, which determines

the extent of grouped broadcasts/multiplications for less frequency switches. Per Equation

62

Algorithm 1 Adaptive Memory-aware DVFS Scheduling Strategy

SetDVFS(N , Nproc)
1: Smem ← GetSysMem()
2: Tmem ← GetMemTshd()
3: unit ← N/Nproc

4: Ngrp ← Smem × Tmem

/

(8× unit2 × 2)
5: nb ← Nproc/Ngrp

6: foreach i < nb do
7: if (IsBcast() && freq != LDV FS) then
8: SetFreq(LDV FS)
9: end if
10: if (IsMatMul() && freq != HDV FS) then
11: SetFreq(HDV FS)
12: end if
13: end for

3.1, for blocked distributed matrix multiplication, energy costs on employing DVFS in the

basic strategy and in our DAEMON strategy shown in Figure 3.2 are modeled respectively,

in terms of the product of unit energy costs on one DVFS switch and the number of such

switches as follows:

ebasicDV FS = eunitDV FS × 2×Nproc ×
N/Nproc

BS
×N2

proc (3.2)

edaemon
DV FS = eunitDV FS × 2× Nproc

Ngrp
× N/Nproc

BS
×N2

proc (3.3)

According to Equations 3.2 and 3.3, we derive energy deflation (i.e., ratio) and

energy savings (i.e., difference) from employing DAEMON against the basic strategy as

below:

63

Edef =
ebasicDV FS

edaemon
DV FS

= Ngrp (3.4)

Esav = ebasicDV FS − edaemon
DV FS

= eunitDV FS × 2× N

BS
×N2

proc ×
(

1− 1

Ngrp

)

(3.5)

From Equations 3.4 and 3.5, we can see that both Edef and Esav greatly depend

on the value of Ngrp. The greater Ngrp is, the more energy efficient DAEMON is. Following

the constraints of Equation 3.1, we know in the best case that Ngrp = Nproc, Edef = Nproc,

while in the worst case that Ngrp = 1, Edef = 1 as well, since DAEMON regresses to the

basic strategy in this case. Further, we know that the energy saved from DAEMON can be

huge given a large value of N
BS . In general, DAEMON is more energy efficient in contrast

to the basic strategy, if Ngrp > 1.

3.3 High Performance Communication Scheme

In addition to applying DAEMON to minimize DVFS overhead in distributed ma-

trix multiplication for energy efficiency, we also aim to achieve performance efficiency and

thus additional energy savings can be achieved from less execution time. Generally, perfor-

mance gain of distributed matrix multiplication can be fulfilled in terms of high performance

computation and communication. Given that the optimal computation implementation of

local matrix multiplication routine provided by ATLAS [2] is employed, we propose a high

64

performance communication scheme for fully exploiting network bandwidth. Specifically,

since the global matrix is evenly distributed into the process grid for load balancing, we need

to broadcast each matrix row/column to all other rows/columns located in different nodes

individually for later performing local matrix multiplication in parallel. A high performance

broadcast algorithm is thus desirable.

3.3.1 Binomial Tree and Pipeline Broadcast

There exist a large body of distributed broadcast algorithms for high performance

communication, where binomial tree and pipeline broadcast generally outperform other al-

gorithms for different system configurations. In the original pdgemm() routine from ScaLA-

PACK on top of different MPI implementations, different communication schemes like ring-

based, binomial tree and pipeline broadcast are adopted depending on message size and

other factors [26]. Table 4.2 lists the notation used in this section. Figure 3.3 (a) depicts

how the binomial tree broadcast algorithm works using a simple example with a 3-round

iteration on a 8-process cluster. We can see that in each round, a process sends messages

in accordance with the following pattern:

• In Round 0, process P0 (sender) sends a message to the next available process P1

(receiver);

• In Round j (j > 0), process Pi (i ≤ j, i = 0, 1, 2, . . .) that is a sender/receiver in

the precedent round sends a message to the next available process, until the last one

receives.

65

Table 3.2: Notation in Binomial Tree and Pipeline Broadcast.

P The total number of processes in the communication

Smsg Message size in one broadcast

BD Network bandwidth in the communication

TB The total time consumed by all binomial tree broadcasts

TP The total time consumed by all pipeline broadcasts

Tb Time consumed by one binomial tree broadcast

Tp Time consumed by one pipeline broadcast

Ts Network latency of starting up a communication link

Td Time consumed by transmitting messages

n Number of chunks from dividing a message

In other words, in Round j, the number of senders/receivers is 2j and thus the

algorithm takes logP rounds for the P th process to receive a message. The communication

time complexity can be modeled as:

TB = Tb × logP , where Tb = Ts +
Smsg

BD
(3.6)

By substituting Tb, we obtain the final time complexity formula of binomial tree

broadcast:

TB =

(

Ts +
Smsg

BD

)

× logP (3.7)

Pipeline broadcast works in a time-sliced fashion so that different processes simul-

taneously broadcast different message chunks as stages in pipelining, as shown in Figure

3.3 (b). Assume a message in the pipeline broadcast is divided into n chunks. when the

pipeline is not saturated, i.e., in the worst case, it takes n+P − 1 steps for the P th process

to receive a whole message of n chunks. We can model the time complexity of pipeline

broadcast as:

66

(a) Binomial Tree Broadcast (b) Pipeline Broadcast

Figure 3.3: Binomial Tree and Pipeline Broadcast Algorithm Illustration.

TP = Tp × (n+ P − 1), where Tp = Ts +
Smsg/n

BD
(3.8)

Similarly, substituting Tp into TP in Equation 3.8 yields:

TP =

(

Ts +
Smsg/n

BD

)

× (n+ P − 1) (3.9)

From Equations 3.7 and 3.9, despite the steps needed to receive a message, we can

see that both TB and TP are essentially the sum of Ts and Td. In a cluster connected by an

Ethernet/Infiniband switch, Ts is of the order of magnitude of µs, so Ts is negligible when

Smsg is comparatively large. Therefore, Equations 3.7 and 3.9 can be further simplified as

follows:

TB ≈
Smsg

BD
× logP and TP ≈

Smsg

BD
×
(

1 +
P − 1

n

)

(3.10)

67

It is clear that both TB and TP scale up as P increases, with fixed message size

and fixed number of message chunks. However the pipeline broadcast outperforms the

binomial tree broadcast with given P and message size by increasing n, since the ratio

of binomial tree broadcast to pipeline broadcast approximates to logP when n is large

enough and P−1
n becomes thus negligible. We experimentally observed the communication

schemes in ScaLAPACK and DPLASMA pdgemm() routines are not optimal in two clusters.

Energy and time saving opportunities can be exploited by leveraging slack arising from the

communication. Thus a high performance pipeline broadcast scheme with tuned chunk size

according to system characteristics is desirable.

3.4 Implementation and Evaluation

We have implemented our high performance adaptive memory-aware DVFS schedul-

ing strategy with highly tuned pipeline broadcast (referred to as HP-DAEMON in the

later text) to achieve the optimal energy and performance efficiency for distributed ma-

trix multiplication. Our implementation was accomplished by rewriting pdgemm() from

ScaLAPACK [26] and DPLASMA [8], two widely used high performance and scalable nu-

merical linear algebra libraries for distributed-memory multi-core systems nowadays. In

our implementation, instead of using binomial tree broadcast for communication, we tune

chunk size of pipeline broadcast to fully exploit possible slack during communication [126].

We apply the core tiling topology similarly as proposed in [87] to exploit more parallelism

in communication. For achieving the maximal performance of computation, we employ

the dgemm() routine provided by ATLAS [2], a linear algebra software library that auto-

68

matically tunes performance according to configurations of the hardware. The rewritten

pdgemm() has the same interface and is able to produce the same results as the original

ScaLAPACK/DPLASMA pdgemm() routines, with total normalized differences between

the range of 10−17 and 10−15 in our experiments. For comparison purposes, we also imple-

mented the basic DVFS scheduling strategy (referred to as Basic DVFS later) employed in

[46] [93].

Specifically, HP-DAEMON was implemented from two aspects as an integrated

energy and performance efficient approach. Given a memory cost threshold specified by the

user as a trade-off for saving energy, HP-DAEMON adaptively calculates Ngrp, following

the constraints of Equation 3.1. Then Ngrp is applied to determine the extent of grouping,

which reduces the number of DVFS switches at the cost of user-specified memory overhead.

For performance efficiency, during computation, HP-DAEMON employs the optimal imple-

mentation of local matrix multiplication; during communication, HP-DAEMON leverages

a non-blocking version [126] of the pipeline broadcast with tuned chunk size to maximize

network bandwidth utilization.

3.4.1 Experimental Setup

We applied HP-DAEMON to five distributed matrix multiplications with different

global matrix sizes to assess energy savings and performance gain achieved by our integrated

approach. Experiments were performed on a small-scale cluster (HPCL) with an Ethernet

switch consisting of 8 computing nodes with two Quad-core 2.5 GHz AMD Opteron 2380

processors (totalling 64 cores) and 8 GB RAM running 64-bit Linux kernel 2.6.32, and a

large-scale cluster (Tardis) with an Infiniband switch consisting of 16 computing nodes with

69

Figure 3.4: DVFS Energy and Time Overhead.

two 16-core 2.1 GHz AMD Opteron 6272 processors (totalling 512 cores) and 64 GB RAM

running the same Linux kernel. All energy-related experiments were conducted only on

HPCL while all performance-related experiments were performed on both clusters, since

only HPCL was equipped with power sensors and meters for energy measurement. In our

experiments, energy consumption was measured using PowerPack [71], a comprehensive

software and hardware framework for energy profiling and analysis of high performance

systems and applications. The range of CPU frequencies on HPCL was {0.8, 1.3, 1.8, 2.5}

GHz. PowerPack was deployed and running on a meter node to collect energy costs on all

involved components such as CPU, memory, disk, motherboard, etc. of all 8 computing

nodes within HPCL. The collected energy information was recorded into a log file in the

local disk and accessed after executing these distributed matrix multiplications.

3.4.2 Overhead on Employing DVFS

The introduction of DVFS may incur non-negligible energy and time costs on in-

memory file read/write operations and gear transitions, if fine-grained DVFS scheduling is

70

Table 3.3: Memory Overhead Thresholds for Different Matrices and Ngrp.

Global
Ngrp

Theoretical Observed

Matrix
Additional Total

Size
Memory Memory
Overhead Overhead

7680
2 3.2% 6.4%
4 6.4% 8.8%
8 12.8% 14.4%

10240
2 4.8% 10.4%
4 9.6% 16.0%
8 19.2% 25.6%

12800
2 8.0% 16.0%
4 16.0% 24.0%
8 32.0% 40.0%

15360
2 11.2% 23.2%
4 22.4% 35.2%
8 44.8% 57.6%

17920
2 16.0% 28.0%
4 32.0% 43.2%
8 64.0% 78.4%

employed as in the case of Basic DVFS. In order to obtain accurate DVFS overhead, we

measured energy and time costs on CPU frequency switches separately from the running

application on the HPCL cluster, as shown in Figure 3.4. We can see that both energy and

time costs increase monotonically as the number of DVFS switches increases. On average

it takes about 70µs for one DVFS switch to complete and take effect, and about every 10

DVFS switches incur extra one Joule energy consumption. The additional energy costs

from DVFS can be considerably large if CPU frequency switches occur frequently. A smart

way of reducing the number of DVFS switches like HP-DAEMON can thus save energy and

time of running the application.

71

3.4.3 Memory Cost Trade-off from HP-DAEMON

Once specifying a memory overhead threshold using command line parameters, in

the form of the original command of executing the application followed by an optional pa-

rameter “-t” with a percentage, “-t 0.2” for instance, the user is afterwards not involved

for an energy saving execution, e.g., dynamically modifying the threshold. HP-DAEMON

adaptively calculates the optimal value for grouping according to the custom threshold.

Essentially the total memory overhead consists of the memory costs from the execution of

the original application, and the additional memory costs from HP-DAEMON. Using the

calculated grouping value, HP-DAEMON performs grouped computation/communication

accordingly to minimize the number of DVFS switches. Table 3.3 lists Ngrp values for

five different matrices, corresponding theoretical values of extra memory costs from HP-

DAEMON (i.e., the left hand side of Equation 3.1), and observed memory costs overall.

For simplicity, in our implementation all calculated grouping values are rounded to mul-

tiples of 2. As Table 3.3 shows, the empirical observed total memory costs generally in-

crease more than the theoretical extra memory costs from HP-DAEMON as Ngrp doubles.

This is because atop the original application, besides extra memory footprint for grouped

broadcasts/multiplications, HP-DAEMON incurs more memory costs on stacks of grouped

function calls involved in grouping that cannot be freed and re-allocated immediately.

3.4.4 Performance Gain via Tuned Pipeline Broadcast

From Equations 3.10, we have two inferences: (a) Performance of pipeline broad-

cast is strongly tied to chunk size, and (b) performance of pipeline broadcast can be better

72

Figure 3.5: Performance Efficiency of Binomial Tree Broadcast and Pipeline Broadcast.

than binomial tree broadcast, since the ratio of binomial tree broadcast to pipeline broad-

cast is logP when P−1
n is negligible. Next we evaluate performance gain from the use of

pipeline broadcast via tuning chunk size, in contrast to binomial tree broadcast, where

global matrix sizes of distributed matrix multiplication on HPCL and Tardis are 10240 and

20480, individually.

In accordance with Equations 3.10, we can see in Figure 3.5, performance gain

is achieved with the increase of chunk size (thus the decrease of the number of chunks)

of pipeline broadcast, and pipeline broadcast performance converges reasonably well on

both clusters as chunk size grows. The convergence point arises earlier on HPCL (0.5k)

than Tardis (6k) due to the difference of network bandwidth between two clusters. This is

because in order to reach the maximal network utilization, required chunk size of messages

broadcasted on the cluster with slower network bandwidth is smaller compared to the cluster

with faster network bandwidth. Further, we see that similarly on both clusters, pipeline

73

Figure 3.6: Energy Savings and Performance Gain on the HPCL Cluster (64-core, Ethernet).

74

broadcast outperforms binomial tree broadcast after the individual convergence point of

pipelining, which complies with Equations 3.10 as well. Noteworthily, the performance

between two types of broadcast differs greater on the cluster with slower network bandwidth

(HPCL) than the cluster with faster network bandwidth (Tardis).

3.4.5 Overall Energy and Performance Efficiency of HP-DAEMON

Experimental results indicate that the optimal energy savings and performance

gain can be achieved by applying HP-DAEMON in distributed matrix multiplication. We

performed two types of experiments to evaluate the effectiveness of HP-DAEMON indi-

vidually: (a) On the energy measurement enabled HPCL cluster, we evaluated energy and

performance efficiency of HP-DAEMON by comparing ScaLAPACK pdgemm() to our im-

plementation of pdgemm() with and without HP-DAEMON (we did not present the data

of DPLASMA pdgemm() on HPCL, because DPLASMA pdgemm() did not manifest better

performance than ScaLAPACK pdgemm() on Ethernet-switched HPCL); (b) on the Tardis

cluster with faster network bandwidth but no tools for energy measurement, we evaluated

performance efficiency of our pdgemm() implementation with tuned pipeline broadcast, by

comparing against ScaLAPACK, DPLASMA, and our pdgemm() with binomial tree broad-

cast. The default block size 32 in ScaLAPACK/DPLASMA pdgemm() and the maximal

value of Ngrp (8 in our case) were adopted in our experiments.

Figure 3.6 shows energy costs and execution time of five different matrix multipli-

cations on the HPCL cluster with two DVFS scheduling strategies, where in our implemen-

tation pipeline broadcast with tuned chunk size was employed for achieving the maximal

performance of communication. We observe that the time overhead on employing DVFS is

75

non-negligible: 8.1% for ScaLAPACK pdgemm() and 12.4% for our pdgemm() on average.

As discussed before, performance loss is attributed to time costs on virtual file read and write

operations that are necessary in CPU frequency switching by DVFS. Thus extra energy con-

sumption is incurred during the extra time on frequency switching. Although performance

degrades using Basic DVFS, overall energy savings are achieved due to the scheduled low-

power communication when CPU is idle. Compared to the original versions without DVFS,

the energy savings from Basic DVFS enabled version of ScaLAPACK pdgemm() and our

pdgemm() are considerable 18.1% and 15.1% on average, individually. Compared to Ba-

sic DVFS, employing HP-DAEMON effectively achieves more energy savings and reduces

performance loss since the number of DVFS switches is minimized in accordance with the

user-specified memory cost threshold. As shown in Figure 3.6, compared to our pdgemm()

without DVFS, more energy savings are fulfilled (22.6% on average and up to 28.8%, 7.5%

additional average energy savings compared to Basic DVFS) while performance loss is low-

ered to 6.4% on average (6.0% performance loss is eliminated compared to Basic DVFS).

The heuristic of reducing frequency switches by grouping is thus evaluated to be beneficial

to energy and performance efficiency for distributed matrix multiplication.

As the other integrated part of HP-DAEMON, employing pipeline broadcast with

tuned chunk size further brings performance gain and thus energy savings. Comparing

ScaLAPACK pdgemm() and our pdgemm() both without using DVFS, 32.9% on average and

up to 35.6% performance gain is observed. Overall, compared to ScaLAPACK pdgemm(),

our pdgemm() with HP-DAEMON achieves 47.8% on average and up to 51.4% energy

savings, and 28.6% on average and up to 31.5% performance gain, due to the integrated

76

 0

 0.2

 0.4

 0.6

 0.8

 1

10,240
20,480

30,720
40,960

51,200

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Global Matrix Size

ScaLAPACK pdgemm
DPLASMA pdgemm
My pdgemm w/ Binomial Tree Broadcast
My pdgemm w/ Pipeline Broadcast (Chunk Size Tuned)

Figure 3.7: Performance Gain on the Tardis Cluster (512-core, Infiniband).

energy and performance efficiency from HP-DAEMON. Next we further evaluate overall

performance gain achieved by our pdgemm() with HP-DAEMON on another cluster with

more cores and faster network bandwidth.

Figure 3.7 shows performance comparison of five other distributed matrix multipli-

cations in different implementations on the Tardis cluster. First we see that DPLASMA and

ScaLAPACK pdgemm() perform similarly on average. Further the performance difference

between binomial tree broadcast and pipeline broadcast narrows down to negligible extent

due to the faster communication rate on Tardis. Overall on average, our pdgemm() with

pipeline broadcast with tuned chunk size significantly outperforms ScaLAPACK pdgemm()

by 33.3% and DPLASMA pdgemm() by 32.7%, respectively. It is thus evaluated that our

pdgemm() with HP-DAEMON can also be superior in performance efficiency on large-scale

clusters with fast network bandwidth.

77

3.5 Summary

Increasing requirements of exploiting parallelism in high performance applications

pose great challenges on improving energy efficiency for these applications. Among po-

tential software-controlled hardware solutions, DVFS has been leveraged to provide sub-

stantial energy savings. This work proposes an adaptive memory-aware DVFS scheduling

strategy that reduces the number of CPU frequency switches to minimize the overhead on

employing DVFS. A user-specified memory overhead threshold is used for grouping broad-

casts/multiplications in distributed matrix multiplication to achieve the optimal energy

savings. Further, a pipeline broadcast scheme with tuned chunk size for high performance

communication is leveraged to fully exploit network bandwidth. The experimental results

on two clusters indicate the effectiveness of the proposed integrated approach in both energy

and performance efficiency, compared to ScaLAPACK and DPLASMA matrix multiplica-

tion with a basic DVFS scheduling strategy.

78

Chapter 4

Algorithm-Based Energy Saving

for Cholesky, LU, and QR

Factorizations

4.1 Introduction

4.1.1 Motivation

With the growing prevalence of distributed-memory architectures, high perfor-

mance scientific computing has been widely employed on supercomputers around the world

ranked by the TOP500 list [27]. Considering the crucial fact that the costs of powering a

supercomputer are rapidly increasing nowadays due to expansion of its size and duration

in use, improving energy efficiency of high performance scientific applications has been re-

garded as a pressing issue to solve. The Green500 list [10], ranks the top 500 supercomputers

79

worldwide by performance-power ratio in six-month cycles. Consequently, root causes of

high energy consumption while achieving performance efficiency in parallelism have been

widely studied. With different focuses of studying, holistic hardware and software ap-

proaches for reducing energy costs of running high performance scientific applications have

been extensively proposed. Software-controlled hardware solutions such as DVFS-directed

(Dynamic Voltage and Frequency Scaling) energy efficient scheduling are deemed to be effec-

tive and lightweight [46] [67] [69] [86] [124] [116] [115]. Performance and memory constraints

have been considered as trade-offs for energy savings [92] [70] [139] [127] [132].

DVFS is a runtime technique that is able to switch operating frequency and sup-

ply voltage of a hardware component (CPU, GPU, memory, etc.) to different levels (also

known as gears or operating points) per workload characteristics of applications to gain

energy savings dynamically. CPU and GPU are the most widely applied hardware com-

ponents for saving energy via DVFS due to two primary reasons: (a) Compared to other

components such as memory, CPU/GPU DVFS is easier to implement [54] – various handy

DVFS APIs have been industrialized for CPU/GPU DVFS such as CPUFreq kernel infras-

tructure [5] incorporated into the Linux kernel and NVIDIA System Management Interface

(nvidia-smi) [21] for NVIDIA GPU; (b) CPU energy costs dominate the total system energy

consumption [71] (CPU and GPU energy costs dominate if heterogeneous architectures are

considered), and thus saving CPU and GPU energy greatly improves energy efficiency of

the whole system. In this work, we focus on distributed-memory systems without GPU.

For instance, energy saving opportunities can be exploited by reducing CPU frequency and

voltage during non-CPU-bound operations such as large-message MPI communication, since

80

generally execution time of such operations barely increases at a low-power state of CPU,

in contrast to original runs at a high-power state. Given the fact that energy consumption

equals product of average power consumption and execution time (E = P × T), and the

assumption that dynamic power consumption of a CMOS-based processor is proportional

to product of operating frequency and square of supply voltage (P ∝ fV 2) [108] [80], energy

savings can be effectively achieved using DVFS-directed strategical scheduling approaches

with little performance loss.

Running on distributed-memory architectures, HPC applications can be organized

and scheduled in the unit of task, a set of operations that are functionally executed as a

whole. Different tasks within one process or across multiple processes may depend on each

other due to intra-process and inter-process data dependencies. Parallelism of task-parallel

algorithms and applications can be characterized by graph representations such as Directed

Acyclic Graph (DAG), where data dependencies among parallel tasks are appropriately de-

noted by directed edges. DAG can be effective for analyzing parallelism present in HPC

runs, which is greatly beneficial to achieving energy efficiency. As typical task-parallel al-

gorithms for scientific computing, dense matrix factorizations in numerical linear algebra

such as Cholesky, LU, and QR factorizations have been widely adopted to solve systems of

linear equations. Empirically, as standard functionality, routines of dense matrix factoriza-

tions are provided by various software libraries of numerical linear algebra for distributed-

memory multicore architectures such as ScaLAPACK [26], DPLASMA [8], and MAGMA

[18]. Therefore, saving energy for parallel Cholesky, LU, and QR factorizations contributes

significantly to the greenness of high performance scientific computing nowadays.

81

4.1.2 Limitations of Existing Solutions

Most existing energy saving solutions for high performance scientific applications

are (combination of) variants of two classic approaches: (a) A Scheduled Communication

(SC) approach [46] [93] [101] [116] that keeps low CPU performance during communication

and high CPU performance during computation, as large-message communication is not

CPU-bound while computation is, and (b) a Critical Path (CP) approach [116] [115] [33]

[30] that guarantees that tasks on the CP run at the highest CPU frequency while reduces

frequency appropriately (i.e., without further delay to incur overall performance loss) for

tasks off the CP to minimize slack.

Per the operating layer, existing solutions can be categorized into two types: OS

level and application level. In general, OS level solutions feature two properties: (a) Working

aside running applications and thus requiring no application-specific knowledge and no

source modification, and (b) making online energy efficient scheduling decisions via dynamic

monitoring and analysis. However, application level solutions statically utilize application-

specific knowledge to perform specialized scheduling for saving energy, generally with source

modification and recompilation (i.e., generality) trade-offs. Although with high generality,

OS level solutions may suffer from critical disadvantages as follows, and consequently are

far from a sound and complete solution, for applications such as parallel Cholesky, LU, and

QR factorizations in particular:

Effectiveness. Although intended to be effective for general applications, OS level ap-

proaches rely heavily on the underlying workload prediction mechanism, due to lack of

82

knowledge of application characteristics. One prediction mechanism can work well for

a specific type of applications sharing similar characteristics, but can be error-prone for

other applications, in particular, applications with random/variable execution characteris-

tics where the prediction mechanism performs poorly. Algorithms presented in [101] [116]

[115] predict execution characteristics of the upcoming interval (i.e., a fixed time slice) ac-

cording to recent intervals. This prediction mechanism is based on a simple assumption

that task behavior is identical every time a task is executed [115]. However, it can be

defective for applications with random/variable execution characteristics, such as matrix

factorizations, where the remaining unfinished matrices become smaller as the factoriza-

tions proceed. In other words, length variation of iterations of the core loop for matrix

factorizations can make the above prediction mechanism inaccurate, which invalidates po-

tential energy savings. Moreover, since new technologies such as Hyper-Threading [12] have

emerged for exploiting thread level parallelism on distributed-memory multicore systems,

e.g., MPI programs can be parallelized on local multicore processors using OpenMP, be-

havior among parallel tasks can vary due to more non-deterministic events occurred in the

multithreaded environment.

Further, the OS level prediction can be costly and thus energy savings are dimin-

ished. Recall that OS level solutions must predict execution details in the next interval

using prior execution information. However, execution history in some cases may not nec-

essarily be a reliable source for workload prediction, e.g., for applications with fluctuating

runtime patterns at the beginning of the execution. As such, it can be time-consuming for

obtaining accurate prediction results. Since during the prediction phase no energy savings

83

can be fulfilled, considerable potential energy savings can be wasted for accurate but lengthy

prediction.

Completeness. OS level solutions only work when tasks such as computation and com-

munication are being executed, energy saving opportunities are untapped during the time

otherwise. Empirically, even though load balancing techniques have been leveraged, due to

data dependencies among tasks and load imbalance that is not completely eliminated, not

all tasks in different processes across nodes can start to work and finish at the same time.

More energy can be saved for tasks waiting at the beginning of an execution, and for the

last task of one process finishing earlier than that of other processes across nodes (details

are illustrated in Figure 4.4). Restricted by the daemon-based nature of working aside real

running tasks, OS level solutions cannot attain energy savings for such tasks.

4.1.3 Our Contributions

In this chapter, we propose a library level race-to-halt DVFS scheduling ap-

proach via Task Dependency Set (TDS) analysis based on algorithmic characteristics,

namely TX (TDS-based race-to-halt), to save energy for task-parallel applications running on

distributed-memory architectures, taking parallel Cholesky, LU, and QR factorizations for

example. The idea of library level race-to-halt scheduling is intended for any task-parallel

programming models where data flow analysis can be applied. The use of TDS analysis

as a compiler technique allows possible extension of this work to a general compiler-based

approach based on static analysis only. In summary, the contributions of this chapter are

as follows:

84

• Compared to application level solutions, for widely used software libraries such as

numerical linear algebra libraries, TX restricts source modification and recompilation at

library level, and replacement of the energy efficient version of the libraries is allowed

at link time (i.e., with partial loss of generality). No further source modification and

recompilation are needed for applications where the libraries are called;

• Compared to OS level solutions, TX is able to achieve substantial energy savings for

parallel Cholesky, LU, and QR factorizations (i.e., with higher energy efficiency), since

via algorithmic TDS analysis, TX circumvents the defective prediction mechanism at

OS level, and also manages to save more energy from possible load imbalance;

• We formally model that TX is comparable to the CP approach in energy saving capa-

bility under the circumstance of current CMOS technologies that allow insignificant

variation of supply voltage as operating frequency scales via DVFS;

• With negligible performance loss (3.5% on average), on two power-aware clusters,

TX is evaluated to achieve up to 33.8% energy savings compared to original runs of

different-scale matrix factorizations, and save up to 17.8% and 15.9% more energy

than state-of-the-art OS level SC and CP approaches, respectively.

The rest of this chapter is organized as follows. Section 4.2 introduces basics of

parallel Cholesky, LU, and QR factorizations. We present TDS and CP in Section 4.3,

and our TX approach in Section 4.4. Implementation details and experimental results are

provided in Section 4.5. Section 4.6 discusses related work and Section 4.7 concludes.

85

4.2 Background: Parallel Cholesky, LU, and QR Factoriza-

tions

As classic dense numerical linear algebra operations for solving systems of linear

equations, such as Ax = b where A is a given coefficient matrix and b is a given vector,

Cholesky factorization applies to the case that A is a symmetric positive definite matrix,

while LU and QR factorizations apply to any general M × N matrices. The goal of these

operations is to factorize A into the form LLT where L is lower triangular and LT is the

transpose of L, the form LU where L is unit lower triangular and U is upper triangular,

and the form QR where Q is orthogonal and R is upper triangular, respectively. Thus from

LLTx = b, LUx = b, QRx = b, x can be easily solved via forward substitution and back

substitution. In practice, parallel Cholesky, LU, and QR factorizations are widely employed

in extensive areas of high performance scientific computing. Various software libraries of

numerical linear algebra for distributed multicore scientific computing such as ScaLAPACK

[26], DPLASMA [8], and MAGMA [18] provide routines of these matrix factorizations as

standard functionality. In this section, we present basics of parallel Cholesky, LU, and QR

factorizations, and introduce an effective graph representation for parallelism present during

the execution of these matrix factorizations.

4.2.1 2-D Block Cyclic Data Distribution

Regardless of the fact that nowadays matrix involved in many parallel numerical

linear algebra operations is too large to fit into the memory of single node, the essence

of a parallel algorithm is how it partitions workloads into a cluster of computing nodes as

86

balanced as possible to better exploit parallelism, which is also referred to as load balancing.

In numerical linear algebra operations, distributing a global matrix into a process grid in a

linear fashion does not benefit a lot from parallelism, since although the data allocated into

each computing node are balanced in terms of amount, parallel execution of computation

and communication are restricted by frequently arising data dependencies among tasks

performed by different processes on different nodes.

(a) Global View (b) Local View

Figure 4.1: 2-D Block Cyclic Data Distribution on a 2 × 3 Process Grid in Global View

and Local View.

As shown in Figure 4.1, 2-D block cyclic data distribution, an effective way for

load balancing, has been widely used in various numerical linear algebra libraries, such as

HPL [11], ScaLAPACK [26], DPLASMA [8], and MAGMA [18]. Specifically, the global

matrix is partitioned in a two-dimensional block cyclic fashion, and blocks are mapped into

different nodes cyclically along both rows and columns of the process grid, so that tasks

without data dependencies are able to be executed by multiple nodes simultaneously to

achieve parallelism. Figure 4.1 (a) shows the partitioned global matrix in a global view,

87

while Figure 4.1 (b) depicts local matrices residing in different nodes individually, where

the global matrix elements on one node are accessed periodically throughout the execution

to balance the workloads in different nodes, instead of all at once as in the linear data

distribution. The granularity of partitioning is determined by a block size, either specified

by the user, or automatically tuned according to hardware configuration or set by default by

the application itself. In practice, the global matrix size may not necessarily be multiples

of the chosen block size. Typically, due to uneven division, the existence of remainder

matrices, i.e., the last row and the last column in Figure 4.1 (a), barely affects parallelism

empirically given a fine-grained partition.

4.2.2 DAG Representation of Parallel Cholesky, LU, and QR Factoriza-

tions

A well-designed partitioning and highly-efficient parallel algorithms of computa-

tion and communication substantially determine energy and performance efficiency of task-

parallel applications. For such purposes, classic implementations of parallel Cholesky, LU,

and QR factorizations are as follows: (a) Partition the global matrix into a cluster of

computing nodes as a process grid using 2-D block cyclic data distribution [55] for load

balancing; (b) perform local diagonal matrix factorizations in each node individually and

communicate factorized local matrices to other nodes for panel matrix solving and trailing

matrix updating, as shown in Figure 4.2, a stepwise LU factorization without pivoting.

Due to frequently-arising data dependencies, parallel execution of parallel Cholesky, LU,

and QR factorizations can be characterized using Directed Acyclic Graph (DAG), where

88

data dependencies among parallel tasks are appropriately represented. DAG for parallel

Cholesky, LU, and QR factorizations is formally defined below:

Figure 4.2: Stepwise Illustration of LU Factorization without Pivoting.

Definition 1. Data dependencies among parallel tasks of parallel Cholesky, LU, and QR

factorizations running on a distributed-memory computing system are modeled by a Di-

rected Acyclic Graph (DAG) G = (V,E), where each node v ∈ V denotes a task of

Cholesky/LU/QR factorization, and each directed edge e ∈ E represents a dynamic data de-

pendency from task tj to task ti that both tasks manipulate on either different intra-process

or inter-process local matrices (i.e., an explicit dependency) or the same intra-process local

matrix (i.e., an implicit dependency), denoted by ti → tj .

Example. Due to similarity among the three matrix factorizations and space limitation,

we henceforth take parallel Cholesky factorization for example to elaborate our approach.

Consider a 4 × 4 blocked Cholesky factorization as given in Figure 4.3. The outcome of

the task factorizing A11, i.e., L11, is used in the tasks solving local matrices L21, L31, and

L41 in the same column as L11, i.e., the tasks calculating the panel matrix. In other words,

there exist three data dependencies from the tasks solving L21, L31, and L41 to the task

89

A11 AT

21
AT

31
AT

41

A21 A22 AT

32
AT

42

A31 A32 A33 AT

43

A41 A42 A43 A44

=

L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44

×

LT

11
LT

21
LT

31
LT

41

0 LT

22
LT

32
LT

42

0 0 LT

33
LT

43

0 0 0 LT

44

=

L11L
T

11
L11L

T

21
L11L

T

31
L11L

T

41

L21L
T

11
L21L

T

21
+ L22L

T

22
L21L

T

31
+ L22L

T

32
L21L

T

41
+ L22L

T

42

L31L
T

11
L31L

T

21
+ L32L

T

22
L31L

T

31
+ L32L

T

32
+ L33L

T

33
L31L

T

41
+ L32L

T

42
+ L33L

T

43

L41L
T

11
L41L

T

21
+ L42L

T

22
L41L

T

31
+ L42L

T

32
+ L43L

T

33
L41L

T

41
+ L42L

T

42
+ L43L

T

43
+ L44L

T

44

Figure 4.3: Matrix Representation of a 4× 4 Blocked Cholesky Factorization (We henceforth

take parallel Cholesky factorization for example due to algorithmic similarity among three

types of matrix factorizations).

factorizing A11, denoted by three solid directed edges from the task Factorize(1,1) to the

tasks Solve(2,1), Solve(3,1), and Solve(4,1) individually as shown in Figure 4.4 (see page

15). Besides the above explicit dependencies, there exists an implicit dependency between

the task updating local matrix A32 and the task subsequently solving L32 on the same

local matrix, denoted by the dashed directed edge from the task Update1(3,2) to the task

Solve(3,2) in Figure 4.4. Note that communication among tasks is not shown in Figure

4.4, and updating diagonal local matrices and updating non-diagonal local matrices are

distinguished as Update2() and Update1() respectively due to different computation time

complexity.

4.3 Fundamentals: Task Dependency Set and Critical Path

Based on the task-parallel DAG representation, next we present Task Dependency

Set (TDS) and Critical Path (CP) of running parallel Cholesky, LU, and QR factorizations,

90

Table 4.1: Notation in Algorithms 1, 2, 3, and 4 and Henceforth.

task, t1, t2 One task of matrix factorizations

Nproc Square root of the total number of processes

fl The lowest CPU frequency set by DVFS

fh The highest CPU frequency set by DVFS

fopt Optimal ideal frequency to finish a task with its slack eliminated

ratio Ratio between split durations for optimal frequency approximation

TDSin(task) TDS consisting of tasks that are depended by task as the input

TDSout(task) TDS consisting of tasks that depend on task as the input

CritPath One task trace to finish matrix factorizations with zero total slack

slack Time that a task can be delayed by with no overall performance loss

CurFreq Current CPU frequency in use

DoneF lag Indicator of the finish of a task

where TDS contains static dependency information of parallel tasks to utilize at runtime,

and CP pinpoints potential energy saving opportunities in terms of slack among the tasks.

4.3.1 Task Dependency Set

For determining the appropriate timing for exploiting potential energy saving op-

portunities via DVFS, we leverage TDS analysis in our TX approach. Next we first formally

define TDS, and then showcase how to generate two types of TDS for each task in Cholesky

factorization using Algorithm 1. Producing TDS for LU and QR factorizations is simi-

lar with minor changes in Algorithm 1 per algorithmic characteristics. Table 4.1 lists the

notation used in the algorithms and discussion in Sections 4.3 and 4.4.

Definition 2. Given a task t of a parallel Cholesky/LU/QR factorization, data dependen-

cies related to a data block manipulated by the task t are classified as elements of two types

of TDS: TDSin(t) and TDSout(t), where dependencies from the data block to other tasks

91

Algorithm 1 Task Dependency Set Generation Algorithm

GenTDS(task, Nproc)
1: switch (task)
2: case Factorize:
3: foreach i < j, 1 ≤ i, j ≤ Nproc do
4: insert(TDSin(S(j, i)), F(i, i));
5: insert(TDSout(F(i, i)), S(j, i));
6: case Update1:
7: foreach i < j, 1 ≤ i, j ≤ Nproc do
8: if (IsLastInstance(U1(j, i))) then
9: insert(TDSin(U1(j, i)), S(j, i));

10: insert(TDSout(S(j, i)), U1(j, i));
11: case Update2:
12: foreach 1 ≤ i ≤ Nproc do
13: if (IsLastInstance(U2(i, i))) then
14: insert(TDSin(F(i, i)), U2(i, i));
15: insert(TDSout(U2(i, i)), F(i, i));
16: case Solve:
17: foreach 1 ≤ i < j ≤ Nproc do
18: foreach j < k ≤ Nproc do
19: insert(TDSin(U1(k, j)), S(j, i));
20: insert(TDSout(S(j, i)), U1(k, j));
21: foreach i < k < j ≤ Nproc do
22: insert(TDSin(U1(j, k)), S(j, i));
23: insert(TDSout(S(j, i)), U1(j, k));
24: insert(TDSin(U2(j, j)), S(j, i));
25: insert(TDSout(S(j, i)), U2(j, j));
26: end switch

ti are categorized into TDSout(t) and denoted as ti for short, and dependencies from other

tasks tj to the data block are categorized into TDSin(t) and denoted as tj for short.

Example. Consider the Cholesky factorization in Figure 4.3. Two TDS of each task

can be generated statically per algorithmic characteristics as shown in Algorithm 1: Since

the resulting local matrices of factorization tasks (e.g., L11) are used in column-wise panel

matrix solving (e.g., solving L21, L31, and L41), data dependencies from panel matrices

to factorized diagonal matrices are included in TDSin of tasks solving panel matrices (e.g.,

92

TDSin(S(2,1)), TDSin(S(3,1)), and TDSin(S(4,1))), and TDSout of tasks factorizing diagonal

matrices (e.g., TDSout(F(1,1))). Likewise TDSin and TDSout of other tasks holding different

dependencies can be produced following Algorithm 1.

4.3.2 Critical Path

Although load balancing techniques are leveraged for distributing workloads into

a cluster of computing nodes as evenly as possible, assuming that all nodes have the same

hardware configuration and thus the same computation and communication capability, slack

can result from the fact that different processes can be utilized unfairly due to three pri-

mary reasons: (a) imbalanced computation delay due to data dependencies among tasks,

(b) imbalanced task partitioning, and (c) imbalanced communication delay. Difference in

CPU utilization results in different amount of computation slack. For instance, constrained

by data dependencies, the start time of processes running on different nodes differs from

each other, as shown in Figure 4.4 (see page 15) where P1 starts earlier than the other three

processes. Moreover, since the location of local matrices in the global matrix determines

what types of computation are performed on the local matrices, load imbalancing from dif-

ference in task types and task amount allocated to different processes cannot be eliminated

completely by the 2-D block cyclic data distribution, as shown in Figure 4.4 where P2 has

lighter workloads compared to the other three processes. Imbalanced communication time

due to different task amount among the processes further extends the difference in slack

length for different processes.

Critical Path (CP) is one particular task trace from the beginning task of one run

of a task-parallel application to the ending one with the total slack of zero. Any delay on

93

Algorithm 2 Critical Path Generation Algorithm via TDS Analysis

GenCritPath(CritPath, task, Nproc)
1: CritPath ← ∅

2: switch (task)
3: case Factorize:
4: insert(CritPath, F(i, i))
5: case Update1:
6: Do Nothing
7: case Update2:
8: if (t1 ∈ CritPath && t1 ∈ TDSout(U2(i, i))) then
9: insert(CritPath, U2(i, i))

10: case Solve:
11: foreach 1 ≤ i < j ≤ Nproc do
12: if (t2 ∈ CritPath && t2 ∈ TDSout(S(j, i))) then
13: insert(CritPath, S(j, i))
14: end switch

tasks on the CP increases the total execution time of the application, while dilating tasks

off the CP into their slack individually without further delay does not cause performance

loss as a whole. Energy savings can be achieved by appropriately reducing frequency to

dilate tasks off the CP into their slack as much as possible, which is referred to as the

CP approach. Numerous existing OS level solutions effectively save energy via CP-aware

analysis [46] [101] [116] [115] [33] [30]. Figure 4.4 highlights one CP for the provided parallel

Cholesky factorization with bold edges. We next present a feasible algorithm to generate a

CP in parallel Cholesky, LU, and QR factorizations via TDS analysis.

4.3.3 Critical Path Generation via TDS

We can generate a CP for parallel Cholesky, LU, and QR factorizations as the basis

of the CP approach using Algorithm 2. Consider the same parallel Cholesky factorization

above. The heuristic of the CP generation algorithm is as follows: (a) Each task of factor-

94

izing is included in the CP, since the local matrices to factorize are always updated last,

compared to other local matrices in the same row of the global matrix, and the outcome of

factorizing is required in future computation. In other words, the task of factorizing serves

as a transitive step that cannot be executed in parallel together with other tasks; (b) each

task of Update1() is excluded from the CP, since it does not have direct dependency rela-

tionship with any tasks of factorizing, which are already included in the CP; (c) regarding

Update2(), we select the ones that are directly depended by the tasks of factorizing on the

same local matrix into the CP; (d) we choose the tasks of solving that are directly depended

by Update2() (or directly depends on Factorize(), not shown in the algorithm) into the CP.

Note that CP can also be identified using methods other than TDS analysis [46] [33] [30].

4.4 TX: Energy Efficient Race-to-halt DVFS Scheduling

In this section, we present in detail three energy efficient DVFS scheduling ap-

proaches for parallel Cholesky, LU, and QR factorizations individually: the SC approach,

the CP approach, and our TX approach. We further demonstrate that TX is able to save en-

ergy substantially compared to the other two solutions, since via TDS-based race-to-halt, it

circumvents the defective prediction mechanism employed by the CP approach at OS level,

and further saves energy from possible load imbalance. Moreover, we formally prove that

TX is comparable to the CP approach in energy saving capability under the circumstance

of current CMOS technologies.

95

4.4.1 Custom Functions

In Algorithms 1, 2, 3, and 4, nine custom functions are introduced for readabil-

ity: insert(TDS(t1), t2), delete(TDS(t1), t2), SetFreq(), IsLastInstance(), Send(), Recv(), Is-

Finished(), GetSlack(), and GetOptFreq(). The implementation of insert() and delete() is

straightforward: Add task t2 into the TDS of task t1, and remove t2 from the TDS of t1.

SetFreq() is a wrapper of handy DVFS APIs that set specific frequencies, and Send() and

Recv() are wrappers of MPI communication routines that send and receive flag messages

among tasks respectively. IsLastInstance() is employed to determine if the current task is the

last instance of the same type of tasks manipulating the same data block, and IsFinished()

is employed to determine if the current task is finished: Both are easy to implement at

library level. GetSlack() and GetOptFreq() are used to get slack of a task, and calculate the

optimal CPU frequency to dilate a task into its slack as much as possible, respectively. Im-

plementing GetSlack() and GetOptFreq() can be highly non-trivial. Specifically, GetSlack()

calculates slack of a task off the CP from the difference between the latest and the earliest

end time of the task. GetOptFreq() calculates the optimal ideal frequency to eliminate slack

of a task from the mapping between frequency and execution time for each type of tasks.

4.4.2 Scheduled Communication Approach

One effective and straightforward solution to save energy for task-parallel appli-

cations is to set CPU frequency to high during computation, while set it to low during

communication, given the fact that large-message communication is not bound by CPU

performance while the computation is, so the peak CPU performance is not necessary dur-

96

ing the communication. Although substantial energy savings can be achieved from this

Scheduled Communication (SC) approach [101] [116], it leaves potential energy saving

opportunities from other types of slack (e.g., see slack shown in Figure 4.4 on page 15)

untapped. More energy savings can be fulfilled via fine-grained analysis of execution char-

acteristics of HPC applications, in particular during non-communication. Next we present

two well-designed approaches that take advantage of computation slack to further gain en-

ergy savings. Note since the SC approach does not conflict with solutions exploiting slack

from non-communication, it thus can be incorporated with the next two solutions seamlessly

to maximize energy savings.

4.4.3 Critical Path Approach vs. TX Approach

Given a detected CP (e.g., via static analysis [46] or local information analysis

[115]) for task-parallel applications, the Critical Path (CP) approach saves energy as shown

in Algorithm 3: For all tasks on the CP, the CPU operating frequency is set to the highest

for attaining the peak CPU performance, while for tasks not on the CP with the total slack

larger than zero (e.g., tasks with no outgoing explicit data dependencies in Figure 4.4),

lowering frequency appropriately is performed to dilate the tasks into their slack as much

as possible, without incurring performance loss of the applications. Due to the discrete

domain of available CPU frequencies defined for DVFS, if the calculated optimal frequency

that can eliminate slack lies in between two available neighboring frequencies, the two

frequencies can be employed to approximate it by calculating a ratio of durations operating

at the two frequencies. The two frequencies are then assigned to the durations separately

97

Figure 4.4: DAG Representation of Task and Slack Scheduling of CP and TX Approaches

for the 4 × 4 Blocked Cholesky Factorization in Figure 4.3 on a 2 × 2 Process Grid Using

2-D Block Cyclic Data Distribution.

98

Algorithm 3 DVFS Scheduling Algorithm Using CP

DVFS CP(CritPath, task, FreqSet)
1: if (task ∈ CritPath || TDSout(task) != ∅) then
2: SetFreq(fh)
3: else
4: slack ← GetSlack(task)
5: if (slack > 0) then
6: fopt ← GetOptFreq(task, slack)
7: if (fl ≤ fopt ≤ fh) then
8: if (fopt /∈ FreqSet) then
9: SetFreq(⌊fopt⌋, ⌈fopt⌉, ratio)

10: else SetFreq(fopt)
11: else if (fopt < fl) then
12: SetFreq(fl)
13: end if

based on the ratio. Lines 7-9 in Algorithm 3 sketch the frequency approximation method

[145] [115]. The ratio of split frequencies is calculated via prior knowledge of the mapping

between frequency and execution time of different types of tasks. Note that we denote the

two neighboring available frequencies of fopt as ⌊fopt⌋ and ⌈fopt⌉.

Different from the CP approach that reduces CPU frequency for tasks off the

CP to eliminate slack for saving energy without performance loss, TX employs the race-

to-halt mechanism that leverages two TDS of each task (TDSin and TDSout) to determine

the timing of race and halt, as shown in Algorithm 4. Respecting data dependencies, one

dependent task cannot start until the finish of its depended task. TX keeps the dependent

task staying at the lowest frequency, i.e., halt, until all its depended tasks have finished

when it may start, and then allows the dependent task to work at the highest frequency to

complete as soon as possible, i.e., race, before being switched back to the low-power state.

Upon completion, a task sends a DoneF lag to all its dependent tasks to notify them that

99

Algorithm 4 DVFS Scheduling Algorithm Using TX

DVFS TX(task, CurFreq)
1: while (TDSin(task) != ∅) do
2: if (CurFreq != fl) then
3: SetFreq(fl)
4: if (Recv(DoneF lag, t1)) then
5: delete(TDSin(task), t1)
6: end while
7: SetFreq(fh)
8: if (IsFinished(task)) then
9: foreach t2 ∈ TDSout(task) do

10: Send(DoneF lag, t2)
11: SetFreq(fl)
12: end if

data needed has been processed and ready for use. A dependent task is retained at the

lowest frequency while waiting for DoneF lags from all its depended tasks, and removes the

dependency to a depended task from its TDSin, once a DoneF lag from the depended task

is received.

Defective Prediction Mechanism. Although effective, the OS level CP approach es-

sentially depends on the workload prediction mechanism: Execution characteristics in the

upcoming interval can be predicted using prior execution information, e.g., execution traces

in recent intervals. However, this prediction mechanism may not necessarily be reliable

and lightweight: (a) For applications with variable execution characteristics, such as dense

matrix factorizations. Execution time of iterations of the core loop shrinks as the remaining

unfinished matrices become smaller. Consequently dynamic prediction on execution char-

acteristics such as task runtime and workload distribution can be inaccurate, which thus

leads to error-prone slack estimation; (b) for applications with random execution patterns,

such as applications relying on random numbers that could lead to variation of control flow

100

at runtime, which can be difficult to capture. Since the predictor needs to determine repro-

ducible execution patterns at the beginning of one execution, it can be costly for obtaining

accurate prediction results in both cases above. Given the fact that no energy savings can

be fulfilled until the prediction phase is finished, considerable potential energy savings may

be wasted for accurate but lengthy prediction as such at OS level.

There exist numerous studies on history-based workload prediction, which can be

generally considered as two variants: the simplest and mostly commonly-used prediction

algorithm PAST [141] and its enhanced algorithms [137] [51] [80] [70], where PAST works

as follows:

W ′
i+1 = Wi (4.1)

where W ′
i+1 is the next executed workload to predict, and Wi is the current measured work-

load. For applications with stable or slowly-varying execution patterns, the straightforward

PAST algorithm can work well with little performance loss and high accuracy. It is how-

ever not appropriate for handling a considerable amount of variation in execution patterns.

Many enhanced algorithms have been proposed to produce more accurate workload predic-

tion for such applications. For instance, the RELAX algorithm employed in CPU MISER

[70] exploits both prior predicted profiles and current runtime measured profiles as follows:

W ′
i+1 = (1− λ)W ′

i + λWi (4.2)

where λ is a relaxation factor for adjusting the extent of dependent information of the

current measurement. This enhanced prediction mechanism can also be error-prone and

costly for parallel Cholesky, LU, and QR factorizations due to the use of 2-D block cyclic

101

data distribution. As shown in Figure 4.4, across loop iterations (highlighted by red dashed

boxes) different types of tasks can be distributed to a process. For instance, in the first

iteration, P1 is assigned three tasks Factorize(1,1), Solve(3,1), and Update2(3,3), while in the

second iteration, it is only assigned one task Update2(3,3). Although empirically for a large

global matrix, tasks are distributed to one specific process alternatingly (e.g., Factorize(i,i)

(i = 1, 3, 5, . . . , 2s+ 1, s ≥ 0) can be all distributed to P1), the RELAX algorithm needs to

adjust the value of λ alternatingly as well, which can be very costly and thus diminish

potential energy savings. Length variation of iterations due to the shrinking remaining

unfinished matrices further brings complexity to workload prediction.

TX successfully circumvents the shortcomings from the OS level workload predic-

tion, by leveraging the TDS-based race-to-halt strategy. TX essentially differs from the CP

approach since it allows tasks to complete as soon as possible before entering the low-power

state, and thus does not require any workload prediction mechanism. TX works at library

level and thus benefits from: (a) obtaining application-specific knowledge easily that can

be utilized to determine accurate timing for DVFS, and (b) restricting the scope of source

modification and recompilation to library level, compared to application level solutions.

Potential Energy Savings from Load Imbalance. Due to the existence of load im-

balance regardless of load balancing techniques applied, and also data dependencies among

inter-process parallel tasks, not all tasks can start to work and finish at the same time,

as shown in Figure 4.4. At OS level, the SC approach and the CP approach only work

when tasks are being executed, which leaves potential energy savings untapped during the

time otherwise. Specifically, the SC approach switches frequency to high and low at the

102

time when computation and communication tasks start respectively, and do nothing during

the time other than computation and communication. Likewise, the CP approach assigns

appropriate frequencies for tasks on/off the CP individually. Therefore due to its nature of

keeping the peak CPU performance for the tasks on the CP and dilating the tasks off the

CP into its slack via frequency reduction, switching frequency is not feasible when for one

process no tasks have started or all tasks have already finished.

Due to its nature of race-to-halt, TX can start to save energy even before any tasks

in a process are executed, and after all tasks in a process have finished while there exist

unfinished tasks in other processes. In Figure 4.4, the durations only covered by green

dashed boxes highlights the additional energy savings fulfilled by TX, where due to data

dependencies, a task cannot start yet while waiting for its depended task to finish first, or

all tasks in one process have already finished while some tasks in other processes are still

running.

Energy Saving Capability Analysis. Next we formally prove that compared to the

classic CP approach, TX is comparable to it in energy saving capability. Given the following

two energy saving strategies, towards a task t with an execution time T and slack T ′ at the

peak CPU performance, we calculate the total nodal system energy consumption for both

strategies, i.e., E(S1) and E(S2) formally below:

• Strategy I (Race-to-halt): Execute t at the highest frequency fh until the finish of t

and then switch to the lowest frequency fl, i.e., run in T at fh and then run in T ′ at

fl;

103

Table 4.2: Notation in Energy Saving Analysis.

E The total nodal energy consumption of all components

P The total nodal power consumption of all components

Pdynamic Dynamic power consumption in the running state

Pleakage Static/leakage power consumption in any states

T Execution time of a task at the peak CPU performance

T ′ Slack of executing a task at the peak CPU performance

A Percentage of active gates in a CMOS-based chip

C The total capacitive load in a CMOS-based chip

f Current CPU operating frequency

V Current CPU supply voltage

V ′ Supply voltage of components other than CPU

Isub CPU subthreshold leakage current

I ′sub non-CPU component subthreshold leakage current

fm Available optimal frequency assumed to eliminate T ′

Vh The highest supply voltage corresponding to fh set by DVFS

Vl The lowest supply voltage corresponding to fl set by DVFS

Vm Supply voltage corresponding to fm set by DVFS

n Ratio between original runtime and slack of a task

• Strategy II (CP-aware): Execute t at the optimal frequency fm with which T ′ is elimi-

nated, i.e., run in T+T ′ at fm (without loss of generality, assume T ′ can be eliminated

using an available frequency fm without frequency approximation).

For simplicity, let us assume the tasks for the use of DVFS are compute-intensive

(memory-intensive tasks can be discussed with minor changes in the model), i.e., T + T ′ =

nT , when fm = 1
nfh, where 1 ≤ n ≤ fh

fl
. Considering the nodal power consumption P , we

model it formally as follows:

P = PCPU
dynamic + PCPU

leakage + P other
leakage (4.3)

Pdynamic = ACfV 2 (4.4)

104

Pleakage = IsubV (4.5)

Then, substituting Equations 4.4 and 4.5 into Equation 4.3 yields:

P = ACfV 2 + IsubV + I ′subV
′ (4.6)

In our scenario, P other
leakage = I ′subV

′ is independent of CPU frequency and voltage

scaling, and thus can be regarded as a constant in Equation 4.6, so we denote P other
leakage

as Pc for short. Further, although subthreshold leakage current Isub has an exponential

relationship with threshold voltage, results presented in [135] indicate that Isub converges

to a constant after a certain threshold voltage value. Without loss of generality, we treat

PCPU
leakage = IsubV as a function of supply voltage V only. Thus, we model the nodal energy

consumption Enode for both strategies individually below:

E(S1) = P (S1)× T + P ′(S1)× T ′

= (ACfhV
2
h + IsubVh + Pc)T + (ACflV

2
l + IsubVl + Pc)T

′

= AC(fhV
2
h T + flV

2
l T

′) + Isub(VhT + VlT
′) + Pc(T + T ′) (4.7)

E(S2) = P (S2)× (T + T ′)

= (ACfmV 2
m + IsubVm + Pc)(T + T ′)

= ACfmV 2
m(T + T ′) + IsubVm(T + T ′) + Pc(T + T ′) (4.8)

We obtain the difference between energy costs of both strategies by dividing Equa-

tion 4.8 by Equation 4.7:

105

E(S2)

E(S1)
=

ACfmV 2
m(T + T ′) + IsubVm(T + T ′) + Pc(T + T ′)

AC(fhV
2
h T + flV

2
l T

′) + Isub(VhT + VlT ′) + Pc(T + T ′)
(4.9)

Substituting the assumption that T ′ = (n−1)T and fm = 1
nfh into both numerator

and denominator yields the following simplified formula:

E(S2)

E(S1)
=

AC 1
nfhV

2
m (1 + (n− 1)) + IsubVm (1 + (n− 1)) + Pc (1 + (n− 1))

AC
(

fhV
2
h + flV

2
l (n− 1)

)

+ Isub (Vh + Vl (n− 1)) + Pc (1 + (n− 1))

=
ACfhV

2
m + nIsubVm + nPc

AC
(

fhV
2
h + flV

2
l (n− 1)

)

+ Isub (Vh + Vl (n− 1)) + nPc
(4.10)

In Equation 4.10, the denominator is a function of the variable n only. It is clear

that it is a monotonically increasing function for n, whose minimum value is attained when

n = 1, i.e., when slack T ′ equals 0. Given the fact that supply voltage has a positive cor-

relation with (not strictly proportional to) operating frequency, scaling up/down frequency

results in voltage up/down accordingly as shown in Table 4.3. Therefore for the numerator

of Equation 4.10, the greater n is, the smaller fm and Vm are, provided fm = 1
nfh and the

above fact. It is thus complicated to determine the monotonicity of the numerator. As a

matter of fact, state-of-the-art CMOS technologies allow insignificant variation of voltage

as frequency scales (see Table 4.3). Consequently the term ACfhV
2
m within the numerator

does not decrease much together with the increase of n. Moreover, the ratio between the

highest and the lowest frequencies determines the upper bound of n (1 ≤ n ≤ fh
fl
), so the

other two terms within the numerator cannot increase significantly as n goes up.

Example. From the operating points of various processors shown in Table 4.3, we can calcu-

late numerical energy savings for different values of n and a specific processor configuration

106

Table 4.3: Frequency-Voltage Pairs for Different Processors (Unit: Frequency (GHz), Volt-

age (V)).

G
ear

AMD
AMD Opteron

AMD Intel Intel Core
Opteron 2380

846 and AMD
Opteron 2218 Pentium M i7-2760QM

Athlon64 3200+
Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt. Freq. Volt.

0 2.5 1.300 2.0 1.500 2.4 1.250 1.4 1.484 2.4 1.060

1 1.8 1.200 1.8 1.400 2.2 1.200 1.2 1.436 2.0 0.970

2 1.3 1.100 1.6 1.300 1.8 1.150 1.0 1.308 1.6 0.890

3 0.8 1.025 0.8 0.900 1.0 1.100 0.8 1.180 0.8 0.760

that quantify the energy efficiency of both energy saving strategies. For the AMD Opteron

2218 processor, given a task with the execution time T and slack 0.25T , i.e., n = 1.25, for

eliminating the slack, 1.8 GHz is adopted as the operating frequency for running the task,

and thus the numerator of Equation 4.10 equals AC
(

2.4× 1.252 + (1.25− 1)× 1.0× 1.12
)

+

Isub (1.25 + (1.25− 1)× 1.1) + 1.25Pc = 4.0525AC + 1.525Isub + 1.25Pc, while the denom-

inator of Equation 4.10 equals AC × 2.4 × 1.152 + 1.25 × 1.15Isub + 1.25Pc = 3.174AC +

1.4375Isub + 1.25Pc. We can see that the coefficients of the corresponding term Pc between

the numerator and the denominator are the same, and the coefficients of both corresponding

terms AC and Isub between the numerator and the denominator do not differ much. There-

fore the result of E(S2)
E(S1)

would be a value close to 1, which means Strategy I is comparable

to Strategy II in energy efficiency, regardless of the defective prediction mechanism.

4.5 Implementation and Evaluation

We have implemented TX, and for comparison purposes, the library level SC ap-

proach to evaluate the effectiveness of TX to save energy during non-communication slack.

107

For comparing with the OS level SC and CP approaches, we communicated with the authors

of Adagio [115] and Fermata [116] and received the latest version of the implementation

of both. We also compare with another OS level solution CPUSpeed [6], an interval-based

DVFS scheduler that scales CPU performance according to runtime CPU utilization during

the past interval. Regarding future workload prediction, essentially Adagio and Fermata

leverage the PAST algorithm [141], and CPUSpeed uses a prediction algorithm similar to

the RELAX algorithm employed in CPU MISER [70]. With application-specific knowledge

known, all library level solutions do not need the workload prediction mechanism. In the

later discussion, we denote the above approaches as follows:

• Orig: The original runs of different-scale parallel Cholesky, LU, and QR factorizations

without any energy saving approaches;

• SC lib: The library level implementation of the SC approach;

• Fermata: The OS level implementation of the SC approach based on the PAST

workload prediction algorithm;

• Adagio: The OS level implementation of the CP approach based on the PAST work-

load prediction algorithm, where Fermata is incorporated;

• CPUSpeed: The OS level implementation of the SC approach based on a workload

prediction algorithm similar to the RELAX algorithm;

• TX: The library level implementation of the race-to-halt approach based on TDS anal-

ysis, where SC lib is incorporated.

108

The goals of the evaluation are to demonstrate that: (a) TX is able to save energy

effectively and efficiently for applications with variable execution characteristics such as par-

allel Cholesky, LU, and QR factorizations, while OS level prediction-based solutions cannot

maximize energy savings, and (b) TX only incurs negligible performance loss, similar as the

compared OS level solutions. We did not compare with application level solutions, since

they essentially fulfill the same energy efficiency as library level solutions, with source modi-

fication and recompilation at application level. Working at library level, TX was deployed in

a distributed manner to each core/process. As the additional functionality of saving energy,

the implementation of TX was embedded into a rewritten version of ScaLAPACK [26], a

widely used high performance and scalable numerical linear algebra library for distributed-

memory architectures. In particular, library level source modification and recompilation

were conducted to the pdpotrf(), pdgetrf(), and pdgeqrf() routines, which perform parallel

Cholesky, LU, and QR factorizations, respectively.

Table 4.4: Hardware Configuration for All Experiments.

Cluster HPCL ARC

System Size
8 108

(# of Nodes)

Processor
2×Quad-core 2×8-core

AMD Opteron 2380 AMD Opteron 6128

CPU Freq. 0.8, 1.3, 1.8, 2.5 GHz 0.8, 1.0, 1.2, 1.5, 2.0 GHz

Memory 8 GB RAM 32 GB RAM

Cache
128 KB L1, 512 KB L2, 128 KB L1, 512 KB L2,

6 MB L3 12 MB L3

Network 1 GB/s Ethernet 40 GB/s InfiniBand

OS
CentOS 6.2, 64-bit CentOS 5.7, 64-bit
Linux kernel 2.6.32 Linux kernel 2.6.32

Power Meter PowerPack Watts up? PRO

109

4.5.1 Experimental Setup

We applied all five energy efficient approaches to the parallel Cholesky, LU, and QR

factorizations with five different global matrix sizes each to assess our goals. Experiments

were performed on two power-aware clusters: HPCL and ARC. Table 6.2 lists the hardware

configuration of the two clusters. Note that we measured the total dynamic and leakage

energy consumption of distributed runs using PowerPack [71], a comprehensive software

and hardware framework for energy profiling and analysis of high performance systems

and applications. The total of static and dynamic power consumption was measured using

Watts up? PRO [28]. Both energy and power consumption are the total energy and power

costs respectively on all involved components of one compute node, such as CPU, memory,

disk, motherboard, etc. Since each set of three nodes of the ARC cluster share one power

meter, power consumption measured is for the total power consumption of three nodes,

while energy consumption measured is for all energy costs collected from all eight nodes of

the HPCL cluster. CPU DVFS was implemented via the CPUFreq infrastructure [5] that

directly modifies CPU frequency system configuration files.

4.5.2 Results

In this section, we present experimental results on power, energy, and perfor-

mance efficiency and trade-offs individually by comparing TX with the other energy saving

approaches.

Power Savings. First we evaluate the capability of power savings from the five energy

saving approaches for parallel Cholesky, LU, and QR factorizations on the ARC cluster (due

110

to the similarity of results, data for parallel LU and QR factorizations is not shown), where

the power consumption was measured by sampling at a constant rate through the execution

of the applications. Figure 4.5 depicts the total power consumption of three nodes (out

of sixteen nodes in use) running parallel Cholesky factorization with different approaches

using a 160000 × 160000 global matrix, where we select time durations of the first few

iterations. Note that parallel Cholesky factorization (the core loop) performs alternating

computation and communication with decreasing execution time of each iteration, as the

remaining unfinished matrix shrinks. Thus we can see that for all approaches, from left to

right, the durations of computation (the peak power values) decrease as the factorization

proceeds.

Among the seven runs (including the theoretical one CP theo), there exist four

power variation patterns: (a) Orig and CPUSpeed – employed the same highest frequency

for both computation and communication, resulting almost constant power consumption

around 950 Watts; (b) SC lib, Fermata, and Adagio – lowered down frequency during the

communication, i.e., the five low-power durations around 700 Watts, and resumed the peak

CPU performance during the computation; (c) CP theo – not only scheduled low power

states for communication, but also slowed down computation to eliminate computation

slack – this is a theoretical value curve instead of real measurement, which is how OS level

approaches such as Adagio is supposed to save more power as a CP-aware approach based

on accurate workload prediction; and (d) TX – employed the race-to-halt strategy to lower

down CPU performance for all durations other than computation.

111

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

Time

Matrix Size: 160000 x 160000, Power Costs of Three Nodes

Orig
SC_lib

Fermata
Adagio

CP_theo
CPUSpeed

TX

Figure 4.5: Power Consumption of Parallel Cholesky Factorization with Different Energy

Saving Approaches on the ARC Cluster using 16 × 16 Process Grid.

Specifically, upon the prediction algorithm that inspects dynamic prior CPU uti-

lization periodically for workload prediction, CPUSpeed failed to produce accurate prediction

and scale CPU power states accordingly: It kept the peak CPU performance all the time.

Either relying on knowing application characteristics (SC lib) or detecting MPI communi-

cation calls (Fermata and Adagio), all three approaches can identify durations of commu-

nication and apply DVFS decisions accordingly. As discussed earlier, solutions that only

slow down CPU during communication are semi-optimal. Adagio and TX are expected to

utilize computation slack for achieving additional energy savings. Due to the defective OS

level prediction mechanism, Adagio failed to predict behavior of future tasks and calculate

computation slack accurately. Consequently no low-power states were switched to during

computation for Adagio. In contrast, we provide a theoretical value curve CP theo that

calculates computation slack effectively, and lower power states were switched to eliminate

the slack, i.e., the four medium-power durations around 850 Watts during the third and the

112

fourth computation as the blue line shows. Different from the solutions that save energy via

slack reclamation, TX relies on the race-to-halt mechanism where computation is conducted

at the peak CPU performance and the lowest CPU frequency is employed immediately af-

ter the computation. Therefore during computation slack, we can observe low-power states

were switched to by TX. Moreover, the nature of race-to-halt also guarantees no high-power

states are employed during the waiting durations resulting from data dependencies and load

imbalance, i.e., the two low-power durations in green where the application starts and ends.

This indicates that TX is able to gain additional energy savings that all other approaches

cannot exploit: Processes have to stay at the high-power state at the beginning/ending of

the execution.

Energy Savings. Next we compare energy savings achieved by all five approaches (not

including CP theo) on parallel Cholesky, LU, and QR factorizations on the HPCL cluster

as shown in Figure 4.6, where the energy consumption was measured by recording on/off

the collection of power and time costs when an application starts/ends. For eliminating

errors from scalability, we collected energy and time data of five matrix factorizations with

different global matrix sizes ranging from 5120 to 25600, respectively. Considerable energy

savings are achieved by all approaches except for CPUSpeed on all Cholesky, LU, and QR

with similar energy saving trend: TX prevails over all other approaches with higher energy

efficiency, while SC lib, Fermata, and Adagio have similar energy efficiency. Overall, for

Cholesky, TX can save energy 30.2% on average and up to 33.8%; for LU and QR, TX can

achieve 16.0% and 20.0% on average and up to 20.4% and 23.4% energy savings, respectively.

Due to the reasons discussed for power savings, Adagio only achieves similar energy savings

113

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

5120 x 5120 Cholesky Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

5120 x 5120 LU Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

5120 x 5120 QR Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

10240 x 10240 Cholesky Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

10240 x 10240 LU Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

10240 x 10240 QR Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

15360 x 15360 Cholesky Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

15360 x 15360 LU Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

15360 x 15360 QR Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

20480 x 20480 Cholesky Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

20480 x 20480 LU Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

20480 x 20480 QR Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

25600 x 25600 Cholesky Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

25600 x 25600 LU Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Orig SC_lib Fermata Adagio CPUSpeed TX

N
or

m
al

iz
ed

 V
al

ue
s

25600 x 25600 QR Factorization with Different Energy Saving Solutions

Normalized Time
Normalized Energy

Figure 4.6: Energy and Performance Efficiency of Parallel Cholesky, LU, and QR Fac-

torizations on the HPCL Cluster with Different Global Matrix Sizes and Energy Saving

Approaches using 8 × 8 Process Grid.

114

 0

 20

 40

 60

 80

 100

5,120 10,240 15,360 20,480 25,600 average

M
F

LO
P

S
/W

Cholesky Factorizations with Different Global Matrix Sizes and Energy Saving Solutions

Orig
SC_lib
Fermata
Adagio
CPUSpeed
TX

 0

 20

 40

 60

 80

 100

5,120 10,240 15,360 20,480 25,600 average

M
F

LO
P

S
/W

LU Factorizations with Different Global Matrix Sizes and Energy Saving Solutions

Orig
SC_lib
Fermata
Adagio
CPUSpeed
TX

 0

 20

 40

 60

 80

 100

 120

5,120 10,240 15,360 20,480 25,600 average

M
F

LO
P

S
/W

QR Factorizations with Different Global Matrix Sizes and Energy Saving Solutions

Orig
SC_lib
Fermata
Adagio
CPUSpeed
TX

Figure 4.7: Energy and Performance Trade-off of Parallel Cholesky, LU, and QR Fac-

torizations on the HPCL Cluster with Different Global Matrix Sizes and Energy Saving

Approaches using 8 × 8 Process Grid.

as SC lib and Fermata, without fulfilling additional energy savings from slack reclamation

of computation. With application-specific knowledge instead of workload prediction, TX

manages to achieve energy savings during both computation and communication slack.

Moreover, TX benefits from the advantage of saving additional energy during possible load

imbalance other approaches cannot exploit. Next we further evaluate such energy savings

by increasing load imbalance in the applications.

Effects of Block Size. As discussed earlier, the additional energy savings can be achieved

from load imbalance, i.e., the durations only covered by green dashed boxes as shown in

Figure 4.4. Empirically, regardless of the workload partition techniques employed, load

imbalance can grow due to larger tasks, longer communication, etc. For manifesting the

strength of TX in achieving additional energy savings for completeness, we deliberately

imbalance the workload through expanding tasks by using greater block sizes for Cholesky,

while keeping the default block size for LU and QR. As shown in Figure 4.6, the average

energy savings fulfilled by TX for Cholesky (30.2%) are consequently greater than LU and

115

QR (16.0% and 20.0%). Compared to the second most effective approach Adagio, TX can

save Cholesky 12.8% more energy on average.

Performance Loss. Figure 4.6 also illustrates performance loss from different energy

saving approaches against the original runs. We can see TX only incurs negligible time

overhead: 3.8%, 3.1%, 3.7% on average for Cholesky, LU, and QR individually, similar to

the time overhead of all other approaches except for CPUSpeed. The minor performance

loss on employing these solutions is primarily originated from three aspects: (a) Although

large-message communication is not CPU-bound, pre-computation required for starting up

a communication link before any data transmission is necessary and is affected by CPU

performance, so the low-power state during communication can slightly degrade perfor-

mance; (b) switching CPU frequency via DVFS is essentially implemented by modifying

CPU frequency system configuration files, and thus slight time overhead is incurred from

the in-memory file read/write operations [132]; and (c) CPU frequency transition latency

is required for the newly-set frequency to take effect. Further, TX suffers from minor per-

formance loss from TDS analysis, including TDS generation and maintaining TDS for each

task. The high time overhead of CPUSpeed is another reason for its little and even negative

energy savings besides the defective prediction mechanism at OS level.

Energy/Performance Trade-off . An optimal energy saving approach requires to achieve

the maximal energy savings with the minimal performance loss. Per this requirement,

energy-performance integrated metrics are widely employed to quantify if the energy effi-

ciency achieved and the performance loss incurred meanwhile are well-balanced. We adopt

Energy-Delay Product (EDP) to evaluate the overall energy and performance trade-off of

116

the five approaches, in terms of MFLOPS/W, which equals the amount of floating-point

operations per second within the unit of one Watt, i.e., the greater value it is, the better

efficiency is fulfilled. As shown in Figure 4.7, compared to other approaches, TX is able to

fulfill the most balanced trade-off between the energy and performance efficiency achieved.

Specifically, TX has higher MFLOPS/W values for Cholesky compared to LU and QR, due

to the higher energy savings achieved from the more imbalanced workload in Cholesky

without additional performance loss.

4.6 Summary

The looming overloaded energy consumption of high performance scientific com-

puting brings significant challenges to green computing in this era of ever-growing power

costs for large-scale HPC systems. DVFS techniques have been widely employed to improve

energy efficiency for task-parallel applications. With high generality, OS level solutions are

regarded as feasible energy saving approaches for such applications. We observe for ap-

plications with variable execution characteristics such as parallel Cholesky, LU, and QR

factorizations, OS level solutions suffer from the defective prediction mechanism and un-

tapped potential energy savings from possible load imbalance, and thus cannot optimize

the energy efficiency. Giving up partial generality, the proposed library level approach TX

is evaluated to save more energy with little performance loss for parallel Cholesky, LU, and

QR factorizations on two power-aware clusters compared to classic OS level solutions.

117

Chapter 5

Investigating the Interplay between

Energy Efficiency and Resilience in

High Performance Computing

Energy efficiency is one of the crucial challenges that must be addressed for High

Performance Computing (HPC) systems to achieve ExaFLOPS (1018 FLOPS). The average

power of the top five supercomputers worldwide has been inevitably growing to 10.1 MW

today according to the latest TOP500 list [27], sufficient to power a city with a population

of 20,000 people [25]. The 20 MW power-wall, set by the US Department of Energy [9] for

exascale computers, indicates the severity of how energy budget constrains the performance

improvement required by the ever-growing computational complexity of HPC applications.

118

Empirically, running HPC applications on supercomputers can be interrupted by

failures including hardware breakdowns and soft errors. Although small on a single node,

failure rates of large-scale computing systems can be of the order of magnitude of hours [72]

due to a large amount of nodes interconnected as a whole. Greatly shrinked Mean Time

To Failures (MTTF) of such systems at large scales entails less reliability. For instance, a

compute node in a cluster of 692 nodes (22,144 cores in total) at Pacific Northwest National

Laboratory can experience up to 1,700 ECC (Error-Correcting Code) errors in a two-month

period [24]. K computer, ranked the first on the TOP500 list in June/Nov. 2011, held

a hardware failure rate of up to 3% and affected by up to 70 soft errors in a month [14].

Larger forthcoming exascale systems are expected to suffer from more errors of different

types in a fixed time period [118].

For HPC systems nowadays, both energy efficiency and resilience are considered

to fulfill an optimal performance-cost ratio with a given amount of resources, as the trend of

future exascaling computing implies. Widely studied individually, energy saving techniques

and resilience techniques may restrict each other to attain the optimal ratio if employed

jointly. In HPC runs, different forms of slack (discussed in detail later) can be exploited ei-

ther as energy saving opportunities or as fault tolerance opportunities, since: (a) During the

slack the peak performance of processors (e.g., CPU, GPU, and even memory) is generally

not necessary for meeting time requirements of the applications and thus slack reclamation

techniques can be employed to save energy [115] [102] [132], and (b) resilience techniques

such as Checkpoint/Restart (CR) [110] [53] and Algorithm-Based Fault Tolerance (ABFT)

[58] [48] can be performed during the slack without incurring performance loss overall.

119

Therefore, given a specific schedule of an HPC application, energy saving techniques and

resilience techniques can compete for the fixed amount of slack, which can restrict each

other to attain the best extent.

Regardless of the impacts of slack competition, energy efficiency and resilience are

by nature two correlated but mutually constrained goals to achieve, from both theoretical

and experimental perspectives. For energy saving purposes, reducing operating frequency

and/or supply voltage of processors such as CPU will increase their failure rate, assuming

that failures of combinational logic circuits follow a Poisson distribution (i.e., an exponential

failure model) [119] [154], and thus incur more overhead on fault tolerance that may lead

to performance loss and less energy savings. For reliability improving purposes, keeping

operating frequency and/or supply voltage of the hardware at a conservatively high scale

will lead to unnecessary energy costs without performance gain [39]. There exists an optimal

trade-off between system reliability and energy costs. It is a challenging issue to accomplish

the most balanced energy efficiency and resilience on large-scale systems nowadays without

performance degradation, which is especially substantial to be addressed for the forthcoming

exascale systems.

Lowering operating frequency and/or supply voltage of hardware components, i.e.,

DVFS (Dynamic Voltage and Frequency Scaling [141]), is one important approach to re-

duce power and energy consumption of a computing system for two primary reasons: First,

CMOS-based components (e.g., CPU, GPU, and memory) are the dominant power con-

sumers in the system. Second, power costs of these components are proportional to the

product of operating frequency and supply voltage squared (shown in Figure 5.1). In gen-

120

eral, supply voltage has a positive correlation with (not strictly proportional/linear to) the

operating frequency for DVFS-capable components [108], i.e., scaling up/down frequency

results in voltage raise/drop accordingly. For HPC applications running on distributed-

memory architectures, different forms of slack, i.e., idle time from hardware components

(typically processors) during an HPC run, can result from numerous factors such as load

imbalance, network latency, commmunication delay, and memory and disk access stalls.

During the slack where the peak performance of processors is not necessary, energy savings

can be achieved with negligible performance loss, by fine-grained slack utilization via DVFS

(Dynamic Voltage and Frequency Scaling [141]) in two fashions: CP-aware (Critical Path)

slack reclamation [115] and race-to-halt [64].

For detected slack, both DVFS techniques can effectively save energy by reducing

frequency and voltage to different extents, due to the facts that dynamic power consumption

of a CMOS-based processor is proportional to product of operation frequency and square

of supply voltage, and that overall runtime is barely increased. For non-slack durations,

e.g., computation, frequency reduction generally incurs a proportional reduction in runtime,

which is usually not acceptable for HPC applications. Therefore, for such durations, both

DVFS techniques employ the highest frequency and voltage to guarantee the performance

overall.

Nevertheless, existing DVFS techniques are essentially frequency-directed and fail

to fully exploit the potential power reduction and energy savings. With DVFS, voltage is

only lowered to comply with the frequency reduction in the presence of slack [115]. For a

given frequency, cutting-edge hardware components can be supplied with a voltage that is

121

Figure 5.1: Entangled Effects of Undervolting on Performance, Energy, and Resilience for

HPC Systems in General.

lower than the one paired with the given frequency. The enabling technique, undervolting

[143] [29] [39] is independent of frequency scaling, i.e., lowering only supply voltage of a chip

without reducing its operating frequency. Undervolting is advantageous in the sense that:

(a) It can keep the component frequency unchanged such that the computation throughput

is well maintained, and (b) it can be uniformly applied to both slack and non-slack phases

of HPC runs for power reduction.

As a technique of high generality, undervolting is advantageous to save extra en-

ergy for any phases of HPC runs since required performance of processors is not degraded,

at the cost of increased failure rates. Unlike traditional simulation-based approaches [143]

[29], Bacha et al. [39] first implemented an empirical undervolting system on Intel Itanium

II processors, which is intended for reducing voltage margins and thus saving power, with

ECC memory correcting arising faults. Their work indeed maximized potential power sav-

ings since they used pre-production processors that allows thorough undervolting until the

voltages lower than the lowest voltage corresponding to the lowest frequency supported. In

general, production processors are locked for reliability purposes, and they will typically

shut down when the voltage is lowered below the one corresponding to the minimum fre-

122

quency. For generality purposes, we propose a scheme that works for general production

processors and thus can be deployed on large-scale HPC clusters nowadays.

Moreover, their work requires ECC memory to correct greatly-increased faults.

Conventional supercomputer ECC memory extensively uses a Single Error Correcting, Dou-

ble Error Detecting (SECDED) code [91] [142] [14], which relies on hardware support of

ECC memory and can be limited to handle real-world hard and soft failures. For fur-

ther achieving energy savings, a general and/or specialized lightweight resilience technique

is expected to tolerate more complicated failures in the scenario of undervolting on HPC

systems.

In conclusion, the challenge of employing undervolting as a general power saving

technique in HPC lies in efficiently addressing the increasing failure rates caused by it. Both

hard and soft errors may occur if components undergo undervolting. Several studies have

investigated architectural solutions to support reliable undervolting with simulation. The

study by Bacha et al. presented an empirical undervolting system on Intel Itanium II pro-

cessors that resolves the arising Error-Correcting Code (ECC) memory faults yet improves

the overall energy savings. While this work aims to maximize the power reduction and

energy savings, it relies on pre-production processors that allow such thorough exploration

on the undervolting schemes, and also requires additional hardware support for the ECC

memory.

In this work, we investigate the interplay (shown in Figure 5.1) between energy

efficiency and resilience for large-scale HPC systems, and demonstrate theoretically and em-

pirically that significant energy savings can be obtained using a combination of undervolting

123

and mainstream software-level resilience techniques on today’s HPC systems, without re-

quiring hardware redesign. We aim to explore if the future exascale systems are going

towards the direction of low-voltage embedded architectures in order to guarantee energy

efficiency, or they can rely on advanced software-level techniques to achieve high system

resilience and efficiency. In summary, the contributions of this chapter include:

• We propose an energy saving undervolting approach for HPC systems by leveraging

resilience techniques;

• Our technique does not require pre-production machines and makes no modification

to the hardware;

• We formulate the impacts of undervolting on failure rates and energy savings for

mainstream resilience techniques, and model the conditions for energy savings;

• Our approach is experimentally evaluated to save up to 12.1% energy compared to

the baseline runs of the 8 HPC benchmarks, and conserve up to 9.1% more energy

than a state-of-the-art frequency-directed energy saving solution.

The remainder of the chapter is organized as follows: We theoretically model the

problem in Section 5.1, and Section 5.2 presents the details of our experimental methodology.

Results and their evaluation are provided in Section 5.3 and Section 5.4 concludes.

124

5.1 Problem Description and Modeling

5.1.1 Failure Rate Modeling with Undervolting

Failures in a computing system can have multiple root causes, including radiation

from the cosmic rays and packaging materials, frequency/voltage scaling, and temperature

fluctuation. There are two types of induced faults by nature: soft errors and hard errors.

The former are transient (e.g., memory bit-flips and logic circuit errors) while the latter are

usually permanent (e.g., node crashes from dysfunctional hardware and system abort from

power outage). Soft errors are generally hard to detect (e.g., silent data corruption) since

applications are typically not interrupted by such errors, while hard errors do not silently

occur, causing outputs inevitably partially or completely lost. Note that here we use the

terms failure, fault, and error interchangeably. In this work, we aim to theoretically and

empirically study if undervolting with a fixed frequency (thus fixed throughput) is able to

reduce the overall energy consumption. We study the interplay between the power reduction

through undervolting and application performance loss due to the required fault detection

and recovery at the raised failure rates from undervolting. Moreover, we consider the overall

failure rates from both soft and hard errors, as the failure rates of either type can increase

due to undervolting. Table 5.1 lists the key parameters used in the formulation and text

henceforth.

Assume that the failures of combinational logic circuits follow a Poisson distri-

bution, and the average failure rate is determined by the operating frequency and supply

voltage [119] [154]. We employ an existing exponential model of average failure rate λ in

125

Table 5.1: Notation in the Formulation and Text.

f Operating frequency of a core

d, β Architecture-dependent constant

A Percentage of active gates in a CMOS processor

C ′ Total capacitive load in a CMOS processor

Isub Subthreshold leakage current of CPU

I ′sub Subthreshold leakage current of non-CPU components

Vdd Supply voltage of a core

Vsafe min
The lowest safe voltage for one core of a
pre-production processor

Vth Threshold voltage of a core

λ Average failure rate

λ0
Average failure rate at the maximum frequency
and the maximum voltage

φ
Percentage of elapsed time in a segment of compute
when an interrupt occurs and the process restarts

τ Checkpoint interval

τopt
The optimal checkpoint interval that minimizes
the total checkpoint and restart overhead

C Checkpoint overhead

R Restart overhead

N Number of checkpoint interval in an HPC run

n Number of failures in an HPC run

Ts Solve/execution time of an HPC run

Tslack Idle time from a core in an HPC run

126

terms of operating frequency f [154] without normalizing supply voltage Vdd, where λ0 is

the average failure rate at the maximum frequency fmax and voltage Vmax (fmin ≤ f ≤ fmax

and Vmin ≤ Vdd ≤ Vmax):

λ(f, Vdd) = λ(f) = λ0 e
d(fmax−f)
fmax−fmin (5.1)

Exponent d is an architecture-dependent constant, reflecting the sensitivity of

failure rate variation with frequency scaling. Previous work [151] modeled the relationship

between operating frequency and supply voltage as follows:

f = ϕ(Vdd, Vth) = β
(Vdd − Vth)

2

Vdd
(5.2)

β is a hardware-related constant, and Vth is the threshold voltage. Substituting

Equation (5.2) into Equation (5.1) yields:

λ(f, Vdd) = λ(Vdd) = λ0 e

d(fmax−β(Vdd−2Vth+
V 2
th

Vdd
))

fmax−fmin (5.3)

Equation (6.1) indicates that the average failure rate is a function of supply voltage

Vdd only, provided that Vth and other parameters are fixed. This condition holds true when

undervolting is studied in this work. Denote σ(Vdd) =
d(fmax−β(Vdd−2Vth+

V 2
th

Vdd
))

fmax−fmin
. We calculate

the first derivative of λ(f, Vdd) (Equation (6.1)) with respect to Vdd and identify values of

Vdd that make the first derivative zero as follows:

∂λ

∂Vdd
= λ0 eσ(Vdd)

−dβ(1− (Vth/Vdd)
2)

fmax − fmin
= 0 (5.4)

⇒ Vdd = ±Vth (5.5)

127

Figure 5.2: Observed and Calculated Failure Rates λ as a Function of Supply Voltage Vdd

for a Pre-production Intel Itanium II 9560 8-Core Processor (Note that the observed failures

are ECC memory correctable errors for one core. Vh: the maximum voltage paired with the

maximum frequency; Vl: the minimum voltage paired with the minimum frequency).

Therefore, for −Vth < Vdd < Vth, λ(f, Vdd) monotonically strictly increases as Vdd

increases; for Vdd ≤ −Vth and Vdd ≥ Vth, λ(f, Vdd) monotonically strictly decreases as Vdd

increases. Given that empirically Vdd ≥ Vth, we conclude that λ(f, Vdd) is a monotonically

strictly decreasing function for all valid Vdd values. λ(f, Vdd) maximizes at Vdd = Vth.

Example. Figure 5.2 shows the comparison between the experimentally observed and

theoretically calculated failure rates with regard to supply voltage for a pre-production

processor, where the observed data is from [39] and the calculated data is via Equation

(6.1). As shown in the figure, the calculated values are very close to the observed ones,

which demonstrates that Equation (6.1) can be used to model failure rate. Based on the

voltage parameters from the vendor [13], we denote several significant voltage levels in

128

Figure 5.2, where Vh and Vl refer to the the maximum and minimum supply voltages

for a production processor. They also pair with the maximum and minimum operating

frequencies respectively. In many cases, undervolting is disabled on production processors

by vendors based on the assumption that there are no adequate fault tolerance support

at the software stack, and it often shuts down a system when its supply voltage is scaled

below Vl. For some pre-production processors [39], supply voltage may be further scaled to

Vsafe min, which refers to the theoretical lowest safe supply voltage under which the system

can operate without crashing. But even for these pre-production processors, when Vdd is

actually reduced below Vsafe min, they no longer operate reliably [39].

Note that although there are no observed faults in Figure 5.2 for the voltage range

from 1.10 V to 1.00 V, the calculated failure rates are not zero, ranging from 10−6 to

10−1. This difference suggests that failures with a small probability do not often occur in

real runs. For the voltage range from 0.99 V to 0.96 V, the calculated failure rates match

the observation with acceptable statistical errors. The calculated failure rates for voltage

levels that are lower than Vsafe min are not presented here due to the lack of observational

data for comparison. Unless some major circuit-level redesign on the hardware for enabling

NTV, we commonly consider the voltage range between Vsafe min and Vth inoperable in

HPC even with sophisticated software-level fault tolerant techniques. Thus, modeling this

voltage range is out of the scope of this work.

5.1.2 Performance Modeling under Resilience Techniques

Resilience techniques like Checkpoint/Restart (C/R) and Algorithm-Based Fault

Tolerance (ABFT) have been widely employed in HPC environments for fault tolerance.

129

State-of-the-art C/R and ABFT techniques are lightweight [110] [146], scalable [109] [146],

and sound [58]. C/R is a general resilience technique that is often used to handle hard

errors (it can also recover soft errors if errors can be successfully detected). ABFT is

more cost-efficient than C/R to detect and correct soft errors. But it is not as general as

C/R because it leverages algorithmic knowledge of target programs and thus only works

for specific applications. Next we briefly illustrate how they function, and present the

formulated performance models of both techniques.

Figure 5.3: Checkpoint/Restart Execution Model for a Single Process.

A checkpoint is a snapshot of a system state, i.e., a copy of the contents of appli-

cation process address space, including all values in the stack, heap, global variables, and

registers. Classic C/R techniques save checkpoints to disks [59], memory [110], and both

disks and memory via multi-level checkpointing [109]. Figure 5.3 shows how a typical C/R

scheme recovers a single-process failure, where we denote checkpoint overhead as C, restart

overhead as R, and compute time between checkpoints as τ respectively. An interrupting

failure can arise at any given point of an execution. C/R can capture the failure and restart

the application from the nearest saved checkpoint with the interrupted compute period

re-executed.

130

Next we present the issue of determining the optimal checkpoint interval, i.e.,

τopt that can minimize the total checkpoint and restart overhead, given a failure rate of λ.

This is significant since in the scenario of undervolting, failure rates may vary dramatically

as shown in Figure 5.2, which could affect τopt considerably. Without considering the

impacts of undervolting, several efforts on estimating τopt have been proposed. Young

[149] approximated τopt =
√

2C
λ as a first-order derivation. Taking restart overhead R into

account, Daly [53] refined Young’s model into τopt =
√

2C(1λ +R) for τ + C ≪ 1
λ . Using a

higher order model, the case that checkpoint overhead C becomes large compared to MTTF

(Mean Time To Failure), 1
λ was further discussed for a perturbation solution in [53]:

τopt =

√

2C
λ − C for C < 1

2λ

1
λ for C ≥ 1

2λ

(5.6)

Note that R has no contributions in Equation (5.6) . Since Equation (5.6) includes

the failure rate λ discussed in Equation (6.1), it is suitable to be used to calculate τopt in

the scenario of undervolting.

Consider the basic time cost function of C/R modeled in [53]: Tcr = Ts + Tc +

Tw+Tr, where Ts refers to the solve time of running an application with no interrupts from

failures. The total checkpoint overhead is denoted as Tc. Tw is the amount of time spent on

an interrupted compute period before a failure occurs, and Tr is defined as the total time

on restarting from failures. Figure 5.3 shows the case of a single failure, and how the time

fractions are accumulated. Next we generalize the time model to accommodate the case of

multiple failures in a run as follows:

131

Tcr = Nτ + (N − 1)C + φ(τ + C)n+Rn (5.7)

where N is the number of compute periods and n is the number of failures within a run

(N − 1 is because there is no need for one more checkpoint if the last compute period is

completed). φ is the percentage of elapsed time in a segment of compute when an interrupt

occurs and the process restarts. And we adopt a common assumption that interrupts never

occur during a restart. As a constant, Nτ can be denoted as Ts and Equation (5.7) is

reformed as:

Tcr = Ts + (
Ts

τ
− 1)C + φ(τ + C)n+Rn (5.8)

We adopt Equation (5.8) as the C/R time model henceforth. In the absence of

failures, this model is simplified with the last two terms omitted. Next we introduce how

ABFT works and present its performance model formally.

Figure 5.4: Algorithm-Based Fault Tolerance Model for Matrix Operations.

Figure 5.4 shows how ABFT protects the matrix operations from soft errors using

the row-checksum mechanism. The checksum blocks are periodically maintained in between

the original matrix elements by adding an extra column to the process grid. The redundant

checksum blocks contain sums of local matrix elements in the same row, which can be

132

used for recovery if one original matrix element within the protection of a checksum block

is corrupted. In C/R, checkpoints are periodically saved. Likewise, checksum blocks are

periodically updated, generally together with the matrix operations. The difference is that

the interval of updating the checksum in ABFT is fixed, i.e., not affected by the variation

of failure rates, while in C/R, the optimal checkpoint interval that minimizes C/R overhead

highly depends on failure rate λ.

Our previous work [146] has modeled ABFT overhead for the dense matrix fac-

torizations, including Cholesky, LU, and QR factorizations. Here we present the overall

performance model for ABFT-enabled dense matrix factorizations, taking Cholesky factor-

ization for example due to algorithmic similarity.

Tabft =
µCfN

3

P
tf +

µCvN
2

√
P

tv +
CmN

nb
tm + Td + Tl + Tc (5.9)

where N represents the dimensions of the global matrix, P is the total number of processes,

and nb is the block size for data distribution. µ = 1 + 4
nb is the factor of introducing

checksum rows/columns to the global matrix (the actual factorized global matrix size is

µN). Cholesky-specific constants Cf = 1
3 , Cv = 2 + 1

2 logP, and Cm = 4 + logP. tf is the

time required per FLoating-point OPeration (FLOP), tv is the time required per data item

communicated, and tm is the time required per message prepared for transmission. Error

detection overhead is denoted as Td = N2

P
tf , and error localization overhead is denoted

as Tl = nbP
N3 tf . Since one error correction operation only requires one FLOP, the error

correction overhead can be described as Tc = ntf . Similarly as in the C/R performance

model, the error-related overhead is only valid in the presence of failures. Otherwise the

133

last three terms are omitted and the sum of the first three terms represents the performance

of running Cholesky with ABFT.

Due to the conceptual similarity and space limitation, we only model the perfor-

mance of these two resilience techniques in this work.

5.1.3 Power and Energy Modeling under Resilience Techniques and Un-

dervolting

In this subsection, we present general power and energy models under a combi-

nation of undervolting and resilience techniques. We use C/R as an example for model

construction, which can also be applied to other resilience techniques used in this work.

Since undervolting will affect the processor power most directly and the processor power

has the most potential to be conserved in an HPC system, we assume all the power/energy

savings come from processors. Therefore, we focus on modeling processor-level energy. Us-

ing the energy models, we can explore in theory what factors will likely affect the overall

energy savings through undervolting.

First, we adopt the nodal power model in [129] [122] as follows:

P = PCPU
dynamic + PCPU

leakage + P other
leakage

= AC ′fV 2
dd + IsubVdd + I ′subV

′
dd (5.10)

A and C ′ are the percentage of active gates and the total capacitive load in a

CMOS-based processor; Isub and I ′sub are subthreshold leakage current of CPU and non-

CPU components, and Vdd and V ′
dd are their supply voltages. We denote I ′subV

′
dd as a

134

constant Pc since this term is independent of undervolting. Previous work [106] indicates

that the power draw of a node during C/R is very close to its idle mode. Therefore, by

leveraging this power characteristic for C/R phases and different levels of voltages in Figure

5.2, we propose the following power formulae for a given node:

Ph = AC ′fhV
2
h + IsubVh + Pc

Pm = AC ′fhV
2
safe min + IsubVsafe min + Pc

Pl = AC ′flV
2
safe min + IsubVsafe min + Pc

(5.11)

In this Equation, both Ph and Pm use the highest frequency, while Pl scales fre-

quency to the minimum; both Pm and Pl exploit Vsafe min to save energy. Here are the

scenarios where Ph, Pm, and Pl are mapped into: For the baseline case, we employ Ph to

all execution phases of an HPC run. For the energy-optimized case, we apply undervolt-

ing to different phases based on their characteristics using Pm and Pl, in order to achieve

the optimal energy savings through leveraging resilience techniques. Specifically, without

harming the overall performance, we apply Pl to the frequency-insensitive phases including

non-computation (e.g., communication, memory and disk accesses) and C/R phases, while

Pm is applied in all the computation phases. Using Equations (5.8) and (5.11), we can

model the energy costs of a baseline run (Ebase), a run with undervolting but in the absence

of failures (Eerr
uv), and a run with undervolting in the presence of failures (Euv) as:

135

Ebase = PhTs

Eerr
uv = PmTs + Pl(

Ts

τ − 1)C

Euv = Pm(Ts+φτn)+Pl

((

Ts−τ
τ +φn

)

C+Rn
)

(5.12)

For processor architectures equipped with a range of operational frequencies, frequency-

directed DVFS techniques [141] [115] have been widely applied in HPC for energy saving

purposes. Commonly, they predict and apply appropriate frequencies for different computa-

tional phases based on workload characteristics. Meanwhile, for the selected frequency (or

two frequencies in the case of split frequencies [115]) fm (fl < fm < fh), a paired voltage

Vm (Vl < Vm < Vh) will also be applied accordingly. One important question emerges:

can we further save energy beyond these DVFS techniques by continuing undervolting Vm?

To answer this question, we compare our approach with a state-of-the-art DVFS technique

named Adagio [115] as an example to demonstrate the potential energy savings from un-

dervolting beyond DVFS. Basically, Adagio runs aside with HPC applications, identifies

computation and communication slack, and then apply appropriately reduced frequencies

accordingly to save energy without sacrificing the overall performance. We will use the

frequencies predicted by Adagio for each phase but further reduce Vm. Therefore, we have:

P slack
Adagio =AC ′fmV 2

m+IsubVm+Pc

Pnon–slack
Adagio =Ph

P slack
uv =AC ′fmV 2

safe min+IsubVsafe min+Pc

Pnon–slack
uv =Pm

(5.13)

136

EAdagio = P slack
AdagioTslack ⊕ Pnon–slack

Adagio Ts (5.14)

Pslack and Pnon–slack denote the average power during the slack and non-slack

phases respectively; Tslack is the slack duration due to task dependencies and generally

overlaps with Ts across processes [129] (thus we use ⊕ instead of +). Assume there exists a

percentage η (0 < η < 1) of the total slack that overlaps with the computation. Therefore

we define ⊕ by explicitly summing up different energy costs:

P1Tslack ⊕ P2Ts =

P1Tslack(1− η) + PhybridTslackη + P2Ts (5.15)

where P1 and P2 denote the nodal power during the slack and computation respectively,

and Phybrid (P1 < Phybrid < P2) is the average nodal power when slack overlaps the com-

putation. Using Equations (5.12), (5.13), (5.14), and (5.15), we can model the energy

consumption E′
uv

1 which integrates (⊎) the advantages of both DVFS techniques (Adagio)

and the undervolting beyond DVFS, in the presence of slack:

E′
uv = EAdagio ⊎ Euv = P slack

uv Tslack ⊕ Euv (5.16)

Potential energy savings through appropriate undervolting over a baseline run and

an Adagio-enabled run can then be calculated as follows:

1Since here we treat all cores uniformly during undervolting, i.e., all cores undervolt simultaneously to the same
supply voltage, we do not have number of cores as a parameter in our model. But it can be modeled for more complex
scenarios.

137

∆E1 = Ebase − EAdagio

= (Ph−P slack
Adagio)Tslack

= (AC ′(fhV
2
h −fmV 2

m)+Isub(Vh−Vm))Tslack (5.17)

∆E1 = Ebase − E′
uv

= (Ph−Pm)Ts⊕ (Ph−P slack
uv)Tslack−

(

Pmφτn+Pl

((

Ts − τ

τ
+φn

)

C+Rn

))

(5.18)

∆E2 = EAdagio − E′
uv

= (Ph−Pm)Ts⊕ (P slack
Adagio−P slack

uv)Tslack−
(

Pmφτn+Pl

((

Ts − τ

τ
+φn

)

C+Rn

))

(5.19)

Discussion. Equation (5.17) quantifies energy savings from the DVFS technique Adagio

over a baseline run where no energy efficient techniques are employed. We have the following

inferences: (a) All energy savings are from appropriately reducing power during Tslack, since

during computation, Adagio keeps the peak performance of processors to meet performance

requirements, which consumes the same energy costs as the baseline run, (b) energy savings

can always be achieved (∆E1 > 0), given fhV
2
h − fmV 2

m > 0 and Vh − Vm > 0. Note

that we assume the DVFS operations from Adagio (including slack calculation, frequency

approximation, and DVFS itself) costs negligible overhead, as claimed in [115], and (c) the

138

amount of energy savings achieved is determined by essentially Tslack, which affects both

the length of time when P slack
Adagio is applied, and the value of P slack

Adagio since the values of fm

and Vm are determined by Tslack (Adagio assumes all slack can be eliminated). Without

affecting the analysis, in Equation (5.17), we only consider computation and slack arising

from computation for simplicity.

From Equations (5.18) and (5.19), we can observe that the potential energy savings

from undervolting is essentially the difference between two terms: Energy savings gained

from undervolting (denoted as E+) and energy overhead from fault detection and recovery

due to the increasing errors caused by reduced voltage (denoted as E−). In other words,

the trade-off between the power savings through undervolting and performance overhead

for coping with the higher failure rates determines if and how much energy can be saved

overall. In E+, two factors are significant: Vsafe min and Tslack. They impact the maximum

energy savings and generally depend on chip technology and application characteristics. In

E−, three factors are essential: n, C, and R, where n, the number of failures in a run, is

affected by undervolting directly. C and R rely on the resilience techniques being employed.

Some state-of-the-art resilience techniques (e.g., ABFT) have relatively low values of C and

R [58], which can be beneficial to more energy savings.

Here we showcase how to use the above models to explore the energy saving ca-

pability of undervolting. We apply the parameters from our real system setup shown in

Table 6.2 into Equation (5.18). In order to investigate the relationship among C, R, λ,

and the overall energy savings, we let Equation (5.18) > 0 and solve the inequation with

appropriate assumptions.

139

Using the HPC setup in Table 6.2, we have fh = 2.5, fl = 0.8 (we assume fm = 1.8

for Adagio), Vh = 1.3, Vl = 1.1, and Vsafe min = 1.025. We solve AC ′ = 20, Isub = 5,

and Pc = 107, estimate φ = 1
2 , and adopt n = λTs, τopt = 1

λ (Equation (5.6)) using

the methodology in Section 5.2. For simplicity, we assume slack does not overlap any

computation and Tslack = 0.2Ts. So ⊕ in Equation (5.17) > 0 becomes +. First we consider

the case of C ≥ 1
2λ . According to Equation (5.6), let τ = τopt and now we have:

33.34375 Ts + 9.6105 Ts − 164.65625× 1

2
Ts−

128.935

((

λTs−1+
1

2
λTs

)

C+RλTs

)

> 0 (5.20)

It is clear that the sum of the first three terms is negative and the fourth term

is positive. Thus in this case no energy savings can be achieved using undervolting. The

conclusion continues to stand even if we let Tslack = Ts to increase the second term. It is

due to the high failure rate that causes the third term overlarge. Next we consider the other

case (τopt =
√

2C
λ − C) in Equation (5.6). Thus the inequation becomes:

33.34375 Ts+9.6105 Ts−164.65625× 1

2
(
√
2λC−λC)Ts−

128.935

((

λTs√
2λC−λC

−1+ 1

2
λTs

)

C+RλTs

)

> 0 (5.21)

⇒ Ts >
c3C

c3

(

λC√
2λC−λC

+ 1
2λC +Rλ

)

− c1 + c2(
√
2λC − λC)

(5.22)

where c1 = 42.95425, c2 = 82.328125, and c3 = 128.935

If the above condition (5.22) is satisfied, energy savings can be achieved. The

condition of Ts can be also reformed into an inequation of C or R in terms of Ts and λ,

140

without losing generality. Using Equation (6.1), we can also substitute λ with an expression

of Vdd. Recall that it needs to meet C < 1
2λ to yield the case τopt =

√

2C
λ − C.

500
400

300

Execution Time
200

100
010 -4

10 -3Failure Rate

10 -2

-12

-10

6

4

2

0

-2

-4

-6

-8

10 -1N
or

m
al

iz
ed

 D
iff

er
en

ce
 in

 E
ne

rg
y

C
on

su
m

pt
io

n

Figure 5.5: Normalized Difference in Energy Consumption w/ and w/o Undervolting and

Resilience Techniques.

Although Inequation (5.22) reflects the relationship that needs to be satisfied for

energy savings, we can further explore the numerical solution of Equation (5.17) to see the

energy saving trend clearly. Figure 5.5 depicts the curve of normalized difference in energy

consumption between the original energy costs and the energy costs with undervolting

and resilience techniques, using the same assumptions when deriving Inequation (5.22).

Moreover, we focus on the effects from λ and Ts, and thus set C = 10 and R = 20 in

seconds for the C/R technique used. From the τopt case condition C < 1
2λ , we calculate the

upper bound of λ as 5× 10−2. We use 10−4 as the lower bound of λ since it is sufficient to

show the trend. We let Ts ranging from 0 to 500 to ensure it covers all execution time of

141

HPC runs in our experiments. From Figure 5.5, we can see that as Ts increases, more energy

savings can be achieved from undervolting. However, when λ increases, energy savings are

reduced greatly, for large Ts values in particular. Generally, when λ is small, e.g., within

the range [10−4, 10−3], energy savings can be achieved and the variation of Ts barely affects

energy efficiency. For large λ and Ts, energy savings cannot be obtained by undervolting

due to largely increased fault detection and recovery overhead, as λ increases exponentially

(faster than the increase of Ts), such that Inequations (5.21) and (5.22) do not hold.

Similarly, we let Equation (5.19) > 0 and solve the inequation using the above

empirical assumptions. In the two cases of τopt, we obtain two inequations that are similar

to Inequations (5.20) and (5.21) individually, except having a smaller second term of Ts.

This is straightforward since P slack
Adagio < Ph, the only difference between Equations (5.18) and

(5.19). Therefore, we have similar results and analysis of energy savings from undervolting

over DVFS techniques (Adagio).

Model Relaxation. We notice that the relationship among C, R, and λ can be obtained

without Ts, if the C/R performance model (see Equation (5.7)) is relaxed. In the scenario

of undervolting, τopt is comparatively small and thus the number of checkpoints N = Ts

τopt
is

large, due to the high failure rates λ. Therefore, we consider N − 1 ≈ N in Equation (5.7),

and the term −1 in Inequation (5.21) can be ingored, by which Ts in the inequation can be

eliminated. Consequently, Inequation (5.21) can be relaxed into:

33.34375+9.6105−164.65625× 1

2
(
√
2λC−λC)−

128.935

((

λ√
2λC−λC

+
1

2
λ

)

C+Rλ

)

> 0 (5.23)

142

⇒ R <
c1
c3λ
− c2

c3

(

√

2C

λ
−C

)

−
(

1√
2λC−λC

+
1

2

)

C (5.24)

In the relaxed performance and energy models, energy savings can be fulfilled as

long as the above relationship (5.24) holds. Again it is required that C < 1
2λ in order to

yield τopt =
√

2C
λ − C, likewise in the non-relaxed models.

100
80

Checkpoint Overhead

60
40

20
00

20

Restart Overhead

40

60

80

-20

40

30

20

10

0

-10

100

N
or

m
al

iz
ed

 D
iff

er
en

ce
 in

 E
ne

rg
y

C
on

su
m

pt
io

n

Figure 5.6: Normalized Difference in Energy Consumption w/ and w/o Undervolting and

Resilience Techniques (Relaxed).

Figure 5.6 shows the numerical solution of the relaxed model of energy saving

difference, i.e., the left hand side of Inequation (5.24), which helps us see the energy saving

effects from interested parameters in a straightforward fashion. Since Ts is eliminated after

relaxation, we focus on the effects from C and R in this case. We choose [0, 100] in seconds

as the range of C and R from the measured data collected during our experiments. We let λ

143

= 5×10−4 such that C < 1
2λ is satisfied. We can see from the figure a straightforward trend

that the variation of C has greater impacts on energy savings compared to that of R: As

C becomes larger, energy savings are monotonically decreased until negative values. The

growing of R barely improves energy efficiency when C is small, while larger C values make

energy saving impacts from R more manifested. Generally, small/large C and R values

bring higher energy savings due to small/large overhead on fault detection and recovery,

which matches well with Inequations (5.23) and (5.24) that indicate given λ and C, smaller

R achieves higher energy savings from undervolting.

Likewise, we can relax the model for Equation (5.19) and the solution is in similar

form as Inequation (5.24). The energy saving difference curve is similar to Figure 5.6 as

well.

5.2 Experimental Methodology

5.2.1 Experimental Setup and Benchmarks

Table 6.2 lists the hardware configuration of the power-aware cluster used for all

experiments. Although the size of the cluster is comparatively small, it is sufficient for

the proof of concept of our techniques. For power/energy measurement, PowerPack [71],

a framework for profiling and analysis of power/energy consumption of HPC systems, was

deployed on a separate meter node to collect power/energy profiling data of the hardware

components (e.g. CPUs and Memory) on this cluster. This data was recorded in a log file

on the meter node and used for post-processing.

144

Table 5.2: Hardware Configuration for All Experiments.

Cluster HPCL

System Size 64 Cores, 8 Compute Nodes

Processor AMD Opteron 2380 (Quad-core)

CPU Frequency 0.8, 1.3, 1.8, 2.5 GHz

CPU Voltage
1.300, 1.100, 1.025, 0.850 V

(Vh/Vl/Vsafe min/Vth)

Memory 8 GB RAM

Cache 128 KB L1, 512 KB L2, 6 MB L3

Network 1 GB/s Ethernet

OS CentOS 6.2, 64-bit Linux kernel 2.6.32

Power Meter PowerPack

Table 5.3: Empirical Resilience Techniques and Applicable Failures.

Resilience Technique Recovery Model Failure Type

Disk-Based Checkpoint/Restart (DBCR)
Backward Hard Errors

Diskless Checkpointing (DC)

Triple Modular Redundancy (TMR) Retry
Soft Errors

Algorithm-Based Fault Tolerance (ABFT) Local/Global

Table 5.3 shows several mainstream resilience techniques and their applicable

failures. Benchmarks used in this chapter are selected from NPB [20] benchmark suite,

LULESH [17], AMG [22], and our fault tolerant ScaLAPACK [146]. In the next section, we

will show the performance and energy results of running these applications under various

resilience techniques and demonstrate if energy savings can actually be obtained using a

combination of undervolting and resilience techniques on a conventional HPC system.

5.2.2 Failure Rate Calculation

Recall that the limitation of applying undervolting in HPC is that production

machines used in the HPC environment do not allow further voltage reduction beyond the

point of Vl, shown in Figure 5.2. To estimate failure rates between Vl and Vsafe min, we use

145

Table 5.4: Northbridge/CPU FID/VID Control Register Bit Format.

Bits Description

63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID, Read-Write

22 Northbridge Divisor ID, Read-Write

18:16 P-state ID, Read-Write

15:9 Core Voltage ID, Read-Write

8:6 Core Divisor ID, Read-Write

5:0 Core Frequency ID, Read-Write

Equation (6.1) to calculate the failure rates used in our experiments. As demonstrated in

Figure 5.2, our calculated data matches well with the observed data from [39]. Thus the

calculated failure rates are appropriate for empirical evaluation, although no real failures

can be observed beyond Vl on our platform.

5.2.3 Undervolting Production Processors

Unlike the undervolting approach used in [39] through software/firmware control

on a pre-production processor, we conduct undervolting for a production cluster by directly

modifying corresponding bits of the northbridge/CPU FID and VID control register [35],

where FID and VID refer to frequency and voltage ID numbers respectively. This process

needs careful detection of the upper and lower bounds of processors’ supply voltage. Oth-

erwise overheat and hardware-damaging issues may arise. The register values consist of 64

bits in total, where different bit fragments manage various system power state variables

individually. Table 6.3 summarizes the register bit format [35] for processors on the HPCL

cluster: The Core Voltage/Frequency/Divisor ID fragments (CoreVid/CoreFid/CoreDid)

are used for undervolting. As a general-purpose software level undervolting approach, the

146

interested bits of register values are altered using the Model Specific Register (MSR) inter-

face [19]. Next we illustrate how to extract various ID fragments from specific register values

and modify voltage/frequency of cores using corresponding formula. For instance, we input

the register with a hexadecimal value 0x30002809 via MSR. From the bit format, we can

extract the Core Voltage/Frequency/Divisor ID as 20, 9, and 0 respectively. Moreover, from

[35], we have the following architecture-dependent formulae to calculate voltage/frequency:

frequency = 100MHz× (CoreFid + 16)/2CoreDid (5.25)

voltage = 1.550V − 0.0125V × CoreVid (5.26)

Given the register value 0x30002809, it is easy to calculate voltage/frequency to

be 1.300 V and 2.5 GHz individually using the above equations. Using MSR, undervolting

is implemented by assigning the register with desirable voltage values at the voltage bits.

The frequency bits are unchanged to ensure fixed frequency during undervolting.

5.2.4 Error Injection and Energy Cost Estimation

As previously discussed in Section 5.1.1, production machines commonly disable

the further voltage reduction below Vl. Thus, we need to emulate the errors that may

appear for the voltage range between Vl and Vsafe min, based on the failure rates calculated

by Equation (6.1). Specifically, we inject hard and soft errors respectively at the calculated

failure rates to emulate the incurred failures in HPC runs due to undervolting to such voltage

levels. For instance, for emulating hard errors occurring at Vsafe min, our fault injector

147

injects errors by arbitrarily killing parallel MPI processes during program execution at OS

level. For emulating soft errors, our injector randomly modifies (e.g. bit-flips) the values

of matrix elements to erroneous ones at library level for matrix-based HPC applications,

likewise as in [146]. Soft error detection is done within the error checking module of matrix

benchmarks, as a part of the ABFT technique. Although, due to the hardware constraints,

energy costs cannot be experimentally measured when undervolting to Vsafe min, we apply

the following emulated scaling method to estimate the energy costs at Vsafe min.

Figure 5.7: Estimating Energy Costs with Undervolting at Vsafe min for Production Pro-

cessors via Emulated Scaling.

Figure 5.7 demonstrates this emulated scaling mechanism, where E1 and E2 refer

to the energy costs at Vl and Vsafe min respectively. λ1 and λ2 are the calculated failure

rates at the two voltage levels via Equation (6.1). For estimating the energy cost E2 at

Vsafe min, we inject the errors at the rate of λ2 at Vl instead of using the failure rate λ1.

Moreover, in Equation (5.11), replacing Vsafe min with Vl, we can solve AC ′, Isub, and Pc

by measuring the system power consumption at Vl by applying Ph, Pm, and Pl to different

phases (see Section 5.1.3). Finally, with AC ′, Isub, and Pc, we can calculate the values of

Ph, Pm, and Pl at Vsafe min using Equation (5.11), and apply these values into Equation

(5.12) to calculate the energy costs at Vsafe min.

148

5.3 Experimental Results

In this section, we present comprehensive evaluation on performance and energy

efficiency of several HPC applications with undervolting and various resilience techniques.

We experimentally show under what circumstances energy savings using this combinational

technique can be achieved. The benchmarks under test include NPB MG (MG), NPB CG

(CG), NPB FT (FT), matrix multiplication (MatMul), Cholesky factorization (Chol), LU

factorization (LU), QR factorization (QR), LULESH, and AMG. All the experiments are

conducted on our 8-node (64 cores) power-aware cluster shown in Table 6.2. All the cases

are under the ideal scenario that once an error occurs it will be detected.

Figure 5.8 shows the normalized execution time and energy costs of various bench-

marks running under undervolting and four different resilience techniques. Figure 5.9

demonstrates the comparison of the normalized performance and energy efficiency of Ada-

gio, a state-of-the-art DVFS technique for HPC, and our undervolting approach based on

Adagio with ABFT. The test scenarios of the two figures are explained as follows: For

C/R based resilience techniques (e.g. disk-based and diskless C/R), OneCkpt means check-

point/restart is only performed once; OptCkpt@Vx refers to checkpoint/restart is performed

with the optimal checkpoint interval at Vx; and OptCkpt@Vx + uv is to integrate the im-

pacts of undervolting into OptCkpt@Vx to see time and energy changes. The nature of

the Triple Modular Redundancy (TMR) and ABFT determines that the frequency of per-

forming fault-tolerance actions is not affected by failure rates. Therefore, we simply apply

undervolting to them during program execution. For the comparison against Adagio, we

149

 0

 1

 2

 3

 4

 5

 6

 7

 8

MG CG FT MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 T
im

e

Different HPC Benchmarks with Disk−Based Checkpoint/Restart

Orig
OneCkpt
OptCkpt@V_safe_min
OptCkpt@V_safe_min+uv
OptCkpt@V_l
OptCkpt@V_l+uv

 0

 1

 2

 3

 4

 5

 6

MG CG FT MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 E
ne

rg
y

Different HPC Benchmarks with Disk−Based Checkpoint/Restart

Orig
OneCkpt
OptCkpt@V_safe_min
OptCkpt@V_safe_min+uv
OptCkpt@V_l
OptCkpt@V_l+uv

 0

 0.5

 1

 1.5

 2

MatMul Chol LU QR average

N
or

m
al

iz
ed

 T
im

e

Different HPC Benchmarks with Diskless Checkpointing

Orig
OptCkpt@V_safe_min
OptCkpt@V_safe_min+uv
OptCkpt@V_l
OptCkpt@V_l+uv

 0

 0.5

 1

 1.5

 2

MatMul Chol LU QR average

N
or

m
al

iz
ed

 E
ne

rg
y

Different HPC Benchmarks with Diskless Checkpointing

Orig
OptCkpt@V_safe_min
OptCkpt@V_safe_min+uv
OptCkpt@V_l
OptCkpt@V_l+uv

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

MG CG FT MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 T
im

e

Different HPC Benchmarks with Triple Modular Redundancy

Orig
TMR
TMR@V_safe_min+uv
TMR@V_l+uv

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

MG CG FT MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 E
ne

rg
y

Different HPC Benchmarks with Triple Modular Redundancy

Orig
TMR
TMR@V_safe_min+uv
TMR@V_l+uv

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

MatMul Chol LU QR average

N
or

m
al

iz
ed

 T
im

e

Different HPC Benchmarks with Algorithm−Based Fault Tolerance

Orig
ABFT
ABFT@V_safe_min+uv
ABFT@V_l+uv

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

MatMul Chol LU QR average

N
or

m
al

iz
ed

 E
ne

rg
y

Different HPC Benchmarks with Algorithm−Based Fault Tolerance

Orig
ABFT
ABFT@V_safe_min+uv
ABFT@V_l+uv

Figure 5.8: Performance and Energy Efficiency of Several HPC Runs with Different Main-

stream Resilience Techniques on a Power-aware Cluster.

150

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

MatMul Chol LU QR average

N
or

m
al

iz
ed

 T
im

e

Different HPC Benchmarks with Adagio and ABFT

Orig
Adagio
Adagio+ABFT@V_safe_min+uv

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

MatMul Chol LU QR average

N
or

m
al

iz
ed

 E
ne

rg
y

Different HPC Benchmarks with Adagio and ABFT

Orig
Adagio
Adagio+ABFT@V_safe_min+uv

Figure 5.9: Performance and Energy Efficiency of the HPC Runs with an Energy Saving

Solution Adagio and a Lightweight Resilience Technique ABFT.

first run applications with Adagio, and then with Adagio and our combinational techniques

together.

We use the Berkeley Lab Checkpoint/Restart (BLCR) version 0.8.5 [59] as the

implementation for the Disk-Based C/R, and our own implementation of fault tolerant

ScaLAPACK [146] for ABFT. We also implemented an advanced version of TMR and

Diskless C/R for the selected benchmarks.

In this section, we do not include the case studies that have a mix of hard and

soft errors, although it is a more realistic scenario of undervolting. The reason is that

the performance and energy impacts of hard and soft error detection and recovery are

accumulative, based on a straightforward hypothesis that at any point of execution only

one type of failure (either a hard error or a soft error) may occur for a given process. Thus

the current single-type-of-error evaluation is sufficient to reflect the trend of the impacts

(see Figure 5.8).

151

5.3.1 Disk-Based Checkpoint/Restart (DBCR)

As discussed earlier, DBCR needs to save checkpoints into local disks, which can

cause high I/O overhead. The first two subgraphs in Figure 5.8 show that for some bench-

marks (MatMul, Chol, LU, QR, and AMG) single checkpoint overhead is as high as the

original execution time without C/R. For matrix benchmarks, DBCR will save the large

global matrix with double-precision matrix elements as well as other necessary C/R con-

tent, which explains the excessive C/R overhead. Using the scaling technique presented

in Section 5.2.4, the failure rate at Vsafe min is around 10−1 while the one at Vl is of the

order of magnitude of 10−3. Based on the relationship between the checkpoint overhead

and failure rates shown in Equation (5.6), the optimal numbers of checkpoints at these two

voltages differ. Due to the high C/R overhead and a larger number of checkpoints required,

undervolting to Vsafe min using DBCR cannot save energy at all. With less checkpoints

required, undervolting to Vl still does not save energy for DBCR.

5.3.2 Diskless Checkpointing (DC)

As a backward recovery technique, compared to DBCR, DC saves checkpoints in

memory at the cost of memory overhead, which is much more lightweight in terms of C/R

overhead due to low I/O requirement. From the third and fourth subgraphs in Figure

5.8, we can observe that the C/R overhead significantly drops by an average of 44.8% for

undervolting to Vl. Consequently, energy savings are obtained by an average of 8.0% and

7.0% from undervolting to Vsafe min and Vl respectively. Note that the energy savings from

undervolting to the two voltages are similar, since the extra power saving from undervolting

152

to a lower voltage level is offset by the higher C/R overhead (e.g. more checkpoints are

required). This also indicates that the overhead from a resilience technique greatly impacts

the potential energy saving from undervolting.

5.3.3 Triple Modular Redundancy (TMR)

As another effective retry-based resilience technique, Triple Modular Redundancy

(TMR) is able to detect and correct error once in three runs, assuming there exists only

one error arising within the three runs. Instead of using the näıve version of TMR that

runs an application three times, we implemented a cost-efficient TMR that performs triple

computation and then saves the results for the recovery purposes, while reducing the com-

munication to only once to lessen overhead. This requires the assumption that we have a

reliable network link for communication. Subgraphs in Figure 5.8 shows that we can suc-

cessfully reduce TMR overhead except for LULESH, for which we had to run three times to

ensure resilience. Although similar to DBCR, bearing the high overhead from the resilience

technique, undervolting the system to both voltage levels by leveraging TMR generally

cannot save energy. This once again demonstrates that the resilience techniques with lower

overhead will benefit energy savings from undervolting.

5.3.4 Algorithm-Based Fault Tolerance (ABFT)

We also evaluate the performance counterpart of TMR that handles soft errors,

based on local/global recovery using arithmetic checksums for matrix elements, i.e., ABFT.

Well known for its low overhead compared to other fault tolerant techniques, ABFT is thus

an ideal candidate to pair with undervolting for energy savings for some applications where

153

ABFT can be applied. As shown in the last two subgraphs of Figure 5.8, without under-

volting, ABFT only adds less than 6.8% overhead on average to the original runs. Similarly

as in the cases of the other three resilience techniques, undervolting only incurs negligible

overhead (around 1%) in ABFT. Therefore, the combined usage of ABFT and undervolting

only causes minor overhead (on average 8.0% for undervolting to Vsafe min and 7.8% for

undervolting to Vl). Another advantage of using ABFT is that ABFT is essentially based

on the checksum algorithms. Checksum blocks periodically update with matrix operations

and do not require to update more frequently when the failure rates increase, which means

the overhead of ABFT is constant regardless of the failure rates. Consequently, the energy

savings using ABFT and undervolting can be up to 12.1% compared to the original runs in

our experiments. One disadvantage for using ABFT is that it is only applicable to certain

applications such as matrix operations, which is not general enough to cover the entire

spectrum of HPC applications.

5.3.5 Energy Savings over Adagio

As discussed in Section 5.1.3, we aim to see if further reducing voltages for the

selected frequencies of various phases by Adagio will save more energy overall. Figure 5.9

confirms that we are able to further save energy on top of Adagio through undervolting

by effectively leveraging lightweight resilience techniques. In this experiment, we adopt

the most lightweight resilience technique evaluated above, i.e., ABFT, to maximize the

potential energy savings from undervolting. Undervolting was conducted on top of Adagio

without modifying the runtime frequency-selecting decisions issued by Adagio, so the energy

savings from Adagio are retained. Here we only present the data of undervolting to Vsafe min

154

because we already know from Section 5.4 that undervolting to Vsafe min gains the most

energy savings for the case of ABFT. On average, combining undervolting and Adagio can

further save 9.1% more energy than just Adagio, with less than 8.5% extra performance

loss. Note that the majority of the performance loss is from ABFT itself for guaranteeing

resilience.

5.4 Summary

Future large-scale HPC systems require both high energy efficiency and resilience

to achieve ExaFLOPS computational power and beyond. While undervolting processors

with a given frequency could decrease the power consumption of an HPC system, it often

increases failure rates of the system as well, hence, increases application’s execution time.

Therefore, it is uncertain that applying undervolting to processors is a viable energy saving

technique for production HPC systems. In this chapter, we investigate the interplay between

energy efficiency and resilience at scale. We build analytical models to study the impacts of

undervolting on both application’s execution time and energy costs. By leveraging software-

level cost-efficient resilience techniques, we found that undervolting can be used as a very

effective energy saving technique for the HPC field.

155

Chapter 6

Scalable Energy Efficiency with

Resilience for High Performance

Computing Systems: A

Quantitative Methodology

As the exascale supercomputers are expected to embark around 2020 [63], High

Performance Computing (HPC) systems nowadays expand rapidly in size and duration

in use, which brings demanding requirements of energy efficiency and resilience at scale,

along with the ever-growing performance boost. These requirements are becoming prevalent

and challenging, considering two crucial facts that: (a) The costs of powering an HPC

system grow greatly with its expanding scale, and (b) the failure rates of an HPC system

are dramatically increased due to a larger amount of interconnected computing nodes.

156

Therefore, it is desirable to consider both dimensions of energy efficiency and resilience,

when building scalable, cost-efficient, and robust large-scale HPC systems. Specifically, for

a given HPC system, our ultimate goal is to achieve the optimal performance-power-failure

ratio while exploiting parallelism.

Nevertheless, for the concerns of energy efficiency and resilience in scalable HPC

systems, alleviating one dimension does not necessarily improve the other. Energy efficiency

and resilience are essentially mutually-constrained during the efforts of finding the balanced

HPC configuration for the integrated optimal performance-power-failure ratio. Despite

the straightforward fact that both of energy efficiency and resilience are correlated with

execution time of HPC runs, altering some HPC parameters that are closely related to both

dimensions, such as supply voltage of hardware components and number of cores used, can

be beneficial to one dimension but harmful to the other.

For instance, energy savings can be achieved via Dynamic Frequency and Voltage

Scaling (DVFS) techniques [141] [115] [132] [129], for CMOS-based processing components

including CPU, GPU, and memory. In general practice, DVFS is often frequency-oriented

towards idle time of the components, which means the voltage will be changed if the paired

frequency is altered but will be kept the same otherwise. Nowadays state-of-the-art pro-

cessors with cutting-edge nano-technology are allowed to be supplied with a significantly

low voltage, close to the transistor’s threshold voltage, e.g., Intel’s Near-Threshold Volt-

age (NTV) design [90]. Further energy savings can be achieved through a fixed-frequency

scheme with further reduced voltage, named undervolting [143] [29] [39] [131], at the cost

of increased failures of the components. However, it is not clear that which variation from

157

undervolting is more dominant for high energy efficiency: power savings from further volt-

age reduction or performance loss from the overhead on error detection and recovery. It

is thus desirable to investigate the potential of achieving high energy efficiency in HPC

by undervolting, with hardware/software-level resilience techniques applied meanwhile to

guarantee the correct execution of HPC runs.

There exist only a few efforts investigating this issue in the context of HPC with

well-grounded modeling and experimental validation [39] [131]. However, the proposed ap-

proach in [39] worked specifically for a customized pre-production multi-core processor with

ECC (Error-Correcting Code) memory, and thus their solution considered a single type of

potential failures, i.e., ECC errors only. On the other hand, the authors in [131] did not

theoretically consider the effects of scalability of HPC systems and discuss the interplay

among mutually-constrained HPC parameters at scale, nor empirically evaluated the trade-

offs among the HPC parameters towards scalable energy efficiency and resilience. Therefore,

in this work, we propose to quantitatively model the entangled effects of energy efficiency

and resilience in the scalable HPC environment and investigate the trade-offs among typ-

ical HPC parameters for the optimal energy efficiency with resilience. In summary, the

contributions of this work include:

• We quantitatively model the entangled effects of energy efficiency and resilience at

scale, by extending the Amdahl’s Law and the Karp-Flatt Metric;

• We showcase the interplay among typical HPC parameters with internal causal effects,

and demonstrate how the trade-offs impact the energy efficiency at scale;

• We provide experimental results using ten HPC benchmarks on two power-aware

158

clusters, showing that our models are accurate and effective to find the balanced HPC

configuration for the optimal scalable energy efficiency under resilience constraints.

The remainder of this chapter is organized as follows. Section 6.1 introduces

background. We present our modeling of scalable energy efficiency with resilience, and

trade-offs among HPC parameters in Section 6.2. Implementation details and experimental

results are provided in Section 6.3. Section 6.4 concludes.

6.1 Background: Energy Savings, Undervolting, and Fail-

ures

Numerous efforts have been made to address the demanding requirements of energy

efficiency in HPC nowadays. In general, processor-based energy saving techniques can be

categorized into two types: frequency-directed and voltage-directed. Next we present the

details of each as the background knowledge for later modeling and discussion.

6.1.1 Frequency-Directed DVFS Techniques

Generally for an HPC run, slack refers to a time period when one hardware com-

ponent waits for another due to imbalanced throughput and utilization [129]. There exist

many slack opportunities during an HPC run. For instance, if network components are

busy, other components (e.g., CPU, GPU, memory, and disk) are often alternatingly idle

when message-passing communication (specifically, message copy among buffers of different

compute nodes) is performed. Moreover, if the application is memory and disk intensive,

159

Figure 6.1: DAG Notation of Two DVFS Solutions for a 3-Process HPC Run.

CPU usually waits for the data from memory and disk, due to the performance bottleneck

at memory and disk accesses. An ideal method to save energy is to reduce the power of

non-busy components when such slack occurs, while keep the peak performance of busy

components when otherwise. By exploiting DVFS, existing solutions decrease processor

power during communication [116] [132], halt/idle processors when no workloads are avail-

able [31] [129], or work based on Critical Path (CP) analysis to reclaim slack arising among

computation [115] [129]. Energy can be saved with negligible performance loss using the

above solutions.

For energy saving purposes, without degrading performance, slack arising in HPC

runs can either be eliminated by decreasing processor frequency to extend computation

time of program execution fragments (e.g., tasks) with slack appropriately, or be utilized

160

to make non-working hardware components stay in the halt/idle state, as shown in Figure

6.1 [129], which depicts the Directed Acyclic Graph (DAG) representation of applying two

classic DVFS approaches on a task-parallel HPC run. By respecting the CP, slack is not

over-reclaimed or over-utilized for halting, and thus the DVFS solutions incur negligible

performance loss from DVFS itself in practice. In this work, we adopt state-of-the-art

DVFS approaches that outperform other DVFS solutions in different scenarios by completely

eliminating potential slack. Similarity among these DVFS solutions is that they are all

frequency-directed : Processor voltage is only lowered together with processor frequency

reduction, in the presence of slack, and is fixed otherwise. In other words, a voltage is

always paired with a chosen frequency, and no further voltage reduction is conducted for

the given frequency.

6.1.2 Fixed-Frequency Undervolting Technique

Although effective, frequency-directed DVFS approaches may fail to fully exploit

energy saving opportunities. Hardware components such as processors nowadays are al-

lowed to be supplied with a voltage that is lower than the one paired with a given fre-

quency, which is referred to as undervolting for more power savings beyond DVFS. This

voltage-directed technique is independent of frequency scaling (i.e., during undervolting, the

frequency is fixed after it is chosen), but requires hardware support for empirical deploy-

ment. Unlike traditional simulation-based undervolting approaches [143] [29], Bacha et al.

[39] first implemented an empirical undervolting system on Intel Itanium II processors via

software/firmware control, which was intended to reduce voltage margins and thus save

power, with ECC memory correcting arising ECC errors. This work maximized potential

161

power savings since it used pre-production processors that allows the maximum extent of

undervolting: They were able to reduce voltage until the levels lower than the lowest volt-

age corresponding to the lowest frequency supported. In general, production processors

are locked for reliability purposes by the OS, and will typically shut down when voltage is

lowered below the one paired with the lowest frequency. For generality purposes, Tan et

al. [131] proposed an emulated scaling undervolting scheme that works for general produc-

tion processors, which was deployed on a power-aware HPC cluster as the first attempt of

its kind to demonstrate more energy savings compared to state-of-the-art DVFS solutions.

They implemented undervolting using the Model Specific Register interface, which does not

require the support of pre-production machines and makes no modification to the hardware.

The further power savings from undervolting are however achieved at the cost of

higher failure rates λ [154] [39]. As shown in Equation (6.1) below, the average failure

rates are quantified in terms of supply voltage only with other parameters known [131]

(λ0: the average failure rate at fmax (and Vmax), d and β: hardware-dependent constants,

fmax/fmin: the highest/lowest operating frequency, Vth: threshold voltage). Therefore

while undervolting is beneficial to saving power, hardware/software-based fault tolerant

techniques are also required to guarantee correct program execution. Bacha et al. [39]

employed ECC memory to correct memory bit failures (single-bit flips). Tan et al. [131]

adopted lightweight resilience techniques such as diskless checkpointing and algorithm-based

fault tolerance to correct both hard and soft errors. The difference lies in: Pre-production

machines are required in the work of Bacha et al., where real errors can be observed at the

lowest safe voltage Vsafe min, Vth < Vsafe min < Vl, while the solution proposed by Tan et al.

162

needs production machines only, and thus errors from undervolting cannot be empirically

observed, due to close-to-zero failure rates at Vl per Equation (6.1), i.e., the lowest voltage

can be scaled to by undervolting for production machines without crashing. The emulated

scaling scheme [131] was able to estimate the energy costs at Vsafe min, based on real

measured power/energy data at Vl and power/energy models under resilience techniques

and undervolting.

λ(f, Vdd) = λ(Vdd) = λ0 e

d(fmax−β(Vdd−2Vth+
V 2
th

Vdd
))

fmax−fmin (6.1)

Since this work is intended for general production HPC systems, we leverage the

software-based undervolting approach [131] to save more energy beyond DVFS solutions at

the cost of raised failure rates. Thus as in [131], no errors were experimentally observed, but

were likewise successfully emulated (see section 6.3.2). In this work, the Checkpoint/Restart

technique is employed to recover from errors.

6.1.3 Checkpoint/Restart Failure Model

Computing systems in general suffer from various sources of failures, ranging from

computation errors on logic circuits, to memory bit-flips due to frequency and voltage fluc-

tuation [39] [146] [131]. Without loss of generality, in this work we discuss how to detect

and recover from a failure in an HPC run using a general-purpose widely used resilience

technique Checkpoint/Restart (C/R) [53], and build and evaluate our performance and

power models based on C/R. Our methodology of theoretical modeling and experimental

evaluation also applies to other resilience techniques such as Algorithm-Based Fault Toler-

163

ance (ABFT), with minor changes in the proposed models accordingly. Note that we use

the terms errors, faults, and failures interchangeably henceforth in the later text.

Figure 6.2: Fault Tolerance using the Checkpoint/Restart Technique.

Figure 6.2 demonstrates the scenario of fault tolerance using C/R. A program with

the execution time T can be checkpointed by making a snapshot of a system state at the

end of fragments of an evenly divided program run so that T = Nτ , where τ is the length

of fragments of the divided program run, and N − 1 is the number of checkpoints added

into the run. Specifically, a system state is a copy of current application process address

space, including the contents of values of heap, stack, global variables, program text and

data, and registers. The total checkpoint overhead is thus modeled as TC = (N − 1)C,

where C is the time required for making one checkpoint. At any points of time within a

program run fragment, a failure can arise and interrupt the program run. We denote the

time that a failure occurs as τ ′. For continuing the run without re-executing the whole

program, we reinstate the last saved checkpoint and restart from the saved information in

the checkpoint. The time overhead on restarting the run is denoted as R. The total restart

overhead depends on the number of failures during the run.

164

6.2 Modeling Scalable Energy Efficiency with Resilience

6.2.1 Problem Description

Figure 6.3: Investigated Architecture – Symmetric Multicore Processors Interconnected by

Networks.

We aim to achieve the optimal energy efficiency with resilience in a scalable HPC

environment as in Figure 6.3: an HPC system with a number of compute nodes, each

of which consists of multiple symmetric cores, interconnected by networks. Note that we

assume if there exist multiple multicore processors in a node, the cores across processors

are also symmetric. Although at the initial stage, applicable architectures are homogeneous

HPC systems without accelerators, with minor changes, the methodology proposed and the

empirical studies conducted in this work also apply to other architectures, such as emerging

heterogeneous GPU/coprocessor-accelerated HPC systems.

6.2.2 Amdahl’s Law and Karp-Flatt Metric

Amdahl’s Law [36] and Karp-Flatt Metric [88] are two classic metrics that quantify

the performance of parallel programs. Amdahl’s Law stresses performance impacts from the

parallelized code within a parallel program, without considering communication. Karp-Flatt

speedup formula takes communication (including data transmission and synchronization in

165

HPC runs) into account, likewise as the consideration of this work. Specifically, Amdahl’s

Law is written as:

Speedupa =
Ts + Tp

Ts +
Tp

P

=
(1− α)T + αT

(1− α)T +
αT

P

=
1

1− α+
α

P

(6.2)

where T = Ts + Tp is the total execution time of the program, consisting of the runtime

of the sequential code Ts and the runtime of the parallelized code Tp individually, α is the

percentage of code that can be parallelized within the program (0 ≤ α ≤ 1), P is the total

number of cores used in the HPC system where the program runs, and N is the problem

size. Considering κ(N,P) as the communication time, determined by N and P jointly,

Karp-Flatt speedup formula can be written in the following form:

Speedupkf =
Ts + Tp

Ts +
Tp

P
+ Tcomm

=
(1− α)T + αT

(1− α)T +
αT

P
+ κ(N,P)

=
1

1− α+
α

P
+

κ(N,P)

T

(6.3)

6.2.3 Extended Amdahl’s Law for Power Efficiency

The original Amdahl’s Law considers performance of HPC systems only. Woo et al.

[144] incorporated power and energy efficiency into the Amdahl’s Law, without considering

communication as in the Karp-Flatt speedup formula. In this work, we take into account

both the power/energy efficiency and the communication during HPC runs by extending

the classic Amdahl’s Law for scalable HPC systems.

A General Extension

We first formulate the total power consumption of all hardware components in an

HPC system (specifically, including multicore processors across nodes with P cores in total

166

and other components) during an original error-free run, without considering energy saving

DVFS and undervolting solutions applied:

Power =
Energy

T ime

=
(Q+ (P − 1)µQ)(1− α)T + PQαT

P + PµQκ(N,P) + C((1− α)T + αT
P + κ(N,P))

(1− α)T + αT
P + κ(N,P)

= Q×
(1 + µ(P − 1))(1− α) + α+ µP κ(N,P)

T +
C((1−α)+ α

P
+

κ(N,P)
T

)

Q

(1− α) + α
P + κ(N,P)

T

(6.4)

where Q is the power consumption of a single core at the peak performance, and µ is

the fraction of the power the core consumes in the idle state with regard to that at the

peak performance (0 < µ < 1). We assume that the core power consumption during

communication is roughly the same as that in its idle state [71]. We calculate the total

energy consumption by accumulating energy costs at different phases of an HPC run: (Q+

(P − 1)µQ)(1− α)T is the energy costs of all P cores when the sequential code is executed

(one core runs at full speed while the others are idle). PQαT
P is the P -core energy costs when

the program runs in parallel. PµQκ(N,P) refers to the energy costs the P cores produce

during communication. C is the power costs of non-CPU components in the HPC system

(we assume non-CPU components consume constant power during HPC runs, regardless

of DVFS and undervolting for CPU only). As an extension to the Amdahl’s Law that

quantified speedup only of HPC runs, Equation (6.4) gives the total system power costs of

HPC runs in general cases.

Without loss of generality, in Equation (6.4), we normalize Q = 1 to simplify

the later discussion. Moreover, we set C = 0 in the following modeling to focus on CPU

power/energy efficiency due to two primary reasons: (a) CPU is the most power/energy con-

167

sumer in a homogeneous HPC system [71] [134], i.e., saving energy for CPU has the most sig-

nificant impacts on improving the system energy efficiency, and (b) we investigate the DVFS

and undervolting solutions that directly affect CPU power/energy costs but not impact

other non-CPU components. More hardware components such as GPU/memory/networks

can also be incorporated if power/energy efficient techniques on GPU/memory/networks

are considered. Due to space limitation, we elaborate our idea in this work taking CPU

for example, and leave studying power/energy efficiency of other components in the HPC

system as future work.

Communication of HPC Runs

As stated, we denote the communication time in an HPC run as κ(N,P). Empiri-

cally, κ(N,P) highly depends on the communication algorithm employed. Regardless of the

basic point-to-point communication scheme, there exist a large body of studies on highly-

tuned communication algorithms [45] [120] [40] [94]. Here we briefly discuss two classic

broadcast algorithms: binomial tree and pipeline broadcast. Their performance compari-

son was summarized in [52] [126], where the time complexity of binomial tree broadcast was

modeled as TB =
Smsg

BD × logP , and the pipeline broadcast time complexity was modeled as

TP =
Smsg

BD × (1 + P−1
η(N)) (Smsg is the message size in one broadcast, BD refers to network

bandwidth in the communication, and η(N) is the number of message chucks in the message

transmission). We can see that performance of binomial tree broadcast depends on P only

while performance of pipeline broadcast is determined by both P and N . In practice, the

communication scheme and algorithm vary from different HPC applications, which deter-

mine what time complexity of κ(N,P) is and ultimately affect the power/energy costs of

HPC runs.

168

Power Efficiency with DVFS and Undervolting

Given the fact that the total power consumption of a core is composed of leak-

age/static power costs and dynamic power costs, the Amdahl’s Law can be intuitively

rewritten to model the potential core power savings for HPC runs, under the circumstances

of DVFS and undervolting respectively:

PEdvfs =
Ps + Pd

(1−β)(Ps+Pd)
n1

+ β(Ps+Pd)
n2

=
1

1−β
n1

+ β
n2

(6.5)

PEuv =
Ps + Pd

(1−β)(Ps+Pd)
n1

+ β(Ps+Pd)
n3

=
1

1−β
n1

+ β
n3

(6.6)

where Ps and Pd refer to the leakage and dynamic power costs of all used cores individually,

and β is the percentage of dynamic power costs within the total power costs. n1, n2, and n3

are the leakage power reduction factor of DVFS/undervolting, the dynamic power reduc-

tion factor of DVFS, and the dynamic power reduction factor of undervolting, individually,

denoting the ratios of leakage/dynamic power reduction respectively. Equation (6.5) and

Equation (6.6) model the power efficiency when DVFS and undervolting are applied sepa-

rately. For simplicity of the discussion, we assume that the DVFS technique used is able to

eliminate all slack in the HPC run, and the undervolting technique adopted is able to scale

to the voltage paired with the lowest frequency.

Example. We can use the above two formulae to calculate the theoretical upper bound

of power savings using DVFS and undervolting respectively. Assume we have the following

parameters already known: β = 0.6 (dynamic power amounts to 60% of the total core

169

power, which is empirically reasonable). For the processors used, we assume the maximum

frequency fh = 2.4 GHz and the minimum frequency fl = 0.8 GHz. Consider the extreme

case that reducing frequency from 2.4 GHz to 0.8 GHz can eliminate all possible slack for

all tasks. Since Ps = IsubV [135] (i.e., ∆Ps ∝ ∆V), Pd = AC ′fV 2 [108], and empirically

∆Pd ∝ ∆f2.5 [60], where A and C’ are the percentage of active gates and the total capacitive

load in a CMOS-based processor respectively, and Isub refers to subthreshold leakage current,

we can derive that ∆V ∝ ∆f0.75, and thus n1 = (fhfl)
0.75
dvfs = (2.40.8)

0.75 ≈ 2.28 and n2 =

(fhfl)
2.5
dvfs = (2.40.8)

2.5 ≈ 15.59 in the assumed case. By substituting n1 and n2 into Equation

(6.5), we have the range of power savings from DVFS: PEdvfs ≤ 1
0.4
2.28

+ 0.6
15.59

≈ 4.67. Moreover,

consider in the case of undervolting, we have the same n1 = (fhfl)
0.75
uv = (2.40.8)

0.75 ≈ 2.28 and

n3 = (fhfl)
1.5
uv = (2.40.8)

1.5 ≈ 5.26. Substituting all known parameters we have the range of

power savings from undervolting: PEuv ≤ 1
0.4
2.28

+ 0.6
5.26

≈ 3.45.

6.2.4 Extended Karp-Flatt Metric for Speedup with Resilience

From the Karp-Flatt speedup formula, i.e., Equation (6.3), we can further derive

the extended Karp-Flatt speedup formula when failures occur and resilience techniques are

employed in HPC runs. Although we take the C/R technique for example in the later

discussion, our modeling also applies to other resilience techniques by making changes on

the modeling of error detection and recovery. Next we formulate the Karp-Flatt Metric for

the scenario with failures and C/R, by adopting Daly’s simplified C/R performance model

Tcr = 1
λe

Rλ(eλ(τ+C) − 1)Tτ [53]. We substitute the original solve time of the parallelized

code with the solve time with failures and C/R Tcr:

170

Speedupcr
kf

=
Torig

Tcr
=

(1− α)T + αT

1
λe

Rλ(eλ(τ+C) − 1)
(1−α)T+αT

P
+κ(N,P)

τ

=
1

1
λe

Rλ(eλ(τ+C) − 1)
1−α+ α

P
+

κ(N,P)
T

τ

(6.7)

6.2.5 Quantifying Integrated Energy Efficiency

Based on the two extended models, further taking HPC communication, energy

saving DVFS and undervolting solutions, and failures and resilience techniques into consid-

eration, we define the integrated energy efficiency of an HPC system as follows, in terms of

the speedup in different HPC scenarios achieved per unit energy per unit time:

Perf

Watt
=

Speedup

Power
(6.8)

We next consider the following four typical HPC scenarios individually, where

different integrated energy efficiency metrics can be produced according to Equation (6.8).

Perf

Watt
=

1

1−α+ α
P
+

κ(N,P)
T

× 1−α+ α
P
+

κ(N,P)
T

(1+µ(P−1))(1−α)+α+µP
κ(N,P)

T

=
1

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P)
T

(6.9)

communication-time-to-total-time-ratio. The later discussion depends on a practical

assumption that our models work well for HPC applications with the following characteris-

tics: The ratio of communication time to the total execution time κ(N,P)
T (this term appears

in Equations (6.9-6.15)) does not vary much as problem size N and number of cores P

change. There exist a large body of such applications [85] [147], including a majority of

benchmarks evaluated in Section 6.3. Nevertheless, for applications with a great variation

171

of κ(N,P)
T (e.g., the IS benchmark from NPB [20]), the accuracy of our proposed models may

be affected but the trend of energy efficiency manifested by our models may still retain.

We first consider the baseline case that there are no failures during an HPC run,

without DVFS and undervolting techniques. Based on the definition, we calculate the energy

efficiency in this case, as shown in Equation (6.9), where we assume that the HPC run uses

P cores in total that solves a size-N problem. A number of parameters are influential to

the energy efficiency, including several fixed application-specific and architecture-specific

invariants: the percentage of parallelized code α, and the ratio µ, power consumed by one

idle core normalized to that by one fully-loaded running core. Equation (6.9) models the

baseline for building energy efficiency models of the following HPC scenarios, with energy

saving solutions, failures, and resilience techniques.

Scenario 1: HPC Runs with Faults and C/R (No DVFS + No Undervolting)

If faults occur at a rate of λ and the C/R technique is employed in the HPC

run, resilience-related factors including failure rates λ, checkpoint intervals τ , checkpoint

overhead C, and restart overhead R are involved in the speedup formula, which affect the

overall energy efficiency as well. Using the performance model Tcr for the scenario with

failures given in Equation (6.7), we first model the power costs Pcr in this scenario as Equa-

tion (6.10), based on the assumption that the power draw of a node during checkpointing

and restarting is very close to that during its idle state [106]. In Equation (6.10), N is

the expected number of failures, approximated in [53] as N = λT (1 + C
τ). If the solve

time T is comparatively long, we can assume N ≫ 1, and thus further simplify the power

formula. The ultimate energy efficiency is given in Equation (6.11). In contrast to the

172

Pcr =
Ecr

Tcr
=

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P)
T + µP (N−1)C+NR

T

1
λe

Rλ(eλ(τ+C) − 1)
1−α+ α

P
+

κ(N,P)
T

τ

(6.10)

Perf

Watt
= 1

1
λ
eRλ(eλ(τ+C)−1)

1−α+ α
P

+
κ(N,P)

T
τ

×
1
λ
eRλ(eλ(τ+C)−1)

1−α+ α
P

+
κ(N,P)

T
τ

(1+µ(P−1))(1−α)+α+µP
κ(N,P)

T
+µPλ(1+C

τ
)(C+R)

=
1

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P)
T + µPλ(1 + C

τ)(C +R)
(6.11)

energy efficiency in the baseline case, there appears a new term µPλ(1 + C
τ)(C + R) in

the new energy model. Intuitively, since the speedup is degraded due to the checkpoint

and restart overhead, and the overall energy costs are raised due to the extra energy costs

during checkpointing and restarting, the energy efficiency in this scenario is expected to go

down, compared to the baseline case.

Figure 6.4: Energy Efficiency of HPC Runs with Faults and Resilience Techniques (Check-

point/Restart).

173

Figure 6.4 depicts the energy efficiency curve when the C/R technique is used in

the presence of failures. Here we adopt some premise to facilitate the analysis: Per empirical

measurement (see Section 6.3.2.5), we let µ = 0.6, and without loss of generality, we assume

the communication in the HPC run takes 50% of the total execution time, i.e., κ(N,P)
T = 0.5

(from the evaluation in Section 6.3, we found that values of κ(N,P)
T did not alter the trend of

energy efficiency). Moreover, we set P = 50 and α = 0.9 to showcase an HPC environment.

Regarding the C/R technique used, we assume checkpoint overhead C = 10 and restart

overhead R = 20 in seconds. From Figure 6.4, we can see that when failure rates λ are

comparatively small, i.e., in the range of [10−6, 10−4], the energy efficiency is dominated by

the impacts from the sequential and parallelized code and the communication per Equation

(6.11). Variation of checkpoint intervals τ barely affects the energy efficiency in this case.

However, the energy efficiency experiences a dramatic drop when the failure rates λ lie in

around [10−4, 10−2], and the drop becomes flattened when λ is further increased to a value

close to 1. The impacts of τ are manifested when τ is small enough so that C
τ is larger than

1. We next discuss the scenario where energy saving techniques are used to improve the

energy efficiency.

Scenario 2: HPC Runs with Faults and C/R, using DVFS to Save Energy

Likewise, we model the energy efficiency in the scenario with failures and C/R,

and energy saving DVFS solutions in the presence of slack. From Equation (6.12), we can

see that during the slack, using DVFS can indeed improve the energy efficiency due to the

reduced power costs by a factor of 1
1−β
n1

+ β
n2

(the only difference between Equation (6.11)), if

the DVFS techniques incur negligible performance loss as described in Figure 6.1. n1 and

174

Perf

Watt
= 1

1
λ
eRλ(eλ(τ+C)−1)

1−α+ α
P

+
κ(N,P)

T
τ

×
1

1−β
n1

+
β
n2

×
(

1
λ
eRλ(eλ(τ+C)−1)

1−α+ α
P

+
κ(N,P)

T
τ

)

(1+µ(P−1))(1−α)+α+µP
κ(N,P)

T
+µPλ(1+C

τ
)(C+R)

=

1
1−β
n1

+ β
n2

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P)
T + µPλ(1 + C

τ)(C +R)
(6.12)

n2 are determined by capability of the DVFS techniques and the amount of slack in the

HPC run, and β depends on specific processor architectures. Note that during the non-slack

time, power consumption with DVFS is the same as the original run.

1
0.8

Percentage of Dynamic Power
0.6

0.4
0.2

00

Power Reduction Factor from DVFS

10

20

30

40

10

9

8

7

6

5

4

3

2

1

0
50

N
or

m
al

iz
ed

 E
ne

rg
y

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Figure 6.5: Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and DVFS

Techniques.

As Equation (6.12) is derived based on Equation (6.11), we fix λ = 10−5 and

τ = 150 to discuss the impacts from β and n1/n2 on the energy efficiency in the scenario

with faults and DVFS. Given the known relationship that n1 = ∆f0.75 and n2 = ∆f2.5 (i.e.,

175

n2 = ∆f1.75n1), we rewrite the term using a joint parameter n as 1
1−β
n

+ β

∆f1.75n

. As shown

in Figure 6.5, we can see that a larger β or n value results in higher energy efficiency in

general, which is consistent with Equation (6.12). We can also observe that for β values

close to 1, the variation of energy efficiency is more manifested, since in which case the

energy efficiency is dominated by the larger n2 (∆f1.75 > 1), according to 1
1−β
n

+ β

∆f1.75n

.

Empirically, typical β values range from 0.65 to 0.8 for different processor technologies

nowadays [63] [105] [117].

Scenario 3: HPC Runs with Faults and C/R, using Undervolting (Increased Failure Rates)

If the undervolting technique is leveraged to further save energy during non-slack

time, compared to Scenario 2 where DVFS solutions apply to slack only, power can be saved

by a factor of 1
1−β
n1

+ β
n3

by undervolting, as modeled in Equation (6.13). However, lower

supply voltage by undervolting given a chosen operating frequency by DVFS causes higher

failure rates (λ′ > λ) and shorter checkpoint intervals (τ ′ < τ) for tolerating raised failures,

and thus inevitably results in longer execution time. Consequently, energy efficiency in this

scenario can be either improved or degraded compared to Scenario 2, due to the coexisting

power savings and performance loss. Generally, there exists a balanced undervolting scale

that maximizes the energy efficiency in this scenario. We present details of this discussion

in Section 6.2.6. Next we look into energy saving effects from leakage and dynamic power

reduction factors n1 and n3.

Figure 6.6 shows the energy efficiency trend as n1 and n3 change, in the scenario

with failures, C/R and undervolting techniques, with given values β = 0.7, λ′ = 10−1,

176

Perf

Watt
= 1

1
λ′

eRλ′ (eλ
′(τ ′+C)−1)

1−α+ α
P

+
κ(N,P)

T
τ ′

×
1

1−β
n1

+
β
n3

×
(

1
λ′

eRλ′ (eλ
′(τ ′+C)−1)

1−α+ α
P

+
κ(N,P)

T
τ ′

)

(1+µ(P−1))(1−α)+α+µP
κ(N,P)

T
+µPλ′(1+ C

τ ′
)(C+R)

=

1
1−β
n1

+ β
n3

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P)
T + µPλ′(1 + C

τ ′)(C +R)
(6.13)

Leakage Power Reduction Factor fro
m Undervolting

10
8

6
4

2
00

Dynamic Power Reduction Factor from Undervolting

2

4

6

8

0

5

10

15

20

25

30

10

N
or

m
al

iz
ed

 E
ne

rg
y

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Figure 6.6: Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and Under-

volting (Setup I).

and τ ′ = 15 (both of failure rates and the optimal checkpoint interval are increased due to

undervolting). Due to the fact that undervolting increases both n1 and n3 but n3 > n1,

compared to the leakage power reduction factor n1, the dynamic power reduction factor n3

has greater impacts on the variation of energy efficiency – for a given n1, larger n3 values

increase the energy efficiency more than larger n1 values given a fixed n3. From Figure

6.6, we can see that the energy saving effects from n3 is almost linear for a given n1, while

for a fixed n3 value, the impacts from n1 are smaller: The energy efficiency curves of n1

become flattened as n1 increases, especially for small n3 values. Regarding energy saving

177

techniques, the energy efficiency trend is similar as in Scenario 2: Larger power reduction

values n1, n2, and n3 always improve energy efficiency monotonically. These observations

can also be drawn from the causal term 1
1−β
n1

+ β
n3

in Equation (6.13).

6.2.6 Energy Saving Effects of Typical HPC Parameters

With the energy efficiency models under different circumstances, we can further

investigate the impacts of typical HPC parameters on the optimal energy efficiency indi-

vidually. Since the parameters inherently affect each other, for highlighting the effects of

individual factors, we fix other parameters likewise as the previous discussion.

Optimal Checkpoint Interval

Given a failure rate λ, for a certain C/R technique with the checkpoint and restart

overhead C and R respectively, there exists an optimal checkpoint interval τopt that min-

imizes the total checkpoint and restart overhead. τopt is beneficial to improving perfor-

mance, and thus also contributes to energy efficiency. Daly proposed a refined optimal

value τopt =
√

2C(1λ +R) for the condition τ + C ≪ 1
λ [53]. Under the circumstance of

undervolting, failure rates vary exponentially according to Equation (6.1). The previously

proposed τopt does not apply to the case that Mean Time To Failure (MTTF, the reciprocal

of failure rates) becomes comparable to the checkpoint overhead C. Daly also discussed a

perturbation solution in [53] that can be employed to handle this case of large MTTF due

to undervolting:

178

τopt =

√

2C
λ − C for C < 1

2λ

1
λ for C ≥ 1

2λ

(6.14)

Depending on the relationship between C and 1
2λ , we use Equation (6.14) to cal-

culate the most cost-efficient checkpoint interval in the scenario of undervolting. As already

shown in Figure 6.4, larger checkpoint intervals τ barely enhance the energy efficiency while

smaller ones do. Specifically, the difference between energy saving effects at nominal volt-

age and those at reduced voltage by undervolting is as follows: For nominal voltage with

close-to-zero failure rates, e.g., at failure rate range [10−6, 10−4], the variation of τ barely

affects the energy efficiency. For failure rates larger than 10−4, the variation around small

τ (compared to C) does affect the energy efficiency. The smaller τ incurs lower energy

efficiency overall, since the resulting larger C
τ in Equation (6.11) makes the negative energy

saving effects from C/R more manifested. For failure rates close to 1, the energy efficiency

becomes insensitive to the variation of τ again, since in this case, within the C/R term

µPλ(1 + C
τ)(C + R) in Equation (6.11), λ is the dominant factor instead of τ . Generally

for large values of λ, there exists an optimal value of τ for energy efficiency – any values

greater than it barely affect the energy efficiency.

Optimal Supply Voltage

As stated earlier, values of supply voltage Vdd affect the performance and energy

efficiency of HPC runs in two aspects: (a) Vdd values determine failure rates λ per Equation

(6.1) and thus the optimal checkpoint interval τopt per Equation (6.14), and (b) Vdd values

determine the leakage and dynamic power costs according to the relationship Ps ∝ V and

179

Pd ∝ fV 2. Nevertheless, the two aspects by nature conflict with each other in achieving

high energy efficiency: Decreasing Vdd causes an exponential increase of λ, and thus a

decrease of τopt, which results in higher overhead on error detection and recovery using C/R.

Therefore, for energy saving purposes, larger values of Vdd should be adopted to minimize

C/R overhead. On the other hand, larger Vdd brings higher leakage and dynamic power

costs that degrade the energy efficiency overall, without affecting the solve time (operating

frequency f is already selected per DVFS techniques and not modified by undervolting).

Targeting the optimal energy efficiency for different HPC scenarios illustrated in Section

6.2.5, we tend to choose an optimal Vdd value that balances the two conflicting aspects

above.

Perf

Watt
=

n′

(1 + µ(P − 1))(1− α) + α+ µP κ(N,P)
T + µPλ′(1 + λ′C)(C +R)

(6.15)

Recall that Figure 6.4 clearly shows that the variation of λ greatly impacts the

energy efficiency, as a result of undervolting. However, it does not reflect the interplay

between the two conflicting factors (a) and (b). We thus theoretically quantify this interplay

to see if there exists an optimal supply voltage for the given HPC configuration. Since

undervolting reduces both n1 and n3, for simplicity of the discussion of the optimal Vdd,

we relax the energy efficiency formula in Scenario 4 by letting n1 = n3 = n′, where n′ is

the unified power reduction factor from undervolting. In addition, we assume the optimal

checkpoint interval τopt is always adopted (due to greatly raised λ by undervolting, we

adopt the branch τopt =
1
λ for C ≥ 1

2λ in Equation (6.14)). The simplified energy efficiency

180

Figure 6.7: Energy Efficiency of HPC Runs with Faults, Checkpoint/Restart, and Under-

volting (Setup II).

is modeled in Equation (6.15), which stresses the interplay between the conflicting power

savings and raised failure rates from undervolting.

We thus plot the curve of the simplified formula using the same assumption that

fixes parameters other than n′ and λ′, as shown in Figure 6.7. It is clear to see that

the larger n′ is and the smaller λ′ is, the higher the energy efficiency reaches. From the

previous discussion, we know that achieving higher power savings from undervolting incurs

higher failure rates, and vice versa. Therefore, selecting a voltage value for undervolting

that balances the two factors will fulfill the optimal energy efficiency. We next empirically

explore the optimal voltage for the highest energy efficiency.

181

6.3 Evaluation

In this section, we present details of empirical evaluation for our speedup and

energy efficiency models in the above different HPC scenarios on two HPC clusters. The

goals of the evaluation are to experimentally demonstrate that: (a) the proposed models are

well-grounded and accurate to predict the speedup, power and energy efficiency for scalable

HPC runs, with prior knowledge on several HPC parameters, and (b) the proposed models

are able to capture the interplay among typical HPC parameters in discussed HPC scenarios

that ultimately affects the overall energy efficiency.

6.3.1 Experimental Setup

We conducted all the measurement-based experiments on a wide spectrum of HPC

applications as our benchmarks, summarized in Table 6.1. The benchmarks were selected

from NPB benchmark suite [20], LULESH [17], AMG [22] and our fault tolerant ScaLA-

PACK [146], including a self-implemented matrix multiplication program [132], For assessing

our goals, experiments were performed on two different-scale power-aware clusters: HPCL

and ARC. Table 6.2 lists the hardware configuration of the two clusters. Since undervolting

requires the permission of root users, we managed to perform undervolting-related exper-

iments on HPCL only while all other experiments were conducted on both clusters. We

measured the total power consumption for all compute nodes involved in the experiments,

including both dynamic and leakage power costs, collected by Watts up? PRO [28]. Energy

consumption of HPC runs was measured using PowerPack [71], a comprehensive software

and hardware framework for energy profiling and analysis of HPC systems and applications,

182

Table 6.1: Benchmark details. From left to right: benchmark name, benchmark suite,

benchmark description and test case used, problem domain, lines of code in the benchmark,

parallelization system employed, and parallelized code percentage relative to the total.

Benchmark Suite Description and Test Case Domain LOC Parallelized in
Percentage of

Parallelized Code

MG NPB
Solve a discrete Poisson equation discrete

2568 OpenMP/MPI 73.0%

using multigrid method (Class B). mathematics

CG NPB
Estimate eigenvalue of a sparse matrix numerical linear

1864 OpenMP/MPI 93.3%

with conjugate gradient method (Class B). algebra

FT NPB
Solve a partial differential equation numerical linear

2034 OpenMP/MPI 58.7%

using fast Fourier transform (Class B). algebra

EP NPB
Generate Gaussian random variates probability theory

359 OpenMP/MPI 94.7%

using Marsaglia polar method (Class B). and statistics

MatMul Self-coded
Matrix multiplication on two 10k×10k numerical linear

1532
OpenMP/MPI

99.2%

global matrices, saving into a third one. algebra /Pthreads

Chol FT-ScaLAPACK
Cholesky factorization on a 10k×10k numerical linear

2182 MPI 92.7%

global matrix to solve a linear system. algebra

LU FT-ScaLAPACK
LU factorization on a 10k×10k numerical linear

2892 MPI 61.6%

global matrix to solve a linear system. algebra

QR FT-ScaLAPACK
QR factorization on a 10k×10k numerical linear

3371 MPI 76.5%

global matrix to solve a linear system. algebra

LULESH DARPA UHPC
Approximate hydrodynamics equations

hydrodynamics 6014 OpenMP/MPI 14.6%

using 512 volumetric elements on a mesh.

AMG CORAL
An algebraic multigrid solver for linear numerical linear

3098 OpenMP/MPI 65.1%

systems on a 4×4×6 unstructured grid. algebra

which enables individual power and energy measurement on all hardware components such

as CPU, memory, disk, motherboard, etc. of an HPC system. Before presenting experi-

mental results of running the benchmarks for evaluating each proposed goal individually,

we detail the implementation of our approach.

183

Table 6.2: Hardware Configuration for All Experiments.

Cluster HPCL ARC

System Size
8 108

(# of Nodes)

Processor
2×Quad-core 2×8-core

AMD Opteron 2380 AMD Opteron 6128

CPU Freq. 0.8, 1.3, 1.8, 2.5 GHz 0.8, 1.0, 1.2, 1.5, 2.0 GHz

CPU Voltage 1.300, 1.100, 1.025, 0.850 V
N/A

(Undervolting) (Vh/Vl/Vsafe min/Vth)

Memory 8 GB RAM 32 GB RAM

Cache
128 KB L1, 512 KB L2, 128 KB L1, 512 KB L2,

6 MB L3 12 MB L3

Network 1 GB/s Ethernet 40 GB/s InfiniBand

OS
CentOS 6.2, 64-bit CentOS 5.7, 64-bit
Linux kernel 2.6.32 Linux kernel 2.6.32

Power Meter PowerPack Watts up? PRO

6.3.2 Implementation Details

Frequency-Directed DVFS

For demonstrating the effectiveness of our approach, we need to employ start-of-

the-art energy efficient DVFS and undervolting techniques to evaluate the impacts from

energy savings on the integrated energy efficiency of HPC systems (due to the similarity

of energy saving trend between DVFS and undervolting, as shown in Equations (6.12) and

(6.13), we only present results on undervolting). For different benchmarks, we used the most

efficient DVFS approaches we developed in previous work: an adaptively aggressive energy

efficient DVFS technique for NPB benchmarks [127], an energy efficient high performance

matrix multiplication [132], and energy efficient distributed dense matrix factorizations

[129]. CPU DVFS was implemented via the CPUFreq infrastructure [5] that directly reads

and writes CPU operating frequency system configuration files.

184

Table 6.3: Northbridge/CPU FID/VID Control Register Bit Format.

Bits Description

63:32, 24:23, 21:19 Reserved

32:25 Northbridge Voltage ID, Read-Write

22 Northbridge Divisor ID, Read-Write

18:16 P-state ID, Read-Write

15:9 Core Voltage ID, Read-Write

8:6 Core Divisor ID, Read-Write

5:0 Core Frequency ID, Read-Write

Fixed-Frequency Undervolting

For saving energy beyond the DVFS solutions, we leveraged an energy saving

undervolting approach for HPC systems [131], where undervolting is conducted for a pro-

duction cluster by modifying corresponding bits of the northbridge/CPU frequency and

voltage ID control register. The register values consist of 64 bits in total, where differ-

ent bit fragments manage various system power state variables individually. Table 6.3

summarizes the register bit format [35] for processors on the HPCL cluster: The Core

Voltage/Frequency/Divisor ID fragments (CoreVid/CoreFid/CoreDid) are used for under-

volting. As a general-purpose software level undervolting approach, the interested bits of

register values are altered using the Model Specific Register (MSR) interface [19]. Next

we illustrate how to extract various ID fragments from specific register values and modify

voltage/frequency of cores using corresponding formula. For instance, we input the register

with a hexadecimal value 0x30002809 via MSR. From the bit format, we can extract the

Core Voltage/Frequency/Divisor ID as 20, 9, and 0 respectively. Moreover, from [35], we

have the following architecture-dependent formulae to calculate voltage/frequency:

185

frequency = 100MHz× (CoreFid + 16)/2CoreDid (6.16)

voltage = 1.550V − 0.0125V × CoreVid (6.17)

Given the register value 0x30002809, it is easy to calculate voltage/frequency to

be 1.300 V and 2.5 GHz individually using the above equations. Using MSR, undervolting

is implemented by assigning the register with desirable voltage values at the voltage bits.

The frequency bits are unchanged to ensure fixed frequency during undervolting.

Failure Emulation by Injecting Hard and Soft Errors

As stated, due to hardware constraints of production processors, voltage cannot

be scaled to the levels where observable errors occur. Alternatively, we emulate the real

error cases as follows: Using the failure rates at error-triggering voltage levels calculated

by Equation (6.1) (demonstrated [131] to be highly accurate compared to real failure rates

[39]), we inject hard and soft errors respectively at the calculated failure rates to emulate

the incurred failures in HPC runs due to undervolting to such voltage levels. Specifically,

hard error injection is performed by manually killing an arbitrary MPI processes during

program execution at OS level (for general HPC applications). Soft error injection is how-

ever conducted at library level (for matrix-based HPC applications): We randomly select

some matrix elements using a random number generator and modify values of the matrix

elements to erroneous ones (soft error detection is done within the error checking module of

matrix benchmarks). Without loss of generality, we adopt the general-purpose widely used

resilience technique Checkpoint/Restart (C/R) [59] to detect (hard errors only) and recover

186

from the introduced failures (note that C/R is not the optimal resilience technique to pro-

tect from soft errors, and here we employ C/R to simplify the evaluation of the proposed

models).

Power/Energy Measurement and Estimation

Limited extent of undervolting for production machines also presents us from mea-

suring power/energy directly for the case that real errors are observed from undervolting.

Nevertheless, the emulated scaling undervolting scheme adopted from [131] allows us to uti-

lize measured power costs at Vl (the lowest undervolted voltage for production machines)

to estimate the power costs at Vsafe min (the lowest undervolted voltage for pre-production

machines) based on the following power models, which enables our approach to work for

general production machines. The three power models represent the baseline power costs at

the highest frequency and voltage, the power costs at the highest frequency and the lowest

voltage, and the power costs at the lowest frequency and voltage individually. Since our

approach cannot undervolt to Vsafe min, Pm and Pl are empirically not measurable. We

manage to obtain Pm and Pl as follows: Substituting Vsafe min in Pm and Pl with Vl, we

measure the power costs P ′
m and P ′

l at Vl and Ph to solve constants AC ′, Isub, and Pc

using the three formula. With AC ′, Isub, and Pc known, we can calculate Pm and Pl using

Vsafe min in the formula of Pm and Pl. Given the power costs at Vsafe min, we can further

calculate the energy costs when undervolting to Vsafe min.

187

Ph = AC ′fhV
2
h + IsubVh + Pc

Pm = AC ′fhV
2
safe min + IsubVsafe min + Pc

Pl = AC ′flV
2
safe min + IsubVsafe min + Pc

(6.18)

Input Selection and Model Parameter Derivation

For extrapolating the power costs and resilience-aware speedup of HPC runs using

the proposed power/speedup models, we need to derive the values of parameters in Equa-

tions (6.4) and (6.7). We also need to find out if the model parameters vary across different

tests (i.e., with different problem sizes), since the parameter variation can greatly impact

the accuracy of our models.

Table 6.4: Architecture-Dependent Power Constants in Our Models on HPCL/ARC Clus-

ters.

Cluster Single Core Peak Power Q Non-CPU Power C CPU Idle Power Fraction µ

HPCL 11.49 Watts 107.02 Watts 0.63

ARC N/A N/A 0.75*

We first determine some application/architecture-dependent constants in our mod-

els. Power constants Q, C, and µ were straightforward to obtain from empirical power mea-

surement. Table 6.4 lists measured values of the constants for the two clusters, where only

HPCL was equipped with PowerPack that is able to isolate CPU power consumption from

other components. We obtain the power costs of a single core at its peak performance Q

by dividing the total CPU power costs with the CPU counts in a node. Note that for ARC

188

we report the system idle power fraction instead of CPU. This number is slightly larger

than the CPU idle power fraction for HPCL, which is reasonable since the power costs of

other components barely vary between busy and idle modes [71]. Similarly, for a given C/R

technique and an HPC application, we can empirically profile the checkpoint overhead C

and the restart overhead R.

Table 6.5: Calculated Failure Rates at Different Supply Voltage on the HPCL Cluster (Unit:

Voltage (V) and Failure Rate (errors/minute)).

Supply Voltage Calculated Failure Rate Error Injection Needed?

1.300 3.649× 10−6 No

1.250 4.713× 10−5 No

1.200 5.437× 10−4 No

1.150 1.700× 10−2 No

1.100 0.397 Yes

1.050 2.717 Yes

For each supply voltage Vdd level, we can easily solve the failure rate λ under the

given voltage using Equation (6.1). Table 6.5 shows the calculated failure rates at different

voltage levels. Note that we refer to failure rates reported in [39] when estimating the failure

rates in our experiments, as their work was able to undervolt to the error-triggering voltage

levels. Since the non-test HPC runs in our experiments finish in 71 - 266 seconds, at all

voltage levels except for 1.100 V and 1.050 V, error injection is not needed according to the

calculated failure rates.

Recall that when developing power and performance models with the consideration

of communication, we rely on an assumption that the ratio between communication time

κ(N,P) and the total execution time T barely varies with the variation of problem size N

189

Table 6.6: Communication Time to Total Time Ratio for All Benchmarks with Different

Number of Cores and Problem Sizes on the ARC Cluster (Unit: κ(N,P) (second) and T

(second)).

κ(N,P), T,
κ(N,P)

T
Run 1 Run 2 Run 3

MG
P=256, N=Class A P=256, N=Class B P=256, N=Class C

0.03, 0.05, 55.6% 0.12, 0.22, 52.7% 1.36, 2.32, 58.6%

CG
P=64, N=Class A P=64, N=Class B P=64, N=Class C

0.06, 0.12, 52.2% 2.33, 5.69, 41.0% 5.64, 14.78, 38.2%

FT
P=64, N=Class A P=64, N=Class B P=64, N=Class C

0.11, 0.33, 32.8% 1.47, 4.20, 35.1% 4.60, 16.57, 27.8%

EP
P=16, N=Class A P=64, N=Class B P=256, N=Class C

0.30, 2.33, 13.0% 0.36, 2.70, 13.4% 0.37, 2.70, 13.5%

MatMul
P=64, N=10k×10k P=16, N=20k×20k P=256, N=30k×30k

1.34, 6.12, 22.0% 33.87, 160.37, 21.1% 11.35, 41.44, 27.4%

Chol
P=64, N=5k×5k P=64, N=15k×15k P=64, N=25k×25k

0.16, 0.983, 16.3% 1.18, 5.79, 20.4% 4.39, 23.25, 18.9%

LU
P=64, N=10k×10k P=64, N=20k×20k P=64, N=30k×30k

0.77, 5.68, 13.5% 7.40, 45.94, 16.1% 21.33, 182.34, 11.7%

QR
P=64, N=10k×10k P=64, N=20k×20k P=64, N=30k×30k

0.85, 7.59, 11.2% 8.77, 60.90, 14.4% 40.25, 236.76, 17.0%

LULESH
P=8, N=64 P=64, N=512 P=216, N=1728

1.66, 320.09, 0.52% 4.12, 328.96, 1.25% 12.39, 336.90, 3.68%

AMG
P=96, N=90×90×90 P=49152, N=150×150×150 P=960k, N=360×360×1080

5.14, 107.33, 4.79% N/A N/A

and number of cores P . For each benchmark, κ(N,P)
T was collected from multiple test runs

(we assume that for each test run and experimental run, N and P are fixed during the

execution). We selected different test runs by altering both N and P to ensure cross input

validation. For NPB benchmarks, we used input size Class A, B, and C and changed number

of cores used from 16, 64, to 256 (for LULESH, due to the application characteristics that P

must be a cube of an integer, P ranges from 8, 64, 216). For matrix benchmarks, we chose

global matrix sizes 10000×10000, 20000×20000, and 30000×30000. Table 6.6 presents the

values of the communication time versus the total execution time for all benchmarks with

190

different N and P , except for AMG where increasing N and P exceeds available resources

on our experimental platform. We can observe that for matrix benchmarks, κ(N,P)
T has

minor variation as the global matrix size N increases; for NPB benchmarks MG, CG, FT,

and EP, there also exists such variability on κ(N,P)
T for CG and FT, although it is stable

for MG and EP. We calculate the percentage of parallelized code α (see the last column in

Table 6.1) in accordance with Equations (6.2) and (6.3), where the empirical speedup, P ,

κ(N,P), and T values were obtained in advance from dynamic profiling of such test runs

as well.

6.3.3 Validation of Modeling Accuracy

Using the above fine-grained tuned inputs and parameters, we can thus predict

power costs and performance of HPC runs with our extended Amdahl’s Law and Karp-

Flatt Metric built in Section 6.2. Moreover, for validating the accuracy of our models, we

next make head-to-head comparison between the real measured data on our experimental

platform and the predicted data from the theoretical modeling, and calculate the modeling

accuracy in terms of average error rate. Note that the following presented power and energy

data are the total values for the whole HPC system evaluated.

Extended Amdahl’s Law for Power Efficiency

Figure 6.8 shows the measured and predicted system power costs on HPCL for the

ten benchmarks to evaluate the accuracy of our extended Amdahl’s Law for power efficiency,

i.e., Equation (6.4). Given all parameters in Equation (6.4) using the above measurement

191

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

MG CG FT EP MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 V
al

ue
s

Extended Amdahl’s Law for Power Efficiency for Different Benchmarks

Measured
Predicted

Figure 6.8: Measured and Predicted System Power Consumption for HPC Runs on the

HPCL Cluster.

and derivation methods, we can easily extrapolate power costs for various HPC runs. As

shown in Figure 6.8, the predicted data matches well with the measured data with an average

error rate of 7.7% for three runs of each benchmark with different N and P . Generally, the

errors from the power extrapolation for all benchmarks result from the variability of the

term κ(N,P)
T (see Table 6.6): For applications with stable κ(N,P)

T , the average error rate of

the extrapolation is small (e.g., EP and LULESH), while for application having κ(N,P)
T with

minor variation, the extrapolation errors are more manifested (e.g., CG and QR).

Extended Karp-Flatt Metric for Speedup with Resilience

We also evaluated the accuracy of our extended Karp-Flatt speedup formula for

the HPC runs with failures, equipped with the C/R technique. Figure 6.9 (we averaged

the results from the two clusters) compares the measured and predicted speedup for the

benchmarks running in such a scenario, based on Equation (6.7). From Figure 6.9, we

192

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

MG CG FT EP MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 V
al

ue
s

Extended Karp−Flatt Metric for Speedup with Resilience for Different Benchmarks

Measured
Predicted

Figure 6.9: Measured and Predicted System Speedup with Resilience for HPC Runs on the

HPCL/ARC Clusters.

can see that compared to our extended power model, our extended speedup model for

HPC runs with failures and resilience techniques undergoes a higher average error rate

(9.4%) against the measurement. In addition to the empirical minor variation of assumed

fixed κ(N,P)
T , another reason for the errors between the measured and predicted speedup

comes from the failure distribution formula we adopt. As mentioned in [53], the simplified

solve time of applications with C/R in the presence of failures is an approximation to the

solution, which may incur errors in the extrapolation. We notice that for matrix benchmarks

(MatMul/Chol/LU/QR) and AMG, the predicted results have the most margins with the

measured data, which indicates that our speedup model may be less accurate for applications

with comparatively large-size checkpoints (i.e., C is large). Refining our model for this type

of HPC applications may achieve higher accuracy.

193

6.3.4 Effects on Energy Efficiency from Typical HPC Parameters

Next we evaluate several critical HPC parameters discussed in Section 6.2.6 that

have potentially significant impacts on the integrated energy efficiency in various HPC sce-

narios. We aim to empirically determine if there exist the optimal values of these parameters

for the highest energy efficiency with resilience to validate our models.

Impacts from Checkpoint Intervals

According to the discussion in Section 6.2.6.1, we know that there exists an optimal

checkpoint interval τopt for achieving the highest performance, defined by Daly’s two sets

of equations individually. One applies for the nominal voltage case and the other works for

the undervolting case. For a given failure rate λ and a certain C/R technique (checkpoint

overhead C and restart overhead R are known), τopt is calculated via τopt =
√

2C(1λ +R)

for the nominal voltage, and is calculated via Equation (6.14) for the reduced voltage by

undervolting. Figure 6.10 shows the normalized system energy efficiency for a given λ

(voltage is fixed) and different τ for MG and LULESH. We select to present the data of

the two benchmarks because they have similar solve time according to our tests. All other

benchmarks follow a similar pattern as the two. We injected errors in the failure rate at

V ′, Vsafe min < V ′ < Vl (see Table 6.2 for core voltage specification), calculated to be 1.057

errors/minute per Equation (6.1). We also highlight in the figure the calculated optimal

checkpoint interval τopt. From this figure, we can see that the optimal energy efficient τ

slightly differs from the theoretical τopt. Note that in this case the optimal energy efficient

τ is also the optimal τ for the highest performance, since the power savings do not change

194

by using a fixed voltage for the same λ and thus only performance affects energy efficiency.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 E
ne

rg
y

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Checkpoint Interval (second)

MG
LULESH

MGopt
LULESHopt

Figure 6.10: Energy Efficiency (MG and LULESH) for Different Checkpoint Intervals on

the HPCL Cluster.

Moreover, we can see from Figure 6.10 that there exists the following fluctuation

pattern: The energy efficiency drops greatly if checkpointing and restarting was applied

(37.4% and 30.9% degradation for MG and LULESH respectively). Note that Figure 6.4

does not show a reference point where the normalized energy efficiency is 1 as in Figure

6.10. Since we injected a fixed number of errors, the restart overhead was also fixed. The

energy efficiency increases if less checkpoints were used (i.e., longer checkpoint intervals),

which matches well with Figure 6.4. We injected an error at the time around the 55th second

(the execution time of MG and LULESH runs is around 100 seconds), the energy efficiency

quickly decreases for checkpoint intervals larger than this time period (not shown in Figure

6.4), since the re-execution of the program is necessary due to no checkpoints available (the

first checkpoint has not made yet), which greatly increases the total execution time. Lastly,

195

the energy efficiency barely changes for larger checkpoint intervals due to the same amount

of checkpoints (1 in this case).

Impacts from Supply Voltage

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

MG CG FT EP MatMul Chol LU QR LULESH AMG

N
or

m
al

iz
ed

 E
ne

rg
y

E
ffi

ci
en

cy
 (

P
er

f/W
at

t)

Benchmarks with Different Supply Voltage

1.300 V
1.250 V
1.200 V
1.150 V
1.100 V
1.050 V

Figure 6.11: Energy Efficiency for HPC Runs with Different Supply Voltage on the HPCL

Cluster.

As previously discussed in Section 6.2.6.2, for the scenario of undervolting in the

presence of failures, theoretically there exists an optimal supply voltage value that balances

the positive energy saving effects from the power savings and the negative energy saving

effects from the C/R overhead. The highest energy efficiency is fulfilled at the optimal

voltage. Figure 6.11 shows the experimental results on the normalized system energy effi-

ciency under different supply voltage values for all benchmarks. The baseline case is the

energy efficiency at the nominal voltage, 1.300 V in our experiments. We observe several

findings from the figure: (a) For all benchmarks, the energy efficiency is improved by 1%

- 9% when no errors were injected and dramatically degrades at the lowest voltage, i.e.,

196

1.050 V. This is because the failure rates are exponentially raised as the voltage decreases

per Equation (6.1), and at the lowest voltage failure rates are increased to values much

larger than 1 error/minute (Table 6.5 lists all used failure rates at different voltage), (b)

the optimal voltage for all benchmarks to achieve the highest energy efficiency is 1.150 V,

although for some benchmarks (MG, CG, and LULESH), energy can be saved at 1.100 V

as well. This is because 1.150 V is in our experiments the lowest voltage that incurs negli-

gible increase in the number of failures during the HPC runs (no error injection is needed

per the calculated failure rates and length of runs), and (c) for benchmarks with higher

checkpoint and restart overhead C and R, such as MatMul, Chol, LU, QR, and AMG, no

energy savings can be achieved from undervolting to Vl or lower compared to the baseline;

for benchmarks with lightweight C and R, the energy efficiency at different voltage does

not vary much (the highest improvement overall from undervolting is 9%), except for the

lowest voltage 1.050 V that incurs significantly more failures. This indicates there exists

comparable competition between the positive effects from power savings via voltage reduc-

tion, and the negative effects from the extra time costs on detecting the recovering from the

failures. The experimental results are very constructive to find the optimal voltage for the

highest energy efficiency in the HPC environment. In general, selecting the smallest voltage

that does not incur significantly more observable failures during an HPC run should fulfill

the optimal energy efficiency.

197

6.4 Summary

Future HPC systems are required to be encompassing over performance, energy

efficiency, and resilience, three crucial dimensions of great concerns by the HPC community

nowadays. Enhancing one dimension of the three concerns does not necessarily improve

the others, since the variation of some joint HPC parameters can be beneficial to one

dimension, while be harmful to the others. There exists a lack of efforts that investigate

the entangled effects among the three concerns, between energy efficiency and resilience in

particular. In this chapter, we quantify the interplay between energy efficiency and resilience

for scalable HPC systems both theoretically and empirically. We propose comprehensive

analytical models of the integrated energy efficiency with resilience, by incorporating power

and resilience into Amdahl’s Law and Karp-Flatt Metric, two classic HPC performance

metrics. We also discuss the energy saving effects from typical HPC parameters that have

inherent causal relationship with each other. Experimental results on two power-aware HPC

clusters indicate that our models for scalable energy efficiency with resilience are accurate

to capture the conflicting effects from typical HPC parameters. Our showcases on a wide

spectrum of HPC benchmarks also demonstrate that it is feasible using our models to find

the balanced HPC configuration for the highest integrated energy efficiency with resilience.

We plan to discuss more types of hardware components and resilience techniques, and

evaluate on larger scale HPC systems to further validate the capability of our models in the

future.

198

Chapter 7

Related Work

There exist a large body of efforts in the scope of this dissertation. We detail

them in the folloing categories: energy efficient DVFS scheduling strategies and interplay

between energy efficiency and resilience in HPC. Next we summarize them individually for

comparison purposes.

7.1 Energy Efficient DVFS Scheduling Strategies

Numerous energy saving DVFS scheduling strategies exist without considering pos-

sible non-negligible overhead on employ DVFS, including some high performance communi-

cation schemes. A considerable amount of other types of energy efficient DVFS scheduling

algorithms have been proposed, but only a few of them were designed for high performance

scientific computing. We group them into different typical categories below for further

discussion.

199

DVFS Scheduling for Compute Intensive Applications: Numerous work has been

done to save energy for compute intensive applications by exploiting CPU slack or idle time

from imbalanced CPU-bound applications. Ge et al. [70] proposed a runtime system and

an integrated performance model for achieving energy efficiency and constraining perfor-

mance loss through DVFS and performance modeling and prediction. Rountree et al. [115]

presented another runtime system by improving and extending previous classic scheduling

algorithms and achieved significant energy savings with extremely limited performance loss.

Kappiah et al. [86] proposed a scheduled iteration method that computes the total slack

per processor per timestep, then scheduling CPU frequency for the upcoming timestep.

DVFS Scheduling for Data Intensive Applications: There also exists a large amount

of work for energy efficient communication via different DVFS scheduling algorithms. A

relatively small amount of research has been conducted for reducing energy costs of mem-

ory/disk access intensive applications. Kappiah et al. [86] devised a system that exploits

slack arising at synchronization points of MPI programs by reducing inter-node energy gear

via DVFS. Li et al. [95] proposed to characterize energy saving opportunities in executions of

hybrid MPI/OpenMP applications without performance loss. Predictive models and novel

algorithms were presented via statistical analysis of power and time requirements under

different configurations. Ge et al. [69] observed that memory stalls in the memory-bound

sequential application swim from the SPEC CPU2000 benchmark suite produced consid-

erable slack for energy savings via DVFS with alomost no impact on performance. Our

work focuses on improving energy efficiency for parallel exeuctions of memory/disk-bound

applications on distributed-memory computing systems.

200

Aggressive and Speculative Mapping and Scheduling: Liu et al. [102] leveraged

the fact that at runtime some applications typically have shorter execution time than their

worst-case execution time, and applied DVFS to dynamically and aggressively reduce volt-

age and frequency on a heterogeneous system consisting of CPUs and GPUs. Luo et al. [104]

proposed to improve energy efficiency for thread-level speculation in a same-ISA heteroge-

neous multicore system with an overhead throttling mechanism and a competent resource

allocation scheme. Our work differs from them in that prior knowledge of the worst-case

execution time of the application is not a prerequisite, and the target of our work is data

intensive applications running on a distributed-memory architecture.

DVFS Scheduling for CPU-bound Operations: Alonso et al. [32] leveraged DVFS

to enable an energy efficient execution of LU factorization, where idle threads were set into

blocked and CPU frequency of the corresponding core was lowered down to save energy with

minor performance loss (up to 2.5%). Energy savings achieved were not much (up to 5%)

since the approach was only applied to a shared-memory system where the slack can only

result from idle CPU usage locally. Kimura et al. [93] employed DVFS into two distributed-

memory parallel applications to allow tasks with slack to execute at an appropriate CPU

frequency that does not increase the overall execution time. Energy savings up to 25%

were reported with minor performance loss (as low as 1%). In their work, reducing DVFS

overhead was not studied.

DVFS Scheduling for MPI Programs: Kappiah et al. [69] presented a dynamic system

that reduces CPU frequency on nodes with less computation and more slack to use. With

little performance loss, their approach was able to save energy for power-scalable clusters,

201

where the computation load was imbalanced. Springer et al. [124] presented a combina-

tion of performance modeling, performance prediction, and program execution to find a

near-optimal schedule of number of nodes and CPU frequency to satisfy energy costs and

execution time requirements. Li et al. [96] proposed a strategy to improve energy efficiency

for hybrid parallel applications where both shared and distributed-memory programming

models (OpenMP and MPI) were employed. The key difference between our approach and

these solutions is that we take the overhead on applying DVFS into account and minimize

its costs to save energy.

Improving MPI Communication Performance: Chan et al. [45] redesigned MPI

communication algorithms to achieve that one node can communicate with multiple nodes

simultaneously with lower costs rather than one-to-one at a time. Faraj et al. [65] pre-

sented a customized system that generates efficient MPI collective communication routines

via automatically-generated topology specific routines and performance tuning to achieve

high performance consistently. Karwande et al. [89] presented an MPI prototype sup-

porting compiled communication to improve performance of MPI communication routines,

which allowed the user to manage network resources to aggressively optimize communi-

cation. Hunold et al. [83] proposed a mechanism that automatically selected a suitable

set of blocking factors and block sizes for pdgemm() to maximize performance. Our ap-

proach differs from these techniques, since it improves MPI communication performance

via highly-tuned pipeline broadcast that maximizes the slack utilization, without modify-

ing MPI communication routines and the pdgemm() routine interface.

202

OS-level. There exist a large body of OS level energy efficient approaches for high perfor-

mance scientific applications. Lim et al. [101] developed a runtime system that dynamically

and transparently reduces CPU power for communication phases to minimize energy-delay

product. Ge et al. [70] proposed a runtime system and an integrated performance model for

achieving energy efficiency and constraining performance loss through performance model-

ing and prediction. Rountree et al. [116] developed a SC approach that employs a linear

programming solver collecting communication trace and power characteristics for generat-

ing an energy saving scheduling. Subsequent work [115] presented another runtime system

by improving and extending previous classic scheduling algorithms and achieved significant

energy savings with extremely limited performance loss.

Application-level. Kappiah et al. [86] introduced a scheduled iteration method that

computes the total slack per processor per timestep, then scheduling CPU frequency for

the upcoming timestep. Liu et al. [103] presented a technique that tracks the idle durations

for one processor to wait for others to reach the same program point, and utilizes this

information to reduce the idle time via DVFS without performance loss. Tan et al. [127]

proposed an adaptively aggressive scheduling strategy for data intensive applications with

moderated performance trade-off using speculation. Subsequent work [132] proposed an

adaptive memory-aware strategy for distributed matrix multiplication that trades grouped

computation/communication with memory costs for less overhead on employing DVFS. Liu

et al. [102] proposed a power-aware static mapping technique to assign applications for a

CPU/GPU heterogeneous system that reduces power and energy costs via DVFS on both

CPU and GPU, with timing requirements satisfied.

203

Simulation-based. There exist some efforts on improving energy efficiency for numerical

linear algebra operations like Cholesky/LU/QR factorization, but most of them either are

based on simulation or only work for a single multicore machine. Few studies have been

conducted on power/energy efficient matrix factorizations running on distributed-memory

architectures. Slack reclamation methods such as Slack Reduction and Race-to-Idle algo-

rithms [30] [33] have been proposed to save energy for dense linear algebra operations on

shared-memory multicore processors. Instead of running benchmarks on real machines, a

power-aware simulator, in charge of runtime scheduling to achieve task level parallelism,

was employed to evaluate the proposed power-control policies for linear algebra operations.

DVFS techniques used in their approaches were also simulated. Subsequent work [32] lever-

aged DVFS to optimize task-parallel execution of a collection of dense linear algebra tasks

on shared-memory multicore architectures, where experiments were performed at thread

level. Since no communication was involved, these approaches did not achieve significant

energy savings due to no utilization of slack from communication latency.

7.2 Interplay between Energy Efficiency and Resilience in

High Performance Computing

To the best of our knowledge, our energy saving undervolting work is the first of

its kind that models and discusses the interplay between energy efficiency and resilience at

scale. There exist few efforts investigating the joint relationship among performance, energy

efficiency, and resilience for HPC systems. Rafiev et al. [112] studied the interplay among

time, energy costs, and reliability for a single-core and a multicore system respectively,

204

while they focused on concurrency and did not quantitatively elaborate the impacts of

frequency/voltage on performance and reliability. Yetim et al. [148] presented an energy

optimization framework using mixed-integer linear programming while meeting performance

and reliability constraints. Targeting the application domain of multimedia, this work

exploited the workload characteristics that limited error tolerance can be traded off for

energy reduction. Most of the related efforts have been conducted in the following areas:

Real-Time/Embedded Processors and Systems-on-Chip: Extensive research has

been performed to save energy and preserve system reliability for real-time embedded pro-

cessors and systems-on-chip. Zhu et al. [154] discussed the effects of energy management

via frequency and voltage scaling on system failure rates. This work is later extended to

reliability-aware energy saving scheduling that allocates slack for multiple real-time tasks

[153], and a generalized Standby-Sparing technique for multiprocessor real-time systems,

considering both transient and permanent faults [75]. These studies made some assump-

tions suitable for real-time embedded systems, but not applicable to large-scale HPC systems

with complex hardware and various types of faults. Pop et al. [111] explored heterogeneity

in distributed embedded systems and developed a logic programming solution to identify a

reliable scheduling scheme that saves energy. This work ignored runtime process communi-

cation, which is an important factor of performance and energy efficiency for HPC systems

and applications. The Razor work [62] implemented a prototype 64-bit Alpha processor

design that combines circuit and architectural techniques for low-cost speed path error de-

tection/correction from operating at a lower supply voltage. With minor error recovery

overhead, substantial energy savings can be achieved while guaranteeing correct operations

205

of the processor. Our work differs from Razor since we consider hard/soft errors in HPC

runs due to undervolting. Razor power/energy costs were simulated at circuit level while

our results were obtained from real measurements in an HPC environment at cluster level.

Similar power-saving and resilient-against-error hardware techniques have been proposed

such as Intel’s Near-Threshold Voltage (NTV) design [90] on a full x86 microprocessor.

Memory Systems: As ECC memory prevails, numerous studies have explored energy

efficient architectures and error-detection techniques in memory systems. Wilkerson et al.

[143] proposed to trade off cache capacity for reliability to enable low-voltage operations on

L1 and L2 caches to reduce power. Their subsequent work [29] investigated an energy saving

cache architecture using variable-strength ECC to minimize latency and area overhead.

Unlike our work that is evaluated with real HPC systems and physical energy measurements,

they used average instructions per cycle and voltage to estimate energy costs. Bacha et al.

[39] employed a firmware-based voltage scaling technique to save energy for a pre-production

multicore architecture, under increasing fault rates that can be tolerated by ECC memory.

Although our work similarly scales down voltage with a fixed frequency to save power, it is

different in two aspects: Ours targets general faults on common HPC production machines

at scale, while theirs specifically handles ECC errors on a pre-production architecture. To

balance performance, power, and resilience, Li et al. [100] proposed an ECC memory system

that can adapt memory access granularity and several ECC schemes to support applications

with different memory behaviors. Liu et al. [56] developed an application-level technique

for smartphones to reduce the refresh power in DRAM at the cost of a modest increase in

non-critical data corruption, and empirically showed that such errors have few impacts on

206

the final outputs. None of the above approaches analytically model the entangling effects

of energy efficiency and resilience at scale like ours.

Saving Energy for Resilience Techniques: There exist a number of studies that investi-

gate energy saving opportunities for resilience techniques. They either exploit metric-based

mechanism to evaluate energy efficiency for failure-prone large-scale HPC systems, or cap-

ture energy saving opportunities during the use of resilience techniques during HPC runs.

Grant et al. [74] conducted a comparison study between energy saving techniques that

takes into account reliability of HPC sytems at scale. They proposed an energy-reliability

metric that imposes a quantifiable penalty to energy savings techniques for increased run-

time providing reliability, and accounts for the probability of failure increase due to runtime

overhead from energy saving techniques. Diouri et al. [57] proposed an energy estimation

framework for selecting the most energy efficient fault tolerance protocol without running

HPC applications for different execution setting. The accuracy of the proposed estimation

framework was evaluated with real HPC runs and energy monitoring. Mills et al. [107] ar-

gued that resilience techniques such as checkpoint/restart incur considerable performance

and energy overhead on data movement. They attempted to reduce CPU power during the

I/O intensive checkpointing during HPC runs and 10% total energy savings were reported

with little performance loss. Aupy et al. [38] developed an energy-aware checkpointing

method for divisible workloads, where the total execution time is bounded/enforced by

soft or hard deadlines and the total energy costs are minimized. Rajachandrasekar et al.

[113] discussed that the näıve use of power capping during checkpointing phases can incur

considerable performance degradation, and proposed a novel power-aware checkpointing

207

framework named Power-Check that efficiently utilizes I/O and CPU by data funneling and

selective core power capping. Experimental results demonstrated significant energy savings

up to 48% and also performance gain up to 14% during checkpointing.

Nevertheless, there exist a large body of studies that quantify only energy costs

and performance, or resilience and performance, at single-node level, at scale, or based on

simulation.

Energy Efficiency Quantification. Woo and Lee [144] built an analytical model that

extends the Amdahl’s Law for energy efficiency in scalable many-core processor design.

They considered three many-core design styles of processors only without communication,

while we focus on networked symmetric multicore processors, and communication time

and power costs for processors across nodes are involved in our models. By augmenting

the Amdahl’s Law, Cassidy and Andreou [43] derived a general objective function linking

performance gain with energy-delay costs in microarchitecture and applied it to design the

optimal chip multiprocessor (CMP) architecture, while our work aims to achieve the optimal

performance/energy efficiency in terms of FLOPS per watt. Song et al. [122] developed

an energy model to evaluate and predict energy-performance trade-offs for various HPC

applications at large scale. Ge and Cameron [68] devised a power-aware speedup metric

that quantify the interacting effects between parallelism and frequency, and used it to

predict performance and power-aware speedup for scientific applications. Their models

were accurate and scalable, but did not incorporate the effects of energy saving DVFS

and undervolting techniques as in our work. Moreover, they did not evaluate the interplay

among typical HPC parameters, where we conduct an extensive theoretical/empirical study.

208

Resilience Quantification. Zheng and Lan [152] modeled the impacts of failures and

the effects of resilience techniques in HPC, and used their models to predict scalability for

HPC runs with possibility of failures. Wang et al. [140] proposed a unified speedup metric

that incorporates checkpointing overhead into classic speedup metrics in the presence of

failures. Yu et al. [150] created a novel resilience metric named data vulnerability factor to

holistically integrate application and hardware knowledge into resilience analysis. Again, all

of these approaches however did not consider energy saving DVFS and undervolting tech-

niques, both of which can significantly affect energy efficiency and resilience, with negligible

performance loss. Moreover, analytical models in [140] are not as fine-grained as ours, since

relationship among important HPC parameters was simplified such that it is not clear how

they interact and by what extent they affect speedup (and energy efficiency).

Simulation-Based Quantification. Li and Mart́ınez [97] investigated power-performance

correlation of parallel applications running on a CMP, aiming to optimize power costs un-

der a performance budget and vice versa. They conducted simulation-based experiments

to evaluate the proposed power-performance optimization for one single parallel applica-

tion. Suleman et al. [125] proposed a technique that accelerates the execution of critical

sections, a code fragment of shared data accessed by only one thread at a given time, which

differs from the sequential code in the Amdahl’s Law. Experimental results using lock-

based multithreaded workloads on three different CMP architectures indicated significant

performance and scalability improvement. Bois et al. [41] developed a framework of gener-

ating synthetic workloads to evaluate energy efficiency for multicore power-aware systems.

The proposed framework effectively showed the energy and performance trade-off for gen-

209

erated workloads. All these simulation approaches are at single-node level, which may need

considerate adaptation to work for large-scale HPC systems.

210

Chapter 8

Conclusions

My PhD research focuses on building fast [132] [127] [126], energy efficient [131]

[129] [134] [128] [132] [127] [130], and fault tolerant [131] [130] HPC applications, and

HPC software debugging [133] for large-scale emerging HPC architectures. Below, I first

summarize the research efforts presented in this dissertation, and then briefly discuss my

research plan in the near future.

8.1 Conclusive Remarks

8.1.1 Consolidating Energy Efficient High Performance Scientific Com-

puting in Large-scale HPC Systems

Scientific applications running nonstop on large-scale HPC systems need to effi-

ciently use energy for execution. Comprising millions of components, todays HPC systems

already consume megawatts of power; to meet an insatiate demand for performance from

mission-critical applications, future systems will consist of even more components and con-

211

sume more power. Efficient use of energy by scientific applications not only reduces energy

costs but also allows greater performance under a given power budget and improves system

reliability.

Linear algebra has been widely used in almost all science and engineering fields,

and has been considered as the core component of high performance scientific comput-

ing nowadays. While many linear algebra libraries have been developed to optimize their

performance, no linear algebra libraries optimize their energy efficiency at the library de-

sign time. Demanding requirements of energy efficiency in HPC in this era are becoming

prevalent due to the growing costs for powering supercomputers. Emerging heterogeneous

systems combining CPU with accelerators, such as GPU and coprocessors, are superior in

performance and energy efficiency. Yet, software-based hardware techniques can further

gain energy savings per application characteristics at runtime.

Widely used linear algebra libraries are often designed to maximize performance

without considering energy efficiency. While existing OS level energy saving approaches can

often be directly applied to linear algebra libraries to save energy without modifying the

library source, these approaches usually can not optimize the energy efficiency according

to the algorithmic characteristics of the linear algebra operations. In our work, we show

that substantial energy savings can be achieved in task-parallel applications running on

distributed-memory architectures, taking distributed linear algebra libraries for example,

by partially giving up the generality of OS level approaches to leverage the algorithmic

characteristics of the applications. Although working at library level, the proposed algo-

rithmic energy saving approach does not have the generality of OS level approaches and

212

requires source modification of target libraries, the substantial energy savings is worthwhile

for widely used linear algebra libraries like ScaLAPACK and DPLASMA because, once it

is done, it will benefit a large number of users and a wide range of applications that employ

routines from such libraries.

8.1.2 Balancing Energy Saving and Resilience Tradeoffs in HPC Systems

Lowering operating frequency and/or supply voltage of hardware components, i.e.,

DVFS is one important approach to reduce power and energy consumption of a comput-

ing system for two primary reasons: First, CMOS-based components (e.g., CPU, GPU,

and memory) are the dominant power consumers in the system. Second, power costs

of these components are proportional to the product of operating frequency and supply

voltage squared. In general, supply voltage has a positive correlation with (not strictly

proportional/linear to) the operating frequency for DVFS-capable components, i.e., scaling

up/down frequency results in voltage raise/drop accordingly.

Nevertheless, existing DVFS techniques are essentially frequency-directed and fail

to fully exploit the potential power reduction and energy savings. With DVFS, voltage

is only lowered to comply with the frequency reduction in the presence of slack. For a

given frequency, cutting-edge hardware components can be supplied with a voltage that is

lower than the one paired with the given frequency. The enabling technique, undervolting

is independent of frequency scaling, i.e., lowering only supply voltage of a chip without

reducing its operating frequency. Undervolting is advantageous in the sense that: (a) It can

keep the component frequency unchanged such that the computation throughput is well

213

maintained, and (b) it can be uniformly applied to both slack and non-slack phases of HPC

runs for power reduction.

The challenge of employing undervolting as a general power saving technique in

HPC lies in efficiently addressing the increasing failure rates caused by it. Both hard/soft

errors may occur if components undergo undervolting. Several studies have investigated ar-

chitectural solutions to support reliable undervolting with simulation. The study by Bacha

et al. presented an empirical undervolting system on Intel Itanium II processors that resolves

the arising ECC memory faults yet improves the overall energy savings. While this work

aims to maximize the power reduction and energy savings, it relies on pre-production pro-

cessors that allow such thorough exploration on the undervolting schemes, and also requires

additional hardware support for the ECC memory. We thereby investigate the interplay

between energy efficiency and resilience for large-scale parallel systems, and demonstrate

theoretically and empirically that significant energy savings can be obtained using a combi-

nation of undervolting and mainstream software-level resilience techniques on todays HPC

systems, without requiring hardware redesign. We aim to explore if the future exascale

systems are going towards the direction of low-voltage embedded architectures in order

to guarantee energy efficiency, or they can rely on advanced software-level techniques to

achieve high system resilience and efficiency.

8.2 Future Directions

Going forward, I hope to leverage my area of expertise to explore a broad spectrum

of other areas. Below, I discuss two potential research directions that I plan to take in the

214

near future: (a) algorithm-based energy efficiency, and (b) integrated high performance,

energy efficient, and fault tolerant hardware and software.

8.2.1 Algorithm-Based Energy Efficiency

The pressing demands of improving energy efficiency for high performance sci-

entific computing nowadays have motivated a large body of software-controlled hardware

solutions that strategically switch hardware components to a low-power state, when the

peak performance of the components is not necessary. Although OS level solutions can

effectively save energy in a black-box fashion, for applications with random/variable exe-

cution patterns, slack prediction can be error-prone and thus the optimal energy efficiency

can be blundered away. I thereby propose to utilize algorithmic characteristics to predict

slack accurately and thus maximize potential energy savings.

DVFS approaches have been widely adopted to improve energy efficiency for task-

parallel applications. With high generality, OS level solutions are considered effective. We

observe that for applications such as distributed dense matrix factorizations, the optimal

energy efficiency cannot be achieved by OS level solutions due to inaccurate slack prediction.

Giving up partial generality, I propose to utilize algorithmic characteristics for obtaining

slack accurately and thus saving more energy, with negligible performance loss.

8.2.2 Integrated High Performance, Energy Efficient, and Fault Tolerant

Hardware and Software

Future large-scale HPC systems require both high energy efficiency and resilience

to achieve ExaFLOPS computational power and beyond. Performance, energy efficiency,

215

and resilience are three crucial challenges for HPC systems to reach exascale. While the

three issues have been extensively studied individually, little has been done to understand

the interplay between performance, energy efficiency, and resilience for HPC systems.

I propose to investigate HPC hardware and software that is capable of balanc-

ing performance, energy efficiency, and resilience at scale. Specifically, detailed work can

be: (a) building analytical and quantitative models to study the impact of undervolting

and DVFS solutions on HPC applications execution time, energy costs, and fault tolerance

for state-of-the-art emerging HPC architectures, (b) developing reliable and cost-efficient

HPC software that leverages software-level cost-efficient resilience techniques, and (c) de-

vising novel parallel programming abstractions and failure detection and recovery models

to lessen programming efforts for energy efficiency and resilience at extreme scale in the

HPC environment.

216

Bibliography

[1] ASC Sequoia Benchmark Codes. https://asc.llnl.gov/sequoia/benchmarks/.

[2] Automatically Tuned Linear Algebra Software (ATLAS). http://math-
atlas.sourceforge.net/.

[3] BIOS and Kernel Developers Guide (BKDG) For AMD Family 10h Processors.
http://developer.amd.com/wordpress/media/2012/10/31116.pdf.

[4] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/.

[5] CPUFreq - CPU Frequency Scaling. https://wiki.archlinux.org/index.php/CPU frequency scaling.

[6] CPUSpeed. http://carlthompson.net/Software/CPUSpeed/.

[7] CULA: NVIDIA GPU Accelerated Linear Algebra. http://www.culatools.com.

[8] DPLASMA: Distributed Parallel Linear Algebra Software for Multicore Architectures.
http://icl.cs.utk.edu/dplasma/.

[9] Exascale Computing Initiative Update 2012, US Department of Energy.
http://science.energy.gov/∼/media/ascr/ascac/pdf/meetings/aug12/2012-ECI-
ASCAC-v4.pdf.

[10] Green500 Supercomputer Lists. http://www.green500.org/.

[11] HPL - High-Performance Linpack Benchmark. http://www.netlib.org/benchmark/hpl/.

[12] Intel Hyper-Threading Technology. http://www.intel.com/content/www/us/en/architecture-
and-technology/hyper-threading/hyper-threading-technology.html.

[13] Intel R© Itanium R© Processor 9560 Specifications.
http://www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/itanium-9500-brief.pdf.

[14] K computer. http://www.aics.riken.jp/en/k-computer/about/.

[15] LAPACK-Linear Algebra PACKage. http://www.netlib.org/lapack/.

217

[16] Linux File Copy Command. http://www.linux.org/article/view/useful-commands-
the-cp-command.

[17] Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH).
https://codesign.llnl.gov/lulesh.php.

[18] MAGMA (Matrix Algebra on GPU and Multicore Architectures).
http://icl.cs.utk.edu/magma/.

[19] Model-Specific Register (MSR) Tools Project. https://01.org/msr-tools.

[20] NAS Parallel Benchmarks (NPB). http://www.nas.nasa.gov/publications/npb.html.

[21] NVIDIA System Management Interface (nvidia-smi).
https://developer.nvidia.com/nvidia-system-management-interface/.

[22] A Parallel Algebraic Multigrid (AMG) Solver for Linear Sys-
tems. https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/amg/.

[23] Parallel MPI BZIP2 (MPIBZIP2). http://compression.ca/mpibzip2/.

[24] PIC: Pacific Northwest National Laboratory Institutional Computing.
https://cvs.pnl.gov/PIC/wiki/PicCompute.

[25] Renewable Energy and Energy Efficiency for Tribal Commu-
nity and Project Development, US Department of Energy.
http://apps1.eere.energy.gov/tribalenergy/pdfs/energy04 terms.pdf.

[26] ScaLAPACK - Scalable Linear Algebra PACKage. http://www.netlib.org/scalapack/.

[27] TOP500 Supercomputer Lists. http://www.top500.org/.

[28] Watts up? Meters. https://www.wattsupmeters.com/.

[29] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and S.-L. Lu. Energy-
efficient cache design using variable-strength error-correcting codes. In Proc. Inter-
national Symposium on Computer Architecture (ISCA), pages 461–472, 2011.

[30] P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, and E. S. Quintana-Ort́ı. DVFS-control
techniques for dense linear algebra operations on multi-core processors. Computer
Science - Research and Development, 27(4):289–298, November 2012.

[31] P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, and E. S. Quintana-Ort́ı. Reducing
energy consumption of dense linear algebra operations on hybrid CPU-GPU plat-
forms. In Proc. International Symposium on Parallel and Distributed Processing with
Applications (ISPA), pages 56–62, 2012.

218

[32] P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, and E. S. Quintana-Ort́ı. Saving
energy in the LU factorization with partial pivoting on multi-core processors. In
Proc. International Conference on Parallel, Distributed and Network-Based Processing
(PDP), pages 353–358, 2012.

[33] P. Alonso, M. F. Dolz, R. Mayo, and E. S. Quintana-Ort́ı. Improving power efficiency
of dense linear algebra algorithms on multi-core processors via slack control. In Proc.
International Conference on High Performance Computing and Simulation (HPCS),
pages 463–470, 2011.

[34] P. Alonso, M. F. Dolz, R. Mayo, and E. S. Quintana-Ort́ı. Modeling power and energy
of the task-parallel Cholesky factorization on multicore processors. Computer Science
- Research and Development, Special Issue, August 2012.

[35] AMD. BIOS and Kernel Developers Guide (BKDG) For AMD Family 10h Processors.
http://developer.amd.com/wordpress/media/2012/10/31116.pdf, 2012.

[36] G. M Amdahl. Validity of the single-processor approach to achieving large-scale
computing capabilities. In Proc. AFIPS Spring Joint Computer Conference, pages
483–485, 1967.

[37] H. Anzt, V. Heuveline, J. Aliaga, M. Castillo, J. C. Fernández, R. Mayo, and E. S.
Quintana-Ort́ı. Analysis and optimization of power consumption in the iterative
solution of sparse linear systems on multi-core and many-core platforms. In Proc.
International Green Computing Conference (IGCC), pages 1–6, 2011.

[38] G. Aupy, A. Benoit, R. Melhem, P. Renaud-Goud, and Y. Robert. Energy-aware
checkpointing of divisible tasks with soft or hard deadlines. In Proc. International
Green Computing Conference (IGCC), pages 1–8, 2013.

[39] A. Bacha and R. Teodorescu. Dynamic reduction of voltage margins by leveraging on-
chip ECC in Itanium II processors. In Proc. International Symposium on Computer
Architecture (ISCA), pages 297–307, 2013.

[40] G. Ballard, J. Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz.
Communication-optimal parallel algorithm for strassen’s matrix multiplication. In
Proc. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
193–204, 2012.

[41] K. D. Bois, T. Schaeps, S. Polfliet, F. Ryckbosch, and L. Eeckhout. SWEEP: Eval-
uating computer system energy efficiency using synthetic workloads. In Proc. In-
ternational Conference on High-Performance Embedded Architectures and Compilers
(HiPEAC), pages 159–166, 2011.

[42] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak,
J. Langou, P. Lemariner, H. Ltaief, P. Luszczek, A. YarKhan, and J. Dongarra. Dis-
tributed dense numerical linear algebra algorithms on massively parallel architectures:
DPLASMA. Technical Report UT-CS-10-660, September 2010.

219

[43] A. S. Cassidy and A. G. Andreou. Beyond Amdahl’s Law: An objective function that
links multiprocessor performance gains to delay and energy. IEEE Transactions on
Computers, 61(8):1110–1126, August 2012.

[44] M. Castillo, J. C. Fernández, R. Mayo, E. S. Quintana-Ort́ı, and V. Roca. Analysis of
strategies to save energy for message-passing dense linear algebra kernels. In Proc. In-
ternational Conference on Parallel, Distributed and Network-Based Processing (PDP),
pages 346–352, 2012.

[45] E. Chan, R. van de Geijn, W. Gropp, and R. Thakur. Collective communication
on architectures that support simultaneous communication over multiple links. In
Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 2–11, 2006.

[46] G. Chen, K. Malkowski, M. Kandemir, and P. Raghavan. Reducing power with per-
formance constraints for parallel sparse applications. In Proc. International Parallel
and Distributed Processing Symposium (IPDPS), pages 1–8, 2005.

[47] L. Chen, Z. Chen, P. Wu, R. Ge, and Z. Zong. Energy efficient parallel matrix-
matrix multiplication for DVFS-enabled clusters. In Proc. International Workshop
on Power-Aware Systems and Architectures, with ICPP, pages 239–245, 2012.

[48] Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft er-
ror detection in iterative methods. In Proc. ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 167–176, 2013.

[49] J. Choi. A new parallel matrix multiplication algorithm on distributed-memory con-
current computers. In Proc. High Performance Computing on the Information Super-
highway (HPC-Asia), pages 224–229, 1997.

[50] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C.
Whaley. The design and implementation of the ScaLAPACK LU, QR and Cholesky
factorization routines. Scientific Programming, 5(3):173–184, August 1996.

[51] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and frequency
scaling for precise energy and performance trade-off based on the ratio of off-chip
access to on-chip computation times. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 18–28, 2004.

[52] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. LogP: Towards a realistic model of parallel computation. In
Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 1–12, 1993.

[53] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Computer Systems, 22(3):303–312, February 2006.

220

[54] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory power
management via dynamic voltage/frequency scaling. In Proc. International Confer-
ence on Autonomic Computing (ICAC), pages 31–40, 2011.

[55] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High performance linpack
benchmark: A fault tolerant implementation without checkpointing. In Proc. Inter-
national Conference on Supercomputing (ICS), pages 162–171, 2011.

[56] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. Memscale: Active
low-power modes for main memory. In Proc. International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 225–
238, 2011.

[57] M. Diouri, O. Glück, L. Lefèvre, and F. Cappello. ECOFIT: A framework to estimate
energy consumption of fault tolerance protocols for HPC applications. In Proc. Inter-
national Symposium on Cluster Computing and the Grid (CCGrid), pages 522–529,
2013.

[58] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. Algorithm-based fault
tolerance for dense matrix factorizations. In Proc. ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 225–234, 2012.

[59] J. Duell. The design and implementation of Berkeley lab’s Linux Checkpoint/Restart.
Technical report, Lawrence Berkeley National Laboratory, 2003.

[60] R. Efraim, R. Ginosar, C. Weiser, and A. Mendelson. Energy aware race to halt: A
down to EARtH approach for platform energy management. IEEE Computer Archi-
tecture Letters, 13(1):25–28, January 2014.

[61] M. Elgebaly and M. Sachdev. Efficient adaptive voltage scaling system through on-
chip critical path emulation. In Proc. International Symposium on Low Power Elec-
tronics and Design (ISLPED), pages 375–380, 2004.

[62] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. Razor: A low-power pipeline based on circuit-
level timing speculation. In Proc. International Symposium on Microarchitecture (MI-
CRO), pages 7–18, 2003.

[63] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark sili-
con and the end of multicore scaling. In Proc. International Symposium on Computer
Architecture (ISCA), pages 365–376, 2011.

[64] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Understanding the future of
energy-performance trade-off via dvfs in HPC environments. Journal of Parallel and
Distributed Computing, 72(4):579–590, April 2012.

[65] A. Faraj and X. Yuan. Automatic generation and tuning of MPI collective commu-
nication routines. In Proc. International Conference on Supercomputing (ICS), pages
393–402, 2005.

221

[66] E. Feller, C. Rohr, D. Margery, and C. Morin. Energy management in IaaS clouds: A
holistic approach. In Proc. International Conference on Cloud Computing (CLOUD),
pages 204–212, 2012.

[67] V. W. Freeh and D. K. Lowenthal. Using multiple energy gears in MPI programs
on a power-scalable cluster. In Proc. ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 164–173, 2005.

[68] R. Ge and K. W. Cameron. Power-aware speedup. In Proc. International Parallel
and Distributed Processing Symposium (IPDPS), pages 1–10, 2007.

[69] R. Ge, X. Feng, and K. W. Cameron. Performance-constrained distributed DVS
scheduling for scientific applications on power-aware clusters. In Proc. Interna-
tional Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC), page 34, 2005.

[70] R. Ge, X. Feng, W.-C. Feng, and K. W. Cameron. CPU MISER: A performance-
directed, run-time system for power-aware clusters. In Proc. International Conference
on Parallel Processing (ICPP), page 18, 2007.

[71] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron. PowerPack:
Energy profiling and analysis of high-performance systems and applications. IEEE
Transactions on Parallel and Distributed Systems, 21(5):658–671, May 2010.

[72] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels, and F. H.
Streitz. Extending stability beyond CPU millennium: A micron-scale atomistic sim-
ulation of Kelvin-Helmholtz instability. In Proc. International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), page 58, 2007.

[73] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measuring the scalability
of parallel algorithms and architectures. IEEE Parallel and Distributed Technology:
Systems and Applications, 1(3):12–21, August 1993.

[74] R. E. Grant, S. L. Olivier, J. H. Laros, R. Brightwell, and A. K. Porterfield. Metrics for
evaluating energy saving techniques for resilient HPC systems. In Proc. International
Workshop on High-Performance, Power-Aware Computing (HPPAC), with IPDPS,
pages 790–797, 2014.

[75] Y. Guo, D. Zhu, and H. Aydin. Generalized standby-sparing techniques for energy-
efficient fault tolerance in multiprocessor real-time systems. In Proc. Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 62–71, 2013.

[76] W. Harrod. A journey to exascale computing. In Proc. International Conference for
High Performance Computing, Networking, Storage and Analysis (SC) Companion,
pages 1702–1730, 2012.

222

[77] T. Hoefler, C. Siebert, and W. Rehm. A practically constant-time MPI broadcast
algorithm for large-scale InfiniBand clusters with multicast. In Proc. International
Workshop on Communication Architectures for Clusters, with IPDPS, pages 232–239,
2007.

[78] J. D. Hogg. A dag-based parallel cholesky factorization for multicore systems. Tech-
nical Report RAL-TR-2008-029, October 2008.

[79] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi. Profile-based
optimization of power performance by using dynamic voltage scaling on a PC cluster.
In Proc. International Parallel and Distributed Processing Symposium (IPDPS), 2006.

[80] C.-H. Hsu and W.-C. Feng. A power-aware run-time system for high-performance
computing. In Proc. International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), page 1, 2005.

[81] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of a com-
piler algorithm for CPU energy reduction. In Proc. ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), pages 38–48, 2003.

[82] C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic voltage/frequency
scheduling for energy reduction in microprocessors. In Proc. International Symposium
on Low Power Electronics and Design (ISLPED), pages 275–278, 2001.

[83] S. Hunold and T. Rauber. Automatic tuning of PDGEMM towards optimal perfor-
mance. In Proc. International European Conference on Parallel Processing (Euro-
Par), pages 837–846, 2005.

[84] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. In Proc. International Symposium on Low Power Electronics and
Design (ISLPED), pages 197–202, 1998.

[85] H. Jin and R. F. Van der Wijngaart. Performance characteristics of the multi-zone
NAS parallel benchmarks. In Proc. International Parallel and Distributed Processing
Symposium (IPDPS), 2004.

[86] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time dynamic voltage
scaling: Exploiting inter-node slack to save energy in MPI programs. In Proc. In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis (SC), page 33, 2005.

[87] C. Karlsson, T. Davies, C. Ding, H. Liu, and Z. Chen. Optimizing process-to-core
mappings for two dimensional broadcast/reduce on multicore architectures. In Proc.
International Conference on Parallel Processing (ICPP), pages 404–413, 2011.

[88] A. H. Karp and H. P. Flatt. Measuring parallel processor performance. Communica-
tions of the ACM, 33(5):539–543, May 1990.

223

[89] A. Karwande, X. Yuan, and D. K. Lowenthal. CC–MPI: a compiled communication
capable MPI prototype for ethernet switched clusters. In Proc. ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 95–
106, 2003.

[90] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar. Near-
threshold voltage (NTV) design – opportunities and challenges. In Proc. Design
Automation Conference (DAC), pages 1153–1158, 2012.

[91] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe. Multi-bit error tolerant
caches using two-dimensional error coding. In Proc. International Symposium on
Microarchitecture (MICRO), pages 197–209, 2007.

[92] K. H. Kim, R. Buyya, and J. Kim. Power aware scheduling of bag-of-tasks applications
with deadline constraints on DVS-enabled clusters. In Proc. International Symposium
on Cluster Computing and the Grid (CCGrid), pages 541–548, 2007.

[93] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi. Empirical study on reduc-
ing energy of parallel programs using slack reclamation by DVFS in a power-scalable
high performance cluster. In Proc. International Conference on Cluster Computing
(CLUSTER), pages 1–10, 2006.

[94] I. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and Z. Zhang. On-the-fly pipeline
parallelism. In Proc. ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 140–151, 2013.

[95] D. Li, B. R. de Supinski, M. Dolz, D. S. Nikolopoulos, and K. W. Cameron. Strate-
gies for energy efficient resource management of hybrid programming models. IEEE
Transactions on Parallel and Distributed Systems, 24(1):144–157, January 2013.

[96] D. Li, B. R. de Supinski, M. Schulz, K. W. Cameron, and D. S. Nikolopoulos. Hy-
brid MPI/OpenMP power-aware computing. In Proc. International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 1–12, 2010.

[97] J. Li and J. F. Mart́ınez. Power-performance considerations of parallel computing
on chip multiprocessors. ACM Transactions on Architecture and Code Optimization,
2(4):397–422, December 2005.

[98] J. Li, J. F. Martinez, and M. C. Huang. The thrifty barrier: Energy-aware synchro-
nization in shared-memory multiprocessors. In Proc. International Symposium on
High-Performance Computer Architecture (HPCA), page 14, 2004.

[99] J. Li, K. Shuang, S. Su, Q. Huang, P. Xu, X. Cheng, and J. Wang. Reducing op-
erational costs through consolidation with resource prediction in the cloud. In Proc.
International Symposium on Cluster Computing and the Grid (CCGrid), pages 793–
798, 2012.

224

[100] S. Li, D. H. Yoon, K. Chen, J. Zhao, J. H. Ahn, J. B. Brockman, Y. Xie, and
N. P. Jouppi. MAGE: Adaptive granularity and ECC for resilient and power efficient
memory systems. In Proc. International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), page 33, 2012.

[101] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, transparent frequency
and voltage scaling of communication phases in MPI programs. In Proc. Interna-
tional Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC), page 107, 2006.

[102] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin. Power-efficient time-
sensitive mapping in heterogeneous systems. In Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 23–32, 2012.

[103] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin. Exploiting barriers to
optimize power consumption of CMPs. In Proc. International Parallel and Distributed
Processing Symposium (IPDPS), 2005.

[104] Y. Luo, V. Packirisamy, W.-C. Hsu, and A. Zhai. Energy efficient speculative
threads: Dynamic thread allocation in same-ISA heterogeneous multicore systems.
In Proc. International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 453–464, 2010.

[105] H. Mair, A. Wang, G. Gammie, D. Scott, P. Royannez, S. Gururajarao, M. Chau,
R. Lagerquist, L. Ho, M. Basude, N. Culp, A. Sadate, D. Wilson, F. Dahan, J. Song,
B. Carlson, and U. Ko. A 65-nm mobile multimedia applications processor with an
adaptive power management scheme to compensate for variations. In Proc. VLSI
Symposium, pages 224–225, 2007.

[106] E. Meneses, O. Sarood, and L. V. Kalé. Assessing energy efficiency of fault eoler-
ance protocols for HPC systems. In Proc. International Symposium on Computer
Architecture and High Performance Computing (SBACPAD), pages 35–42, 2012.

[107] B. Mills, R. E. Grant, K. B. Ferreira, and R. Riesen. Evaluating energy savings for
checkpoint/restart. In Proc. International Workshop on Energy Efficient Supercom-
puting (E2SC), with SC, page 6, 2013.

[108] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. Crit-
ical power slope: Understanding the runtime effects of frequency scaling. In Proc.
International Conference on Supercomputing (ICS), pages 35–44, 2002.

[109] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski. Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In Proc. International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC),
pages 1–11, 2010.

[110] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Transactions
on Parallel and Distributed Systems, 9(10):972–986, October 1998.

225

[111] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles. Scheduling and voltage scaling
for energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In
Proc. International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 233–238, 2007.

[112] A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia, and A. Yakovlev. Studying
the interplay of concurrency, performance, energy and reliability with ArchOn – an
architecture-open resource-driven cross-layer modelling framework. In Proc. Interna-
tional Conference on Application of Concurrency to System Design (ACSD), pages
122–131, 2014.

[113] R. Rajachandrasekar, A. Venkatesh, K. Hamidouche, and D. K. Panda. Power-Check:
An energy-efficient checkpointing framework for HPC clusters. In Proc. International
Symposium on Cluster Computing and the Grid (CCGrid), pages 261–270, 2015.

[114] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya. Some observations on optimal frequency
selection in DVFS-based energy consumption minimization. Journal of Parallel Dis-
tributed Computing, 71(8):1154–1164, August 2011.

[115] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and
T. Bletsch. Adagio: Making DVS practical for complex HPC applications. In Proc.
International Conference on Supercomputing (ICS), pages 460–469, 2009.

[116] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski, and
M. Schulz. Bounding energy consumption in large-scale MPI programs. In Proc.
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 1–9, 2007.

[117] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada, M. Ratta,
S. Kottapalli, and S. Vora. A 45 nm 8-core enterprise xeon R© processor. IEEE Journal
of Solid-State Circuits, 45(1):7–14, January 2010.

[118] V. Sarkar, Ed. Exascale software study: Software challenges in extreme scale systems.
Technical report, US DARPA IPTO, Air Force Research Labs, September 2009.

[119] S. M. Shatz and J.-P. Wang. Models and algorithms for reliability-oriented task-
allocation in redundant distributed-computer systems. IEEE Transsactions on Reli-
ability, 38(1):16–27, April 1989.

[120] E. Solomonik, A. Bhatele, and J. Demmel. Improving communication performance in
dense linear algebra via topology aware collectives. In Proc. International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), page 77,
2011.

[121] S. W. Son, K. Malkowski, G. Chen, M. Kandemir, and P. Raghavan. Reducing en-
ergy consumption of parallel sparse matrix applications through integrated link/CPU
voltage scaling. Journal of Supercomputing, 41(3):179–213, September 2007.

226

[122] S. Song, C.-Y. Su, R. Ge, A. Vishnu, and K. W. Cameron. Iso-Energy-Efficiency: An
approach to power-constrained parallel computation. In Proc. International Parallel
and Distributed Processing Symposium (IPDPS), pages 128–139, 2011.

[123] S. Song, C.-Y. Su, B. Rountree, and K. W. Cameron. A simplified and accurate
model of power-performance efficiency on emergent GPU architectures. In Proc. In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pages 673–686,
2013.

[124] R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh. Minimizing execution
time in MPI programs on an energy-constrained, power-scalable cluster. In Proc. ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 230–238, 2006.

[125] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating critical section
execution with asymmetric multi-core architectures. In Proc. International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 253–264, 2009.

[126] c© 2013 IEEE. Reprinted, with permission, from L. Tan, L. Chen, Z. Chen, Z. Zong,
R. Ge, and D. Li. Improving performance and energy efficiency of matrix multiplica-
tion via pipeline broadcast. In Proc. International Conference on Cluster Computing
(CLUSTER), pages 1–5, 2013.

[127] c© 2013 IEEE. Reprinted, with permission, from L. Tan, Z. Chen, Z. Zong, R. Ge, and
D. Li. A2E: Adaptively aggressive energy efficient DVFS scheduling for data intensive
applications. In Proc. International Performance Computing and Communications
Conference (IPCCC), pages 1–10, 2013.

[128] c© 2014 IEEE. Reprinted, with permission, from L. Tan and Z. Chen. TX: Algorith-
mic energy saving for distributed dense matrix factorizations. In Proc. International
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA),
with SC, pages 23–30, 2014.

[129] c© 2015 ACM. Reprinted, with permission, from L. Tan and Z. Chen. Slow down
or halt: Saving the optimal energy for scalable HPC systems. In Proc. International
Conference on Performance Engineering (ICPE), pages 241–244, 2015.

[130] c© 2015 ACM. Reprinted, with permission, from L. Tan, Z. Chen, and S. L. Song.
Scalable energy efficiency with resilience for high performance computing systems: A
quantitative methodology. ACM Transactions on Architecture and Code Optimization,
12(4):35, October 2015.

[131] c© 2015 IEEE. Reprinted, with permission, from L. Tan, S. L. Song, P. Wu, Z. Chen,
R. Ge, and D. J. Kerbyson. Investigating the interplay between energy efficiency
and resilience in high performance computing. In Proc. International Parallel and
Distributed Processing Symposium (IPDPS), pages 786–796, 2015.

227

[132] L. Tan, L. Chen, Z. Chen, Z. Zong, R. Ge, and D. Li. HP-DAEMON: High perfor-
mance distributed adaptive energy-efficient matrix-multiplication. In Proc. Interna-
tional Conference on Computational Science (ICCS), pages 599–613, 2014.

[133] L. Tan, M. Feng, and R. Gupta. Lightweight fault detection in parallelized programs.
In Proc. International Symposium on Code Generation and Optimization (CGO),
pages 1–11, 2013.

[134] L. Tan, S. R. Kothapalli, L. Chen, O. Hussaini, R. Bissiri, and Z. Chen. A survey of
power and energy efficient techniques for high performance numerical linear algebra
operations. Parallel Computing, 40(10):559–573, December 2014.

[135] Y. Taur, X. Liang, W. Wang, and H. Lu. A continuous, analytic drain-current model
for DG MOSFETs. IEEE Electron Device Letters, 25(2):107–109, February 2004.

[136] A. H. T. Tse, D. B. Thomas, K. H. Tsoi, and W. Luk. Dynamic scheduling Monte-
Carlo framework for multi-accelerator heterogeneous clusters. In Proc. International
Conference on Field Programmable Technology (FPT), pages 233–240, 2010.

[137] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srinivasan, and J. Bruce. A
control-theoretic approach to dynamic voltage scheduling. In Proc. International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
pages 255–266, 2003.

[138] D. M. Wadsworth and Z. Chen. Performance of MPI broadcast algorithms. In Proc.
IEEE International Workshop on Parallel and Distributed Scientific and Engineering
Computing, with IPDPS, pages 1–7, 2008.

[139] X. Wang, X. Fu, X. Liu, and Z. Gu. Power-aware CPU utilization control for dis-
tributed real-time systems. In Proc. Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 233–242, 2009.

[140] Z. Wang. Reliability speedup: An effective metric for parallel application with check-
pointing. In Proc. International Conference on Parallel and Distributed Computing
Applications and Technologies (PDCAT), pages 247–254, 2009.

[141] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU en-
ergy. In Proc. USENIX Symposium on Operating Systems Design and Implementation
(OSDI), page 2, 1994.

[142] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S.-L. Lu.
Reducing cache power with low-cost, multi-bit error-correcting codes. In Proc. Inter-
national Symposium on Computer Architecture (ISCA), pages 83–93, 2010.

[143] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu.
Trading off cache capacity for reliability to enable low voltage operation. In Proc.
International Symposium on Computer Architecture (ISCA), pages 203–214, 2008.

228

[144] D. H. Woo and H.-H. S. Lee. Extending Amdahl’s Law for energy-efficient computing
in the many-core era. Computer, 41(12):24–31, December 2008.

[145] A. S. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone. An incremental genetic al-
gorithm approach to multiprocessor scheduling. IEEE Transactions on Parallel and
Distributed Systems, 15(9):824–834, September 2004.

[146] P. Wu and Z. Chen. FT-ScaLAPACK: Correcting soft errors on-line for ScaLAPACK
Cholesky, QR, and LU factorization routines. In Proc. International Symposium on
High-performance Parallel and Distributed Computing (HPDC), pages 49–60, 2014.

[147] X. Wu, V. Deshpande, and F. Mueller. ScalaBenchGen: Auto-generation of communi-
cation benchmarks traces. In Proc. International Parallel and Distributed Processing
Symposium (IPDPS), pages 1250–1260, 2012.

[148] Y. Yetim, S. Malik, and M. Martonosi. EPROF: An energy/performance/reliability
optimization framework for streaming applications. In Proc. Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 769–774, 2012.

[149] J. W. Young. A first order approximation to the optimum checkpoint interval. Com-
munications of the ACM, 17(9):530–531, September 1974.

[150] L. Yu, D. Li, S. Mittal, and J. S. Vetter. Quantitatively modeling application resilience
with the data vulnerability factor. In Proc. International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), pages 695–706, 2014.

[151] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in
fixed-priority real-time embedded systems. In Proc. International Conference on
Computer-Aided Design (ICCAD), pages 209–213, 2003.

[152] Z. Zheng and Z. Lan. Reliability-aware scalability models for high performance com-
puting. In Proc. International Conference on Cluster Computing (CLUSTER), pages
1–9, 2009.

[153] D. Zhu and H. Aydin. Energy management for real-time embedded systems with
reliability requirements. In Proc. International Conference on Computer-Aided Design
(ICCAD), pages 528–534, 2006.

[154] D. Zhu, R. Melhem, and D. Mossé. The effects of energy management on reliability in
real-time embedded systems. In Proc. International Conference on Computer-Aided
Design (ICCAD), pages 35–40, 2004.

[155] Q. Zhu, J. Zhu, and G. Agrawal. Power-aware consolidation of scientific workflows
in virtualized environments. In Proc. International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–12, 2010.

229

