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Abstract

Essays on Macroeconomics and International Economics

by

Mu-Jeung Yang

Doctor of Philosophy in Economics

University of California, Berkeley

Chang-Tai Hsieh, Co-Chair

Pierre-Olivier Gourinchas, Co-Chair

This dissertation analyzes the interaction of firm level heterogeneity and selection.
This selection can encompass either the survival of firms in the market, or their par-
ticipation in international trade. In the first part I concentrate on the question of how
large the aggregate productivity losses from the misallocation of resources across firms
are. If firm exit is endogenous, micro-frictions can induce extensive margin misalloca-
tion: inefficient firms continue to survive (Zombies) and efficient firms are forced to exit
(Shadows). I develop and estimate a fully specified model with plant-level micro-data
to quantify extensive margin misallocation. This method allows me to identify Zombie
firms, estimate the efficiency distribution of Shadow firms and calculate aggregate Total
Factor Productivity (TFP) gains when Zombies are replaced by Shadows. Estimates
for Indonesia show that extensive margin misallocation can increase aggregate TFP
losses from micro-distortions by over 40%. Compared to existing estimates aggregate
TFP losses from micro-distortions are 50-100% higher.

In the second part of the dissertation I trace out the implications of a simplified
version of the framework I developed in the first part to questions of international trade.
The cross-country comparisions in measured micro-distortions suggest that differences
in firm heterogeneity could be potentially important to explain aggregate TFP and
therefore also trade patterns. I consequently develop a tractable multi-country general
equilibrium model of such differences in firm level heterogeneity across countries. I
show how the model naturally links measured trade frictions to national firm-efficiency
distributions and endogenously generates asymmetries in trade flows in the absence of
asymmetric trade frictions. The model is able to generate key stylized facts, specifically
the absence of a strong negative relationsship of firm-size dispersions and internal trade
shares as predicted by the standard heterogeneous firm trade model with identical
efficiency dispersions across countries.
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Chapter 1

Extensive Margin Misallocation
Estimation Methodology

1.1 Introduction

The dominant factor behind cross-country income differences is variation in aggre-
gate total factor productivity (TFP) as documented by Hall and Jones (1999). Accord-
ing to a popular recent view exemplified by Hsieh and Klenow (2009), micro-distortions
that prevent the optimal allocation of resources across firms within a country signif-
icantly contribute to cross-country differences in TFP. Existing empirical studies of
micro-level misallocation and TFP do not allow for endogenous exit. As a consequence
they can only capture intensive-margin misallocation: some firms are too big and some
too small relative to perfectly competitive markets. However, the impact of micro-
distortions on exit can have large effects, and potentially explains deep macroeconomic
productivity slumps. A case in point is the study by Caballero, Hoshi and Kashyap
(2008) on the Japanese Lost Decade. They focus on the retention of Zombie firms:
inefficient firms that would otherwise exit under competitive conditions, but are artifi-
cially kept in business through implicit subsidies such as preferential access to credit.
But, distortions of the exit margin also lead to firms exiting that would have been
productive enough to survive in the absence of such distortions. I refer to these as
Shadow firms. The key economic mechanism through which Zombies and Shadows im-
pact aggregate TFP is misallocation along the extensive margin: under ideal conditions
Zombies should exit and be replaced by Shadows.

In this chapter I develop a fully specified estimator of extensive margin misalloca-
tion. It is based on a model of firm heterogeneity under entry and exit. This model
features both - micro-distortions as in Hsieh and Klenow (2009) and endogenous entry
and exit of firms as in Melitz (2003). Micro-distortions are modeled as firm-specific
implicit taxes and subsidies, standing-in for other widely-discussed frictions such as
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political connections, credit frictions, regulatory size restrictions, firm-specific bargain-
ing power under incomplete contracts or insufficient enforcement of property rights.
Monopolistically competitive firms differ in these wedges and in the firm’s level of
technology. Production involves fixed costs of operations, and, firms exit if their prof-
its are less than these fixed costs. The estimation procedure used in this dissertation
allows plant-level efficiency and distortions to be arbitrarily correlated, and is per-
formed using data by narrow 4-digit sectors. What is more, I integrate all sectors into
a multi-sector general equilibrium, so that the estimation methodology can be applied
to typical establishment level data with industry identifiers.

Student Version of MATLAB

Figure 1.1: Parameters of Interest and Identification (Example simulation)

In evaluating aggregate TFP losses when micro-frictions and endogenous exit inter-
act, I need to address two issues. First, which parameters are needed according to the
theory in order to quantify the impact of micro-distortions on aggregate TFP when
allowing for endogenous exit? Second, how can these parameters be identified with
plant-level micro-data?

To understand what information is needed for evaluating extensive margin misal-
location, consider first Figure 1. The x-axis shows firm-level productivity, with higher
values for more efficient firms. The y-axis shows firm-level implicit micro-distortion,
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with higher values for more heavily-distorted firms. The sloped line, which I call the
survival line, captures exit in equilibrium with micro-frictions - firms that are either
very productive or are not very distorted survive. All firms southeast of the survival line
are therefore observed – in contrast, survival in the frictionless equilibrium is summa-
rized by the dashed vertical line. Selection in an equilibrium without micro-distortions
– referred to as “frictionless equilibrium” – is based only on firm efficiency, and there-
fore only firms to the east of the efficient cut-off survive. The area below the survival
line and to the west of the frictionless cut-off contains firms whose productivity is too
low to survive a frictionless equilibrium. However, they are nonetheless observed in
the data – these are Zombie firms. The area above the survival line and to the east of
the frictionless cut-off contains firms that would be productive enough to survive in a
frictionless equilibrium, yet are unobserved in the data – these are Shadow firms.
Alleviating extensive margin misallocation would lead to the exit of Zombies and the
entry of Shadows. Therefore, quantifying losses from extensive margin misallocation
requires two objects. The first is the full underlying distribution of frictions and pro-
ductivity, including the hypothetical firms northwest of the survival line. The second
is the efficiency cut-off in the frictionless equilibrium, as shown by the vertical dashed
line in Figure 1.

Identifying these objects works in three steps. In the first step, I separately identify
both micro-frictions and firm productivity for the set of observed firms. Here I follow
the insight of Hsieh and Klenow (2009) that in a frictionless market marginal revenue
products should be equalized. Differences in marginal revenue products can therefore
be used as a measure of firm-level frictions. Given an explicit demand system, I measure
firm level productivity as the part of firm size that cannot be explained by differences
in marginal revenue products.
In the second step, I recover the full underlying distribution of frictions and productivity
from the observed data, using a structural model that allows me to account for selec-
tion. I assume that the joint distribution of frictions and productivity is log-normal;
this assumption is supported by the empirical evidence on firm size distributions, and
enhances tractability. The economic model of selection and the distributional assump-
tion together imply that the observed data are generated by a truncated log-normal,
subject to equilibrium constraints. Estimating the full underlying distribution there-
fore reduces to a constrained Maximum Likelihood problem. Since selection cut-offs
and size distributions differ by sector, I obtain estimates for narrow 4-digit sectors .
In the third step, I apply the parameters that characterize the underlying distribution
of plant-level micro-distortions and productivity by sector and integrate them into a
multi-sector general equilibrium model, which is used to compute the counterfactual
frictionless equilibrium. This frictionless equilibrium provides the information on the
unique frictionless plant productivity cut-off – the vertical dashed line in Figure 1.
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Related Literature

This study is part of a rapidly expanding recent literature on the importance of
micro-distortions for aggregate productivity and welfare. It is closest in spirit to pre-
vious empirical studies that use micro-data to measure the extent of micro-level mis-
allocation. Following the methodology of Hsieh and Klenow (2009), this literature
consistently finds large potential aggregate TFP gains from removing intensive-margin
misallocation: Argentina could increase its TFP by 50-80% (Neumeyer and Sandleris
(2010)), Bolivia by 60-70% (Machicado and Birbuet (2008)), Colombia by 50% (Cama-
cho and Conover (2010)), Chile by 60-80% (Oberfield (2011)) and Uruguay by 50-60%
(Casacuberta and Gandelman (2009)). My research contributes to this literature by
extending the estimation methodology to account for the endogenous entry and exit of
firms.

This leads to two distinct innovations in the measurement and estimation exer-
cise. First, to correct for sample selection effects I employ a constrained Maximum-
Likelihood Estimator. This is necessary since factors influencing the survival of firms
such as overall market demand and factor prices impact the observable degree of
marginal revenue product dispersion.1 Furthermore, since firms that face high im-
plicit taxes only survive if they are very efficient, selection may bias the measured
correlation of frictions and firm efficiency upwards. To my knowledge, this study is the
first to systematically address selection issues when measuring micro-frictions. A re-
lated technical contribution is the estimation and solution of heterogeneous firm models
using joint log-normality with multiple sources of heterogeneity.2

Second, the basic Melitz-type endogenous selection model implies that part of the
observed factor demand is due to fixed costs of operation. As Bartelsman, Haltiwanger
and Scarpetta (2009) point out, the presence of these fixed costs may induce an artificial
correlation between measured distortions and plant productivity – suggesting that
larger firms are more distorted than they really are. I demonstrate that the model

1For example, consider two industries with two firms each, assume firm productivity is equal across
firms and industries. Within each industry, one firm is taxed and the other is subsidized. Suppose the
tax and subsidy rates are the same for each industry, such that both allocations are distorted to the
same degree. Within each industry, the subsidized firm will typically be able to offer its products at
lower prices, and will therefore have higher revenues than the taxed firm. If firms have to pay a fixed
cost of operation, they will decide to exit if their revenues are too low to cover this fixed cost. Now,
suppose that due to a difference in preferences, industry # 2 has such a low market demand that only
the subsidized firm can survive, while in industry # 1 both firms survive. An analyst ignoring market
selection would observe a difference in marginal revenue products of firms only in industry # 1 where
two firms survive, but not in industry # 2. Due to selection forces, the simple dispersion of marginal
revenue products might be a misleading indicator about how distorted allocations are.

2In principle this innovation also allows me to incorporate differences in firm level dispersions into
multi-country trade models with asymmetric trade frictions. This is part of ongoing research. See
also chapter 3.
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suggests a simple fixed-cost estimator that can be used to correct factor demands and
recover marginal revenue products from average revenue products.

My research also builds on another, more theoretical strand of the literature on
micro-frictions and aggregate TFP that does allow endogenous entry and exit. Ex-
amples are Restuccia and Rogerson (2008), Bartelsman et al. (2009) and Fattal Jaef
(2011).3 These papers typically calibrate either a stylized two-point distribution for
distortions, or compare model implications only roughly with data. In contrast, I esti-
mate the relevant parameters from micro-data. Furthermore, none of these theoretical
papers analyzes the impact of distortions on the efficiency composition of firms, or
decomposes the TFP effects of Zombies and Shadows. Instead, these papers typically
focus on the net welfare impact.

This chapter is also close in spirit to the literature on the “Macroeconomics of Re-
structuring,” and especially to Caballero et al. (2008).4 They provide evidence for the
hypothesis that the presence of Zombie firms in Japan could explain the dismal pro-
ductivity performance during the Lost Decade. In contrast to Caballero et al. (2008),
who used reduced-form sectoral TFP regressions, my work imposes more theory-driven
structure on the data. I allow for industry and general equilibrium feedbacks of micro-
frictions, utilize plant micro-data for the identification of Zombies, and concentrate on
steady-state effects of micro-distortions on the level of aggregate TFP. 5

1.2 Theory

This section develops the general equilibrium model in a simplified setup of a one-
sector closed economy with one factor and one wedge only. I derive implications for
measurement, and then discuss aggregate TFP effects in this model. In section 3 I
derive the full model which is taken to the data.

1.2.1 Model Setup

Consider the following one-sector closed economy. Following standard practice,
I assume that plants, indexed by ω, produce differentiated goods and sell them to
a competitive final good sector. This final good sector can be characterized by the

3See also recent papers analyzing financial frictions as a particular source for micro-frictions, such
as Buera, Kaboski and Shin (2011), Dong (2011), Greenwood, Sanchez and Wang (2010), Midrigan
and Xu (2010), and Moll (2010).

4 For a survey of this related strand of the literature, see Caballero (2006).
5The question of whether micro-level misallocation can quantitatively account for the deep Japanese

slump, compatible with the Hayashi-Prescott hypothesis, is the topic of ongoing research.
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following aggregate production function:

Y =

(∫
y(ω)

η−1
η · dω

) η
η−1

where η > 1 is the elasticity of substitution used to combine the differentiated goods
in a CES aggregator. There is a continuum of potential producers. For this section
only, I assume that the mass of producers indexed by ω is exogenously given.
Plants choose labor optimally to maximize their profits. Production is given by a
simple linear technology:

max
{L(ω)}

Π(ω) = (1− τ(ω)) · p(ω)y(ω)− wL(ω)

subject to: y(ω) = A(ω) · L(ω)
(1.1)

where L(ω) is labor input used by firm ω in production, p(ω) is the price this firm
charges, and y(ω) is the quantity it produces. Hence p(ω)y(ω) is the revenue of the firm.
Every producer of a particular variety ω is defined by a realization of his technology
parameter A(ω). Following Hsieh and Klenow (2009), τ(ω) is an output distortion
which is modeled as a revenue tax. The simplest motivation for this revenue wedge
is a model of expropriation or corruption. Suppose some firm owners are politically
connected and receive implicit subsidies from the state – the output distortion of these
firms will be negative τ(ω) < 0 reflecting the implicit subsidy. On the other hand,
if other firms are regularly subject to expropriation due to insufficient protection of
property rights, their output friction will be positive τ(ω) > 0 and act as implicit
tax. Since my focus is the cross-sectional heterogeneity between firms, I ignore time-
variation in both firm efficiency A(ω) and the wedge τ(ω).6

The distribution of firm types {A(ω), τ(ω)} can be characterized by a measure

µ

(
A(ω), τ(ω)

)
, which describes how many firms ω have productivity levels A(ω) and

implicit taxes τ(ω). With a slight abuse of notation, I adopt the convention that µ(ω) ≡

µ

(
A(ω), τ(ω)

)
, so that integration over dµ(ω) should be understood as integrating

over {A(ω), τ(ω)}. This eases the notational burden, especially in the empirical sections
where I integrate over three dimensions. Integration over the whole support of dµ(ω)

6The analysis of establishment dynamics since Baily, Hulten and Campbell (1992) suggests that
a model with permanent level differences and temporary shocks explains the data very well. See
Bartelsman and Doms (2000). Similarly Song and Wu (2011) and Midrigan and Xu (2009) find that
adjustment frictions and measurement error impact primarily the time variation of plants. Neither
factor can typically account for the cross-sectional heterogeneity of establishments. Following this
line of research, I therefore concentrate on the cross-sectional variation in the data. Appendix 1.B
provides additional empirical evidence on the viability of this approach.
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then gives the number potential of firms.
The optimal price in this setup is given by

p(ω) = m̄ ·
(

1

1− τ(ω)

)
·
(

w

A(ω)

)
(1.2)

where m̄ =
(

η
η−1

)
is the markup due to monopolistic competition, and

(
1

1−τ(ω)

)
is the

price markup due to the output distortion. Implicitly-taxed firms with positive frictions
τ(ω) will charge higher prices, and consequently produce sub-optimally low quantities.
At identical prices, implicitly taxed firms would have lower marginal revenues than
implicitly-subsidized firms with the same marginal cost. But since marginal costs are
equal, profit maximization requires that marginal revenues should be equal as well.
The optimal response of the implicitly taxed firm is therefore to cut back production
to increase its marginal revenue and raise its price as is reflected in the price markup(

1
1−τ(ω)

)
. A similar argument holds in reverse for firms receiving implicit subsidies.

For future reference I define
(

1
1−τ(ω)

)
as the measure of distortions, and will refer to

this markup when talking about distortions.
Once the optimal pricing and production strategy is determined, firms can calculate

their gross profits (1.1), and decide whether to continue operations or exit. If firms
exit, they are assumed to get an outside value, normalized to zero. If they stay in
business, they must hire an number of workers F at wage rate w. This fixed cost of
operation can be thought of as administrative overhead cost. The firm exits if

Π(ω)− w · F < 0 (1.3)

that is, if gross profits do not cover fixed cost wF .
To close the model, factor markets need to clear. One important assumption is

that the rents generated by expropriation will not be “lost to the economy”, but will
be spent.7 The aggregate resource constraint is therefore given by

PY = w · LP + Π + T

where PY is aggregate nominal expenditures, wLp is labor income for production
workers, Π is aggregate gross profits and T is net aggregate rents from micro-frictions.
Profits and aggregate net rents from micro-frictions are assumed to be rebated lump-
sum to households.8 The fraction of overall spending due to these net rents can be

7Note that other forms of distortions – which may induce resources to disappear, or in the case of
an implicit subsidy, to appear from nowhere – will typically be captured by the technology parameter
A(ω).

8A number of plausible micro-frictions require this rebate of net rents, such as wedges related to
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summarized by

τ̄ =
T

PY
=

∫
Π(ω)≥f

τ(ω) ·
(
p(ω)y(ω)

PY

)
· dµ(ω) (1.4)

which is a market-share weighted average of the micro-frictions. Equation (1.4) implies
that rent income is higher the higher distortions are on firms with large sales. Note
that τ̄ can become negative if all firms are on net subsidized. In this case, the resources
for these subsidies are assumed to come from lump-sum taxes on consumers.
The labor market clears

L = LP + LF

where Lp is aggregate labor used in production, and LF is aggregate labor used for
fixed costs of operation.

1.2.2 Equilibrium

An equilibrium is defined as combination of wages w, production labor allocation
Lp and an average tax rate 1

1−τ̄ , such that (i) final goods firms and monopolistic
competitors optimize, (ii) labor and goods markets clear, and (iii) net rents from micro-
frictions are redistributed lump-sum to consumers.

Proposition 1: Given that the labor force is normalized to L = 1, and
choosing the ideal price level as numeraire P = 1, equilibrium output per
worker is given by

Y =

[∫ (
A(ω)

1− τ(ω)

1− τ̄

)η−1

· dµ(ω)

] 1
η−1

=
Ā

1− τ̄
= TFPA (1.5)

where

• τ̄ is given by (1.4)

• Ā =
[∫

(A(ω)[1− τ(ω)])η−1 · dµ(ω)
] 1
η−1

If exit is endogenous, the integrals above are conditioned on Π(ω) > wF .

Proof: see Appendix 1.C.1
The next two sections explain the mechanisms through which micro-distortions lower
aggregate productivity. In both, I start with the effect of frictions on the firm level and

information asymmetries, expropriation risk, and incomplete contracting models. Distortions that are
not rebated could easily be accommodated.
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the associated measurement implications. Then, I aggregate up and show the macro
consequences of micro-level misallocation.

1.2.3 Allocation and aggregate TFP along the Intensive
Margin

Without endogenous exit, micro-distortions appear only in differences of marginal
revenue products across firms, as pointed out by Hsieh and Klenow (2009). To see
this in the simple model, it is helpful to think about the labor demand of firms. The
benefit to firm ω of hiring one more worker is A(ω) units of its goods. Selling these
results in a revenue of η−1

η
· p(ω) per unit. The marginal revenue product is therefore

1
m̄
p(ω) ·A(ω). Equivalently, sales per worker adjusted for the CES markup are p(ω)y(ω)

m̄L(ω)
.

In a frictionless equilibrium these marginal revenue products should be equalized across
firms; otherwise firms with higher marginal revenue products would have an incentive
to hire more workers while firms with lower marginal revenue products would have an
incentive to shed workers. It is straightforward to combine (1.2) with the production
function to show that

p(ω)y(ω)

L(ω)
= m̄ ·

(
1

1− τ(ω)

)
· w (1.6)

Equation (1.6) states that differences in sales per worker across firms reflect differences
in distortions, and not in firm productivity.9 To recover distortion parameters, note

that (1.6) can be solved for
(

1
1−τ(ω)

)
, and can be calculated from firm-level micro-data.

Once micro-level frictions are measured, I calculate the aggregate TFP implications.
As in the case with distortionary taxation, two forces are at work. First, there is a
price effect: higher distortions imply higher prices set by monopolistic competitors as
in (1.2) so that buyers substitute out of more expensive products. Second, there is a
rent (or revenue) effect: since the rents from higher taxes are not lost to the economy
as a whole, consumers spend the higher tax revenue on goods. The net effect is a
deadweight loss. This loss can be seen in equation (1.5), which shows how aggregate

TFP is affected when individual distortions
(

1
1−τ(ω)

)
deviate from their mean

(
1

1−τ̄

)
.

Note that if τ(ω) = τ̄ micro-distortions drop out of equation (1.5).
Figure 2 displays the allocative consequences of removing micro-frictions for the sales
of firms. The graph shows a distribution plot with firm level efficiency on the x-axis
and firm level distortions on the y-axis. Firms with higher y-axis values face a higher
implicit tax, while firms with higher x-axis values are more efficient. In this situation,
setting all distortions to zero will let firms above the zero-distortion line win sales

9This relies on CES demand and monopolistic competition, since otherwise size impacts markups
and therefore marginal revenue products. I consider the impact of this extension in appendix 1.D.
But, given that the demand system is known it is straightforward to control for endogenous markups.
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and firms below the line lose sales. This is the basic logic of calculating misallocation
losses along the intensive margin. The removal of distortions will therefore lead all
firms to line up along the zero distortion line, so that only efficiency is a source of
heterogeneity across firms. The bottom panel of Figure 2 then sums up the number of
firms for each efficiency type A(ω). Note that as the intensive-margin misallocation is
removed, the efficiency distribution of firms is held fixed. From this perspective, studies
that consider intensive-margin misallocation leave the efficiency distribution of firms
unchanged. Introducing extensive margin misallocation effects partly endogenizes this
efficiency distribution of firms.

1.2.4 Allocation and aggregate TFP with Extensive Margin

This section lays out how the presence of endogenous exit qualifies measurement
arguments and aggregate TFP implications of the previous section. Again I start with
measurement issues at the micro-level and then show macro implications for TFP.

Firms will exit if they do not generate sufficient gross profits to cover their fixed
cost. Rewriting the zero cut-off profit condition (1.3), one obtains10

log(A(ω))− log(Ā)−

[
m̄ log

(
1

1− τ(ω)

)
− 1

η − 1
log

(
1

1− τ̄

)]
≥ 1

η − 1
log[(η − 1)F ]

(1.7)
Equation (1.7) shows that the zero profit condition in this simple model can be under-
stood in terms of individual deviations from aggregate means. A firm will survive only
if its efficiency is sufficiently above the aggregate mean or its distortion is sufficiently
below the mean distortion. For future reference, I define components of the selection
equation as follows:

Z(ω) = A(ω) ·
(

1

1− τ(ω)

)−m̄
Z̄J ≡ m̄

(w
P

)
·
(
ηwF

PY

) 1
η−1

= [(η − 1) · F ]
1

η−1 · Ā
(

1

1− τ̄

) 1
η−1

(1.8)

with z(ω) = log(Z(ω)). The Z(ω) variable captures the importance of idiosyncratic
efficiency and firm distortions on net profits, while the Z̄J variable captures the impact
of both aggregate efficiency and fixed costs on survival.

To facilitate tractability in this section, I assume a specific functional form for joint
distribution of firm-level efficiency and micro-frictions. In particular, I assume that

10See Appendix 1.C.2
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log(A(ω)) and log
(

1
1−τ(ω)

)
are jointly normally distributed:11 logA(ω)

log
(

1
1−τ(ω)

) ∼ N

µA
µτ

 ,
σ2

A, σA,τ

σA,τ , σ
2
τ

 (1.9)

with the the correlation of efficiency and distortion given by ρA,τ =
σA,τ
σAστ

.
Note that given the distributional assumption in equation (1.9), z(ω) ≡ log(A(ω)) −
m̄ log

(
1

1−τ(ω)

)
is normally distributed with mean µA − m̄µτ and dispersion σz =√

σ2
A + m̄2σ2

τ − 2m̄σA,τ . Figure 8 shows firm survival in this simple model.12 The

straight line is equation (1.7) solved for
(

1
1−τ(ω)

)
, and displays the exit cut-off. Only

firms whose distortion is low enough or productivity high enough to be below this
survival line will actually be operating. Aggregate variables such as the required fixed
costs, aggregate efficiency Ā, and aggregate rents τ̄ enter the picture through their
impact on intercept of the survival line. For example, as aggregate efficiency Ā falls,
the survival line shifts to the left – allowing more firms to survive for lower realizations
of idiosyncratic efficiency or higher realizations of distortions.

The optimal exit decision induces sample selection. This is important for mea-
surement, since the observable measures of marginal revenue products will only reflect
firms that are not too heavily distorted to stay in business. To illustrate the sample
selection issues, I exploit log-normality from equation (1.9) to derive the observable
mean and dispersions of the distortion measures based marginal products. Since z(ω)
is normally distributed, I rewrite equation (1.8) as

z(ω) ≡ log(A(ω))− m̄ log

(
1

1− τ(ω)

)
= [µA − m̄µτ ] + σz · zN(ω)

where zN(ω) is a standard normal random variable. Therefore, we can rewrite the
selection equation (1.7) in terms of a standard normal random variable as

11For establishment-level micro-data such as the data used in this study, log-normality has been
shown to approximate size-distributions very well. The often-used Pareto distribution for firm sizes is
especially useful for the largest US firms, while even the US establishment-size distribution is better
approximated by a log-normal – see Sutton (1997), Rossi-Hansberg and Wright (2007) and Luttmer
(2010). Furthermore, a growing literature shows how power laws for the largest percentiles of firms
could be generated by the fact that large firms are multi-establishment entities. Power laws of firm
sizes could therefore result even as plant-level heterogeneity is characterized by log-normality. See
Growiec, Pammolli, Riccaboni and Stanley (2008) and Bee, Riccaboni and Schiavo (2011).

12The formal setup of self-selection is well known in the labor literature on Roy models, such as
Heckman and Honore (1990).
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zN(ω) ≥
log(Ā)− 1

η−1
log
(

1
1−τ̄

)
+ 1

η−1
log

(
(η − 1)F

)
− (µA − m̄µτ )

σz
≡ z̄J (1.10)

The analytical gain from this transformation is that truncated moments are especially
tractable, as is well known from the applied econometrics literature on sample selection.
To see the gain in tractability, let λ1(.) denote the Inverse Mill’s Ratio and λ2(.) the
variance of a standard normal conditional on (1.10).The observed mean and dispersion
of the distortion are given by13

E

[
log

(
1

1− τ(ω)

)∣∣∣∣zN(ω) ≥ z̄J

]
= µτ +

(
σA,τ − m̄σ2

τ

σ2
z

)
· λ1

(
z̄J

)
V ar

[
log

(
1

1− τ(ω)

)∣∣∣∣zN(ω) ≥ z̄J

]
= σ2

τ +
[
λ2

(
z̄J

)
− 1
]
·
(
σA,τ − m̄σ2

τ

σz

)2 (1.11)

One noteworthy result is that the degree of sample selection depends on the underlying
covariance of micro-distortions and firm productivity. When such productivity and dis-
tortions are uncorrelated, the sample mean of distortions will always underestimate the
underlying mean distortion, while the sample mean of productivity will always over-
estimate the underlying mean productivity. Intuitively, both the lowest-productivity
firms as well as the most highly-distorted firms tend to exit. This setup also allows us
to perform simple direct comparative statics to support our intuition. For instance, it
is straightforward to show that ∂λ1(z̄J )

∂z̄J
> 0 so that sample selection biases get stronger

as selection forces become more important.
Selection effects also have implications for the measurement of observable disper-

sions of micro-frictions. Consider the dispersion in equation (1.11): since λ2

(
z̄J

)
< 1,

in the case of uncorrelated micro-distortions and productivity, observed dispersions will
underestimate underlying dispersions.14 In general, it is misleading to generalize from
the truncated observable distribution to the underlying distribution without taking
selection into account.

The impact of endogenous exit on aggregate TFP and welfare can be summarized
as follows:

Y ∝ J
1

η−1 · TFPA (1.12)

where J is the number of firms operating, and TFPA is as defined below in equation
(1.13).

13The formulas for productivity mean and dispersion are analogous.
14These selection results continue to apply for as long as the density of the underlying type distri-

bution exhibits log-concavity. See Heckman and Honore (1990).
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There are two main differences in a model with an extensive margin when compared to
a model with only an intensive-margin. As can be seen in equation (1.12), the number
of firms is now endogenous and leads to variety effects. To illustrate these, I assume
that the full population of draws is exogenously given by J̃ .15 In Figure 8, this would
be the number of black and grey points together. The number of actual surviving firms
is therefore:

J =

∫
Π(ω)>wF

dµ(ω) = J̃ · Pr
(

Π(ω) > wF

)
= J̃ · [1− Φ(z̄J)]

The number of operating firms is determined by the number of latent draws multiplied
by the probability of survival. Whether variety effects magnify or dampen aggregate
TFP losses due to distortions is not obvious a priori and will depend on the underlying
distribution of efficiency and distortions. For example, suppose that efficiency and
distortions are highly positively correlated. As the dispersion of frictions increases,
mostly high-efficiency firms will be more heavily taxed. However, such firms are more
likely to survive despite the distortion, so fewer firms will exit and the number of
operating firms might actually increase as the dispersion of distortions increases. In
this case, the gain in variety will work to to offset other misallocation losses. Contrast
this with the case when the correlation of frictions and efficiency is negative – that is,
primarily low-efficiency firms are more heavily taxed. These low-efficiency firms will
exit very easily when the implicit tax on them is increased. Therefore, many firms will
exit, leading to a large net loss of variety, which in turn reinforces misallocation losses.

Additionally, aggregate TFP is now

TFPA = E

[(
A(ω)

1− τ(ω)

1− τ̄

)η−1∣∣∣∣ΩS

] 1
η−1

(1.13)

As per equation (1.8), the set of currently active firms in the distorted equilibrium
is given by

ΩS =

{
ω : A(ω) ≥

(
1

1− τ(ω)

)m̄
Z̄J

}
(1.14)

The presence of micro-frictions reduces aggregate TFP due to two channels. This is
illustrated in Figure 6. The first channel is the intensive-margin misallocation mecha-
nism of section 2.3. At the same time, holding the set ΩS constant leaves the efficiency
distribution of firms unaffected, as in Figure 7.

Removing extensive margin misallocation changes the set ΩS and reweights the
efficiency distribution of firms. Consider the example in Figure 1.1, which contrasts

15J̃ is endogenized later by modeling endogenous entry.
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the exit decisions in a distorted equilibrium with the exit decision in a frictionless
equilibrium. The set ΩS captures the firms southeast of the survival line – these are
the survivors in the distorted equilibrium. In contrast, only firms to the right of the
vertical dashed line would survive in a frictionless equilibrium. The survivors in the
frictionless equilibrium can be summarized by the set

Ω∗S =
{
ω : A(ω) ≥ Z̄∗J

}
(1.15)

For the set Ω∗S, firms are selected based on their efficiency only. The difference
between the two exit rules classifies firms into four categories. First, Always Survivors
will be active in both the distorted and in the frictionless equilibrium. Second, always
exiters will decide to leave both the distorted and the undistorted markets. Third,
Shadows would be efficient enough to survive in a frictionless equilibrium, but are
pushed out by micro-frictions. Fourth, Zombies would exit in a frictionless equilibrium,
but are implicitly subsidized and can therefore survive in a distorted equilibrium.
To obtain the productivity composition of the frictionless equilibrium, two things need
to happen: Zombie firms need to exit, and Shadow firms need to enter. Figure 8
illustrates how this would change the efficiency distribution of firms endogenously.
The efficiency distribution in the frictionless equilibrium has more weight at higher
values of firm productivity as in Figure 9.

How strongly micro-distortions affect the equilibrium efficiency composition de-
pends on the underlying joint distribution of firm distortions and efficiency. The ex-
ample equilibrium in Figure 4 exhibits a low covariance of distortions and efficienc,y
and a low degree of dispersion of frictions. The sets of both Zombies and Shadows
are mostly drawn from the middle of the efficiency distribution. Contrast this with
Figure 5, in which the dispersion of efficiency is the same but both the correlation of
frictions and efficiency at the firm level as well as the dispersion of distortions is high.
The striking feature is that, in this situation, Shadow firms are the highest-efficiency
firms, while Zombie firms are mostly the lowest efficiency firms. The extent of extensive
margin misallocation will therefore be much higher in the allocation shown in Figure
5 than in Figure 4.

The composition effect of extensive margin misallocation on efficiency has implica-
tions for the measured distribution of firm-level efficiency. Specifically in countries in
which extensive margin misallocation is less pronounced, the efficiency distribution of
firms should be more left skewed – that is, there should be more mass concentrated
at the higher values of efficiency. Figure 10, which is from Hsieh and Klenow (2009)
is suggestive in this respect; it displays estimates of the efficiency distribution of firms
relative to the mean efficiency in India, China, and the US. A major caveat when
interpreting this graph is that the estimates are across all 4-digit sectors. This can
be important if survival cut-offs differ across these sectors. Nevertheless the skewness
of the US efficiency distribution compared to India and China is compatible with the
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view that extensive margin misallocation is less important in the US than in India
or China. This stylized fact has been emphasized repeatedly in the literature – for
instance in Banerjee and Duflo (2005), who refer to the “thick left tail” of Indian firms.
Figure 11 shows that the qualitative features of this shift in the efficiency distribution
can be replicated by contrasting the allocation of Figure 4 with the heavily-distorted
allocation of Figure 5.

1.2.5 Conceptual Decomposition of Extensive Margin
Misallocation Effects

In this section, I propose a decomposition that allows me to analyze how much of
the extensive margin misallocation loss is due to the retention of Zombies versus the
premature exit of Shadows. The overall aggregate TFP loss from removing distortions
can be decomposed as follows:E

[(
A(ω)1−τ(ω)

1−τ̄

)η−1
∣∣∣∣ΩS

]
E

[
A(ω)η−1

∣∣∣∣Ω∗S]


1
η−1

=

Intensive-Margin Misallocation


E

(A(ω)
1−τ(ω)

1−τ̄ )
η−1

∣∣∣∣ΩS
E

A(ω)η−1

∣∣∣∣ΩS


1
η−1

Extensive Margin Misallocation



Zombies

×
E

A(ω)η−1

∣∣∣∣ΩS ⋃Ω∗S


E

A(ω)η−1

∣∣∣∣Ω∗S


1
η−1

Res. EM

×
 E

A(ω)η−1

∣∣∣∣ΩS
E

A(ω)η−1

∣∣∣∣ΩS ⋃Ω∗S




1

η−1

(1.16)

The first term in (1.16) removes all wedges between the set of firms that is given in the
distorted allocation, formalizing the mechanism from section 2.2 that is displayed in
Figure 2. The extensive margin misallocation effect is the combination of the second
and third terms. The second term compares TFP at the efficient composition of firms
shown in Figure 9 to aggregate TFP when firms of the frictionless equilibrium and

15



Zombie firms are active as in Figure 8. This ratio answers the question of how much
aggregate TFP would fall if we would force the market to keep Zombie firms active at
the production levels implied by their low efficiency. This term therefore summarizes
how the reallocation of resources from firms active in the frictionless equilibrium toward
the Zombie firms reduces TFP. The third term captures a residual effect conditional
on the existence of Zombies – it compares aggregate TFP with the composition of
currently active firms as in Figure 7 to the composition of firms in Figure 8. The latter
is comprised of all firms in the frictionless equilibrium plus the Zombie firms. Then,
given that Zombie firms with low productivity cannot be forced to exit, how much
aggregate productivity would be recovered by letting Shadow firms exit and reallocate
their resources to the Always Survivors and Zombies? Note that the exit of Shadow
firms does not necessarily increase aggregate productivity, as the resources of Shadow
firms are not only reallocated towards Always Survivors but also to Zombies as well.
Which effect dominates, and if this Residual EM-Reallocation effect is increasing or
reducing aggregate TFP, is ultimately an empirical question.

1.3 Empirical Methodology

This section gives an overview of the estimation strategy to correct for sample
selection in order to estimate the full underlying distribution of firm efficiency and dis-
tortions. Based on these estimates, I calculate a counter-factual frictionless equilibrium
to generate the efficiency cutoff in this frictionless equilibrium.

1.3.1 Extended Model

I start by extending the model to more credibly capture the main features of the
data when quantifying the effects discussed in the theory section. The main extensions
are the following.

Extension 1: Capital enters the production function on the firm level and there will
be a net wedge distorting the mix between capital and labor

Extension 2: The number of potential firms is endogenized with free entry.

Extension 3: There will be multiple sectors, with an elasticity of substitution of 1
across sectors

Each of these extensions serves a particular function when confronting the model
with the data. Extension 1 introduces a capital wedge, since within 4-digit industries
marginal revenue products of capital are distributed differently from marginal revenue
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products of labor.16 It should be noted that the capital wedge stands in for a net
wedge between capital and labor – a separate labor wedge could be introduced, but
its effects would map into the current size and net capital wedges. Extension 2 allows
me to quantify the number of overall latent productivity and distortion draws, and re-
lates them to resources allocated to each sector.17 This enables me to estimate overall
sectoral resources because it uncovers resources spent by entrants. Furthermore, this
extension allows me to take into account welfare effects from expansion of variety due
to changes in entry. Extension 3 is important for two reasons. First, exit cut-offs are
likely to be differ across sectors as for example different distributions of efficiency and
distortions will imply different ideal price levels. Second, when calculating counterfac-
tuals, changes in factor prices could potentially affect entry and exit due to changes
in the prices of fixed costs incurred by entrants and operating firms. Modeling a full
multi-sector general equilibrium allows me to endogenize factor prices in counterfactual
experiments.

The extended model is as follows. Total output is given by:

Y = ΠS
s=1Y

ξs
s with ξs ∈ [0, 1],

S∑
s=1

ξs = 1 (1.17)

where ξs are assumed to be given by the sectoral shares in value added. Monopolistic
competitors ω in sector s solve the static profit maximization problem:

max
{Ks(ω),Ls(ω)}

Πs(ω) = [1− τY,s(ω)] · ps(ω)ys(ω)− wLs(ω)− [1 + τK,s(ω)] ·R ·Ks(ω)

subject to: ys(ω) = As(ω) ·Ks(ω)αsLs(ω)1−αs

(1.18)

where R is the economy-wide rental rate of capital and the endogenous exit decision
given by

Πs(ω) ≥ Bs · [(1 + τK,s(ω))R]αsw1−αsFs (1.19)

Note that fixed costs here are firm-specific, since they are subject to the same fac-
tor frictions as variable costs. To facilitate exposition, define: fs(ω) ≡ Bs · [(1 +
τK,s(ω))R]αsw1−αsFs with Bs = α−αss (1− αs)−(1−αs)

16Alternatively, this might suggest that technological factor shares are different across firms. While
I cannot control for this issue with my current data, in principle this could be resolved with corre-
sponding establishment-level data from a wealthy country like the US. It is with this caveat in mind
that I also analyze in section 5 the TFP effects of only partially removing micro-distortions, allowing
for much of the cross-sectional firm heterogeneity to reflect other factors than distortions.

17In other words this is endogenizing the number J̃ from section 2.5.
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Finally the endogenous entry decision in steady state is given by:

Ve,s =
∞∑
t=0

δts · Pr
(

Πs(ω) ≥ fs(ω)
)
· E
[
Πs(ω)− fs(ω)

∣∣∣Πs(ω) ≥ fs(ω)
]

≥ Bs ·Rαsw1−αsFe

(1.20)

where δs is an exogenous death shock for the firm, mostly capturing the age effects of
firm exit behavior. The specification of the fixed cost of entry follows the way these
are specified in earlier studies, such as Fattal Jaef (2011) or Hsieh and Klenow (2011).

1.3.2 Calibrated and Observed Data

This section describes additional assumptions that facilitate the empirical analysis.
First, I calibrate a number of parameters of the model in accordance with evidence from
other studies. Second, I describe the data requirements and measurement assumptions
underlying the estimation.

The primary calibrated variables are the elasticity of substitution η and factor
prices. I follow Hsieh and Klenow (2009) ans set η = 3 – in the middle range of existing
estimates from trade data (Broda and Weinstein (2006)). Again, following Hsieh and
Klenow (2009) I set the rental rate to 10%. The economy- wide wage is directly picked
from evidence from the World Bank labor-market database, which is based on national
establishment level surveys that are adjusted to enhance cross-country comparability.18

Factor shares in the Cobb-Douglas production function of monopolistic competitors are
set to the corresponding factor shares of US 4-digit sectors from Bartelsman, Becker
and Gray (2000).19 For sectors that do not have any correspondence with a 4-digit
sector in the US, I assume that the capital share is αs = 1/3. Results seem to be
unaffected by either calibrating this capital share or omitting these sectors altogether.

Mapping the available establishment-level micro-data to the quantities in the model
is done according to the following principles. First, since my theory concentrates on
output and capital wedges, I map the revenue measure ps(ω)ys(ω) to value added.20

As Jones (2011b) points out, this basically ignores the effects of possible distortions

18The mismeasurement of these aggregate prices will influence only the estimated means, and there-
fore plays virtually no role in the counterfactual exercises later, in which only the dispersions or
correlations of distortions are changed.

19It is well-known that labor shares from these data underestimate actual compensations by ex-
cluding fringe benefits such as social security contributions. I therefore impute these following Hsieh
and Klenow (2009) by inflating the reported wage-bill by a constant factor. This ensures that the
aggregate capital share implied by the sectoral data for the US is consistent with the estimates from
NIPA data.

20Note that this assumes the existence of a value-added aggregator that is Cobb-Douglas. See Basu
and Fernald (2000) and Diewert (1978).
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Parameter Value Explanation

η 3 Elasticity of Substitution between varieties
Hsieh and Klenow (2009)

R 1.1 Aggregate rental rate
Hsieh and Klenow (2009)

w Country data Aggregate wage rate
World Bank Labormarket database

αs US data Sectoral capital share
Bartelsman et al. 2000

δs from Turnover Probability of death shock
(see section 3.4)

Table 1.1: Calibrated Values

across firms to the use of intermediate goods. I do this mostly for reasons of compara-
bility with Hsieh and Klenow (2009) and related studies that focus on intensive-margin
misallocation. The method of this chapter could easily be extended to accommodate
more sources of heterogeneity. Second, the observed data on factor demand are typi-
cally annual values that do not differentiate between fixed and variable cost factors. I
therefore be maintain the assumption that measured labor is the sum of fixed-cost and
variable-cost workers. More formally,

LM,s(ω) = LP,s(ω) + LF,s(ω)

KM,s(ω) = KP,s(ω) +KF,s(ω)

i.e. measured labor for plant ω in sector s denoted by LM,s(ω) is the sum of labor for
production purposes LP,s(ω) plus labor demand to cover fixed overhead costs LF,s(ω).
The same measurement assumption is applied to capital, which is measured as the
reported book value of the establishment capital stock.

All variables calculated on the establishment-level are time averages for my seven
year panel. This reflects the low persistence of temporary shocks I document in Ap-
pendix 1.B and will therefore capture the permanent plant level distortions and effi-
ciency differences my theory focuses on. Song and Wu (2011) advocate this “General-
ized Marginal Revenue Product”-Approach to focus on the cross-sectional dimension
of establishment level frictions.
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Model Quantity Corresponding Data

ps(ω)ys(ω) Establishment value added

KM,s(ω) Book value of capital

LM,s(ω) Establishment wage bill deflated by wage

Pr
(
Πs(ω) > fs(ω)

)
Probability of survival of entrants

Table 1.2: Model variables and corresponding data

The last measurement assumption concerns the probability of survival of entrants.
This probability is observed directly in the data, as I can measure how man establish-
ments with a specific birth year in the survey are remain later.

1.3.3 Fixed-Cost Estimator

In this section, I derive from the model an estimator for fixed costs. To show
why this might be necessary, I concentrate on the scale wedge 1

1−τY (ω)
. The Melitz-

type extensive margin model with fixed costs of operation would imply that as long
as a firm produces, it must hire LP (ω) workers for production and F workers for the
overhead fixed costs. It follows that the measured amount of labor for a firm would
be LM(ω). It is straightforward to show how measurement of labor impacts distortion
measurement. Measured distortions are given, similar to (1.6), by

p(ω)y(ω)

LM(ω)
= m̄

w

1− τ(ω)

(
LP (ω)

LP (ω) + F

)
If F is the same across firms, then this changes the correlation structure of micro-
frictions and productivity. Note that as firms become larger, LP (ω) is larger and hence

the term
(

LP (ω)
LP (ω)+F

)
will be close to 1. However, for very small firms this term will be

less than 1, as LP (ω) is small. As a consequence, larger firms will look more distorted
than small firms, even if no such correlation is present. A simple approach for dealing
with this issue in the current context is to utilize the optimal exit decision of firms to
estimate the fixed cost of operation.

Proposition 2: Fixed-Cost Estimate

Let Fs be the amount of the Cobb-Douglas composite KM(ω)αsLM(ω)1−αs

needed to pay for fixed costs of production. Fixed costs of operation in
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the monopolistic competition model, with productivity heterogeneity and
micro-distortions under endogenous entry and exit, are given by

Fs =
1

η
min
ω

{
KM,s(ω)αs · LM,s(ω)1−αs

}
(1.21)

Proof: Appendix 1.C.3
The intuition behind this estimation approach is that the econometrician is focusing
on the smallest firms in an industry. For these firms, production is only a very small
fraction of factor demand, while fixed costs of operation are the bulk of factor demand.
Hence, the factor demand of the smallest firms within the same narrow industry should
be a viable proxy for the typical fixed cost for firms in the industry.21

In contrast to other attempts to deal with this issue in the literature, I do not need
to assume a particular functional form for the productivity distribution or about the
distribution of distortions to estimate fixed costs. These distributional assumptions
are necessary only for dealing with selection effects. The cost of this is that the only
heterogeneity in fixed costs of operation for which I allow, are the same wedges that
distort production. However, under endogenous exit, even random variation in fixed
costs across firms has a very limited impact on distortion measurement, as I show in
Appendix 1.E.22

1.3.4 Maximum-Likelihood Estimation with Equilibrium
Constraints

I now turn to the issue of sample selection. In this section, I derive a likelihood
function based on the assumption of multivariate log-normality for efficiency and dis-
tortions. A novel feature compared to well-known selection estimators from the labor
literature – such as Heckman and Honore (1990) – is the use of equilibrium constraints.
The primary issue is that I do not directly observe the welfare-based CES price level.
But, note that, as in (1.7) and (1.8), this ideal price level also influences the exit de-
cision of firms. This can be an issue when estimating the underlying distributions of
distortions and efficiency from sample-selected observed distributions. For example,
as the underlying dispersion of distortions increases, there are more heavily distorted
plants and more firms might exit. As a result, the ideal price index could rise as fewer
varieties are offered, but with a higher price level more firms now might be able to

21I also experimented with using the first and the second percentile of factor demands, instead of
the minimum. The estimation for distortions and efficiency seem not significantly affected by this
variation, because I follow Hsieh and Klenow (2009) and drop the 1% outliers of the data.

22 Note also that the bias in TFPR from overhead costs will be less important if fixed costs of
production systematically increase with firm size.
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survive. This connection between the underlying distributions and equilibrium sample
selection needs to be taken into account. Moreover, under the current distributional
assumptions, this price level is a non-linear fixed point that cannot be explicitly solved
for the underlying parameter vector. Formally, the problem I face is similar to con-
strained MLE estimation of dynamic discrete choice problems, such as Rust (1987).
Instead of using popular Nested Fixed Point algorithms to address this issue, I fol-
low Su and Judd (2010) in formulating the estimation problem as a “Mathematical
Program with Equilibrium Constraints” (MPEC).23

As discussed in section 3.2, the main required data for this estimator are value
added, factor inputs, and the conditional probability of exit for entrants. To get an
intuition for identification, remember that firm-heterogeneity in my model is driven
by three sources: net output-wedges 1

1−τY,s(ω)
, net capital wedges

(
1 + τK,s(ω)

)
and

efficiency As(ω). In measuring these sources of heterogeneity I basically follow Hsieh
and Klenow (2009). To identify the output wedge, recall that LP,s(ω) is the labor
input after the measured labor input LM,s(ω) is corrected for fixed costs, as in the
last section. Then, heterogeneity in output per worker on the firm level should reflect
primarily the output wedge:

d1,s(ω) ≡ 1− αs
m̄

ps(ω)ys(ω)

wLP,s(ω)
=

1

1− τY,s(ω)

The identification of the net capital wedge relies on information on establishment-level
labor intensity. After the calibration of sectoral capital shares αs from US data and
factor prices w and R, labor intensity should reflect net capital wedges:

d2,s(ω) ≡ αs
1− αs

LM,s(ω)

KM,s(ω)

w

R
= (1 + τK,s(ω))

In the discussions of estimates, I will sometimes follow Hsieh and Klenow (2009) and
summarize both frictions into one joint distortion:24

log TFPRs(ω) =
(1 + τK,s(ω))αs

1− τY,s(ω)
(1.22)

Note that the estimation procedure identifies both distortions separately. Later, the

23Like Su and Judd (2010), and Dube, Fox and Su (2009) I find in Monte Carlo test-runs that the
use of MPEC methods facilitates numerical stability and reliability of estimates.

24Note that equation (1.22) applies in a strict sense only if factor shares are the same across firms
within the same industry and Cobb-Douglas is a reasonable approximation to plant-level production
functions. However, as Dong (2011) shows, generalizing the production function to CES and allowing
for measurement error has quantitatively small implications for the measures of establishment-level
frictions.
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counterfactual experiments will analyze aggregate TFP changes as one friction is re-
moved without changing the other.

Efficiency differences As(ω) are identified by using the CES demand system,25

d3,s(ω) ≡ log TFPQs(ω) ≡ As(ω) =
ys(ω)

KP,s(ω)αsLP,s(ω)1−αs

with ys(ω) =
[
ps(ω)ys(ω)

] η
η−1 (PsYs)

− 1
η−1

Ps

so that efficiency can be recovered from inverting the size of the firm in terms of value
added. The crucial point here is that the main data necessary are nominal value
added ps(ω)ys(ω), and factor inputs Ks,M(ω) and Ls,M(ω). The one parameter that
cannot be readily identified is the value of the ideal price index Ps. Studies focusing
on only intensive-margin misallocation typically normalize this value to one. Since
the underlying distortions impact the sectoral ideal price level, which in turn affects
selection, I do not follow this strategy here. Instead, I include the ideal price level
as an additional estimation parameter but require that the price level satisfies a fixed
point that describes industry equilibrium.26

This model also offers a natural method to utilize plant exit and survival data to
get information about truncation. The probability of firms that survive given by

Pr
(
zN(ω) ≥ z̄J,s

)
= 1− Φ

(
z̄J,s

)
To get the necessary information, I note that, as in Melitz (2003), steady state turnover
is given by

Je,s · Pr
(
zN(ω) ≥ z̄J,s

)
= δs · Js (1.23)

where Je,s is the number of entering firms in industry s, δs is an exogenously-given exit
probability, and Js is the number of firms surviving in the industry. This steady-state

turnover condition helps to calibrate two moments. First, Pr
(
zN(ω) ≥ z̄J,s

)
is given

by the mass of firms surviving, conditional on entry. Second, given that we can observe
the number of entering firms Je,s as well as the number of operating firms Js, and have

an estimate of Pr
(
zN(ω) ≥ z̄J,s

)
, (1.23) indicates the value of δs that is compatible

25This strategy basically follows Klette and Grilliches (1996) and Hsieh and Klenow (2009) to infer
efficiency from the contrast between firm size and factor demand.

26Note that estimating sequentially by sector does not mean that the estimation is “Partial Equilib-
rium only.” I do not need to require anything about multi-sector GE in the estimation setup, as I can
observe or calibrate aggregate factor prices w and R. I make sure later that these factor prices describe
a general equilibrium in my model, when the factor demands in entry cost inputs are recovered from
GE conditions.
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with steady-state turnover.
Finally, I have to take account of the possibility that measurement error might lead

to the observation that some plants are above the survival line. According to the steady-
state model here, this would actually be impossible to observe. The simplest approach
to deal with this issue is the addition of a zero-mean measurement error into the
selection equation. The estimation section discusses how important this measurement
error is in describing the observed data.

Proposition 3: MLE Estimation with Equilibrium Constraint

Let the parameter vector for each sector s be given by

θs =
[
µA,s;µτY ,s;µτK ,s;σA;στY ,s;στK ,s; ρAτY ,s; ρAτK ,s; ρτY K ,s;σe

]
The Maximum-Likelihood Estimator for the model with productivity het-
erogeneity and micro-distortions under endogenous entry and exit, can be
written as

max
θs,ln(Ps)

∑
ω

ln

φ
(
d1,s(ω), d2,s(ω), d3,s(ω)

∣∣∣θs, ln(Ps)
)

1− Φ
(
z̄J
(
θs, ln(Ps)

))


subject to:

ln(Ps) = p̄IM(θs) +
1

η − 1
ln

(
Je,s
δs

)
+

1

η − 1
ln

[
1− Φ

(
z̄J
(
θs, ln(Ps)

)
+
σxz(θs)− (η − 1)σz(θs)

2

σz(θs)

)]

where φ(.|θs, ln(Ps)) is a normal density with parameter vector {θs, ln(Ps)}, and Φ(.)
is the cdf of a Standard-Normal. Other implicitly-defined variables in this estimation
exercise include the following:

us =

(
R

αs

)αs ( w

1− αs

)1−αs

Z̄J = ln

[
m̄

(
us
Ps

)(
PsYs

η · us · Fs

)− 1
η−1

]
σxz(θs) = m̄αs(αsσ

2
τK ,s

+ ρτYK ,sστK ,sστY ,s) + m̄(αsρτYK ,sστK ,sστY ,s + σ2
τY ,s

)

− (αsρAτK ,sστK ,sσA,s + ρAτY ,sσA,sστY ,s)
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σ2
z(θs) =

(
m̄αsστK ,s

)2
+
(
m̄στY ,s

)2
+ σ2

A,s

+ 2m̄
(
ρτYK ,sστK ,sστY ,s)− σA,s(ρAτY ,sστY ,s − ρAτK ,sστK ,s)

)
+ σ2

e

z̄J
(
θs, ln(Ps)

)
=
Z̄J + m̄(αsµτK ,s + µτY ,s)− µA,s

σz

p̄IM(θs) = µτY ,s + αsµτK ,s − µA,s

− 1

2
(η − 1)

(
σ2
A,s + σ2

τY ,s
+ σ2

τK ,s
+ 2ρτYK ,sστK ,sστY ,s

)
+ (η − 1)σA,s

(
ρAτY ,sστY ,s − ρAτK ,sστK ,s

)
Proof: see Appendix 2.C.4
Note that the constraint in Proposition 3 is a nonlinear fixed point in the ideal price
level Ps, which cannot be explicitly solved for the entering parameter vector θs.

27

Statistical inference is discussed in the next section.
To gain additional intuition behind the estimation procedure, consider Figure 12.

The dark stars will typically be data for firms that stay in business. The ellipses
constitute contour plots of the joint density of firm efficiency and distortions. Changes
in the parameter vector θs adjust the shape of the underlying distribution. These
changes in the underlying distribution also lead to equilibrium responses of the ideal
price level Ps(θs) as shown in equation (1.8) and therefore shift the survival line. Hence,
the MLE estimator will jointly adjust the shape of the distribution and the position of
the survival line to optimally fit the data points of firms in operation.

1.3.5 Statistical Inference of MLE with Equilibrium
Constraints

As discussed in Su and Judd (2010) the use of equilibrium constraints in estimation
introduces additional considerations when computing standard errors. The equilibrium
constraint is a restriction on the parameter space and therefore typically can increase
the efficiency of estimates.

Proposition 4 (Su and Judd (2010)): MLE Inference with Constraints

Let ψ = [θ, log(P )]. Suppose θ0 ∈ Θ is the vector of true parameter values
and denote the likelihood at the true values by L(ψ0) and the constraint

27Despite being highly non-linear, this MLE estimator is continuously differentiable in its ten pa-
rameters. I therefore proceed to use derivative-based quasi-Newton solvers linked to KNITRO to
solve the corresponding constrained non-linear optimization problem. These solvers are especially
well-equipped to deal with medium-scale non-linear optimization subject to non-linear constraints, as
I encounter in this problem.
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set by h(ψ0) = 0. Given matrices H0 = ∂h(ψ0)
∂ψ

and B0 = E
[
∂L(ψ0)
∂ψ

∂L(ψ0)

∂ψ′

]
.

Assume the following conditions hold:

(i) Θ is compact

(ii) θ0 is in the interior of Θ.

(iii) Observations are iid draws from the assumed distribution

(iv) The likelihood function is C3 and the constraint is C2

(v) The matrix B0 is positive definite

Then, √
J(ψ̂ − ψ0)

d−→ N(0, S0)

with S0 = B−1
0 [I −H0(H

′
0B
−1
0 H0)−1H

′
0B
−1
0 ]

Proof: see Su and Judd (2010) and Silvey (1975)

1.3.6 Identification of Zombies and Shadows

To identify Zombies and Shadow firms exit rules, for the counter-factual frictionless
equilibrium are required. After obtaining the estimation vector θs for each sector, I use
these results to calculate aggregate sectoral factor demand Ls and Ks. Remember that
the data report the annual factor demands of operating firms, but not the resources for
the entry fixed costs prior to opening the business. To obtain aggregate factor demand,
I need to infer resources spent by new entrants on fixed costs of entry. Combining the
information on the latent mass of firms with the distribution of heterogeneity allows
me to recover these parameters from aggregate resource constraints. Appendix 1.C.5
shows how this is done.

After inferring the values of Ls and Ks from the data, I define the relevant economy-
wide factor endowments as L =

∑S
s=1 Ls and K =

∑S
s=1Ks. The counterfactual

frictionless equilibrium is computed by taking the aggregate factor endowments for the
whole economy as given. This is standard practice in studies that analyze intensive-
margin misallocation only. Note that the welfare effects will be larger if capital is
allowed to accumulate in response to removing frictions.

1.3.7 Aggregate Total Factor Productivity

For the purpose of evaluating the welfare gains of removing distortions, I summarize a
key result in proposition 5 below.

Proposition 5 summarizes the aggregate sector-level TFP consequences of the ex-
tended setup and makes comparison with the simplified model in Section 2 possible.
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The proposition displays TFP in real consumption units: sectoral TFP deflated by
the ideal CES price index. As in section 2, the first term summarizes net variety ef-
fects, while the second term captures aggregate TFP. There are two main differences
to the simple model in Section 2. First, the overall firm level distortion is a geometric
composite of output and capital wedge. This is summarized in (i) of Proposition 5.
Second, since the capital wedge distorts the overhead fixed costs the same way it dis-
torts production costs, the capital wedge induces a reallocation of fixed cost resources
across firms. I subsume this allocational effect under the aggregate TFP effects, as it
is usually quantitatively small.

Note that varieties are normally not measured in industry-level price deflators, so
that I will refer to sectoral TFP without any variety effects as TFP and to the TFP
measure including these variety effects as “Overall Real TFP”.

Proposition 5: Sectoral TFP

In equilibrium, sectoral aggregate real output per inputs is given by

Ys
Kαs
s L

1−αs
s

=

Variety
{
J

1
η−1
s

TFP



(∫
πs(ω)≥fs(ω)

[
1−τs(ω)

1−τ̄s

]η−1

As(ω)η−1 · dµ(ω)
µ(πs(ω)≥fs(ω))

) 1
η−1

×

(
1− T̄Kα,s( 1

η
−le,s)+le,s

1
m̄

(
1

1+τ̄K,s

)
+T̄Kα,s( 1

η
−le,s)+le,s

)αs (
1− 1

η

)1−αs

with

(i) Overall distortion:
(

1
1−τs(ω)

)
=

(
1+τK,s(ω)

)αs
1−τY,s(ω)

and
(

1
1−τ̄s

)
=

(
1+τ̄K,s

)αs
1−τ̄Y,s

(ii) Fixed cost allocation T̄Kα,s =
(∫

Πs(ω)>fs(ω)[1+τK,s(ω)]αs−1dµs(ω)∫
Πs(ω)>fs(ω)[1+τK,s(ω)]αsdµs(ω)

)
(iii) le,s denoting the fraction of the sectoral labor force that are entry-cost

workers

Proof: see Appendix 2.C.6

1.4 Conclusion

This chapter developed an estimation methodology to estimate extensive margin
misallocation effects on aggregate TFP. The data requirements of this methodology are
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modest. At a minimum it requires one cross section of data on value added and factor
inputs and industry-level estimates on entry and exit. In the next chapter I apply this
methodology to establishment level microdata from a major developing economy to
evaluate the quantitative importance of this extensive margin misallocation channel.
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Chapter 2

Extensive Margin vs. Intensive
Margin Misallocation in Indonesia

2.1 Introduction

This chapter contributes to the existing literature by showing that extensive mar-
gin misallocation can be a quantitiatively important determinant of aggregate TFP. I
illustrate this point with data from Indonesia in the 1990s, where it has been argued
that political connections and ethnic diversity strongly distorted business decisions.
(Fisman (2001)). My empirical results demonstrate that removing micro-distortions
would increase macroeconomic TFP in Indonesia by 67%. As such, by improving the
allocation of resources along the intensive margin, aggregate TFP can rise by a factor of
1.7. This is in line with previous work by Hsieh and Klenow (2009) who show that the
removal of intensive-margin misallocation could increase aggregate TFP by 80-100% for
China and India. Additionally removing extensive margin misallocation could increase
aggregate TFP by another 44%. This means that overall aggregate TFP gains from
such adjustments are closer to a factor of 2.45, or 145%. The extensive margin mis-
allocation channel suggests that misallocation losses are over 50% larger than implied
by considering only intensive-margin misallocation. Furthermore, I document that the
feature of the data that drives these results is the extent of covariance of efficiency
and wedges at the firm level. Seen through the lens of my model, a higher covariance
means that more high-efficiency firms face a high implicit tax, and therefore exit. At
the same time, more low efficiency firms benefit from a high implicit subsidy and are
artificially kept alive. Hence, the efficiency of Shadows will be particularly high and
the efficiency of Zombies will particularly low so that replacing Zombies with Shadows
would boost aggregate productivity more.
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2.2 Data and Empirical Results

2.2.1 Overview of Data

For Indonesia, I use the Statistik Industri, an annual panel data set of medium and
large plants.1 The data set collects information for all Indonesian establishments with
more than 20 employees. Among the surveyed variables are the wage-bill and number
of employees, capital stocks at book values, birth year of the plant and value added.
The sample contains approximately 20,000 plants each year. I use sample years 1990-
1996, as these years have consistent industry classifications before the Asian Crisis.
Estimation is done at the 4-digit industry level, which, after some data cleaning, leaves
me with 40 sectors capturing approximately 80% of manufacturing activity.2

2.2.2 Reduced Form Evidence on External Validity

Before turning to the actual estimation, I verify the external validity of the con-
structed measures of distortions and efficiency. The key mechanism of this chapter
implies that distortions and efficiency should have predictive power for exit decisions
of plants. Plants with higher values of TFPR should be more likely to exit, while es-
tablishments with higher TFPQ should be less likely to exit. Table 2.1 documents this
pattern in simple discrete choice regressions. A similar argument would suggest that
participation in exporting is driven by firm-level distortions and efficiency. However,
in contrast to the exit regressions, the signs on both efficiency and distortions should
flip. As only the most efficient and the least distorted firms should decide to export,
the prediction is that high-TFPR (low-TFPQ) plants should be less (more) likely to
export. The final columns of Table 2.1 show how these patterns are observable in the
data.

In the remainder of this chapter, I ignore international trade. Appendix 2.A doc-
uments simulation evidence from a multi-country trade model regarding why this is a
reasonable approach in the context of measuring micro-level misallocation.3

1As the data set has been intensively analyzed before by Amiti and Konings (2007) and Peters
(2011), I refer the interested reader to the data discussions in these papers.

2I restrict estimation to sectors that have more than 100 establishments and include other sectors
with more than 70 plants only if their share in aggregate value added is at least 1%. Furthermore,
I follow Hsieh and Klenow (2009) and remove the 1% tails of the data to minimize the impact of
outliers.

3The topic of complementarities between domestic micro-distortions and frictions in international
trade is research in progress.
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Table 2.1: Exit and Trade Selection

Depedent Variable

Exitt+1(ω) Exitt+1(ω) Exportt+1(ω) Exportt+1(ω)

Independent Variable Probit Logit Probit Logit

log TFPRt(ω) 0.223 0.401 -0.992 -1.794
[0.0146] [0.0258] [0.0134] [0.0245]

log TFPQt(ω) -0.175 -0.314 0.766 1.382
[0.00826] [0.0147] [0.00697] [0.0130]

Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes

Notes: Pooled regressions of next period exit or export on current efficiency and
micro-distortion.
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2.2.3 Evaluation of Model Fit

Before turning to a discussion of estimation results, I review a number of ways to
check whether my estimates are reasonable, concentrating on three key aspects of my
model. First, I evaluate how well the estimated model captures patterns of distortions,
plant efficiency, and survival. Second, I test the functional form assumption on the
distribution of establishment-level frictions and efficiency. Third, I offer some checks
on the estimates of fixed costs across sectors.

The core of the model relates distortions and efficiency to survival. The econometric
specification allows a mean-zero error term to explain deviations from the selection
mechanism of the model. If the variance of these estimated errors in the selection
equation is large, then measured distortions and efficiency would be a poor explanation
of observed survival. But, as can be seen from Table 2.3, the estimated error variance
is usually negligible. An alternative way to analyze the role of firm distortions and
efficiency is to graphically compare estimated survival lines with the data. Figure 23
illustrates the survival pattern of plants for the six largest sectors by value added. It
shows plots of the bivariate data distribution of firm efficiency and micro-distortions
in blue stars against predictions from estimates in red circles.4 Both of these overlap
fairly closely for most of the body of the distribution. Note especially the estimated
black sloped survival line from the model. An important concern about the estimation
procedure used here is that it assumes the measured wedges are work like taxes to firms,
instead of markups. The latter would in fact predict that higher-distortion firms are
more profitable, and hence more likely to survive.5 In this case one would expect high-
TFPR firms to be more likely to survive despite low TFPQ. The estimated survival
line is reassuring in this respect – the basic modeling of frictions as taxes seems to be
compatible with the data.

The next key ingredient under scrutiny is the assumed log-normality of the joint
distribution of distortions and efficiency. To evaluate the viability of this approach,
I use a two-sample Kolmogorov-Smirnov test on firm-size distributions in the data
versus firm sizes generated by my estimates. The null hypothesis is that both samples
are from the same continuous distribution. The second column Table 2.3 lists the
asymptotic p-values from this test. The null hypothesis can be rejected for 10 out of
40 sectors. This implies that for 3/4 of sectors I cannot reject the hypothesis that the
firm-size distributions are drawn from a truncated log-normal as given by my model.
Figure 24 illustrates this result graphically by comparing kernel density plots of firm-

4The predictions are generated based on MLE estimates and using QMC draws from Niederreiter
sequences.

5Another concern is the omission of continuation values that capture dynamic considerations in
response to temporary shocks or option-value considerations when risk is time-varying. A fully-
dynamic version of the current model specification the corresponding dynamic estimation method is
work in progress.
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size distributions from the data to the estimated firm-size distributions.
Finally, the estimates of common fixed costs can be cross-checked with other sec-

toral information. One would expect capital-intensive industries to have on average
higher fixed cost of operation. Similarly, sectors that report a higher fraction of labor
compensation towards “non production workers” might be expected to have higher
fixed costs.6 Both of these predictions hold in the data, as displayed in Figures 25 and
26. In general the estimated fixed costs are not large. The final column of Table 2.3

shows the value of fixed costs evaluated at unit costs ucs =
(
R
αs

)αs (
w

1−αs

)1−αs
relative

to the median value added of establishments in this industry. Fixed costs are typically
is between 2% and 3 % of the median annual value added.

2.2.4 Estimation Results from the Full Model

The baseline estimation results on the importance of selection are illustrated in
Figures 27 to 29. These figures display estimated distributional parameters on the
x-axis, while displaying on the y-axis the same parameter measures as in the data.
Each dot is a parameter value for a particular sector. For example, in Figure 27 each
dot gives a value of the dispersion of TFPR στ for each sector. If a parameter is unaf-
fected by selection, the data dots should line up along the 45-degree line. In Figures
27 and 28, most dots are significantly below the 45-degree line, implying that selec-
tion reduces the observable dispersions of both frictions and efficiency. Furthermore,
the selection gets more severe as the underlying dispersions of frictions or efficiency
increase. These estimation results foreshadow that extensive margin misallocation is
important in determining aggregate TFP losses.

The correlation between firm productivity and distortions is another important
dimension affected by selection. The parameter of interest is again the underlying
correlation of firm efficiency and frictions, since this correlation determines whether
high-efficiency firms are systematically selected out. As shown by Fattal Jaef (2011)
and Hsieh and Klenow (2011), a strongly positive correlation all other things equal,
might lead variety effects to offset misallocation effects from micro-distortions. In
this case the aggregate welfare effects from micro-frictions might be surprisingly low.
On the other hand, the measured correlation of firm productivity and frictions could
reflect only the fact that highly-distorted and low-productivity firms exit. In other
words, firms with high implicit taxes might survive only if they are also highly efficient.

6The data on “non production workers” are not directly used in my estimation, since such data are
often considered to capture skilled workers. However, the skilled work force might expand with the
scale of operation similar to production workers, so it is questionable whether this variable captures
only fixed-cost workers.
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Table 2.2: Validity checks and Fixed Costs by 4 digit sector, Indonesia

Estimates

ISIC Code, Name σe pKS Fs αs γs
ucs·Fs

[psys]med

3114, Canning/pres. fish 0.06 · 10−4 0.09 4.61 0.36 0.23 0.21%
3115, Vegetable/animal oils 0.06 · 10−4 0.08 165.05 0.63 0.36 1.43%
3116, Grain mill products 0.10 · 10−4 0.04 268.50 0.71 0.30 4.07%
3117, Bakery products 0.12 · 10−4 0.00 17.66 0.43 0.17 3.54%
3118, Sugar factories 0.08 · 10−4 0.00 38.17 0.46 0.34 0.21%
3119, Cocoa, chocolate 0.06 · 10−4 0.46 91.26 0.61 0.34 3.61%
3121, Food products n.e.c. 0.24 · 10−4 0.19 232.37 0.69 0.27 10.67%
3122, Processed tea/coffee 0.06 · 10−4 0.36 328.28 0.64 0.38 3.76%
3123, Ice manufacturing 0.83 · 10−4 0.04 41.81 0.33 0.38 8.03%
3124, Soy products 321.08 · 10−4 0.07 25.02 0.33 0.22 6.30%
3125, Food chips, animal 0.12 · 10−4 0.01 12.55 0.33 0.17 5.57%
3127, Pastry/cake/food 0.25 · 10−4 0.31 23.66 0.33 0.27 7.73%
3134, Soft drinks/carb. 0.11 · 10−4 0.32 116.51 0.53 0.41 6.94%
3141, Dried/proc. tobacco 0.08 · 10−4 0.00 2.07 0.33 0.18 2.83%
3142, Clove cigarettes 0.22 · 10−4 0.74 5.73 0.33 0.30 0.13%
3211, Spinning, weaving T. 0.07 · 10−4 0.46 3.64 0.19 0.22 0.64%
3212, Made-up textiles 0.06 · 10−4 0.91 7.63 0.20 0.21 2.24%
3213, Knitting mills 0.08 · 10−4 1.00 8.15 0.16 0.17 1.68%
3221, Wearing textile garm. 0.06 · 10−4 0.00 7.14 0.33 0.16 1.02%
3241, Footwear and shoes 0.68 · 10−4 0.96 29.88 0.33 0.13 1.77%

Notes: Columns display: (1) standard deviation of error term in selection equation, (2)
asymptotic p-value of two sample Kolmogorov-Test of data vs. simulated data from the model,
(3) estimated fixed cost of operation, (4) capital share, (5) non-production worker share, (6)
fixed costs relative to median value added.
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Table 2.3: Validity checks and Fixed Costs by 4 digit sector, Indonesia

Estimates

ISIC Code, Name σe pKS Fs αs γs
ucs·Fs

[psys]med

3311, Sawmills, planing 0.76 · 10−4 0.93 2.58 0.16 0.20 0.39%
3319, Wood/cork n.e.c. 0.06 · 10−4 0.77 8.88 0.19 0.23 2.40%
3321, Wood furniture/fixt. 0.07 · 10−4 0.86 19.01 0.33 0.17 1.96%
3411, Pulp, paper, paperb. 0.43 · 10−4 0.14 19.43 0.41 0.27 0.59%
3420, Printing/Publishing 0.13 · 10−4 0.16 29.65 0.32 0.25 3.86%
3511, Basic ind. chemicals 0.08 · 10−4 0.59 50.10 0.59 0.46 0.43%
3521, Paints/varnishes 0.11 · 10−4 1.00 324.81 0.56 0.40 5.26%
3522, Drugs/Medicines 0.06 · 10−4 0.26 232.77 0.66 0.54 0.59%
3523, Soap/cleaning prep. 0.10 · 10−4 0.64 314.15 0.73 0.37 2.29%
3529, Chem. prod n.e.c. 0.06 · 10−4 0.10 74.27 0.52 0.44 0.38%
3552, Smoked rubber 0.06 · 10−4 0.01 44.53 0.33 0.32 0.78%
3559, Rubber prod. n.e.c. 0.07 · 10−4 0.46 15.73 0.18 0.27 2.81%
3560, Plastic prod. n.e.c. 0.09 · 10−4 0.40 12.34 0.28 0.22 1.88%
3632, Cement prod. 0.09 · 10−4 0.01 11.37 0.33 0.22 4.38%
3642, Structural clay 0.13 · 10−4 0.00 7.95 0.33 0.12 4.48%
3691, Stone products 0.07 · 10−4 0.59 7.78 0.24 0.27 2.23%
3811, Cutlery/hardware 0.88 · 10−4 0.79 11.35 0.24 0.21 2.75%
3813, Structural metal 0.51 · 10−4 0.25 15.10 0.12 0.26 1.64%
3819, Fabricated metal 0.07 · 10−4 0.31 17.48 0.20 0.29 3.11%
3839, Electrical apparatus 0.07 · 10−4 0.42 65.70 0.32 0.34 1.40%
3841, Ship building/repair 0.08 · 10−4 0.06 18.41 0.40 0.33 0.42%

3844, Motorcycles/bicycles 0.10 · 10−4 0.84 31.00 0.26 0.25 3.28%

Notes: Columns display: (1) standard deviation of error term in selection equation, (2)
asymptotic p-value of two sample Kolmogorov-Test of data vs. simulated data from the
model, (3) estimated fixed cost of operation, (4) capital share, (5) non-production worker
share, (6) fixed costs relative to median value added.
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Figure 29 provides evidence that this selection bias is quantitatively important for the
observed correlation of productivity and distortions. The sectoral dots line up mostly
above the 45-degree line, implying that the observed correlation is higher than the
underlying correlation. On average, 33% of the observed correlation between frictions
and productivity can be explained by this selection bias.

To better understand what drives these selection effects, it is instructive to differ-
entiate between output and capital wedges. Contrast Figure 31, which displays the
estimated versus observed dispersions of output wedges, with Figure 32 for capital
wedges. The output-wedge dispersion measures display significant sample selection,
but selection is substantially more important for the capital-wedge. The difference in
observed versus estimated standard deviations of the log output-wedges are typically
not larger than 0.2, while these differences can easily be 0.5 for capital-wedge disper-
sions. A natural question is, which feature of the data is responsible for this contrast?
The first crucial difference is that observed output-wedge dispersions are typically lower
than dispersions of capital-wedges. Since selection effects tend to be more severe the
larger the dispersion of the already-selected sample, this might explain part of the
contrast between capital and output-wedge dispersions. A second answer can be found
in Table 2.5: the correlation estimates of TFPQ and the output wedge are typically
positive, while the correlations between TFPQ and the capital wedge are negative.
The data show that low TFPQ plants are typically more labor intensive within the
same narrow 4 digit industry. Seen though the lens of the model, less-efficient plants
face higher net capital wedges. This correlation in turn is interpreted by the model as
indicating that many small firms are highly distorted in their factor-mix choice, and so
are forced to exit. This is also reflected in the comparison of observed and estimated
correlations of firm efficiency and capital wedges, as in Figure 34. Again, the correla-
tions of observable TFPQ and capital wedges are mostly positive, while estimates of
the underlying correlations are mostly negative.

Finally, Figure 30 shows that capital and output wedges are mostly negatively
correlated with each other, and not significantly affected by selection. Such a negative
correlation means that within a sector firms with high output wedges tend to have low
capital wedges and vice versa. This suggests that, for many sectors, the two wedges tend
to offset one another. This observation plays a role when considering jointly removing
wedges vis-a-vis focusing on removing either the output- or the capital-wedge margin
only.
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Table 2.4: Estimates by 4 digit sector, Indonesia

Estimates

ISIC Code, Name σA,s στY ,s στK ,s ρAτY ,s ρAτK ,s ρτYK ,s

3114, Canning/pres. fish 1.56 0.65 1.36 0.45 -0.47 -0.28
3115, Vegetable/animal oils 1.60 0.82 1.57 0.69 -0.44 -0.46
3116, Grain mill products 1.34 0.71 1.21 0.40 0.05 0.01
3117, Bakery products 1.24 0.49 1.51 0.63 -0.36 -0.37
3118, Sugar factories 2.43 0.61 0.84 0.77 0.19 -0.11
3119, Cocoa, chocolate 1.77 0.57 1.44 0.62 -0.32 -0.53
3121, Food products n.e.c. 1.28 0.72 1.32 0.80 -0.42 -0.73
3122, Processed tea/coffee 1.40 0.64 1.08 0.35 -0.00 -0.30
3123, Ice manufacturing 0.94 0.51 0.92 0.30 -0.15 -0.06
3124, Soy products 1.24 0.54 0.91 0.58 -0.12 -0.36
3125, Food chips, animal 0.82 0.72 1.25 0.17 -0.33 0.42
3127, Pastry/cake/food 0.80 0.45 1.04 0.47 -0.15 -0.17
3134, Soft drinks/carb. 1.79 0.63 1.03 0.80 -0.45 -0.64
3141, Dried/proc. tobacco 1.57 0.66 1.05 -0.21 0.63 -0.56
3142, Clove cigarettes 2.76 0.91 1.63 0.95 -0.37 -0.42
3211, Spinning, weaving T. 2.02 0.57 1.31 0.64 -0.55 -0.51
3212, Made-up textiles 1.40 0.56 1.08 0.33 -0.32 -0.28
3213, Knitting mills 1.49 0.57 1.21 0.39 -0.19 -0.42
3221, Wearing textile garm. 1.62 0.51 1.07 0.17 0.03 -0.24
3241, Footwear and shoes 1.46 0.64 1.15 0.19 0.08 -0.06

Notes: Columns display: (1) standard deviation of plant efficiency, (2) standard
deviation of output distortions, (3) standard deviation of capital wedges, (4)
correlation of plant efficiency and output wedges, (5) correlation of plant efficiency and
capital friction, (6) correlation of output and capital distortions
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Table 2.5: Estimates by 4 digit sector, Indonesia

Estimates

ISIC Code, Name σA,s στY ,s στK ,s ρAτY ,s ρAτK ,s ρτYK ,s

3311, Sawmills, planing 1.91 0.60 0.96 0.40 -0.12 -0.33
3319, Wood/cork n.e.c. 1.25 0.84 1.02 0.00 0.11 -0.37
3321, Wood furniture/fixt. 1.39 0.48 1.15 0.34 -0.18 -0.15
3411, Pulp, paper, paperb. 1.93 0.68 2.08 0.77 -0.60 -0.45
3420, Printing/Publishing 1.54 0.55 0.93 0.55 -0.08 -0.34
3511, Basic ind. chemicals 1.45 0.82 2.11 0.73 -0.32 -0.43
3521, Paints/varnishes 1.70 0.76 1.22 0.67 0.05 -0.18
3522, Drugs/Medicines 1.34 0.81 1.95 0.32 0.13 0.44
3523, Soap/cleaning prep. 1.86 0.69 1.20 0.70 -0.17 -0.50
3529, Chem. prod n.e.c. 1.46 1.10 1.71 0.50 0.00 0.11
3552, Smoked rubber 1.38 0.84 0.98 0.27 0.14 -0.26
3559, Rubber prod. n.e.c. 1.68 0.47 0.97 0.32 0.09 -0.23
3560, Plastic prod. n.e.c. 1.77 0.53 1.07 0.61 -0.18 -0.29
3632, Cement prod. 1.61 0.54 0.96 0.59 -0.47 -0.43
3642, Structural clay 1.16 0.48 1.21 0.69 -0.71 -0.65
3691, Stone products 1.13 0.83 0.99 0.34 -0.03 -0.25
3811, Cutlery/hardware 1.68 0.66 1.01 0.06 0.11 -0.40
3813, Structural metal 1.76 0.73 0.99 0.67 -0.10 -0.15
3819, Fabricated metal 1.93 0.57 1.00 0.52 0.11 -0.33
3839, Electrical apparatus 1.82 0.65 0.96 0.57 -0.10 -0.31
3841, Ship building/repair 1.58 0.88 2.36 0.67 -0.13 0.25
3844, Motorcycles/bicycles 2.25 0.77 0.96 0.83 -0.41 -0.43

Notes: Columns display: (1) standard deviation of plant efficiency, (2) standard
deviation of output distortions, (3) standard deviation of capital wedges, (4)
correlation of plant efficiency and output wedges, (5) correlation of plant efficiency
and capital friction, (6) correlation of output and capital distortions

38



2.3 Estimates of Aggregate TFP and Welfare

Effects

The empirical estimates in the previous section suggest that extensive margin mis-
allocation effects do matter. This section now quantifies the aggregate TFP and welfare
effects, and puts them into the perspective of previous estimates and the data.

For the evaluation of aggregate TFP effects I proceed as follows. I remove the
micro-distortions and calculate aggregate real TFP in the frictionless equilibrium for
each sector individually. To be as close as possible to the exercises in the previous
literature, I make two choices. First, a removal of distortions is defined as setting
the dispersions of micro-frictions to zero but leaving the mean parameters µτ at their
current levels. I do this to prevent confounding welfare improvements through better
cross-sectoral allocation as mean distortions are equalized with gains from within-
sectors reallocation. Because of this choice my estimates of the welfare effects will be
on the conservative side. Second, I consider the welfare gains from equalizing marginal
products in one sector at a time while leaving distortions in all other sectors in place.
I calculate the welfare gains from removing distortions by sector, and then sum up
these weighted by the sectoral value-added shares, to arrive at the manufacturing-wide
welfare gains. I will then contrast the results of this benchmark with the full removal
of all distortions across all sectors.

The benchmark results presented below also feature two specific choices that in-
crease the robustness of results. First, I concentrate on sectors for which I cannot reject
the hypothesis that firm size distributions are generated by a truncated log-normal.
However, TFP and welfare results are very similar whether the other sectors are in-
cluded or not. Second, I exclude sectors for which TFP gains exceed two log points.
This will significantly reduce the estimates of extensive margin aggregate TFP effects
for the economy as a whole. On the other hand, this also makes extensive margin TFP
effects more representative of typical sectoral effects.7

2.3.1 Aggregate Productivity Effects of Removing
Distortions

Table 2.6 summarizes the key welfare results. The first column displays welfare
gains from equalizing marginal revenue products across the currently-existing set of
firms, as done also by Hsieh and Klenow (2009). The gains from reallocating sales
across existing firms can raise aggregate TFP by close to 70%. This is in line with

7There are three sectors that have TFP losses exceeding two log points. The largest is Clove
Cigarettes which makes up 15% of Indonesian manufacturing value added. Including this sector alone
with two log points would boost extensive margin TFP losses by 50%.
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Table 2.6: Aggregate Gains from Removing Distortions

Aggregate Effects

Reform Experiment IM Variety EM/Selection Overall Real TFP

(1) Benchmark Reform 67.6% 6.08% 44.34% 156.64%

(Remove τY , τKdispersion :

στY = στK = 0)

(2) Neutralize output wedges 20.90% −10.06% 27.53% 38.66%

(Keep τK & στY = 0)

(3) Neutralize capital wedges 3.72% 23.09% 0.01% 27.69%

(Keep τY & στK = 0)

(4) Remove τY −A corr. 1.33% 20.06% 13.74% 38.41%

(ρA,τY = 0)

(5) Remove τK −A corr. −2.72% 12.24% −6.21% 2.39%

(ρA,τK = 0)

(6) Remove τY − τK corr. −16.83% 3.98% −14.11% −25.73%

(ρτY ,τK = 0)

(7) Partial Reform I 25.05% 6.64% 28.89% 71.89%

(Reduce στY , στK , ρA,τY ,

ρA,τK , ρτY ,τK by 33%)

(8) Partial Reform II 31.24% −0.19% 21.47% 59.10%

(Reduce στY , στK by 33%)

(9) Complete Reform 67.6% 116% 48% 433%

(τY = τK = 0,all sectors)

Notes: Percentage changes are expressed with current real TFP as base. Let TFP0 be
TFP before removal of distortions and TFP1 TFP after the removal of distortions. The

colums display then 100 ·
(
TFP1

TFP0
− 1
)

. As a consequence, the overall welfare effect is not

the sum of the individual welfare gains but the product. For instance in row #1, the last
column should be understood as being the result of: 1.67 · 1.06 · 1.44 = 2.56
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quantitative findings by Hsieh and Klenow (2009) for China and India, where such
gains are around 80-100%.8 Columns 2 and 3 display the new extensive margin mis-
allocation estimates. Focusing first on the variety effects in column 2, my estimates
suggest that micro-frictions lead to a net destruction of varieties that increases welfare
losses. Removing these micro-frictions increases variety and implies a welfare gain of
6% relative to the current base. This estimate stands in contrast to previous calcula-
tions by Fattal Jaef (2011) that are primarily based on the correlation between firm
efficiency and frictions in the data. As mentioned in Section 4.3, the selection correc-
tion implies that underlying correlations between micro-frictions and firm efficiency are
much lower than in the data. This estimation result drives the difference between my
results here and previous studies. The third column displays the welfare gains from
removing extensive margin misallocation: eliminate Zombies and replace them with
Shadows. The aggregate impact is sizable – reallocation along the extensive margin
can raise aggregate TFP by 44%. These estimates suggest that the overall real TFP
gains are huge, as documented by the last column.

The sectoral distribution of TFP losses in the benchmark case is shown in Figure
35. The y-axis displays the log TFP gains from removing micro-distortions for the
set of industries employed in the aggregate calculations. There is a fair amount of
heterogeneity of sectoral TFP gains, reflecting different distributions of TFPR and
TFPQ across sectors.

Results from simultaneous and complete removal of all distortions in all sectors are
displayed in the last row of Table 2.6. They suggest that due to the unit elasticity of
substitution across sectors, the effect of joint reform mostly shows up in larger variety
effects. Note however, that this joint reform does not significantly impact the size of
intensive and extensive margin misallocation losses.9

2.3.2 Features of the Data that Drive Extensive Margin
Misallocation Effects

An important question is, what feature of the data drives these large extensive
margin misallocation effects? As discussed in section 2.4, one key determinant could
be the covariance of micro-distortions and efficiency. Since the dispersion of micro-
frictions itself has an impact on misallocation losses, even if frictions and efficiency are

8Note that Hsieh and Klenow also analyze the gains from moving to the TFPR distribution of the
US, where they find gains of around 50%.

9The reason variety effects are so large in the case of joint reform is due to the fact that removing
especially the mean distortions affects factor prices significantly. Hence, sunk entry costs and fixed
costs of operations fall, letting more firms enter and making survival easier. Without the Cobb-
Douglas assumption across sectors, one would expect that results from simultaneous reform across
sectors are different from reforming one sector at a time, depending on the elasticity of substitution.
See Jones (2011a)
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uncorrelated I proceed as follows. I regress the model-implied extensive margin mis-
allocation losses by sector on the observed within-sector dispersions of micro-frictions
and efficiency calculated from the data. Figure 35 then plots the residual of this re-
gression against the covariance between micro-distortions and firm efficiency from the
data. There is a strong positive relationship, documenting that extensive margin mis-
allocation losses are higher for sectors with a higher observed covariance of TFPR and
TFPQ in the data. This relation should be contrasted with Figure 35, which shows
that the same relation does not hold for model-implied intensive-margin misallocation
losses.

2.3.3 Reform Complementarities

Here I compare the welfare effects that result from completely removing all frictions
versus the effects from completely neutralizing one friction at a time. This analysis is
in the spirit of identifying the “most important bottlenecks”, as in Hausman, Rodrik
and Velasco (2005). Additionally, my analysis identifies important complementarities
between different types of reform.

Rows 2 and 3 of Table 2.6 illustrate the removal of frictions in isolation. First,
note that variety and selection effects are different when removing output frictions as
opposed to capital frictions. Removing only output frictions leads to a net loss of
varieties because output distortions are typically positively correlated with efficiency
while capital frictions are negatively correlated. This means that implicit net capital
taxes are stronger for low-efficiency firms, and as such result in more firms exiting.
The reverse is true when only capital frictions are shut down: as output frictions
are typically positively correlated with efficiency, more firms will survive. As a result
the second column Table 2.6 shows that net variety gains are large if only capital
frictions are removed. The differences in correlation patterns of capital and output
frictions with efficiency also explain the different responses of the extensive margin
misallocation effect in the third column. Output frictions are positively correlated with
efficiency – so the Zombie firms that stay alive are of particularily low-efficiency while
the Shadow firms that exit are of particularily high-efficiency. Replacing Zombies with
Shadows therefore increases allocational TFP gains substantially. For capital frictions,
the picture is the reverse – as these frictions are negatively correlated with efficiency,
the firms that are forced out by these frictions are not that efficient and the extensive
margin gains from removing capital wedges are small.10

Second, there are important complementarities between the two types of reform.

10A possible explanation for the different correlations of output and capital wedges with efficiency
might be that they these wedges reflect distortions from different markets. For instance, capital wedges
might reflect financial frictions that primarily distort small firms. In contrast, output wedges might
result from large and efficient firms facing extortionary demands by local public officials.
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The sum of percentage welfare gains from removing only output frictions and from
removing only capital frictions is significantly lower then the gains from removing both
frictions together. This is true even for intensive-margin misallocation gains. This
should be seen in the context of the aggregate TFP formula given in Proposition 5. If
output wedges, capital wedges, and firm efficiency are mutually independent, then it
follows that

E

[(
1 + τK,s(ω)

1 + τ̄K,s

)αs(η−1)(
1− τY,s(ω)

1− τ̄Y,s

)η−1

As(ω)η−1

∣∣∣∣∣Πs(ω) ≥ fs(ω)

] 1
η−1

= E

[(
1 + τK,s(ω)

1 + τ̄K,s

)αs(η−1)
∣∣∣∣∣Πs(ω) ≥ fs(ω)

] 1
η−1

× E

[(
1− τY,s(ω)

1− τ̄Y,s

)η−1
∣∣∣∣∣Πs(ω) ≥ fs(ω)

] 1
η−1

× E

[
As(ω)η−1

∣∣∣∣∣Πs(ω) ≥ fs(ω)

] 1
η−1

If the set of firms is fixed, then under independence intensive-margin misallocation
gains from complete removal of both wedges together are the same as the sum of
removing one friction at a time. This is not the case here, as can be seen in row 1
of Table 2.6. The reason is that frictions are mutually correlated and also pairwise
correlated with efficiency.

To analyze the nature of this complementarily, the following three rows of Ta-
ble 2.6 show aggregate responses as different correlations are removed. Looking first
at removing the correlation between wedges and plant efficiency, in both cases the
intensive-margin effects are negligible, in contrast to sizable effects along the extensive
margin. Both variety and extensive margin reallocation effects are typically an order
of magnitude larger then intensive-margin effects. Still, in both cases removing the
correlation between wedges and plant efficiency is typically welfare-enhancing.
However, this is not true of removing the correlation between wedges, displayed in
row 6 of Table 2.6. Welfare falls as the correlation of capital and output wedges is
removed. To understand this, remember that this correlation is negative both in the
data as well as in the selection-corrected estimates. This means that firms with higher
net capital frictions typically have lower output frictions. If this correlation is removed,
firms with a high output friction will on net be more distorted. The table shows that
this worsening misallocation shows up along both intensive- and extensive margins.
Therefore, row 6 underlines the importance of taking into account the correlation
among wedges as frictions are removed. This also explains why removing only output or
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capital frictions yields considerably smaller gains than reducing both frictions together.
Removing, for instance, the output distortion but leaving the capital wedge in place
not only gets rid of this output friction, but also removes the offsetting effect og the
output friction on the capital wedge. Without this offset, misallocation will be made
worse. These types of surprising effects are well known in the theoretical literature on
Second Best paths of reform, since Lipsey and Lancaster (1957).

2.3.4 Welfare Effects from Partial Reform

The last two columns of Table 2.6 address the issue of partial reform more directly.
In these cases I reduce the dispersion of both wedges by one-third instead of fully
removing all frictions. The reduction in the dispersion of micro-frictions is chosen
conservatively, in order to leave a lot of room for the possibility that much of the
cross sectional dispersion of marginal revenue products reflects unknown heterogeneity
unrelated to policy distortions. Despite this, the welfare effects of partial reform are still
sizable, and driven mostly by improved allocational efficiency along both the intensive
and the extensive margin. Note that compared to TFP gains from the intensive-margin
alone, extensive margin gains add another 60% to 100%. Returning to the topic of
complementarity of reform, it is instructive to compare TFP gains from the partial
reform experiments to reform cases in row 2 and 3. Partial reform that addresses both
frictions at the same time still dominates fully removing only one friction at a time.

2.3.5 Decomposing Selection-Effects: Zombies and Residual
Extensive Margin Reallocation

As outlined in section 2.5, it is instructive to further decompose the selection effect
estimated in the previous section into effects of the retention of Zombies versus the
premature exit of Shadows. Table 2.7 shows that the TFP loss due to Zombie retention
is many times larger than the extensive margin misallocation effect. The latter effect is
smaller due to the residual extensive margin reallocation effect: as Shadows exit their
resources are reallocated to Zombies but also to Always Survivors. In the estimated
model, gains from reallocating production to these Always Survivors outweights the
loss from more production at Zombie firms. Therefore the residual extensive margin
reallocation effect actually increases aggregate TFP, although by less than the Zombie
effect.

Figures 39 to 42 provide some insight into the relation between identified Zombies
in the data and estimates of the sectoral TFP effects. The first three graphs show
the firm share of Zombies on the x-axis. This is defined as the log of the fraction of
all establishments in the sector, identified as Zombie plants. As Figure 39 shows, this
measure is strongly positively correlated with the log market share of all Zombie firms
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Table 2.7: Decomposition of Extensive Margin TFP Effects

Aggregate Effects

Reform Experiment EM/Selection Zombie Effects Res. EM-Reallocation

Complete Reform 44.34% 134.34% −38.40%

Notes: Percentage changes are expressed with current real TFP as base. Let TFP0 be TFP
before removal of distortions and TFP1 TFP after the removal of distortions. The colums

display then 100 ·
(
TFP1

TFP0
− 1
)

.

in the sector. Figures 40 and 41 display the relation of estimated TFP losses along
specific margins versus the firm share of Zombies. Not surprisingly, the Zombie effect
increases in the firm share of Zombies. As Zombie firms steal more business from non-
Zombies, their drag on sectoral productivity becomes stronger. However, in contrast
to this straightforward implication of the model, figure 41 shows that intensive-margin
misallocation losses are typically lower for sectors with many Zombie firms. The reason
for this seems to be related to Figure 42. This graph plots the firm share of Zombies
against the dispersion of micro-frictions within a sector, and demonstrates that these
typically are negatively related. In short, the dispersion of micro-frictions as a measure
of misallocation is more useful for capturing intensive-margin than extensive margin
misallocation.

2.4 Conclusion

This chapter has shown how quantitatively important extensive margin misalloca-
tion is for aggregate TFP. I applied the methodology developed in chapter 1 to the case
of Indonesian manufacturing. The results suggest that the bottomline TFP losses are
around 50% larger than was estimated before. If micro-distortions differ substantially
across countries and are an important determinant of aggregate TFP, we should expect
them to also play an important role for international trade. The standard specification
of the Melitz model used in international trade precludes such an analysis, as firm effi-
ciency dispersions are assumed to be identical across countries. The next chapter lines
out how the results of a simplified version of the model developed in the last chapters
can be used to analyze international trade.
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Chapter 3

From Competitive Advantage of
Firms to Comparative Advantage of
Nations

3.1 Introduction

It has long been an article of faith that microeconomic factors of firm competitive-
ness and institutional structures are at the heart of national productivity and wealth.
But with the expansion of data sources linking various dimensions of firm behavior to
performance across countries, researchers have also empirically documented systematic
relations between micro-patterns and macro productivity across countries. Bloom and
Van Reenen (2007) document systematic differences in management practices that are
correlated with firm-size distributions. Hsieh and Klenow (2009) show how measured
firm-level frictions differ across China, India and the US. Kumar, Rajan and Zingales
(1999) analyze how institutional factors shape firm-size distributions even within a
set of rich European countries. If differences in firm-efficiency dispersions or micro-
distortions impact national TFP, then we should expect them to impact international
specialization and trade. The crucial link in this analysis is the interaction between
firm-level heterogeneity and international trade. Building on insights of Melitz (2003),
most of the focus in the trade literature was devoted to the impact of trade opening
on firm size via reallocation effects. The novel contribution of this study is to analyze
how differences in underlying efficiency dispersion drive both firm-size dispersions and
trade patterns.

The starting point of my analysis is therefore the standard specification of the Melitz
model. This specification implicitly assumes that the dispersion of firm-efficiency is
identical across countries. Given empirical estimates of trade costs and aggregate pro-
ductivity across countries, one can generate implied firm-size dispersions from this
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Figure 3.1: Basic Trade-Selection Puzzle. Figure displays cross-country firm-size dis-
persion within 2-digit sectors on the y-axis. The x-axis shows 2-digit internal trade
shares, defined as value of shipments of the sector to itself, relative to all international
shipments to this sector. Both variables are controlled for sector fixed effects to center
graph at zero.

standard specification. The result is the dashed red line in figure 3.1: within-industry
firm size dispersions should be narrower if the country is trading less. The mecha-
nism behind this clear negative relation is an exporter-selection and reallocation effect.
Countries whose firms are less productive on average will have only have a few very
productive firms. These few productive firms will be larger due to export participation.
On the other hand, there will be a lot of non-exporting firms, whose market shares are
reduced due to exporters from other countries. Therefore, the lower the average pro-
ductivity of a country, the larger the size difference between its few very productive
firms and the many unproductive firms should be. The red line shows that this intra-
industry reallocation effect which was qualitatively analyzed in Melitz (2003), can also
be understood as a quantitative statement when combined with a standard Gravity
equation.

In contrast, the solid blue line displays the relationship between trade openess and
firm size dispersions in the data. To concentrate on intra-industry allocations, the data
are dispersions of total firm size within 2-digit sectors for a dozend countries. In the
data, country-sector pairs with a high internal trade share are datapoints with high
firm size dispersions.
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To rationalize this data, I extend the basic Melitz model to allow for international
differences in efficiency dispersions. Similar to the data I analyze and in the spirit of
the Melitz model, the theory is really a formalization of producer or establishment het-
erogeneity.1 For establishments it is well known that log-normal distributions are an
excellent alternative to the Pareto-distributions widely used in the trade literature. An
innovation of this study will be to exploit the tractability of log-normal distributions to
model differences in firm-efficiency dispersions across countries. Along the way I will
develop a framework that can easily encompass multiple sources of heterogeneity and
will be able to trace their impact on patterns of international specialization and trade.
A country with a large underlying efficiency dispersion will exhibit large firm-size dis-
persion differences even taking selection of the least productive firms into account.
What is more, a high efficiency dispersion will mean that there are a lot of very pro-
ductive firms active. Combined with the fact that products are substitutable, this will
imply that home consumers will prefer the product of these very efficient home produc-
ers to more expensive foreign firms. Hence economies with higher efficiency dispersion
will trade more internally and look more closed to trade.

An important implication of the new model is that as one allows differences in effi-
ciency dispersion of producers with a country, this impacts how strongly trade barriers
influence exporter selection and the productivity distribution of firms conditional on
survival. In other words, the underlying micro distributions of firm efficiency matter
for macro outcomes such as aggregate productivity and trade. As an example of this
connection I discuss asymmetries in international trade flows. In a standard constant-
elasticity Gravity model, if country A has a large market share in country B, this
implies that country B will have a low market share in country A. Deviations from this
reciprocal relationship are known as ”asymmetries”. Recently it has been argued that
asymmetries in trade flows may indicate asymmetric trade barriers. If this is correct
eliminating these asymmetric trade barriers might be important for improving the in-
ternational allocation of ressources. In the new model, asymmetries in trade flows are
the natural result of differences in firm-level productivity distributions across countries.
All other things equal, country A might be exporting systematically more to country
B, because country A has more very efficient producers. On the flipside, country B
might have nearly no efficient producers and will therefore systematically export less
to country A. The model will formalize this intuition and show how asymmetries in
measured trade frictions can be seen as consequence of productivity differences. In
this sense the model highlights a potentially important factor related to the nature of
measured ”trade barriers”.

1I follow the literature and will use the terms firm and establishment or plant interchangibly, but
will really mean establishment.
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3.2 Openess and Firm Sizes: Empirical Evidence

This section establishes the key stylized facts to be addressed by the theory. These
facts center around trade patterns on the one hand and firm-size distributions on the
other hand, where firm size is defined to include total sales of domestic firms to all
markets including international sales. The natural starting point of an analysis of
trade patterns and firm size distributions are the recently developed models of firm
heterogeneity and trade, following Melitz (2003), Chaney (2008) and more recently
Eaton, Kortum and Kramarz (2011). These have become the standard models to
analyze firm heterogeneity and trade, as they are compatible with micro-level facts
about export selection into trade and give rise to Gravity equations that are successful
in matching aggregate trade flows empirically.

In order to organize the discussion of these facts, I start out with the standard
specification of the the Melitz model under Pareto distributions of productivity draws.
Implicit in this standard specification of the Melitz model is the assumption that the
dispersion of firm level productivities is constant and identical across countries.2 I will
estimate the parameters of this Melitz-Pareto model with international trade data and
will contrast its implications about firm sizes with the data.

The economic environment comprises CES preferences for the representative con-
sumer of country i with real output defined by

Yi =

(
N∑
j=1

∫
yij(A)

η−1
η · dµj(A)

) η
η−1

where Pi will denote the corresponding CES price index and PiYi overall nominal
spending. Firms in these economies are comprised of monopolistic competitors who
use a composite input good Ei to produce a differentiated output good:

max
{Eij(A)}

Πij(A) = pij(A)yij(A)− cjEij(A)− fij

subject to: yij(A) =
1

dij
AEij(A)

Monopolistic competitors differ by productivity draw A, which in this section is as-
sumed to be generated by a Pareto-distribution:

µi(A) = TiA
−θ, A > T

1
θ
i (3.1)

2See studies such as Chaney (2008), Eaton et al. (2011) and Hsieh and Ossa (2011)
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CES preferences and Cobb Douglas technologies imply the following pricing rule

pij(A) = m̄ · dij
(wj
A

)
where m̄ = η

η−1
denotes the markup and dij > 1 as iceberg cost with normalization

dii = 1. Let Xij denote the nominal value of shipments from country j to country i.
I follow Chaney (2008) and Arkolakis et al. and derive trade shares as

λij =
Xij∑
j Xij

=
Tj[cjdij]

−θLjf
−( θ

η−1
−1)

ij∑N
k=1 Tk[ckdik]

−θLkf
−( θ

η−1
−1)

ik

(3.2)

where dij capture iceberg costs of transport, such that dii = 1 and dijdjk ≥ dik, fij
capture fixed costs of shipping to market i from source country j with fij > fjj for

j 6= i, (cj/T
1
θ
j ) captures unit costs of production in country j and Lj denotes the labor

force in country j. Equation (3.2) can be derived from a Melitz model where firm-level
productivities are drawn from a Pareto distrubution and where entry is assumed to be
proportional to the labor force of the economy.

These trade shares give rise to the following standard Gravity equation:

log

(
Xij

Xii

)
= −θ log(dij)−

(
θ

η − 1
− 1

)
· log

(
fij
fii

)
+ log

(
TjLjc

−θ
j

)
− log

(
TiLic

−θ
i

)
(3.3)

It is worthwhile to interpret the factors in this equation to understand the patterns
of data better. The structural Gravity equation describes the determinants of market
shares in a given market i of exporters from country j vs. home producers from i.
According to this formulation of the Gravity equation, there are three main factors
determining bilateral trade. First, exporters from country j will have lower market
shares if either iceberg costs of shipment dij are high, or if fixed costs of exporting
from j to i are high, i.e. fij > fii. The major restriction of the theory with respect
to these trade costs relates to the selection of exporters into trade. If as observed in
the data, only a fraction of firms is exporting and these firms are typically larger and
more productive than only domestically active firms, then fij > fjj. Second, since the
number of entrants is assumed to be proportional to the labor force countries with more
firms tend to have higher market shares. This is the Love-of-Variety effect implied by
the CES specification used for preferences. Third, country j’s market share will be
higher than country i’s market share if its cost advantage is higher. To see this, note

that marginal costs can be written as mcj = (cj/T
1
θ
j ), where cj ∝ Rα

j w
1−α
j is the cost

of a composite input bundle of capital and labor with Ri as the rental rate of capital
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and wi the wage rate and T
1
θ
j is the mean productivity of firms in country j.

As emphasized by Arkolakis, Costinot and Rodriguez-Clare (n.d.), a key feature
this specification shares with virtually all applied Gravity models, is that it generates
a constant-elasticity import demand system.

Property 1: Constant Elasticity Import Demand

Define the partial elasticity εikj = ∂ log
(
Xij
Xii

)
/∂ log(dik). The import de-

mand system is such that for any importer i and any pair of exporters j 6= i
and k 6= i, εikj = ε if j = k and zero otherwise

An implication of this class of demand systems is that country-level marginal costs
mci and trade elasticities are strictly separable.

∂εijj /∂ log(mci) = ∂εijj /∂ log(mcj) = 0 (3.4)

Equation (3.3) is even stronger than this condition, as it implies a form of symme-
try of trade flows unless trade frictions are asymmetric. To see this, let me assume
for the moment symmetric trade frictions dij = dji = d and

fij
fii

=
fji
fjj

= f . Define

log(τ) = −θ log(d)−
(

θ
η−1
− 1
)
· log (f).

Property 2: Symmetry

Given trade frictions are symmetric as defined above, trade flows satisfy

log

(
Xij

Xii

)
+ log

(
Xji

Xjj

)
= 2 · log(τ) (3.5)

In this setup, any country specific factor, such as technology Ti, factor costs ci or

labor force Li that changes the trade flow log
(
Xij
Xii

)
impacts the reverse trade flow

log
(
Xji
Xjj

)
inverse proportionally. What is more, symmetric trade frictions can only

reduce the sum of the flows log
(
Xij
Xii

)
+ log

(
Xji
Xjj

)
but will not change one trade flow

log
(
Xij
Xii

)
relative to the other log

(
Xji
Xjj

)
. The only way to generate asymmetries in

these trade flows, is then to generate asymmetric trade frictions.
On the other hand, as argued by Waugh (2009) and Helpman, Melitz and Rubin-

stein (2007), asymmetries in trade flows seems to be an important stylized fact of the
data. Rich countries like the US seem to have systematically higher market shares
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when exporting to other countries than implied by country-specific effects such as pro-
ductivity alone. To document this point, let me follow Waugh (2009)’s modification of
the Gravity equation:

log

(
Xij

Xii

)
= βτ log(τij) + βS,jDS,j − βS,jDS,i + βX,jDX,j

s. th.
N∑
i=1

βS,i = 1

s. th.
N∑
i=1

βX,i = 1

(3.6)

where Xij denotes the nominal value of shipments from country j to country i. As in
traditional Gravity-type regressions, τij includes observable factors such as distance or
common borders, capturing bilateral trade barriers. On the other hand the fixed effects
are used to recover unobservable factors influencing trade. These include dummies for
country fixed effects

DS,i =

{
1 if country i is an exporter

−1 if country i is an importer

and dummies capturing systematic exporter effects

DX,i =

{
1 if country i is an exporter

0 if country i is an importer

To be able to capture asymmetries in the trade flows, one can decompose the
trade frictions into bilaterally observable components dB,ij and fB,ij and unobserved
exporter-specific components dX,ij and fX,ij:

dij = dB,ijdX,ij

fij = fB,ijfX,ij
(3.7)

Therefore the coefficients of the Gravity regressions map into the structural model
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according to

β̂ττij = log dB,ij +

[
1

η − 1
− 1

θ

]
log fB,ij

β̂X,j = log dX,j +

[
1

η − 1
− 1

θ

]
log fX,j

(3.8)

while the country effects summarize

β̂S,i = log
(
Tic
−θ
i Li

)
(3.9)

Figure 45 summarizes the key result regarding asymmetric trade patterns. It dis-
plays on the x-axis the estimated coefficients of the country fixed effects, while showing
coefficiencts of exporter fixed effects on the y-axis. There is a clear positive pattern,
stating that countries with higher values of technology or lower values of costs, are also
countries that systematically export more. This positive systematic relationship seems
to be mostly driven by the difference between the group of very poor countries on the
one hand and and the set of very rich countries on the other hand. On the other hand,
for our purposes it makes sense to consider a subsample of rich OECD countries which
correspond to countries for which I will have firm-size data later. Indeed, if the sample
is conditioned on the 16 richest countries, the relationship turns negative as shown in
44.

Given that the coefficients on distance and the exporter fixed effects are proving
estimates of the trade cost matrix, I follow Waugh (2009) to recover technology pa-
rameters. In particular, suppose factor endowments in country i are given by

Ei = Kα
i L

1−α
i (3.10)

Then the overall spending of country i can be shown to satisfy

PiYi ∝ ciEi (3.11)

Imposing Balanced Trade then gives

ci =
N∑
j=1

(
Xji∑N
i=1 Xji

)(
cjEj
Ei

)
i = 1, ..., N (3.12)

This is a system of equations that, given observable trade shares
Xji∑N
i=1 Xji

and factor

endowments Ei is solvable for ci. With the ci variables at hand and the endowments
Ei observable, I can recover the technology parameters Ti. To summarize, the Gravity
regression allows me to recover trade costs and technology parameters. Equipped with
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these parameters, I can generate now the implied firm-size dispersions within a country.
Export participation is governed by the selection equation:

Πij(A) ≥ fij

so that firms from country j only export to country i if gross profits from exporting
cover the fixed costs of exports. The total size of a firm from country j with productivity
draw A can therefore be written as

Xj(A) =
N∑
i=1

pij(A)yij(A) · 1{Πij(A)≥fij}

The basic measure of dispersion that is reported in the data, is the standard devia-
tion of log total sales of firms within a country, relative to the cross-country average. I
therefore construct the same statistic by country with simulation draws that are based
upon a solved equilibrium model with the parameters from the Gravity model.

SDNx,j =
(V ar[logXj(A)])1/2

1
N

∑N
k=1(V ar[logXk(A)])1/2

(3.13)

The results are displayed in figure X. The simulation model suggests that the base-
line Melitz model with parameters from the Gravity equations should display a strong
negative relationship between internal trade share and firm-size dispersions. This re-
lation reflects the core prediction of the Melitz model about the connection of openess
to trade and market share allocations across firms within industries. Countries that
are more open to trade exhibit larger dispersions of firm sizes as the most efficient
firms enter export markets and expand total sales. On the other hand, firms that are
only domestically active loose market share to foreign competitors and contract. This
exporter-selection and market share reallocation mechanism is a key novel insight from
heterogeneous firm models following Melitz. The figure demonstrates that a model es-
timated to fit empirical trade patterns also delivers a quantitately significant negative
relationship. The next question is how this implication compares to the data.

To shed light on this quantitative implication of the standard Melitz-Pareto gravity
model, one requires data on firm-size distributions and trade patterns. Internationally
comparable data on firm-size distributions within narrowly defined industries is difficult
to obtain for a large sample of countries. A recent study by Bartelsmanetal08 compiles
such comparable firm-size data for a dozend OCED countries within 2-digit industries.
I merge this data with data ob internal trade shares across the same 2-digit industries
from the OCED STAN database.

The baseline message from the table is that internal trade shares and firm-size
dispersions exhibit a positive relationship. That is, sectors that are on average more
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Table 3.1: Pooled Regressions

Sample

Dependent Variables all all ex.USA ex.USA

λii,s .64 .633 0.39 .34
[.083] [.106] [.072] [.092]

log Yi,s .0007 .004
[.005] [.004]

Sector FEs Yes Yes Yes Yes
Number of Obs. 246 246 222 222

R2 0.16 0.16 0.15 0.16

Notes: Pooled regressions using all industry-country pairs.

Dependent variable: SDNx,j =
(V ar[logXj(A)])1/2

1
N

∑N
k=1(V ar[logXk(A)])1/2

.

Independent variables include λii,s = Xii∑N
j=1Xij

, log Yi,s: gross

output of industry s. Standard errors are clustered on the
2-digit industry level.

closed to trade exhibit systematically higher firm-size dispersions. This is true even as
I control of sector size, as captured by overall gross output. This relationship is not
driven by compositional effects across sectors, sector effects are controlled for. What is
more, as I document in the appendix, the relationship holds within 2-digit sectors. The
quantitative relationship between size and firm-size dispersions is clearly influenced by
the US. Excluding the US cut the coefficient in half. But it still remains positive and
significant, although dropping the US cuts out around 10% of the original sample.

To summarize, the data offers two key stylized facts. First, there seem to be sig-
nificant asymmetries in trade patterns as captured by exporter fixed effects in Gravity
regressions. If we take these frictions and the standard specification of the Melitz model
with identical efficiency dispersions of firms across countries at face value, this implies
a negative relation between internal trade shares and firm size dispersions. This impli-
cations seems to be at odds with the second stylized fact that the relationship between
firm size dispersions and internal trade shares is positive. Motivated by these observa-
tions, I propose a simple deviation of the standard specification that can generate the
second stylized fact and will also have implications for the asymmetric trade patterns
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observed in the data.

3.3 Theory

The theoretical innovation of this chapter is a tractable analysis of international
differences in firm efficiency dispersions. In principle this could be achieved by using
differences in the Pareto dispersion parameter across countries. It turns out that this is
a numerically quite challenging task. In order to facilitate the computational analysis I
will analyze a different assumption for efficiency distributions, which is Log-normality.
In practice, both approaches to modeling size distributions have been popular in the
empirical literature.

3.3.1 Closed Economy

I start out with the closed economy to discuss build up the basic intuition for the
theory. As before, the aggregate production function is given by the CES aggregator

Y =

(∫
y(A)

η−1
η · dµ(A)

) η
η−1

Final composite good production is supplied by a contiuum of monpolistic com-
petitors, each with an idiosyncratic productivity:

max
{L(A)}

Π(A) = p(A)y(A)− wL(A)

subject to: y(A) = A · L(A)

I assume that micro-level productivity is drawn from a log-normal. The log-normal
distribution is one of two major distributions that is used in the literature to model
firm and plant-size distributions. It is typically thought to capture the body of the
firm size distribution fairly well. The alternative distributional assumption is Pareto,
which is often argued to capture the tail of the firm size distribution well. In fact,
both distributions are can be considered close to each other. To illustrate this point,
consider the following log density of the Pareto distribution:

log(f(x)) = (−θ − 1) log(x) + θ · log(T ) + log(θ)

where T is the minimum value or location parameter of the Pareto and θ is the dis-
persion parameter. Plotting the log frequency of realizations against the log values,
this distribution gives a straight line with a constant slope, governed by the dispersion
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paramter θ. In contrast, the log density of the log-normal distribution is given by:

log(f(x)) = − log(x)− log

(√
2πσ2

A

)
− [log(x)− µA]2

2σ2
A

= − [log(x)]2

2σ2
A

+

(
µA
σ2
A

− 1

)
log(x)− log

(√
2πσ2

A

)
− µ2

A

2σ2
A

(3.14)

where, µA, σA are the mean and standard deviation of the log values of the variable
x. As can be seen from the comparision of both densities, the key difference between
both distributions is the first term on the right hand side of equation (3.14). This term
capture a quadratic curvature on values of log(x)3.

Figure (46) contrasts data on plant size distributions for US establishments and
enterprises in 2000. As is known by work of Axtell01, the distribution very large firms
in the US economy seems to be well captured by a Pareto distribution with coefficient
1. The figures is from Rossi-Hansberg and Wright (2007) and illustrates how the
distribution of plants and enterprises in US data seems to be well approximated by a
log-normal distribution. Furthermore, a growing literature shows how power laws for
the largest percentiles of firms could be generated by the fact that large firms are multi-
establishment entities. Power laws of firm sizes could therefore result even as plant-level
heterogeneity is characterized by log-normality. See Growiec et al. (2008) and Bee et al.
(2011). Since the theory of this chapter is really a theory about efficiency differences
across production units, one can justifiably consider the log-normal distribution as
the better choice for efficiency distributions. What is more, the corresponding cross-
country evidence presented in section 2 is mostly from national economic censuses that
compile establishment level rather than firm level data.

After firms realized their productivity, they can calculate net profits and decide
whether to stay in business or exit. The selection equation for this decision is given by

Π(A) ≥ f

It is convenient to rewrite this equation in logs and exploit the fact that productivity
is given by logA = µA + σA · DN , where DN is a standard-normal random variable.
Therefore the selection equation can be rewritten as

logA = µA + σA ·DN ≥ −c
3Note that in order to approximate the fat tail of the Pareto distribution better, the log-normal

has to increase the dispersion parameter σA, but eventually for very large values of x, the quadratic
term will dominate.
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where the cutoff value is given by

c = log

(
1

m̄

P

w

(
PY

ηf

) 1
η−1

)

Higher values of this cutoff allow more producers with lower values of productivity
to survive. That is, higher values of c correspond to more firms surviving. The cutoff
shows which variables determine the level of survival ceteris paribus. The cutoff will
tend to be higher with overall demand PY being higher, the average ideal price index
P being higher, wages w being lower and fixed costs of production f being lower. To
understand the mechanics of selection and trade elasticities better in the full trade
model, it is instructive to analyze the selection mechanisms and its relation to micro-
level productivity of survivors better. For this purpose, let me define the normalized
cutoff as

cJX =
c+ µA
σA

Due to the log-normality of the productivity draws, the first to moments of the
distribution of productivity, conditional on survival are given by

E

[
logA

∣∣∣∣DN ≥ −cJX
]

= µA + σAψ (cJX)

V ar

[
logA

∣∣∣∣DN ≥ −cJX
]

= σ2
A

(3.15)

Therefore to characterize how the average productivity, conditional on survival and
the dispersion of productivity among survivors responds to changes in the selection
cutoff c, it is useful to directly calculate the conditional expectations of truncated
standard normals. These are given by

E

[
DN

∣∣∣∣DN ≥ −cJX
]

= ψ (cJX) =
φ(cJX)

Φ(cJX)

V ar

[
DN

∣∣∣∣DN ≥ −cJX
]

= 1 + ψ (cJX) · (−cJX)− ψ2 (cJX)

(3.16)

These truncated moments summarize how selection impacts the corresponding mo-
ments of the productivity distribution among surviving firms as a function of the
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selection cutoff. Recall that increases in c correspond to easier survival and therefore
reduced sample selection. One can show that indeed

ψ′(cJX) < 0

This implies that the truncation factor ψ() will be lower, the easier survivial is. As
a consequence of easier survival, the average productivity of surviving firms falls, as
(3.15) shows. Indeed, this is also reflected in the limiting values of the truncated
expectation, as

lim
cJX,ij−→−∞

ψ(cJX,ij) =∞

This means that as survival becomes infinitely hard, the only surviving firm will be the
one with the highest productivity. Since the normal distribution as infinite support, the
limiting productivity is not bounded and therefore average productivity of survivors
will also not be bounded. On the flipside,

lim
cJX,ij−→∞

ψ(cJX,ij) = 0

which means that as survival become costless, the selection term disappears and aver-
age productivity of survivors just reflects the average productivity of the untruncated
efficiency distribution of firms.

To further understand the implications of selection for a given selection cutoff, it is
useful to consider how the moments (3.16) change in response to changes in the under-
lying productivity parameters µA and σA. This is shown in first four panels of figures
48 and 49. In general as the cutoff c rises and survival becomes easier, the truncated
mean falls and the truncated dispersion rises. The dispersion effect reflects the fact
that sample selection cuts the lower tail of productivity draws. As survival becomes
easier with higher values of c, less of the lower tail of the productivity distribution is
cut. The productivity dispersion of survivors will therefore reflect more and more the
full dispersion of efficiencies from the underlying distribution. Both of these selected
moments are affected by parameters of the underlying distribution. Figure 48 shows
how truncated mean and truncated dispersions change as the underlying average pro-
ductivity increases. Intuitively, higher values of µA imply that more firms have higher
productivity and survive. As a consequence, the selection term ψ(.) is lower and since
more firms from the lower tail of the distribution survive, the efficiency dispersion of
survivors is higher. A similar mechanism is a work when considering increases in the
underlying efficiency dispersion of firms. As shown in the top left panel of figure 49,
the increase in the variance of productivity distributes more mass into the tails of the
distribution. But this implies that more mass will be concentrated at infra-marginal
firms. There will be more firms are are either very productive and will therefore sur-
vive given a fixed value of c. Or there are more firms that are of such low productivity
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that they would have decided to exit even for every low values of c. With more infra-
marginal productivities, the wedge that selection drives between the underlying and
the observed productivity distribution becomes smaller and smaller for any fixed value
of c. This effect is reflected in the lower selection term ψ(.) and the higher conditional
dispersion in the middle panels of figure 49.

Let us now move over to the question of how the selected distribution of micro-level
productivity is related to aggregate TFP. Explicit aggregation of establishment level
productivity give the following expression for aggregate overall TFP in this economy

Ā =

(∫
Π(A)≥f

Aη−1dµ(A)

) 1
η−1

= J
1

η−1︸︷︷︸
Variety

·E
[
Aη−1

∣∣∣∣DN > −cJX
] 1
η−1

︸ ︷︷ ︸
TFP with Selection

Overall TFP consists of two elements. The first is the Dixit-Stiglitz variety effect.
This is driven by the number of producers. As before, I assume that the number of
entering firms Je is exogenously given. Introducing entry would be straightforward
but would not change the analysis much and would distract from the main core of the
analysis, which is selection.

J = JeΦ(cJX) (3.17)

The number of operating firms is determined by the number of latent draws multiplied
by the probability of survival. This probability of survival is directly related to the
inverse Mill’s ratio selection term ψ(.) analyzed above. In particular, note that

∂ log Φ(cJX)

∂ log cJX
= ψ(cJX) (3.18)

This is intuitive as at the same time higher selection effects impact the average
productivity of survivors, it also determines how many firms survive. All other things
equal, increases in c make survival easier, which implies more firms and therefore a
higher variety effect on welfare.

The second component of overall TFP is average producer efficiency, taking substi-
tutability of products and selection into account.

TFPA = exp

{
µA +

1

2
(η − 1)σ2

A

}
·
[

Φ(cPX)

Φ(cJX)

] 1
η−1

(3.19)

where the value for cPX is defined by
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cPX =
c+ µA + (η − 1)σ2

A

σA
= cJX + (η − 1)σA

This expression is central for the economics of this study, as it relates the underly-
ing dispersion of producer efficiency to the aggregate productivity, which in turn will
be important to understand trade patterns. The key property in this context is the
elasticity of substitution, since it translates strongly differences in producer efficiency
translate into size differences and hence profitability and survival. Under substitutabil-
ity of the differentiated products, η > 1, more dispersion in producer efficiency will
lead to a concentration of resources at the most productive firms. What is more, the
stronger the substitutability of products, i.e. the higher η, the more will the most
productive firms dominate the economy. This effect is captured in the first term of
(3.19). How does this effect interact with the selection to determine aggregate TFP?
To answer this question, we need to analyze how TFPA varies for fixed selection cutoffs
c.

As discussed above, increases in the the selection cutoff value c imply lower average
producer productivity condtional on survival. This lower average producer productiv-
ity is reflected in TFPA. For this consider the bottom right panel of figures 48 and
49. It plots different values of c against log TFPA and shows how easier survival leads
to lower TFPA. The interaction between selection and differences in the dispersion
of producer efficiency can be traced out in the differently colored lines in the bottom
right panel of figure 49. As producers become more dispersed, TFPA is less and less
affected by an increase in c. The reason for this is related to the fact that with more
efficiency dispersion, there will be less marginal firms. In the extreme case there are
only extremely efficient firms that will survive even very low values of c and very unpro-
ductive firms that would have exited anyway. As a result marginally marking survival
easier does not lead to many more firms staying in business so average productivity of
survivors does not change much.

To understand the trade and specialization patterns, it will be important to see the
net effect of changes in the selection cutoff c on overall aggregate TFP Ā. Formally,
one can show that since ψ′(c) < 0, this implies that

∂ log Ā

∂ log c
=

1

σA
ψ(cPX) > 0 (3.20)

This is the case since the variety effects tend to dominate the selection-effects in TFPA
discussed before. The effect is illustraed in the bottom left panel of figures 48 and 49.
Both show how overall aggregate TFP Ā is increasing as surival becomes easier.

The analysis up to now assumes the selection cutoffs c as fixed and characterized
partial elasticities to understand some of the basic mechanics. But the components
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in c are endogenous equilibrium objects. To see whether the baseline message of this
analysis changes much, I calibrate and solve the closed economy version of the model,
which is a system of two unknowns in two equations. Figure 50 plots out different
equilibrium values for aggregate objects and micro-level moments for equilibria with
different underlying dispersions σA. As one increases the dispersion of producer effi-
ciency, TFP in the economy increases and the real wage rises. The right hand side
top and middle panels in figure 50 trace out equilibrium variety and TFPA compared
to the initial equilibrium. As the underlying producer efficiency dispersion increases,
variety falls and aggregate productivity increases. TFPA increases strongly and dom-
inates in welfare terms the loss due to a lower degree of variety. The bottom panels
show the equilibrium selection effects in the micro-moments. Average productivity
of survivors increases as was expected from stronger selection effects. On the other
hand, the rise in the underlying dispersion of efficiency does lead to an increase in
the efficiency dispersion of survivors, despite selection effects truncating more of the
lower tail of the productivity distribution. This feature will help to reconcile the mea-
sured establishment-size dispersions and will tend to offset the strict implications of
the Melitz model.

3.3.2 Open Economy

The open economy economic environment parallels the one analyzed in section 2.
The major difference here is that I simplify the model further to facilitate the exposition
of the model’s properties. In particular, I will follow the closed economy framework
and assume that labor is the only factor of production. Also, I will continue to assume
that the number of entrants in each country is fixed and identical across countries.

The analog Gravity equation to (3.3) in this environment is given by

log

(
Xij

Xii

)
= −(η − 1) log(dij)− (η − 1) log

(
wj
wi

)
+ (η − 1) log

(
Āij
Āii

)
(3.21)

where the overall aggregate TFP terms are the open economy analogs of the aggre-
gate TFP factors analysed in the closed economy framework. These are given by

Āij = exp

{
µA,j +

1

2
(η − 1)σ2

A,j

}
· Φ [cPX,ij]

1
η−1

The major difference to the closed economy version is that selection cutoffs of
entering a foreign market are functions of the trading country pair.
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cij =
1

m̄

Pi
wj

1

dij

(
PiYi
ηfi

) 1
η−1

These cutoffs are independent of any assumption about the productivity distribu-
tion. For productivity moments, the normalized cutoff value is the feature of the model
through which the efficiency distribution interacts with trade frictions:

cPX,ij =
cij + µA,j + (η − 1)σ2

A,j

σA,j

Similar to the case of the closed economy, the variable cPX will govern the overall
TFP response, including variety effects, to differences in the selection cutoffs cij.

To highlight the key differences of this Gravity equation with the standard Melitz-
Pareto model with identical dispersions, it is helpful to contrast the implications of this
model with the standard model of section 2. Remember that an important feature of
the standard model is that trade elasticities are constant and identical across countries.
In the Melitz model with Pareto distributions and identical dispersion parameter, the
partial trade elasticity is

∂ log (Xij/Xii)

∂ log(dij)
= − (η − 1)︸ ︷︷ ︸

IM

− [θ − (η − 1)]︸ ︷︷ ︸
EM

The Pareto assumption implies that intensive margin effects of trade barriers and
part of the extensive margin effect exactly offset each other. As a result, trade patterns
generated by the Melitz-Pareto framework with identical dispersion parameters across
countries will basially parallel a simple Armington constant-elasticity trade model. The
same partial trade elasticity in the Melitz model with log-normality can be shown to
be

∂ log (Xij/Xii)

∂ log(dij)
= − (η − 1)︸ ︷︷ ︸

IM

− 1

σA,j
ψ(cPX,ij)︸ ︷︷ ︸
EM

(3.22)

The extensive margin effect in the new model is intimately connected to the selection
effects discussed in the closed economy section. Note especially that the inverse mills
ratio ψ(.) reappears here, as trade barriers impact Ā along the extensive margin by
through two channels. First, higher trade barriers reduce the number of exporters and
therefore reduce the overall variety of exports from the exporting country. Second,
trade barriers change the efficiency composition of exporting firms. The net extensive
margin effect depends in the level of the normalized cutoff value cPX,ij, which in turn
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depends in the underlying efficiency distribution. As trade barriers increase, exporting
becomes harder and cPX,ij falls. This tends to increase the partial trade elasticity
ceteris paribus, as the productivity of the marginal exporter rises. In other words, for
a given productivity dispersion, a lower cutoff value cij means that the marginally non-
exporting firm is of relatively high productivity. As trade barriers would be marginally
lowered, the value of trade would expand a lot as the productive producer starts to
generate sales from abroad.

A noticeable feature of these partial trade elasticities is the importance of the pro-
ductivity distribution of the exporting country. The same change in a trade barrier can
now generate very different responses depending on what the productivity distribution
of the exporting country looks like.

3.4 Quantitative Analysis

This section developes the complete open economy implications in general equilib-
rium. The two features of the data I will focus most attention on are motivated by the
stylized facts and the theory discussion of section 2. In particular, I ask whether realis-
tic differences in underlying productivity distributions of production units can generate
the relation of firm-size distributions and trade openess generated in the data. I then
analyze the implications for trade asymmetries.

I start out by contrasting a baseline model where countries face simple symmetric
trade frictions and only differ in underlying productivity. This helps to streamline the
analysis to the key novel feature of the model in this study. The next subsection will
then add a realistic geography and factor endowments from the data and will contrast
the predictions of the model with the data.

3.4.1 Simple Geography and Identical Factor Endowments

Before turning to the solution of the model, a number of parameters need to be
calibrated. These are listed in table 3.4.1. I mostly follow standard values of the
literature. Since estimates on the fixed costs of exporting are more difficult to get, I
calibrate a uniform value such that for the most productive country, around 20 percent
of establishments export, see Bernard, Eaton, Jensen and Kortum (2003).
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Parameter Value Explanation

η 3 Elasticity of Substitution

Hsieh and Klenow (2009)

Fii 1 Domestic Fixed Cost Workers

Fij F Export Fixed Cost Workers

Match 20% of firms export

J̃ 20000 Number of Latent Plants

dij 3 Iceberg trade friction

Anderson and van Wincoop(2004)

µA,j [-0.2200, 1.4050 ] mean country-level efficiency

σA,j [1,2.05] dispersion of firm efficiencies

The productivity differences are chosen so that the mean underlying productivities
are in the same range. The underlying mean productivity for log-normal idiosyncratic
productivity is

Ã = exp

{
µA +

1

2
σ2
A

}
I assume that Ã varies in the range [0.5, 2.12], which generates differences in aggregate
technology of a factor of around 5. In contrast two possible world economys. In
the first case, I assume that efficiency dispersion across producers within a country
are identical and equal to σA = 1.2. I then pick µA to generate the given range for
Ã. In the second case, I assume that only these dispersions vary such that σA ∈
[0.5, 2.12]. Quantitatively similar results can be obtained if both dispersions and mean
productivities vary across countries.

The results of contrasting both equilibria can be seen in figure 51 and 52. The
top and middle panels summarize the key differences in welfare and trade patterns
among the two equilibria. To understand these, note that the same difference in mean
productivity Ã translates into very different differences in overall TFP Ā. The rea-
son is that if a country has a higher µA or a higher σA matters. The reason is with
substituability of products more dispersion generates more very productive firms that
attract overproportional market shares. Therefore aggregate TFP differences and wel-
fare differences are quite different. The ratio of real wages in the richest to the poorest
economy is around 4.8 with only µA differing. But the same ratio is 12.2 in the al-
location where only σA differs. The middle panel corroborates that both economies
display the same relationship of productivity and openess. Countries that have higher
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productivity levels will substitute external trade for internal trade and will therefore
tend to be endogenously more closed to trade than countries have low levels of technol-
ogy. The bottom panel contrasts how the micro-level implications differ across the two
allocations. The world equilibrium with only σA differences will have countries that
are at the same time very closed to trade but will exhbit higher dispersion in firm sizes.
The slope of the relationship between internal trade shares and firm-size dispersions
is +0.3269. In contrast the allocation where only µA differs internationally exhibits a
strong negative relation between firm-size dispersions and internal trade shares. The
log-normal model without differences in dispersions across countries generates there-
fore similar predictions as the Melitz-Pareto Model of section 2. The implied slope of
internal trade shares and firm-size dispersions across countries is −0.6246.

These two different ways technology differences across countries can take, have also
different implications for trade patterns. These are displayed in figure 52. Let me
first investigate how the the differences in technology across country impact the partial
trade elasticities from (3.22). For this purpose I calculate the average extensive margin
trade elasticity of an exporter, defined by

ATEEM,j =
1

N

N∑
i=1

1

σA,j
ψ(cPX,ij) (3.23)

Plotting these average extensive margin elasticities for exporters against technology
differences is done in the top panel of figure 52. extensive margin parts of trade
elasticities are lower for more productive countries, as more firms from these countries
export. Therefore a given trade barrier will mostly only reduce trade along the intensive
margin. This is in contrast to countries with a lot of unproductive firms. A given trade
barrier impacts exporter selection into trade and has therefore a larger impact on trade
flows.

Let us now move over to the question of asymmetries in trade flows. For this pur-
pose, I proceed as before and run Waugh’s estimator (3.6) on the simulated data from
the two allocations. Similar to section 2, country-factors like technology differences
should be captured by the country fixed effects and asymmetries in trade flows are
captured by the exporter fixed effects. In contrast to the standard setup of section
2, recall that I assume that all trade frictions are symmetric here. So any difference
in exporter fixed effects are solely driven by technology differences here. The middle
panel of figure 52 reports the results of the Waugh Gravity Estimator on the simulated
data. Qualitatively the model can generate differences in exporter fixed effects. Note
especially that even without any differences in dispersions, there can be systematic
differences in exporter fixed effects. What international differences in σA offer is a
potentially non-monotonic relation between country effects and exporter fixed effects.

These asymmetries generated by technology differences in these examples are typ-
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ically orders of magnitude smaller than those documented in section 2. Consider for
instance the rich country subsample of 44. The 90-10 difference of exporter fixed effects
even in this restricted sample is 1.5701. In contrast, the corresponding 90-10 difference
in both simple calibrations is 0.0251. One reason for these quantitatively small effects
could be that the geography of these examples is exceedingly simple. Specifically, every
country has exactly the same distance to all other countries. This might matter, as
export cutoffs cij could more stronly differ with more realistic geographies and there-
fore induce larger variations in ψ(cPX,ij). I analyze the possibility for this in the next
section.

3.4.2 Realistic Geography and Factor Endowments

The simple model of the last section already generated realistic relations between
firm size dispersions and internal trade share, comparable in magnitute to the data. It
achieved this by only relying on differences in technology across countries. But it could
not generate systematic asymmetries in trade flows that come close to quantitatively
match the data. I therefore add endowment differences and a realistic geography that
correspond to what we observe in the data. Endowment differences are given by the
aggregate factor endowments given in section 2. I will basically replace labor forces
by ”equipped labor Ei”. Second, to add a realistic geography I include distance and
border-related iceberg trade frictions from standard Gravity estimates. I will exclude
the estimated exporter fixed effects from the trade cost matrix, as the aim is to see
how much of the asymmetric trade flows can be matched without asymmetric trade
frictions.

I use the same technology differences in σA as in the last section to generate the
positive relation between firm-sizes and internal trade shares. To match the geography
in the data, I order the estimated country effects and assign different values of σA
according to the order in the data. This will mean the geographic positions of countries
of different productivities are roughly the same as in the data.

Figure 53 shows how adding the realistic geography alters some of the main conclu-
sions. Welfare differences are much more pronounced compared to before, partly due
to differences in capital across countries. The key result is that the variation in geogra-
phy will already generate substantially larger exporter fixed effect variation. Compare
the variation in exporter fixed effects as displayed in the bottom right panel of figure
53 to a comparable variation in the data, such as 44. First, both plots generate the
same negative relation between country fixed effects and exporter fixed effects. Second,
the differences of the exporter fixed effects are now of comparable magnitude. Recall
that in the restricted sample had a 90-10 difference of around 1.5701. The same 90-10
difference is now around 0.8 in the model with realistic geography. The model can
therefore roughly generate half of the variation in trade flow asymmetries as observed
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in the data without assuming asymmetries in trade frictions.

3.5 Conclusion

This chapter has argued that differences in efficiency dispersions are important to
understand firm-size and trade patterns in the data. It has developed a framework
that can easily encompass multiple sources of heterogeneity and can intuitively trace
their impact on trade and international specialization.

There are three main areas the framework of this dissertation might be of im-
mediate use. First, combining the ideas and data of this study with industry-level
trade and production data it is possible to structurally estimate the contribution of
efficiency-dispersion differences versus fixed costs in generating asymmetric trade pat-
terns. The framework here can readily incorporate ideas of Helpman et al. (2007) who
use Heckman-type two stage selection equations in a Pareto-framework.

Second, the framework can incorporate multiple sources of heterogeneity such as
establishment-level frictions as in Hsieh and Klenow (2009), but also technology differ-
ences in factor shares. In particular, such a model with multiple sources of heterogeneity
will be able to analyze how micro-distortions as in Hsieh and Klenow (2009) impact
within-industry Heckscher-Ohlin specialization and therefore wage-inequality.

Third, the log-normal framework predicts that trade elasticities are potentially
non-linear and related to firm heterogeneity of exporting and importing countries. An
analysis of trade liberalization episodes with establishment level production data from
both the liberalizing importer and an exporter country could help shed light on the
quantitative importance of this prediction.
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Appendix Chapter 1

Appendix 1.A: Figures
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Figure 2: Reallocation with a given set of firms

Notes: Top diagram: Distribution and allocation plot of micro-frictions and firm
productivity. Simulated data. Firms with values to the to the south or to the east
have higher levels of sales. Reallocation implied when removing distortions shown by
arrows. Bottom diagram: efficiency distribution of firms. Simulated example.
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Student Version of MATLAB

Figure 3: Simulated example of micro-frictions and firm efficiency with endogenous
exit.
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Student Version of MATLAB

Figure 4: Selection in equilibrium with low covariance of frictions and efficiency. Equi-
librium exit rate is 16%.

Student Version of MATLAB

Figure 5: Selection in equilibrium with high covariance of frictions and efficiency.
Equilibrium exit rate is 15%.

76



Student Version of MATLAB

Figure 6: Intensive-margin gains: reallocation with fixed set of firms.
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Figure 7: Efficiency composition of currently active firms
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Figure 8: Efficiency compositions of Zombies and Shadows
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Figure 9: Efficiency composition of firms active in frictionless equilibrium.
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Figure 10: Comparision of log TFPQ = logA(ω) distributions for India, China and the
US. Estimates are over all 4 digit manufacturing sectors. Source: Hsieh and Klenow
(2009)
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Figure 11: Shift in efficiency distribution from allocation with low dispersion of frictions
and low covariance of frictions and efficiency to allocation with high dispersion of
frictions and high covariance of frictions with efficiency. Dispersion of efficiency across
firms is held constant.
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Figure 12: Graphical Illustration of MLE estimation with Equilibrium constraints
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Appendix 1.B: Dynamics

The estimation strategy in the main text follows the assumption that establishment
level heterogeneity is well characterized by a model of permanent level differences. I
am motivated to pursue this approach by the literature on establishment size dynamics
such as Baily et al. (1992) and more recently Klette and Raknerud (2005), who find that
permanent level differences are crucial to understand the cross sectional heterogeneity
of firm level TFP measures. In the literature on measurement of micro-distortions,
studies such as Song and Wu (2011) and Midrigan and Xu (2009) suggest that the cross
sectional dispersion of TFPR is not well captured by adjustment frictions, temporary
shocks or measurement error.

To evaluate whether their findings hold up in my data as well, I estimate a Panel
VAR of TFPR and TFPQ. The crucial feature of this approach is that I can remove
time invariant plant fixed effects and estimate the degree of persistence once these fixed
effects are taken out. As is well known simple time-differencing leads to inconsistent
estimates due to the mixture of AR and fixed effects components. I therefore follow
Holtz-Eakin, Newey and Rosen (1988) and exploit the fact that lagged values of the
dependent variables qualify as instruments. Table 2 reports the results from pooled
regressions concentrating on firms that do not decide to exit. Controlling for fixed
effects, TFPR and TFPQ are not very persistent. The half lives of TFPR and TFPQ
shocks are below one year. This is illustrated in figures 13 to 16, which show impulse
responses to a one-standard deviation shock. The Cholesky decomposition of the shocks
assumes that TFPQ is ordered first so that TFPR does not have any contemporaneous
impact on TFPQ. As one can see temporary shocks usually have zero impact after 3
years. Note however that the size of temporary TFPQ shocks is large. The size of a one
standard deviation shock is 80% to the level of TFPQ. TFPR shocks are significantly
smaller, barely larger than 12%.

I conclude from this evidence that permanent level differences will most likely dom-
inate time-averages of TFPR and TFPQ over the 6 year horizon of my data, due to
the low persistence of TFPR and TFPQ once fixed effects are controlled for. Large
temporary shocks might be an important additional margin of dynamic effects and is
left for analysis in related research.
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Table 2: Panel VAR

Contemporaneous Variable

Lagged Variable log TFPRt(ω) log TFPQt(ω)

log TFPRt−1(ω) .16842341 −.39260905
[.02711359] [.03944105]

log TFPQt−1(ω) .03228435 .52007713
[.01645172] [.02496301]

Number of Obs. 28,087

Notes: Observations pooled by all 4 digit sectors
and conditioned on non-exiters.
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Figure 13: Impulse Response of
log TFPR to a shock in log TFPR.
Bootstrapped confidence intervals, 500
replications
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Figure 14: Impulse Response of
log TFPQ to a shock in log TFPR.
Bootstrapped confidence intervals, 500
replications.
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Figure 15: Impulse Response of
log TFPR to a shock in log TFPQ.
Bootstrapped confidence intervals, 500
replications.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (years)

 

 

 Response of TFPQ to TFPQ shock
 95% Confidence Interval

Student Version of MATLAB

Figure 16: Impulse Response of
log TFPQ to a shock in log TFPQ.
Bootstrapped confidence intervals, 500
replications.
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Appendix 1.C: Proofs

1.C.1: Proof of Proposition 1

Under free entry, the resource constraint implies

PY =
1

1− τ̄
wL (24)

with L = 1, one only needs to calculate the CES ideal price index

P = m̄
w

Ā
(25)

where Ā =
[∫

(A(ω)[1− τ(ω)])η−1 · dµ(ω)
] 1
η−1 . Substituting the CES ideal price

index in equation (24) and setting P = 1 gives the result.

1.C.2: Derivation of (1.7)

Substituting for p(ω)y(ω) in Π(ω) gives

Π(ω) =
1

η

(
p(ω)

P

)1−η

PY (26)

This is the profit used in (1.3). Further substitution of (1.2) lets me solve for A(ω)
and 1

1−τ(ω)
.

A(ω) ·
(

1

1− τ(ω)

)−m̄
≥ m̄

(w
P

)
·
(
ηwF

PY

) 1
η−1

(27)

Substitute from equation (25) for P and from equation (24) for PY to arrive at
(1.7)

1.C.3: Proof of Proposition 2

To derive the fix cost estimate I need to analyze factor demands of the monopolistic
competitors. Production-related factor demands are
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R ·KP,s(ω) = αs
1

m̄

1− τY,s(ω)

1 + τK,s(ω)
ps(ω)ys(ω)

w · LP,s(ω) = (1− αs)
1

m̄
(1− τY,s(ω))ps(ω)ys(ω)

Fixed cost of operations require factor demand of

R ·KF,s(ω) = αs
1

1 + τK,s(ω)

[
w

1− αs

]1−αs [(1 + τK,s(ω))R

αs

]αs
· Fs

w · LF,s(ω) = (1− αs)
[

w

1− αs

]1−αs [(1 + τK,s(ω))R

αs

]αs
· Fs

Measured factor demand is

KM,s(ω) = KP,s(ω) +KF,s(ω)

LM,s(ω) = LP,s(ω) + LF,s(ω)
(28)

which implies for measured factor intensities

αs
1− αs

(
wLM,s(ω)

RKM,s(ω)

)
= [1 + τK,s(ω)] (29)

Survival condition Πs(ω) ≥ fs(ω) combined with wLM,s(ω) implies

wLM,s(ω) ≥ (1− αs)

(
η ·
[

w

1− αs

]1−αs [(1 + τK,s(ω))R

αs

]αs
· Fs

)
(30)

Combining (29) and (30) gives the bounds

F̂s =
1

η
min
ω

{
LM,s(ω)1−αsKαs

M,s

}
1.C.4: Proof of Proposition 3

The estimation problem consists of two parts. First, a maximum likelihood problem
of fitting a truncated multivariate distribution to the data from surviving firms. Second,
this MLE problem is subject to an equilibrium constraint. In this derivation I proceed
in three steps. The first two steps will derive the likelihood function. The third will
derive the equilibrium constraint.
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Step 1: Derivation of the log-likelihood

I slightly deviate from the exposition in the text and show the likelihood function
in terms of observables, rather then the calculated wedges. The first observable are
sales or value added:

D1(ω) = ps(ω)ys(ω) (31)

In terms of underlying heterogeneity in the model, nominal output is determined
by

logD1(ω) ∝ −(η − 1)

[
αs log (1 + τK,s(ω)) + log

(
1

1− τY,s(ω)

)]
+ (η − 1) log(As(ω))

(32)
The next observable is the composite input used by every firm. This is constructed

from the underlying factor demand for capital and labor.

D2(ω) =

(
RKs(ω)

αs

)αs (wLs(ω)

1− αs

)1−αs
(33)

In terms of underlying heterogeneity from the model, this is

logD2(ω) ∝ (η − 1) logAs(ω)− ηαs log(1 + τK,s(ω))− η log

(
1

1− τY,s(ω)

)
(34)

The third data source are factor intensities across firms within an industry

D3(ω) =

(
αs

1− αs

)[
wLM,s(ω)

RKM,s(ω)

]
(35)

this factor intensity should directly map into the net capital wedge

logD3(ω) = log(1 + τK,s(ω)) (36)

These three data sources map into the three sources of heterogeneity through the
mapping


logD1(ω)

logD2(ω)

logD3(ω)

 ∝


(η − 1) −(η − 1) −(η − 1)αs

(η − 1) −η −ηαs
0 0 1




logAs(ω)

log
(

1
1−τY,s(ω)

)
log(1 + τK,s(ω))

 (37)
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Therefore, it is straightforward to generate the distribution of these three data series
as a function of the two wedges and firm efficiency. Under trivariate log-normality, one
gets

L

(
θ

∣∣∣∣ logD1(ω), logD2(ω), logD3(ω)

)

=
∑
ω


3

2
log(2π) +

1

2
log(|Σ|)− 1

2


logD1(ω)− µ1

logD2(ω)− µ2

logD3(ω)− µ3


′

Σ−1


logD1(ω)− µ1

logD2(ω)− µ2

logD3(ω)− µ3



(38)

where µ1, µ2, µ3 are the means of logD1(ω), logD2(ω), logD3(ω) as a function of
the parameter vector θ, while Σ is the variance covariance matrix of these three data
series in terms of the theoretical parameters.

Step 2: Adjustment for noisy truncation

The key selection variable is defined in the trivariate case, similar to the bivariate
case from section 2:

logZ(ω) = logA(ω)− m̄ ·
[
αs log

(
1 + τK,s(ω)

)
+ log

(
1

1− τY,s(ω)

)]
(39)

Now account for truncation noise, I add a zero mean iid error term that is also
assumed to be log-normal

log Ẑ(ω) = logZ(ω) + e(ω)

with e(ω) ∼ N(0, σe). The selection equation with this truncation noise can there-
fore be written as

log Ẑ(ω) ≥ log Z̄J

with the selection cutoff defined by

log Z̄J = log m̄− logPs

+ m̄

[
αs log

(
R

αs

)
+ (1− αs) log

(
w

1− αs

)]
−
(

1

η − 1

)
log

(
PsYs
ηFs

)
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The probability of survival then can consequently be written as

Pr (Πs(ω) ≥ fs(ω))

= Pr
(

log Ẑ(ω) ≥ log Z̄J

)
= 1− Φ (z̄J(θ, logPs))

Hence, the log likelihood should be adjusted by adding the term log [1− Φ (z̄J)] to
adjust for truncation. Furthermore the estimation problem will also maximize over the
parameter σe to account for noise in the truncation threshold.

Step 3: Derivation of the Equilibrium Constraint

The equilibrium constraint is basically the equilibrium CES price index, which in
the full model can be written as

Ps = m̄

(
R

αs

)αs ( w

1− αs

)1−αs
Ā−1
s J

− 1
η−1

s (40)

where

Ās =

(∫
Πs(ω)≥fs(ω)

[
(1 + τK,s(ω))αs

1− τY,s(ω)

]1−η

As(ω)η−1 dµs(ω)

µs (Πs(ω) ≥ fs(ω))

) 1
η−1

The key integral to evaluate this expression is∫
Πs(ω)≥fs(ω)

[
(1 + τK,s(ω))αs

1− τY,s(ω)

]1−η

As(ω)η−1dµs(ω) (41)

In order to avoid MC-integration and be able to use derivative based optimization
methods, I exploit the following result that will generate a smooth and differentiable
form for integral (41).

Lemma 1 (Lien and Balakrishnan (2006))

Let X and Z be two jointly log-normally distributed random variables. De-
fine the multiplicative constraint by the set

1{a,b,K} =

{
1 if Xa · Zb ≤ K

0 if else
(42)
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Then it follows that

E
[
XmZn · 1{a,b,K}

]
=

exp

{
mµX + nµZ +

1

2

(
m2σ2

m + n2σ2
n + 2mnσX,Z

)}
×Φ

(
logK − (aµX + bµZ)− [amσ2

X + (bm+ an)σX,Z + bnσ2
Z ]√

a2σ2
X + b2σ2

Z + 2abσX,Z

) (43)

where Φ(.) is the cdf of a standard normal.

Lemma 2

Let X1, X2, X3 be three jointly log-normally distributed random variables.
Define the multiplicative constraint by the set

1{α,β,γ,K} =

{
1 if Xβ1

1 Xβ2

2 Xβ3

3 ≤ K

0 if else
(44)

Then it follows that

E
[
Xm

1 X
n
2X

l
3 · 1{β1,β2,β3,K}

]
= E

[
X · Zc · 1{0,0,1,K}

]
= exp

{
µX + cµZ +

1

2

(
σ2
X + c2σ2

Z + cσX,Z
)}

× Φ

(
logK − µZ − [σX,Z + cσ2

Z ]

σZ

) (45)

where Φ(.) is the cdf of a standard normal and X and Z are defined by

logX = a logX1 + b logX2

logZ = β1 logX1 + β2 logX2 + β3 logX3

(46)

and the coefficients a, b, c are given by

a = m− β1
l

β3

, b = n− β2
l

β3

, c =
l

β3

(47)

Proof: apply mapping (46) and (47) to reduce the trivariate problem to the bivariate
problem of Lemma 1.

Lemma 2 can now directly be used to evaluate integral (41). For this note that we
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can map this into the form required by the Lemma, by noting that

logX = a log(1 + τK,s(ω)) + b log

(
1

1− τY,s(ω)

)
log Z̃ = − logZ = αsm̄ log(1 + τK,s(ω)) + m̄ log

(
1

1− τY,s(ω)

)
− logAs(ω)

with

a = αs, b = 1, c = −(η − 1) (48)

Evaluating the integral (41) and substituting into the price level equation (40)
implies the constraint displayed in the main text.

1.C.5: Recovering aggregate factor endowments

This section shows how endogenous entry and equilibrium conditions are used to-
gether to recover sectoral factor endowments. I derive aggregate sectoral factor de-
mands and show how these are related to estimated parameters.

Production-related aggregate factor demands are given by

R

∫
Πs(ω)≥fs(ω)

KP,s(ω)dµs(ω) =
αs
m̄

(
1− τ̄Y,s
1 + τ̄K,s

)
PsYs

w

∫
Πs(ω)≥fs(ω)

LP,s(ω)dµs(ω) =
1− αs
m̄

(1− τ̄Y,s)PsYs
(49)

where the aggregate wedges are given by

(1− τ̄Y,s) =

∫
Πs(ω)≥fs(ω)

As(ω)η−1 · [1− τY,s(ω)]η · [1 + τK,s(ω)]−αs(η−1)dµs(ω)∫
Πs(ω)≥fs(ω)

[
As(ω)

1−τY,s(ω)

[1+τK,s(ω)]αs

]η−1

dµs(ω)
(50)

(1 + τ̄K,s) =

∫
Πs(ω)≥fs(ω)

As(ω)η−1 · [1− τY,s(ω)]η · [1 + τK,s(ω)]−αs(η−1)dµs(ω)∫
Πs(ω)≥fs(ω)

As(ω)η−1 · [1− τY,s(ω)]η · [1 + τK,s(ω)]−(1+αs(η−1))dµs(ω)
(51)

Plant-level factor demand for fixed costs of operations is given by
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wLf,s(ω) = (1− αs)
(

w

1− αs

)1−αs ( [1 + τK,s(ω)]R

αs

)αs
Fs

RKf,s(ω) = αs
1

1 + τK,s(ω)

(
w

1− αs

)1−αs ( [1 + τK,s(ω)]R

αs

)αs
Fs

(52)

Aggregation of these factor demands across establishments implies

wLF,s = (1− αs)Js
(
R

αs

)αs ( w

1− αs

)1−αs T̄κ1,s

µs (Πs(ω) ≥ fs(ω))
Fs

RKF,s = αsJs

(
R

αs

)αs ( w

1− αs

)1−αs T̄κ2,s

µs (Πs(ω) ≥ fs(ω))
Fs

(53)

where aggregate wedges related to fixed costs of operation are given by

T̄κ1,s =

∫
Πs(ω)≥fs(ω)

[1 + τK,s(ω)]αsdµs(ω)

T̄κ2,s =

∫
Πs(ω)≥fs(ω)

[1 + τK,s(ω)]αs−1dµs(ω)

(54)

Note that there is a simple relationship between aggregate capital and labor used
for fixed costs of operation.

RKF,s =
αs

1− αs
T̄κα,swLF,s (55)

where the aggregate distortions between capital and labor for fixed costs of opera-
tion can be written as

T̄κα,s =

(
T̄κ2,s

T̄κ1,s

)
(56)

This term summarizes the direct effect of capital wedge distortions of the exit margin
on aggregate relative factor demand.

Finally I need to recover the resources spent on entry. The net present value of a
firm in Steady State is given by

Ve,s =
1

δs
Pr

{
Πs(ω) ≥ fs(ω)

}
E
[
Πs(ω)− fs(ω)

∣∣∣∣Πs(ω) ≥ fs(ω)

]
(57)
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Aggregate valuations of entrants are

Je,sVe,s =
1− τ̄Y,s

η
PsYs − JsE

[
fs(ω)

∣∣∣∣Πs(ω) ≥ fs(ω)

]
=

1− τ̄Y,s
η

PsYs − Js
(
R

αs

)αs ( w

1− αs

)1−αs T̄κ1,s

µs(Πs(ω)) ≥ fs(ω)

(58)

The free entry condition then implies:

Ve,s =

(
R

αs

)αs ( w

1− αs

)1−αs
Fe,s (59)

which is used to calculate the factor demand by entrants. Therefore aggregate labor
demand for the purpose of sunk costs of entry is:

wLe,s = (1− αs)
(
R

αs

)αs ( w

1− αs

)1−αs
Fe,sJe,s

= (1− αs)Je,sVe,s
(60)

which recovers resources spent on entry cost labor. Similarily, capital demand to cover
sunk costs of entry is given by:

RKe,s =
αs

1− αs
wLe,s (61)

The aggregate factor demands for each sector are therefore given by

wLs = wLP,s + wLF,s + wLe,s

RKs = RKP,s +RKF,s +RKe,s

(62)

Aggregate factor endowments are then calculated as L =
∑S

s=1 Ls and K =
∑S

s=1Ks.

1.C.6: Multi-Sector General Equilibrium

This section defines the multi-sector general equilibrium. In the counterfactuals I
assume that aggregate factor endowments L,K are fixed.

A multi-sector equilibrium in the economy with micro-distortions consists of a set

of variables for each sector

{
Ps, le,s, (1 − τ̄Y,s), (1 + τ̄K,s), T̄κα,s, PsYs, ls

}S
s=1

and the

economy wide relative factor price R
w

and the numeraire w = 1 such that
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1. The sectoral ideal CES price index is given by (40) for each sector s = 1, ..., S.

2. Steady state turnover of firms is given by (1.23) for each sector s = 1, ..., S.

3. The sectoral aggregate output wedge is given by (50) for each sector s = 1, ..., S.

4. The sectoral aggregate capital wedge is given by (51) for each sector s = 1, ..., S.

5. The sectoral exit capital wedge is given by (56) for each sector s = 1, ..., S.

6. Sectoral share of labor in total employment is given by

ls =
(1− αs)(1− τ̄Y,s)ξs∑S
s=1(1− αs)(1− τ̄Y,s)ξs

(63)

for each sector s = 1, ..., S.

7. Sectoral spending is given by

PsYs =
ξswL∑S

s=1(1− αs)(1− τ̄Y,s)ξs
(64)

for each sector s = 1, ..., S.

8. Economy-wide factor markets clear

R

w
=

∑S
s=1(1− τ̄Y,s)ξsαs

{
1
m̄

(
1

1+τ̄K,s

)
+ T̄κα,s(1− le,s) + le,s

}
∑S

s=1(1− αs)(1− τ̄Y,s)ξs
(65)

where aggregate endowments L,K are given. It is a system of S × 7 + 1 variables in
as many equations.

1.C.6: Proof of Proposition 5

Here I derive the aggregate TFP formula. Combine both aggregate factor demand
for production in equation (49) to get

PsYs = m̄

(
R

αs

)αs ( w

1− αs

)1−αs [(1 + τ̄K,s)
αs

1− τ̄Y,s

]
Kαs
P,sL

1−αs
P,s (66)

Now divide both sides by PsK
αs
s L

1−αs
s and substitute for Ps with equation (40).

What is left is to substitute
KP,s
Ks

as well as
LP,s
Ls

. For this, combine (49) and (62).
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Appendix 1.D: Endogenous Markups

The main part of the paper follows Hsieh and Klenow (2009) in modeling plant-
level distortions as taxes as opposed to markups. But markup differences potentially
show up in TFPR dispersion. To quantify the degree in which endogenous markups
could drive results I follow Atkenson and Burstein (2008). They point out that if one
drops the assumption that monopolistic competitors within sectors take the CES price
index as given, it is possible to generate endogenous markups with CES preferences.
Atkenson and Burstein (2008) show that the pricing decision of firms can be written
as

ps(ω) =
εs(ω)

εs(ω)− 1
·mcs(ω)

where mcs(ω) = 1
A(ω)
· BsR

αsw1−αs is the marginal cost of a firm and the elasticity of
substitution is given by

εs(ω) =

[
1

η
(1− ss(ω)) + ss(ω)

]−1

where ss(ω) is the market share of firm ω in its 4-digit sector s. I keep the assumptions
that the elasticity of substitution across sectors is one and the within-sector elasticity
of substitution is 3. Note that these choices can generate large markup differences. At
one extreme, as a firm dominates its industry and ss(ω)→ 1 the markup will diverge
toward infinity. Intuitively as one firm dominates an industry, the relevant elasticity of
substitution will be the cross-sectoral elasticity of substitution of one. The monopolist
realizes that his product is essential and charges an infinite markup. On the other
extreme, if the market share in sector s ss(ω) → 0 the within sectoral elasticity of
substitution η is relevant. So the lower bound for the markup is 1.5.

With these assumptions in place it is possible to quantitatively evaluate to which
degree endogenous markup differences can drive TFPR dispersion in the data. Suppose
endogenous markups would be the only source of micro-distortions. Then measured
TFPR in a model without fixed costs is

TFPRs(ω) =
ps(ω)ys(ω)

Ks(ω)αsLs(ω)1−αs
=

εs(ω)

εs(ω)− 1
·BsR

αsw1−αs

For each 4 digit sector I calculate the market shares ss(ω) and generate markups
according to the Atkenson-Burstein formula. Additionally I calculate Herfindahl-
Hirshman concentration indices to contrast markup dispersion with industry concen-
tration. Figure 17 shows the results of this exercise. As one would expect endogenous
markups would lead markup dispersions to increase the more concentrated the industry

94



is. However, endogenous markup dispersion is not able to generate any quantitatively
significant amount of TFPR dispersion. The maximum dispersion of TFPR generated
by endogenous markups is below 0.1 and most sectors are well below 0.05. This point
reinforced by figure 18, which plots the observed TFPR dispersion against the log
Herfindahl index, by 4 digit sector. Note that the actual TFPR dispersion is typically
an order of magnitude larger than suggested by the Aktenson-Burstein calculations.
There is indeed a positive relation between industry concentration and TFPR disper-
sion in the data, but it seems very weak at best.
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Figure 17: Standard deviation of log-markups predicted by Atkenson-Burstein frame-
work versus log Herfindahl indices. Each data point is one ISIC Rev.2, 4 digit sector.
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Figure 18: Standard deviation of log TFPR vs log Herfindahl indices. Each data point
is one ISIC Rev.2, 4 digit sector.
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Appendix 1.E: Heterogeneity in Fixed Costs

In this appendix I analyze how the presence of heterogeneity in fixed costs across
firms could impact the measurement of TFPR and TFPQ. I will proceed in three
steps. First, I derive bounds on the maximum possible differences in measured TFPR
with heterogeneity in fixed costs. Second I quantitatively illustrate how much TFPR
dispersion can be generated in a model that only has firm heterogeneity in efficiency
and fixed costs. Third, I re-introduce heterogeneity in micro-distortions and analyze
the quantitative impact of fixed cost heterogeneity on TFPR measurement.

The model of firm level heterogeneity in productivity is as follows. As in the main
text, monopolistic competitors solve

max
L(ω)

Π(ω) = p(ω)y(ω)− wL(ω)

s.th. y(ω) = A(ω)L(ω)

and p(ω) =

[
y(ω)

Y

]− 1
η

P

Optimal exit decisions are given by

Π(ω) ≥ w · F (ω)

F (ω) = F · exp {σF · ε(ω)}
with ε(ω) Standard-Normal

Then rewriting this optimal survival condition implies that

1

η
p(ω)y(ω) ≥ wF (ω)

This imposes a bound on maximum fixed costs: wFmax = 1
η
p(ω)y(ω). The intuition

for this result is straightforward. If fixed costs are too large relative to profits, firms
optimally decide to exit. Firms with very large fixed costs will therefore not be observed
in the data. Measured TFPR with this maximum possible fixed cost is:

TFPR1(ω) =
p(ω)y(ω)

w(Lp(ω) + Fmax)
=

p(ω)y(ω)
p(ω)y(ω)

m̄
+ p(ω)y(ω)

η

= 1

On the other hand TFPR with minimum possible fixed costs is:

TFPR0(ω) =
p(ω)y(ω)

wLp(ω) + 0
=
p(ω)y(ω)
p(ω)y(ω)

m̄

= m̄
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Hence the maximum possible variation in measured TFPR from fixed costs is between 1
and η

η−1
or 1.5 with η = 3. Now to quantify how strong these bounds are, take σF = 4.

This implies that the 95-5 percentile ratio is 8.8861 · 105! Furthermore let me assume
that σA = 1.4 which is comparable with the mean TFPQ dispersion I estimate from
the data. The observable standard deviation of log TFPR is 0.12, while the covariance
of TFPR and TFPQ is 0.04. A model with only fixed cost heterogeneity does not seem
to be able to generate TFPR dispersion quantitatively comparable to the data. What
is more, Figure 19 shows that the correlation patterns of TFPR and TFPQ implied by
this type of model are very different from the ones in the data.

How strongly does heterogeneity in fixed cost affect the measurement of TFPR and
TFPQ? To investigate this question I set σF = 1, σA = 1.4 and στ = 0.9. Figure 20
shows that this introduces a lot of noise around the survival line. However, the impact
on measured TFPR and TFPQ is limited. The standard deviation of log TFPR ideally
measured is 0.71, the covariance of TFPR and TFPQ is 0.59 and the standard deviation
of log TFPQ is 1.08. In contrast measures of TFPR and TFPQ ignoring fixed cost
heterogeneity are: 0.69 for the standard deviation of log TFPR, 0.62 for the covariance
of TFPR and TFPQ and 1.14 for the standard deviation of log TFPQ.
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Figure 19: Measured TFPR and TFPQ with σA = 1.4 and σF = 4
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Figure 20: Measured TFPR and TFPQ with σA = 1.4, στ = 0.9 and σF = 1.
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Appendix Chapter 2

Appendix 2.A: Impact of International Trade on

Distortion and Efficiency Measures

This appendix quantitatively illustrates the impact of international trade on the
measurement of micro level frictions and efficiency in a multi-country general equi-
librium model. There are two reasons why one might be interested in the impact of
international trade on measurement of frictions. First, as pointed out by Melitz (2003),
changes in international trade induce re-allocation effects across firms. As trade fric-
tions fall, the most productive firms should be expected to expand, while the least
productive firms should contract. This impacts measured dispersions of firm sizes.
Second, if the export decision involves a fixed cost of operation then very productive
firms will have higher fixed cost of operations. These will show up in measured factor
demands. Since the measurement of firm level distortions and efficiency rely on sales
and factor demand, variations in aggregate trade frictions can impact the distortions
measurement conducted in this paper.

Let there be N countries with i = 1, ...N indexing the source country and j = 1, .., N
the destination country. Each country’s aggregate production is given by

min
yij(ω)

PiYi −
N∑
j=1

∫
pij(ω)yij(ω) · dµj(ω)

subject to: Yi =

(
N∑
j=1

∫
yij(ω)

η−1
η · dµj(ω)

) η
η−1

Within each country, there exists a continuum of monopolistically competitive firms.
These firms differ by their level of technology and micro-distortions as in the main part
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of the paper.

max
{Lij(ω)}

N∑
i=1

Πij(ω) =
N∑
i=1

[(1− τ(ω))pij(ω)yij(ω)− wjLij(ω)]

subject to: yij(ω) =
1

dij
A(ω) · Lij(ω)

The joint distribution of firm level distortions and efficiency are allowed to differ by
country and assumed to be log-normal. Producers shipping goods from country j to
country i are assumed to face an iceberg trade frictions dij > 1. A firm from country
j decides to operate in market i if gross profits are sufficient to cover fixed costs of
operating in this market fij = wi · Fij:

Πij(ω) ≥ fij

In typical establishment level micro-data, value added and factor demand are not
differentiated by destination:

Xj(ω) =
N∑
i=1

pij(ω)yij(ω) · 1{Πij(ω)≥fij}

Lj(ω) =
N∑
i=1

[Lij(ω) + Fij] · 1{Πij(ω)≥fij}

Exporters will have higher sales as they enter more markets, but also have higher
fixed costs of operation.

Parameter Value Explanation

η 3 Elasticity of Substitution

Hsieh and Klenow (2009)

Fii 1 Domestic Fixed Cost Workers

Fij 18 Export Fixed Cost Workers

Fe 0 Entry Cost Workers

HMR (2008), Melitz-Ghironi (2008)

J̃ 20000 Number of Latent Plants

dij 3 Iceberg trade friction

Anderson and van Wincoop(2004)

µA,j [0.01, 1] mean country-level efficiency

σA,j 1.2 dispersion of firm efficiencies

στ,j 1 dispersion of micro-distortions
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I calibrate this model with ten countries, which I assume differ by their level of
efficiency. Aggregate efficiency differences are assumed to be a factor of 2.5. Other
parameters are explained in the table. Iceberg trading frictions are assumed to add a
factor of three to prices, which is consistent with evidence from Anderson and Van Win-
coop (2004). To quantify the impact of trade on distortion measurement I proceed as
follows. For a specific country with an average technology level across countries I vary
the trade friction. Specifically I start at 60% below the average trade friction and in-
crease iceberg costs to 160% of the average trade friction. This has a dramatic impact
on trade. I follow the trade literature and characterize the degree of openness to trade
using the internal trade share. It is defined as the value of domestic nominal sales to all
international sales to the country. Recently Arkolakis, Costinot and Rodriguez-Clare
(Forthcoming) have argued that this statistic is key in a class of constant-elasticity
trade models to evaluate the welfare gains from trade. The internal trade share in this
exercise starts at 25% and increases to a value of 80%. Thus, the country starts as a
relatively open economy and converges to a relatively closed one as I increase iceberg
trading frictions.

As figures 21 and 22 document, the impact on measures of TFPR and TFPQ
dispersion is modest. As one would expect, lower trade frictions increase the dispersion
of TFPQ due to Melitz-type reallocation effects. This is compatible with the conjecture
of Hsieh and Klenow (2009) that international trade would primarily show up in TFPQ.
One notable feature is that measured TFPR dispersions fall as there is more trade.

The results of this exercise are not much changed if instead of a middle income
country I choose the same calibration with a low income or a high income country. In
each case measured TFPR and TFPQ dispersions are affected by international trade.
But the quantitative impact is never more than 0.1 log points in the standard deviation
of either log TFPR or log TFPQ.
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Figure 21: Impact of changes in trade friction on measured TFPR dispersion. Measured
TFPR dispersion is defined as standard deviation of log TFPR. Plot is based on a ten
country trade model with trade frictions and differences in mean productivity across
countries.
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Figure 22: Impact of changes in trade friction on measured TFPQ dispersion. Measured
TFPQ dispersion is defined as standard deviation of log TFPQ. Plot is based on a ten
country trade model with trade frictions and differences in mean productivity across
countries.
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Appendix 2.B
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Figure 23: Illustration of estimated survival pattern versus data for six largest manu-
facturing sectors.
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Figure 24: Illustration of predicted firm size distribution versus data. Six largest
manufactuing sectors by value added. Kernel density estimates.

104



0 1 2 3 4 5 6
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

log fix cost estimate

lo
g
 c
a
p
it
a
l 
s
h
a
re

3114,  Fish           

3123,  Ice            

3212,  Made-up Text.  

3511,  Ind. Chem.     
3521,  Paints         

3522,  Drugs & Med.   

3559,  Rubber n.e.c.  

3813,  Struc. Metal   

3841,  Ships          

Student Version of MATLAB

Figure 25: Display of log sectoral capital intensity log(αs) from US data versus esti-
mate of log fixed costs log(Fs). Each data point is one ISIC Rev.2, 4 digit sector.
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Figure 26: Display of log non-production worker share log(γs) from Indonesian data
versus estimate of log fixed costs log(Fs). Each data point is one ISIC Rev.2, 4 digit
sector.
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Figure 27: Standard deviation of

log TFPR = log
[

(1+τK,s(ω))αs

1−τY,s(ω)

]
(com-

bined firm level wedge) against selec-
tion corrected estimates from MLE.
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Figure 28: Standard deviation of
log TFPQ = logAs(ω) (firm level effi-
ciency) against selection corrected esti-
mates from MLE.
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Figure 29: Correlation of log TFPR =

log
[

(1+τK,s(ω))αs

1−τY,s(ω)

]
and log TFPQ =

logAs(ω) against selection corrected
estimates from MLE.
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Figure 30: Correlation of output wedge

log
[

1
1−τY,s(ω)

]
and capital wedge log[1+

τK,s(ω)] against selection corrected es-
timates from MLE.
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Figure 31: Standard deviation of

log
[

1
1−τY,s(ω)

]
(output wedges) against

selection corrected estimates from
MLE.
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Figure 32: Standard deviation of
log[1+τK,s(ω)] (capital wedges) against
selection corrected estimates from
MLE.
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Figure 33: Correlation of log
[

1
1−τY,s(ω)

]
and log TFPQ = logAs(ω) against se-
lection corrected estimates from MLE.
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Figure 34: Correlation of capital
wedge log[1 + τK,s(ω)] nd log TFPQ =
logAs(ω) against selection corrected
estimates from MLE.
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Figure 35: Distribution of TFP Gains across sectors as misallocation is removed.
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Figure 36: Entensive margin misallocation losses and covariance of efficiency and dis-
tortions across sectors. Each data point is a 4 digit sector.
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Figure 37: Intensive margin misallocation losses and covariance of efficiency and dis-
tortions across sectors. Each data point is a 4 digit sector.
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Figure 38: Estimates of Zombie firms for six largest 4-digit sectors. Solid sloped line
denotes estimated survival line, while vertical dashed line shows estimated frictionless
efficiency cut-off. Color coding denotes plant ownership patterns. Green plants are
partially owned by foreigners while red plants are partially owned by central or local
government.
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Figure 39: Market shares and firm
shares of Zombies across ISIC 4 digit
sectors
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Figure 40: Zombie TFP losses and
Zombie firm shares across ISIC 4 digit
sectors
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Figure 41: Intensive-margin TFP
losses and firm shares of Zombies across
ISIC 4 digit sectors
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Figure 42: Zombie firm shares ver-
sus dispersion of micro-frictions across
ISIC 4 digit sectors
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Appendix Chapter 3
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Figure 43: Competitiveness and export advantage, full sample. Data: Waugh (2009).
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Figure 44: Competitiveness and export advantage, rich country subsample. Data:
Waugh (2009) and Author’s calculations.
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Figure 45: Implications from Melitz-Pareto model with parameters implied by Gravity
equation.

Figure 46: Establishment vs. Firm size distributions. Source: Rossi-Hansberg and
Wright (2007)
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Figure 47: Within industry relation of firm size dispersion and internal trade share.
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Figure 48: Firm level and aggregate productivity responses to changes in selection
cutoffs, for different values of parameters.
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Figure 49: Firm level and aggregate productivity responses to changes in selection
cutoffs, for different values of parameters.
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Figure 50: Comparative statics of the closed economy.
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Figure 51: Plots of equilibrium objects in the simulated world economy. Left panels:
differences in dispersions. Right panels: differences in mean productivity
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Figure 52: Plots of equilibrium objects in the simulated world economy. Left panels:
differences in dispersions. Right panels: differences in mean productivity
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Figure 53: Results from model with realistic geography and differences in σA
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